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Human activity is an undeniable factor that increases the total forest area loss. Differ-

ent NGOs, governments, and private companies are looking for ways to prevent human-

driven deforestation. A model that can generate interpretable deforestation predictions

is a valuable asset to prevent some causes of forest area loss, such as illegal logging and

the creation of pasture or plantation fields. Advances in satellite data analysis and arti-

ficial neural networks resulted in different methods of creating such a model. This work

lists the most used machine learning techniques to create interpretable predictions. Fur-

thermore, a comparative study of some artificial neural network models with ConvLSTM

and Conv3D layers explores how the different techniques lead to different predictions.

To compare different models, the validity of the most common evaluation metrics is ex-

plored. The unbalanced data distribution leads to the conclusion that precision, recall,

F-Score and Balanced Accuracy are the most compelling evaluation metrics for this use

case.
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Chapter 1

Introduction

Since ancient times, for different reasons, human development was always correlated

with clearing vast areas of land populated by trees. Those reasons could be, for example,

preparing the land for crop production, logging, fiber, building roads, or mining (Abood

et al., 2015). The process continues nowadays. Today, the deforestation agents (actors

responsible for the process) can be national or international, since the trade of timber and

agricultural products are responsible for a substantial amount of tropical deforestation

emissions (Pendrill et al., 2019). Most researchers today agree that some degree of

deforestation always happened in our society, and there is a direct connection between

land cover changes and the natural imbalances that negatively impact our lives today.

There is a strong growing scientific and social movement that tries to analyze and im-

prove the efforts that are preventing the constant destruction of ecosystems (Alencar

et al., 2004, Brearley et al., 2019, Mello and Artaxo, 2017, Scholz, 2006). However,

since there is a direct connection between deforestation and economic gain (Grieg-Gran,

2006), more than just an ecological approach needs to be taken to plan and prevent de-

forestation. While solving this arduous task, if state-of-the-art technology is employed,

knowledge can be created, awareness can be raised, and local agents can be empowered.

To handle predictions based on high amounts of data, machine learning (ML) tech-

niques are the current way to go. Data gathering (and its pre-processing), algorithm

selection, model training, and accuracy measures are crucial fragments of the overall

machine learning process. There are so many different paths to create a solution that

performance comparison between ML algorithms can be a tricky task.

With that in mind, the World Wide Fund for Nature (WWF), Deloitte, and Amazon

Web Services joined forces to develop an Early Warning System (EWS) for deforestation.

By using the extensive labeled dataset from 2015 to present time, consisting of multi-

spectral images with a monthly update among other data (palm oil mills, road networks,

1



2

altitude), the main objective of this work is to design and develop a machine learning

solution that will predict the future cases new deforestation points in the Indonesian

part of the island of Borneo, Kalimantan.

Since human deforestation requires paths to access forest areas, the existence of nearby

roads, highways, and rivers facilitates the occurrence of deforestation (Barber et al.,

2014, Laurance et al., 2001). For example, Barber et al. (2014) directly shows that

94.9% of all deforestation in the Brazilian Amazon occurs within 5.5 km of some type

of road or 1.0 km from navigable rivers. Additionally, satellite images can demonstrate

where those facilitators are, providing data to understand deforestation.

In 2019, a prototype to predict deforestation was created, showcasing the power of

machine learning algorithms in this use case. Despite an overall success with 84% of

precision (true positives divided by total positives), some issues were noticed, such as

scalability (explained by the amount of data to be stored and processed) and lack of

precision (due to a down-sampling after making the predictions).

After studies, interviews, and workshops, WWF concluded that the primary cause of

active human deforestation in Indonesia is the palm oil cultivation. Different types of

deforestation, such as the growth of pre-existing areas or the creation of new fields, can

generate economic value for the locals. Although the data shows a big difference in

patterns between types of deforestation, the machine learning model, as it is, has not

been able to differentiate them. The main issue being the lack of interpretability, makes

it harder to decide what is the best action to take. Possible steps listed by WWF are:

• Supporting law enforcement

• Community engagement

• Company influencing

• Influencing new policy

The sequence of satellite images can be used to predict a future state of the forest.

To deal with the complexity of image predictions, a subset of ML is popular among

researchers (He et al., 2016, Huang et al., 2017, Krizhevsky et al., 2012). Deep learning

(DL) is a specialization of ML which uses artificial neuron networks as building blocks.

There are several different DL architectures and techniques, as seen on Chapter 2. These

architectures aim to solve domain-specific problems depending not only on the desired

outputs but also on the available inputs.

To manage the forest better, it is important that the predictions have interpretability.

This allows to trace the deforestation facilitators better, resulting in better-improved
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prevention policy. Depending on a studied domain, the value of the model’s inter-

pretability is different. To understand the reasoning behind a decision might not in-

crease its worth. As for now, most machine learning solutions are seen as a black box, as

Sam Harris stated: ”you can’t really inspect how the algorithm is accomplishing what

it is accomplishing.” (Harry, 2016). However, deep learning does not always need to

be a black box. New techniques for enhancing interpretability, sometimes even with a

model-agnostic approach, are being improved every day.

1.1 Problem Statement

The main focus of this thesis project is the development of a framework of different deep

learning architectures in order to improve the current EWS solution, resulting in an

interpretable temporal prediction. Combining the information found in the last section,

we can reach the problem statement by the following line of reasoning:

1. Deforestation is a current problem, and it is hard to stop because of the lack of

resources and vast forest areas.

2. Satellite images can provide data about deforestation.

3. There are deep learning methods that can predict changes in satellite data.

4. NGOs could benefit from accurate short-term deforestation predictions.

5. The model needs to have interpretability to perform actions based on the predic-

tions.

6. Problem statement:

There is no guide to aid the creation of a deep learning architecture able to

pinpoint and explain the growing deforestation based on satellite images.

1.2 Research Questions

This research combines information about deforestation, satellite images, and deep learn-

ing to construct a framework that generates a machine learning architecture that suits

this use case. By using the template for design problems (Wieringa, 2014) we can en-

capsulate the artifact and design problem:



4

This research aims to improve deforestation prediction by designing a frame-

work to guide the creation of deep learning architectures such that there is

an accurate and interpretable prediction model to facilitate the actions to

prevent deforestation.

To limit the scope of this work, the following research questions were defined:

MRQ: How can a framework be developed to aid data scientists in select-

ing deep learning techniques and process satellite data towards providing

accurate and interpretable short-term predictions?

Based on the goal of this research question, four sub-questions were derived to guide the

research better.

SQ1: What are the current deep learning architectures and methods suitable

for satellite image data prediction?

SQ2: What are the design choices to choose and combine techniques to

create the deep learning architectures for this use case?

SQ3: Which techniques should be used to facilitate the interpretability of

the model’s results?

SQ4: What are the most suitable performance measures for this domain?

1.3 Research Methods

In favor of answering the research questions, this work will execute the design cycle

as defined by Wieringa (2014). That means that this research will include a problem

investigation, treatment design, and treatment validation. These phases are divided

into activities that produce deliverables, as can be seen in figures 1.2 to 1.4 using a

process deliverable diagram (PDD) as characterized by van de Weerd and Brinkkemper

(2009). The treatment implementation and implementation evaluation, both part of the

engineering cycle, will be out of scope for this thesis. Deloitte and WWF will perform

them on a future date.
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Figure 1.1: Research method definition

1.3.1 Problem investigation

The problem investigation phase will start with a literature review, focusing five main

topics researched in this order:

1. Deforestation prediction

2. Deep Learning used on satellite data

3. Time-series predictions

4. Interpretable models

5. Performance measurements

The literature review will exclude any topic not related to deep learning techniques, as

it is seen as out of scope for this work. The only exception of this is the research about

deforestation prediction since a broader view can provide insights on the framework’s

inputs and outputs.

The reason for a fixed research order is that the review on time series predictions and

interpretable models will be directed based on the results of the research on machine

learning used on satellite data. This will result in a faster and more directed approach

to the topic since interpretable models that cannot be applied to the use case would be

logically excluded.

After the literature review, the most prominent deep learning architectures will be listed

depending on their availability to work in a cloud-agnostic architecture. This will be

the base not only to answer SQ1 but to support the next two phases and, therefore,
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the answers of the next SQs. Figure 1.2 provides a visualization of the process and

deliverables interconnections.

Figure 1.2: PDD displaying the problem investigation

1.3.2 Treatment design

In the treatment design phase, the author will combine suitable deep learning techniques

into deep learning architectures to answer SQ2 and SQ3. This result will also provide

us with the information required to answer SQ4.

Figure 1.3: PDD displaying the treatment design

1.3.3 Treatment validation

The treatment validation will ensure that the combination of the SQs serves as a base

to answer the MRQ. This will be done by using a more significant amount of data and

checking if it contributes to WWF goals if implemented. The models generated by the

designed architectures will be compared using researched evaluation methods, such as

ballanced accuracy, precision, and interpretability.

1.4 Objective, Scope, and Structure

The main objective of this research is to create a methodological framework to generate a

DL architecture that contains a model capable of interpretable deforestation predictions.
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Figure 1.4: PDD displaying the treatment validation

For the scope of this project, data from Kalimantan, the Indonesian part of the island of

Borneo, will be used. If successful, this goal of this framework is to be used by WWF and

its partners to plan and perform actions to decrease the deforestation rate at different

locations, such as Guianas, Brazil, and Malaysia.

When building this solution’s architecture, data gathering, pre-processing, and dash-

board views are not the focus of this project. Figure 1.5 helps to visualize all the

modules that will be presented when building the architecture and which ones will be

focused on in this work.

After this introductory section, to be completed with a detailed description of the re-

search approach and research questions, this document will be divided into three main

segments:

Part II: Background Theory

In this section, the main ideas that direct this work will be described. Main concepts

will define general notions such as deforestation, DL, and interpretability, while The

satellite image deforestation prediction task will be an explanation of why it is chal-

lenging to predict interpretable changes in satellite data. Next, on Chapter 4 we will

have a brief explanation of possible image-based machine learning techniques that can

be implemented.

Part III: Practice
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Figure 1.5: Generic architecture. The yellow box limits the scope.

Once all the theoretical background was visited, on this segment, we create and present

several viable architectures on chapter 5 and their results on Chapter 6.

Part IV: Conclusion

The response to the research questions, discussions, and future research in chapter 7.





Chapter 2

Main concepts

This chapter will focus on defining the main concepts that will be used throughout

this work. When dealing with some evolving technologies, it is necessary to establish a

ground truth.

2.1 Forest

The Kyoto protocol defines a forest area using three parameters. The first one is a

minimum land area between 0.05 and 1 hectare. Next, the minimum value of tree cover

in this area needs to be between 10 and 30%. Third, the minimum tree height needs

to be in the interval of 2 and 5 meters. This means that each country has a window to

apply this concept depending on its landscape.

As an unfortunate direct result of this definition, countries can exploit this concept to

damage forests enough not to lose the forest status. Sasaki and Putz (2009) warns that

the Kyoto protocol definition needs to be revised while explores alternatives. Neverthe-

less, for this project, the explanation given in the last paragraph will be maintained.

2.1.1 Deforestation

According to Myers (1991), and as the name implies, deforestation is when a forest area

is destroyed in a way it can no longer be classified as forest. According to Wibowo and

Byron (1999), the same term can be used to address both human activities, addressed

at this work’s Introduction, and natural causes. Some examples of naturally caused

deforestation are, but not limited to, soil erosion, flooding, forest fires, and hurricanes.

10
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While deforestation effects can be perceived with satellite images, the same can not be

stated about selective logging.

2.1.2 Degradation

Forest degradation is a process that usually precedes deforestation. The Kyoto protocol

does not provide a definition, and there is no universally agreed interpretation (Sasaki

and Putz, 2009). This project defines that when a forest loses 10 to 30% of canopy

cover on forest area, forest degradation is in course. It is easy to see the effect from

the ground, but not so easy using satellites. For this project, radar sensors provide the

technology to differentiate both of them, as seen on 2.1. Human-based degradation can

also be the result of selective logging, forest usage by guerillas, or drug trafficking (Putz

and Redford, 2010). Selective logging is a type of tree removal in which the objective

is to retrieve a limited number of marketable tree species (Asner et al., 2005). This

modality can damage other trees, affect soil and local fauna. Since it is hard to capture

it with satellite images, it will be out of scope for this study, unless it can be categorized

as forest degradation.

Figure 2.1: Radar data examples. Each green pixel is 15m2 of forest area. A red
pixel corresponds to deforestation and colors between yellow and orange are levels of

degradation.

2.2 Deep Learning

Machine Learning (ML) is the area of expertise in Artificial Intelligence that, using

data, seeks to learn a given task automatically by experience (Das and Behera, 2017).

Mitchell (2006) defines that a machine learns concerning a particular task, performance

metric, and type of experience, if the system reliably improves its performance at the

task, following the experience.
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As stated in the introduction, this thesis will work with a specific type of ML named

deep learning (DL). DL consists of the following building blocks.

An artificial neuron is a unit that can receive information from one or several sources as

input, transform it, and return an output to any number of targets. DL architectures

contain multiple artificial neurons organized in layers, some visible (responsible for input

and output), and others hidden (positioned between the visible layers).

As an example, NN can be composed of an input layer of neurons, units that receive the

data and calculates a sign to be passed on the next layer of neurons. This procedure

repeats itself until an output layer delivers the results (Hassoun et al., 1995). Once

the output values are compared to correct answers, error derivatives change the weights

inside of the neurons, calculating the next iteration of inputs. This NN can be trained

and evolves according to the provided data, training parameters, and type of DL, which

can cause changes in its internal architecture. In figure 2.2, we can see a representation

of this NN.

Figure 2.2: Graphic representation of a Neural Network

Advances in NN implementations resulted in the possibility of combining different types

of neuron layers with building complex NN architectures. Different connections and

behavior mean that some types of layers will be more appropriate for different tasks.

From the current types of NN layers that can be combined to build a DL model, the

following will be discussed in this work:

2.2.1 Long Short-Term Memory

Long Short-Term Memory (LSTM) networks are one of the variations built upon the

concept of Recurrent Neural Networks (RNN) for this use case. An RNN, explained in

Appendix A, is an elegant solution to deal with the time dimension, but the vanishing

and exploding gradient problems (Mittelman et al., 2014) badly affect its performance.
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To solve this, Hochreiter and Schmidhuber (1997) created LSTM cells to be added at

each time step, as depicted in figure 2.3. This internal state will serve as a working

memory, which can be updated, deleted, and read when doing the node’s calculations.

To control the access to the working memory, the node uses three gates with weights

and biases. With a similar structure to a neuron in a NN, sigmoid or tanh functions

activate the nodes.

Figure 2.3: Graphic representation of LSTM.

The node fires the write gate WG when after analyzing the values of the networks’ input

data NI and the networks’ previous output NO. This gate will write new data in the

working memory. The keep gate KG is responsible for maintaining the data. Its input

is only the ND and calculates how much of the current data should be remembered.

The NI and the data preserved in the working memory feeds the read gate RG, which

outputs information that will be directed to the networks’ next step as LO. Figure 2.4

is a graphical representation of the LSTM unit.

Figure 2.4: Placement of LSTM unit in a RNN.
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2.2.2 Convolutional Neural Networks

Convolutional Neural Network (CNN) is a common DL class with a high capacity to

process images. Krizhevsky et al. (2012) states that CNNs can ”make strong and mostly

correct assumptions about the nature of images (namely, stationarity of statistics and

locality of pixel dependencies).” They have fewer connections and parameters when

comparing to SRTBMs, so they are easier to train.

To capture spatial and temporal dependencies, the CNN usages pattern detection on

their convolution layers. The convolution layers, such as any other DL layers, receive

input, and produces an output. Each convolution layer contains filters that specialize in

pattern detections. The filters (also named kernels) are matrices with defined dimensions

depending on the expected input and output. The values inside of the filters are usually

initialized with random numbers between 0 and 1. The main objective when training

the CNN is to change the filters values to be able to capture the patterns in space and

time. The filters convolve across the input, generating an output of equal or different

sizes, depending on the layer objective. 2.5 exemplifies a filter transforming an input.

Figure 2.5: Exemplification of a convolutional filter. Each cell of the output is the
result of the dot product of the filter with a sub-matrix of the same size.

2.2.3 Convolutional LSTM

Alone, an LSTM can understand temporal correlation but does not understand spatial

data with it, Xingjian et al. (2015) proposes to have convolutional structures in input-to-

state and state-to-state. According to his work, the Convolutional LSTM (ConvLSTM)

predicts the next element in a matrix by the inputs and past states of its local neighbors.

Since they have fewer neighbors, elements in the border of the matrixes that have less

information to predict the future state, therefore, they have a lower prediction potential

as explained in subsection 3.2.3.
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2.3 Model interpretability

To interpret is to explain the meaning of information, words, or actions. To this day,

there is no unique official definition of model interpretability and how to evaluate it

(Doshi-Velez and Kim, 2017, Lipton, 2018). To avoid confusion, in this work, the concept

will be restrained to the definition given by Ribeiro et al. (2016): ”to provide qualitative

understanding between the input variables and the response.” The interpretability can

be part of the ML model or result of a model-agnostic explainer (Ribeiro et al., 2016).

Each model’s qualitative understanding will be in the form of correlation. Human-

based decision making will be crucial to understand if the correlation leads to causation

(Caruana et al., 2015).



Chapter 3

The satellite image deforestation

prediction task

This chapter presents an overview of the deforestation satellite image prediction task.

Here, based on how a given area changes through time, it is possible to forecast how the

same area will be in a future moment. This chapter contains a list of the most prominent

methods to answer the SQ1 and design choices to answer SQ2. It also explores possible

evaluation methods to answer SQ4. The choices will further be part of an experiment

on chapter 6.

3.1 Forest management

In forest management, time series analysis of satellite images to understand changes in

land cover was carried out using different techniques, (DeFries and Chan, 2000, Reddy

et al., 2013, Rogan et al., 2008, Stone and Lefebvre, 1998, Torahi, 2013), and more

recently also to predict changes (Ahmadi, 2018, Sales et al., 2017).

As specified at the problem statement, there is no framework to follow when predicting

deforestation from satellite images, resulting in a lingering process when comparing

and evaluating different techniques of data pre-processing and prediction. Throughout

this task’s pipeline, there are options to be selected that can impact the final model

performance. The first one regards the algorithm selection, and to do this, we need to

understand more about the task itself.

16
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3.2 Satellite images

Although the data gathering and pre-processing are out of the scope for this work, it is

essential to be clear which data this work will use and some possible limitations for the

general scope of the satellite image deforestation prediction task.

3.2.1 Coordinate system

A coordinate system expresses the position of geographic features within a defined datum

(a mathematical representation of the shape of the earth’s surface) and map projection

(transformations of the spheroidal shape of the earth) (Booth and Mitchell, 2001). To

locate the satellite images using a unique geographic dataset, a single coordinate system

needs to be defined.

There are two common types of coordinate systems. The Geographic system uses degrees

to capture the three-dimension surface of the earth. In order to display data into a two-

dimensional surface, a Projected system is more suitable. It maintains constant angles,

lengths, and areas across two dimensions. A trade-off is found on distortions common

in large areas of projected coordinate systems, especially if that area is not close to the

equator. The available data from WWF uses a projected coordinate system. Since the

equator passes through the island of Borneo and the areas of each satellite image are not

considered significant within the global scale, the use case images do not have significant

image distortions.

3.2.2 Data description

Currently, the available database consists of 6 adjacent areas in the Indonesian part

of Borneo. Each area is represented by large TIFF images with around 20 000 square

pixels, and about 100-time steps for an individual location. Each pixel represents 15

squared meters. Figure 3.1 is an example of a large TIFF image.

The Image is divided into three main classes, represented by colors. The green pixels

represent the forest, red pixels are deforestation, and a spectrum from yellow to orange

represents degradation. Lastly, the black pixels are rivers, lakes, roads, sea, and other

land uses dated before the first image collection.
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Figure 3.1: Visualization of one large TIFF image.

3.2.3 Area segmentation - Tiles definition

The image resolution (total number of pixels) of each satellite image profoundly affects

the computing power requirements to create and use the machine learning model. Nev-

ertheless, a small image size might not contain the necessary information for the model,

resulting in weak predictions. With that in mind, the definition of the tile size results

in understanding this trade-off.

The tile will represent part of the total area at a single moment in time. For the

deforestation use case, it is vital to have in mind that the prediction can be a result

of some aspects known to affect deforestation rates. Therefore, it is a good idea to

have them included in the same tile as forest areas. Some examples are farms, rivers,

coastlines, roads, and protected areas.

With fewer pixels close by and with no transmission of spatial information between tiles,

a tile’s border will have a lower prediction potential. This means that the model will

not have a clear idea of the surroundings of that area, which can result in uninformed

predictions. Figure 3.2 displays a graphic representation of this phenomenon.

To increase this low prediction potential, some mathematical models transmit the infor-

mation between tiles. For example, using pre-processing techniques by adding a pixel’s

distance to the point of interest. The points of interest, in this case, are the aspects

that affect deforestation rates such as rivers or roads. To capture relevant data, it is

beneficial that the team responsible for implementing the solution needs to perform a
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Figure 3.2: Graphic representation of the low border prediction potential phenomenon
using four adjacent tiles. Green areas represent pixels with enough neighbors. The

border area in grey has lower prediction potential.

geographical and sociopolitical study in every region. This can slow down the EWS

expansion in different areas.

Another possibility is the overlap of tile areas, to increase the number of total green

areas. This would result in more tiles to process, increasing the training time. Figure

3.3 expresses this idea.

Figure 3.3: Overlapping tiles to increase prediction potential.

3.3 Spatiotemporal sequence forecasting

As the name suggests, spatiotemporal sequence forecasting (STSF) tasks are high-

dimensional problems that intersect spatial and temporal dimensions to predict ter-

ritorial shifts in future steps. Therefore, this is a suitable concept for the deforestation

prediction task. Many variables can alter the deforestation probability of a given area.

For high-dimensional problems containing rich data sources, statistical and ML tech-

niques are commonly implemented, to account for the conditional weight of multiple

features. Taking into consideration unpredictable human actions, Shi and Yeung (2018)

mentions that both probabilistic forecasting and stochastic layers can result in better

predictions, avoiding blurred images.
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3.3.1 STSF Categorization

The recent work of Shi and Yeung (2018) lists and explains current machine learning and

deep learning-based methods for STSF based on the state of the coordinates (changing,

fixed regular or fixed irregular) and measurements (fixed/changing or changing). Still,

according to Shi and Yeung (2018), our satellite image prediction task falls into the

Spatiotemporal forecasting on the regular grid category (STSF-RG). Therefore, only

the classical machine learning and deep learning methods evaluated in this classification

will be taken into consideration when building this framework.

Figure 3.4: Process to categorize a spatiotemporal sequence forecasting

3.3.2 Possible algorithms

Based on our assumptions and conclusions so far, Table 3.1 displays DL methods re-

viewed by Shi and Yeung (2018) that are suitable for STSF-RG tasks and deals with

the deforestation case uncertainties. The categories are divided into classical ML with

subcategories State Space Model (SSM) and Gaussian Process (GP), and Deep Learning

(DL) with subcategories Deep Temporal Generative Models (DTGM) and FeedForward

Neural Networks (FNN) & Recurrent Neural Networks (RNN). With this shortlist of

methods in hand, we can check individually if the subcategories have limitations that

require extra pre-processing or restrain their usage in the deforestation prediction use

case.
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Abreviation Method name

TSBN Temporal Sigmoid Belief Network

SRTRBM Structured Recurrent Temporal Restricted Boltzmann Machine

FC-LSTM Fully-Connected Long Short-Term Memory

3D CNN 3D Convolutional Neural Networks

VAE Variational Auto-encoder

GANs Generative Adversary Networks

DC-CNN Dual Channel Convolutional Neural Networks

Table 3.1: DL methods that deal with uncertainties

The methods found in both DTGM and FNN & RNN subcategories are based mostly

in Structured Recurrent Temporal Restricted Boltzmann Machine (SRTRBM), Tem-

poral Sigmoid Belief Network (TSBN), 3D Convolutional Neural Networks (3D CNN),

Fully-Connected Long Short-Term Memory (FC-LSTM), Generative Adversary Net-

works (GANs), and Variational Auto-encoder (VAE).

Dual Channel Convolutional Neural Networks (DC-CNN) usability for change detec-

tion in satellite images (Liu et al., 2017) indicates that a similar approach can predict

deforestation. Nevertheless, it is essential to clarify that today there is no publication

generating a model with this goal.

3.4 Generating interpretable models

To interpret a DL model with image inputs, class activation maps (CAM) are a recurrent

method in the literature with positive results in different applications (Kwaśniewska

et al., 2017, Meng et al., 2019, Yang et al., 2018, Zhang et al., 2018). It highlights

the most critical factors that induce a prediction. Figure X displays a CAM example

interpreting the classification of X.

According to Pope et al. (2019), the implementation of CAM requires the layer before

the output layer to be a convolutional layer followed by a global average pooling. This

confirms experiments done by Yang et al. (2018). His work also displays methods to do

a 3D CAM on 3D convolutions, which can be useful to capture the explanation among

the height, width, and time dimensions.

3.5 Predictions evaluation

Rainforests, such as the one in Borneo, are well known for their large areas and by the

difficulty of navigation. That said, not all future predictions will be able to be confirmed
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Ground Truth
Positive ground truth Negative ground truth

Prediction
Positive prediction True positive (TP) False positive (FN)
Negative prediction False negative (FN) True Negative (TN)

Table 3.2: Confusion matrix building blocks

by ground agents. Therefore, it is beneficial that the model assessment consists of values

that elucidate the prediction usability. For this work, the ground truth will be the only

satellite collected data that will be used to evaluate the ML models.

3.5.1 Evaluation metrics

Pixel-wise, this STSF tries to predict the pixel classification. When comparing predicted

classes with the ground truth, a natural result is a confusion matrix. The confusion

matrix describes the model performance by analyzing true positives (TP), true negatives

(TN), false positives (FP), and false negatives (FN). Those values can be combined in

order to evaluate the model. Table 3.2 displays a generic confusion matrix. Table 3.3

exemplifies the most common evaluation metrics that can be extracted from it.

As most real-life scenarios (Hong et al., 2007), the distribution of the raw data is not

uniform among the classes. This imbalanced data set imposes a challenge when eval-

uating the generated models. Two possible solutions are applicable in model training

techniques (Hong et al., 2007) or data re-sampling. There is no universally right choice

of how to re-sample data sets (Burnaev et al., 2015). Since this thesis main objective

is to build a guide to predict deforestation using DL and satellite images, re-sampling

adds a critical layer of specificity that can lead to low evaluation quality.

A third possible solution is to prioritize more informative evaluation metrics for unbal-

anced datasets and ignore metrics negatively affected by skewed data distribution. One

example is accuracy, it measures how often the classifier is correct, but since it gives

the same importance to TP and TN, it can be misleading on imbalanced datasets. As

a replacement, Brodersen et al. (2010) proposes the usage of balanced accuracy, which

is the sum of the recall with specificity divided by two, as seen on equation 3.1. Saito

and Rehmsmeier (2015) carried out an extensive analysis of the most commonly used

evaluation metrics. Based on this work, a Precision-Recall (PRC) plot better represent

the model performance on an imbalanced dataset.
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Evaluation metric Formula

Accuracy (TP+TN)/(TP+TN+FP+FN)

Precision TP/(TP+FP)

Recall TP/(TP+FN)

Specificity TN/(TN+FP)

Fall-out FP/(FP+TN)

False omission rate FN/(FN+TN)

False discovery rate FP/(FP+TP)

F-score 2 * (Precision * Recall)/(Precision + Recall)

Table 3.3: Common evaluation metrics extracted from the confusion matrix

3.5.2 Evaluation process

To evaluate the different models, the same inputs will be provided to the models. Based

on the prediction, two binary confusion matrix will be built for each critical class pre-

diction (degradation and deforestation). This matrix will result in a comparative report

based on each model’s performance on precision, recall, and balanced accuracy according

to equation 3.1.

BalancedAccuracy =
Recall + Specificity

2
(3.1)





Chapter 4

Artificial Neural Network

Architectures

This chapter presents the construction of some of the machine learning architectures

that can be used for the satellite prediction use case based on the previous algorithms

and the literature.

4.1 Inputs and outputs

To increase the usability and replicability of the solution, the NN models will accept as

an input a sequence of five squares RGB image tile. They will provide as an output one

image with the same format. As a proof of concept, this work will focus on producing

predictions only of one time-step ahead of the last know image.

4.2 Conv3D

Building upon the knowledge explained in section 2.2.2, a 3D convolutional NN uses

that principle with a 3D filter. After stacking the sequences of inputs together, the

convolution can happen on the dimensions of height, width, and time, capturing the

evolution of deforestation with time. Figure 4.1 displays this process.
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Figure 4.1: High level Conv3D input to output process.

4.3 ConvLSTM + Conv2D

The ConvLSTM, as explained in section 2.2.3, combines the gating of LSTM with 2D

convolutions. To have a similar output and to gather more spatial awareness, a 2D

convolutional layer is added after the ConvLSTM. According to the experiments done

by Thangarajah (2019), a ConvLSTM has more trainable parameters, increasing the

required computational power. Two architectures based on this were created, one using

one ConvLSTM layer and another with two adjacent layers. This can be seen on figures

4.2 and 4.3

Figure 4.2: High level ConvLSTM + Conv2D input to output process.

Figure 4.3: High level double ConvLSTM + Conv2D input to output process.

4.4 GANs - LSTM

This architecture is a combination of GANs, CNN, and LSTM. Xu et al. (2019) proposes

to use an LSTM to obtain fixed dimensional vector representation. This vector will be the

input of a previously trained generator that will generate the final image. An overview

of this idea can be seen on 4.4.

The LSTM use is due to the power to understand the progressive change. The deforesta-

tion evolution of a sequence of images is transformed into the fixed dimensional vector
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Figure 4.4: Graphic representation of GANs-LSTM architecture. The details of the
LSTM can be found on chapter 4.

representation, which will serve as the input for the generator. As seen in appendix A,

GANs are trained using a Generator and a Discriminator. After training a generator

using input a vector of the same size used on the LSTM, the generator is attached to

the GANs-LSTM architecture.

Between the many variations of GANs, currently, the one with better results on sim-

ilar use cases was proposed by Radford et al. (2015). The Deep Convolutional GANs

(DCGANs) replaces pooling layers with stridden or fractional-stridden convolutions.

Another part of the DCGAN internal design is the batch normalization. This means

that the training performs a normalization for each training batch: batch normalization

to have faster training, better regularization, and accuracy (Ioffe and Szegedy, 2015).

As for activation function, the best use is the rectified linear activation (ReLU) (Nair

and Hinton, 2010) for the generator layers except for the output that uses Tanh. All the

discriminator layers use LeakyReLU as activation function, instead of the maxout used

by Goodfellow et al. (2014).



Chapter 5

Experiments

To experiment with the proposed architectures, this work performs a comparative study

using the same database. The database consists of 6 big areas captured on TIFF files

throughout 85 to 105 different time steps. The earliest image was generated displaying

the deforestation from September of 2015 to October of the same year. The most

prolonged time interval is from September of 2015 to December of 2019. Each of the

six large areas has different dimensions, but all are around 20.000 pixels. To process

all of it at once, the hardware requirements are out of this research’s reach. Therefore,

preprocessing steps are required.

5.1 Experiment specifications

The programming language used in this experiment is Python due to the large available

neural networks related frameworks and online community. The processing is partially

done by a GeForce GTX 1050Ti, where the CUDA Toolkit from NVIDIA is essential to

speed the training process. The computer that performed the training also has 16GB of

RAM, an Intel i7 2.80GHz CPU, and an SSD with 20GB.

5.2 Tile segmentation

Ideally, the TIFF files should be treated as raster data files. Doing so results in main-

taining details such as coordinates and class values. However, it also impacts on the

visual representation of the output. To maintain a similar aspect on the output, the

TIFF files will be treated only as regular images.
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As previously mentioned in section 3.2, when cropping a tile into smaller tiles, it is

essential to overlap information to diminish the effect of fewer neighbors pixels across

images. Also, since this training objective is to understand Spatio-temporal relations

on the images, a larger image contains more possibilities of understanding the right

correlations. Because of computer power limitations, three different sizes were used on

the experiments, 256, 512, and 720 squared pixels. With a smaller tile, fewer pixels are

predicted and less information to help the prediction; for those reasons, the 256 squared

pixels experiments were discontinued. Figure 5.1 displays an example of how it is more

likely to have changes on bigger tiles.

Figure 5.1: Sequence of tiles representing the evolution of deforestation. On top
images with 256 squared pixels. At the bottom images with 720 squared pixels.

An automatic script to crop the TIFF files into smaller tiles is responsible for the job.

There, a unique height and width define the smaller tiles. To generate a more significant

number of smaller tiles and mitigate the issues of tile segmentation, the crop process

produced overlap among neighboring tiles on half of the dimension that connects them.

Since the large TIFF files contain large areas with no data (only black pixels), before sav-

ing the smaller tiles, the script checks if the tiles have different pixel colors. This avoids

adding data that will not enrich the model training. To maintain the data organized, a

folder is created for each smaller tile, containing its evolution through time.

To avoid overfitting, an algorithm randomly sort the folders into train, validation and

test sets. The training set will be used to fit the model, the validation set to tune

the models’ hyperparameters, and the test set will be used for evaluation. The Pareto

principle (Dunford et al., 2014) indicates a general understanding that for many events

80% of consequences are produced by 20 % of causes. To try to maintain a similar ratio,

the proportion used is 75-20-5. Table 5.1 displays the total number of tiles for each set.
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Tile Size Train Tiles Validation Tiles Test Tiles

720 161 000 32 400 12 100

512 210 700 41 000 14 700

Table 5.1: Total number of tiles for each tile size segmentation.

5.3 Batch generator

To process this amount of data, a batch generator is responsible for fetching it from the

folders and feeding it to the model training process. The generator receives as input

the batch size and the main image directory and, after a directory shuffle (therefore tile

shuffle), enter the same number of folders respecting the batch size. Once inside the

folders, it will randomly start from one of the 80 first steps and gather a sequence of six

images, were the first five are to use as training input and the sixth to compare with

the prediction. By randomizing both folders and images, the training process accesses

different areas and periods for each batch. Layers containing LSTM cells would better

benefit longer sequences, but this also increases hardware requirements.

5.4 Models training

5.4.1 Loss function

The experiments use the RGB values, therefore the training uses a regression loss. One

of the most common regression loss is the mean squared error. Its main characteristic,

is penalizing errors that are far from the true values more in comparison to errors close

to the true values. This can help to penalize big mistakes such as having a red pixel

being green or vice versa.

5.4.2 Kernels

Since all the models were based on CNN, at least one of the layers has a kernel. Each

kernel results in a number of parameters based on its dimensions. The parameters

number calculations and layer positions can be found in Appendix C.

5.4.3 Hyperparameters

The hyperparameters choices need to take in consideration the hardware limitation, the

data distribution and the availability on the most used ML frameworks. Based on this,
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id Architecture Tile size

0 ConvLSTM with gaussian noise 512

1 ConvLSTM without gaussian noise 512

2 Double ConvLSTM without gaussian noise 512

3 Conv3D 512

4 Conv3D 720

Table 5.2: Models trained to predict next image

id Architecture Tile size

5 ConvLSTM with gaussian noise 512

6 Conv3D 512

Table 5.3: Models trained to predict last image

Adam (Kingma and Ba, 2014) is the chosen optimizer. It is a stochastic gradient descent

method with adaptive learning rates from estimates of first and second moments of the

gradients. The chosen values of learning rate, beta 1, beta 2 and epsilon are the current

defaults used in the Keras implementation (0.001, 0.9, 0.999 and 1e-7 respectively).

After testing with different epoch sizes and without a lot of improvement on the loss

function after the 30 epoch, the number of epochs is established in 30.

5.4.4 Models trained

The hardware available to perform the experiments limited the possibilities. The GANs-

LSTM architecture required more computing power for the selected tile sizes. For the

tile size 720 squared pixels, the only possible architecture was a single conv3D layer.

For 520 squared pixels, the possible options were a single conv3D layer, convLSTM

+ conv2D (with and without Gaussian noise), and double convLSTM + conv2D. The

Gaussian noise is used to reduce overfitting, therefore increases the model generalization.

For the experiments that use Gaussian noise, this is done by using a regularization

layer (therefore is only active during training) with the standard deviation of the noise

distribution fixed at 0.1. Table 5.2 displays the models trained and Appendix C the

scheme of each model.

In order to validate and compare these models, two more models were trained to predict

the last time step (so no change). The list and architectures are discussed in Table 5.3.

By architectural design, the model outputs are RGB images with the same dimensions

as one of the input images. Figure 5.2 compares a tile ground truth with the Conv3D

output image. The yellow circles highlight the pixel change color around a degradation

area that is increasing with time. The blue circle points to an area in which the prediction
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was not correct. Figure 5.3 displays the train loss while Figure 5.4 displays the validation

loss.

Figure 5.2: Ground truth (left) and prediction (right) of the Conv3D model for 512
squared pixels.

Figure 5.3: Train learning curve.

Since accuracy is not a good metric for unbalanced data sets, the experiment uses per-

ceptual distance is the other metric taken during training and validation. The figures 5.5

and 5.6 displays the perceptual distance metric evolution while training and validating.

This metric is based in a comparison of two images using each one of the RBG bands.

The code used for this metric can be found in Appendix B.
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Figure 5.4: Validation learning curve.

Figure 5.5: Train perceptual distance.

5.5 Model Evaluation

Once the models are generated, they are evaluated by creating predictions using the test

data and comparing the result with the next image. The algorithm found in Appendix

B builds boolean matrixes for each prediction-real pair about the two most important

classes: deforestation and degradation. A spectrum of the image’s red and green bands

are used to capture the pixel color.

The evaluation process had a limit of 100 images. This is due computational issues and
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Figure 5.6: Validation perceptual distance.

to have a similar number of examples when evaluating the models. To validate this

process, the evaluation was performed on two random splits of the test data, resulting

in similar results. Based on the information of the chapter 3, the next step is comparing

the precision and recall of all the models via two scatter-plots, as seen on figure 5.7 and

5.8. Another evaluation metric mentioned in the same chapter is of balanced accuracy.

All the models’ balanced accuracy and F1 scores are on table 5.4.

Figure 5.7: Precision and recall of each model for degradation prediction.
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Figure 5.8: Precision and recall of each model for deforestation prediction.

Degradation Deforestation

id Balanced Accuracy F1 Balanced Accuracy F1

0 0.880 0.610 0.890 0.821

1 0.908 0.631 0.8914 0.828

2 0.907 0.787 0.945 0.906

3 0.890 0.748 0.893 0.834

4 0.901 0.677 0.943 0.903

5 0.989 0.785 0.957 0.913

6 0.996 0.954 0.960 0.953

Table 5.4: Balanced Accuracy and F1 score rounded to the thousandths place

5.6 Discussion

When predicting degradation within the 520 squared pixel models, the lack of Gaussian

noise contributed to higher recall and precision. Using an extra layer of ConvLSTM also

resulted in the best precision for both degradation and deforestation.

When comparing different tile sizes, the degradation prediction of the 720 squared pixel

model had a higher recall but worse precision compared to its 520 squared pixel coun-

terpart. On deforestation prediction, both metrics increased.

An impressive result was the low performance on precision for the models with a Con-

vLSTM layer followed by a Conv2D. The Conv3D layer seems like a better fit to capture

the three-dimensional dependencies. This changes if we add one more ConvLSTM layer,

but the computational costs increase, so for each, a trade-off analysis is vital before

deciding which path to follow.



36

As expected, after analyzing the scatter plots, the double ConvLSTM architecture has

the best-balanced accuracy for deforestation and a close second best for degradation.

This, as well as its position on the prediction-recall scatter plot, indicates that this

architecture is the most successful architectures tested.

All the evaluation of the models 5 and 6 (the models that predict the last time step) are

compared with the evaluation of models 0 and 3. This is because they share a similar

structure. As expected the values of Balanced Accuracy, F1, precision and recall are

higher in the models 5 and 6. A plot comparing the precision and recall values can be

found in Figures 5.9 and 5.10. It is notable that the precision metric on the model 5

is better than 0, but still worse than the different architecture predicting the next time

step.

Figure 5.9: Precision and recall of each model for degradation prediction. Comparison
of models with similar architecture but different goals. In blue predicting the future

time-step. In red predicting the last time-step.

The models 0 to 4 need to be better than using the last step before validation as the

next step prediction. As a final validation, this solution will have the id 7.

As seen on Figures 5.11, 5.12, and table 5.5 the option of just using the last time step

gives better results. Two main things explains this. First, the tile sizes might be so

small that is not capturing a lot of differences for each time step. Furthermore, the

passage of time between selected tiles results in just a little change, so small that is hard

to predict in just one more time step. During the next chapter some possible solutions

are mentioned in the future work section.
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Figure 5.10: Precision and recall of each model for deforestation prediction. Com-
parison of models with similar architecture but different goals. In blue predicting the

future time-step. In red predicting the last time-step.

Figure 5.11: Precision and recall of each model for degradation prediction. Com-
parison of models with similar architecture but different goals. In blue predicting the

future time-step. In red predicting the last time-step.

Degradation Deforestation

id Balanced Accuracy F1 Balanced Accuracy F1

0 0.880 0.610 0.890 0.821

1 0.908 0.631 0.8914 0.828

2 0.907 0.787 0.945 0.906

3 0.890 0.748 0.893 0.834

4 0.901 0.677 0.943 0.903

7 0.930 0.864 0.980 0.967

Table 5.5: Balanced Accuracy and F1 score rounded to the thousandths place
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Figure 5.12: Precision and recall of each model for deforestation prediction. Com-
parison of models 0 to 4 (in blue) with using the last time step as prediction (in red).





Chapter 6

Discussion

Science, by its nature, always expands and creates new possibilities. It is imperative

that advances in machine learning techniques are applied to create a good impact on

the world. Forest loss impacts everything since it can result in climate change, loss

of biomes, and a decrease in the total number of species on this planet. This chapter

summarizes the findings of this work and relates them to the research question proposed

in chapter 1.

6.1 Experiments discussion

Originally, the large TIFF files have a limited number of colors for deforestation and

degradation. When using RGB bands to train and predict the future time steps, the

results had a larger color range. This is good for human visualization, since the borders

between different areas are more soft if compared to the large TIFF files. But, as a

trade-off, only regression loss functions can be used, excluding the possibility of using

classification loss functions.

While doing manual model inference, some patterns emerged. First, it was much easier

for the models to predict the transition from degradation to deforestation than from

forest to degradation (or deforestation). Second, classification changes next to black

pixels were also more likely to be predicted (as displayed on figure 5.2). Additionally,

predictions of the pixels next to the tile borders were not successful. Futhermore, the

areas with predicted changes often present a shadow-like aspect, as seen in Figure 6.1.

This is probably due to a confusion when predicting the RGB bands.

As expected, because of its structure, the ConvLSTM models contains a significant

higher amount of parameters than Conv3D models. Each layer of ConvLSTM adds
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around 2000 parameters, while one layer of the Conv3D only adds 136 parameters. This

means that the computational power required for training and inference of the Conv3D

models is lower.

Figure 6.1: Prediction areas with shadow-like aspect.

6.2 Sub-questions

6.2.1 What are the current deep learning architectures and methods

suitable to predict deforestation with satellite image data?

First, to answer this question, it is important to define which generic terminology better

describes this use case. As a high-dimensional sequence prediction problem, the termi-

nology ”spatiotemporal sequence forecasting” is used in the literature to similar group

tasks. With fixed geographic coordinates and regular grid, the suitable deep learning

architectures are mentioned in table 3.1. The chosen methods also deal with the tasks

uncertainties. Some of them are explained in appendix A and 4, from the building blocks

and background theory to internal architecture.
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6.2.2 What are the design choices to choose and combine techniques

to create the deep learning architectures for this use case?

When working with high volumes of data, it is imperative to first understand what the

data represents and its format. The representation of large areas is perceived differently

depending on the coordinate system. To avoid adaptation issues, the chosen coordinate

system need to be unique across the dataset and code. A geographic system is more

suitable for large areas because it uses degrees to capture the three-dimension surface

of the world. Because of the earth’s shape, the higher the distance between a chosen

area and the equator, more distortions are seen on projected systems. In summary,

geographic coordinate systems are suitable to point where and projected coordinate

systems to say how to draw on a surface.

The next point is the data itself. There are available data on the internet, but it is not

easy, or free, to gather sequences of large areas with a short period between each image.

Radar technology and classification algorithms can aid in creating a more precise vision

of forest areas.

As discussed in chapter 6, the selected architecture needs to respect the available com-

putational power. One possible workaround to run deeper and more complex models is

the definition of the tile area. Subsection 3.2.3 explains a possible way to crop larger

tiles and how the prediction potential is generally lower in the border of tiles.

6.2.3 Which techniques should be used to facilitate the interpretability

of the model’s results?

The usual black box of a DL model opens with a class activation map. A CAM clarifies

the critical classes for each classification. The goal of deforestation prediction is to

lower deforestation, easy to understand interpretable results facilitating the connection

between the provided correlation to case-specific causation.

6.2.4 What are the most suitable performance measures for this do-

main?

Deforestation or any other satellite-based prediction will count with a skewed distribu-

tion of data. Although the field of statistics created tools to deal with this, it can lead

to biased models. To avoid it and still have valid evaluation metrics, the metrics with

less or no impact of true negatives are more suitable to measure performance. Therefore
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balanced accuracy, precision, recall, and the F1 score better demonstrate how good the

model is.

6.3 Main research question

How can a framework be developed to aid data scientists in selecting deep

learning techniques and process satellite data towards providing accurate and

interpretable short-term predictions?

This work assembles different areas of knowledge required to create a good project on

interpretable deforestation prediction using satellite images. For this, possible pitfalls,

design choices, ML algorithms and evaluation metrics are presented throughout the

thesis. Although most of the DL architecures presented during Chapter 3 were not

possible to be validated because of hardware requirements, the experiments with simpler

models already had good results among the evaluation metrics.

6.4 Limitations

Most of the selected DL techniques require hardware that is not easily available. There-

fore the experiments chapter is not as developed as I first envisioned. The experiments

with simpler models already indicate that this technology is a good option.

Because of my lack of experience when working with satellite data, part of the research

time was employed on a dual channel DL implementation that was not completed. The

current EWS project by Deloitte has the radar data of Borneo, but it does not have

the raw satellite data. A DL model can learn new patterns with this raw satellite data,

creating a more generic final product.

The initial planing for this thesis was also experimenting with CAM and create a inter-

pretable solution. To apply CAM the model needs a more complex architecture and the

hardware limitations did not allow the models training during the execution of this work

to be adapted. If the implementation was successful, each pixel choice would create its

own CAM that explains its color.
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6.5 Future research

6.5.1 Architectures implementation

The natural next step is the implementation of class activation maps to generate inter-

pretable results. Later on, experiment and implement more methods discussed during

Chapter 3. This can result in a more detailed implementation process on different ar-

chitectures and a comparative evaluation process within the same dataset.

6.5.2 Time step research

As explained in the last part of the last chapter, the experiments done resulted in models

worse than just using the last image as a prediction. A good next step for this research

is to understand how big needs to be the time step so that the model can predict better

than just using past images.

6.5.3 Input variation

Changing the input data format from RGB images to raster data should lead to similar

results, but this needs to be validated. Once done, this opens possibilities of applying

dual channel CNN (Gao et al., 2017, Liu et al., 2017) by combining the TIFF files with

raw satellite data.

6.5.4 Cost calculation

The investment in a project to prevent deforestation usually comes from NGOs or the

public sector. Cloud services can host the training and usage of a satellite prediction

solution. It is beneficial to understand the costs of each step of the process to compare

with the potential avoided deforestation.

6.5.5 Model generalization

The experiments were done with data from Indonesia. This same model can be used

in a different landscape? How does it perform comparing to a model trained with data

from a different country? A comparative study about the model generalization can be

interesting for a future EWS implementation.



Appendix A

Artificial Neural Networks

This appendix will discuss artificial neural network concepts that are used and discussed

during this work.

A.1 Backpropagation

Backpropagation is a method that, while training a NN, compares its output (a predic-

tion or a classification) to ground truth data, then it calculates the gradient of a given a

given error function from the last to the first layer, changing the neural networks weights

(Buntine and Weigend, 1991).

A.2 Feedforward Neural Networks

Sandberg et al. (2001) states that Feedforward Neural Networks (FNN) by themselves

are nonlinear static networks. A NN that do not contain feedback loops between their

layers; there, the outputs of the model are not fed back between layers (Montana and

Davis, 1989). This means that the acyclic design of an FNN has a direct contrast with

the cyclic RNN (Schmidhuber, 2015). This type of network is usually easier to implement

and have broader use (LeCun et al., 2015). This is due its easy generalization and the

usage of Backpropagation to tune its weitghts.

A.3 Recurrent Neural Networks

Recurrent Neural Networks (RNN) is a type of NN that contain dynamical memory,

therefore it is capable to process temporal factors within the input data (Lukoševičius
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and Jaeger, 2009). RNNs use the concept of internal state vectors to keep information

about the history of past elements (Botvinick and Plaut, 2006). The state vectors affect

inputs and future timesteps. Because of the gradient effect of backpropagation, usual

RNNs suffer from something called Short-term memory, where distant events have less

impact on new predictions. In figure A.1 there is a typical example of RNN usage.

When learning with the past elements, the state vector storage the past words. In a

latter state, the first words have less effect when trying to predict the next element.

Figure A.1: Graphic representation of the state vector analyzing past information to
understand current events.

A.4 Restricted Boltzmann Machine

The Restrited Boltzmann Machines (RBM) are a special type of generative neural net-

work, first discussed by Smolensky (1986). This energy-based network consists of two

layers (visible and hidden) with undirected connections betweeen them, forming a bi-

partie graph. The neurons are binary and do not have any conexions within within the

same layer. They can be used for supervised or unsupervised machine learning use cases.

Figure A.2 is an example of a RBM topology.

Figure A.2: RBM topology example.

The matrix W, is the connection between the visible layer v and hidden layer h. The

units might contain bias weigths both in the visible a and hidden layer b. The energy
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can be defined using a matrix notation in equation. A.1:

E(v, h) = −aT v − bTh− vTWh (A.1)

The energy is used to understand the probability distribution. The equation A.2 demon-

strates the relation between E and Z, where Z is the partition function that acts as a

normalizing factor.

P (v, h) =
1

Z
e−E(v,h) (A.2)

A.5 Sigmoid Belief Nets

The Sigmoid Belief Nets (SBN) are directed acyclic locally normalized models composed

of binary stochaistic variables (Neal, 1992). They were created and developed to over-

come the limitations of back-propagation. To generate data from the model, first the

neurons on the top layer, based on their biases, will result in 0’s or 1’s. The states

calculated in the top layer feed the middle layer generating stochastic decisions about

what the neurons on the middle layer should be doing. Those results move to the visable

effect layer, deciding about what the visible effect should be. Figure A.3 is an example

of a SBN topology.

Figure A.3: SBN topology example.

A.6 Deep Belief Network

The Deep Belief Networks (DBN) mix undirected and directed connections between

the nodes (Hinton et al., 2006). They usually consist of four layers. The first two are
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hidden layers with undirected connections, similar to RBMs, and the last two layers

have directed connections resembling SBNs. They are a generative graphical model, so

they can reconstruct inputs based on examples in an unsupervised way. Figure A.4 is

an example of a DBN topology.

Figure A.4: DBN topology example, the name of the layers are similar as the ones
used on the RBM and SBN figures to emphasize their contribution.

A.7 Generative Adversarial Nets (GANs)

Since Goodfellow et al. (2014) proposed the generative adversarial nets framework, the

most notable use cases were generating images, video, text, and sounds. Some examples

are the high-resolution image synthesis (Wang et al., 2018), bounding box control (Reed

et al., 2016), or generating videos with scene dynamics (Vondrick et al., 2016). To

understand how they can be used to predict deforestation better, first, this work will

explain how they work.

GANs main idea revolves about having two neural networks competing and evolving.

The worst-case input for one network is produced by another network. Even though

it was not a brand new idea (Schmidhuber, 1992), the difference in the nature of the

competition and specification of the learning process popularized GANs, resulting in

unique solutions derived from it (Chongxuan et al., 2017, Mirza and Osindero, 2014).

As defined by Goodfellow et al. (2014), given a data set, there are two possible tasks

for a generative model. These are density estimation, where we can find the probability

density function that describes the data set, or the creation of a function capable of

generating more samples that could be seen as part of the initial examples.
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The two neural networks that will compete have different roles. One is a generative

network (GN), which generates data, while the other is a discriminative network (DN)

that exams that data and estimates if it is real or fake. Both neural networks evolve

over time, getting better to try to fool (GN to DN) and to detect failed data (DN to

GN)

The DN is created by a sample from data. So if a sample x is the source for DN, the goal

of DN(x) will be to try to be near 1, so x is a real example. The GN receives a random

noise sample z, and the calculations of GN(z) will result in a generated new sample a,

which will be evaluated by DN. So while GN will try to make DN(a) be close to 1, DN

will try to make DN(a) near 0. The perfect generator would shape the discriminator’s

DN function to always have as output 0.5 since that would mean it can no longer know

what is fake and what is real.

In mathematical terms, both DN and GN behaviour can be explained with this loss

function V(DN,GN):

minGNmaxDNV (DN,GN) = Ex pdata(x)[logDN(x)] + Ez pz(z)[logDN(GN(z))] (A.3)

The development and increase of the popularity of GANs are mainly because, unlike

other ML algorithms, it can tell the model that there can be multiple correct answers.

This happens because it doesn’t use a unique input-output pair to train and validate

the model so that it can mold paths from input to different (and correct) outputs.

A.8 Structured Recurrent Temporal Restricted Boltzmann

Machine

The Structured Recurrent Temporal Restricted Boltzmann Machine (SRTRBM) is an

extension on the commonly known Restricted Bolztmann Machine (RBM) discussed

in the Appendix A. The improvements are found for every word added to the original

name. This structure was built over the idea of Temporal Restricted Boltzmann Machine

(Sutskever and Hinton, 2007) and Recurrent Temporal Restricted Boltzmann Machine

(Sutskever et al., 2009).

Each time-step has its hidden ht and visible vt vector states. The visible state connects

to another hidden state, a recurrent neuron network rt that will be an input to h(t+1)

and r(t+1). Another improvement comparing to a usual RBM is the usage of matrices to

mask the connections between the network layers. The model can learn these matrices

during the training process in a way to better model the STSF problem. Figure A.5
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illustrates the SRTRBM concept, where the undirected W and directed D weights will

be part of a dot product with the masking-matrices Mw and Md. Mittelman et al.

(2014), who introduced this concept, also performed experiments that display a lower

average prediction error for motion capture datasets.

Figure A.5: Graphic representation of SRTRBM.



Appendix B

Model evaluation code

This appendix contain python functions used during the experiments evaluations.

B.1 Degradation evaluation

This function receives as inputs two RGB images and compare them by building a matrix

with boolean values. The true values are found when the mix of the red and green bands

results in a color between yellow and dark orange.

def degradation_evaluation(true_img , pred_img ):

#undo the numbers normalization

y_true = true_img * 255.

y_pred = pred_img *255.

#get red and green bands

r_true = y_true[:, :, 0]

g_true = y_true[:, :, 1]

r_pred = y_pred[:, :, 0]

g_pred = y_pred[:, :, 1]

#build boolean matrix

true_bool = (r_true > 95) & (r_true < 256) & (g_true > 160) & (g_true < 256)

pred_bool = (r_pred > 95) & (r_pred < 256) & (g_pred > 160) & (g_pred < 256)

#create confusion matrix

df_confusion = confusion_matrix(true_bool.flatten(), pred_bool.flatten ())

return calculate_metrics(df_confusion)
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B.2 Deforestation evaluation

Similar code to degradation evaluation, but changing the values of red and green bands

to entail only colors from dark orange to red.

def deforestation_evaluation(true_img , pred_img ):

#undo the numbers normalization

y_true = true_img * 255.

y_pred = pred_img *255.

#get red and green bands

r_true = y_true[:, :, 0]

g_true = y_true[:, :, 1]

r_pred = y_pred[:, :, 0]

g_pred = y_pred[:, :, 1]

#build boolean matrix

true_bool = (r_true > 145) & (r_true < 256) & (g_true > 0) & (g_true < 155)

pred_bool = (r_pred > 145) & (r_pred < 256) & (g_pred > 0) & (g_pred < 155)

#create confusion matrix

df_confusion = confusion_matrix(true_bool.flatten(), pred_bool.flatten ())

return calculate_metrics(df_confusion)

B.3 Calculate metrics

The confusion matrix calculated during the past functions are the input for this calculate

metrics function. The position of each element is the opposite of the explanation found

on Table 3.3.

def calculate_metrics(confusion_matrix ):

TP = confusion_matrix [1][1]

TN = confusion_matrix [0][0]

FP = confusion_matrix [1][0]

FN = confusion_matrix [0][1]

precision = TP / (TP+FP)

false_discovery_rate = FP / (FP+TN)

recall = TP / (TP+FN)

specificity = TN / (TN+FP)

balanced_accuracy = (recall + specificity )/2

return balanced_accuracy , precision , recall , specificity , false_discovery_rate
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B.4 Perceptual Distance

The following function runs with training and validation data. It measures the percep-

tual similarity between two images by comparing each one of the RGB bands on each

image.

def perceptual_distance(y_true , y_pred ):

y_true *= 255.

y_pred *= 255.

print(y_true)

print(y_pred)

rmean = (y_true[:, :, :, 0] + y_pred[:, :, :, 0]) / 2

r = y_true[:, :, :, 0] - y_pred[:, :, :, 0]

g = y_true[:, :, :, 1] - y_pred[:, :, :, 1]

b = y_true[:, :, :, 2] - y_pred[:, :, :, 2]

return K.mean(K.sqrt ((((512+ rmean)*r*r)/256) + 4*g*g + (((767 - rmean )*b*b)/256)))



Appendix C

Model schemes

This appendix contain schemes for the models presented during chapter 5. The number

of parameters of Conv3D layers are calculated using Equation C.1 and ConvLSTM using

Equation C.2 each layer is calculated as follows:

NParameters = (kW ∗ kH ∗ kD ∗ nF ) + nK (C.1)

NParameters = 4 ∗ oC ∗ (kS ∗ ∗2 ∗ (iC + oC) + 1) (C.2)

Symbol Meaning ConvLSTM Conv3D
kW Kernel Width - 3
kH Kernel Height - 3
kD Kernel Depth - 3
nF Number of Frames - 6
nK Number of Kernels - 3
kS Kernel Size 3 -
iC Input Channels 3 -
oC Output Channels 6 -

Table C.1: Symbols, meanings, and values of the parameters equations
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C.1 ConvLSTM with gaussian noise

Figure C.1: ConvLSTM with gaussian noise.
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C.2 ConvLSTM withou gaussian noise

Figure C.2: ConvLSTM withou gaussian noise.
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C.3 Double ConvLSTM without gaussian noise

Figure C.3: Double ConvLSTM without gaussian noise.
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C.4 Conv3D 512 tile size

Figure C.4: Conv3D 512 tile size.
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C.5 Conv3D 720 tile size

Figure C.5: Conv3D 720 tile size.
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C., D’angelo, S., and Fernandes, T. (2001). The future of the brazilian amazon.

Science, 291(5503):438–439.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436–

444.

Lipton, Z. C. (2018). The mythos of model interpretability. Queue, 16(3):31–57.

Liu, T., Li, Y., Cao, Y., and Shen, Q. (2017). Change detection in multitemporal syn-

thetic aperture radar images using dual-channel convolutional neural network. Journal

of Applied Remote Sensing, 11(4):042615.
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