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Abstract

Many academic papers are written about reaction-diffusion systems with circular symmetry but without
explicit formulas for normal form coefficients and without numerical simulations to verify normal form
predictions. In this paper, we will provide explicit formulas to compute normal form coefficients using
general techniques. Additionally, we provide an example and predict the behavior using the computed
normal form coefficients. And then we will simulate the system numerically in MATLAB and compare
results with the prediction.
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1 Introduction

1.1 Motivation

Reaction-diffusion systems appear in many fields of Science, see e.g. the classical book [1]. They are often used
in Life Sciences, all the way from population dynamics to modeling chemical reactions. Specific examples of
these applications can be found in [2].

The reaction-diffusion systems allow describing pattern formation, e.g. the appearance of stationary and
traveling waves. Changing parameters in the system can produce different solutions with different spatial
characteristics. Finding these critical points and studying solutions appearing nearby can give a scientist a lot
of information about the studied system. A particular example of these critical points is Hopf bifurcation points,
where small-amplitude periodic solutions appear when a stationary solution exhibits an oscillatory instability.

Hopf bifurcation is a well-understood phenomenon in models without diffusion described by finite-dimensional
ordinary differential equations, see [3]. Reaction-diffusion systems – even on bounded domains – are the infinite-
dimensional dynamical systems. Moreover, their local bifurcation analysis is complicated by the multiplicity
of the eigenvalues of the linear part, which typically occurs if the domain is symmetric, e.g. invariant w.r.t.
rotations.

1.2 Aims

In what follows, we consider only the simplest rotationally symmetric reaction-diffusion systems, i.e. those on
the unit circle S1. Small-amplitude time-periodic solutions appearing in such systems via Hopf bifurcation were
studied by many authors, in particular in [4, 5]. Periodic solutions near degenerate Hopf bifurcations were also
analyzed. To obtain a characterization of all periodic and non-periodic small-amplitude solutions, an approach
based on the Center Manifold reduction was first applied in [6, 7] and later by many authors, including [8]. A
reaction-diffusion system with the rotational symmetry has been recently used as an example in [9], where a
symbolic/numerical algorithm to compute the normal forms of PDEs on their center manifolds is proposed and
implemented.

However, in all papers – except the hardly available [6] – no directly applicable formulas for the normal
form coefficients at the Hopf bifurcation in reaction-diffusion systems on the circle were given. Moreover, no
detailed normal form computations predicting the appearance of stable waves via the primary Hopf bifurcation
in a concrete reaction-diffusion system were demonstrated and verified by simulations.

Thus, the aim of this thesis is threefold:

(1) Revisit the normal form computations of [6–8] and derive as explicit as possible formulas for the critical
normal form coefficients of the 4-dimensional symmetric normal form at the primary Hopf bifurcation in
general reaction-diffusion systems on the circle.

(2) Implement the derived formulas in matlab and apply them to a three-component reaction-diffusion system
originally proposed by Polyakova in [10].

(3) Develop and implement a finite-difference method to numerically simulate general multi-component reaction-
diffusion systems on the circle, and verify the normal form predictions on Polyakova’s example.

1.3 Mathematical problem

Consider the following reaction-diffusion system for u : S1 × [0,∞)→ Rm satisfying

∂u

∂t
= D(µ)

∂2u

∂θ2
+ F (u, µ) (θ mod 2π), (1)

where D(µ) is a diagonal m ×m matrix with positive elements smoothly depending on parameter µ ∈ R, and
F : Rm ×R→ Rm is a smooth vector function, such that u = 0 is a stationary homogeneous solution of (1) for
all parameter values, i.e. F (0, µ) ≡ 0.

As shown in [11], the system (1) generates a smooth (and smoothly depending on the parameter) local
semiflow Φtµ on (the real subspace of) the complex Hilbert space H, the completion of the space C2(S1,Cm) of
twice continuously-differentiable vector-functions on the circle S1 under the norm corresponding to the inner
product

〈u, v〉 =

m∑
k=1

∫ 2π

0

(
ūkvk +

dūk
dθ

dvk
dθ

+
d2ūk
dθ2

d2vk
dθ2

)
dx. (2)

The operator of the linearization of (1) at the stationary solution u = 0 is

L(µ) = D(µ)
∂2

∂θ2
+A(µ),

3



where A(µ) = Fu(0, µ). The spectrum of L(µ) in H consists of eigenvalues. Due to the S1-symmetry of the
problem, the eigenvalues of L(µ) are generically double, with two linearly-independent eigenfunctions each.

Let L0 = L(0), D0 = D(0), A0 = A(0). Suppose that there is a unique k > 0 such that the m×m matrix

−k2D0 +A0

has a simple pair of purely imaginary eigenvalues ±iω0, ω0 > 0. Let V ∈ Cm be the corresponding eigenvector,
i.e.

(−k2D0 +A0)V = iω0V.

Note that vector V is not uniquely defined: One can multiply it by a nonzero complex number. Given V , it is
easy to verify that the vector-functions

ϕ1,2(θ) = V e±ikθ (3)

and their complex-conjugate will be the eigenfunctions of L0 corresponding to the pair of double eigenvalues
λ1,2 = ±iω0:

L0ϕ1,2 = iω0ϕ1,2 and L0ϕ1,2 = −iω0ϕ1,2 . (4)

Suppose that for small |µ| the operator L(µ) has a double pair of complex eigenvalues λ1(µ) = λ(µ) and
λ2(µ) = λ(µ), where

λ(µ) = µ+ iω(µ)

with ω(0) = ω0. This means that we use Re(λ1,2) as the system parameter. We aim is to study solutions of
(1) in a small neighborhood of the origin in H, when µ changes sign. The case when all eigenvalues of L(µ)
except λ1,2(µ) have negative real parts is of particular interest in applications since it corresponds to “diffusion
oscillatory instability” of the trivial steady state when µ changes from negative to positive. Note that this is
only possible if m ≥ 3.
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2 Differential equation on center manifold

2.1 Center manifold reduction

To the local semiflow Φtµ : H → H generated by the reaction-diffusion system (1) the Center Manifold Theorem
is applicable [11]. In this case, it guarantees the existence for all sufficiently small |µ| of a real 4-dimensional
locally invariant for Φtµ smooth manifold W c

µ ⊂ H, which depends smoothly on µ. This manifold is called
the center manifold and is tangent at µ = 0 to the 4-dimensional linear invariant subspace H0 ⊂ H of L0,
corresponding to the double pair of its eigenvalues ±iω0. The manifold W c

µ is locally normally hyperbolic. If
all eigenvalues of L(µ) have negative real parts for µ < 0, the center manifold is locally attracting for Φtµ.

Any ϕ ∈ H0 can be written as

ϕ = w1ϕ1 + w2ϕ2 + w1ϕ1 + w2ϕ2, (5)

where w1,2 ∈ C. A smooth projection of W c
µ onto H0 allows to use (w1, w2) as local coordinates in W c

µ. In these
coordinates, the restriction of Φtµ to W c

µ is a local flow generated by a smooth system of two complex ODEs{
ẇ1 = λ(µ)w1 + f1(w1, w2, µ),
ẇ2 = λ(µ)w2 + f2(w1, w2, µ),

(6)

where fj = O(‖w‖2). One can show that due to the S1-symmetry of the original reaction-diffusion problem,
this system does not change under the transformations

(1) Pα(w1, w2) = (eikαw1, e
−ikαw2) (α mod 2π),

(2) Pr(w1, w2) = (w2, w1),
(7)

corresponding to the rotation of the unit circle θ 7→ θ + α and to its reflection θ 7→ −θ, respectively.
Moreover, there is an invertible smooth change of the complex variables that preserves the symmetry (7) of

(6) and transforms it into the normal form{
ż1 = z1

(
λ(µ) +G(µ)|z1|2 +H(µ)|z2|2

)
+ g(z1, z2, µ),

ż2 = z1
(
λ(µ) +H(µ)|z1|2 +G(µ)|z2|2

)
+ g(z2, z1, µ),

(8)

where G,H are smooth complex-valued functions of µ, while g = O(‖z‖5) is a smooth (but not necessarily
analytic) function satisfying

e−iβg
(
z1e

iβ , z2e
−iβ , µ

)
= g(z1, z2, µ) (β mod 2π).

This normal form appeared in several studies, starting with [6, 7].

2.2 Analysis of the truncated normal form

Consider the following system of complex differential equations{
ż1 = z1

(
µ+ iω +G|z1|2 +H|z2|2

)
,

ż2 = z2
(
µ+ iω +H|z1|2 +G|z2|2

)
,

(9)

where µ ∈ R and G,H ∈ C. This systems is obtained from the full normal form (8) by truncating the O(‖z‖5)-
terms, and not indicating the dependence of G,H and ω on µ for simplicity. One can show that adding any
symmetric O(‖z‖5)-terms does not change the qualitative properties of (9) near the bifurcation [12, 13].

We would like to analyse solutions of (9) near the equilibrium point z1 = z2 = 0. We can do this by
first substituting zj = ρje

iφj to convert to polar coordinates. Here ρj represents the amplitude of zj and φj
represents the angle with the positive real axis. This gives the following equations{

ρ̇1e
iφ1 + iφ̇1ρ1e

iφ1 = ρ1e
iφ1(µ+ iω +Gρ21 +Hρ22),

ρ̇2e
iφ2 + iφ̇2ρ2e

iφ2 = ρ2e
iφ2(µ+ iω +Hρ21 +Gρ22)

.

By decomposing G,H into real and pure imaginary parts, that is G = GR + iGI , H = HR + iHI where
GR, GI , HR, HI ∈ R we can separate the real and the imaginary components of the equations. This gives

ρ̇1 = µρ1 +GRρ
3
1 +HRρ1ρ

2
2,

ρ̇2 = µρ2 +HRρ
2
1ρ2 +GRρ

3
2,

φ̇1 = ω +GIρ
2
1 +HIρ

2
2,

φ̇2 = ω +HIρ
2
1 +GIρ

2
2.

(10)
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The trivial equilibrium ρ1 = ρ2 = 0 of (10) corresponds to the spatially uniform trivial solution of the reaction-
diffusion system (1). The periodic solutions with either ρ1 = 0 or ρ2 = 0 of (10) correspond to the rotating
waves in (1), propagating in opposite directions. Finally, the periodic solutions with ρ1,2 > 0, which compose
a two-dimensional invariant torus in (10), correspond to a family of standing waves with different positions
of nodes in (1). These facts become evident upon substituting the periodic solutions of the system into the
parametrization (5) of H0. Moreover, the stability of each solution in the reaction-diffusion system can be
deduced from that in in (10).

Since the amplitude equations split from the equations for φ1,2, we will omit the last two equations. Setting
a = GR and b = HR gives the following cubic real system{

ρ̇1 = µρ1 + aρ31 + bρ1ρ
2
2,

ρ̇2 = µρ2 + bρ21ρ2 + aρ32.
(11)

Notice that there exist a scalar potential function φ : R2 → R namely

φ(ρ) =
1

4

[
a(ρ41 + ρ42) + 2µ(ρ21 + ρ22) + 2bρ21ρ

2
2

]
,

such that ρ̇ = ∇φ. Thus the planar amplitude system (11) is gradient and cannot have periodic solutions.
We can simplify system (11) by the substitution of variables

r1 = ρ21,
r2 = ρ22.

(12)

so that ṙj = 2ρj ρ̇j , j = 1, 2. This gives the quadratic system{
ṙ1 = 2r1(µ+ ar1 + br2),
ṙ2 = 2r2(µ+ br1 + ar2),

(13)

with the equilibria
r1 = 0 r2 = 0

r1 = 0 r2 = −µ
a

r1 = −µ
a

r2 = 0

r1 = − µ

a+ b
r2 = − µ

a+ b

.

For these equilibria we do have to make sure that their coordinates are not negative. The Jacobian matrix of
the system (12) is

J = 2

(
µ+ 2ar1 + br2 br1

br2 µ+ 2ar2 + br1

)
.

We would like to analyse equilibria of (12). Their coordinates, eigenvalues, and eigenvectors of the corresponding
Jacobian matrix J are given in Table 1.

Indeed, only equilibria with non-negative coordinates have to be considered. Generically, stability of an
equilibrium depend on the eigenvalues. This means we have to distinguish different combinations of signs of

p E0 E1 E2 E3

r (0, 0)
(

0,−µ
a

) (
−µ
a
, 0
) (

− µ

a+ b
,− µ

a+ b

)

J 2

(
µ 0
0 µ

)
−2µ

a

(
b− a 0
b a

)
−2µ

a

(
a b
0 b− a

)
− 2µ

a+ b

(
a b
b a

)
λ1 2µ −2µ −2µ −2µ

λ2 2µ
2µ(a− b)

a

2µ(a− b)
a

−2µ(a− b)
a+ b

v1 (1, 0) (0, 1) (1, 0) (1, 1)

v2 (0, 1)

(
−2a− b

b
, 1

) (
− b

2a+ b
, 1

)
(−1, 1)

Table 1: Equilibria of (12) with the corresponding Jacobian matrix, eigenvalue and eigenvector.

6



Case Region

A a < 0, a− b > 0, a+ b < 0;

B a < 0, a− b < 0, a+ b < 0;

C a < 0, a− b < 0, a+ b > 0.

Table 2: Different cases of stability in the phase diagrams.

Figure 1: These regions distinguish cases of the stability in the phase diagrams. Here the horizontal axis is a
and the vertical axis is b.

the eigenvalues for different parameter values a, b and µ. Thus, we have to distinguish the following regions in
the (a, b)-plane (see Table 2 and Figure 1):

In Case A, see Figure 2, the equilibrium E0 in system (12) is locally asymptotically stable for µ ≤ 0 but
becomes unstable for µ > 0, when two equilibria E1,2 on the axes appear together with the positive equilibrium
E3. The equilibria E1,2 are locally asymptotically stable, while the positive one is a saddle. For the reaction-
diffusion system (1), this means that for µ ≤ 0 we have only the stable uniform solution, while for µ > 0
this solution becomes unstable, but two asymptotically stable and rotating in opposite directions waves, and a
family of unstable standing waves, appear. The waves have small amplitude that tends to zero as µ ↓ 0.

µ < 0 µ = 0 µ > 0

Figure 2: Bifurcation diagram in case A. 1

In Case B, see Figure 3, the local stability of the trivial equilibrium in (12) is for small |µ| as in Case A.
However, for µ > 0, the equilibrium points E1,2 are saddles, while the equilibrium E3 is asymptotically stable.

1Note that the phase portraits have been generated using pplane9
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For the reaction-diffusion system (1), this means that for µ ≤ 0 we still have only the stable uniform solution,
which becomes unstable for µ > 0. However, for small µ > 0 the rotating waves are unstable, while the standing
waves are stable.

µ < 0 µ = 0 µ > 0

Figure 3: Bifurcation diagram in case B.

Case C presented in Figure 4 is rather different. For µ < 0 the unstable trivial equilibrium E0 in (12) coexists
with a positive saddle E3. This saddle merges at µ = 0 with E0 forming an unstable equilibrium, while for
µ > 0 the equilibrium E3 remains unstable but coexists with two saddles E1,2. For the reaction-diffusion system
(1), this means that for µ < 0, the unstable uniform solution coexists with unstable standing waves, while for
µ > 0, two rotating waves appear but they are both unstable. Thus, no stable small amplitude solutions exist
for all small |µ|.

µ < 0 µ = 0 µ > 0

Figure 4: Bifurcation diagram in case C.
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3 Coefficients of the normal form

Since the critical values (a0, b0) determine the rearrangements of the phase portraits, it is sufficient to compute
the normal form coefficients (a, b) at µ = 0. We follow the procedure applied in [3] for the double Hopf
bifurcation in ODEs, which is considerably simpler than that of [8], where however higher-order normal forms
were studied.

Consider the reaction-diffusion system (1) at the critical parameter value µ = 0 and write the Taylor
expansion of F (u, 0) as

F (u, 0) = A0u+
1

2
B(u,u) +

1

6
C(u,u,u) +O(‖u‖4) .

Here A0 = DF (0, 0) and the components of the multi-linear functions can be written as

Bi(v,w) =

m∑
j,k=1

∂2Fi(0, 0)

∂uj∂uk
vjwk ,

Ci(v,w, z) =

m∑
j,k,l=1

∂3Fi(0, 0)

∂uj∂uk∂ul
vjwkzl,

for i = 1, 2, . . . ,m.
Write the system (1) near the equilibrium u = 0 as an abstract ODE in the Hilbert space H:

du

dt
= L0u+

1

2
B(u, u) +

1

6
C(u, u, u) +O(‖u‖4), (14)

where

L0 = D0
∂2

∂θ2
+A0

is a linear operator in H with a suitable definition domain, and B and C are naturally defined smooth multilinear
functions on H ×H and H ×H ×H, respectively.

The adjoint operator L∗
0 satisfies

〈u, L0v〉 = 〈L∗
0u, v〉,

where the inner product (2) is used. Explicitly,

L∗
0 = D0

∂2

∂θ2
+AT

0 ,

with the same definition domain as L0 This operator also has two purely imaginary eigenvalues λ1,2 = ±iω0, ω0 >
0, such that for λ1 = −iω0 there are two linearly-independent eigenfunctions ψ1,2, such that

L∗
0ψ1 = −iω0ψ1 and L∗

0ψ2 = −iω0ψ2 . (15)

Then
ψ1,2(θ) = W e±ikθ k > 0, (16)

where W ∈ Cm satisfies
(−k2D0 +AT

0 )W = −iω0W. (17)

We select the eigenfunctions so that
〈ψl, ϕj〉 = δlj ,

which can be achieved by normalizing V,W ∈ Cm such that

W
T
V =

1

2π(1 + k2 + k4)
.

Define
U = 2π(1 + k2 + k4)W, (18)

i.e. take the eigenvector U ∈ Cm of matrix (−k2D0+AT
0 ) corresponding to the eigenvalue (−iω0) and normalized

such that
U

T
V = 1. (19)

The critical center manifold W c
0 is tangent to H0 and can be parametrized by (z1, z2) ∈ C2. To compute

the cubic normal form coefficients, we need its approximation

u = z1ϕ1 + z2ϕ2 + z̄1ϕ1 + z̄2ϕ2 +
∑

j+k+l+r≥2

1

j!k!l!r!
hjklrz

j
1z̄
k
1z
l
2z̄
r
2 , (20)
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where the complex-valued periodic functions hijkl = hijkl(θ) are yet to be defined, and

h0200 = h̄2000, h0002 = h̄0020, h0101 = h̄1010, h0110 = h̄1001.

We can assume, however, that with the selected parametrization the restriction of the system to W c
0 has the

normal form {
ż1 = iω0z1 +G0z

2
1 z̄1 +H0z1z2z̄2 +O(‖z‖4),

ż2 = iω0z2 +H0z1z2z̄1 +G0z
2
2 z̄2 +O(‖z‖4).

(21)

Notice that no quadratic terms are present in (21).
Substituting (20) into (14) using (21), and then collecting the quadratic in (z1, z2) terms, we get the following

equations for hijkl with i+ j + k + l = 2:

(2iω0 − L0)h2000 = B(ϕ1, ϕ1), (22)

−L0h1100 = B(ϕ1, ϕ̄1), (23)

(2iω0 − L0)h0020 = B(ϕ2, ϕ2), (24)

−L0h0011 = B(ϕ2, ϕ̄2), (25)

(2iω0 − L0)h1010 = B(ϕ1, ϕ2), (26)

−L0h1001 = B(ϕ1, ϕ̄2). (27)

Using ϕ1,2 from (3), we obtain

B(ϕ1, ϕ1) = e2ikθS, B(ϕ1, ϕ̄1) = R, B(ϕ2, ϕ2) = e−2ikθS,
B(ϕ2, ϕ̄2) = R, B(ϕ1, ϕ2) = S, B(ϕ1, ϕ̄2) = e2ikθR,

where
S = B(V, V ), R = B(V, V ), (28)

so that equations (22)-(27) can be solved explicitly. For example, (22) now reads

(2iω0 − L0)h2000 = e2ikθS.

Recalling the definition of L0, we see that this is equivalent to

−D0
d2h2000
dθ2

+ (2iω0Im −A0)h2000 = e2ikθS

with the unique solution
h2000(θ) = e2ikθ(2iω0Im −A0 + 4k2D0)−1S. (29)

Here the matrix is invertible due to our basic spectral assumptions. Similarly, we obtain

h1100(θ) = −A−1
0 R, (30)

h0020(θ) = e−2ikθ(2iω0Im −A0 + 4k2D0)−1S, (31)

h0011(θ) = −A−1
0 R, (32)

h1010(θ) = (2iω0Im −A0)−1S, , (33)

h1001(θ) = e−2ikθ(−A0 + 4k2D0)−1R. (34)

Collecting the cubic terms, for which j + k + l + r = 3, we get the the following equations for h2100 and
h1011:

(iω0 − L0)h2100 = C(ϕ1, ϕ1, ϕ1) +B(h2000, ϕ1) + 2B(h1100, ϕ1)− 2G0ϕ1,

(35)

(iω0 − L0)h1011 = C(ϕ1, ϕ2, ϕ2) +B(h1010, ϕ2) +B(h1001, ϕ2)

+ B(h0011, ϕ1)−H0ϕ1. (36)

Take the inner product of ψ1 in H with both sides of (35). The left-hand side gives

〈ψ1, (iω0 − L0)h2100〉 = 〈(iω0 − L0)∗ψ1, h2100〉
= 〈(−iω0 − L∗

0)ψ1, h2100〉
= −〈L∗

0ψ1 + iω0ψ1, h2100〉
= 0.
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Thus, the product with the right-hand side of (35) must also vanish:

〈ψ1, C(ϕ1, ϕ1, ϕ1) +B(h2000, ϕ1) + 2B(h1100, ϕ1)− 2G0ϕ1〉 = 0.

Using 〈ψ1, ϕ1〉 = 1, we obtain

G0 =
1

2
〈ψ1, C(ϕ1, ϕ2, ϕ1) +B(h2000, ϕ1) + 2B(h1100, ϕ1)〉. (37)

Similarly, from (36) follows

H0 = 〈ψ1, C(ϕ1, ϕ2, ϕ2) +B(h1010, ϕ2) +B(h1001, ϕ2) +B(h0011, ϕ1)〉. (38)

In formulas (37) and (38), all quantities are defined before. These expressions correspond to the given without
any comment coefficients a and b in [8, Table A.5]. A straightforward computation using (28), (29)–(33), and
(19) now gives

G0 =
1

2
U

T [
C(V, V, V )

+ B((2iω0Im −A0 + 4k2D0)−1B(V, V ), V ) (39)

− 2B(A−1
0 B(V, V ), V )

]
,

H0 = U
T

[C(V, V, V )

+ B((2iω0Im −A0)−1B(V, V ), V ) (40)

+ B((−A0 + 4k2D0)−1B(V, V ), V )−B(A−1
0 B(V, V ), V )

]
.

The critical normal form coefficients can be computed by

a0 = Re G0, b0 = Re H0.
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4 Numerical simulation

In this section, we will show a way to solve the reaction-diffusion system numerically. The main procedure we
will use is as follows. We first discretize the space S1 to replace the problem of solving a system of a partial
differential equation by that for a system of ordinary differential equations. Then we will put the equations in
the standard form which enables us to easily integrate the system using standard software.

The spatial domain of (1), which is S1, can be discretized into N points using the following map

Q : NN+1 → S1,

Qk = Q(k) =
2π(k − 1)

N
.
.

Here Q1 and QN+1 represent topologically the same point in S1, because {0} and {2π} are glued together in
S1. Hence, only N unique points in S1 are generated by Q.

While the other terms can be trivially transformed accordingly since they do not depend on space, special

care however have to be taken to the second derivative. The second derivative
∂2u

∂θ2
can be approximated using

the second-order central finite difference

∂2uj(θ, t)

∂θ2
≈ uj(θ + h, t)− 2uj(θ, t) + uj(θ − h, t)

h2
.

We define v ∈ Rm·N as vi+N ·j = uj(Qi, t). Moreover we extend this definition as follows

v1+N ·j = v(N+1)+N ·j . (41)

This gives the following correspondence with v where we choose h = 2π
N .

∂2vi+N ·j

∂θ2
=

∂2uj(Qi, t)

∂θ2
≈

uj(Qi + 2π
N , t)− 2uj(Qi, t) + uj(Qi − 2π

N , t)

4π2N−2

=
N2

4π2

(
vi+1+N ·j(t)− 2vi+N ·j(t) + vi−1+N ·j(t)

)
This is defined for every i including i = 1 and i = N , because of the extended definition of vi+N ·j in (41).

As mentioned before the other term F (·) does not depend on θ. This means that we have the following
relation with F (u)

F (u(Qi, t)) = F (vi+N ·0(t),vi+N ·1(t),vi+N ·2(t)).

Using the correspondence, we arrive at the following ordinary differential equation.

u : S1 × [0,∞)→ Rm

∂u

∂t
= D(µ)

∂2u

∂θ2
+ F (u, µ) (θ mod 2π)w�

v : [0,∞)N → RN ·m

dvi+N ·j

dt
=
DjjN

2

4π2

(
vi+1+N ·j − 2vi+N ·j + vi−1+N ·j

)
+ F (vi+N ·0,vi+N ·1, . . . ,vi+N ·m)

.

We can write this in a more organised manner as follows where we have to take special care with the
boundary as v1+N ·? and v(n+1)+N ·? refer to the same function.

That is the system can be written in matrix form as

dv

dt
=
N2

4π2

B1 0 0

0
. . . 0

0 0 Bm


v1

...
vm

+

F1(v1, · · · ,vm)
...

Fm(v1, · · · ,vm)

 . (42)

where Bj ∈MN (R) is defined as

Bj = Djj



−2 1 1

1
. . .

. . .

. . .
. . .

. . .

. . .
. . . 1

1 1 −2


.

and vj ∈ RN is the j-th part vector of v partitioned by (vj)i = vi+N ·j .
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5 Example

In this section we will study a specific example of (1) with only three components, that is m = 3. The following
reaction-diffusion system was introduced in [10] as an extension of the Brusselator [1]:

∂u1
∂t

= d1
∂2u1
∂θ2

+ a− (b+ 1)u1 + u21u2 + u2u3,

∂u2
∂t

= d2
∂2u2
∂θ2

− u21u2 + bu1 − u2u3,

∂u3
∂t

= d3
∂2u3
∂θ2

+R(u1 − u2u3),

(43)

where a, b, R, d1, d2, d3 ∈ R. Thus

D =

d1 0 0
0 d2 0
0 0 d3

 , F (u1, u2, u3) =

a− (b+ 1)u1 + u21u2 + u2u3
−u21u2 + bu1 − u2u3

R(u1 − u2u3)

 .

The following numerical parameter values will be fixed later:

a = 2.5, R = 0.135, d1 = 0.1, d2 = 0.01, d3 = 2.0,

while b will be a bifurcation parameter.

5.1 Critical value

A uniform equilibrium uE of (43) can be found by solving for F (u) = 0. This gives the algebraic system of
equations  0 = a− (b+ 1)u1 + u21u2 + u2u3,

0 = −u21u2 + bu1 − u2u3,
0 = R(u1 − u2u3),

with the following solution

u1 = a, u2 =
b− 1

a
, u3 =

a2

b− 1
.

Now we can write F (u + v) = A(u)v + o(‖v‖) where A(u) = DF (u). We have

A(u) = DF (u) =

−(b+ 1) + 2u1u2 u21 + u3 u2
−2u1u2 + b −u21 − u3 −u2

R −Ru3 −Ru2

 ,

Figure 5: The real part of the complex eigenvalues of A− k2D
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so that at the equilibrium uE we have

A(uE) = A

(
a,
b− 1

a
,
a2

b− 1

)
=


b− 3

a2b

b− 1

b− 1

a

−b+ 2 − a2b

b− 1
−b− 1

a

R − Ra2

b− 1
−R(b− 1)

a

 .

Our goal now is to find k and b such that the matrix (A− k2D) has a pair of purely-imaginary eigenvalues
±iω0. For different values of b, the maximal real part of the eigenvalues of A− k2D is shown in Figure 5. This
chart has been generated using MATLAB. The script can be found in the Appendix under the name Critical
parameter chart script.

Using the Critical parameter finder script in the Appendix, a good approximation of the critical
parameter can be found, which gives the value

b = 9.934138724791575.

This parameter has the special property that p(1) = 0 which gives us exactly the bifurcation point at the first
harmonic. Moreover, since p(0) < 0, the uniform equilibrium is stable w.r.t. uniform perturbations, and since
p(k) < 0 for k = 2, 3, . . ., it is also stable w.r.t. all other harmonic perturbations with k = 2, 3, 4, . . ..

5.2 Computation of the normal form coefficients

To compute the normal form coefficients, we have provided a MATLAB script named Normal form coeffi-
cient script in the Appendix 2. It is assumed that the critical bifurcation parameter values are known. These
values need to be assigned in the System parameters section. The script produces the following eigenvectors
for this example:

U = (−0.025− 2.009i, 0.646− 1.75i, −0.265− 0.656i),

V = (−0.627− 0.257i, 0.734, −0.036 + 0.024i).

By plugging these vectors in the formulas (39) and (40) – which the script does automatically – we get the
following result

G(0) = −1.5893− 0.6871i,

H(0) = −2.0947− 0.1112i.

Which implies that
a0 = −1.5893, b0 = −2.0947 .

Thus, a0 < 0 and b0 < 0, implying that Case A takes place. Thus, we expect the appearance of two stable
rotating waves and a family of unstable standing waves. In the next subsection, we confirm this prediction by
direct simulations.

5.3 Numerical simulation

Following the numerical method described in Section 4, we get

dv

dt
=
N2

4π2

B1 0 0
0 B2 0
0 0 B3

v1

v2

v3

+

F1(v1,v2,v3)
F2(v1,v2,v3)
F3(v1,v2,v3)

 , (44)

where Bj ∈MN (R) are defined as

Bj = Djj



−2 1 1

1
. . .

. . .

. . .
. . .

. . .

. . .
. . . 1

1 1 −2


and vj ∈ RN is the j-th part vector of v partitioned by (vj)i = vi+N ·j .

2Note that the script is very general and can be used for systems with any number of components. The user only needs to
provide the system with the correct harmonics of interest, critical parameter values and the equilibrium point. To run the script,
make sure you have installed Symbolic Math Toolbox as well.
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Figure 6: Numerical simulation of system (44) using ode23s.

System (44) can be numerically integrated using ode23s in MATLAB. Using the parameter value

b = 9.934138724791575 + 10−5,

that is slightly super-critical, we simulate the discretized reaction-diffusion system (43) with the initial distri-
bution close to the uniform equilibrium

u(θ) = 10−5 · (cos θ, cos(θ + 0.3 · 2π), cos(θ + 0.7 · 2π)) + uE ,

and obtain a transient to a rotating wave presented in Figure 6.
It is interesting that the solution first approaches an unstable standing wave, but then evolves towards the

stable rotating wave. This behavior agrees with the theoretical predictions, see Figure 2.
The results can be reproduced by running the Simulation script in MATLAB. The parameters such as

a, b and R can all be changed inside the script. However note that changing any of the parameters would
change the system dynamics drastically, so the patterns obtained by the simulation may not coincide with the
local prediction we have made in Section 3, since we consider only patterns near the bifurcation point. So we
encourage to only make small parameter changes. Note that the accuracy of the simulation can be changed in
the odeset line. In this case we have chosen 10−9 as the error margin, which is produce accurate results but
it is very slow. The simulation can be made faster by choosing a smaller error margin.
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6 Discussion

We have successfully derived explicit formulas to compute the critical normal form coefficients for Hopf bifur-
cation in reaction-diffusion system on S1, and implemented them in MATLAB scripts to compute the critical
bifurcation point and evaluate the coefficients numerically. We were also be able to run simulations using
MATLAB with a finite-difference method and confirm that the normal form predictions do correspond to the
simulations. However we were only be able to provide one fully fledged example, because of lack of time. Using
the scripts we have provided, many more examples can be analyzed and in a fair amount of computation time.
There are a few directions in which this research can be extended.

The explicit formulas (39) and (40) for the normal form coefficients can be generalized to a unit disk instead
of just S1. Our original plan was to also include an example on a unit disk, however as it turns out, running
the corresponding simulation with our method would not be feasible as the system size grows quadratically.
This is because we need to consider a two dimensional grid as the discretization of space. However with faster
numerical methods, this can be achieved.

One way to improve the simulation speed in S1 drastically is by using truncated Fourier expansions. That
is, we can approximate each component of the solution by

u(t, θ) = a0(t) +

N∑
k=1

[ak(t) cos(kθ) + bk(t) sin(kθ)] ,

and then transform the problem into an ordinary differential system by substituting this expression in (1) and
integrating over [0, 2π] its product with cos (jθ) and sin (jθ) to find ȧj(t) and ḃj(t). This can be done because
the solutions are periodic in θ. This method can also be generalized to higher dimensional space, e.g. to a unit
disk.

More complicated patterns can be analyzed and predicted using normal forms. For instance in [8] 6-
dimensional normal forms were computed. These results can be used together with numerical simulations
to analyse more sophisticated patterns. However the formulas we have provided are applicable under the as-
sumption that we are dealing with the 4-dimensional center manifold. So special care needs to be taken when
parametrizing higher-dimensional W c

µ, and higher-order Taylor terms may be required to solve for the relevant
normal form coefficients.
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7 Appendix

Normal form coefficient script:

g l oba l a b R F u ue m

% Di f f u s i on matrix
D0 = [

0 . 1 , 0 , 0 ;
0 , 0 . 01 , 0 ;
0 , 0 , 2 . 0 ;

] ;

D0s = s i z e (D0) ;
m = D0s (1 ) ;

% System parameters
a = 2 . 5 ;
R = 0 . 1 3 5 ;
b = 9 .93413872 ;

syms ( ’u ’ , 1 : m) ;
syms ( ’F ’ , 1 : m) ;

% Reaction part
F(1) = a − (b + 1) ∗ u (1) + u (1) ∗ u (1) ∗ u (2) + u (2) ∗ u (3) ;
F(2 ) = −u (1) ∗ u (1) ∗ u (2) + b ∗ u (1) − u (2) ∗ u (3) ;
F(3 ) = R ∗ (u (1 ) − u (2) ∗ u (3) ) ;

% Uniform equ i l i b r i um
ue (1 ) = a ;
ue (2 ) = (b − 1) / a ;
ue (3 ) = a ∗ a / (b − 1) ;

% Harmonic
k = 1 ;

% Get Jacobian matrix and eva luate at equ i l i b r i um
DF = jacob ian (F(1 : m) , u(1 : m) ) ;
A0 = vpa ( subs (DF, u(1 : m) , ue ( 1 : m) ) ) ;

M = −kˆ2 ∗ D0 + A0 ;

% Gather e i g enva lu e s and e i g env e c t o r s
[VV, Lambda ] = e i g (M) ;

[WW,Mu] = e i g ( t ranspose (M) ) ;

% Only s e l e c t the c o r r e c t e i g enve c t o r f o r U and V
f o r i = 1 : m

LambdaI = Lambda( i , i ) ;
i f ( imag (LambdaI ) > 0)

V = [VV(1 : m, i ) ] ;
end

end

f o r i = 1 : m
MuI = Mu( i , i ) ;
i f ( imag (MuI) < 0)

W = [WW(1 : m, i ) ] ;
end

end

% Make the e i g enve c t o r r e l a t i v e l y orthogona l
S = dot (W, V) ;

U = (1 / conj (S) ) ∗ W;

V
U

% Def ine the complex conjugate o f the e i g env e c t o r s
Vb = conj (V) ;
Ub = conj (U) ;

% Evaluate h igher order Taylor terms at the e i g env e c t o r s and complex conjugate
BVV = Taylor2 (V, V) ;
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BVVb = Taylor2 (V, Vb) ;

CVVV = Taylor3 (V, V, V) ;
CVVVb = Taylor3 (V, V, Vb) ;

% Solve non−s i n gu l a r systems
MatA = 2 ∗ LambdaI ∗ eye (m) − A0 + 4 ∗ kˆ2 ∗ D0 ;
MatB = 2 ∗ LambdaI ∗ eye (m) − A0 ;
MatC = −A0 + 4 ∗ kˆ2 ∗ D0 ;

% Evaluate f i n a l c o e f f i c i e n t s
G0V = [

CVVVb + Taylor2 ( inv (MatA) ∗ BVV, Vb) − 2 ∗ Taylor2 ( inv (A0) ∗ V, Vb)
] ;

H0V = [
CVVV + Taylor2 ( inv (MatB) ∗ BVV, Vb) + Taylor2 ( inv (MatC) ∗ BVVb, V) − Taylor2 ( inv (A0) ∗

BVVb, V)
] ;

G0 = 0 .5 ∗ dot (U, t ranspose (G0V) ) ;
H0 = dot (U, t ranspose (H0V) ) ;

% Print r e s u l t
G0
H0

% Compute second order Taylor term
func t i on B = Taylor2 (v , w)

g l oba l F u ue m

f o r s = 1 : m
Bs = 0 ;
f o r i = 1 : m

f o r j = 1 : m
value = subs ( d i f f ( d i f f (F( s ) , u ( i ) ) , u ( j ) ) , u (1 : m) , ue (1 : m) ) ;
Bs = Bs + vpa ( value ) ∗ v (1) ∗ w( j ) ;

end
end

B( s , 1) = Bs ;
end

end

% Compute th i rd order Taylor term
func t i on C = Taylor3 (v , w, z )

g l oba l F u ue m

f o r s = 1 : m
Cs = 0 ;
f o r i = 1 : m

f o r j = 1 : m
f o r k = 1 : m

value = subs ( d i f f ( d i f f ( d i f f (F( s ) , u ( i ) ) , u ( j ) ) , u ( k ) ) , u(1 : m) , ue (1 : m)
) ;

Cs = Cs + vpa ( value ) ∗ v (1) ∗ w( j ) ∗ z (k ) ;
end

end
end

C( s , 1) = Cs ;
end

end

Simulation script:

g l oba l SpacePoints SpaceLength TimePoints a b R d1 d2 d3 odeopt ;

% Setup s imu la t i on parameters
N = 1 ;
timeLength = 300 ;
TimePoints = 3000 ;

a = 2 . 5 ;
b = 9.934138724791575 + 1e−2;
R = 0 . 1 3 5 ;
d1 = 0 . 1 ;
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d2 = 0 . 0 1 ;
d3 = 2 . 0 ;

% Setup i n i t i a l f unc t i on parameters
i n i t i a l F r e q 1 = 1 ;
i n i t i a l F r e q 2 = 1 ;
i n i t i a l F r e q 3 = 1 ;
i n i t i a l S h i f t 1 = 0 ∗ 2 ∗ pi ;
i n i t i a l S h i f t 2 = 0 .3 ∗ 2 ∗ pi ;
i n i t i a l S h i f t 3 = 0 .7 ∗ 2 ∗ pi ;
i n i t i a l E q 1 = a ;
i n i t i a l E q 2 = (b − 1) / a ;
i n i t i a l E q 3 = aˆ2 / (b − 1) ;
i n i t i a lAmp l i tude1 = 1e−2;
i n i t i a lAmp l i tude2 = 1e−2;
i n i t i a lAmp l i tude3 = 1e−2;

SpacePoints = 100 ;
SpaceLength = 2 ∗ pi ;

% Accuracy vs Time
% 4 = 160k+ 9 sec
% 5 = 1800k+ 73 sec
% 6 = 4100k+ 143 sec
% 8 = 19000k+ 377 sec
% 10 = 89903k+ 3848 sec

% Setup ode opt ions
odeopt = odeset ( ’ RelTol ’ , 1e−9, ’ AbsTol ’ , 1e−9) ;

% Setup i n i t i a l c ond i t i on
x0 = 0 : SpaceLength / ( SpacePoints − 1) : SpaceLength ;
y0s = ze ro s (3 , SpacePoints ) ;
y0s (1 , : ) = i n i t i a l E q 1 + in i t i a lAmp l i tude1 ∗ cos ( ( x0 ( : ) + i n i t i a l S h i f t 1 ) ∗ i n i t i a l F r e q 1 ) ;
y0s (2 , : ) = i n i t i a l E q 2 + in i t i a lAmp l i tude2 ∗ cos ( ( x0 ( : ) + i n i t i a l S h i f t 2 ) ∗ i n i t i a l F r e q 2 ) ;
y0s (3 , : ) = i n i t i a l E q 3 + in i t i a lAmp l i tude3 ∗ cos ( ( x0 ( : ) + i n i t i a l S h i f t 3 ) ∗ i n i t i a l F r e q 3 ) ;
y0 = [ y0s (1 , : ) , y0s (2 , : ) , y0s (3 , : ) ] ;

% Plot s o l u t i o n
f o r i = 0 : (N − 1)

i

% Plot every step o f 2400 in 8 t i l e s
c l a r e s e t
t i l e d l a y o u t (8 , 1) ;
f o r j = 0 : 7

k = i ∗ 8 + j ;
n e x t t i l e
sim (x0 , y0 , k ∗ timeLength + 0.00000001 , ( k + 1) ∗ timeLength ) ;

end

% Save the image as . f i g f i l e
s a v e f i g ( ’ p i c t u r e ’ + s t r i n g ( i ) + ’ . f i g ’ )

end

t . Padding = ’ none ’ ;
t . T i l eSpac ing = ’ compact ’ ;

f unc t i on sim (x0 , y0 , BeginTime , EndTime)
g l oba l TimePoints odeopt SpacePoints ;

% Solve system
t = BeginTime : (EndTime − BeginTime ) / ( TimePoints − 1) : EndTime ;
[ tt , yy ] = ode23 (@odefun , [ 0 t ] , y0 , odeopt ) ;

% Post p roce s s s o l u t i o n
yy0 = yy (2 : TimePoints + 1 , 0 ∗ SpacePoints + 1 : 1 ∗ SpacePoints ) ;
yy1 = yy (2 : TimePoints + 1 , 1 ∗ SpacePoints + 1 : 2 ∗ SpacePoints ) ;
yy2 = yy (2 : TimePoints + 1 , 2 ∗ SpacePoints + 1 : 3 ∗ SpacePoints ) ;

xs = x0 ;
ys = ze ro s (3 , TimePoints , SpacePoints ) ;
ys (1 , : , : ) = yy0 ( : , : ) ;
ys (2 , : , : ) = yy1 ( : , : ) ;
ys (3 , : , : ) = yy2 ( : , : ) ;
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% Plot s imu la t i on
su r f a c eP l o t ( ys , BeginTime , EndTime) ;

end

func t i on su r f a c eP l o t ( ys , BeginTime , EndTime)
g l oba l SpaceLength SpacePoints TimePoints

x = 0 : SpaceLength / ( SpacePoints − 1) : SpaceLength ;
t = BeginTime : (EndTime − BeginTime ) / ( TimePoints − 1) : EndTime ;

% Manipulate s o l u t i o n
yy ( : , : , 1) = ys (1 , : , : ) ;
y = squeeze ( yy ) ;

s u r f (x , t , y ) ;
x l ab e l (”x”) ;
y l ab e l (” t ”) ;
z l a b e l (”u”) ;
shading i n t e rp
g r id o f f
c o l o rba r
pbaspect ( [ 1 16 1 ] ) ;
view (90 , −90) ;
%ax i s o f f

end

% Der iva t i ve func t i on
func t i on dydt = odefun ( t , y )

a = 2 . 5 ;
b = 9.934138724791575 + 1e−2;
R = 0 . 1 3 5 ;
d1 = 0 . 1 ;
d2 = 0 . 0 1 ;
d3 = 2 . 0 ;

SpacePoints = 100 ;
SpaceLength = 2 ∗ pi ;

h = SpaceLength / SpacePoints ;
L = SpacePoints ;

% Setup r e s u l t array
dydt = ze ro s (3 ∗ L , 1) ;
d i f f = ze ro s (3 ∗ L , 1) ;
r eac = ze ro s (3 ∗ L , 1) ;

% Compute f i n i t e d i f f e r e n c e at glued boundary
d i f f (1 + 0 ∗ L) = y(L + 0 ∗ L) + y(2 + 0 ∗ L) − 2 ∗ y (1 + 0 ∗ L) ;
d i f f (1 + 1 ∗ L) = y(L + 1 ∗ L) + y(2 + 1 ∗ L) − 2 ∗ y (1 + 1 ∗ L) ;
d i f f (1 + 2 ∗ L) = y(L + 2 ∗ L) + y(2 + 2 ∗ L) − 2 ∗ y (1 + 2 ∗ L) ;

d i f f (L + 0 ∗ L) = y ( (L − 1) + 0 ∗ L) + y(1 + 0 ∗ L) − 2 ∗ y (L + 0 ∗ L) ;
d i f f (L + 1 ∗ L) = y ( (L − 1) + 1 ∗ L) + y(1 + 1 ∗ L) − 2 ∗ y (L + 1 ∗ L) ;
d i f f (L + 2 ∗ L) = y ( (L − 1) + 2 ∗ L) + y(1 + 2 ∗ L) − 2 ∗ y (L + 2 ∗ L) ;

% Compute f i n i t e d i f f e r e n c e i n s i d e the i n t e r v a l
f o r i = 2 : L − 1

d i f f ( i + 0 ∗ L) = y ( ( i − 1) + 0 ∗ L) + y ( ( i + 1) + 0 ∗ L) − 2 ∗ y ( i + 0 ∗ L) ;
d i f f ( i + 1 ∗ L) = y ( ( i − 1) + 1 ∗ L) + y ( ( i + 1) + 1 ∗ L) − 2 ∗ y ( i + 1 ∗ L) ;
d i f f ( i + 2 ∗ L) = y ( ( i − 1) + 2 ∗ L) + y ( ( i + 1) + 2 ∗ L) − 2 ∗ y ( i + 2 ∗ L) ;

end

% Mult ip ly f i n i t e d i f f e r e n c e by corre spond ing f a c t o r s
dh2 = 1 / hˆ2 ;
d i f f (1 + 0 ∗ L : 1 ∗ L) = d1 ∗ dh2 ∗ d i f f (1 + 0 ∗ L : 1 ∗ L) ;
d i f f (1 + 1 ∗ L : 2 ∗ L) = d2 ∗ dh2 ∗ d i f f (1 + 1 ∗ L : 2 ∗ L) ;
d i f f (1 + 2 ∗ L : 3 ∗ L) = d3 ∗ dh2 ∗ d i f f (1 + 2 ∗ L : 3 ∗ L) ;

% Compute r e a c t i on terms
f o r i = 1 : L

u1 = y( i + 0 ∗ L) ;
u2 = y( i + 1 ∗ L) ;
u3 = y( i + 2 ∗ L) ;

reac ( i + 0 ∗ L) = a − (b + 1) ∗ u1 + u1ˆ2 ∗ u2 + u2 ∗ u3 ;
reac ( i + 1 ∗ L) = −u1ˆ2 ∗ u2 + b ∗ u1 − u2 ∗ u3 ;
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reac ( i + 2 ∗ L) = R ∗ ( u1 − u2 ∗ u3 ) ;
end

% Combine r e a c t i on and d i f f u s i o n terms
dydt ( : ) = d i f f ( : ) + reac ( : ) ;

end

Critical parameter finder:

matf = @mat

g l oba l a R d1 d2 d3 k

a = 2 . 5 ;
R = 0 . 1 3 5 ;
d1 = 0 . 1 ;
d2 = 0 . 0 1 ;
d3 = 2 ;
k = 1 ;
rangeBegin = 9 . 9 ;
rangeEnd = 10 ;

format long
f z e r o (matf , [ rangeBegin rangeEnd ] )

func t i on v = mat(b)
g l oba l a R d1 d2 d3 k

Q = ze ro s (3 , 3) ;
Q(1 , 1) = b − 3 ;
Q(2 , 1) = −b + 2 ;
Q(3 , 1) = R;
Q(1 , 2) = ( a ∗ a ∗ b) / (b − 1) ;
Q(2 , 2) = −(a ∗ a ∗ b) / (b − 1) ;
Q(3 , 2) = −(R ∗ a ∗ a ) / (b − 1) ;
Q(1 , 3) = (b − 1) / a ;
Q(2 , 3) = −(b − 1) / a ;
Q(3 , 3) = −(R ∗ (b − 1) ) / a ;

Q(1 , 1) = Q(1 , 1) − k ∗ k ∗ d1 ;
Q(2 , 2) = Q(2 , 2) − k ∗ k ∗ d2 ;
Q(3 , 3) = Q(3 , 3) − k ∗ k ∗ d3 ;

e i g s = e i g (Q) ;
v = r e a l ( e i g s (1 ) ) ;

end

Critical parameter chart script:

kn = 30 ;
b1 = 9 . 9 ;
b2 = 9 . 93413 ;
b3 = 10 ;

k = 0 : 2 / (kn − 1) : 2 ;
p = ze ro s (3 , kn ) ;

f o r i = 1 : kn
p (1 , i ) = f i l t e r E i g ( e i g (mat(k ( i ) , b1 ) ) ) ;
p (2 , i ) = f i l t e r E i g ( e i g (mat(k ( i ) , b2 ) ) ) ;
p (3 , i ) = f i l t e r E i g ( e i g (mat(k ( i ) , b3 ) ) ) ;

end

p lo t (k , p) ;
x l ab e l (”k”) ;
y l ab e l (”p(kˆ2) ”) ;
xl im ( [ 0 2 ] )
ylim ([−0.2 0 . 2 ] )
g r i d on

legend ( ’ beta = 9 ,9 ’ , ’ beta = 9.93413 ’ , ’ beta = 10 ’ )

func t i on Q = mat(k , b)
a = 2 . 5 ;
R = 0 . 1 3 5 ;
d1 = 0 . 1 ;
d2 = 0 . 0 1 ;
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d3 = 2 ;

Q = ze ro s (3 , 3) ;
Q(1 , 1) = b − 3 ;
Q(2 , 1) = −b + 2 ;
Q(3 , 1) = R;
Q(1 , 2) = ( a ∗ a ∗ b) / (b − 1) ;
Q(2 , 2) = −(a ∗ a ∗ b) / (b − 1) ;
Q(3 , 2) = −(R ∗ a ∗ a ) / (b − 1) ;
Q(1 , 3) = (b − 1) / a ;
Q(2 , 3) = −(b − 1) / a ;
Q(3 , 3) = −(R ∗ (b − 1) ) / a ;

Q(1 , 1) = Q(1 , 1) − k ∗ k ∗ d1 ;
Q(2 , 2) = Q(2 , 2) − k ∗ k ∗ d2 ;
Q(3 , 3) = Q(3 , 3) − k ∗ k ∗ d3 ;

end

func t i on e i g = f i l t e r E i g ( e i g s )
e i g = NaN;

i f imag ( e i g s (1 ) ) ˜= 0
e i g = r e a l ( e i g s (1 ) ) ;

e l s e i f imag ( e i g s (2 ) ) ˜= 0
e i g = r e a l ( e i g s (2 ) ) ;

e l s e i f imag ( e i g s (3 ) ) ˜= 0
e i g = r e a l ( e i g s (3 ) ) ;

end
end
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