NI
§ N % Utrecht University

NS

Graduate School of Natural Sciences

Estimating Local Sensitivity for Differential
Privacy using Machine Learning

Craig Leek (5689279)
MSc Artificial Intelligence

Supervisors:

dr. D.P. NGUYEN
Utrecht University

dr. M.R. SPRUIT
Utrecht University

ir. S.W.R. NIESINK
Info Support

J. SNIJDER
Info Support

Friday 10" July, 2020

Abstract

People value their privacy, and preserving it is important. However, due to privacy concerns a lot
of data is currently not usable. Differential privacy promises to protect the privacy of individuals in
a dataset, while still allowing statistics to be taken from it. Through adding noise to the output the
accuracy of the answer gets reduced in such a way there is nothing to be said about the individuals
in the dataset.

The noise that is currently added to a dataset has to protect all possible datasets. This is due to
the fact that by protecting only this specific dataset, the noise tells us something about the dataset.
Using this local approach thus does not allow us to guarantee privacy, but using a global approach
the utility we get from the data is lower than possible.

We propose a method to allow less noise to be added, while still preserving differential privacy.
To do this we calculate the required noise on a synthetic dataset generated by a GAN, rather than
the real dataset. This approach allows us to produce an amount of noise based on the real dataset,
without the noise disclosing information about the real dataset. Our method uses the Laplace
mechanism to provide privacy to numerical aggregate queries.

We show that by using our method the accuracy of the result of queries increases, while pre-
serving differential privacy in practice. We test our method on 3 different datasets on a total of 26
queries. We show that our system can be used in real world applications, keeping in mind the risks
of differential privacy in general.

Contents

[1__Introduction| 1
M Contextl . . v v v oo e e e e e e 1
C27Probleml . « . v v v v e e e e e 2
L3 Researchl. . .« v v v v o e e 2
[[4 Structure of thisthesisl o o 4

2__Related workl 5
[2.1 Privacy mechanisms| L)
2.2 ifferential Privacy|. 7
2.3 _Generative Adversarial Networksl oL, 12

3 Datasets and models| 14
BI Wisconsin breast cancer] oo 14
8.2 Kidney diseasel 15

... 16

4 Method 18
4.1 Training a GAN model|. o 18
4.2 Processing user query| Lo 18
4.3 Estimating local sensitivity value with GAN|. 19
4.4 Using local sensitivity to return a differentially private result| 21

6_Proofl 22
BI Definitiond. 22
B2 Proofl. . . . o o 22
5.3 Value of estimated sensitivity| 24
.4 Including randomised response| L Lo L oo 24
p.5 Implications for differential privacy| Lo oo 25

6 Experiment setup| 27
6.1 Metricsl e e 27
6.2 Benchmarks L 27

[7_Results 30

30
31
33
33
34
36

ii

IA° Query Datal

IB Results Graphs|

IC_Results Tables|

iii

38
38
39

40

41

53

1 Introduction

1.1 Context

There is a massive trove of data that is currently not usable for research. There are many possible
reasons why this data cannot be used, with one of the main ones being privacy. Laws have been
created to protect the privacy of personal data, for instance the GDPR in the European Union and
the CCPA in California|l|[2]. Certain personal data, such as medical data, gets a specific position
in the GDPR as sensitive data, which comes with even stricter processing standards. Preserving
privacy on datasets is very important both for the people whose information is contained in the
dataset, and for the owners of the dataset, as they can face hefty fines when there is a privacy leak.

Transforming raw data into privacy preserving data is currently a manual process, as someone
has to go over each file by hand and redact all personal data. Due to the inefficiency of this process
it is barely done, leading to a data shortage in research. This shortage is becoming more prevalent
with the emergence of machine learning, as a lot of data is needed to properly train and test a
model. Models based on sensitive data could for instance be used to predict whether a person will
get a disease, and using more data to train such a model would lead to more accuracy in prediction.
Therefore, it is important to find a way to use this data without having to manually edit out all
personal information, while still preserving the privacy of everyone involved.

The basis of this issue lies with a dataset containing private information. This dataset can be
anything from a collection of documents to a relational database. We want to be able to query our
dataset to extract information from it. If we were to naively do queries, this can disclose private
information. Take for instance a query SELECT balance FROM customers WHERE firstName =
’Craig’ AND lastName = ’Leek’ which we execute on a dataset provided by a bank. This query
will disclose exactly how much money I have, which is not something I want other people to know.
This means that we need to design a mechanism that allows us to still extract meaningful data
from a dataset, without infringing on the privacy of anyone by being too precise. While directly
querying a dataset like we do in this example can be easily avoided, there are more complex ways
to get the same result. For instance we could do two SUM() queries where one is on the full dataset
and the other is on the full dataset spare me. The difference between those two results will still
disclose my exact wealth.

Due to the massive amounts of data a person produces nowadays, and how readily accessible it
is, maintaining privacy has become increasingly hard. Research into privacy in datasets has been
happening since at least the 1970s[3]. At the end of the 80s a first overview paper was written,
which categorised the techniques to maintain privacy in datasets in three groups: query restriction,
data perturbation and output perturbation|4]. Query restrictions limits the possible queries, data
perturbation changes the data we execute our query on, and output perturbation changes the output
of the query.

After its introduction in 2007, differential privacy has become the “gold standard” of privacy,
as it allows us to specify the exact privacy risk posed by answering a query|5]. The main idea
behind differential privacy is to add noise, scaled to the sensitivity of the query, to the result. The
sensitivity of a query dictates how much the result can change by changing the data of one person.
By adding noise scaled to the sensitivity, no information will be disclosed when changing the data
of one person, and thus the privacy of this person is ensured.

1.2 Problem

Differential privacy relies on the sensitivity of a function [6]. The sensitivity of a function
will be different depending on both the dataset and the function. While calculating the sensitivity
of a function is trivial, doing so discloses information about the dataset. Take for instance a SUM()
query. The sensitivity of a SUM() query is the maximum value in the dataset, as removing the
maximum value will have a greater impact on the result than removing any other value. This
means that when someone knows the sensitivity, they know the maximum value of the dataset.
Therefore, using the sensitivity in this way leads to issues with privacy.

Currently a lot of differential privacy application rely on global sensitivity. The global sen-
sitivity is the same across all datasets, and thus does not reveal anything about the dataset itself.
However, due to the global sensitivity having to cover all datasets, it can be a lot higher than is
needed for the dataset we are interested in. As global sensitivity has to protect all datasets, the
value has to be the maximum possible for that datatype, for instance 232 for a 32-bit integer. Using
the global sensitivity can lead to a lot more noise being applied to the data than needed, reducing
the accuracy of the final answer. If our final answer is less accurate the utility of our dataset is also
decreased.

To combat this we want to find a way to use the local sensitivity, the sensitivity of the dataset
itself. We need to construct a mechanism that allows us to use the local sensitivity, or a value close
to it, without this sensitivity value disclosing anything about the dataset. This will allow us to
add just enough noise to protect the privacy of everyone in our dataset, while keeping the utility
as high as possible.

1.3 Research

We want to find a method that allows us to use a value near the local sensitivity value, while
preserving the privacy of everyone in our dataset. To do so we propose using machine learning,
specifically generative adversarial networks (GANs). We will use GANs to generate synthetic
data based on the real dataset. Using this synthetic data we will estimate a sensitivity value which
will allow us to preserve privacy.

Focus of research

For our research we will focus on the Laplace mechanism as proposed by Dwork et al[6]. The
Laplace mechanism was designed to preserve differential privacy in numerical queries. To do so it
adds noise to the result of the query, scaled to the sensitivity of the function. We will not change
anything in the definition of the Laplace mechanism, but rather only look at the sensitivity which
to scale of the noise. Dwork et al have proven the Laplace mechanism to be (e. §)-differentially
private [5]. This means that the requirements for preserving differential privacy are the same for
our method as they are for the Laplace mechanism. Firstly, we need a correct implementation of
the Laplace mechanism and secondly, we need to use a sufficiently high sensitivity value.

There are many different possible queries, and providing privacy for them all would be ideal, but
also quite challenging. Therefore, we will focus on a specific subset of queries, namely numerical
aggregate queries. As is shown in the paper by Johnson et al, the most common aggregate
queries are COUNT (), SUM() and AVG(), accounting for 88% of aggregate functions [7]. Therefore,
we will focus on these 3 types of queries. However, we will have no specific queries for COUNT (), as
SUM() and COUNT() are quite similar. COUNT() returns the count of rows of a dataset, where SUM()

returns the total sum of all values in the column. This means that if we do SUM() on a column
containing only ones it will return the same result as COUNT (). We can also say that the sensitivity
of a COUNT () query is always 1, as adding or removing one person from the dataset only changes
the result bu a maximum of 1.

An example of the type of query we will look into is “SELECT AVG(dose) FROM drugs WHERE
drug=‘paracetamol’ AND patientGender=‘F’” which will return the average dosage of paraceta-
mol taken by females in the dataset. These type of queries will all have non-trivial local sensitivity
values, allowing us to properly test our method.

For the GANs we will use the CTGAN Python libraryﬂl8l. This library allows us to generate
tabular data without having to create the GAN ourselves. It was created specifically for generating
tabular data, thus fits our needs nicely. Most other GANs are used on image data, for example to
increase the quality of images|9].

We demonstrate our mechanism on three different datasets: the Wisconsin breast cancer
dataset, the kidney disease dataset and the diabetes dataset, all from the UCI Machine
learning repository[10]. We chose those datasets for two reasons. Firstly, the Wisconsin breast
cancer and the kidney disease datasets are being used in the anomiGAN paper, which is one of the
methods we will compare ours with|11]. Secondly, these datasets all have different properties which
allow us to test our system more accurately.

Research question

Our main research question is:

Can GANs be used to estimate the local sensitivity of a function for use in differential
privacy?

This leads us to three important subquestions.

Can GANs estimate a sensitivity value which satisfies the requirements of differential
privacy? For an application to return a differentially private result there are two important
considerations, when looking at this proof in isolation. Firstly the implementation of the Laplace
distribution has to be correct. If this implementation is not correct privacy leaks can happen.
An issue that could exist is the random number generator used not being secure for differential
privacy. We will be using the diffprivlib Python libraryﬂ created by IBM for differential privacy
mechanisms[12]. As we use a preexisting solution for our Laplace mechanism, we will assume the
implementation to be correct.

Secondly, the estimated sensitivity used has to be at least as high as the real sensitivity. If the
estimated sensitivity is lower than the real sensitivity the Laplace mechanism will no longer return
a differentially private result. Therefore, we need to verify whether the estimated sensitivity is at
least as high as the real sensitivity.

Does our estimated sensitivity value disclose anything about the dataset? As we already
briefly mentioned, by using the local sensitivity value we disclose information about the dataset.

Thttps://pypi.org/project/ctgan/
%https://diffprivlib.readthedocs.io/en/latest/

https://pypi.org/project/ctgan/
https://diffprivlib.readthedocs.io/en/latest/

In the case of a SUM() query we disclosed the maximum value in the dataset. As this goes against
the principles of differential privacy we will have to ensure that our estimated sensitivity does not
disclose anything about the dataset.

Does our estimated sensitivity value give us a higher accuracy on the result of the
query than when using global sensitivity? Our estimated sensitivity value is only useful if it
can increase the accuracy over using global sensitivity. As noise is added to the result based on the
sensitivity a higher sensitivity will lead to more noise being added. To demonstrate our estimated
sensitivity gives an increase in accuracy we will compare results when using global sensitivity versus
our estimated sensitivity.

1.4 Structure of this thesis

We start by exploring different methods that have been proposed to preserve privacy, and introduce
differential privacy in Section [2] After this we give a short introduction into GANSs in Section [2.3]
before delving into our datasets and the GAN models we train on our datasets in Section [3] Once
we have explored these, we introduce our method in Section[dl In Section [5] we provide a proof that
our method can provide differential privacy in practice. We then show our experiment and results
in Sections [6] and [We end with a conclusion in Section [§l and a discussion in Section

2 Related work

2.1 Privacy mechanisms

In this section we will discuss some ways to preserve privacy. We will be looking at three dif-
ferent groups of mechanisms, query restriction, data perturbation and output perturbation. All
information in this section is from Adam and Wortmann (1989) [4].

2.1.1 Query Restriction

Query restriction aims to prevent users from firing certain types of queries. This can be based on
either the results of the query itself or it can be mechanisms that look at previous queries as well to
prevent combinations of them from disclosing private data. We will look at a couple of mechanisms
that try to achieve this.

Set size restriction This method looks to prevent queries that return too few results. While
this method prevents the disclosure of one record naively, it is still relatively easy to retrieve the
exact values of it with a bit of maths. If we set the minimum size of a return set to 10, a person
looking to retrieve the value of one specific person can retrieve the aggregated values of 11 people
first, and after that adjust the query to not include the one person he wants to know the value of.
This will return a new result of the 10 remaining people and with some simple algebra the value of
the one person can be constructed. Therefore this method is not sufficient to guarantee privacy on
a dataset.

Set overlap control Result sets that have a lot in common are also quite likely to release
information about each other. The example in the previous section is also applicable here, as the
only reason this privacy infringement is possible is because of the overlap in the sets. Set overlap
control looks to mitigate this risk, by preventing the result set from queries from overlapping too
much. This entails setting a maximum amount of results that can be the same between two queries.
However, there are some important flaws here as well. The most obvious being that if multiple users
coordinate the overlap control will not work. Another big disadvantage is that once a person gets
one statistic on a set, they cannot get another. This could for instance mean that after retrieving
the count of people with disease A, they can no longer find the count of people with disease A
undergoing treatment B. This could be a big hindrance to doing useful research on the set.

Auditing This method relies on keeping logs of all queries, and once a possible privacy infringe-
ment is detected preventing that from happening. This mechanism can look for both global and
local privacy infringements. Global privacy infringements occur when multiple user do queries
that can reveal private data, while local infringements happen when one user does all the queries
required for revealing private data. While this looks promising, a log has to be kept going back
forever, because if logs get deleted after a certain amount of time a person will still be able to
do compromising queries if they just wait for the logs to be deleted. There also has to be a quite
intricate algorithm to prevent all forms of privacy infringement, which might cause a large overhead
in query processing time, especially if global infringements are checked against all past queries.

Partitioning Partitioning looks to group entities into mutually exclusive subsets. This creates
statistics on those sets and as long as there are no subsets with exactly one entity, this should ensure
privacy quite well. However, to prevent subsets with one entity they might need to be merged with
a neighbouring set, which leads to information loss.

Cell suppression Where partitioning combines a cell that might leak private information with
another, cell suppression plainly does not release that cell. The advantage of this is that with cells
that are composed of more than one individual do not have their data tainted by being combined
with another cell. However, the data of cells that would be combined in the partitioning approach
are completely lost. Both partitioning and cell suppression only work with static databases, as with
dynamic databases data can be found by changing the composition of the database and looking at
the counts.

2.1.2 Data perturbation

Data perturbation changes the data itself rather than the output. There are two general categories
these methods can be put into, statistical methods that looks at the distribution in the data and
uses that to create a new sample, and permanent methods that change the original data once and
for all. Quite a lot of the methods in this section will have a big risk of introducing a bias which
would be detrimental for the usability of the dataset.

Data Swapping For this method the database is replaced with a new database with approx-
imately the same t-order statistics. “A t-order statistic is some statistical quantity that can be
computed from the values of exactly t attributes, for example, the number of patients whose Sex
= Male and Disease = AIDS is two-order frequency count.” [4] From this a random database is
created which can be queried and get approximately the same return values. This method is best
for a static database as with a dynamic database the statistical properties of it will change on
each mutation, thus requiring the dummy database to be updated as well. A similar principle is
still being applied, but the way the sample is calculated is different. A recent example of this is
AnomiGAN [11], which we will talk about more in section [2.3.4]

Method by Liew et al. (1985) This method works to protect one private variable. The idea is
that the probability density function from the private variable is calculated, and from that a new
sample of data is taken. The original data is consecutively replaced with the generated data in the
same rank order. This way comparison relations are mostly preserved, but exact values are gone.

Fixed data perturbation Where in the two previous methods the data was replaced by a
representative sample looking at statistical properties fixed data perturbation works directly with
the real data. For numerical attributes one could just add the noise straight to each value, rather
than only adding it in while processing the query result. This could mean directly adding the noise
to the data, but could also be a multiplication so the impact of the perturbation is relatively the
same size for different values.

2.1.3 Output perturbation

This method relies on perturbing the output of the query to preserve privacy. This perturbation
will add, or subtract, from the actual output which will make it less accurate. There are a few
techniques available, with the main one being differential privacy. We will also take a brief look at
rounding.

Rounding For rounding the answer is rounded up or down to the nearest multiple of a certain
base value. There are three types of rounding, random, systematic and controlled. Systematic
rounds to the nearest multiple, so up if it is closer to that value and down otherwise. Random
takes a certain probability and rounds up with that probability, and otherwise down. Controlled
rounding is a little more intricate. While the rounding of the cell itself is roughly the same, other
cell values are rounded as well to preserve the row and column counts to their true values. For
this purpose you can imagine cells as being one value in a larger table of values. For instance if we
take a table that shows the number of dogs owned by people in certain age ranges, we can have
columns 1-10, 11-20, 21-30 for the age ranges etc and rows 1, 2, 3 etc for the number of dogs. At
the intersection of each of these columns and rows is a single cell. Controlled rounding looks to
maintain total values, so there will not be more 21-30 year old people after rounding than before,
neither will there be more people owning 2 dogs. Of course these will not be the exact counts in
the data, but it will remain as close as possible to it.

Each of the three have a slightly different way of going about things. For instance systematic
rounding could round 13 to 15 (nearest multiple of 5), random could do it to 10 or 15 (randomly
going up or down to the nearest multiple of 5 on both sides) and controlled also to either 10 or 15,
however, as controlled rounding can also affect other cells in the row and column to preserve counts,
these values are all but guaranteed. This could also be done for e.g. base 10, with 13 rounding to
10 for systematic, 10 or 20 for random and the same for controlled.

The main issue with rounding is that, whilst counts cannot be used to guess counts naively, if
data changes it can happen that the rounding changes, giving away the data it is trying to protect.
This makes it not usable for a dynamic database. In addition to this, combining several rounded
tables, or even several records in the same table, together, can still lead to discovery of private
information.

2.2 Differential Privacy

This section is largely based on the work of Dwork and Roth[5].

Differential privacy promises that all adjacent datasets will return almost the same result for
the same function[b]. Adjacent datasets are two datasets that differ in at most one element. This
element could be either a full row added or removed, or a value in a row being changed. If almost
the same result is returned in all cases the conclusions based on these adjacent datasets will also be
the same. Take, for example, research into the adverse health effects of smoking. When a person
decides to participate in this research they will consider if there is any harm for them in doing so.
In this research a smoker could decide against it as they are afraid their health insurance premium
will go up when the research shows smoking is bad for your health. If you want to ensure that as
many people as possible participate in the research you will have to find a way so that the harm
for a person participating is minimised. Here differential privacy comes in, as adjacent datasets
will return almost the same result, it does not matter if an individual participates or not. There
might still be harm to the person from the conclusion of the research, but this harm will not stem

from their personal participation but only from the conclusions that can be made when considering
everyone who participated. The mathematical definition of differential privacy is: a function f is a
(e, §)-differentially private function on NIXI if for all S C Range(f) and for all x,y € NIX| such that
[lz —y|l1 <1 (adjacent datasets):

Prif(z) € S] <e“*x Pr[f(y) € S]+¢

Looking at each component in layman’s terms, an algorithm is (e,)-differentially private when
adjacent datasets have a probability density that is nearly indistinguishable from one another. The
amount it can differ is tunable by changing € and . If § = 0 a function is e-differentially private.

2.2.1 Perturbing output

Numerical queries Differential privacy has been defined for different types of data. For numer-
ical data we can add noise from a Laplace distribution to perturb the output[5]. This noise has to
be tuned so when we add or remove one record from the dataset the result stays the same. This
means that the noise depends on how much the result of our function can change when moving
to an adjacent dataset. We call this change the sensitivity of a function. An example of the
sensitivity of a function is when we try to sum the binary records. As a binary record can have
value 0 or 1, the maximum the function can change when moving to an adjacent dataset is 1. We
write the sensitivity of function f as Af. Once we know the sensitivity of the function we use this
to calibrate the noise we will add to the output. In our numerical example this would be done
through the following operations: f(x)+y where y is drawn from Lap(Af/e). The € in the Laplace
distribution is the € that is set to ensure e-differential privacy. By adding noise calibrated this way
we get a result that is (e, 0)-differentially private.

We will now look at an example to gain a better understanding of how this works. If we once
again take a sum on some binary data, we can immediately say the sensitivity of the function is
1. Now we will need to pick € . There are no set in stone ways for how € needs to be chosen, a
lower € will give higher privacy guarantees while a higher € leads to less noise being added. For our
example we will pick ¢ = 0.01. Now firstly we will execute our query and get the true answer. In
our case the true answer is 25. To make it differentially private we will need to add our noise from
Lap(Af/e). We know Af =1 and e = 0.01 so our noise will come from Lap(1/0.01) = Lap(100).
We will add this noise to our true answer to get a (0.01, 0)-differentially private answer. This means
the answer we return to the user will be 25 + Lap(100).

Categorical queries When working with categorical data there are different considerations. For
instance if you want to find the most common eye color in a population adding flat noise, as was
done in the previous paragraph, would not provide the best result. Rather than adding noise we
change how the correct value is returned. In the previous mechanism we added noise to the correct
answer, but for categorical data we add noise in returning the correct answer. This mechanism is
called the exponential mechanism[5]. The exponential mechanism uses a utility function u, dataset
X, the set of outcomes R and outcome r where r € R. Using these parameters it aims to achieve
that with a probability proportional to exp(eu(x,r)/Aw) the mechanism returns the result r. The
utility function should return a higher result for an answer closer to the truth in r € R. When this
is implemented correctly, the mechanism has a higher chance of returning the correct answer than
any other answer, but there still is a chance to return the wrong answer.

We can look at our example with the most common eye colour to explain how this works. Take
a community with three eye colours, brown, green and blue. 100 people have brown eyes, 99 have
green eyes and 10 have blue eyes. If we were to query this dataset for the most common eye colour
we would always get brown back as the most common eye colour. However, when one person with
brown eyes moves out of our community we will have an equal number of people with brown and
green eyes, so our query will return both. This change will tell you that the person who moved out
has brown eyes, and thus reveal personal information. Now if we use the exponential mechanism
there is a large chance a max query will return brown, a smaller chance it will return green and
an even smaller chance it will return blue. This way, each answer is always possible, no matter the
composition of our community. This means that when the same person moves out again and our
query returns green rather than brown, it could just as well be because of the randomness in the
mechanism. Therefore, no private information is disclosed.

A more basic implementation of the exponential mechanism is randomised response[5]. This
mechanism uses two coin flips to decide between two possible answers. If we once again take
the example of a smoker, they could decide to answer the question “Are you a smoker?” through
randomised response. The way to go about this is first flipping one coin, if it returns heads the
smoker should tell the truth. If it comes up tails, the smoker should tell the truth if it comes up
heads again, and lie if it comes up tails. This method is most likely to return the truth, but as
there is the possibility of a lie, the person asking the question can never be sure whether the answer
is the truth. This mechanism is (In(3), 0)-differentially private[5].

2.2.2 Sensitivity of a function

The sensitivity of a function is the amount the output can change when one person is added or
removed from the data. This creates an issue when we have a function with a potentially big domain,
but which primarily operates on a much smaller domain. Take for instance a database compromised
of the net worth of every person on earth. When taking the sum on this table the sensitivity of the
function is dictated by the person with the highest net worth, which is in the 100 billion region,
while the biggest share of people is under 1 million, and a lot even lower. Even though the value
for this one person is way higher than the rest, making sure everyone’s data remains private entails
adding in noise that protects the privacy of this person as well. This will lead to us having to add
a large amount of noise to the answer, making the end result almost useless.

To prevent this we can instead look at local sensitivity. Where global sensitivity takes the
worst global case into account, local sensitivity looks only at the current dataset. Thus the local
sensitivity will need to be computed for each query. However, there are no current mechanisms that
satisfy both the concept of differential privacy and calculate the local sensitivity. The main reason
for this is that the use of local sensitivity can give away information by the magnitude of the noise.
As the noise depends on the sensitivity, when the noise gets smaller or bigger one can say whether
they added or removed a value that changed the sensitivity. We will now look at an example for
how the accuracy of the answer changes with different sensitivities.

Figure [I] shows the different errors at different sensitivities. The query used is “SELECT
SUM (num_medications) FROM diabetes”. This query returns the total sum of medications used
by all people in the diabetes dataset, with the true answer to this query being 1630479, which is
roughly 1052, We take the true answer and use the Laplace mechanism to randomise it and create
a differentially private result. The sensitivity values used for the graph are 10, 20, 35, 50, 75, 100,
281000, 10000, 216, 220, 224 228 and 232, These sensitivities have been arbitrarily chosen, except

True error with different sensitivities given epsilon = 0.01
1011 4 '
109 4 | | e
' .
°

107 A

10° '
. ®
103 L
[]
eo® . L]
t L)
.

14
1014 4

True error

10? 104 108 108 101"
Sensitivity

Figure 1: True error for different sensitivities

for 232 which is the global sensitivity value. We have chosen to demonstrate the results with this
range of values to demonstrate how a higher sensitivity value affects the result. Each sensitivity
has been used in 100 different samples and the results are displayed. Each error value is calculated
by the following formula

|dp_result — true_answer|

There is a visible linear relation in this log-log plot, meaning that the actual relation is exponential.
This shows how a bigger sensitivity leads to a worse and worse accuracy exponentially, and the cur-
rent situation where global sensitivity is used (23?) is very inaccurate. From around the sensitivity
value of 10* we can see that the noise is getting even bigger than the result itself. From this we
can see that by reducing the sensitivity value used in differential privacy can lead to a big gain in
accuracy.

In this thesis we will consider static datasets exclusively. Static datasets are datasets that will
not be changed anymore, no records will be added removed or altered. This allows us to calculate
the local sensitivity of a dataset quite easily. If we were to consider dynamic datasets, which can
be changed, we would have to factor possible future records into our sensitivity calculation as well.
If we once again take a SUM() query we can see the difference. On a static dataset we take the
maximum of the current dataset, which will be the local sensitivity. If our dataset were dynamic
quite often this is not a hard guarantee. A new record can come in with a value higher than the
current maximum. This value will not be protected by the local sensitivity that was used so far.
While we can protect it once it is in the dataset, when new results are combined with old results
this can disclose information about the added record.

Current methods for local sensitivity estimate We will now look at two methods that are
currently used to estimate local sensitivity, while preserving differential privacy. We will look at
smooth sensitivity, which has been around since 2007 , and elastic sensitivity, which was pub-

10

lished in 2018[7].

Smooth sensitivity is calculated using a function S(x) with the constraints that Vx : S(z) >
LS(z) and Vz,y & ||z —y|l1 <1:8(z) < S(y)*e’. This can be combined into one formula S*(z)
for the S-smooth sensitivity of X, being:

S* () = max(LS(y) e P*lle=vllh)

FElastic sensitivity computes the sensitivity by using properties of the dataset. It is specifi-
cally designed to work with joins and exploits properties of joining in computing the sensitivity
value. Rather than looking at sensitivity directly, elastic sensitivity considers the elastic stability

(S'glm_y”l)) of the function. The exact computation of the elastic stability can be found in sections

3.3 and 3.4 of the paper by Johnson et al|7]. Once this has been computed to get to a sensitivity
value once again smooth sensitivity is used, but replacing LS(y) with the elastic stability, leaving
us with the following function

S*(z) = max(‘gg\wfylll) x e PHllz=yllr)

More detailed explanations of either of those techniques and their proofs are in their respective
papers [7][13]. Both these methods still work on only the real dataset, thus creating a tight link
between the sensitivity used and the real local sensitivity. The method we will introduce does
not have a clear relation between the sensitivity we use and the real local sensitivity, potentially
allowing for a more accurate sensitivity value.

2.2.3 Uses of differential privacy

Differential privacy is already being used by some big tech companies. We will give a brief overview
of some of them and how they currently use differential privacy.

Google designed RAPPOR to get data from users while still preserving differential privacy [14].
RAPPOR is based on the randomised response mechanism, returning the truth or a lie depending
on a coin flip.

Apple uses a different technique for differential privacy [15]. This is also meant to get user data,.
They do this by hashing the relevant data so it fits in a matrix and randomly flipping bits. After
this they return a random row in the matrix. An analysis of this technique has been done as well,
citing a lack of transparency and no clear indication of the possible privacy loss [16].

Facebook uses differential privacy for research into the influence of social media on elections
[17]. This allows researchers to use data from Facebook while the privacy of users is still guaranteed.
An extensive paper on this method has also been published by Facebook, where they descrive
requirements for using an application employing differential privacy in production [18].

Microsoft uses differential privacy for a host of applications, telemetry in Windows [19], adver-
tising queries on Linkedin [20], and suggested replies in Office [21]. The telemetry is once again a
similar approach as we have seen from Google and Apple. The other two use more advanced forms
of differential privacy and propose new mechanisms to solve their problems.

Elastic sensitivity, as discussed before, is being used by Uber for internal data analysis.

The US Census bureau will also use differential privacy for the 2020 census [22]. This way they
hope to preserve the privacy of everyone who submits data to the census. As the 2020 census is
not yet published results of this are not yet known.

11

A lot of research into differential privacy is also currently on going. A lot of sources from the
previous section are from the last 3 years, with a considerable amount even being released in the
first half of 2020. Differential privacy is currently a hot field with a lot of changes happening as we
speak.

2.3 Generative Adversarial Networks

2.3.1 Uses

GANs are very popular in image generation, being used to improve the quality of images [9], or even
generate images based on text |23]. However it has also been used in generating realistic structured
data [24][8], and more specifically medical data as well [25] [26]. It has also been compared to
differential privacy [11], showing that reasonable privacy can be achieved by replacing the whole
population. However, this paper does not take into account that the distribution itself can also be
privacy sensitive, as with a dynamic dataset every time the data changes the distribution changes.
This change in distribution can then be used to figure out the exact value of the record that has
been removed. This is also the issue discussed, and to and extend solved, in the paper on smooth
sensitivity |13].

2.3.2 Structure

Generative Adversarial Networks (GAN) are essentially two different neural networks [27]. These
two networks compete with each other in a game. This game consists of one of the networks, the
generator, generating data based on noise and the second network, the discriminator, will try to
spot whether the provided sample is from the training data or generated by the second network.
The networks in the GAN can be either regular networks, but also recurrent networks, as shown in
the paper by Mogren [28].

2.3.3 Training

Training a GAN is more complex than training a single neural network. Part of this complexity
comes from the fact that two networks are being trained at once, but another part is deciding when
training is done. Training the networks happens separately, while the generator is going through a
few epochs the discriminator stays the same and vice versa. This is so each network has a chance
to train itself without the other continuously getting better.

There are a few known issues with GAN training, failure to converge, mode collapse and di-
minished gradient. An important improvement in this has been made with the introduction of
Wasserstein GANs [29]. Rather than saying if an image is real or fake it judges the realness, or
fakeness, of an image. While this is already more stable in training, more improvements have been
made in the training [30]. To this even more improvements were made [31], showing that this is
very much a hotly researched topic which is still very relevant.

2.3.4 Implementations

In this section we will discuss the two GAN implementations which are relevant for this thesis.
anomiGAN, which is a different approach to preserving privacy using a GAN, and CTGAN, which
is a GAN created to replicate tabular data.

12

anomiGAN The purpose of anomiGAN is not necessarily to create data that is the same, but
rather data which results in the same result in some target classifier |[11]. The target classifier,
and starting dataset, can be anything. In the paper they use a machine learning model as target
classifier, but as we are interested in queries we will use them instead.

In our case it means the following: rather than executing our query on the real dataset we
execute the query on a dataset with the same number of rows. The result of a query on synthetic
data can then be compared to the result when doing the same query on the real data. Another
possible application of this is when training a classifier. Take for instance a fraud detection problem.
You want to create an as accurate as possible classifier, but financial data is very privacy sensitivity.
By replacing the data the classifier trains on a lot of privacy concerns are alleviated, while the result
should stay roughly the same.

While there is source code provided with anomiGAN this did not function properly for our use
case. As anomiGAN is designed to be used with a machine learning model the published source
code does not easily translate to an application where we want to answer queries. Therefore, we
decided to use the principle behind anomiGAN rather than the exact implementation. For our
synthetic data we use the data generated by CTGAN, which will be discussed in the next section.
This means that there is no direct comparison with anomiGAN, but rather just with the idea of
replacing all data as proposed by anomiGAN.

CTGAN CTGAN was specifically created as a model that can recreate tabular data [§8]. CTGAN
is a continuation of previous approaches that did not yet use a GAN for this task, and has its source
available as a Python libraryﬂ This makes it a very easy to use framework, while providing accurate
synthetic data.

CTGAN works for both discreet and continuous data, making it work well on most datasets.
There are a host of issues with creating a GAN that works properly on tabular data, for instance
the mix of continuous and discreet data means that different generation techniques have to be used
in the same GAN. Another issue is that the distribution in tabular data is quite different from

image data, which GANs have so far had most success in. Even more challenges are described in
the paper on CTGAN.

3https://pypi.org/project/ctgan/

13

https://pypi.org/project/ctgan/

3 Datasets and models

We will now briefly discuss the datasets we will use for our research. Firstly we will use the datasets
also used in the anomiGAN paper |11]. These are the Wisconsin breast cancer set and the chronic
kidney disease set from the UCI Machine Learning repository [10]. A third dataset we will use is
the Diabetes dataset, which also comes from the same repository. We will look at certain aspects
of the datasets that are relevant when training our GAN. These are the amount of unique values
for each variable, the cardinality of each variable and the amount of missing values. We will not
discuss every variable independently, but only look at the variables that are most interesting in
each group.

After discussing the datasets we will discuss the GAN model we trained on it. For this we will
compare to the real data on the cardinality of variables and the uniqueness of variables. Another
metric that can be considered when comparing the GAN to the real data is the sensitivity of the
real data versus the generated data. This comparison is the most important for us, as it is the
purpose we use the GAN for, and will be included in the Results section in Section [7.3

Each GAN was created using the CTGAN library and trained on the full dataset, after removing
all the rows containing null values. We used all default settings in training our GANs. For each
GAN, after generating a dataset, we transform every numerical, non-categorical value to its absolute
value. This is as in the real datasets negative numbers never occur, while the GAN can produce
them.

3.1 Wisconsin breast cancer

The Wisconsin breast cancer dataset has 569 records with 32 variables. The Wisconsin data set is al-
most fully real numbers. There are 31 numerical variables and one categorical variable (diagnosis)
with two possible values. There are no missing values in this dataset. id is the only truly unique vari-
able in the dataset, however all variables other than diagnosis have a high amount with unique val-
ues. The variable with the lowest amount of unique values, spare diagnosis, is smoothness_worst
which has 72.2% unique values. The variable with the highest amount of unique values, spare id,
is smoothness_se which has 96.1% unique values. Most other variables are in the 87% to 95%
uniqueness range.

Variable Type Real Data Generated Data
id real 100% 64.3%

diagnosis cat 0.4% 0.4%
smoothness_worst real 72.2% 100%
smoothness_se real 96.1% 100%

Table 1: Uniqueness of variables of the Wisconsin breast cancer dataset, and a dataset produced
by a GAN model trained on it

In Table[I]we compare the most interesting variables of the real dataset with those same variables
in a generated dataset. Our generated dataset has 596 rows, the same amount as the real data.
Three things stand out in this comparison. Firstly, for diagnosis we see that the uniqueness is the
same. This is due to it being a categorical variable with only two values. The GAN produces these
same two values in the generated dataset. Secondly, both smoothness worst and smoothness_se

14

are fully unique in the generated dataset. This is due to the values in the generated dataset having
a higher precision. Thirdly, we see that the generated dataset does not produce unique values for id
while they are fully unique in the real dataset. There is no constraint on the GAN to create unique
id values, and as the id values are close together in the real dataset as well, collisions happen in
the generated dataset.

A final interesting note here is the correlations between variables on the real and the generated
datasets. This dataset includes groups of variables, such as smoothness mean, smoothness_se and
smoothness_worst. In the real dataset there are high correlations between these variables. Our
current GAN is not able to produce these correlations between variables. As our current research
does not depend on accurate correlations we will not be delving into this further.

3.2 Kidney disease

The kidney disease dataset has 400 records with 25 variables. The kidney disease dataset is fully
categorical. The variable with the highest amount of different values is bgr, which has 147 values.
The variable with the lowest amount of different values is class, which only has two.

This dataset has missing values in 0.9% of rows. Other rows also miss values, but they are
expressed as “?” rather than null. 8 variables have a higher amount of “?” than any other value,
with rbee being the worst offender with 32% “?”. The variable with most “?” is rbc with 38% “?7,
however due to only 3 values occurring for this variable “normal” still occurs more often at 50.2%.

Variable Type Real Data Generated Data Generated Data 10k

bgr cat 147 107 145
class cat 2 2 2
rbce cat 48 47 48
rbe cat 3 3 3

Table 2: Cardinality of variables of the Kidney disease dataset, and two datasets produced by a
GAN model trained on it, the first one with 400 rows, the second one with 10000 rows

Table [2l shows the amount of different values for the four variables we discussed. We see that for
the values with a low cardinality in the original dataset all values occur even in a small generated
dataset, When we look at bgr we see that when we have only 400 rows (the same as the original
dataset) we only see 107 unique values. However, when we take 10,000 rows we get 145 values, out
of 147 in the original dataset. When we look at rbcc we can see the same, in 400 rows we see 47
out of 48 values, while with 10,000 we see all 48 values.

Variable Type Real Data Generated Data Generated Data 10k

bgr cat 11% 18.5% 15.8%
class cat 0% 0% 0%

rbce cat 32% 20.8% 23.3%
rbe cat 38% 33.5% 32.4%

Table 3: Amount of “?” for variables of the Kidney disease dataset, and two datasets produced by
a GAN model trained on it, the first one with 400 rows, the second one with 10,000 rows

Table[3|shows the amount of “?” that show up in the different datasets. There are no noteworthy

15

conclusions to take away from this data. There is no clear pattern for the amount, nor any obvious
relation between the amounts we see in different datasets. We also cannot say that in the generated
dataset we see less “7?” as in the real dataset, as for bgr there seem to be more. However, one thing
to consider is that as we removed all rows with null values from the data before training our GAN
the exact percentages of the dataset the GAN trained on will be different from the percentages
shown in Table Bl

3.3 Diabetes

The diabetes dataset has 101766 records with 50 variables. This dataset contains a mix of categorical
and real data. There are 36 categorical variables, 13 numeric and 1 boolean. Two variables are
constant, examide and citoglipton. There is a very low amount of unique values for all variables,
spare encounter_id and patient _nbr. The variable with the highest amount of unique values is
diag_3 with 790 unique values, diag_2 and diag_1 have 749 and 717 values respectively. Most of
the other variables have less than 20 unique values.

Missing values in this dataset are once again symbolised by “?”. This dataset has no null values.
The variable with the highest amount of “?” is medical_specialty with 49.1% of all values being
“?”. payer_code comes in second with 39.6% of values missing.

There are 4 variables with a high amount of zeroes, number_emergency coming out on top with
88.8% of all values being 0. This variable is highly skewed towards 0, however the maximum value
is 76, which only occurs once. The 5 highest values, ranging from 46 to 76, all occur only once.
This makes this specific variable very suitable for testing how our method handles outliers.

Variable Type Real Data Generated Data 10k Generated Data 50k Generated Data 100k
encounter_id real 100,000 10,000 49,995 99,997

patient_nbr real 71,518 9999 49,986 99,906

diag_3 cat 790 280 434 499
medical_speciality cat 73 57 69 70
number_emergency real 33 4 4 4

payer_code cat 18 18 18 18

Table 4: Cardinality of variables of the Diabetes dataset, and three datasets produced by a GAN
model trained on it, the first one with 10,000 rows, the second one with 50,000 rows and the last
one with 100,000 rows

In Table [we can see the cardinality of different variables in the real and generated datasets.
When looking at encounter_id we can see that, similar to what we saw in the Wisconsin dataset,
values generated by the GAN are not necessarily unique. With only 3 double values in 100,000
rows this dataset does better at creating uniqueness than the Wisconsin dataset, but when assuming
encounter_id to be unique it could still pose an issue.

On the flipside of this we have patient nbr. This value is unique in about 70% of the cases in
the real dataset, but in the generated datasets it is just a bit less often unique as encounter_id.
In the real dataset a patient can be admitted multiple times, getting the same patient nbr but a
different encounter_id. This rarely occurs in our generated dataset.

diag-3 has 790 unique values in the real dataset, which our generated datasets do not come
close to. We see an increase in the amount of values when we increase the size of the generated

16

dataset, but with 100,000 records we still only have 499 unique values. By increasing the dataset
size even further we will probably get even more unique values.

medical_speciality exhibits the same behaviour as diag_3, showing increased cardinality with
bigger datasets. Once we get to 100,000 rows we get 70 unqgieu values to the 73 unique values in
the real data. Once again if we increase the size of the set even further we might get even more
unique values, but for this variable the benefits of doing so are a lot less obvious than for diag_3.

number_emergency is a very interesting variable. As mentioned before it consists for 88.8% of
0. When we look at the generated data we see the same, with almost all values being 0. The other
3 values that occur here are 1, 2 and 3. This means we are lacking the high value of 76 in all
our generated datasets, and so far we do not see any improvement in diversity of values when we
increase the size of our generated dataset.

payer_code already gets all its values in the smallest dataset, and keeps having all values in
all other sizes of the dataset. This is quite interesting, as the value “FR” only occurs one in
the real dataset, but still occurs immediately in the smallest sample as well. When we look at
number_emergency we do not see values that occur only once back in the generated dataset. This
might indicate that there is more to it than just how often a value occurs. It is also noteworthy
that payer_code is categorical, while number_emergency is a real number. This might explain why
uncommon values do occur in payer_code but not in number_emergency.

17

4 Method

Our method has a few important steps, which in order are:

1. Training a GAN model on the dataset
2. Process user query
3. Using the GAN model to get a local sensitivity value

4. Using the local sensitivity value to return a differentially private result

We will now talk about each of these steps in order. We will use an example query to exemplify
what happens in each step.

4.1 Training a GAN model

For our GAN we use the CTGAN Python package, which is a GAN specifically designed to recreate
tabular data|8]. The only thing that needs to be done when training a GAN is specifying which
columns are categorical data, after which the package does all the work. Once the GAN is trained
it can be saved to disk and used at a later point when we need to create synthetic data. We have
discussed the models more in depth in section

Example

We want to know the total wealth of everyone in our street. To do this we have compiled the
financial data of the people in our street and put it in a dataset streetWealth. Each person has
their own line, only consisting of one value wealth. The highest wealth in our street is 50000 and
there are 50 people living in our street. The total wealth is 250000. Before we start querying our
dataset we train a GAN on it. This GAN will then be saved to disk, so we can use it later.

4.2 Processing user query

Before we can do anything with differential privacy we have to find the true answer to the user’s
query. To do this we first load our dataset into a pandas frame. Once we have loaded our data
we apply all filters specified by the user on the dataset and save the result of this as a temporary
second instance of the dataset. We then execute the function as specified by the user on the correct
column of the filtered data and get the true answer. With the true answer saved we can move on
to the next steps to provide our user with an accurate, yet differentially private, result.

Example

In this step we have to specify our query. As we want to know the total wealth of everyone in our
street, our query will be “SUM(wealth) FROM streetWealth”. As we have not specified a WHERE-
clause, no filters will need to be applied to the data. We take the sum of our unfiltered data, and
this will be the true answer. The true answer to this query is 250000,

If we wanted to know the average wealth of people who have a wealth under 10000 our query
would be “AVG(wealth) FROM streetWealth WHERE wealth < 10000”. For this query we do have
to apply a filter. After this filter is applied we take the average of the filtered data, and make this
our true answer.

18

0 ~J O Ui W N

4.3 Estimating local sensitivity value with GAN

generatedData = model.sample(100000)
realSensitivity = CalcSens(data)
generatedSensitivity = CalcSens(generatedData)

difference = abs(realSensitivity — generatedSensitivity)

estimatedSensitivity = generatedSensitivity + (np.random.normal() + 3) * difference

if (np.random.binomial (1, 0.75) = 1):
usedSensitivity = realSensitivity
else:
usedSensitivity = estimatedSensitivity

usedSensitivity += (np.random.uniform (0.015, 0.06) * generatedSensitivity)

Listing 1: Sensitivity calculation

The code used to calculate the local sensitivity can be seen in Listing[I] First we will discuss what
this code does and then in section [5| we will prove that this method is appropriate for differential
privacy.

In line 1 fake data is generated from our GAN model. The model we use here is the model
trained on the dataset that is being queried. We have chosen for 100000 rows here. We will discuss
the exact parameter choice in section [7.5

Line 2 and 3 are essentially the same computation on two different datasets. Both lines calculate
the local sensitivity on their respective dataset: line 2 on the real data and line 3 on the fake. The
sensitivity calculation is dependant on the query and therefore will be kept abstract. However,
realSensitivity, which is calculated on the real data, is assumed to be the correct local sensitivity
value. This means that the sensitivity calculation has to be the correct one for the query, and thus
for each query type the sensitivity calculation needs to be specified. generatedSensitivity, which is
calculated on the generated dataset, is the sensitivity of the generated dataset.sampleSensitivity
does not have to be the same as realSensitivity, and might change between different iterations of
the algorithm on the same query due to the randomness in generating data.

Line 5 computes the absolute difference between the two datasets. This is needed for later use
in the computation to make sure estimatedSensitivity is not too low. By taking the absolute value
we can ensure no too low value is being used, if generatedSensitivity is higher than real Sensitivity
there is no chance of privacy leak. However, if it is too low it can disclose private information in the
eventual differential privacy calculation, so we want to prevent any too low estimatedSensitivity
from occurring.

In line 6 we multiply the dif ference with a value randomly taken from a Gaussian distribution
with a mean of 3. The result of this will then be added to the generatedSensitivity and stored
as estimatedSensitivity. This step is what allows us to guarantee that estimatedSensitivity >
realSensitivity in at least 97.7% of cases, for which a proof is provided in section

Line 8 through 11 use the randomised response mechanism as seen in the work by Dwork
[5]. This gives plausible deniability for returning realSensitivity or estimatedSensitivity. This
method flips two coins, if either one is heads we return realSensitivity, otherwise we return
estimatedSensitivity. This mechanism prevents any information from leaking due to a single

19

query. Because of the chance of the fake sensitivity being used a person will never be able to tell
whether the true or fake sensitivity has been used when only executing one query. Our implemen-
tation does not explicitly flip two coins but still has a 75% chance of returning realSensitivity and
25% chance of returning estimatedSensitivity.

Line 13 adds some noise to usedSensitivity as a final random step. This will decrease accuracy
a bit, but improve privacy even further as the real sensitivity will almost never be used. The noise
we add here is random in both parts, as generatedSensitivity is also random for each iteration.
This means that the final value of usedSensitivity has a lot of randomness, however it is still loosely
based on realSensitivity

Example

The first thing we do here is take our GAN which we trained and saved to disk in the first step and
take 100000 rows of data from is, which we save into the variable generatedData.

We then need to calculate the local sensitivity on both our real and fake data. The sensitivity
of a function is the amount a function can change by changing one record. Our first query is
a SUM() query, so the sensitivity is the maximum value in the column being queried, as this is
the maximum amount our query can change by changing one record. We will take the maximum
value of our unfiltered data as the local sensitivity of this query, which we will save to the variable
realSensitivity. As the richest person in our street has 50000, realSensitivity = 50000.

If we take our AVG() query the sensitivity calculation is a little different. The maximum amount
an average can change by changing one record is the maximum value in the colomn being queried
divided by the total amount of rows in the data. A second difference between our two queries
was that with our AVG() query we specified a condition. While this condition is relevant to the
true answer, it is not relevant to the sensitivity. If we expand the filter we can get a record with
a higher value, which we have to take into account. Therefore, the sensitivity calculation has to
be done on the unfiltered data, as otherwise the result might be too low. As the richest person in
our street has 50000 and there are 50 people living in our street, the sensitivity of this query is 1000.

We will now calculate the sensitivity of generated Data. The calculation we use here is the same
as we used on the real data. In the case of the SUM() query that means the maximum value of the
queried column in generatedData is the sensitivity, which we save into genratedSensitivity. Our
GAN generated a dataset where the richest person has 47500, and thus generatedSensitivity =
47500.

When we look at the AVG() query again there is a slight twist. In a generated dataset with
the richest person having 47500, we then need to divide this number by the amount of people in
the real dataset again. If we divide this number by the amount of people in the real dataset we
get generatedSensitivity = 950. If we were to divide by the amount of rows in generatedData,
we would get generatedSensitivity = 0.475. By dividing by the amount of rows in the real data,
rather than in generatedData, generatedSensitivity is closer to realSensitivity.

From now on we will only consider the SUM() query, as all steps will be the same no matter the
query once we have our sensitivity. This means realSensitivity = 50000 and generatedSensitivity =

47500.

We will then compute the absolute difference between our two sensitivities. In our case this will

20

be abs(realSensitivity — generatedSensitivity) = 2500. After getting the difference we will have
to get generatedSensitivity near the value of realSensitivity. To do so we use a random number
taken from a Gaussian normal distribution. This value will range from -4 to 4, with a very small
change of a lower or higher value. The most common value is 0. so we will use that here. Once we
have this random number we add 3 to it. We then take this result and multiply the difference by
it. We add this final result to generatedSensitivity to get estimatedSensitivity. In our example
that would mean estimatedSensitivity = generatedSensitivity + dif ference x (random() + 3) =
47500 + (2500 x 3) = 55000. From this we can see that estimatedSensitivity > realSensitivity
because 55000 > 50000.

After computing estimatedSensitivity we use a randomised response mechanism to decide
usedSensitivity. This mechanism has a 75% chance of returning usedSensitivity = real Sensitivity
and a 25% chance of returning usedSensitivity = estimatedSensitivity. This means that in our
case usedSensitivity has a 75% chance of being 50000 and a 25% chance of being 55000. We will
say that usedSensitivity = 55000.

The last step in computing the sensitivity is adding a bit of random noise. While this step
is not strictly necessary, and indeed makes the sensitivity higher than required, it introduces just
a bit more randomness to strengthen the privacy guarantees. The extra noise we add is based
on estimatedSensitivity, which can change between queries, and a random value in a uniform
distribution between 0.015 and 0.6. If we get a random value of 0.3 from our uniform distribution,
the noise we will add to usedSensitivity is 47500 * 0.03 = 1425. This leaves us with a final
usedSensitivity values of 55000 + 1425 = 56425. We will use this sensitivity value in the last step
to get our differentially private answer.

4.4 Using local sensitivity to return a differentially private result

When we take sensitivity as decided by the code in the previous section we are almost done. The
final step is to input it in the Laplace mechanism and get the result. For the differential privacy
mechanism we use the diffprivlilﬂ Python package developed by IBM [12]. This package contains
an implementation of the Laplace mechanism which we use to get our final result. We set the
sensitivity of the mechanism to the sensitivity decided by the previous code and then randomise
our true answer to get to the final result.

Example

This last step is quite easy. All we do here is apply the Laplace mechanism to our query. As we
said before, the total wealth in our street is 250000, and the sensitivity we will use for differential
privacy is 56425. This means our differentially private result will be 250000 + Lap(56425). The
result of this computation will be disclosed as the wealth of our street, while preserving the privacy
of everyone in our street.

4https://diffprivlib.readthedocs.io/en/latest/

21

https://diffprivlib.readthedocs.io/en/latest/

5 Proof

In this section we will prove that our system provides an estimated sensitivity value which preserves
differential privacy in practice in the case where each neighbouring dataset has the same local
sensitivity value. As the minimum requirement for a differentially private computation is that
the sensitivity for such computation is at least as high as the true local sensitivity, we will have
to prove our system can preserve differential privacy in practice. For this proof we will show
P(estimatedSensitivity > realSensitivity) is high enough to not be a privacy risk.

5.1 Definitions
Neighbouring/Adjacent datasets : Datasets that are different in at most 1 element
Query : The current query
Real dataset: The dataset on which the query is done
realSensitivity : The sensitivity of the real dataset for the query
Generated dataset : The dataset generated by the GAN
generatedSensitivity : The sensitivity of the generated dataset for the query

dif ference : The absolute difference between realSensitivity and generatedSensitivity, calcu-
lated using abs(realSensitivity — generatedSensitivity)

estimatedSensitivity : The sensitivity estimated by our system after adding di f ferencex(random()+
3) to generatedSensitivity

usedSensitivity : The sensitivity our system uses after randomised response

5.2 Proof

If we once again look at listing [If and consider line 6 we will now prove that this line allows us to
guarantee 97.7% that estimatedSensitivity > realSensitivity . The way we do this is taking a
value from a Gaussian normal distribution, adding 3 to it, multiplying it by dif ference and adding
it to generatedSensitivity. This can be written as:

estimatedSensitivity = generatedSensitivity + (dif ference x (random() + 3)) (1)

In this equation random() will return a value from a Gaussian normal distribution with mean 0
and a standard deviation of 1.
When we look at the above equation we can see that if we add exactly di f ference to generatedSensitivity

P(estimatedSensitivity > realSensitivity) = 1. However, plainly adding dif ference will just

leave us with the real sensitivity value again and all issues that come with it. The random() +

3 in Equation [l] aims to give us values that are (mostly) high enough to still leave us with
estimatedSensitivity > realSensitivity while removing any direct link between realSensitivity

and estimatedSensitivity. Using values returned from random() 4+ 3 to decide how many times we

want to add the difference leads us to the following theorem.

22

Theorem 5.1 When neighbouring datasets share the same local sensitivity then P(estimatedSensitivity >
realSensitivity) > 0.977

We will now prove theorem There are two cases to consider, the case generatedSensitivity <
realSensitivity and the case generatedSensitivity > realSensitivity We can say

P(estimatedSensitivity > real Sensitivity|generatedSensitivity < realSensitivity) = P(random()+3 > 1)

(2)

To prove Equation [2] we need to look back to Equation[Il As said in the previous section, if we do
estimatedSensitivity = generatedSensitivity + (dif ference x 1) (3)

estimatedSensitivity will always be equal to real Sensitivity, and therefore P(estimatedSensitivity >
realSensitivity) = 1. Now if we replace the 1 in Equation [3| with random() + 3 we can say that for
every random()+3 > 1 estimatedSensitivity > realSensitivity. From this we can show Equation

Bl to be true.
To understand why theorem is true we will have to look into how a Gaussian distribution
works.

A Gaussian normal distribution abides to the 68-95-99.7 rule. This rule tells us that 68% of all
values will lie within 1 standard deviation from the mean, 95% within 2 standard deviations and
99.7% within 3 standard deviations. The standard deviation of the Gaussian normal distribution
we use is 1. This means that for our Gaussian normal distribution with mean 0 the chance of a
random value taken from this distribution being between -1 and 1 is 68%.

While we do first sample a value from our Gaussian normal distribution with mean 0, we then
add 3 to the result. This way we shift the mean of the result of this computation to 3, while
preserving a standard deviation of 1. This means that we can now say that 68% of values are
between 2 and 4, and 95% of values between 1 and 5. From this we can say that at least 95% of
the values returned from random() + 3 in Equation |1| are between 1 and 5. This already gives us
P(random() +3 > 1) > 0.95, but we are not quite there yet. In addition to all values between 1
and 5 giving a high enough estimatedSensitivity, all values over 5 also do so. Adding all values
over 5 as well gives us

P(random() +3 > 1) =0.977 (4)

If we combine Equation [2] and Equation [d] we get
P(estimatedSensitivity > real Sensitivity | generatedSensitivity < realSensitivity) = 0.977 (5)

With generatedSensitivity < realSensitivity out of the way, we can now look at generatedSensitivity >
realSensitivity. In this case

P(estimatedSensitivity > realSensitivity | generatedSensitivity > realSensitivity) > 0.9999
(6)
Equation|[6]follows from the only way of estimatedSensitivity < realSensitivity if generatedSensitivity >
realSensitivity is if random() + 3 <= —1. This can be shown by looking at Equation As
dif ference is absolute, the only way that estimatedSensitivity < realSensitivity is when di f ference
is multiplied by at least -1. This leads us to

P (estimatedSensitivity > realSensitivity | generatedSensitivity > realSensitivity) = P(random() + 3 > —1)

(7)

23

As a value of -1 is 4 standard deviations from the mean we can say
P(random() +3 > —1) > 0.9999 (8)

Combining Equation [7] and Equation [§] we get Equation [0]
Combining Equation and Equation@gives us P(estimatedSensitivity > realSensitivity) > 0.977
and thus proves theorem

5.3 Value of estimated sensitivity

In Section We show guarantees on P(estimatedSensitivity > realSensitivity). In this section we
will look more in depth what the actual value of estimatedSensitivity is. If we look at Equation
we can see that the most likely value

estimatedSensitivity = generatedSensitivity + (dif ference x 3) (9)

This is due to the mean of our distribution being 0, and thus 0 being the theoretical most likely
value. Now the question is, what does this actually say about the value of estimatedSensitivity?

There is actually still very little we can say about estimatedSensitivity. The most important
thing to think about here is what the value of generatedSensitivity and dif ference are. The only
real thing we know about these two variables is

generatedSensitivity + dif ference > realSensitivity (10)

However, we do not know how much of realSensitivity is in either one of those two variables.
Therefore, we cannot give any guarantees about the value of Equation [I} other than what was done
in Section [l

There is one thing we can still say about estimatedSensitivity, it is most likely higher than
realSensitivity. As we can see in Equation [0]it is very likely that 3 dif ference is added on. The
only time this will not guarantee estimatedSensitivity > realSensitivity is when estimatedSensitivity =
realSensitivity. However, as we cannot say whether estimatedSensitivity = realSensitivity this
is still not a guarantee.

This means that in any case where we only look at one query result the estimated sensitivity
value says nothing about the real sensitivity. As we will see in [5.4] in production settings there
should not be any type of unlimited querying and thus the estimated sensitivity will be very secure.

5.4 Including randomised response

Section [5] showed how our mechanism works without randomised response. In this section we will
look how it works with randomised response. Randomised responses takes two values and randomly
returns one or the other. Our implementation takes realSensitivity and estimatedSensitivity,
where

P(usedSensitivity = real Sensitivity) = 0.75 (11)

Where usedSensitivity is the result of the randomised response mechanism.
From Equation |11 we can deduce that

P(usedSensitivity = estimatedSensitivity) = 0.25 (12)

24

P(usedSensitivity > realSensitivity) can be calculated using the following equation based on
regular rules of probability

P(usedSensitivity > realSensitivity) > P(usedSensitivity = realSensitivity)+

13

P(usedSensitivity = estimatedSensitivity) = P(estimatedSensitivity > realSensitivity))
If we substitute Equations [I1] [I2) and [5.1] into Equation [I3] we can say

P(usedSensitivity > real Sensitivity) > eql1]+ ed12)* eq5.1] (14)

Filling in the values for each equation we get 0.75 4 0.25 * 0.977 = 0.99425 and thus we can make
the following theorem.

Theorem 5.2 When neighbouring datasets share the same local sensitivity and we use a ran-
domised response mechanism with a 75% chance of returning realSensitivity and a 256% chance of
returning estimatedSensitivity then P(usedSensitivity > realSensitivity) > 0.99425

Using this theorem we can say that the mechanism as discussed in Section [4] there is a 99.425%
chance of usedSensitivity > realSensitivity.

5.5 Implications for differential privacy

In Section[5.4 we show that for the mechanism as proposed in Section[dthe chance of usedSensitivity >
realSensitivity is 99.425%. While this looks quite high, the question is still what happens in the
remaining 0.575% of cases. Differential privacy is not guaranteed if the sensitivity used to calibrate
the noise is too low. This sounds like a big issue, however quite a lot of the damage of this can be
mitigated. As Dwork puts it “All small epsilons are alike” [5]. This means that if the e is sufficiently
low there is a limited privacy leak if the result is 2e-differentially private rather than e-differentially
private.

Additionally, if a query is executed twice and one of the results uses a high enough sensitivity
while the other does not, there is still no privacy leak. Differential privacy protects from all linkage
attacks, so a differentially private answer will not disclose any more information based on auxiliary
knowledge of the user[5]. Due to this having one differentially private result is enough to not cause
a privacy leak, as the differential privacy of this result means the information gained from the
non-differentially private result cannot be used to discover more information.

Now this still leaves us with the question of why we would not just get a 100% guarantee, as
then there is no risk whatsoever. The idea behind this stems from how a system like this would
actually work in implementation. Currently queries are just executed without any sort of processing
happening. In a production system there would be a lot more happening, for instance adding in
caching so the same query on the same data always returns the same result. This type of extra
protections will mean that, in general, doing the same query multiple times is a lot harder. Now,
by setting the chance of usedSensitivity > realSensitivity to a value slightly under 100% it means
that from 1 query in no way can any information be found. If we set it at 100% we can say that
the real sensitivity will never be lower than the value we see now, while with the value of 99.425%
this information is also not disclosed.

Another question is why we would use randomised response at all, and not just estimatedSensitivity.
As we saw in Section [5.3] there is very limited information on estimatedSensitivity. To understand
why randomised response is still valuable we have to look at the exact value of usedSensitivity

25

rather than at p(usedSensitivity > realSensitivity). Looking at that probability we only consider
if the usedSensitivity value will allow us to get a differentially private result but not if the result
is as good as possible. realSensitivity will always give us the best result while still preserving
differential privacy, and thus the more we can use realSensitivity the better it is for the accuracy
of our final result. And as is shown in Equation [J] estimatedSensitivity is most likely higher than
realSensitivity and thus give us lower accuracy.

The randomised response mechanism allows us to get the best of both worlds. There is a chance
of using estimatedSensitivity which says nothing about realSensitivity, or of using realSensitivity
which gives the most accurate result possible. Once again in a limited amount of queries it is impos-
sible to tell which value is being used for usedSensitivity and thus differential privacy is preserved
in practice. While we do not hold to the exact constraints of differential privacy academically, our
system is differentially private in at least 99.425% of cases. While the remaining cases are not
differentially private, they are rare and when they do occur the chance of a privacy leak is still
quite low. Therefore, our system will preserve differential privacy in practice even though it does
not fully abide to the theoretical constraints.

26

6 Experiment setup

In this section we will discuss the benchmarks and metrics we will use to evaluate our system.

6.1 Metrics

There are a few metrics we will consider for our benchmarks. This section serves to explain them
in more depth.

The first metric is the accuracy of the estimated sensitivity. To check this we will look
at the error of the estimated sensitivity versus the real sensitivity. This will allow us to check
whether our mechanism produces sensitivity values near the local sensitivity. This method is not
yet used by any paper, as the method of calculating local sensitivity in all papers so far is based
on a mathematical calculations. This means that the accuracy of the sensitivity is directly related
to the function used to create it, and therefore there is no need to examine the accuracy of the
sensitivity.

The second metric is accuracy of the result of the query using estimated sensitivity.
The idea of the research is that by using local sensitivity the value of the query result will be a lot
closer to the true, unperturbed, value. This can be verified by putting the local sensitivity and the
global sensitivity in a head to head contest, comparing the accuracy of each pair of values. This test
might also be unnecessary, given that adding in noise with a lesser magnitude will automatically
provide better accuracy, in which case we only need to verify whether the local sensitivity value is
lower than the global sensitivity, as the noise is directly related to the sensitivity. This method is
also used by both anomiGAN and elastic sensitivity |7][11].

The third metric would be time taken to answer a query. As our method needs to generate
a new synthetic dataset each time it answer a query, it will be slower than direct querying. If
answering queries takes too long our system loses usability as it takes too long to get an answer to
a query.

6.2 Benchmarks

We will use two benchmarks to compare our system against, differential privacy with global sensi-
tivity and anomiGAN. In this section we will look at them both more in depth. The first benchmark
is differential privacy using global sensitivity[5]. Global sensitivity is the de facto standard
for differential privacy at the moment. However, it is possible that our local sensitivity estimate is
higher than the global sensitivity. If our sensitivity value is higher than the global sensitivity value
rather than adding less noise, we will add more. This means our accuracy will go down, rather
than up. We will have to verify that our local sensitivity actually improves upon global sensitivity.
Comparison with this method would be on accuracy of the result.

The second benchmark will be anomiGAN [11]. This approach mimics what we try to achieve,
but does not give the guarantees of differential privacy. While it does generate data, rather than
doing differential privacy as well, it just swaps the real data for the generated data. Comparison
with this method would also be based on accuracy of the result. As the method of anomiGAN is
based on replacing the real data with fake data and then executing the same operation on the fake
data as the real data, we will use the GANSs trained for local sensitivity estimation to get fake data
and execute our queries on this data, taking the same number of rows of data as there are in the

27

real dataset. While the code for the paper has been published we did not manage to get it working.
So rather than using the exact implementation of anomiGAN we used the CTGAN models we also
used to estimate the local sensitivity as data replacement models. This preserves the idea behind
anomiGAN to replace the data with data generated by GANs that have been trained on the real
data, and therefore we judge it as a good stand in for the true implementation.

28

| T
Loty b ety ’

o P

li | Ili 1

(a) Results with estimated sensitivity and global
sensitivity. The blue dots represent a result
when using estimated sensitivity, the green dots
represent a result when using global sensitiv-
ity. The orange star is the true result. The
x-axis shows the different queries as defined in
Appendix [A] Figure [f]is a larger version of this
figure.

!;IHH!!!!!!!'!I”!! o
NI
.

(c) Relative result with estimated sensitivity and
global sensitivity. For the values in this figure
we have divided the results with estimated and
global sensitivity by the true result. The orange
line is at y=1 and represents the true result. The
x-axis shows the different queries as defined in
Appendix [A] Figure[7]is a larger version of this
figure.

i||||i||H||I|||H||I |11
L L A A T A A A
R PR - S | H

(b) Error with estimated sensitivity and global
sensitivity. The blue dots represent the abso-
lute error when using estimated sensitivity, the
green dots represent the absolute error when us-
ing global sensitivity. The orange star is the true
result rather than an error. By comparing the
location of the orange star to the dots we can
tell if the error is bigger or smaller than the true
result. The x-axis shows the different queries as
defined in Appendix [A] Figure[f]is a larger ver-
sion of this figure.

(d) Relative error with estimated sensitivity and
global sensitivity. This figure shows the errors
divided by the true result. The orange line is
at y=0 and represents the true result. The x-
axis shows the different queries as defined in Ap-
pendix [A] Figure[§]is a larger version of this fig-
ure.

Figure 2: Differential privacy with global and estimated sensitivity

29

7 Results

In this section we will discuss the results when using our mechanism. We will compare our mecha-
nisms to (0.01, 0)-differential privacy with global sensitivity. We always have ¢ = 0.01 and 6 = 0.
In Section we will show results for epsilon = 0.1 as well. For each query we have run both
our algorithm and (0.01, 0)-differential privacy with global sensitivity (232) 100 times. The ground
truth for all our queries can be found in Appendix [A] When we refer to “estimated sensitivity” in
this section, we refer to the result of our mechanism after randomised response.

7.1 Accuracy of answer

7.1.1 Differential privacy using global sensitivity

For the accuracy of the answer we look at the value returned by the (0.01, 0)-differential privacy
mechanism for both the global sensitivity, which we set at 232, and the estimated sensitivity, which
depends on the query and is dynamically generated by our mechanism. Figure [2alshows the results
for both estimated and global sensitivity, and Figure shows the absolute error of these results.
Looking at both of them we can see that by using estimated sensitivity we are almost always closer
to the answer than when using global sensitivity.

Figure and Figure respectively, show the same data as the previous two figures, but
relative to the true answer. Both these figures drive the difference home even better. Whilst the
estimated sensitivity is always quite close to the true result, the global sensitivity is almost always
far away from it. We can look at Table[I7]for global sensitivity and Table[21]for estimated sensitivity
for more details on this difference. Here we can see that the highest mean relative error is 6.85
for query 2, while the lowest is 0.0025 for query 20. If we look at the global sensitivity we see the
highest mean relative error is 8.62 * 10'2, while the lowest is 0.084.

7.1.2 anomiGAN

(e,sampleSize) Mean Median Min Max

(0.01, 100000) 0.8372 0.2225 1.1918 x 10~> 37.1703
(0.1, 100000) 0.0818 0.0213 7.5100 x 108 2.8010
(0.01, 10000) 0.7929 0.2107 4.7808 x 1072 30.2441
(0.1, 10000) 0.0811 0.0211 1.7165 x 107 3.6687
anomiGAN 0.1415 0.0439 3.4464 x 10~7 0.8507

Table 5: Relative error of our method and anomiGAN method

We will now compare the accuracy of our result when using estimated sensitivity with the
accuracy of the result when we used the anomiGAN principle. anomiGAN replaces all data by
data generated by a GAN. For this we can use the GAN we trained to estimate the local sensitivity
value. We then take as many rows of fake data as there are in the real data and execute the query
on it. This then leaves us with a final result, for which we can once again look at the accuracy.

Table 26] shows the per query breakdown of the relative error when we use the anomiGAN
method. Now in Table [5] we show the mean, median, min and max of the relative errors over all
queries for our method and anomiGAN. Looking at this table we can see that anomiGAN gives a

30

better accuracy than our method when € = 0.01, but when using ¢ = 0.1 our system gets the edge.
However, the maximum error of anomiGAN is in all cases better than our method.

7.1.3 Elastic sensitivity

Johnson et al. report for elastic sensitivity median errors between 10000% and 0.0001%, decreasing
with the size of the population[7]. When we look at our median error, as seen in Table we see
that our median error is 1.0752 (107.52%) at highest and 0.4521 (45.21%) at lowest. There is no
clear link between population size and error with our queries, which can be seen when we compare
the errors for the different datasets in Table 21} While the Kidney Disease and Wisconsin Breast
Cancer datasets have similar populations, with 400 and 569 rows respectively, the mean error on
the Wisconsin Breast Cancer dataset is higher than on the Kidney Disease dataset. As with elastic
sensitivity the lowest median errors are with a population size of 100 million, we cannot compare our
lowest generated sensitivity error easily, as our maximum population is around 100000. However,
we can say that with a low population size our system performs better than elastic sensitivity, as
the error for elastic sensitivity is highest with a low population while for our method the mean error
is as accurate on a small population as on a larger population.

7.2 Accuracy of estimated sensitivity

Section shows the gain there is in accuracy of the result when we can use our method for
estimating the sensitivity over global sensitivity. To verify whether our method meets the constraints
set forth for differential privacy we have to check whether our estimated sensitivities are higher than
real sensitivity in most cases, and how close they are to the real sensitivity.

First we will look if the estimated values are equal to or higher than the real sensitivity. As set
out in section [5.5 not all estimated sensitivity values have to meet this constraint, so if a few fail
this constraint the algorithm still passes. However, if more than 0.575% of the estimated sensitivity
values fail this constraint, the algorithm does not hold to the standards as proposed in section
We have a total of 2600 runs with estimated sensitivity, spread across 26 queries. In these 2600
runs, 3 estimated sensitivity values are lower than the real sensitivity. This gives us a total of
0.115% too low values. As this is less than 0.575% our method passes this check.

Second, we want to explore how accurate the estimated values are. Figure 7?7 shows the es-
timated sensitivity values relative to the real sensitivity. In this graph we can already see that
there is a high concentration of values near y=1, which represents the real sensitivity. If we look
at Table[20] which contains more detailed statistics on the estimated sensitivity relative to the real
sensitivity, we see that the mean estimated sensitivity value relative to the real sensitivity for each
query lies between 1 and 1.6. The lowest mean is 1.035 and the highest is 1.59. 50% of the queries
have a mean of less than 1.10, meaning that there is only a 10% difference between the estimated
sensitivity and the real sensitivity. More data can be found in Figures [J] through [I2] and in Tables
[18] through [21] which show both absolute estimated sensitivity values and errors and relative to the
real sensitivity.

31

- cmemoman

2

uery

Figure 3: Relative estimated sensitivity. This figure shows the estimated sensitivity value divided
by the real sensitivity. The orange line is at y=1 and represents the real sensitivity. The x-axis
shows the different queries as defined in Appendix El Figure [11]is a larger version of this figure.

(a) Generated sensitivity error. The blue dots
show a generated sensitivity error, the orange
triangles show the real sensitivity. Comparing
the location of the blue dot with the orange tri-
angle shows us whether the error is more or less
than the real sensitivity. The x-axis shows the
different queries as defined in Appendix [A] Fig-
ure [[4]is a larger version of this figure

(b) Relative generated sensitivity error. This fig-
ure shows the generated sensitivity error value
divided by the real sensitivity. The orange line
is at y=0 and represents the real sensitivity. The
x-axis shows the different queries as defined in
Appendix[A] Figure[If]is a larger version of this
figure

Figure 4: Generated sensitivity error

32

7.3 Accuracy of generated sensitivity

As we have seen in the last section, the estimated sensitivity used in the calculation is both high
enough and quite accurate. Now we will dive into this a bit deeper and consider the underlying
generated sensitivity, the sensitivity of the sample generated by our GAN model. The most im-
portant aspect here is the error of the generated sensitivity, as this is the distance we use in our
method.

When we look at the absolute error between the generated and the real sensitivity in Figure
[da] it looks like quite a few generated sensitivities are close to the truth, and all that are not have
an error lower than the real sensitivity. While this is quite promising, if we look at Figure
which shows the same data but relative to the real sensitivity, there are more differences than there
appeared to be in the previous figure. However, looking at this figure we once again see that the
relative error is always under 1, and for most queries under 0.4. This means that, while there is an
error, the generated sensitivity values are not very far off the real sensitivity.

When we then look at Table [25| we can see there are 7 queries where the generated sensitivity
is equal to the real sensitivity in all of our runs, and the other 19 queries all have a difference
between the real and the generated sensitivity in each run. More details on the absolute generated
sensitivity values and the values relative to the real sensitivity are shown in Figures |13| through
and in Tables 22 through

7.4 Bringing it all together

We have looked at 3 aspects of the mechanism, the final result, the estimated sensitivity value
used, and the sensitivity on the dataset generated by our GAN model. Until now we have looked
at them individually, but if we look at them all together there are some effects visible. The most
important connection is between the generated sensitivity and the estimated sensitivity value. We
will use Table [21] for the relative estimated sensitivity error and Table 25| for the relative generated
sensitivity error. In this section we will be comparing groups of queries which have similar errors
for the generated sensitivity values.

For the 7 queries where the generated sensitivity is always equal to the real sensitivity we see
that the estimated sensitivity value is off by about 3.5-3.8%. This is due to the flat noise we add
on after the randomised response mechanism, and is to be expected. If we then look at the two
queries with a high error on the generated sensitivity, queries 19 and 25, we see something quite
different. While they both have a mean error of 95.91% on the generated sensitivity relative to the
real sensitivity, the mean error on the estimated sensitivity value relative to the real sensitivity is
quite different. Query 19 clocks in at a mean relative error of 36.25%, while query 25 has a mean
relative error of 59.21%. If we look at other queries where the mean relative generated sensitivity
is similar (queries 6, 7 and 12 and queries 23 and 24) we once again see that the difference in
estimated sensitivity value, while closer, is not the same and in all cases different by at least 1.5%.
If we look at queries 7 and 12, which are just 0.14% apart in relative generated sensitivity error,
they are 2.3% apart in relative estimated sensitivity error.

When we then look at the result of the query, we see even more differences. We will look at
Table [16] for the error of the result of the query relative to the true answer for each query. If we once
again look at the queries were the generated sensitivity is always equal to the real sensitivity, we
see a big difference in accuracy of the result. For query 2, the mean relative error is 685.47%, while
for query 20 it is only 0.25%. This means that the error in the final result cannot be only due to the
error in the generated sensitivity, and there are other factors at play as well. This can be confirmed

33

(e,sampleSize) Mean Median Min Max

(0.01, 100000) 0.8372 0.2225 1.1918 x 1075 37.1703
(0.1, 100000) 0.0818 0.0213 7.5100 x 10~8 2.8010
(0.01, 10000) 0.7929 0.2107 4.7808 x 1072 30.2441
(0.1, 10000) 0.0811 0.0211 1.7165 x 107 3.6687

Table 6: Relative accuracy with different epsilons and sample sizes

(e,sampleSize) Mean Median Min Max
(0.01, 100000) 0.1946 0.0783 0 0.9597
(0.1, 100000) 0.1949 0.0794 0 0.9595
(0.01, 10000) 0.1951 0.0774 0 0.9600
(0.1, 10000) 0.1952 0.0789 0 0.9600

Table 7: Relative generated sensitivity error with different epsilons and sample sizes

by once again looking at the other groups of values with mean relative generated sensitivity errors
close together, like query 7 and 12, Query 7 has a mean relative error on the result of 104.89%,
while query 12 has one of 74.65%.

By looking at these different groups of queries with start with a mean relative generated sensitiv-
ity error which is quite close, but end up with mean relative errors on the results of the queries which
are farther apart, we can say there is no direct link between mean relative generated sensitivity
error and mean relative result error.

7.5 Parameter choice

The epsilon and amount of data generated for our experiment do not have a strong rationale behind
them. e choice impacts the privacy of the result, so needs to be selected depending on the needs
of the dataset. The size of the generated data also is quite arbitrary. While with a higher amount
of generated data we are more likely to get outliers, in essence it does not matter for our method
if those outliers are or are not generated, so the choice in size is actually also quite irrelevant.
The only advantage one might get from a higher sample size is the possibility of a more accurate
generated sensitivity, which in turn also leads to a more accurate end result. This is also up to the
end user to configure. considering time taken versus quality of the answer. We will now show some
important data for when we change € to 0.1 rather than 0.01, sampleSize to 10000 rather than
100000 and those two changes combined.

Firstly we will look at the effect of changing ¢ and sampleSize on the accuracy of our final
result. The data for this, compiled over all queries, can be seen in Table [f] Here we can see a
large improvement when we change € from 0.01 to 0.1. However, we do not see a nearly as big an
improvement when changing sampleSize. We do see as small improvement but this might be due
to the inherent randomness that is present in the method. More extensive testing will need to be
done to see if this improvement comes from the changed sampleSize or from the randomness in
the method.

Secondly, we will consider the effect of changing € and sampleSize on the accuracy of our gen-
erated sensitivity. We once again compiled data over all queries, and display the results for this
in Table[7] Here we see all values are quite close. From this table we can deduce that, with these

34

(e,sampleSize) Mean Median Min Max
(0.01, 100000) 9.1471 7.3797 3.7775 4805.3389
(0.1, 100000) 7.6755 7.9737 3.6358 57.3049
(0.01, 10000) 0.7289 0.6129 0.3665 3.5788
(0.1, 10000) 0.7762 0.6771 0.3226 37.5916

Table 8: Time taken to answer a query for each combination in seconds

(e,sampleSize) Mean Median Min Max

(0.01, 100000) 7.2908 7.3819 3.7775 21.3477
(0.1, 100000) 7.6640 7.9661 3.6358 57.3049
(0.01, 10000) 0.7275 0.6128 0.3665 1.2460
(0.1, 10000) 0.7610 0.6761 0.3226 1.8619

Table 9: Time taken to answer a query for each combination in seconds without initialisation

values, there is no large difference in the accuracy of the generated sensitivity. Now that leaves us
with the question of which values to actually use.

Firstly let us look at €. € only has an effect on the accuracy of the final result as it is used to
scale the noise. Setting € is always an important choice when using differential privacy. As we can
see in Table [6] a higher epsilon will lead to a higher accuracy. However, it will also lead to lower
privacy. Therefore, the choice of € has to be based on the privacy and accuracy needs of the system.

Now we will take a look at sampleSize. sampleSize’s main effect is on the accuracy of the
generated sensitivity. As we see in Table [7| this is very minor for the different values. Based on this
we cannot necessarily say anything about which value to use. However, there is something we have
yet to consider. Most of the time taken to answer queries comes from generating the fake data.
This means that using less rows of generated data will allow us to answer queries faster. This can
be seen in Table This table shows how long it takes to answer queries, however, there is one
note to make. In general, the first time we execute a query on specific dataset will take longest to
answer, as the model has to initialise. Therefore, Table [9] shows the same data as Table [§ only
without the first execution. From either one of those tables we can see that sampleSize = 10000
is roughly 10 times as fast as sampleSize = 100000. Therefore, in the general use case, using a
lower sampleSize is better for speed. There might be a drop in generated sensitivity accuracy when
sampleSize drops too low, but this has not been researched. All our experiments were run on a
Windows 10 machine with a 2.2GHz Intel Core I7 and 8GB of RAM, using Python 3.8.2.

35

8 Conclusion

In this thesis we explored a way to increase the utility of datasets by using differential privacy
combined with GANs. Our main goal was to find a method that allowed us to use a sensitivity
value based on the local sensitivity of a dataset, while preserving differential privacy. This led us
to the following main research question:

Can GANs be used to estimate the local sensitivity of a function for use in differential
privacy?

We then specified 3 subquestions, to which we will briefly summarise the answers here.

Can GANs estimate a sensitivity value which satisfies the requirements of differential
privacy? We have demonstrated how our method can generate sensitivity values that satisfy
the requirements of differential privacy in many cases. It is possible for our method to generate
values that do not satisfy the requirements of differential privacy, but it only rarely does so. In our
experiment only 0.115% of the estimated sensitivity values were too low. The privacy risk of these
too low values are also minimal.

Does our estimated sensitivity value disclose anything about the dataset? By allowing
sensitivity values that do not strictly satisfy the requirements of differential privacy we completely
remove any link between our estimated sensitivity and the real sensitivity. This allows for us to
say that the estimated sensitivity value does not disclose any information about the real sensitivity
value, or the real dataset.

Does our estimated sensitivity value give us a higher accuracy on the result of the
query than when using global sensitivity? We have shown that by using our method we get
more accurate results over using global sensitivity. This change was most obvious in cases where the
real sensitivity was quite low, as in those cases the difference between the global and the estimated
sensitivity was the largest.

Conclusion of the main research question

We have shown that by using a GAN we can increase the accuracy of the result of an answer, and
our estimated sensitivity does not disclose anything about the real dataset. However, we have not
created a method that strictly abides by the definition of differential privacy. By allowing too low
sensitivities to be used we have introduces a potential privacy risk, however we have also shown
this risk to be minimal and the benefits of allowing too low sensitivities. While our system does
not abide to the theoretical definition of differential privacy, we believe that in practice differential
privacy will be preserved.

However, to deploy our method into the real world more work is needed. Partly this is on
the research side, there are still many unanswered questions on how to use this system and the
exact benefits of it. Our system can be used as a great starting point for further research in how
approaches combining real and generated data can help preserve privacy as best as possible, while
providing researchers with the valuable data they need. The other part that still needs to be done
is all the auxiliary work that comes with a differential privacy application. If such an application

36

is set up properly our system for generating the local sensitivity value can be used, rather than
using global sensitivity. But if our system gets used without any of the requirements set out for a
differential privacy system, which we did not go into in this thesis, privacy risks are still inevitable.
Differential privacy has a great potential to preserve privacy while increasing utility, but it has to
be used with care.

37

9 Discussion

The method we proposed is still in its infancy, there are many directions left to research. We will
look at limitations in two distinct categories. Firstly, we will discuss the current limitations of our
method with differential privacy. Secondly, we will discuss the limitations of our GAN and how
this can be improved. After considering the limitations we will propose future research topics.

9.1 Limitations

9.1.1 Limitations concerning differential privacy

So far we have only explored how our mechanism interacts with the Laplace mechanism. This also
means that the queries that can be answered by our mechanism now are rather limited. However,
there are other mechanism out there for differential privacy, such as the exponential mechanism.
By adding support for the exponential mechanism other types of queries can also be supported,
such as MIN() and MAX() queries.

Another limitation is the exact constraints of differential privacy. We have shown that our value
is almost always higher than the real sensitivity, however differential privacy dictates this always be
the case. Therefore, we cannot give a strict guarantee of differential privacy in the academic sense.
However, in practice differential privacy should be all but guaranteed, as long as other required
measures are being used to protect the privacy.

Directly building onto this is the fact that we have only tested our system in isolation. A
differential privacy system in practice should have mechanisms to prevent unlimited querying and
other actions that can infringe on this. Incorporating this is of utmost importance before the system
can be used in practice.

Another important limitation is that we have only included static datasets in our experiment.
Static datasets are less complex to preserve the privacy of than dynamic datasets. Due to no
new data being added, by taking the sensitivity of the full dataset we know the highest possible
sensitivity. In a dynamic dataset new data can be added that make the sensitivity of the function
higher, thus leading to issues when trying to preserve differential privacy.

9.1.2 Limitations concerning GANs

We have not taken an extensive look into the exact properties of the GAN, but rather left it as rather
a black box. We have shown that our method will preserve privacy no matter what is returned by
the GAN, but we have also seen that the expected value returned is realSensitivity+2x*dif ference.
Our method works for a truly random value, however the accuracy will be quite low. As we would
still like our accuracy to be as high as possible, extra guarantees on the GAN might improve the
method even further.

We have also only looked at a single dataset, without including any joins from additional
datasets. Adding joins will add in more complexity in generating data. A very important question
here is how will we do a join on generated data, and what will the effects of it be on the result. As
in many real world applications multiple datasets get linked in a query, this is still an important
limitation of the system.

Another aspect of the GAN we have not looked into in depth is the correlations between variables
in the generated dataset. We mentioned briefly, whilst comparing the real data and a generated
dataset, that correlations are still lacking in the GAN. When introducing more complex queries to

38

our system it might be necessary that the lack of accurate correlations can disclose information on
whether we are using a generated sensitivity rather than a real sensitivity.

9.2 Future research

There are a lot of interesting questions still left open after this research, both on the differential
privacy and the machine learning side.

One such question is how our system can be integrated in different differential privacy mech-
anisms. As our method only calculates the sensitivity it should be able to work with any of the
currently proposed differential privacy mechanisms, but this has not yet been researched.

Another question that can be explored further is the effect of the size of the generated dataset.
We have shown for 100000 and for 10000 rows that accuracy is quite close, while using fewer rows
gives a big boost in speed. More research can be done to see what the trade-offs of using more, or
fewer, rows is on the accuracy of both generatedSensitivity and the final answer.

A third interesting question is if our method can also work with dynamic databases. As we use a
generated dataset to estimate the sensitivity, it could be possible that the generated set also allows
us to cover dynamic datasets. As dynamic datasets are currently still a big issue for differential
privacy, research into this question could be very interesting.

Something we have not discussed at all in this thesis is the time taken to train a GAN, nor have
we explored how a GAN trained on different subsets of the data can influence sampleSensitivity.
An interesting question would be what would happen if we trained a GAN only on outliers of the
data. Training a GAN on fewer records makes the training go faster, and the most interesting data
for privacy are the outliers. A question that can follow from this would be what would happen if
we combined several GANs to create our dataset, rather than just using one. We have briefly seen
that training a GAN on fewer records leads to the outliers in this data to be more visible when we
generate a new dataset. If we were to combine a GAN trained on outliers with a GAN trained on
the whole dataset, would we get a more accurate generated dataset than we do now? There are
many more questions possible in this direction, and exploring how to increase the accuracy of the
generated data is most likely one of the most important aspects for increasing the accuracy of the
method in general.

Another thing to look into could be the probability distribution used in the estimated sensitivity
calculation. We currently use a Gaussian normal distribution, however this can be replaced with any
other probability distribution as long as P(estimatedSensitivity > realSensitivity) is still high
enough. An example here could be using a Laplace distribution rather than a Gaussian normal
distribution, which might lead to more accurate estimated sensitivity on average.

39

Number

0 O Ui W~ O

Appendix A Query Data

Query

SELECT AVG(age) FROM kidney

SELECT AVG(wbcc) FROM kidney

SELECT AVG(sc) FROM kidney

SELECT SUM(bu) FROM kidney

SELECT SUM(sg) FROM kidney

SELECT SUM(rbcc) FROM kidney

SELECT AVG(radius_.mean) FROM breast

SELECT AVG(concave_points_mean) FROM breast
SELECT AVG(area_se) FROM breast

SELECT AVG(texture_worst) FROM breast

SELECT AVG(fractal_dimension_worst) FROM breast
SELECT SUM (smoothness_mean) FROM breast
SELECT SUM/(compactness_mean) FROM breast
SELECT SUM(radius_se) FROM breast

SELECT SUM((symmetry_se) FROM breast

SELECT SUM (area_worst) FROM breast

SELECT AVG(encounter.id) FROM diabetes

SELECT AVG (admission_type_id) FROM diabetes
SELECT AVG(time_in_hospital) FROM diabetes
SELECT AVG (number_emergency) FROM diabetes
SELECT AVG(diag_2) FROM diabetes

SELECT SUM (patient_nbr) FROM diabetes

SELECT SUM(discharge_disposition_id) FROM diabetes
SELECT SUM (num_lab_procedures) FROM diabetes
SELECT SUM (num_medications) FROM diabetes
SELECT SUM (number_emergency) FROM diabetes

40

Dataset
kidney
kidney
kidney
kidney
kidney
kidney
breast
breast
breast
breast
breast
breast
breast
breast
breast
breast
diabetes
diabetes
diabetes
diabetes
diabetes
diabetes
diabetes
diabetes
diabetes
diabetes

Query Type
AVG
AVG
AVG
SUM
SUM
SUM
AVG
AVG
AVG
AVG
AVG
SUM
SUM
SUM
SUM
SUM
AVG
AVG
AVG
AVG
AVG
SUM
SUM
SUM
SUM
SUM

True Result
51.4834
8425.7730
3.0725
2.1879 x 10*
359.1450
1249.1000
14.1273
0.0489
40.3371
25.6772
0.0839
54.8290
59.3700
230.5429
11.6886
5.0105 x 10°
1.6520 x 108
2.0240
4.3960
0.1978
438.6749
5.5290 x 10'2
3.7813 x 10°
4.3857 x 106
1.6305 x 106
2.0133 x 10*

True Sensitivity
0.2256
66.1654
0.1905

391
1.0250
6.5000
0.0495

3.5400 x 104
0.9546
0.0872
3.6500 x 104
0.1634
0.3454
2.8730
0.0790
4254
4361.6880
7.8600 x 10~°
1.3800 x 10~4
7.4700 x 10~*
0.0098
1.8950 x 108
28
132
81
76

Value

101

1012

1010

106 4

100 4

—~10° 4

—10?

—~10% 4

—106 4

—108 4

—1010 4

_10%2 4

Appendix B Results Graphs

@ Global Sensitivity Result

@ Local Sensitivity Result

True Answer

L L 1 [[+ J
-me
[]
anm—e °
[] -
[]
-e

LI] [1]

L3 . .

L ° 3 ° ° s
' . ° ' ° [
2 3 a 5 6 7 8 9 10 n 12

[+ 1]

Query

13

14

16

17

20

21

22

Figure 5: Results with estimated sensitivity and global sensitivity. The blue dots represent a result
when using estimated sensitivity, the green dots represent a result when using global sensitivity.
The orange star is the true result. The x-axis shows the different queries as defined in Appendix@

41

23

25

Value

® Global Sensitivity Error
® Local Sensitivity Error
True Answer

1013

1012

101 |

1020

109 4

108 4

107 4

106 4

105 4

104 4

103 1

102 4

10! 4

100 4

°
- e SN
¢ COeEEINNINNNG ¢
Xy T]
* @ @ OUNENEEEED &
e ¢ cEnuBEENENEE ¢
- 00 GNENENENNED ¢

1]
® ¢ oneumEEINENS
o 0 00 CHINENNENENNG

.
0 B GEININNIENENES &
@ ¢ ¢ ¢ CEENGEENEDS
Yy)
® ¢ comEENIIENENNNY

*

L]
. .
[}] H
. 8 . ° ° 5
0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Query

Figure 6: Error with estimated sensitivity and global sensitivity. The blue dots represent the
absolute error when using estimated sensitivity, the green dots represent the absolute error when
using global sensitivity. The orange star is the true result rather than an error. By comparing the
location of the orange star to the dots we can tell if the error is bigger or smaller than the true
result. The x-axis shows the different queries as defined in Appendix@

42

® Relative Global Sensitivity Result
® Relative Local Sensitivity Result

True Answer

101

1022

10

108 4

106 4

10% 4

102 4

100 4

—10° 4

—~102

—10%

—105 4

—108 4

_1010 4

_1012 4

—10%

~d

12

Query

13

20

21

22

Figure 7: Relative result with estimated sensitivity and global sensitivity. For the values in this
figure we have divided the results with estimated and global sensitivity by the true result. The
orange line is at y=1 and represents the true result. The x-axis shows the different queries as

defined in Appendix E}

43

23 24 25

Value

True Answer
® Relative Global Sensitivity Error
® Relative Local Sensitivity Error

10

1013

1012

101

1010

109 4

108 4

107 4

106

105 4

104 4

103 4

102 4

101 4

100 4

[
L 2L]
¢ SOUNEINEENERS &
L]
°
© 0 ¢ GIUNENINEDES
- 00 GNENNIIENND ¢

(e
(NN 00
(EES e
(S S Enes
b

1

b
(EmEme®es s
b

>

b

o

Query

Figure 8: Relative error with estimated sensitivity and global sensitivity. This figure shows the
errors divided by the true result. The orange line is at y=0 and represents the true result. The
x-axis shows the different queries as defined in Appendix@

44

25

Value

® Local Sensitivity Value
True Sensitivity

108 4

107 4

105 4

105 4

10% 4

10?4

102 4

10! 4

100 4

®

> -

> X 1}
L]

°
>
®
>
®
>
®
°
®
®

o> ® cummm

Query

Figure 9: Estimated sensitivity value. The blue dots show a estimated sensitivity value, the orange
triangles the real sensitivity. The x-axis shows the different queries as defined in Appendix @

45

25

Value

® Local Sensitivity Error
True Sensitivity

108 4

107 4

106 4

105 4

10¢

107 4

102 4

101 4

100 4

L

L 4
[]
L]
L]
! | .
] e °
[] s L}
. i
* []
g |
] []
! e
. ' [} °] ® ° [} H] ® ° ° ° ° ()
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Query

Figure 10: Estimated sensitivity error. The blue dots show a estimated sensitivity error, the orange
triangles show the real sensitivity. Comparing the location of the blue dot with the orange triangle
shows us whether the error is more or less than the real sensitivity. The x-axis shows the different
queries as defined in Appendix El

46

Value

True Sensitivity
® Relative Local Sensitivity Value

L]
.
5
L]
L]
.
4
[} .
L4 [}
. .
' L]
° L]
.
o]
L]
¢ .] L}
31 °
L] L4 °
] L [
[} . ° 0
: : .
4 ° [
° e
H] . | s : ¢
e []
I [} ! [[}
(] s ° .
.] [
. L4 L] .
[] L[] ® ! l
2 L4 . s i .
°
s ° {] s I [} L4
[} ° °
° ° . s]
1 °
° L [} ! ‘
. L} . ' ' [3
’ s :
I s] .
: L | i | Lo
. (Y N N N N BN B DR B D R R B | [) ' | ! R | ! i PR T
L]
.
L]
0 1 2 3 3 5 s 7 8 9 10 1 2 15 14 15 16 7 1 19 20 7 22 23 24 25

Query

Figure 11: Relative estimated sensitivity. This figure shows the estimated sensitivity value divided
by the real sensitivity. The orange line is at y=1 and represents the real sensitivity. The x-axis
shows the different queries as defined in Appendix El

47

Value

® Relative Local Sensitivity Error

True Sensitivity

$
° .
. . s
° .
.] 8
2 [
. . . e
[} * e ° [}
r .
. : H : . :
[] . ' s
b4 [}
l L] N i s e [}
*
° 4 . - . N
* ! l s °
° . s .
1 ' * ° ! °
.
: - o ! . : :
° ° o [s °
: ° L (] 8 i
.
] L} L4 ' s ' .
° [g " °
i s $. .
: - | | L] '
L]
o (MY WY WY WY NN NN NN N NN NN N NN NN NN BN NN N SN SENPUNY NEN B R S
0 1 2 3 4 5 6 7 8 9 10 n 2 13 1 5 16 17 18 19 20 21 2 23 24 25
Query

Figure 12: Relative estimated sensitivity error. This figure shows the estimated sensitivity error
value divided by the real sensitivity. The orange line is at y=0 and represents the real sensitivity.

The x-axis shows the different queries as defined in Appendix @

48

Value

® Sample Sensitivity
True Sensitivity

108 4

107 4

105 4

105

10% 4

103 4

102 4

10! 4

10° 4

[

)

°

°

°

[

®
>)

Query

Figure 13: Generated sensitivity. The blue dots show a generated sensitivity value, the orange
triangles the real sensitivity. The x-axis shows the different queries as defined in Appendix @

49

Value

Sample Sensitivity Error
True Sensitivity

108 4

107 4

106 4

105 4

104 4

103 4

102 4

10! 4

100 4

°

°

[

>

Query

19

21

22

Figure 14: Generated sensitivity error. The blue dots show a generated sensitivity error, the orange
triangles show the real sensitivity. Comparing the location of the blue dot with the orange triangle
shows us whether the error is more or less than the real sensitivity. The x-axis shows the different
queries as defined in Appendix E}

50

Value

True Sensitivity
® Relative Sample Sensitivity

1751

1.50 1

1.254

1.00 4

0.75 1

0.50 4

0.25 1

0.00

Query

Figure 15: Relative generated sensitivity. This figure shows the generated sensitivity value divided
by the real sensitivity. The orange line is at y=1 and represents the real sensitivity. The x-axis
shows the different queries as defined in Appendix E}

o1

' L L]
°
° [
] ['
.
)
L] L]
2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Value

True Sensitivity
@ Relative Sample Sensitivity Error

0.8 1

0.6

0.4 4

{]
] .
] ¢ | |

0.2 4 . °
:
® []
i L] $.
I I | | 0

0.01 [L 2 A 4 L 2 A 4 L 2 ! L] - L 4 !

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Query

Figure 16: Relative generated sensitivity error. This figure shows the generated sensitivity error
value divided by the real sensitivity. The orange line is at y=0 and represents the real sensitivity.
The x-axis shows the different queries as defined in Appendix @

52

Appendix C

Query

Tk W N~ O

(O el i}

9

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25

Results Tables

Mean

53.0339
6898.3550
0.6362
1.1239 x 10*
353.0570
1310.3838

14.4918
0.0353
52.1439
28.4219
0.1037
55.1543
62.0883
164.9987
10.8598
4.7149 x 103

1.6517 x 108
2.0222
4.3936
0.1729

438.4659

5.5217 x 1012

3.7852 x 10°

4.3872 x 106

1.6297 x 108

2.1210 x 104

Median Min
Kidney Disease
53.1269 —28.3770
7675.0669 —2.6759 x 10*
1.3891 —111.1317
1.0392 x 10* —1.4426 x 10°
345.5466 24.4689
1210.7484 —1212.4208
Wisconsin Breast Cancer
14.5600 —10.5881
0.0435 —0.2642
36.5612 —460.4581
26.7126 —5.4028
0.0873 —0.1209
56.6731 —48.4247
63.8328 —210.9819
198.4357 —1043.1245
10.9874 —15.0645
4.9811 x 10° —3.5955 x 106
Diabetes
1.6512 x 103 1.6115 x 108
2.0221 1.9600
4.3931 4.3478
0.1850 —0.8471
438.5793 433.9349
5.5260 x 102 5.4150 x 102
3.7848 x 10° 3.6343 x 10°
4.3884 x 105 4.2489 x 10°
1.6289 x 106 1.6043 x 10
2.1091 x 10* —1.3850 x 10*

Max

168.9653
3.1618 x 104
61.0103
1.4851 x 10°
788.5061
3950.3043

51.1592
0.2183
708.1086
77.3469
0.4110
128.4143
440.8945
1622.5042
44.9209
4.1003 x 108

1.6791 x 108
2.0684
4.4498
0.5376

442.2971

5.6372 x 1012

3.9251 x 10°

4.4989 x 106

1.6816 x 106

1.1695 x 10°

Table 10: Estimated sensitivity result statistics per query. The values in this table show statistics
on the results to the queries when using our proposed method for estimating sensitivity

53

Query Mean Median Min Max
Kidney Disease

0 —3.2735 x 1010 2.0366 x 103 —3.7259 x 102 1.8980 x 10'2
1 —6.6537 x 1019 3.6083 x 10° —1.7160 x 102 1.4184 x 102
2 8.9096 x 10 5.9307 x 1010 —8.3587 x 10" 1.6421 x 10'2
3 2.3227 x 1010 3.7460 x 1010 —1.3293 x 10'2 1.4841 x 10'2
4 9.3072 x 100 47872 x 10190 —1.6924 x 10*2 1.5684 x 10'2
5 1.6366 x 1010 —4.2746 x 10 —1.5553 x 10'? 2.6885 x 10'2
Wisconsin Breast Cancer
6 —5.1778 x 1010 —6.2523 x 1019 —1.7045 x 10'2 2.5044 x 102
7 —6.5739 x 1010 —7.2561 x 1010 —1.7450 x 10™ 2.3987 x 10'2
8 —1.6640 x 100 —4.2296 x 10'% —2.5583 x 10'2 2.2999 x 10'2
9 1.2438 x 1010 1.0542 x 1010 —1.3785 x 10'2 1.7074 x 10'?
10 6.9391 x 100 7.1559 x 1010 —1.5799 x 102 1.9387 x 102
11 —3.1123 x 10'° —1.5191 x 10° —2.2529 x 102 1.6051 x 10'2
12 7.8819 x 100 6.1212 x 1010 —1.9535 x 10'2 3.0609 x 102
13 —3.7042 x 10'° —5.2903 x 10'° —2.5285 x 10'2 2.2496 x 102
14 —4.2920 x 100 —2.7584 x 1010 —1.6515 x 10™2 1.4907 x 10'2
15 5.8678 x 100 4.4699 x 109 —1.3748 x 102 2.3239 x 10'2
Diabetes
16 —6.0342 x 101 —8.3972 x 1010 —1.6745 x 10 1.5141 x 10'2
17 —2.7234 x 1010 —2.3675 x 1010 —1.4768 x 10'2 2.8242 x 10'?
18 1.4081 x 1011 4.4398 x 10'° —1.2050 x 10*2 2.0493 x 10'2
19 1.4266 x 1010 3.5177 x 1010 —1.7887 x 102 1.3219 x 10'2
20 8.5688 x 100 5.2235 x 109 —1.5510 x 102 2.7315 x 102
21 5.5234 x 1012 5.4621 x 102 3.7962 x 102 7.5977 x 1012
22 —9.8252 x 1010 —7.1174 x 100 —1.8803 x 10'2 1.1847 x 10'?
23 —1.0071 x 1019 —6.3491 x 10° —1.4140 x 102 1.4210 x 102
24 —3.3413 x 10'° —1.5890 x 10° —1.5745 x 10'2 1.4433 x 10'?
25 —2.3498 x 1010 —3.6935 x 1010 —1.4714 x 10'2 2.1980 x 10'2

Table 11: Global sensitivity statistics per query. The values in this table show statistics on the
results of each query when using global sensitivity.

54

Query Mean Median Min Max
Kidney Disease

0 1.0301 1.0319 —0.5512 3.2819
1 0.8187 0.9109 —3.1759 3.7525
2 0.2071 0.4521 —36.1703 19.8572
3 0.5137 0.4750 —6.5936 6.7876
4 0.9830 0.9621 0.0681 2.1955
5 1.0491 0.9693 —0.9706 3.1625
Wisconsin Breast Cancer
6 1.0258 1.0306 —0.7495 3.6213
7 0.7217 0.8890 —5.4014 4.4624
8 1.2927 0.9064 —11.4153 17.5548
9 1.1069 1.0403 —0.2104 3.0123
10 1.2355 1.0404 —1.4405 4.8958
11 1.0059 1.0336 —0.8832 2.3421
12 1.0458 1.0752 —3.5537 7.4262
13 0.7157 0.8607 —4.5246 7.0378
14 0.9291 0.9400 —1.2888 3.8431
15 0.9410 0.9941 —7.1758 8.1834
Diabetes
16 0.9998 0.9995 0.9755 1.0164
17 0.9991 0.9990 0.9684 1.0219
18 0.9995 0.9993 0.9890 1.0122
19 0.8737 0.9352 —4.2817 2.7175
20 0.9995 0.9998 0.9892 1.0083
21 0.9987 0.9995 0.9794 1.0196
22 1.0011 1.0009 0.9611 1.0380
23 1.0004 1.0006 0.9688 1.0258
24 0.9995 0.9990 0.9840 1.0314
25 1.0535 1.0476 —0.6879 5.8088

Table 12: Estimated sensitivity result statistics per query relative to true answer. This table shows
the same data as Table [I0] only divided by the true answer to each query as stated in Appendix
@ A value of 1 represents a completely accurate result.

55

Query Mean Median Min Max
Kidney Disease
0 —6.3583 x 108 3.9559 x 106 —7.2371 x 1019 3.6866 x 100
1 —7.8969 x 106 4.2825 x 10° —2.0366 x 108 1.6834 x 108
2 2.8998 x 1010 1.9303 x 1010 —2.7205 x 10! 5.3446 x 10!
3 1.0616 x 108 1.7121 x 108 —6.0755 x 107 6.7830 x 107
4 2.5915 x 108 1.3330 x 108 —4.7124 x 10° 4.3671 x 10°
5 1.3102 x 107 —3.4222 x 107 —1.2451 x 10° 2.1524 x 10°
Wisconsin Breast Cancer
6 —3.6651 x 109 —4.4257 x 10° —1.2066 x 10'* 1.7727 x 10!
7 —1.3438 x 1012 —1.4833 x 102 —3.5671 x 10'® 4.9034 x 10'3
8 —4.1253 x 108 —1.0486 x 10° —6.3424 x 101 5.7018 x 100
9 4.8441 x 108 4.1058 x 108 —5.3684 x 109 6.6497 x 100
10 8.2662 x 1011 8.5244 x 1011 —1.8821 x 103 2.3095 x 103
11 —5.6764 x 108 —2.7706 x 107 —4.1089 x 10'° 2.9275 x 10'°
12 1.3276 x 10° 1.0310 x 10° —3.2904 x 1019 5.1556 x 1010
13 —1.6068 x 108 —2.2947 x 108 —1.0967 x 10 9.7577 x 10°
14 —3.6719 x 109 —2.3599 x 10° —1.4129 x 10 1.2754 x 10!
15 1.1711 x 10° 8920.9939 —2.7439 x 106 4.6380 x 10
Diabetes

16 —365.2622 —508.2999 —1.0136 x 104 9165.3226
17 —1.3456 x 101 —1.1697 x 1019 —7.2962 x 10! 1.3953 x 10'2
18 3.2031 x 10%° 1.0100 x 1010 —2.7412 x 10 4.6618 x 1011
19 7.2112 x 1010 1.7781 x 1011 —9.0414 x 10*2 6.6816 x 102
20 1.9533 x 10% 1.1908 x 107 —3.5357 x 10° 6.2267 x 10°
21 0.9990 0.9879 0.6866 1.3742

22 —2.5984 x 10° —1.8823 x 10° —4.9728 x 106 3.1330 x 10°
23 —2296.3710 —1447.6935 —3.2241 x 10° 3.2401 x 10°
24 —2.0493 x 10* —974.5597 —9.6567 x 10° 8.8523 x 10°
25 —1.1671 x 106 —1.8346 x 10® —7.3084 x 107 1.0917 x 108

Table 13: Global sensitivity result statistics per query relative to true answer. This table shows the
same data as Table only divided by the true answer to each query as stated in Appendix [A] A

value of 1 represents a completely accurate result.

56

Query

T W N~ O

[0l i@}

9

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25

Mean

26.7087
6350.7946
21.0610
3.8793 x 104
103.3523
676.1217

7.4007
0.0513
111.9850
10.5778
0.0603
18.6675
44.3178
363.1467
8.2501
5.6481 x 10°

5.0888 x 10°
0.0107
0.0121
0.1065
1.0875

2.1331 x 1010

2796.7119
1.5564 x 10%
7584.5482
9894.9066

Median Min
Kidney Disease
20.7529 0.2236
3935.4706 37.6311
14.7670 0.0671
3.0546 x 10* 66.6267
89.7511 0.1785
512.0601 6.3121
Wisconsin Breast Cancer
4.2478 0.0364
0.0330 3.3736 x 104
70.1569 1.1830
8.1888 0.0259
0.0380 1.0312 x 104
14.5125 0.0573
22.9034 0.0668
250.5404 0.7313
6.6645 0.0156
3.5446 x 10° 2283.4060
Diabetes
3.9812 x 10° 2347.5416
0.0074 4.0604 x 1074
0.0098 1.6698 x 104
0.0777 1.2453 x 10+
0.8497 0.0052
1.6525 x 1010 1.7894 x 108
1980.9561 57.1948
9642.9233 311.7239
4416.4285 28.8194
6350.9685 48.4201

Max

117.4819
3.5185 x 10*
114.2041
1.6614 x 10°
429.3611
2701.2043

37.0319
0.3131
667.7715
51.6697
0.3270
103.2537
381.5245
1391.9613
33.2323
4.0965 x 108

4.0478 x 108
0.0640
0.0538
1.0449
4.7400

1.1399 x 1011

1.4691 x 10*

1.3678 x 10°

5.1150 x 10*

9.6816 x 104

Table 14: Estimated sensitivity result error statistics per query. The values in this table show
statistics on the error between the true answer as shown in Appendix [A] and the result when using

our estimated sensitivity mechanism.

57

Table 15: Global sensitivity result error statistics per query. The values in this table show statistics
on the error between the true answer as shown in Appendix [A] and the result when using global

sensitivity.

Query

T W N~ O

[0l i@}

9

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25

Mean

4.1261 x 10!
4.2611 x 10!
3.4497 x 10!
3.7349 x 10!
4.3094 x 102
4.1407 x 1011

4.4109 x 101
4.2187 x 10t
3.9777 x 101
4.0740 x 101
3.9534 x 101!
5.1015 x 101
4.1097 x 101t
4.6236 x 101
4.0149 x 1012
4.2522 x 1011

3.8426 x 10!
3.9692 x 10!
4.1592 x 10!
3.8474 x 101!
4.1981 x 101
4.6876 x 1011
3.9484 x 10!
3.7883 x 10!
3.5756 x 10!
4.1597 x 10!

Median

Min

Kidney Disease

3.1134 x 10!
3.1064 x 10!
2.2956 x 10!
2.6530 x 101!
3.3060 x 10!
2.6382 x 10!

3.5407 x 10!
2.9705 x 10!
2.6435 x 1011
3.1515 x 10!
3.1698 x 101!
3.7313 x 10!
2.7732 x 10!
2.9790 x 10"
2.9412 x 10!
3.3090 x 10!

Diabetes
2.7234 x 10!
2.4614 x 10
2.8542 x 10t
2.4497 x 10!
2.6449 x 10!
2.7135 x 10!
2.2616 x 101
2.9001 x 10!
2.4848 x 10!
2.6188 x 101!

58

4.0807 x 107
1.0842 x 10°
8.2650 x 10°
1.8168 x 10°
6.7813 x 10°
5.5151 x 109

Wisconsin Breast Cancer

1.7730 x 10°
5.5681 x 108
1.4573 x 109
1.6239 x 107
2.2212 x 10°
1.1987 x 10°
1.6983 x 10?
1.0564 x 10°
4.4963 x 10°
3.6017 x 108

2.5980 x 10°
5.5998 x 108
1.1749 x 10°
9.3524 x 108
4.9489 x 107
3.8043 x 10°
3.2176 x 102
5.5968 x 10
8.4646 x 108
2.5500 x 108

Max

3.7259 x 102
1.7160 x 1012
1.6421 x 1012
1.4841 x 102
1.6924 x 102
2.6885 x 1012

2.5044 x 10'2
2.3987 x 10'2
2.5583 x 102
1.7074 x 102
1.9387 x 1012
2.2529 x 102
3.0609 x 10'2
2.5285 x 102
1.6515 x 1012
2.3239 x 102

1.6747 x 102
2.8242 x 102
2.0493 x 102
1.7887 x 1012
2.7315 x 102
2.0688 x 102
1.8803 x 102
1.4210 x 1012
1.5745 x 1012
2.1980 x 102

Query Mean Median Min Max
Kidney Disease

0 0.5188 0.4031 0.0043 2.2819
1 0.7537 0.4671 0.0045 4.1759
2 6.8548 4.8063 0.0219 37.1703
3 1.7730 1.3961 0.0030 7.5936
4 0.2878 0.2499 4.9703 x 10~* 1.1955
5 0.5413 0.4099 0.0051 2.1625
Wisconsin Breast Cancer
6 0.5239 0.3007 0.0026 2.6213
7 1.0489 0.6739 0.0069 6.4014
8 2.7762 1.7393 0.0293 16.5548
9 0.4120 0.3189 0.0010 2.0123
10 0.7188 0.4522 0.0012 3.8958
11 0.3405 0.2647 0.0010 1.8832
12 0.7465 0.3858 0.0011 6.4262
13 1.5752 1.0867 0.0032 6.0378
14 0.7058 0.5702 0.0013 2.8431
15 1.1272 0.7074 0.0046 8.1758
Diabetes
16 0.0031 0.0024 1.4210 x 10=° 0.0245
17 0.0053 0.0037 2.0061 x 10~* 0.0316
18 0.0027 0.0022 3.7984 x 10=°5 0.0122
19 0.5385 0.3925 6.2944 x 10~* 5.2817
20 0.0025 0.0019 1.1918 x 10=° 0.0108
21 0.0039 0.0030 3.2365 x 107° 0.0206
22 0.0074 0.0052 1.5126 x 10=* 0.0389
23 0.0035 0.0022 7.1078 x 107> 0.0312
24 0.0047 0.0027 1.7675 x 107° 0.0314
25 0.4915 0.3155 0.0024 4.8088

Table 16: Estimated sensitivity result error statistics per query relative to true answer. This table
shows the same data as Table only divided by the true answer to each query as stated in
Appendix @ A value of 0 represents a completely accurate result.

59

Query

T W N~ O

[0l i@}

9

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25

Table 17: Global sensitivity result error statistics per query relative to true answer. This table
shows the same data as Table only divided by the true answer to each query as stated in

Mean

8.0144 x 10°
5.0572 x 107
1.1228 x 1011
1.7071 x 107
1.1999 x 10°
3.3150 x 108

3.1223 x 1010
8.6239 x 102
9.8610 x 10
1.5866 x 1010
4.7095 x 102
9.3043 x 10°
6.9222 x 10°
2.0055 x 10°
3.4349 x 1010
8.4866 x 10°

2326.0144
1.9611 x 10!
9.4614 x 1010
1.9448 x 1012
9.5700 x 108

0.0848
1.0442 x 108
8.6380 x 10*
2.1930 x 10°
2.0661 x 107

Median Min

Kidney Disease
6.0474 x 10° 7.9262 x 107
3.6867 x 107 1.2867 x 10°
7.4714 x 101 2.6900 x 10°
1.2126 x 107 8.3038 x 10*
9.2051 x 108 1.8882 x 107
2.1120 x 108 4.4153 x 109

Wisconsin Breast Cancer
2.5063 x 1010 1.2550 x 10®
6.0723 x 102 1.1382 x 100
6.5534 x 10° 3.6129 x 107
1.2274 x 1010 6.3242 x 107
3.7760 x 10" 2.6460 x 10'°
6.8054 x 10° 2.1863 x 107
4.6711 x 10 2.8606 x 107
1.2922 x 10° 4.5822 x 10°
2.5163 x 1010 3.8467 x 108
6.6041 x 10° 718.8294
Diabetes
1648.5036 15.7262

1.2161 x 10t 2.7667 x 108
6.4928 x 1010 2.6727 x 108
1.2383 x 1012 4.7274 x 10°
6.0294 x 108 1.1281 x 107

0.0491 6.8806 x 10~*
5.9811 x 10° 8509.2346
6.6127 x 10* 1276.1478
1.5240 x 10° 519.1511
1.3007 x 107 1.2666 x 10*

Appendix @ A value of 0 represents a completely accurate result.

60

Max

7.2371 x 100
2.0366 x 108
5.3446 x 10!
6.7830 x 107
4.7124 x 10°
2.1524 x 10

1.7727 x 1011
4.9034 x 1013
6.3424 x 1010
6.6497 x 100
2.3095 x 1013
4.1089 x 1010
5.1556 x 1010
1.0967 x 100
1.4129 x 1011
4.6380 x 108

1.0137 x 10*
1.3953 x 1012
4.6618 x 101
9.0414 x 10'2
6.2267 x 10
0.3742
4.9728 x 106
3.2401 x 10°
9.6568 x 10°
1.0917 x 108

Query

Uk W N~ O

[0l i@}

9

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25

Table 18: Estimated sensitivity statistics. This table shows statistics on the estimated sensitivity

Mean

0.2340
68.6517
0.1976
405.9473
1.0648
6.7398

0.0688
4.6441 x 10~
1.2234
0.0982
4.8831 x 1074
0.1833
0.4609
3.5687
0.0860
5503.3406

4716.7367
9.0565 x 10~°
1.4665 x 10~*

0.0010
0.0102
1.9936 x 108
29.7807
154.6091
93.5270
120.6916

Median Min
Kidney Disease
0.2343 0.2290
68.6197 67.1859
0.1977 0.1934
406.1261 397.2029
1.0680 1.0406
6.7297 6.6008
Wisconsin Breast Cancer
0.0524 0.0505
3.7443 x 10~* 3.6131 x 10~
1.0023 0.9705
0.0914 0.0886
3.8726 x 107* 3.7265 x 10~*
0.1719 0.1661
0.3648 0.3525
3.0206 2.9236
0.0827 0.0802
4487.1131 4334.9970
Diabetes
4553.3166 4429.5550
8.1200 x 10~° 7.8800 x 10~°
1.4384 x 10~* 1.3977 x 10~*
7.4813 x 107* 5.2069 x 10~*
0.0102 0.0100
1.9777 x 108 1.9247 x 108
29.1837 28.4073
136.2794 132.8698
83.9532 74.1707
76.1390 60.7001

values as generated by our mechanism.

61

Max

0.2390
70.0351
0.2018
413.8628
1.0863
6.8891

0.1435
9.4625 x 104
4.1461
0.1313
0.0013
0.2781
0.9648
9.8389
0.1220
1.1095 x 10%

5621.5278
1.4393 x 10~4
1.7627 x 10~*

0.0029
0.0104
2.2676 x 108
36.4772

261.9760

182.7525

408.8314

Query Mean Median Min Max
Kidney Disease

0 0.0376 0.0386 0.0150 0.0597
1 0.0376 0.0371 0.0154 0.0585
2 0.0376 0.0382 0.0153 0.0596
3 0.0382 0.0387 0.0159 0.0585
4 0.0389 0.0420 0.0152 0.0598
5 0.0369 0.0353 0.0155 0.0599
Wisconsin Breast Cancer
6 0.3908 0.0585 0.0214 1.8994
7 0.3111 0.0570 0.0200 1.6713
8 0.2817 0.0500 0.0167 3.3434
9 0.1259 0.0479 0.0164 0.5049
10 0.3367 0.0601 0.0201 2.5558
11 0.1220 0.0520 0.0165 0.7018
12 0.3344 0.0562 0.0206 1.7933
13 0.2421 0.0514 0.0176 2.4246
14 0.0895 0.0478 0.0154 0.5449
15 0.2937 0.0548 0.0190 1.6081
Diabetes
16 0.0814 0.0439 0.0156 0.2888
17 0.1520 0.0326 0.0019 0.8308
18 0.0660 0.0456 0.0160 0.2813
19 0.3625 0.0018 6.4139 x 10~* 2.9501
20 0.0350 0.0342 0.0153 0.0599
21 0.0520 0.0436 0.0157 0.1966
22 0.0636 0.0423 0.0145 0.3028
23 0.1713 0.0324 0.0066 0.9847
24 0.1563 0.0371 0.0111 1.2562
25 0.5921 0.0018 6.2931 x 10~% 4.3794

Table 19: Estimated sensitivity error statistics. This table shows statistics on the error of the
estimated sensitivity values produced by our mechanism. This error is taken relative to the true
sensitivity value for each query as seen in Appendix E}

62

Query Mean Median Min Max
Kidney Disease

0 1.0376 1.0386 1.0150 1.0597
1 1.0376 1.0371 1.0154 1.0585
2 1.0376 1.0382 1.0153 1.0596
3 1.0382 1.0387 1.0159 1.0585
4 1.0389 1.0420 1.0152 1.0598
5 1.0369 1.0353 1.0155 1.0599
Wisconsin Breast Cancer
6 1.3908 1.0585 1.0214 2.8994
7 1.3111 1.0570 1.0200 2.6713
8 1.2817 1.0500 1.0167 4.3434
9 1.1259 1.0479 1.0164 1.5049
10 1.3367 1.0601 1.0201 3.5558
11 1.1220 1.0520 1.0165 1.7018
12 1.3344 1.0562 1.0206 2.7933
13 1.2421 1.0514 1.0176 3.4246
14 1.0895 1.0478 1.0154 1.5449
15 1.2937 1.0548 1.0190 2.6081
Diabetes
16 1.0814 1.0439 1.0156 1.2888
17 1.1522 1.0331 1.0025 1.8311
18 1.0660 1.0455 1.0160 1.2813
19 1.3565 1.0018 0.6972 3.9501
20 1.0350 1.0342 1.0153 1.0599
21 1.0520 1.0436 1.0157 1.1966
22 1.0636 1.0423 1.0145 1.3028
23 1.1713 1.0324 1.0066 1.9847
24 1.1547 1.0365 0.9157 2.2562
25 1.5880 1.0018 0.7987 5.3794

Table 20: Estimated sensitivity statistics relative to true sensitivity. This table shows the same
data as Table [I8] only divided by the true sensitivity of each query as stated in Appendix [A] A
value of 1 represents a completely accurate result.

63

Query Mean Median Min Max
Kidney Disease

0 0.0376 0.0386 0.0150 0.0597
1 0.0376 0.0371 0.0154 0.0585
2 0.0376 0.0382 0.0153 0.0596
3 0.0382 0.0387 0.0159 0.0585
4 0.0389 0.0420 0.0152 0.0598
5 0.0369 0.0353 0.0155 0.0599
Wisconsin Breast Cancer
6 0.3908 0.0585 0.0214 1.8994
7 0.3111 0.0570 0.0200 1.6713
8 0.2817 0.0500 0.0167 3.3434
9 0.1259 0.0479 0.0164 0.5049
10 0.3367 0.0601 0.0201 2.5558
11 0.1220 0.0520 0.0165 0.7018
12 0.3344 0.0562 0.0206 1.7933
13 0.2421 0.0514 0.0176 2.4246
14 0.0895 0.0478 0.0154 0.5449
15 0.2937 0.0548 0.0190 1.6081
Diabetes
16 0.0814 0.0439 0.0156 0.2888
17 0.1520 0.0326 0.0019 0.8308
18 0.0660 0.0456 0.0160 0.2813
19 0.3625 0.0018 6.4139 x 10~* 2.9501
20 0.0350 0.0342 0.0153 0.0599
21 0.0520 0.0436 0.0157 0.1966
22 0.0636 0.0423 0.0145 0.3028
23 0.1713 0.0324 0.0066 0.9847
24 0.1563 0.0371 0.0111 1.2562
25 0.5921 0.0018 6.2931 x 10~% 4.3794

Table 21: Estimated sensitivity error statistics relative to true sensitivity. This table shows the
same data as Table[I9] only divided by the true sensitivity of each query as stated in Appendix [A]
A value of 0 represents a completely accurate result.

64

Query

Uk W N~ O

[0l i@}

9

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25

Mean

0.2256
66.1654
0.1905
391.0000
1.0250
6.5000

0.0652
4.6171 x 10~4
1.1616
0.0944
5.0801 x 10~*
0.1758
0.4507
3.4308
0.0813
5417.9027

4532.8456
6.0025 x 10~°
1.4260 x 10~*
3.0488 x 10~°
0.0098
1.9257 x 108
25.9952
100.1035
60.8049
3.1026

Median Min
Kidney Disease
0.2256 0.2256
66.1654 66.1654
0.1905 0.1905
391.0000 391.0000
1.0250 1.0250
6.5000 6.5000
Wisconsin Breast Cancer
0.0652 0.0642
4.6117 x 10=* 4.5266 x 10~4
1.1736 0.6081
0.0944 0.0936
5.0661 x 107* 4.5167 x 10~*
0.1754 0.1708
0.4512 0.4359
3.3474 2.0992
0.0805 0.0758
5414.7704 5366.2138
Diabetes
4528.9512 4491.9021
6.0000 x 107° 5.9900 x 10~°
1.4250 x 10* 1.3934 x 10~*
3.0500 x 10~® 3.0100 x 10~°
0.0098 0.0098
1.9227 x 108 1.8875 x 108
25.9940 25.8100
99.8330 96.1602
60.6423 54.6275
3.1017 3.0764

Max

0.2256
66.1654
0.1905
391.0000
1.0250
6.5000

0.0660
4.7291 x 10~
1.6809
0.0953
5.5353 x 10~*
0.1852
0.4690
4.7597
0.0895
5497.2020

4609.4718
6.0300 x 10~°
1.4693 x 10~*
3.0900 x 10~°

0.0098
1.9794 x 108
26.2397
106.3065
70.4203
3.1398

Table 22: Generated sensitivity statistics. This table shows statistics on the generated sensitivity

for each query.

65

Query

Uk W N~ O

[0l i@}

9

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25

Mean

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0157
1.0748 x 104
0.2395
0.0072
1.4270 x 10~*
0.0124
0.1053
0.6131
0.0030
1163.9027

171.1572
1.8575 x 10°
5.0288 x 106
7.1633 x 1074
0.0000
3.1053 x 106
2.0048
31.8965
20.1951
72.8974

Median Min
Kidney Disease
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
Wisconsin Breast Cancer
0.0157 0.0147
1.0694 x 10=* 9.8437 x 10~°
0.2303 0.0036
0.0072 0.0063
1.4130 x 10% 8.6349 x 10~°
0.0120 0.0074
0.1058 0.0905
0.4995 0.0200
0.0019 1.7450 x 107°
1160.7704 1112.2138
Diabetes
167.2628 130.2137
1.8600 x 10™® 1.8300 x 10~°
4.9250 x 1078 1.7640 x 10~°
7.1632 x 10~* 7.1592 x 10~*
0.0000 0.0000
2.7687 x 106 1.1262 x 10°
2.0060 1.7603
32.1670 25.6935
20.3577 10.5797
72.8983 72.8602

Max

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.0165
1.1868 x 10~4
0.7263
0.0081
1.8821 x 10~4
0.0218
0.1236
1.8867
0.0105
1243.2020

247.7834
1.8700 x 10~°
9.3560 x 10~°
7.1672 x 1074

0.0000
8.4417 x 106
2.1900

35.8398

26.3725

72.9236

Table 23: Generated sensitivity error statistics. This table shows statistics on the error of the
generated sensitivity per query. The error is relative to the true sensitivity as seen in Appendix [E]

66

Query Mean Median Min Max
Kidney Disease

0 1.0000 1.0000 1.0000 1.0000
1 1.0000 1.0000 1.0000 1.0000
2 1.0000 1.0000 1.0000 1.0000
3 1.0000 1.0000 1.0000 1.0000
4 1.0000 1.0000 1.0000 1.0000
5 1.0000 1.0000 1.0000 1.0000
Wisconsin Breast Cancer
6 1.3173 1.3165 1.2964 1.3342
7 1.3034 1.3019 1.2779 1.3351
8 1.2169 1.2294 0.6370 1.7609
9 1.0822 1.0820 1.0727 1.0926
10 1.3906 1.3868 1.2364 1.5152
11 1.0762 1.0732 1.0454 1.1335
12 1.3048 1.3063 1.2621 1.3578
13 1.1942 1.1651 0.7307 1.6567
14 1.0302 1.0192 0.9599 1.1335
15 1.2736 1.2729 1.2615 1.2922
Diabetes
16 1.0392 1.0383 1.0299 1.0568
17 0.7637 0.7634 0.7621 0.7672
18 1.0366 1.0358 1.0128 1.0680
19 0.0408 0.0408 0.0403 0.0414
20 1.0000 1.0000 1.0000 1.0000
21 1.0162 1.0146 0.9960 1.0445
22 0.9284 0.9284 0.9218 0.9371
23 0.7584 0.7563 0.7285 0.8054
24 0.7507 0.7487 0.6744 0.8694
25 0.0408 0.0408 0.0405 0.0413

Table 24: Generated sensitivity statistics relative to true sensitivity. This table shows the same
data as Table only divided by the true sensitivity of each query as stated in Appendix [A] A
value of 1 represents a completely accurate result.

67

Query Mean Median Min Max
Kidney Disease

0 0.0000 0.0000 0.0000 0.0000
1 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.0000
5 0.0000 0.0000 0.0000 0.0000
Wisconsin Breast Cancer
6 0.3173 0.3165 0.2964 0.3342
7 0.3034 0.3019 0.2779 0.3351
8 0.2509 0.2412 0.0038 0.7609
9 0.0822 0.0820 0.0727 0.0926
10 0.3906 0.3868 0.2364 0.5152
11 0.0762 0.0732 0.0454 0.1335
12 0.3048 0.3063 0.2621 0.3578
13 0.2134 0.1739 0.0069 0.6567
14 0.0376 0.0241 2.2103 x 10~* 0.1335
15 0.2736 0.2729 0.2615 0.2922
Diabetes
16 0.0392 0.0383 0.0299 0.0568
17 0.2363 0.2366 0.2328 0.2379
18 0.0366 0.0358 0.0128 0.0680
19 0.9592 0.9592 0.9586 0.9597
20 0.0000 0.0000 0.0000 0.0000
21 0.0164 0.0146 5.9432 x 10~ 0.0445
22 0.0716 0.0716 0.0629 0.0782
23 0.2416 0.2437 0.1946 0.2715
24 0.2493 0.2513 0.1306 0.3256
25 0.9592 0.9592 0.9587 0.9595

Table 25: Generated sensitivity error statistics relative to true sensitivity. This table shows the
same data as Table only divided by the true sensitivity of each query as stated in Appendix [A]
A value of 0 represents a completely accurate result.

68

Query Mean Median Min Max
Kidney Disease

0 0.0391 0.0371 0.0042 0.0732
1 0.0183 0.0172 1.0064 x 104 0.0551
2 0.1165 0.1069 3.7190 x 10~4 0.4023
3 0.1329 0.1307 0.0255 0.2770
4 0.0142 0.0119 5.5688 x 10~° 0.0344
5 0.1070 0.1090 0.0072 0.1972
Wisconsin Breast Cancer
6 0.3435 0.3440 0.3141 0.3678
7 0.5321 0.5358 0.4112 0.6147
8 0.3938 0.3963 0.3365 0.4642
9 0.3841 0.3844 0.3501 0.4222
10 0.2379 0.2376 0.2159 0.2646
11 0.0533 0.0533 0.0407 0.0717
12 0.1548 0.1534 0.1010 0.2337
13 0.2894 0.2894 0.2492 0.3372
14 0.1161 0.1171 0.0906 0.1394
15 0.7411 0.7387 0.5943 0.8507
Diabetes
16 1.9092 x 10~=¢ 1.2230 x 106 4.3393 x 10=7 7.2236 x 10~
17 4.7643 x 107% 1.3213 x 107% 4.4651 x 10~7 3.1562 x 10~°
18 2.4747 x 106 1.3683 x 10°% 5.0274 x 107 9.7818 x 10~
19 0.0019 6.8457 x 107% 2.2918 x 106 0.0168
20 8.4847 x 1077 8.4516 x 10~7 3.7720 x 10~7 1.3417 x 10~
21 2.1823 x 1076 1.6978 x 1076 5.4054 x 10~7 6.6182 x 10~6
22 6.0752 x 1076 3.6098 x 10=% 1.0643 x 10=% 2.4479 x 10~°
23 4.0581 x 1079 1.0317 x 10~% 3.4464 x 10~7 3.1358 x 10~ °
24 1.0174 x 10~° 1.8598 x 10~6 6.1488 x 10~7 5.4307 x 10~°
25 0.0028 7.8852 x 1076 2.3413 x 106 0.0171
Overall 0.1415 0.0439 3.4464 x 10~7 0.8507

Table 26: Error when using the anomiGAN method relative to true answer. This error is relative
to the true answer as stated in Appendix E]

69

References

1]
[2]

European Union. General Data Protection Regulation. 2016 (accessed June 25, 2020). URL:
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679.

State of California. California Consumer Privacy Act. 2018 (accessed June 25, 2020). URL:
https : //leginfo . legislature . ca . gov/faces/billTextClient . xhtml ?7bill _id=
201720180SB1121.

Arthur R Miller. “Computers, Data Banks and Individual Privacy: An Overview”. In: Colum.
Hum. Rts. L. Rev. 4 (1972), p. 1.

Nabil R Adam and John C Worthmann. “Security-control methods for statistical databases:
a comparative study”. In: ACM Computing Surveys (CSUR) 21.4 (1989), pp. 515-556.

Cynthia Dwork, Aaron Roth, et al. “The algorithmic foundations of differential privacy”. In:
Foundations and Trends® in Theoretical Computer Science 9.3—4 (2014), pp. 211-407.

Cynthia Dwork et al. “Calibrating noise to sensitivity in private data analysis”. In: Theory
of cryptography conference. Springer. 2006, pp. 265—284.

Noah Johnson, Joseph P Near, and Dawn Song. “Towards practical differential privacy for
SQL queries”. In: Proceedings of the VLDB Endowment 11.5 (2018), pp. 526-539.

Lei Xu et al. “Modeling tabular data using conditional gan”. In: Advances in Neural Infor-
mation Processing Systems. 2019, pp. 7333-7343.

Kevin Schawinski et al. “Generative adversarial networks recover features in astrophysical
images of galaxies beyond the deconvolution limit”. In: Monthly Notices of the Royal Astro-
nomical Society: Letters 467.1 (2017), pp. L110-L114.

Dheeru Dua and Casey Graff. UCI Machine Learning Repository. 2017. URL: http : / /
archive.ics.uci.edu/ml.

Ho Bae, Dahuin Jung, and Sungroh Yoon. “AnomiGAN: Generative adversarial networks for
anonymizing private medical data”. In: arXiv preprint arXiv:1901.11313 (2019).

Naoise Holohan et al. “Diffprivlib: The IBM Differential Privacy Library”. In: arXiv preprint
arXiv:1907.02444 (2019).

Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. “Smooth sensitivity and sampling in
private data analysis”. In: Proceedings of the thirty-ninth annual ACM symposium on Theory
of computing. ACM. 2007, pp. 75-84.

Ulfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. “Rappor: Randomized aggregatable
privacy-preserving ordinal response”. In: Proceedings of the 2014 ACM SIGSAC conference
on computer and communications security. 2014, pp. 1054-1067.

Apple Inc. Differential Privacy. 2016 (accessed June 25, 2020). URL: https://www.apple.
com/privacy/docs/Differential _Privacy_Overview.pdf.

Jun Tang et al. “Privacy loss in apple’s implementation of differential privacy on macos 10.12”.
In: arXiv preprint arXiv:1709.02753 (2017).

Chaya Nayak. New privacy-protected Facebook data for independent research on social media’s
impact on democracy. 2020 (accessed June 25, 2020). URL: https://research.fb.com/
blog/2020/02/new-privacy-protected-facebook-data-for-independent-research-
on-social-medias-impact-on-democracy/.

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180SB1121
https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?bill_id=201720180SB1121
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://research.fb.com/blog/2020/02/new-privacy-protected-facebook-data-for-independent-research-on-social-medias-impact-on-democracy/
https://research.fb.com/blog/2020/02/new-privacy-protected-facebook-data-for-independent-research-on-social-medias-impact-on-democracy/
https://research.fb.com/blog/2020/02/new-privacy-protected-facebook-data-for-independent-research-on-social-medias-impact-on-democracy/

Daniel Kifer et al. “Guidelines for Implementing and Auditing Differentially Private Systems”.
In: arXiv preprint arXiv:2002.04049 (2020).

Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. “Collecting telemetry data privately”.
In: Advances in Neural Information Processing Systems. 2017, pp. 3571-3580.

Ryan Rogers et al. “LinkedIn’s Audience Engagements API: A Privacy Preserving Data An-
alytics System at Scale”. In: arXiv preprint arXiv:2002.05839 (2020).

Sivakanth Gopi et al. “Differentially private set union”. In: arXiv preprint arXiv:2002.09745
(2020).
Michael Hawes. Title 13, Differential Privacy, and the 2020 Decennial Census. 2019 (accessed

June 25, 2020). URL: https: //www2 . census . gov/about /policies /2019~ 11 - paper -
differential-privacy.pdf.

Han Zhang et al. “Stackgan: Text to photo-realistic image synthesis with stacked generative
adversarial networks”. In: Proceedings of the IEEE International Conference on Computer
Vision. 2017, pp. 5907-5915.

Noseong Park et al. “Data synthesis based on generative adversarial networks”. In: Proceedings
of the VLDB Endowment 11.10 (2018), pp. 1071-1083.

Piper Jackson and Marco Lussetti. “Extending a Generative Adversarial Network to Pro-
duce Medical Records with Demographic Characteristics and Health System Use”. In: 2019
IEEE 10th Annual Information Technology, FElectronics and Mobile Communication Confer-
ence (IEMCON). IEEE. 2019, pp. 0515-0518.

Edward Choi et al. “Generating multi-label discrete patient records using generative adver-
sarial networks”. In: arXiv preprint arXiv:1703.06490 (2017).

Ian Goodfellow et al. “Generative adversarial nets”. In: Advances in neural information pro-
cessing systems. 2014, pp. 2672-2680.

Olof Mogren. “C-RNN-GAN: Continuous recurrent neural networks with adversarial train-
ing”. In: arXiv preprint arXiv:1611.09904 (2016).

Martin Arjovsky, Soumith Chintala, and Léon Bottou. “Wasserstein gan”. In: arXiv preprint
arXiv:1701.07875 (2017).

Ishaan Gulrajani et al. “Improved training of wasserstein gans”. In: Advances in neural in-
formation processing systems. 2017, pp. 5767-5777.

Tero Karras et al. “Progressive growing of gans for improved quality, stability, and variation”.
In: arXiv preprint arXiv:1710.10196 (2017).

II

https://www2.census.gov/about/policies/2019-11-paper-differential-privacy.pdf
https://www2.census.gov/about/policies/2019-11-paper-differential-privacy.pdf

	Introduction
	Context
	Problem
	Research
	Structure of this thesis

	Related work
	Privacy mechanisms
	Differential Privacy
	Generative Adversarial Networks

	Datasets and models
	Wisconsin breast cancer
	Kidney disease
	Diabetes

	Method
	Training a GAN model
	Processing user query
	Estimating local sensitivity value with GAN
	Using local sensitivity to return a differentially private result

	Proof
	Definitions
	Proof
	Value of estimated sensitivity
	Including randomised response
	Implications for differential privacy

	Experiment setup
	Metrics
	Benchmarks

	Results
	Accuracy of answer
	Accuracy of estimated sensitivity
	Accuracy of generated sensitivity
	Bringing it all together
	Parameter choice

	Conclusion
	Discussion
	Limitations
	Future research

	Query Data
	Results Graphs
	Results Tables

