
Crowd Simulation as a Service: A

scalable, real-time architecture.

Moving the crowd to the cloud.

Chrit Hameleers
ICA-3978125

supervised by:

Dr. R.J. Geraerts

Dr. ir. J.M.E.M. van der Werf

Master’s Thesis in the Game and Media Technology program

in the

Faculty of Science

Department of Information and Computing Sciences

February 25, 2019

https://www.uu.nl/en/organisation/faculty-of-science
https://www.uu.nl/masters/en/game-and-media-technology

Abstract

In this thesis on real-time crowd simulation as a service, we explore how crowd simulation

applications can benefit from cloud computing. The aim of this thesis is to provide a

candidate architecture for real-time cloud-based simulation software that is scalable and

highly performant. We also aim to document our design process to show how and why

decisions were made.

First, we introduce the subject by motivating the need for cloud computing in simulation

software. We then provide an overview of related work about both crowd simulation

and computer and cloud architecture. Next, we describe the problems we are trying to

solve and we list a collection of requirements that will help guide our design process.

We then combine our knowledge into a candidate architecture for real-time Modeling

and Simulation as a Service (MSaaS). After presenting our candidate architecture we

perform research into the performance sensitive parts of MSaaS and discuss how we can

apply our results.

Acknowledgements

I would like to thank my supervisors Dr. Roland Geraerts and Dr. ir. Jan Martijn van

der Werf for all their guidance, support and advice. Furthermore, I would like to thank

my loving and supporting girlfriend, family and friends which all supported me through

the good times and the bad. Finally, I want to thank my fellow board members of USDV

U Dance, who always remained patient and supportive while I finished this thesis.

ii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

2 Related work 3

2.1 Crowd Simulation . 3

2.2 Cloud Architecture . 5

2.2.1 MSaaS . 5

2.2.1.1 Modeling . 6

2.2.1.2 Simulation . 6

2.3 Software Architecture . 6

2.3.1 Architectural patterns . 7

2.3.1.1 Model View Controller 7

2.3.1.2 Broker Pattern . 7

2.3.1.3 Enterprise Service Bus pattern 9

2.3.1.4 Service-Oriented Architecture Pattern 11

2.4 Architecture Evaluation through Architecture Mining 12

3 Problem description 13

3.1 Modeling Pipeline . 13

3.2 Simulation . 14

3.3 Architecture design . 15

4 Requirements 16

4.1 Quality attributes . 16

4.1.1 Performance . 16

4.1.2 Security . 17

4.1.3 Maintainability, Modifiability and Interoperability 18

4.2 Functional requirements . 18

4.2.1 Front end . 19

4.2.2 Back end . 19

5 Candidate architecture 20

5.1 Client with MVC . 20

5.2 Client-Server model . 21

iii

Contents iv

5.3 Message bus . 22

5.4 Defining the service . 26

5.4.1 Modeling service . 27

5.4.2 Simulation service . 27

5.4.3 Data management and authorization 28

5.5 The complete picture . 28

6 Architecture analysis 30

6.1 Experiment introduction . 30

6.1.1 software used . 31

6.1.2 Hardware used . 31

6.1.3 Variables . 31

6.1.3.1 Processing time . 31

6.1.3.2 Data size . 32

6.1.3.3 Independent variables . 32

6.1.4 Hypotheses . 32

6.2 Experiment setup . 33

6.2.1 Experiment details . 33

6.2.2 The Scenarios . 34

6.2.2.1 Scenario 1 . 34

6.2.2.2 Scenario 2 . 34

6.2.2.3 Scenario 3 . 34

7 Results 37

7.1 Data size D results . 37

7.1.1 Network throughput . 37

7.1.2 Network Protocol . 38

7.2 Processing time P results . 39

7.2.1 Scenario 1 . 39

7.2.1.1 Outliers . 40

7.2.2 Scenario 2 . 40

7.2.3 Scenario 3 . 41

8 Conclusion 44

8.1 Research contribution . 44

8.2 Discussion of experiments . 45

8.3 Discussion of research method . 45

8.4 Future work . 46

8.4.1 Implementation . 46

8.4.2 Security . 46

8.4.3 Non-agent based systems . 46

References 47

Chapter 1

Introduction

Crowd simulation software has many applications across a large number of different do-

mains. Urban planners can use simulations to make our environments safer and more

efficient. Architects can use these models to test evacuation scenarios and local govern-

ments can plan large events without worrying about congestion and the crowd disasters

associated [1]. Furthermore, a large variety of games from entertainment to educational

content can make good use of realistic large scale real-time simulation software as well.

To better facilitate these demands, we aim to bring crowd simulation technology to the

users in a way that is scalable, highly performant and affordable. The modern solution

is to take advantage of the steady increase of performance and affordability in cloud

hosting. Turning simulation into an online service in the form of a SaaS model (Soft-

ware as a Service) or even a PaaS model (Platform as a Service) seems like a logical

move. This practise has been called MSaaS [2] (Modeling and Simulation as a Service)

or SimSaaS [3] (Simulation Software as a Service).

Since we are looking at both the creation of the environment (model) and the execution

of the simulation in a service-oriented architecture we will go with calling it MSaaS.

We want to achieve an architecture for the modeling and simulation of crowds which

can be scaled to serve many users simultaneously. State-of-the-art crowd simulation

software is still expensive and requires powerful hardware to run. Allowing the software

to run as a cloud-based application makes this technology more accessible.

In this thesis we look at the issues encountered when scaling up crowd simulation appli-

cations and the best ways of dealing with them.

This thesis intends to show an overview of available literature on MSaaS and to doc-

ument the architectural decisions involved in designing such a system. An elaborate

view into this process is valuable to future architects of cloud based crowd simulation

systems.

1

Introduction 2

First, we delve into the current state of cloud architecture and crowd simulation in the

related work section in Chapter 2. Chapter 3 outlines the problems this thesis is trying

to solve in more detail. We show the requirements related to MSaaS architecture in

Chapter 4. Next we propose a candidate architecture for an MSaaS system in Chapter

5. We perform practical analysis of this architecture in chapter 6 where we discuss the

reasoning behind the architecture proposed in Chapter 5. Finally, Chapter 7 shows the

results of the analysis and Chapter 8 concludes the thesis.

Chapter 2

Related work

This chapter provides an overview of topics relevant to MSaaS. The first section provides

an understanding of the crowd simulation research field. The second part of the chapter

is dedicated to architectural patterns used in the design of cloud-based applications.

The final part discusses software architecture evaluation methods.

2.1 Crowd Simulation

Crowd simulation is the science of simulating the movements of a large number of virtual

people (agents) simultaneously. The agents should respond to the environment and each

other as accurately and realistically as possible.

Crowd simulation combines knowledge of various disciplines to achieve this goal: com-

puter science, artificial intelligence, mathematics and behavioural studies being the most

prominent. Challenges from these disciplines include: dealing with complex environ-

ments, creating intelligent agent behaviour, creating realistic agent behaviour and opti-

mizing for large crowds.

Path planning occurs on multiple levels within a simulation. High-level planning determines

the global route agents follow through the environment, while low-level planning han-

dles more local challenges like avoiding collisions with the environment and other agents.

Path planning behaviours for agents originate from algorithms like A* and boids flock-

ing [4] but have become a lot more advanced. For example, a method exists using

forces to create certain social behaviours [5]. Another method makes agent control

more global by using particle systems that guide agents [6]. Some even take inspiration

from fluid dynamics by observing similarities between the flow of liquids and the flow

of crowds [7]. These methods, whether agent-based, particle-based or flow-based, have

3

Related work 4

their own strengths and limitations that need to be considered. Agent-based systems can

create a wide variety of specialized behaviour at the cost of processing power per agent.

Particle- and flow-based systems can handle a large number of agents better but utilize

assumptions about common agent goals and behaviours. These advanced methods ex-

ploit the steady increase of hardware capabilities, often using large amounts of processing

power and memory. Sufficient processing power is needed to update large quantities of

agents every simulation step. For simulations of large scale, memory becomes a bottle-

neck as well. This bottleneck depends on the complexity of the environment and how

dynamic the agent behaviour is.

Crowd simulation software has many real-life applications: Designing efficient escape

routes for a large building, preventing crowd disasters and improving people flow at large

events, simulating pedestrian behaviour for urban planning and even creating convincing

simulated crowds in movies and video games [8].

Because of this wide range of useful applications and the steep investment in expen-

sive commercial software and state-of-the-art hardware, there exists an opportunity to

capitalize on the advances and popularity of cloud computing. Section 2.2 introduces

this topic in more detail. By distributing the workload of the software across multi-

ple powerful machines, crowd simulation applications can be made accessible to smaller

organizations that could benefit from it. It also allows the agent based approach to

crowd simulation to be scaled up to much larger simulations without running into hard-

ware limits. Applications that perform crowd simulation and modeling in the cloud are

called MSaaS (modeling and Simulation as a Service), a derivation of the more popular

Software as a Service, or SaaS.

Previous research into MSaaS shows promising results in the scalability of cloud-based

crowd simulation. As shown in Malinowski, Artur, et al.(2017) [9], MSaaS applications

can drastically improve performance by exploiting powerful hardware and clever paral-

lelization algorithms. Their implementation is not a cloud application, but it does utilize

parallel computing and powerful computer clusters to simulate an area of 6 square kilo-

meters for 100.000 agents in under 3 hours. Research by Wagoum, Armel Ulrich Kemloh,

et al. [10] shows that parallel computing can facilitate real-time crowd simulation ap-

plications in practical scenarios. Our goal is to find ways to translate these methods

to a cloud architecture to facilitate real-time Simulation as a Service. MSaaS is further

discussed in Section 2.2.1.

Related work 5

2.2 Cloud Architecture

Cloud architecture is a broad collection of software and hardware combinations by us-

ing distributed computing [11]. Three main branches are commonly identified. SaaS

focuses on making a traditional application available through cloud computing, keeping

all control with the developer and allowing the users to use the application and their

data from any device with an internet connection. An example of this is Google maps

[12].

PaaS describes a service that makes it easier for their users to create their own specialized

applications. Examples of these are application hosting services such as Microsoft Azure,

Amazon Web Services and Google App Engine [12].

The third variant is IaaS, which automates the distribution of hardware resources. Ex-

amples are again Microsoft Azure and Amazon Web Services with Google providing

Google Compute Engine [12].

For SaaS applications, cloud computing is a set of enabling technologies which create

a platform for SaaS developers to build their Service Oriented Architecture (Section

2.3.1.4) solutions [12]. Cloud computing can be used to make simulation software more

available and portable, but bringing simulation and modeling to the cloud also introduces

a new set of issues. All data needs to travel over a networked connection which forces

us to think about the effect on performance caused by the additional overhead and the

limited bandwidth. Additionally, the data is often privacy sensitive so security is a big

concern as well for environment models and simulation results. Finally, reliability is

important as we have to guarantee access to the service for all clients with minimal

downtime and optimal performance during peak hours. A complete specification of

quality attributes and functional requirements can be found in Chapter 4.

2.2.1 MSaaS

MSaaS stands for Modeling and Simulation as a Service [13]. It is essentially the SaaS

model applied to the modeling and simulation of environments. For this thesis we are

specifically looking into real-time modeling and simulation on a large scale.

MSaaS has been gaining more attention from researchers and institutions for it promises

to be an important tool in many areas of application. These areas were discussed in a

NATO publication [2] about the advantages, disadvantages and requirements for future

MSaaS implementations as well, together with an analysis of some existing ones.

Related work 6

2.2.1.1 Modeling

Modeling in this context refers to the designing and building of a 2D or 3D environment

and scenario for use with a crowd simulation engine. This could be as complex as a Full

3D model that needs to be converted into a navigation mesh [14] or as rudimentary as a

drag and drop editor with basic shapes. Designing simulation scenarios is a form of mod-

eling as well. This entails setting the number of agents for the scenario, where they enter

and leave the environment and the agent behaviour or other environmental triggers and

events. Modeling in the cloud allows users to model from any connected device without

needing specialized hardware. It also allows users to collaborate on designing an envi-

ronment model from multiple devices. Information contained within these models often

include classified information such as floor plans, crowd density data or even military

secrets. Because of this, it is important the models are stored and shared in a secure way.

2.2.1.2 Simulation

Simulation refers to the using of a model of an environment and analyzing the behaviour

of agents interacting with the environment and each other.

Simulation is the most performance intensive part of the MSaaS model and brings the

greatest challenges when it comes to efficient use of network bandwidth, processing power

and memory.

Because MSaaS makes crowd simulation much more portable, scalable and available, it

is important it works reliably under most network conditions. Latency, unreliable con-

nections and bandwidth restraints are all factors to take into account when designing a

robust architecture for MSaaS.

2.3 Software Architecture

”The software architecture of a system is the set of structures needed to reason about

the system, which comprise software elements, relations among them, and properties of

both.” [15].

As stated in the above definition, we need a set of structures to reason about the system.

This section provides such structures and explains their properties. We want to find an

abstracted view of the MSaaS software, identifying the most important components and

Related work 7

analyzing and mapping the interactions between them. To do this, we analyze a set

of architectural patterns that help solve architectural problems related to the MSaaS

domain.

2.3.1 Architectural patterns

Architectural patterns in software engineering are template architectures that can be

applied to solve a specific commonly occurring architectural problem. They are similar

to software patterns but on a bigger scale. Architectural patterns are used to improve

certain aspects of software. The patterns in this section are mainly communication

patterns.

2.3.1.1 Model View Controller

The model-view-controller pattern is used to separate application functionality into three

components: the model, which stores the application data, the view, which displays

relevant data and handles user interaction, and the controller, which ties the model and

the view together by communicating state changes between them. The MVC pattern

introduces complexity to the architecture in exchange for modularity and looser coupling

of application logic.

Updates Manipulates

sometimes directly updates

sends user input

Model

defines data structure

View

defines display(UI)

Controller

defines control logic

Figure 2.1: The model view controller pattern[15][16]

2.3.1.2 Broker Pattern

A broker pattern is used to connect multiple clients to multiple servers while obfuscating

the actual details of the architecture to the front-end user [15]. It effectively separates

the client and server by introducing an intermediary ’broker’ component. The broker

Related work 8

Client

Broker

Registers

Service

Registers

ServiceClient

Figure 2.2: The broker pattern. [18][19]

pattern brings some advantages and disadvantages we need to consider. We list these

below, starting with the advantages.

The clients do not know the identity and location of the server. This makes it easy to

alter or update the back-end components without requiring front-end updates. It allows

us to develop the individual components of the architecture side by side more easily

because of this separation. Finally, it allows us to deal with the inevitable complexity

that comes with a distributed, parallel execution of the simulation over multiple (virtual)

machines [17].

Next, we look into the disadvantages of the broker pattern. The front-end clients usually

only communicate with the single broker. The introduction of multiple brokers, for

example when scaling the architecture, introduces extra complexity. This makes the

broker a bad candidate when scaling up the architecture to support many clients and

services. We look into the Enterprise Service Bus pattern in Section 2.3.1.3, which trades

some control for scalability to solve some of these issues.

The extra network hop the broker introduces adds more overhead and latency. Ob-

fuscating information behind a broker decreases opportunities for optimization as well,

because of the loss of contextual knowledge about the data being sent [18]. Finally,

a scenario with a single broker is a performance bottleneck for communication as well

as a security and reliability risk: If the broker goes down, the entire system will cease

to function. In the context of real-time crowd simulation, we have to find a way to

maximize performance and minimize security risk.

The broker pattern can be implemented as an intermediary where all the communication

between all clients and servers is processed and forwarded by the broker. In the most

basic scenario it acts as a hub connecting multiple clients and services together. In this

scenario, which is shown in Figure 2.3, the client never directly communicates with the

server: All the communication happens through the intermediary broker. The benefit

Related work 9

Broker

Locate server

Return server

Confirm

Register server

Function call request

Send response

Function call response

forward request

Look up server

Look up client

Client network
module

Server network

module

Figure 2.3: The broker pattern as intermediary [18]

of this is that the broker can apply additional logic to the request sent and the client

doesn’t need to know what services exist in the back-end.

A broker can also connect a client to a server so they can communicate directly. This

is called a broker with server look-up or a registry. In this scenario, the client sends a

message to the broker asking for the address of a server that can handle its request. The

broker then provides this address from a list of servers that previously registered to the

broker. The client can then send its request to the server which can then process the

request and respond to the client. This is shown in Figure 2.4.

2.3.1.3 Enterprise Service Bus pattern

The Enterprise Service Bus (ESB) pattern (Figure 2.5) evolved as a solution to increas-

ingly large and hard to maintain collections of software in enterprise architectures. It

consists mainly of a messaging service (the bus) which enables communication between

services and clients. The data transferred over the bus is standardized to a format shared

by all clients and servers. This way every connected component can subscribe to, and

publish to the message bus. This can be achieved by designing all components to use

the same message format or by retroactively fitting the components with an adapter

to translate messages to and from a format the bus understands. Alternatively, the

ESB can have built-in translations to support the most common message types, or the

message types most used in the domain it is applied in.

Related work 10

Broker

Locate server

Return server

Confirm

Register server

Function call request

return client

Find client

Function call response

Client Server

Figure 2.4: The broker pattern with server look-up [18]

The ESB differs from a broker pattern by not interfering with the messages sent on the

bus. In a broker pattern, the broker manages every message received and sent. It ob-

fuscates to a component what other components exist in the network and decides what

message goes where. This traditional broker is called the hub-and-spokes pattern and

is useful for smaller applications but does not scale well due to the larger amount of

overhead added with each component that needs to us the hub.

The ESB however, sends all communication through the bus and all connected com-

ponents may listen to it. It applies little to no logic to the messages it broadcasts to

all connected components besides very simple translation between data formats and

publish-subscribe functionality.

The advantages of the ESB pattern are its scalability and its loose coupling. Because

the EBS contains no program logic, it is relatively easy to scale it up horizontally. The

ESB also allows services to be very loosely coupled as long as they share a common

format of communication.

The downsides or liabilities of the ESB are found in security, flexibility and functionality.

Security is a point of concern in the ESB because a weakness in one connected app

can expose all connected systems to attacks. The ESB can also be inflexible to work

with when it is not possible to adapt an application to work with the desired message

format. Expanding the functionality of the ESB is tricky because a change in the way

messages are handled impacts all connected components. Finally, it cannot support

Related work 11

certain functionality a broker might: complex message routing, message aggregation

and message splitting, for example.

The ESB pattern supports a Service-Oriented Architecture, which we dicuss in the next

section (Section 2.3.1.4).

Message bus

Client software

A

Back-end service A Back-end service B

Client software
B

Client software
C

Figure 2.5: The ESB pattern. [19]

2.3.1.4 Service-Oriented Architecture Pattern

The Service Oriented Architecture (SOA) pattern is a high-level pattern that facilitates

cloud applications by building on top of a broker or ESB pattern [15][12]. Its purpose

is to connect service providers and service consumers. It adds a layer of abstraction

between the providers and the consumers to make it easy for the consumers to use the

services without needing to know the finer details. It combines different services that

may be written in different languages and may be located in different physical locations.

SOA is a solution for these problems that takes into consideration security, performance

and availability. The SOA pattern often includes a registry or ESB as middle-ware

between client services and back-end services. Because of this it shares the advantages

and problems of these patterns. Other additions can be made to this pattern to expand

its functionality, for example a Registry of services that tracks all available services and

makes them easily discoverable by clients. Another addition is an orchestration server

which uses set work flows to guide the communication between service provider and

consumer.

Related work 12

2.4 Architecture Evaluation through Architecture Mining

To motivate the design choices made for the candidate architecture, we need to be able

to evaluate and analyze our architecture.

One such evaluation method is the Architecture Tradeoff Analysis Method (ATAM) [20].

ATAM is a way to analyze a proposed or existing architecture on multiple functional

and quality attributes. It does this by identifying risks, sensitivity points and tradeoff

points. where risks are important decisions that have not been made. Sensitivity points

are parameters in the architecture which have a high correlation with a measurable

quality attribute and tradeoff points are parameters where multiple sensitivity points

are involved and where changing one of them influences the others. It also evaluates the

architecture based on quality attribute characterizations. Where they look at a quality

attribute, such as performance, and identify external stimuli, architectural decisions,

and responses. External stimuli are events that cause the system to respond or change.

Architectural decisions are the aspects of an architecture that directly impact the chosen

quality attribute. Responses are the measurable outcomes of architectural decisions

such as latency and throughput. Finally, ATAM also makes use of scenario’s. These

scenarios are grouped into three categories: User scenarios, developer scenarios and

customer scenarios. These scenarios document the requirements and demands of these

three groups of stakeholders. More on requirements and quality attributes can be found

in Chapter 4.

Architecture mining is about the evaluation of software architecture. Analyzing and

visualizing the architecture as software is being developed is helpful in ensuring the im-

plemented architecture stays as close as possible to the intended architecture. It can

also reveal bottlenecks, flaws and strengths of an architecture which can be used to fur-

ther evolve the design and implementation. Architecture mining combines Architecture

compliance checking [21] and visualization. By extracting useful information such as

design patterns [22], and using this information to make visualizations and logs about

the architecture, we can make statements about the suitability of proposed architectures

and analyze if the implemented architecture holds up to the design and if it fulfills our

set requirements.

Chapter 3

Problem description

The goal is to design an architecture for a cloud based real-time crowd simulation appli-

cation. Besides the final architecture design produced, this thesis aims to document and

research the important decisions that led to the final design and to show alternatives.

In addition prototypes will be built and further testing and research will be performed.

3.1 Modeling Pipeline

First, we look into the design of an architecture to support the modeling pipeline. This

pipeline is responsible for the processing of 3D models into navigation meshes that

represent the traversable areas [23]. In this pipeline, the user will upload a 3D model

on the front end of the system. The front end will then make a connection to the back

end, possibly through a broker or bus managing the connection process. The front end

can then upload the 3D model to the modeling server for processing and will receive

the processed navigation mesh when it has been fully processed. The 3D data of the

environment can come from a variety of sources. The most straightforward being an

uploaded model file. But it could also be a more complex client side environment editor

which generates 3D data to be processed by the modeling pipeline.

The processing of this data is a complex process that can take a while depending on the

environment. It has to perform a number of steps which can be hardware intensive. More

specifically, they can be memory intensive because of the loading of many polygons for

complex geometrical calculations. The 3D environment has to be flattened into multiple

navigable polygons. Any spaces which are too small or too steep to be traversed and

spaces that are obstructed need to be filtered [23].

13

Problem description 14

We need to distribute workloads efficiently so that none of the components are kept

waiting unnecessarily. Because of the complexity of the processing of 3D data, it is

difficult to optimize the back end. A solid distributed implementation for the back

end is necessary to ensure scalability while keeping the physical machines required low.

Further load balancing and concurrent execution can then be used here to improve

performance.

Because this process is usually only run a couple times per simulation project, perfor-

mance is not the most important attribute here. The data involved could be classified or

privacy sensitive, taking into account security risks is more important here. Depending

on the scenario the requirements of the modeling service may vary. Can we support a

fast service which is also secure enough for sensitive data?

We need to find out what the most efficient way is to set up this service. What gives us

the best options for meeting the requirements set? These requirements are formulated

and discussed in Chapter 4.

Problem 3.1. What architectural decisions satisfy our set requirements when processing

environment models, and why?

3.2 Simulation

The simulation component of the MSaaS environment is responsible for instantiating a

simulation given an environment and a set of parameters. This simulation then has to

stream real-time results back to the client while listening for changes to the model or

parameters provided in real-time by the user. The results also have to be recorded in a

way to be able to perform posterior analysis.

To make sure multiple simulations for different users can run without issue, the workload

will have to be balanced appropriately across multiple simulation servers. Realizing

this to operate smoothly for all use cases is a challenge. Performance is key for this

service (as shown in Section 4.1.1) as every performance increase will allow for more

agents to be simulated in real-time with more complex environments. Many factors can

potentially have a negative impact on performance. Scaling up horizontally (by adding

more machines) adds more processing power but will increase overhead. Horizontal

scaling will be an important tool when running multiple simulations side by side for

different users or when running different parts of the same simulation in parallel. The

architecture needs to minimize the overhead this creates. Keeping data streams secure

and separated between clients is a requirement which can negatively impact performance

Problem description 15

as well. These are factors to take into account when designing an architecture for the

simulation service.

The main use case for the simulation service has an authorized user connecting to the

service, requesting a simulation given a set of parameters and then starting a stream

of results from the service back to the client. This stream is then viewed in the client

which can then react and alter the parameters. The service needs to be able to calculate

about 15 simulated minutes worth of scenario in advance at the minimum so the data

can be used to prevent crowd disasters.

Problem 3.2. What architectural decisions satisfy our set requirements when running

a crowd simulation in real-time and why?

3.3 Architecture design

Problem 3.3. What architecture for an MSaaS application satisfies the most of our set

requirements?

The designed architecture will have to be evaluated against a non-cloud single machine

version. Techniques from architecture compliance checking and architecture mining

can be applied to formulate well-motivated statements about the performance of the

proposed architecture.

Problem 3.4. How can we evaluate our proposed architecture in a meaningful way?

Chapter 4

Requirements

In this chapter, we set a number of requirements that we want our MSaaS architecture to

fulfill. The most important ones are listed here and are grouped under the two categories

below: Functional requirements and Quality attributes (non functional requirements).

These requirements and attributes will provide guidelines and criteria to design a suit-

able architecture. Requirements will sometimes directly or indirectly influence another

requirement which makes requirements engineering a careful balancing act. For our ar-

chitecture we will highlight the following quality attributes: performance, security and

maintainability. In the next section we will go into the functional requirements of the

system. Note that these are not the only requirements and attributes that apply, but

they are the ones that are the most interesting for this architecture.

4.1 Quality attributes

Quality attributes, or non functional requirements, are used to evaluate the system as a

whole. They cover functional stability, performance efficiency, compatibility, usability,

reliability, security, maintainability and portability [24]. The attributes that apply most

to MSaaS are discussed in this section.

4.1.1 Performance

Performance is a big concern when making a latency-sensitive service available through

an MSaaS architecture. The architecture for simulation software in the cloud has to

support a real-time simulation mode where the simulation can be monitored and al-

tered as it is being calculated. This allows users to interact quickly to environmental

changes and to efficiently work with the software. To accomplish this the architecture

16

Requirements 17

needs to facilitate many connections which send or receive many instances of large data

packets. Real-time simulation can support up to 60.000 agents when using fast, mod-

ern hardware before calculation times exceed the real-time criterion of 10 updates per

second [25]. The complexity of the environment is also a limiting factor on the number

of agents supported. Thousands of positions and velocities need to be sent through the

network at least 10 times per second. To meet this benchmark, the architecture needs

to support multiple users working with or viewing the same simulations which means

the amount of network bandwidth needed goes up for every client connected.

The performance requirements are as follows:

• P1 : The system must support the simulation of tens of thousands of agents in

real-time (with 10 simulation step updates per second).

• P2 : The system needs to support many users viewing the same or different simu-

lations simultaneously.

• P3 : The data streamed through the network must use as little bandwidth as

possible and cannot exceed the capacity of a state-of-the-art, high-end internet

connection.

• P4 : The user needs to be able to react to environmental changes in the simulation

within 15 minutes. Typically, you have 3 minutes to make a prediction for the

coming 15 minutes. This gives enough time to intervene if necessary.

4.1.2 Security

Simulations are often run with sensitive data. Simulation environments, parameters and

data can contain sensitive information and the architecture must ensure the customer

data is kept secure from anyone but the intended users. Users of simulation software

include government organizations such as the military [2]. The data from these clients

could even be classified and subject to strict additional security demands. Encryption

of data streams might need to be supported at critical points of data transferal and

a proper balance needs to be found between security and performance where security

takes priority over performance. Alternatively, the architecture could support different

levels of security, where lower levels of security provide better performance. This way

the architecture can adapt to different areas of application and their security needs.

The security requirements are as follows:

Requirements 18

• S1 : The system must guarantee the safety of environment models.

• S2 : The system must guarantee the safety of simulation results.

• S3 : The system must guarantee the safety of user information.

• S4 : The level of security should be adaptable.

4.1.3 Maintainability, Modifiability and Interoperability

Because real-time crowd simulation is a state-of-the-art research field components are

prone to change as frameworks and engines are released or updated with new discoveries

in the field.

It is thus crucial to think about how to design the architecture to be flexible to change,

expandable and maintainable. It also needs to be able to facilitate communication be-

tween a number of different components. Creating well defined and properly documented

APIs will help to realize this. This practise is called ”Open architecture”.

The Maintainability, Modifiability and Interoperability requirements are as follows:

• M1 Different types of front-end views need to be supported.

• M2 The used simulation engine or framework could be changed or updated regu-

larly and the architecture needs to support this.

• M3 The architecture needs to support complex simulation engines and frameworks,

especially when parallel computing is utilized.

• M4 Communication protocols used need to support communication with many

types of implementations of both front-end and back-end.

Proper interfaces, wrappers, and adapters need to be designed to meet these require-

ments and to mitigate the impact of these components being changed as development

on them continues.

4.2 Functional requirements

Functional requirements are the requirements that dictate the core functionality the

architecture must support.

Requirements 19

4.2.1 Front end

The front end is a flexible part of the architecture which can take different shapes

depending on the situation. For example: different front-end views can include a view

to view the simulation in real-time, a view to set up a simulation, and a view to manage

a running simulation. The following functionality needs to be supported to facilitate

most of these use cases.

• F1 Submit an existing 3D model to the server for conversion into a navigation

mesh of the traversable environment.

• F2 Creating and editing a simulation environment in an editor.

• F3 Viewing simulations and simulation results.

• F4 Viewing a simulation while making changes in real-time.

• F5 Accessing stored simulation parameters, results and environments for later use.

• F6 Viewing statistics for further analysis.

4.2.2 Back end

The back end is where all of the processing happens. It is responsible for running

hardware-intensive tasks like the conversion of 3D models into navigation meshes and

the running of responsive simulations in real time.

The back end needs to include services that support at least the following functionality:

• F7 Converting existing 3D models into a navigation mesh of the traversable envi-

ronment.

• F8 Running simulations and broadcasting simulation results.

• F9 Processing client input in real time.

• F10 Storing simulation parameters, results and environments for later use.

• F11 Gathering and storing statistics for further analysis.

• F12 Providing insights, e.g. to prevent crowd disasters.

Chapter 5

Candidate architecture

This section shows the design process the candidate architecture went through and

how we arrived at the final architecture design. The architecture patterns and domain

knowledge introduced in Chapter 2 are used to lay a foundation for our architecture.

This foundation is then examined,altered and extended to conform to the requirements

set in Chapter 4.

5.1 Client with MVC

The architecture starts with the MSaaS client. We base this client on an MVC (Section

2.3.1.1) pattern. The user interacts with the client through a view. This view could

simply be a view of the simulation, but usually also lets the user interact with the

simulation or model an environment. The inputs the user performs are processed in the

controller and the controller then updates the internal client model. The model then

finally processes the changes and calculates the next steps of the simulation which the

view can then display. This completes the MVC cycle. The MVC pattern allows us

to encapsulate the client into three well defined components and we can identify the

components that are going to be involved in turning this simulation client into a SaaS

application. The functionality of the model needs to be moved out of the front-end if

we want to turn it into a SaaS application. We want to do this because we want to take

advantage of a powerful back-end to do the expensive calculations the model needs to

do. The controller is then going to have to communicate over a networked connection

to reach the model.

20

Candidate architecture 21

View

Client

User

ControllerClient model

update

update user inputInteracts with

Figure 5.1: A basic MVC client

5.2 Client-Server model

To move the calculation-heavy model to the cloud we need to separate it from the client.

We do this by taking the MVC model and splitting the controller into two parts that

communicate over a networked connection. It may look like we did not move the model

to the server because the client model is still in place. This client model is very basic

however, and it is updated with already-processed data that the controller receives from

the server model. The main reason we still have it here is because the client needs to

understand certain data structures to process the updates from the server model. This

setup is shown in figure 5.2. The next problem that we need to deal with is the way

we are going to facilitate the communication between the front-end controller and the

back-end controller when we scale up the architecture horizontally.

Candidate architecture 22

View

User

ControllerClient model

update

update
user input

Back-end service

Response

Server Model

Update

Response

Server Controller

process boundary

Request

Interacts with

Figure 5.2: The MVC pattern split up into client and server.

5.3 Message bus

To enable horizontal scaling of the architecture we use the message bus pattern (Section

2.3.1.3). We choose the message bus in favor of the broker pattern because of the

disadvantages discussed in Section 2.3.1.2: the broker does not scale enough because of

its complexity. This message bus was also chosen because of its scalability and strongly

defined responsibility within the application. Its only responsibility is to provide an

interface to the clients which allow them to communicate with back-end services. It

can be scaled up horizontally by adding additional messaging servers to handle message

requests and API calls.

Candidate architecture 23

The message bus is common in architectures for SaaS applications because of its pres-

ence in the Service Oriented Architecture pattern (Section 2.3.1.4). The design shown

in Figure 5.3 allows for the modular implementation of all the services and makes it

relatively easy to add additional services if needed. It allows for the creation of clients

for different use cases by cherry-picking the services needed for the application.

The security risks of the ESB mentioned in Section 2.3.1.3 can be mitigated by using

the bus mostly as a look-up to connect clients to services. Where possible the data can

be encrypted and by using a publish-subscribe protocol that monitors all subscribed

components we can keep an eye out for malicious software listening in on the ESB.

The message bus functions as the communication backbone of the architecture. It is a

messaging server that uses a single format to distribute messages from clients to service

and back. The main responsibility of the bus is communication: This is why it does

minimal processing on the messages it transfers. All clients and services communicating

with the bus need to make sure to convert their data to a format the message bus

understands. In our architecture the bus is mainly used to establish connections and

can then be bypassed (Figure 5.4) to allow for a faster more direct connection to enhance

performance where necessary. This performance increase comes from less overhead and

less network hops.

The message bus now allows us to add multiple services and to make these services

available to multiple clients. But what happens when a single service becomes very

complex?

Candidate architecture 24

process boundary

Back-end service

Server Model

Update

Server Controller

Response

Client a Client b

process boundary

Message Bus(ESB)

Request serviceRequest service

Register service

Request service

Direct communication

Figure 5.3: A message bus is added in between client and server.

Candidate architecture 25

Client Message bus Service

Request connection

Subscribe

Publish request

Establish connection

Function call

Function call response

Figure 5.4: A client connecting to a service

Candidate architecture 26

5.4 Defining the service

Because the architecture requires multiple different services we introduce a new service

pattern. We will use this pattern to define a service within our architecture. This

pattern is used in all back-end services in the candidate architecture like the modeling

service and the simulation service. Figure 5.5 shows what this service pattern looks like.

The server model has been scaled up horizontally by introducing the option to have

additional servers. These servers are managed by the server controller which performs

load balancing and which creates and deletes server resources as needed. The reason

this happens within the service itself is to keep the message bus load as low as possible

by delegating the task of load balancing to the specific service required. When a client

has been assigned a server by the server controller it can proceed to communicate with

this server directly. This process is shown in Figure 5.6.

Next we look into the three services we need for the MSaaS architecture. These services

are all using the service pattern defined in this section.

Established connection

Message bus

Service

process boundary

Server model

Return server

Request Service

Client

process boundary

Find or start
server

Server
controller

with load

balancing

Request

service

Return

server

connection

Return
server

connection

Figure 5.5: Scaling the back-end horizontally.

Candidate architecture 27

Client Message bus Server controller Server Model

Subscribe

Request service
Request service

Return server status
Return server address

Return server address

Server API call

Response

Find or create

server(model)

Figure 5.6: Sequence diagram of a client requesting a service.

5.4.1 Modeling service

The modeling service has the responsibility of processing 3D-environments into navi-

gation meshes that can be used in a simulation. Because we want a simulation to be

adjustable while it is running in real-time, we need to have a real-time modeling service

available. The client can request a modeling server through the messaging bus API. The

messaging bus then passes the request to the modeling controller which will then create

or assign a modeling server using the load balancer. After processing has finished the

modeling server outputs the processed file which is sent back to the client.

Because the process of converting 3D data into navigation meshes can be very compu-

tationally expensive, the load balancer could distribute a single request over multiple

servers if this is more efficient and the implementation of the service allows it.

5.4.2 Simulation service

The simulation service works similarly to the modeling service described in the previous

section. The main difference is that the service does not work using a request and

response protocol. Instead, it establishes a connection between server and client which

will push simulation data to the client viewer in a steady stream. The client will still use

the message bus API when pushing changes to the simulation parameters or the model,

because these might need additional info from other services or additional processing by

other services.

Candidate architecture 28

5.4.3 Data management and authorization

The data management and authorization service is responsible for most of the adminis-

trative tasks of the MSaaS application. It handles authentication of users and maintains

session data. This service maintains a database of offline data for the users so they can

have persistent data storage between sessions. This is were results of past simulations

or preprocessed navigation meshes will be stored for later use.

5.5 The complete picture

The final picture can be found in Figure 5.7. The three services are connected to the bus

and have the option to engage in a direct connection with a client after authorization

and being linked through the message bus API.

The architecture is now scalable and modular. We can increase processing power verti-

cally and horizontally on all layers and adding another service only requires updates in

the client and the message bus to support the new functionality.

In the next chapter we analyze this architecture further to see if it can satisfy certain

requirements from Chapter 4.

Candidate architecture 29

Simulation service

Message bus

process boundary

Client

process boundary

Client
Client

Client

Modeling service

Authorization and

data management
service

Figure 5.7: The complete candidate architecture.

Chapter 6

Architecture analysis

So far our look into the different quality attributes and functional requirements of the

MSaaS architecture has shown us that performance is the most important attribute for

our architecture. Our candidate architecture from Chapter 5 needs to deliver on this

requirement because it is crucial for a SaaS implementation of simulation software to

be preferable over a standalone application. The simulation part of MSaaS is the most

performance sensitive which is why we test the performance of the simulation service in

this chapter.

To find out if the performance of the candidate architecture holds up in practise we

perform a series of tests. In these tests we analyze the amount of network traffic a

simulation would generate: We look at the number of messages that need to be passed

from the client to the server and back. Furthermore, we look at the size of these messages

and ways to optimize this process. The tests are performed on a practical implementation

of a standalone crowd simulation framework. Even though no actual networked code is

involved here we can still get a good idea of the bandwidth and latency constraints by

measuring the communication to an offline crowd simulation library.

6.1 Experiment introduction

In this section we specify the used software and hardware for this section and formulate

variables and hypotheses.

30

Architecture analysis 31

6.1.1 software used

The software used for these experiments is a version of the crowd simulation framework

by van Toll, W., Jaklin, N., & Geraerts, R. [25] which was modified to provide the

information needed for this experiment. This is an agent-based simulation framework.

The simulation is visualized by a front-end Unity3D implementation which uses the

above framework in the form of a dynamic-link library. The used Unity3D version was

2018.3.5f1 (64 bit) for Windows.

6.1.2 Hardware used

The experiments were performed on a Lenovo Ideapad Y700 Laptop with 8 gigabytes

of memory, an Intel core i7-6700HQ CPU (4 cores,8 threads) and an NVIDIA GeForce

GTX 960M video card. This laptop runs Windows 10 home edition, version 10.0.17134

build 17134.

6.1.3 Variables

Two dependant variables are declared in this section: Processing time P and Data size

D. After that, we discuss how we manage the independent variables.

6.1.3.1 Processing time

We quantify the Processing time P of a system by looking at the amount of time it

takes to perform a single step of the simulation. This time is measured in system

ticks which are 100 nanoseconds long on the test computer (Section 6.1.2). A single

simulation step cannot last longer than 1 million ticks, or 100 milliseconds to satisfy

our real-time requirement. To make certain calculations or definitions simpler, we may

use 100 milliseconds instead of 1 million ticks when discussing P. We can get a measure

of this variable using the Stopwatch class from the diagnostics namespace of the .NET

framework. P is the total time in ticks between calling the simulation step updates and

the receiving and processing of those updates. These step updates are ideally executed

10 times per second and serve as the framerate of the simulation. Note that the actual

framerate of the visualization is usually higher to provide the user a smooth visual

experience.

Architecture analysis 32

6.1.3.2 Data size

The data size variable D is a measure of the amount of sent data in bytes per simu-

lation step. Variable D is measured using the Marshal.SizeOf() method from the Sys-

tem.Runtime.InteropServices namespace in C#. This method does not give us the exact

size of the data at runtime. But it gives us the unmanaged memory size of the data

structures used to store all the variables that need to be sent. We look at the structs

that are used to send information to the simulation library and find the amount of data

sent per agent.

6.1.3.3 Independent variables

The following independent variables are present as well:

The hardware and operating system used are variables in this setup which we keep

consistent throughout all experiments to minimize its impact. Overhead introduced by

Unity3D needs to be kept at a minimum as this could scale poorly and disrupt the

experiment results at larger agent quantities. We disable any graphical rendering, but

the way Unity3D structures objects still adds considerable overhead which sadly we can

not exclude from the results. We have to thus keep in mind a more optimized client

implementation might perform differently.

The number of agents simulated and the environment model are variables that we keep

consistent through three distinct simulation scenarios so we can find out how our ar-

chitecture scales to larger and more complex simulations. We call this variable for the

number of agents A. Scenario 1 is a very basic control scenario. Scenario 2 is a more

extensive look into the relationship between A and P. Scenario 3 is a stress test to

provide insight into large simulations.

6.1.4 Hypotheses

To be able to reason about the effect the number of agents simulated will have on our

architecture, we formulate the following hypotheses, starting with the null hypothesis

H0.

H0: There is no relationship between the number of agents A in a scenario and P.

ρAP = 0

Rejecting this null hypothesis would allow us to specify how well our modeling service

can scale up with the number of agents.

Architecture analysis 33

The alternative hypothesis, H1 then becomes:

H1: There is a positive relation between the number of agents A in a scenario and P.

ρAP > 0

We choose H1 to be this way because we expect the amount of time needed to in-

crease when we simulate more agents. To get a better insight in the correctness of this

hypothesis, an experiment is performed. As described in the next section.

6.2 Experiment setup

The experiment consists of measuring Processing time P and Data size D in a standalone

crowd simulation implementation. We measure P by collecting the time a simulation

step takes to complete in ticks (Section 6.1.3). We measure D by measuring the size

of the data sent during one simulation step per agent. These variables are collected by

measuring between point A and point B in Figure 6.1. For P, we start the timer at

point A and end it at point B. For D, we measure the size of the data sent at A and the

size of the data received at B.

We measure variable P for all simulation steps during 25 seconds of simulation. We can

then perform statistical analysis with Pearson’s correlation test to get an idea of the

correlation between the number of agents and the data size. The relation between the

number of agents and the processing time D is also analyzed by looking into the data

structures used to store the data that would be sent over the network in a networked

implementation. These results can be found in the next chapter.

6.2.1 Experiment details

The experiment is a standalone implementation of the Unity3D client. It contains a

library that handles the simulation logic and we use calls to this library to evaluate the

processing time of API calls and data sizes of traffic that would go over the network in

an MSaaS version of this application. This library has an API that is exposed through

an adapter to allow access to the simulation framework. To test if Requirement P1 from

Chapter 4 is met, we have to time how long it takes to calculate a single simulation step.

Next, we analyze the library call data sizes which we can use to validate requirement

P3 from Chapter 4.

Architecture analysis 34

Standalone simulation client

Unity3D Simulation Library

API call

Response

A

B

Figure 6.1: The experiment setup.

6.2.2 The Scenarios

The three scenarios we are testing are of increasing complexity and the experiment is

performed for all three scenarios. The numbers of agents were chosen because they

cover the range the used hardware can process nicely. Scenario two contains multiple

measurements to provide insight into the type of relationship between A and P. Scenario

3 contains 2 stress test measurements for larger groups of agents.

6.2.2.1 Scenario 1

Scenario 1 (S1) is the least complex and contains 10 agents and 5 obstacles. The agents

navigate to the position of the agent directly in front of them, swapping places. There

are only 5 rectangular obstacles in the middle to make the global and local pathfinding

not completely straightforward. This scenario is shown in Figure 6.2.

6.2.2.2 Scenario 2

Scenario 2 (S2) contains 10 tests where we test agent numbers of 100 agents to 1000

agents in increments of 100 agents. In this scenario the agents try to make their way to

the other side of a field of 62 obstacles. This is a medium stress test for the Unity3D

client. This scenario is shown in Figure 6.3.

6.2.2.3 Scenario 3

Scenario 3 (S3) uses the same environment model as S2 and contains 2 tests. The first

test simulates 4800 agents and the second one simulates 14400. This scenario tests the

Architecture analysis 35

Figure 6.2: Simulation scenario 1

Figure 6.3: Simulation scenario 2

largest number of agents. This is a high stress test for the Unity3D client and at the

limit of what the testing hardware can handle. This scenario is shown in Figure 6.4.

Architecture analysis 36

Figure 6.4: Simulation scenario 3

Chapter 7

Results

In this chapter, we discuss the results of the experiments defined in the previous chapter.

First, we analyze the data usage of a hypothetical simulation service. Next, we discuss

our hypotheses and the results of the processing time analysis.

7.1 Data size D results

We analyzed the data size using Marshal.SizeOf() from the System.Runtime.InteropServices

namespace and by analyzing the data structures used for storing agent positions and

velocities. We found that the data structures used require 104 bytes per agent. This

number consists of 2 integers, 8 doubles, 2 integer16’s (smaller integer) and 2 enumerable

types. Note, in its normal, non-marshalled form, that this data would take up 148 bytes.

7.1.1 Network throughput

Network throughput is crucial for our MSaaS application. It is the number of bits per

second that are received by the recipient of a transmission over the internet.

Assuming these 104 bytes are what we need to transfer a single agent’s data, we can,

in an ideal scenario, support over 12.000 agents on a 100 mbps (megabits per second)

connection at a rate of 10 simulation steps per second. We get this number by getting

the number of bytes in 100 megabits (12.500.000 bytes) and dividing this number by the

104 bytes of our data structure. We then divide by 10 to gives us the number of agents

we can simulate at a simulation step framerate of 10 updates per second. It is possible to

make use of gigabit network connections to support more agents in an MSaaS application

but if we want the client software to be flexible and thus not always require a network

37

Results 38

connection of 1 gbps (gigabit per second) or more this is not an option. The throughput

bottleneck in this scenario is most likely going to be the client bandwidth. This is why

we assume a maximum bandwidth of 100mbps. In reality, this throughput is not going

to be possible because of the overhead introduced by the network transmissions. In the

next section we discuss what the impact of this overhead is and how to deal with it.

7.1.2 Network Protocol

Commonly a network connection is set up using a TCP (Transfer Control Protocol)

connection. TCP is a reliable transport protocol that guarantees that data arrives at the

destination without errors. This is useful when reliability is crucial for example when

loading web pages (HTTP uses TCP). But when streaming data TCP also performs

congestion control which means it limits the maximum throughput when packets are

lost. UDP (User Datagram Protocol) can stream at the maximum bandwidth and does

not limit itself. The drawback of this is that it does not guarantee packages to be correct

or even that packages arrive at their destination at all.

How does this apply to our MSaaS architecture? Both UDP and TCP add network

overhead to the packages they send. Additionally, TCP adds another bottleneck for

our throughput because of its congestion control. UDP adds 20-60 bytes of IP address

information in the header and it always adds 8 more bytes UDP header. The Maximum

Segment Size (MSS) on the ethernet is 1500 bytes [26] which means a single package

cannot be smaller than 1500 bytes minus the 68 byte header. The MSS is limited

further by the Maximum Transmission Unit (MTU) which can be as low as 576 bytes

per packet which is the minimum number of bytes for the IPv4 packet any device must

be able to receive [27]. This means, that to be sure the packet is not fragmented, which

causes additional unwanted overhead, the safest segment size becomes 508 bytes after

subtracting the UDP and IP header size. Taking into account UDP overhead and agent

data size this gives us 10.600 agents that we can transmit data for in 100 miliseconds.

If we want to simulate bigger numbers of agents in real-time our best bet is to decrease

the amount of data being sent for each agent. The 104 bytes needs to go down to

22 bytes per agent to simulate 50.000 agents in real-time for example. Using smaller

more efficient data types where possible is advised. For example, in the tested imple-

mentation the double values could be replaced by float values or integers. An example

bandwidth-friendly approach would be: 4 floats (for the positions and velocities in 2D),

and 2 integers (agent identifier and layer number). Which would be 24 bytes per agent

unmarshalled. Another way to optimize the bandwidth is to cull the agents that are

not being viewed in the client from the step updates. Lastly, we could send a stream

Results 39

of a video that was generated on the server side instead of the large number of agent

velocity and position updates.

UDP gives us performance improvements if well implemented and optimized for crowd

simulation data structures. The tradeoff is the unreliability of UDP packets: they can

get lost, corrupted, delayed or desynchronized [26]. The unreliability can be masked by

animations on the client side to a certain degree, and can be further mitigated by clever

predictions if the client hardware can handle it.

If unreliability is not an option, TCP can be used at the cost of performance. Because of

the throughput throttling this will be less performant than UDP. It is difficult to predict

the exact number of agents this can support because of this throttling. To get the best

of both worlds one could use TCP until the throughput becomes so small 10 updates per

second cannot be guaranteed anymore. At which point the user has to choose between

switching to UDP or running the simulation at a slower step frequency.

For any communication that is not as throughput sensitive as the real-time simulation

step updates it is recommended to use TCP because of its reliability.

7.2 Processing time P results

The results of the experiment described in the previous chapter provide us with a bench-

mark of the framework we tested. Agent based simulation approaches tend to get slower

as more and more agents are added to the simulation. The results provided in this

section give us a better understanding.

7.2.1 Scenario 1

From our basic control scenario with 10 agents we learn that in the 25 second test

run the simulation library was called 1057 times. Most of these calls come from three

methods that are called every simulation step. This means they make up 750 of those

calls (3 times 25 calls per 100 milliseconds). These are the calls of which we have already

analyzed the data size in Section 7.1; they contain positions and velocities of agents. The

rest are functions that are run at the start of the simulation to set up the environment

and the simulation parameters. An example is setting the walkable areas and initiating

the agents.

Results 40

7.2.1.1 Outliers

These setup functions make the first simulation step take a little bit longer than usual

which is to be expected. We omit this first simulation step from further analysis as it is

an outlier. Another outlier we find is a very periodic and consistent spike in P as seen

in Figure 7.1. These consistent spikes can also be observed in the Unity3D profiler. The

exact cause of this is unknown because it happens in the simulation library. Because the

server ideally optimizes these spikes we treat these spikes as outliers as well. All outliers

were omitted from further analysis.

Figure 7.1: Spikes observed in P for 14400 agents.

7.2.2 Scenario 2

For scenario 2 we gathered data from 10 different agent numbers: 100, 200, 300, 400,

500, 600, 700, 800, 900 and 1000 agents.

Agents Median P(milliseconds)
100 0,2054
200 4,5717
300 6,287
400 8,2047
500 10,0239
600 11,9581
700 13,4194
800 14,7018
900 17,3329
1000 18,2811

Table 7.1: Median P values for different agent numbers.

Applying Pearson’s correlation test on our data gives us ρ = 0, 991733927, which is

a very strong positive linear correlation. This linear correlation becomes apparent in

Results 41

Figure 7.2. The processing time for 100 agents is much lower than expected. From 200

agents upward, P follows a linear pattern.

Figure 7.2: Median P measurements presented in a graph.

This linear correlation is helpful for our architecture design because it lets us very

precisely pinpoint the maximum agent capacity that can still run in real-time. In the

next section we look at some bigger agent numbers to see if this correlation holds up.

7.2.3 Scenario 3

Two larger quantities of agents were tested in Scenario 3; one with 4800 agents and one

with 14400. Figure 7.3 shows these tests in relation to the control test. This graph is

presented by using a logarithmic scale. We can see that 4800 agents simulate in just

under our 100 millisecond benchmark. The 14400 agent test violates our benchmark by

taking consistently longer than 100 milliseconds to process all agents. In Figure 7.4, we

zoom in on the 14400 agent scenario where we see that processing time P climbs during

the simulation. The agents interacting with each other and the environment (collision

avoidance) might be causing this. But that cannot be claimed with certainty based on

these results alone. It is however a pattern that exists for all test data and is worth

looking into more as there could be room for optimization.

Agents Median P(milliseconds)
4800 59,6152
14400 164,7193

Table 7.2: Median P values for larger agent amounts.

As seen in Figure 7.5, the data for larger agent numbers seems to follow our linear trend.

Pearson’s test confirms this with a positive correlation of ρ = 0, 998753983.

Results 42

Figure 7.3: P measurements over time for three agent numbers presented in a graph.

Figure 7.4: P measurements over time for 14400 agents.

With this evidence we feel safe to reject H0 and accept H1. This means there is a very

strong linear correlation between agent numbers and the time the simulation library

takes to process a single simulation step. Figure 7.5 shows that we can safely assume

the maximum number of agents our test hardware can compute in real-time is slightly

over 8000 agents.

Results 43

Figure 7.5: Median P measurements presented in a graph.

Chapter 8

Conclusion

This chapter concludes the thesis by discussing the implications of our results, by summa-

rizing what we have presented and by looking forward towards possible future research.

8.1 Research contribution

In this thesis we have provided an overview of literature for both crowd simulation and

computer architecture. We used this knowledge to set requirements for an MSaaS system

which resulted in the design of a candidate architecture (Chapter 5). We then analyzed

this architecture to learn more about its most important quality attribute: Performance.

In Chapter 3 we formulated a few problem statements that we intended to answer. Here

they are listed once more:

Problem 8.1. What architectural decisions satisfy our set requirements when processing

environment models and why?

Problem 8.2. What architectural decisions satisfy our set requirements when running

a crowd simulation in real-time and why?

Problem 8.3. What architecture for an MSaaS application satisfies the most of our set

requirements?

We presented a candidate architecture in Chapter 5. This architecture was constructed

using well known and documented architectural patterns which were chosen based on

their strengths and weaknesses. The resulting design provides a solid guideline for future

MSaaS implementations. Furthermore we analyzed the most important Performance

issues in Chapter 6 and 7.

Problem 8.4. How can we evaluate our proposed architecture in a meaningful way?

44

Conclusion 45

Evaluating architectures is a lot more abstract than evaluating implementations. In this

thesis we intended to provide reasoning and alternatives where possible so that a critical

reader can make their own informed judgments based on their own specific needs and

requirements.

8.2 Discussion of experiments

Our analysis of an existing crowd simulation library and client provided us with a few

important insights. It showed us that the maximum number of simulated agents, for an

agent-based crowd simulation system, is limited largely by the network throughput. This

means it is critical to keep data sent per agent to a minimum for real-time simulations

if very large quantities of simulated agents need to be supported. This also validates

our assumption that these real-time simulation data streams should bypass the central

messaging bus (ESB) because the overhead and massive amounts of traffic this would

introduce would result in very poor network performance. Alternative ways of stream-

ing the agent data can also be considered. Instead of streaming all the positions and

velocities for the client to animate, a subset of this data could be selected based on the

needs of the client view. Another option would be to do all animation on the server side

and to stream only a rendered video of the simulation output.

When looking into the relation between the number of agents and the processing time

required we found a positive linear correlation. By improving the hardware by running

these calculations on a powerful cloud service we can predict that this will drastically im-

prove the maximum number of agents simulated for clients run on less powerful machines

as long as the internet connection is decent.

8.3 Discussion of research method

For our analysis it was not feasible to test a (partial) networked implementation of

our MSaaS architecture due to scope constraints. We only analyzed a non-networked

standalone version of a crowd simulation application. We hope the performance analy-

sis can help future software architects make more informed decisions regarding MSaaS

architectures.

Conclusion 46

8.4 Future work

8.4.1 Implementation

Given our candidate architecture the next logical step is implementing the architecture

and analyzing the more practical problems faced in MSaaS development. An implemen-

tation provides an environment where our design choices can be validated and researched.

8.4.2 Security

Another area of interest is studying the other quality attributes that we did not analyze

as thoroughly as a part of this thesis. The most prominent one is security. How does

security impact performance? Which parts of the architecture are most vulnerable? It

is an interesting challenge to find a way to secure the large data streams required for

real-time simulation without compromising the performance too much.

8.4.3 Non-agent based systems

Our analysis focused on an agent based crowd simulation system. How do other systems

perform in an MSaaS setting? Can other systems handle more agents in real-time? Can

other systems provide the same functionality as agent-based systems? Flow-based and

particle-based systems are only two examples of simulation algorithms that are not agent

based. These systems excel at huge simulations but lack complex agent behaviours.

References

[1] Dirk Helbing and Anders Johansson. Pedestrian, crowd and evacuation dynamics.

Springer, 2009.

[2] Team MSG-131. Modelling and simulation as a service: New concepts and service-

oriented architectures. 2015.

[3] Tiago Azevedo, Rosaldo JF Rossetti, and Jorge G Barbosa. Densifying the sparse

cloud simsaas: The need of a synergy among agent-directed simulation, simsaas

and hla. arXiv preprint arXiv:1601.08116, 2016.

[4] Craig W Reynolds. Flocks, herds and schools: A distributed behavioral model. In

ACM SIGGRAPH computer graphics, volume 21, pages 25–34. ACM, 1987.

[5] Dirk Helbing and Peter Molnr. Social force model for pedestrian dynamics. Physical

review E, 51(5):4282, 1995.

[6] Adrien Treuille, Seth Cooper, and Zoran Popović. Continuum crowds. ACM Trans-

actions on Graphics (TOG), 25(3):1160–1168, 2006.

[7] Roger L Hughes. The flow of human crowds. Annual review of fluid mechanics, 35

(1):169–182, 2003.

[8] Suiping Zhou, Dan Chen, Wentong Cai, Linbo Luo, Malcolm Yoke Hean Low,

Feng Tian, Victor Su-Han Tay, Darren Wee Sze Ong, and Benjamin D Hamilton.

Crowd modeling and simulation technologies. ACM Transactions on Modeling and

Computer Simulation (TOMACS), 20(4):20, 2010.

[9] Artur Malinowski, Pawe l Czarnul, Krzysztof Czuryo, Maciej Maciejewski, and

Pawe l Skowron. Multi-agent large-scale parallel crowd simulation. Procedia Com-

puter Science, 108:917–926, 2017.

[10] Armel Ulrich Kemloh Wagoum, Bernhard Steffen, Armin Seyfried, and Mohcine

Chraibi. Parallel real time computation of large scale pedestrian evacuations. Ad-

vances in Engineering Software, 60:98–103, 2013.

47

Bibliography 48

[11] Santosh Kumar and RH Goudar. Cloud computing-research issues, challenges,

architecture, platforms and applications: a survey. International Journal of Future

Computer and Communication, 1(4):356, 2012.

[12] Wei-Tek Tsai, Xin Sun, and Janaka Balasooriya. Service-oriented cloud computing

architecture. In Information Technology: New Generations (ITNG), 2010 Seventh

International Conference on, pages 684–689. IEEE, 2010.

[13] Robert Siegfried, Tom van den Berg, Anthony Cramp, and Wim Huiskamp. M&S

as a Service: Expectations and Challenges. Orlando, FL: SISO, 2014.

[14] Wouter Van Toll, Atlas F Cook, and Roland Geraerts. Navigation meshes for

realistic multi-layered environments. In Intelligent Robots and Systems (IROS),

2011 IEEE/RSJ International Conference on, pages 3526–3532. IEEE, 2011.

[15] Len Bass, Paul Clements, and Rick Kazman. Software architecture in Practice.

Addison-wesley, 2014.

[16] Mozilla. Mvc architecture, Jun 2018. URL https://developer.mozilla.org/

en-US/docs/Web/Apps/Fundamentals/Modern_web_app_architecture/MVC_

architecture.

[17] Siqi Shen, Shun-Yun Hu, Alexandru Iosup, and Dick Epema. Area of simulation:

Mechanism and architecture for multi-avatar virtual environments. ACM Transac-

tions on Multimedia Computing, Communications, and Applications (TOMM), 12

(1):8, 2015.

[18] Microsoft. Broker, Mar 2014. URL https://docs.microsoft.com/en-us/

previous-versions/msp-n-p/ff648096(v=pandp.10).

[19] David Chappell. Enterprise service bus. O’Reilly Media, Inc., 2004.

[20] Rick Kazman, Mark Klein, and Paul Clements. Atam: Method for architecture

evaluation. Technical report, Carnegie-Mellon Univ Pittsburgh PA Software Engi-

neering Inst, 2000.

[21] Jens Knodel and Daniel Popescu. A comparison of static architecture compliance

checking approaches. In Software Architecture, 2007. WICSA’07. The Working

IEEE/IFIP Conference on, pages 12–12. IEEE, 2007.

[22] Jason McColm Smith. SPQR: formal foundations and practical support for the au-

tomated detection of design patterns from source code. University of North Carolina

at Chapel Hill, 2005.

https://developer.mozilla.org/en-US/docs/Web/Apps/Fundamentals/Modern_web_app_architecture/MVC_architecture
https://developer.mozilla.org/en-US/docs/Web/Apps/Fundamentals/Modern_web_app_architecture/MVC_architecture
https://developer.mozilla.org/en-US/docs/Web/Apps/Fundamentals/Modern_web_app_architecture/MVC_architecture
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ff648096(v=pandp.10)
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ff648096(v=pandp.10)

Bibliography 49

[23] Arne Hillebrand, Marjan van den Akker, Roland Geraerts, and Han Hoogeveen.

Separating a walkable environment into layers. In Proceedings of the 9th Interna-

tional Conference on Motion in Games, pages 101–106. ACM, 2016.

[24] Iso/iec 25010. URL http://iso25000.com/index.php/en/

iso-25000-standards/iso-25010.

[25] Wouter van Toll, Norman Jaklin, and Roland Geraerts. Towards believable crowds:

A generic multi-level framework for agent navigation. 2015.

[26] James F Kurose and Keith W Ross. Computer networking: a top-down approach.

Addison Wesley, 2011.

[27] Jon Postel et al. Rfc 791: Internet protocol. 1981.

http://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://iso25000.com/index.php/en/iso-25000-standards/iso-25010

	Abstract
	Acknowledgements
	1 Introduction
	2 Related work
	2.1 Crowd Simulation
	2.2 Cloud Architecture
	2.2.1 MSaaS
	2.2.1.1 Modeling
	2.2.1.2 Simulation

	2.3 Software Architecture
	2.3.1 Architectural patterns
	2.3.1.1 Model View Controller
	2.3.1.2 Broker Pattern
	2.3.1.3 Enterprise Service Bus pattern
	2.3.1.4 Service-Oriented Architecture Pattern

	2.4 Architecture Evaluation through Architecture Mining

	3 Problem description
	3.1 Modeling Pipeline
	3.2 Simulation
	3.3 Architecture design

	4 Requirements
	4.1 Quality attributes
	4.1.1 Performance
	4.1.2 Security
	4.1.3 Maintainability, Modifiability and Interoperability

	4.2 Functional requirements
	4.2.1 Front end
	4.2.2 Back end

	5 Candidate architecture
	5.1 Client with MVC
	5.2 Client-Server model
	5.3 Message bus
	5.4 Defining the service
	5.4.1 Modeling service
	5.4.2 Simulation service
	5.4.3 Data management and authorization

	5.5 The complete picture

	6 Architecture analysis
	6.1 Experiment introduction
	6.1.1 software used
	6.1.2 Hardware used
	6.1.3 Variables
	6.1.3.1 Processing time
	6.1.3.2 Data size
	6.1.3.3 Independent variables

	6.1.4 Hypotheses

	6.2 Experiment setup
	6.2.1 Experiment details
	6.2.2 The Scenarios
	6.2.2.1 Scenario 1
	6.2.2.2 Scenario 2
	6.2.2.3 Scenario 3

	7 Results
	7.1 Data size D results
	7.1.1 Network throughput
	7.1.2 Network Protocol

	7.2 Processing time P results
	7.2.1 Scenario 1
	7.2.1.1 Outliers

	7.2.2 Scenario 2
	7.2.3 Scenario 3

	8 Conclusion
	8.1 Research contribution
	8.2 Discussion of experiments
	8.3 Discussion of research method
	8.4 Future work
	8.4.1 Implementation
	8.4.2 Security
	8.4.3 Non-agent based systems

	References

