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Abstract

As Bayesian networks are statistical models that are easy to inter-
pret and in which domain knowledge can be included explicitly, they are
well suited for environmental sciences as much domain knowledge is avail-
able and interpretability can lead to interesting new insights. However,
Bayesian networks can take much effort to construct. This workload can
be reduced by drawing their structure from ontologies. This research ex-
plores whether ontologies can help a small forestry company to model
their data in a Bayesian network. It does so by merging two existing
ontologies to create an ontology. This ontology is transformed into the
graph of a Bayesian network. An overview of the structure of methods
making this transformation is given. Apart from combining existing meth-
ods, steps are added to this structure by drawing from the experiences in
creating a Bayesian network in this research. Lastly, further steps in the
development of these methods for small companies are identified.

1 Introduction

Changes in the climate are becoming more apparent around the world. As a
result, efforts increase to bring these changes to a halt. One important way
to do so is reforestation. To reforest efficiently, knowledge of the influences on
growth and survival of trees is crucial. Early research on this topic aims to
describe tree performance as a function of some input variables [20]. However,
the high number of relevant input variables made statistical approaches more
popular recently.

Many popular statistical models have been implemented in forest manage-
ment, such as regression models, random forests and neural networks [42, |52,
87]. However, these models come with some limitations. As is a problem in ad-
vanced statistical models in general, they are hard to interpret [36]. Secondly,
existing knowledge on forest management often cannot be incorporated by these
models [19]. Both issues are addressed by Bayesian networks. A Bayesian net-
work can explicitly incorporate some domain knowledge and interpretation is
easier than in many other models [47].



However, creating a Bayesian network can be quite cumbersome [8]. The
creation of the model structure as well as the conditional probabilities can be
done using domain knowledge, but this is a difficult and time-intensive process
[25]. Instead, data can be used to learn the conditional probabilities, but this
requires a lot of data [2].

Therefore, researchers have been looking at other ways to automate the
construction of Bayesian networks. One way of doing so is exploiting the sim-
ilarities between Bayesian networks and ontologies. Transforming an ontology
into a Bayesian network has been described but is not very well-established [31].
However, as ontologies are becoming available in many domains, this transfor-
mation does hold potential.

This research was done at a company called Land Life Company. Land Life
Company is a small reforestation company. Therefore, this research reflects on
the usability of methods transforming ontologies into Bayesian networks in the
context of environmental sciences and small businesses. However, many of the
conclusions in this research also apply in other domains and bigger companies.

This research aims to answer the following research question:

Can an ontology help a company like Land Life Company model their
data in a Bayesian Network?

This research question was accompanied by the following sub-questions:

What challenges does one encounter when applying existing methods
in creating Bayesian Networks from ontologies?

How can ezisting methods in creating Bayesian Networks from on-
tologies be adapted to become better applicable for companies like
Land Life Company?

For this research, the structure of a Bayesian network was created from two
existing ontologies. These two ontologies were merged into one input ontol-
ogy. A few methods taking this input ontology for transformation to Bayesian
network were compared in this research, of which one was implemented.

From the comparison of these methods, an overarching description of meth-
ods transforming ontologies into Bayesian networks was created. This descrip-
tion covers the methods studied for this research, as well as elements that were
found missing or incomplete in these methods during the implementation of
such a method. Lastly, next steps for increasing usability of these methods in
the professional domain are identified.

The next section will cover the foundations of forestry, Bayesian networks
and ontologies. Section [3| describes the creation of an ontology for this re-
search. The section thereafter will describe methods that transform ontologies
into Bayesian networks and how one of them is applied in this research. Section
describes the results of this process, which are discussed in Section [6} The
last section denotes the conclusions of this research.



2 Theoretical Grounding

This section provides context to this research and introduces the main concepts
used in this research. First, it looks at the research domain in particular and
forestry in general. The second subsection looks into Bayesian networks. Third,
ontologies are introduced.

2.1 Forestry

This research is done at Land Life Company, a reforestation company. Land Life
Company collects data on the trees that they plant. However, not all relevant
data is currently being collected. For some relevant variables, such as weather
and soil data, this can be obtained from online databases. Other variables, such
as data on geography or the flow of water and nutrients through the soil and
plant, are not readily available. Such data can be collected through specialised
sensors or calculated by specialised models.

As many forestry companies, Land Life Company is interested in models
on tree growth and survival. This research will focus on tree growth. Land
Life is particularly interested in how several planting methods they employ,
called treatments, influence plant growth. These treatments are the facets of
tree planting they can most easily control. The treatments of interest for this
research are “Carbon Supplement Use”, “Cocoon Use”, “Shelter Use”, “Mycor-
rhiza Use”, “Irrigation” and “Planting Season”.

Tree growth and performance is known to be influenced by many factors,
such as climate, soil specifics, geography and the planting process [56]. Because
of the number of variables playing a role, research results on forestry tend not to
be easily generalizable. That is an issue for this research as well, as the dataset
currently is sparse in the state space of these variables. As a result of the size of
the state space, most research in forestry focuses on one or a few types of trees
in a limited geographical area, as seen for example in |61, [84].

Another consequence of the number of variables that can play a role in
forestry, is that these are often modelled in statistical models. Although the ear-
liest tree growth and performance models are analytical, describing tree growth
as a function of only a few parameters [20], most tree growth models implement
statistical tools. For example, nearest neighbour models, random forests and
regression models have been used in the context of forestry |28 42} 52} |73]. No-
tably, neural networks were a popular model of choice in forestry in the nineties,
before growing computer power made them more widely applicable and created
the hype that currently surrounds them [43, 45]. A good overview of models in
forest management can be found in [10].

Most statistical models have the downside of being hard to interpret [13].
Also, available knowledge on a domain can generally not be included in these
models |1]. A model that mitigates these challenges is the Bayesian network
|47, |88]. Bayesian networks have been implemented only a few times in forestry



[54, |64]. However, they are quite popular in environmental sciences in general
[86], in which they hold great potential [1].

2.2 Bayesian Networks

Bayesian networks are probabilistic models. They are popular in applications
that need the possibility to reason with uncertainties [46]. Bayesian networks
can be used to model probabilities. Sometimes, these probabilities are used as
part of a decision support system.

In a Bayesian network, the domain is associated with a directed acyclic graph
(DAG) |51} 65]. See Figure [1] and Text box for an example of a Bayesian
network. The nodes, such as “Wind” and “‘Climate” from the graph are the
entities to be reasoned over. Each node is a random variable. This means it
has a collection of values that are discrete, mutually exclusive and collectively
exhaustive. For example, “Wind” takes one of the values “much wind” and
“little wind”. When a continuous variable is modelled in a Bayesian network,
it generally has to be discretized to fit this format.

Nodes are connected through arcs, such as the one between “Wind” and
“Climate”. Arcs indicate a possible correlation between two nodes. An arc goes
from a 'parent’ node to a 'child’ node. However, when a node influences another
node, this does not necessarily imply a causal relation.

In a Bayesian network, two nodes are called independent when changes in
the value of one node do not influence the chances of values of the other node. In
the example of Figure |1} “Rain” and “Wind” are independent: observing that
there is much wind would influence the chances of the climate being wet but
does not change the chance on rain. Independencies are qualitative statements.
These can be discussed with domain experts more easily than the probabilities
involved in a Bayesian network [40].
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Figure 1: The graph of a Bayesian network. This graph forms a Bayesian
network with the equations in text box [2.2] below.

Each node has a conditional probability table (CPT), associated to them.
The CPT’s for the graph of Figure [[] can be found in Text box They



give the probability of the node having a value, given the values of its parents.
From these probabilities, one can calculate any other probability in the model
through inference algorithms [58,[72]. To model Bayesian network and use these
algorithms, tools with a user interface are available, such as GeNle and Hugin.
When ’evidence’ for one of the nodes is entered, for example if the climate is
observed to be wet, this has influence on the probabilities computed from the
network, which now is conditional on the entered evidence.

Prejimate(wet | high pressure A much wind A rain) = 0.8
Prejimate(wet | high pressure A much wind A norain) = 0.4 PTatmospheric pressure(high pressure) = 0.2

Prejimate(wet | low pressure A much wind A rain) = 0.6

Prejimate(wet | high pressure A little wind A rain) = 0.9 Pryina(little wind| low pressure) = 0.2

)
)
)
Prejimate(wet | low pressure A much wind Anorain) = 0.3 Prynq(little wind| high pressure) = 0.3
)
Prejimate(wet | high pressure A little wind A norain) = 0.6
)

Prejimate(wet | low pressure A little wind A rain) = 0.8 Prrain(rain) = 0.2

Prejimate(wet | low pressure A little wind A norain) = 0.5

Text box 2.2} Example of the conditional probabilities of a Bayesian network.

A downside of Bayesian networks is the effort needed to construct them [1].
The construction of a Bayesian network can be divided into three phases [25].
First, the variables of interest have to be identified. Each of the variables has
to have a discrete, mutually exclusive and collectively exhaustive set of values.
Second, the graph of the Bayesian network has to be constructed. In conclusion,
the conditional probabilities have to be assessed for all nodes.

All of three steps can be taken with the help of domain experts. However,
this process is labour intensive and complex [8]. Therefore, ways to automate
(parts of) this process have been proposed. Learning the graph structure of a
Bayesian network and its conditional probabilities can be done from data, if a
suitable dataset is available |46} [65]. In learning the conditional probabilities,
using data also solves the issue that humans generally are not very good at
assessing probabilities [8]. However, to learn a Bayesian network from data,
huge datasets are required [2].

For construction of the graph of a Bayesian network, another option is draw-
ing it from an existing ontology [51]. This could prove to reduce the effort needed
to construct a Bayesian network [31]. This research will opt for this last option.

In creating a Bayesian network, its complexity has to be considered. A high
complexity can be an issue. It can make inference of probabilities computation-
ally expensive [16]. Moreover, highly complex Bayesian networks have many
conditional probabilities, each of which needs to be determined. This requires
more time from domain experts or increasingly bigger datasets as networks get
more complex. As the complexity of the Bayesian network was an issue for this
research as well, some strategies to reduce complexity of a network are discussed




below.
The number of probabilities, ¢ that has to be specified for a node, vy, with
parents v € {v1, .., v}, is equal to:

c=(vo—1)*[Jv(i) (1)
i=1

where v(i) is the number of values for node v;.

For example, the number of probabilities required for “Climate” in Figure
given that each node has 2 possible values, is (2 — 1) % (2% 2% 2) = 8.
From equation [1} it follows that the complexity in a node is exponential to
the number of parents of that node. Therefore, a Bayesian network becomes
complex when some nodes have too many parents. A few intuitive strategies of
reducing complexity can be deduced form this formula. Removing arcs, nodes
or values reduces the number of probabilities in a network.

Another strategy is called parent divorcing [68]. For this strategy, an in-
termediate node is introduced between a node and some of its parents. For
example, in Figure [I] to reduce the number of probabilities required for “Cli-
mate”, a node could be place between “Climate” and its parents “Wind” and
“Atmospheric Pressure”.

However, for such an intermediate node to reduce number of conditional
probabilities it would need fewer than 4 possible values. The intermediate node
thus needs to perform some aggregation over the combinations of possible val-
ues of its parents. This condition can be satisfied by taking a semantically
meaningful intermediate node [89].

2.3 Ontologies

The basis for ontologies lies in both computer science and philosophy. There-
fore, differing views exist on what ontologies are. While some describe it as a
dictionary or catalogue, others view it as a way to model any knowledge [82].
In computer science, ontologies can help to transfer knowledge between systems
or data between databases [23].

An ontology consists of entities. These entities are connected by (directional)
relations. A relation is sometimes seen as a property of either of the entities
connected. The entities are often presented as nodes in a graph, while the rela-
tions are presented as links between those nodes. To represent actual examples
of the entities of an ontology, ontologies can contain instances of entities. An
example of an ontology can be found in Figure

Often, entities in an ontology are structured through a particular relation,
the "is-a”-relation between parent- and child-nodes. Child-nodes inherit be-
haviour, such as relations to other entities, from their parent-nodes. These
”is-a”-relations endow a taxonomic structure on ontologies, stemming from one
or a few root entities. Therefore, these relations are also known as taxonomic
relations [44]. An entity that does not have any children is called a leaf-node.
An entity that does not have any parents is called a root-node.



In the ontology in Figure [2| the taxonomic relations are blue. Every entity
is related to the root, “Thing”, through these taxonomic relations. Apart from
these relations, two other types of relations exist: “influences” in brown and
“has instance” in purple. Although ontologies often have taxonomic relations
as well as other types of relations, they do not have to have both.
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Figure 2: Example of the graph of an ontology. Different types of relations have
different colours.

Many domain ontologies have been developed for many different purposes.
To be able to combine these different ontologies, upper ontologies were intro-
duced . An upper ontology is an ontology which other ontologies can build
upon. It contains a root node with a few children and no domain specific enti-
ties. In building upon an upper ontology, entities can inherit from the entities in
the upper ontology, thereby bringing some structure to the ontology. Building
an ontology on top of an upper ontology makes it easier to integrate it with
other ontologies built on the same upper ontology.

No dominant upper ontology exists yet . A few popular upper ontologies
are Basic Formal Ontology (BFO), Descriptive Ontology for Linguistic and Cog-
nitive Engineering (DOLCE) and Suggested Upper Merged Ontology (SUMO)
81]. This research will use SWEET, an upper ontology developed by
NASA for environmental sciences [22].

The information in an ontology can be stored using the Web Ontology Lan-
guage (OWL), written in XML. Other languages exist, but OWL is a popular
option. Most of the upper ontologies are available in OWL . Therefore, the
ontologies used in this research were stored in OWL.



3 Ontology Creation

In order to research methods transforming ontologies into Bayesian networks,
a domain ontology had to be obtained. These methods generally assume such
an ontology exists. However, in the context of small companies like Land Life
Company, this is often not the case. Therefore, this section goes in depth on
the creation of an ontology for this research.

The first subsection describes how an ontology was created from existing
ontologies. The second subsection describes the resulting ontology. The third
subsection contains a discussion of observations made during this process.

3.1 Ontology Creation

Ontology construction can take up much work [18]. Therefore, many methods
to assist in this process have been developed. These can be roughly divided into
two categories |18]. An ontology can be created by merging existing ontolo-
gies. Alternatively, an ontology can be created from other existing information
sources.

For this research, a database containing domain information was made avail-
able by Land Life Company. However, this database does not model the com-
plete domain, a common issue in creating ontologies [3|. Therefore, this research
opted to use existing ontologies as an alternate information source.

Although some ontologies exist that model parts of the domain of this re-
search, no ontology was available that described the complete domain in the
right granularity. Therefore, a new ontology was created from the existing par-
tially relevant ontologies. As ontologies often cover one disciple or research field
[67], ontology merging can be expected to be part of many interdisciplinary
projects aiming to create a Bayesian network from an ontology.

The ontologies chosen for this research are an ontology of soil properties and
processes [26], which implements the SWEET upper ontology [22], and the Plant
Experimental Conditions Ontology from Planteome [17], which implements BFO
[81]. These ontologies were found to map relevant and complementary parts of
the domain. Also, these ontologies contained enough entities to model the do-
main in sufficient detail, while still being manageable in size. Moreover, these
ontologies contained many relations between concepts other than the taxonomic
structure (”is-a” relations), which are necessary to create a Bayesian network
as will be explained in section [£.1]

Ontology merging is a field of research in its own right [14, 27, |55]. The first
step to merge ontologies is to match similar entities of the input ontologies [80].
These matches are stored in an ontology mapping. This mapping can then be
used to create a single ontology covering all entities in the input ontologies.



Many tools have been made for ontology merging [14} 70, 80]. However, often
they are not maintained after an initial research phase |70]. More importantly,
these tools required much time to gain the expertise with the tool required to
avoid errors [24]. Therefore, the ontologies were merged manually.

In ontology merging, similar entities are mapped onto each other. This pro-
cess does not generate non-taxonomic relations between entities of the different
ontologies. These relations can be expected to exist in the domain though. In
this research, they were added through ontology evaluation with domain ex-
perts, which will be discussed in Section [3.3]

3.2 Results of Ontology Creation

The ontology that was a result from merging the input ontology implements
the format of the SWEET upper ontology. This structure, taken from the
ontology of soil properties and processes, was chosen over the upper ontology
of Planteome, BFO, even though BFO is a more expressive and popular upper
ontology, because the implementation of BFO was done poorly. The Plant
Experimental Conditions Ontology had many entities that were not placed in
the structure provided by BFO but were children of newly added root entities.
Therefore, it was not possible to benefit from this structure.

SWEET is built around a root entity, “Thing”, which has 6 children: “Hu-
man Activity”, “Phenomena’”, “Process”, “Property”, “Function” and “Sub-
stance”. For this research, no relevant children of “Function” were identified.
An overview of the root entities and the taxonomic relations connecting them in
the merged ontology can be found in Figure|3] The full ontology is stored in {this
linked repository| ( https://github.com/tjanmaat/Thesis/tree/master/Ontologies
), named “Figure3,14and15_Merged_Ontology.owl”.
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Figure 3: An overview of the root entities of the ontology created for this
research. This figure was made using Protege.
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The merged ontology has 155 entities that were connected through 319 re-
lations. To give some more insight in the structure of the ontology before
discussing evaluation of the ontology, two examples will be discussed in further
detail below.

The first example elaborates on how soil processes have been modelled in
the merged ontology. Soil processes are any processes that happen in the soil.
This involves all children of “Soil Process”, which is one of the nodes shown in
Figure[3] Figure[I4]in Appendix [A] contains all these children and the relations
they have to other entities.

In this figure, one can see that any “Soil Process” is performed by “Soil”
and influenced by the “Soil Structure”. The direct children of “Soil Process”
do not have any other relations than taxonomic relations. These entities were
added to bring more structure to the ontology. The leaf-nodes in this ontology
do have many relations other than “is-a”-relations. These are connected with
entities relating to the weather, such as “Wind” and “Rain”, or properties of
the soil, such as “Soil PH” and “Volumetric Soil Moisture Content”, through
“influences”- and “has impact on”-relations.

The different relations, which can be seen in the legend of Figure [14] were
inherited from the ontology of soil properties and processes [26]. No clear def-
inition for these relations was given. In later versions of the ontology, all non-
taxonomic were turned into “influences”-relations, a relation indicating that an
entity influences another entity, as these would all be treated similarly by the
methods turning the ontology into a Bayesian network.

Although from Figure [I4] it is only clear for “Soil Process” and its children
how they relate to the entities shown in Figure 3] all the other entities are also
children of some other entity displayed there. These taxonomic relations were
omitted from Figure [14] to reduce its complexity.

One might notice that the “influences” relations going from “Soil Structure”
to “Soil Nutrient Immobilization” is redundant, since ”Soil Structure” influences
its parent “Soil Process” directly. These redundant relations were removed in
later versions of the ontology.

The second example looks into the parts of the water balance that are mod-
elled in the ontology. The water balance describes how water flows through a
system. In this case, that system is the soil and plant. The example, which can
be found in Appendix [A] Figure is not taken from the ontology that was the
direct result of ontology merging, but from one in which the domain experts’
evaluation has been processed. This choice does not influence the insight it gives
in the ontology and presents the reader with a more accurate description of the
processes involved in the example.

Again, all entities in Figure [15] are children of some entity in Figure [3] The
figures have the entity “Process” in common. “Physical Plant Property” and
“Physical Soil Property” are children of “Physical Property” and “Chemical
Substance” is a child of “Material Entity”. Entities can have multiple parents,
like “Plant Water Process” and “Soil Moisture Infiltration” do. These entities
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inherit relations from all their parents.

The soil moisture, called “Volumetric Soil Moisture Content” in Figure [15]
contains information on the amount of water in the soil. This is impacted by the
amount of water infiltrating the soil, “Soil Moisture Infiltration”, the amount
of water evaporating from the soil, “Soil Evaporation”. The amount of water
transpiring from the plant, “Plant Transpiration” influences “Volumetric Soil
Moisture Content”. This “Plant Transpiration” is impacted by the amount of
“Photosynthesis” as well as the “Wind”. Two other weather entities, “Air Tem-
perature” and “Air Humidity” influence “Plant Transpiration”, as does “Shelter
Use”. “Photosynthesis” is also impacted by “Plant Available Solar Radiation”,
a measure of the amount of sunlight that reaches the plant. “Photosynthesis”
also has two process inputs, “Plant Available Soil Moisture” and “Air Carbon
Dioxide Content”. “Plant Available Soil Moisture” is the fraction of the “Vol-
umetric Soil Moisture Content” that the plant can reach, which can be limited
by the plants “Root Volume”.

These highlighted entities from Figure form a loop. Following relations
from “Volumetric Soil Moisture Content”, via “Plant Transpiration”, “Photo-
synthesis” and “Plant Available Soil Moisture”, one can end up back at “Vol-
umetric Soil Moisture Content”. This does not pose any issues in an ontology
but can do so in transforming it to a Bayesian network. This will be discussed
further in sections B and [6.11

Some parts of the water balance, such as the influence of deep peculation,
capillary rise, run-on and run-off, were not modelled in this version of the ontol-
ogy. These were omitted because their influence on the system was estimated
to be insignificant.

3.3 Ontology Evaluation

The constructed ontology was evaluated. The evaluation’s main purpose was
adding any relations that missed and finding out whether the merged ontology
represented the domain well. Also, evaluation by domain experts helped reflect-
ing on the ontology merging process [24]. Moreover, incorporating the feedback
on the relations and entities mapped in the ontology increased the chances of
any later observations reflecting modelling errors in the Bayesian network graph
construction and not misrepresentations of the domain in the ontology.

Four kinds of ontology evaluation can be identified. Methods in ontology
evaluation can compare the ontology to a golden standard or to data. Alterna-
tively, they can evaluate it based on its usage or have users evaluate it explicitly
[9]. Most evaluation methods rely partly of fully on the former two categories.
Such comparison through metrics from information retrieval such as precision
and recall are particularly popular [50]. However, for this research, no golden
standard or sufficient dataset was available. Therefore, evaluation was based on
its usage in this research and explicit evaluation by domain experts.

A few methods for ontology evaluation with domain experts exist |38} |59,
85]. However, none of these were found to be suitable for this research. Al-
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though tailored for usage by domain experts, the tools by Gangemi, Catenacci,
Ciaramita & Lehmann, called oQual [38], and Lozano-Tello & Gomez-Perez,
called OntoMetric , were built around metrics that can be used for ontology
comparison, but were less suited for evaluation of a single ontology. Another

evaluation method, based on peer-reviews, relied on usage of the ontology out-
side this research .

The ontology was evaluated by three domain experts from Land Life Com-
pany in separate semi-structured interviews. The domain experts were intro-
duced into the research and ontologies. They were explained how the merged
ontology was created. Thereafter, they reviewed the perceived correctness, com-
pleteness and level of granularity of parts of the ontology. These ontology parts
were visualised with Protege OntoGraf . Each part focused on one of the
treatments mentioned in section 2.1 and how its influence on tree performance
was modelled. As an example, the model fragment for “Mycorrhiza Use” can
be found in Figure @l The other model fragments can be found in Appendix [B]
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Figure 4: A graphical representation of part of the merged ontology modelling
the influence of “Mycorrhiza” on “Root Growth”, which is a child of “Tree
Growth”.

For each of the model parts, domain experts were asked the following ques-
tions:

e Does this graph capture the relation between the treatment and tree per-
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formance well?
e Are there any other ways the treatment and tree performance are related?

e Does the depicted relation between the treatment and tree performance
skip some steps?

The domain interviews with the domain expert were done over Google Hang-
outs. These sessions were recorded an can be found in this linked repository (
https://github.com/tjanmaat/Thesis/tree/master /Interviews/Ontology Evaluation

Conform the goal of the evaluation, the interviews with domain experts
concentrated on improvements to structure of the ontology. The domain experts
had quite some remarks on the ontology. Most parts of the ontology were
restructured as a consequence of the interviews.

The ontology resulting from this evaluation contains 181 entities that are
connected through 404 relations. The evaluated ontology has more relations
per entity. This reflects that the domain experts added more detail to some of
the processes modelled in the ontology. The full ontology is stored in this linked
repository ( |https://github.com/tjanmaat /Thesis/tree/master /Ontologies| ), named
“Figure4,16_Evaluated_Ontology.owl”.

To give more insight in how the evaluation changed the ontology, the chil-
dren of “Soil Process” in the evaluated ontology are visualised in Figure [16| in
Appendix [A] for comparison with the first example of subsection

One clear difference between Figures [I4] and [I6]is that the latter shows more
relations. This can partly be explained by the higher relation density. Particu-
larly the soil properties relevant to plant growth and the relations between soil
processes and plant roots have been modelled in more detail in the evaluated
ontology.

Two new soil processes have been added to the ontology fragment. “Soil
Erosion” and “Soil Moisture Infiltration” were identified as missing from the
merged ontologies. Two other processes, “Soil Nutrient Immobilization” and
“Soil Structural Change” were removed. The domain experts suggested that
adding “Soil Nutrient Content“ and “Soil Nutrient Availability” to the ontology
was a better way to model “Soil Nutrient Immobilization”. The influence of
“Soil Structural Change” on the entities was deemed insignificant by the domain
experts, as these changes happen on a much larger time scale.

The changes between the merged and evaluated ontologies become clearer
from focusing on the relations of one entity, “Root Respiration”. The “Soil
Oxygen Deficiency” has been replaced with “Soil Oxygen Concentration”. The
influence of “Soil Structure” has been made more specific, by replacing it with an
influence by its child “Soil Porosity” and influences by “Soil Temperature”, “Soil
Salinity” and “Soil Biotics Content” have been added. “Root Respiration” does
not influence “Plant Growth” directly anymore, but its child “Root Growth”.
Its influence on “Soil Oxygen Concentration” and “Plant Water Uptake” were
removed.
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3.4 Observations on Ontology Creation

This research opted for manual ontology merging over using a method to do so,
as existing methods were found to require too much time to get acquainted to.
This observation is supported by a survey among ontology merging researchers,
that identified “Define good tools that are easy to use for non-experts” as one
of the future challenges in ontology merging [70]. In a commercial context, the
required time-investment to work with a tool can be expected to factor in on
the decision to use merging tools. This could be an explanation for the low
adoption rates of merging tools [29)].

The example of section indicates that the ontology was changed thor-
oughly as a result of the ontology evaluation. For some part, this was to be
expected. Relations between entities originating from the different ontologies
were not added through ontology merging. Domain knowledge was needed to
fill this knowledge gap between the two merged ontologies.

However, some changes did not stem from this knowledge gap. The exist-
ing ontologies and domain experts gave conflicting information in some cases.
These issues sometimes rooted in modelling preferences, such as removing “Soil
Nutrient Immobilization” or indicated an error by the ontologies or the domain
experts, such as the influence of children of “Soil Structure” on “Root Respira-
tion”. In this research, the domain experts’ opinions were valued higher than
that of the merged ontologies.

Even though domain experts needed to invest time in completing and check-
ing the ontology, ontology merging is estimated to still have saved considerable
time in creating an ontology. It provided a very complete starting point for
discussion about the ontology. It also streamlined discussion by providing a
common lexicon to researcher and domain experts and a clear visualisation of
the aspired end result to the domain experts.

No suitable method for ontology evaluation was found. Most existing method
aim at comparing an ontology to a golden standard, data or another ontology.
For this research, a method helping domain experts evaluate (parts of) a model
by comparing it to their domain knowledge was needed. Such a method was
not found in ontology evaluation, but one might exist in other fields of science
for similar problems.

An issue in creating part of the ontology manually is that this might be
done with the structure of the final Bayesian network in mind. Having the
Bayesian network in mind when making modelling decisions in creating the
ontology, might influence the outcome. Whether this effect exists and what its
consequences are requires more research.
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4 Bayesian Network Creation

This section describes the process of creating a Bayesian network from ontolo-
gies. It first describes different methods to make this transition and their general
design. The second subsection shows the method that has been used in this re-
search in more detail as well as the way results were evaluated.

4.1 Constructing a Bayesian network from an Ontology

As both Bayesian networks and ontologies draw from a graph structure, re-
searchers have tried to exploit their similarities. For this research, Bayesian
networks were created from an ontology. The similarities between the graph
structures make this a very intuitive idea. As a result, some researchers have
created Bayesian networks from ontologies with little or no elaboration on how
it was done [5} |15} 93}, |94].

Fortunately, more rigorous work on the creation of Bayesian networks from
ontologies exists as well. Research has been focused on developing new methods
that aim to create a Bayesian network from an ontology [4} 21}, 30, (34} |48, 53]
57,163, |71, [92]. From these methods, the ones described by Fenz, Tjoa & Hudec
[34], Helsper & Van der Gaag [48] and Laskey, Cost & Janssen [57] have been
studied most extensively: the method by Fenz et al. has been used in informa-
tion services |78] and security [33], the one by Helsper & Van der Gaag in health
care [49] and meteorology 6] and the one by Laskey et al. in the military [11}[12].

All methods aiming to create a Bayesian network from an ontology follow the
same basic structure as the construction of Bayesian networks in general. They
consist of the three steps discussed in Section First the relevant entities
are selected from the ontology. Second, the structure is determined. This is
done by turning the entities from the ontology into nodes and the relations and
properties into arcs. Lastly, the probabilities are determined. This structure
is depicted graphically in Figure 25 in Appendix [C] using a Process-Deliverable
Diagram (PDD) [91].

The three steps are explained in more detail below. This explanation uses
a fragment of the ontology used for this research as an example. This ontology
fragment can be found in Figure [

In the first step, the entities from the ontology that are relevant to the
Bayesian network are selected. In entity selection, there is a trade-off between
expressiveness and complexity of the model [6, [74]. The Bayesian network
should contain as much information as possible, while still having a manageable
size. This trade-off is explored further in section [6.2]

Entity selection is based on criteria that differ per method. One criterion
common to all methods is that entities have to fall in the scope of the domain.
In the example of Figure o the entities “Wind Direction” and “Wind Velocity”
were found to fall out of the scope of the research. The differentiation between
these two facets of wind would make the model more complex, without adding
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much expressiveness. “Wind Direction” and “Wind Velocity” thus also serve as
an example of the trade-off between expressiveness and complexity.
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Figure 5: A fragment of the ontology used for this research.

Some methods use the structure of their ontology to select relevant entities
more efficiently [6, [31]. For example, selecting a parent entity, to indicate that
all its child entities are relevant. In the example of Figure |p| first selecting
“Meteorological Property” and then deselecting “Wind Direction” and “Wind
Velocity” would indeed increase efficiency over selecting the relevant children of
“Meteorological Property” individually.

Devitt et al. choose an alternative to omitting irrelevant entities. They in-
troduce an upper ontology with which they extend their ontology. This allows
them to indicate which entities are relevant. It also allows them to draw from

this structure in the graph creation .

As mentioned in section most ontologies are built around a structure
of 7 taxonomic relations. However, this structure is not present in Bayesian
networks. Most authors seem to omit this structure from their network in their
entity selection or have ontologies that do not have this taxonomic structure
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. In these papers, selected entities are related through non-taxonomic
relations, some of which might be inherited from their parents. Therefore, non-
taxonomic relations have to exist in the ontology. Other authors do exploit this
taxonomic structure by using a variation on Bayesian networks that matches
the hierarchical structure of ontologies better .

In the ontology in Figure |o| parent entities indeed do not have any non-
taxonomic relations, apart from the impact “Climate” has on “Meteorological
Property”. This “has impact on”-relation was replaced with direct relations
from “Climate” to the children of “Meteorological Property”. The non-leaf en-
tities were not removed from the ontology though, as they offered some grouping
to the ontology that made it more readable. In turning the ontology into the
graph of a Bayesian network, these entities did become redundant and were
omitted.
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Figure 6: The fragment shown in Figure o] after entity selection.

Next to entities having to fall in the scope of the domain, several methods
introduced additional selection criteria. Helsper & Van der Gaag require that
entities have to be measurable, thereby making sure it is possible to obtain all
CPT’s . For the example in Figure [5, “Soil Temperature” was removed, as
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there was no data available for this entity. A fragment of the resulting ontology
can be found in Figure [6}

Fenz makes sure no 'redundant’ relations exist [31]. By this, he means that
if entity A is related to entity B and entity B is related to entity C, no relation
between A and C is allowed as this would be redundant through transitivity.
This criterion was not used for this research though, as such a relation is possible
when A influences C through B as well as directly.

An example of such relations can be found in Figure[f] between “Wind”, “Air
Temperature” and “Plant Transpiration”: “Wind” influences “Plant Transpi-
ration” directly, as well as through “Air Temperature” in the ontology. Indeed,
when the air temperature does not change, but the wind around a plant gets
stronger, that plant will generally transpire more. Alternatively, when the wind
gets stronger and this influences the air temperature, this has an effect on the
plant transpiration as well. Both relations are thus valid.

An overview of all criteria for entity selection can be found in Table [T}

Criterion Name | Description

Domain Scope Select entities and relations relevant to the application domain.

Time Scope Select entities and relations relevant to the application time scale.
Measurability Select entities for which data is obtainable.
Complexity Select entities and arcs such that the ontology complexity is limited.

Table 1: A table describing the different selection criteria that exist for methods
transforming ontologies to Bayesian networks. Note that ”Time Scope” and
”Complexity” are not explained in this section, but in sections [6.1] and [6.2}

In order to turn the entities from the ontology into the random variables
needed for a Bayesian network, each relevant entity needs to have a collection
of values. Some authors obtain these by involving domain experts |21} |48].
Others make assumptions on the existence of instances or related entities for
each entity, together forming a mutually exclusive and collectively exhaustive
set of possible values 31} [53]. Note that ontologies rarely have instances that
form such a set. Therefore, these would often still have to be added by domain
experts.

Entities that represent continuous variables, have to be discretized. For ex-
ample, in Figure[6] “Air Humidity” and “Plant Transpiration” do not naturally
have a mutually exclusive and collectively exhaustive set of possible values and
have to be discretized. Discretization is a well-established field of research in
data mining and many discretization algorithms exist [39]. The choice in dis-
cretization algorithms can impact the accuracy of the Bayesian network [35]
39).

For Bayesian network construction, specialised discretizers exist that con-
sider the data as well as the graph of the Bayesian network [37]. However, for
Bayesian networks in environmental sciences discretization by domain experts
is more common than the use of algorithms [1]. An analysis of discretizers for
Bayesian networks in environmental sciences can be found in Ropero, Renooij
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& van der Gaag [77].

The second step is graph creation of the Bayesian network. First, the entities
are turned into nodes. To connect these nodes, the relations from the ontology
are turned into arcs. The direction of an arc can generally not be inferred from
the ontology. This can be solved through involvement of the domain expert |21}
48]. Other authors assume that arcs in the Bayesian network always have the
same direction as the relation they represent [31}, 53} 92].

Most methods help in the transition from entities and relations to nodes
and arcs by providing guidelines on how this should be done. Some methods
recognise that this can take up much repetitive manual work and provide the
user with automated support for this process |32} |57]. However, these tools were
not applicable to this research as they were either not maintained [32] or did
not result in a Bayesian network, but in a variation on Bayesian networks [57].

After the transformation to nodes and arcs, the method by Helsper & Van
der Gaag checks the graph for correctness and fix it if necessary [48]. The
graph is checked for cycles and correctness of the independencies. In the ex-
ample of Figure [6] a cycle between “Atmospheric Pressure”, “Wind” and “Air
Temperature” occurred. This was solved by removing the arc between “At-
mospheric Pressure” and “Wind”, for reasons discussed in section [6.1] The
resulting Bayesian network graph is displayed in Figure [7]

Next, Helsper & Van der Gaag check if the resulting graph structure is too
complex, they follow up on this step by iterating between reducing complexity
and checking the graph again [48]. Although this did impact the Bayesian net-
work graph fragment of Figure [7] this will not be discussed in this section, but
in Sections [§ and

The last step in creating a Bayesian network is determining the conditional
probabilities. This is done differently by the different methods. Some authors
choose not to include it in their method and refer to established ways of eliciting
the probabilities [21] [48] |53]. Examples of these established routes are eliciting
them from domain experts [76] or drawing them up from data [65].

Alternatively, the probabilities can be contained in the ontology. Some au-
thors choose to extend OWL such that conditional probabilities can be added
each relation in the ontology |71} |92]. The probabilities also can be added to
the entities in the ontology without any formal extension by adding them as
“weights” to entities [31]. However, both these approaches come with limita-
tions as not every CPT can be obtained through these methods. To tackle this
problem, Laskey et al. proposed an OWL extension that facilitates including
more complete probabilistic information [57].

Obtaining the CPT’s of a Bayesian network can be very challenging, es-
pecially when no proper dataset is available [90]. Although eliciting CPT’s is
integral to creating a model that can be used for probabilistic reasoning, time
constraints forced this research to focus on entity selection and graph creation.
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Figure 7: The model fragment from Figure [] as a graph of a Bayesian network.

4.2 Research Method

For this research, a variation on the method described by Helsper & Van der
Gaag was implemented . It is described graphically in Figure

To apply the method by Helsper & Van der Gaag in this research, it was
adapted slightly. Helsper & Van der Gaag place the task “Add Values to En-
tities” before the single additional selection criterion “Remove Unmeasurable
Variables”. However, for this research it was more efficient to move “Remove
Unmeasurable Variables” before “Add Values to Entities”, to have to add val-
ues to fewer entities. As this efficiency was expected to hold also outside of
this research, the overarching method in Figure [25] follows the order used in the
research.

Some cycles were removed in the “Fix Graph” section. This will be elab-
orated on in section An issue related to cycles is the role time plays in
the method. Time ended up impacting the way the scope influences the entity
selection, which also will be explained in section [6.1

Helsper & Van der Gaag choose not to include obtaining the probabilities
for the Bayesian network in their method but refer to established methods for
doing so. Therefore, the last step, “Probability Learning”, is not part of their
method.
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Figure 8: A PDD of the method described by Helsper & Van der Gaag .

Although some alterations were needed to apply the method by Helsper
& Van der Gaag in this research, it was still chosen over the other available
methods as these other methods were less complete. All methods contain the
core tasks, turning entities and relations into nodes and arcs. However, none
of the other methods checks the complexity of the Bayesian network. Some
methods do not mention checking the Bayesian network at all, which could lead
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to erroneous networks. Also, most methods miss selection criteria apart from
“Domain Scope Selection”. This could hurt usability of the Bayesian network,
for example by including nodes for which no probabilities can be obtained.

Adding these selection- and checking steps to these methods in order to ap-
ply them was possible. However, the core tasks are exactly the same as the
method by Helsper & Van der Gaag [48]: entities are turned into nodes and
relations are turned into arcs. In this sense, the method by Devitt et al. [21]
and BnTab [31] are equivalent to the method by Helsper & Van der Gaag and
would therefore give exactly the same result. Two other methods, BayesOWL
[71] and OntoBayes |92] are also equivalent to these methods when focusing on
DAG construction. The only methods that would not yield the same results,
do not return a Bayesian network, but a variation on Bayesian networks [4} |53,
57). For this reason, this research only implemented the method by Helsper &
Van der Gaag.

The resulting artefact of this research, the graph of a Bayesian network,
had to be evaluated. However, this is a non-trivial task [21]. Validation of
Bayesian networks is often done by comparison with a dataset or by domain
experts commenting on probabilities inferred from the network [74]. This was
infeasible in the scope of this research as no sufficient dataset was available and
the model was not quantified.

A framework for evaluation of Bayesian networks without data is described
by Pitchforth & Mengersen [74]. However, this framework is tailored to evalua-
tion of complete Bayesian networks, not just the graph. Therefore, only part of
the framework was applicable to this research. Below, the forms of validation
that were checked in this research and the questions that related to them are
given:

e Nomological Validity: Does the Bayesian network graph fit within forestry?

e Face validity: Does the Bayesian network graph match the domain experts’
expectations? Is the model applicable outside of Land Life Company?

e Content validity: Are any nodes or arcs missing from the Bayesian network
graph?

Before asking the questions derived from the framework by Pitchforth &
Mengersen, the domain experts got a brief introduction into Bayesian networks.
After this introduction, they were asked to validate the structure of the network.
This was done by focusing on particular nodes. For each selected node, the
following questions were asked:

e Do other nodes in this graph directly influence this node?
e Is the influence of one the nodes influencing this node negligible?

e Are the conditional probabilities given here obtainable?
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These questions were used in semi-structured interviews with three domain
experts from Land Life Company. These were the same domain experts that
evaluated the ontology for this research. However, as a few months had passed
since this evaluation, this re-use of domain experts is not expected to have
influenced the results. The constructed Bayesian network graph was shown using
GeNle. The researcher took notes of these evaluations, which are summarised
in Section Bl

* @ AirOxygenConten
*® SoilSalinity t

[’. RoolRespiration l

Y& PlantRespiratio

I

l' @ SoilTemperature
. ’
+ @ PlantAvailableN
RootVe
T
*® SoilOxygenConce = -
L oilDxygenContan...
*® AirCarbonDioxid ; -
eContent @ SolarRadiation @ PlantDamage
form ] "8 Artenperars
*® AtmosphericPres
awe [om ]

*® PlantNutrientup *® PlantGrowthProc
take ess

]
3
%
3
oy
o
T
@

@ PlantGrowth |

['.. PlantPartGrowth ] *® PlaniTypeGrotn |

o armary_| 8 Soteporten

* @ PlaniTranspirat "® SoilVolumetricM * @ PlantAvailableS
lon £ Iptak = aistureContent oilWaterContent

+
| I

*® PantWaterNeed &= e

v = by(Subclass some)
w = has indnidual

+ = has subclass

» — hasimpactOn(Subclass some)

v = HasProcessOutput(Subclass some)
v Infuences{Subclass some)

v InfuencesSymetncal(Subclass some)

v — imvobvedin{Subclass some)

+ = |sProcessinputOfi Subclass some)

v — panOfiSubclass some)

Figure 9: A fragment of the ontology used for this research.

5 Results of Bayesian Network Construction
The adaptation of the method by Helsper & Van der Gaag described in subsec-

tion [4:2 was applied to the ontology described in subsection [3.2] This section
first describes the results from this process. Second, this section describes the

23




results from evaluation of the Bayesian network with domain experts.

5.1 Bayesian Network Creation

The first two tasks in the method, “Identify Scope” and “Obtain Ontology”,
have been described in sections and [3] respectively. The resulting ontology
had 181 entities that are connected through 404 relations. The example used
in Section [3] “Soil Process” and its children, will fail to work as an example in
this section. Although an example from this research was used in Section {4}, this
section gives a new example to offer more insight in the results of this research.
This example focuses on “Plant Growth” and the entities that influence it. The
ontology of this example after ontology evaluation can be found in Figure [9]

The next task is “Entity Selection by Scope”. At this point in the research,
most entities in the ontology fell in the scope, as the ontologies used for ontology
merging were selected for being relevant to the research domain. Also, the evalu-
ation by domain experts filtered out some irrelevant entities. Therefore, this step
did not have much effect on the ontology in this research: the resulting ontology
had 173 entities and 389 relations. This ontology is stored in this linked repos-
itory| ( https://github.com/tjanmaat/Thesis/tree/master/Ontologies| ), named
“Scope_Selected _Ontology.owl”. The task “Entity Selection by Scope” can be
expected to have more effect when the ontology is not obtained through ontol-

ogy merging.

A task that had more impact on the ontology structure was “Remove Un-
measurable Variables”. This slimmed the ontology down to 58 entities with
119 relations between them. The example of Figure [ after this pruning can
be found in Figure [I0] The full ontology is stored in [this linked repository
( https://github.com/tjanmaat/Thesis/tree/master/Ontologies| ), named “Fig-
urel0_Measurable_Selected_Ontology.owl”.

Although all non-leaf entities in the taxonomic structure of the ontology
were found to be unmeasurable, this ontology did still contain irrelevant non-leaf
entities, as explained in Section These made the ontology better readable
and were omitted when making the graph of the Bayesian network. Without
non-leaf entities and taxonomic relations, the ontology was restricted to 26
entities and 58 relations.

In removing unmeasurable entities, the structure of SWEET, the upper on-
tology that was discussed in section was used. All children of particular
entities from the upper ontology, namely “Activity”, like “Planting Trees” or
“Managing Soil”, and “Substance”, like “Tree” or “Leaf”, were pruned, as these
were unmeasurable. Operationalisation of an activity or substance to be able to
measure them would have led to measurement of a property of that substance.
For example, “Managing Soil” could have been measured by assessing whether
the soil management technique carbon supplements were used. However, this
was included in the network in the property “Carbon Supplement Use”. This
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property was kept in the ontology, but the activity “Managing Soil” was omit-
ted.

Another example of entities that were classified as not measurable were “Soil
Process” and its children. These processes could have been operationalized
as a function of appropriate properties. However, no suitable data for these
properties was readily available. For example, “Soil Moisture Infiltration” can
be measured by the amount of water infiltrating in the soil. This data can be
calculated , but this required an extensive model of the water balance.

When an entity was pruned, “influences”-relations were drawn from all en-
tities that influenced the pruned entity to all entities that were influenced by
the pruned entity, thereby maintaining the information relevant to the Bayesian
network. For example, in removing “Soil Temperature” from the graph in Fig-
ure 0] an “influences” relation was drawn from “Air Temperature” to “Root
Respiration”.
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Figure 10: The fragment of Figure [J] after entity selection.

The next step was to add values to the entities. To limit complexity of the
network, entities were equipped with at most 3 qualitative values. For example,
“Rain” was given the values “little rain”, “medium rain” and “much rain”. This
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low number of values was necessary as complexity proved to be a problem in
this research. Complexity is discussed in more detail in Section [6.2

The decision to limit the number of values per node reduces expressiveness of
the model. In particular “Soil Type”, “Climate” and “Tree Genus” are entities
whose influence is not easily aggregated into three categories, but that do in-
fluence many entities and therefore contribute significantly to the complexity of
the model. This issue can be circumvented by limiting the model to a particular
soil type, climate zone and tree genus.

The ontology contained a few cycles, such as the influence “Plant Damage”,
“Plant Growth” and “Stem Diameter” have on each other. These were removed
by reversing the arcs that were estimated to represent the weakest correla-
tion. Thereafter, the ontology was ready to be redrawn as a Bayesian network
graph. This graph can be found in Figure[T] It is stored in [this linked reposi-
tory| ( https://github.com/tjanmaat/Thesis/tree/master /Bayesian_Networks| ),
named “Figurell Networkl.xdsl”.
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Figure 11: The graph of a Bayesian network created in this research. The nodes
are coloured by sub-domain: treatments are pink, nodes relating the climate are
yellow, soil-related nodes are orange, water-related nodes are blue and nodes
relating to the plant are green.

Although the average number of parents per node, called the in-degree, of
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the Bayesian network graph was not very high at 2.23, it did have high com-
plexity. Many of the arcs were concentrated around two nodes, “Plant Growth”
and “Soil Moisture Content”, as most of the processes that influenced these
nodes were not easily measurable and therefore omitted in the task “Remove
Unmeasurable Variables”. “Plant Growth” and “Soil Moisture Content” had
respectively 12 and 15 incoming arcs. This meant the Bayesian network needed
~ 107 conditional probabilities to be filled in. Therefore, the complexity of the
graph had to be reduced.

A few ways to tackle this have been discussed in section 222} As par-
ent divorcing adds semantically meaningful nodes, this would result in rein-
troducing nodes that were found to be irrelevant or hard to measure. Also,
the number of values per node was limited already. Therefore, complexity re-
duction initially focused on removing nodes and arcs. Assuming that some
soil-related variables and damage to a plant had negligible influence on plant
growth and removing all weather effects by assuming this is determined by the
climate reduced the graph to 12 nodes and 16 arcs. This left a graph with
average in-degree 1.33 and 1166 conditional probabilities to be determined.
This graph can be found in Figure It is stored in [this linked reposi-
tory| ( https://github.com/tjanmaat/Thesis/tree/master/Bayesian_Networks) ),
named “Figurel2 Network2.xdsl”.

StenDiarreter

Figure 12: The graph of a Bayesian network from Figure [[T]after removing some
nodes to limit complexity.

The low number of nodes that were left in this graph severely limited the
expressiveness of the Bayesian network. Therefore, another complexity reduc-
tion technique was tried on the network of Figure 0] A new ontology was
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made that contained some entities that were originally omitted for being too
hard to measure. For this ontology, entities for which conditional probabilities
were not available in the dataset accessible to Land Life Company but were
likely to exist in literature were taken as being “measurable”. This ontology
can be found in Figure in Appendix It is stored in 'this linked repos-
itory, ( https://github.com/tjanmaat/Thesis/tree/master/Ontologies| ), named
“Parent_Divorced_Ontology.owl”.

This ontology resulted in a graph that had 41 nodes and 78 arcs. It needed
1970 conditional probabilities, had an average in-degree of 1.90 and a maximum
in-degree of only 5. This graph can be found in Figure in Appendix
It is stored in this linked repository| (|https://github.com/tjanmaat/Thesis/tree
/master/Bayesian_Networks) ), named “Figurel8_Network3.xdsl”. This Bayesian
network graph was used for domain expert evaluation.

The Bayesian network from Figure 26] has a manageable complexity but is
much more expressive than the Bayesian network from Figure [[2] Both “Plant
Growth” and “Volumetric Soil Moisture Content” have 4 incoming arcs. The
nodes with the highest in-degree are “Plant Transpiration” and “Soil Evap-
oration”. The Bayesian network from Figure can take many soil-related
variables into account that had to be omitted from the graph in Figure
Also, the Bayesian network from Figure [26] has weather mapped out explicitly
in nodes like “Rain” and “Air Temperature”, where the Bayesian network from
Figure [12| had to aggregate this into one node: “Climate”.

However, the Bayesian network from Figure [26] does contain some nodes for
which the conditional probabilities can prove hard to obtain. Most of these
nodes are processes in the plant, children of “Plant Process” in the ontology.
As was the case for soil processes, these could be operationalized as a function
of appropriate properties, but this can be difficult. For example, the chance of
a particular amount of “Plant transpiration” given the amount of “Photosyn-
thesis” for that same plant is not easily derived from available data.

5.2 Evaluation of Bayesian Network

The models were evaluated with three domain experts from Land Life Com-
pany. This was done through semi-structured interviews. The notes from these
interviews can be found in {this linked repository ( https://github.com/tjanmaat
/Thesis/tree/master/Interviews/Bayesian_Network_Evaluation| ).

Most comments of the domain experts on the Bayesian network were focused
on its structure. The way mycorrhiza use was modelled could be improved by
changing its influence on “Soil PH” to an arc directly to “Plant Available Nu-
trients”. Also, “Plant Nutrient Uptake” does not influence “Plant Growth”
directly but correlates with “Photosynthesis”. The gas exchange was not mod-
elled detailed enough. Lastly, the model does make a distinction between “Plant
Height” and “Root Volume”, but the root-to-shoot ratio, which is the ratio be-
tween a plant’s height and its root depth, can be added explicitly. It is influenced
by “Climate” and “Genus”.

The domain experts were positive about the model structure in general.
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They found it hard to judge how this model relates to the models they currently
use because of the lack of probabilities. They assessed that it would require
more data to obtain the probabilities for the Bayesian network than the current
alternatives require. However, after obtaining these probabilities the Bayesian
network would yield results without all the data required for current models.
One domain expert noted that the applicability of this Bayesian network would
depend strongly on the particular discretization of variables used. However, if
discretization is done well, the model would be applicable outside of Land Life
Company as well.

One domain expert pointed out that the variables do not only have a tem-
poral scope, but also a spatial one. Rainfall, for example, can be measured at
a specific location, or averaged over an area. This application has a natural
spatial scope, the tree canopy size. However, for other application the spatial
scope might need to be considered as explicitly as time was considered in this
research.

6 Discussion

This section aims to interpret different elements of the research. It first looks
into the role of time and complexity issues in Bayesian network creation. The
third subsection looks into methods transforming ontologies into Bayesian net-
works in general. Lastly, threats to the validity of this research are discussed.

6.1 Time

In domains where time plays a role, plain Bayesian networks can have some
limitations, as they represent a static model. This issue is addressed by sev-
eral extensions to Bayesian networks, for example Dynamic Bayesian Networks
(DBN’s) [41} [75]. A DBN is a chain of Bayesian networks. Each Bayesian
network models the system at one point in time. Arcs can connect a node
with any node within a Bayesian network, but can also go to a node in the
next Bayesian network in the chain. This reflects that the current state of the
Bayesian network can influence the future state.

Ontologies are developed to be able to model any kind of knowledge. There-
fore, no extension to their structure is needed to model time. However, most
upper ontologies do explicitly specify how to model entities that are time de-
pendent, such as processes and events. Time is thus handled very differently in
ontologies than in Bayesian networks. This difference could explain why meth-
ods on constructing BN’s from ontologies have focused on domains where time
is less relevant.

Most methods that construct a Bayesian network from an ontology do not
explicitly address how to account for time. These methods produce a Bayesian
network and not one of its aforementioned extensions. The examples used by
Helsper & Van der Gaag and Fenz model relations at a particular time, implicitly
assuming that the time passing during evidence gathering does not influence
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this evidence 31} |48]. By limiting the temporal scope of their domain, Bayesian
networks become appropriate tools for these examples.

The method by Devitt et al. pose an alternative to limiting the temporal
scope by using DBN’s. [21]. This is also mentioned as having potential by
Boneh [6]. In selecting entities, they construct an intermediate ontology. This
ontology can have two types of relations, apart from taxonomic relations. The
“hasParentNode” relation marks an arc in a Bayesian network. The “hasDelay-
ParentNode” marks a relation between arcs in sequential Bayesian networks in
a Dynamic Bayesian Network. This way, a Dynamic Bayesian Network can be
constructed from the ontology. This approach of differentiating between ‘cur-
rent’ arcs and ‘delayed’ arcs, can be easily integrated into most methods that
transform ontologies into Bayesian networks.

However, it was not possible to include Dynamic Bayesian Networks in this
research. In the context of this research, implementation cost had to considered.
From the two approaches to modelling time described in this section, “Time
Scope Selection” and DBN implementation, the latter costs significantly more
effort. Apart from DBN’s being more complex models than Bayesian networks,
there is very little research supporting the process. Therefore, for companies
like Land Life Company, “Time Scope Selection” seems to be the better option.

For this research, a temporal scope of three months has been chosen. This
means that all nodes are assumed to be static over a three-month period. As
a consequence, processes that work on a time scale much larger than three
months have been assumed to be constant. For example, ”Soil Erosion” and
"Desertification” were assumed not to be relevant on the time scale of this re-
search. Processes that work on a time scale much shorter than three months
were aggregated over. For example, in Figure [} even though ”Wind” and ” At-
mospheric Pressure” are related, over the course of three months this influence
averages out. Therefore, the arc between "Wind” and ” Atmospheric Pressure”
disappears on this timescale, turning the Bayesian network graph of Figure
into the graph of Figure [I3]. Time thus plays a role in entity and arc selection,
which is why it was added as a selection criterion in Table

Another manifestation of the role time has in the transformation from on-
tologies to Bayesian networks is in cycles that can turn up in this process. Cycles
were quite common in this research. Often, these cycles can be interpreted as
a sequence of events. For example, in the cycle in Figure [10} going from “Plant
Growth” via “Plant Height” to “Volumetric Soil Moisture Content” and back
to “Plant Growth”, the relations can be interpreted as following each other se-
quentially. A plant grows, which increases its height. As a result, the plant
starts using more water, which drain the soil moisture. This in turn limits plant
growth.

In a Bayesian network, cycles can be removed by removing or reversing arcs.
When creating a DBN, this sequential interpretation highlights another way to
remove a cycle. The node one of the arcs in the cycle is influencing can be
changed to an instance of that node in the next Bayesian network in the chain.
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Figure 13: The Bayesian network graph from Figure [I] after “Time Scope Se-
lection” with a temporal scope of three months.

6.2 Complexity

In this research, a difference in granularity of ontologies and Bayesian networks
was found. A potential cause for this difference is the different goals for which
each was developed. In constructing a Bayesian network, a trade-off exists
between expressiveness and complexity [48]. The network should catch processes
as detailed as possible but should also have a reasonable running time. In
contrast, ontologies do not have the requirement of having a reasonable running
time. Also, ontologies often act as a knowledge base. Therefore, the emphasis
in ontologies is more on modelling details than it is in Bayesian networks. As a
consequence, ontologies often are more granular than Bayesian networks.

This difference is tackled partly by entity and arc selection criteria like “Do-
main Scope Selection”, “Time Scope Selection” and “Measurability Selection”.
However, even after these criteria, the resulting network can turn out to be too
complex [48], as was the case in this research. This complexity might be more
common in environmental sciences, but it is reasonable to assume it can be en-
countered more in other domains as well. Reducing complexity can be done in
two ways: removing values, arcs and nodes or divorcing parents.

Removing values, arcs and nodes can be done for a few reasons. For example,
similar values of a node can be grouped together. Arcs that have little influence
on its nodes can be removed, as can entire (groups of ) nodes that are less relevant
to the model. Each of these decisions requires thorough domain knowledge.

The other option, divorcing parents, requires adding nodes to the system [68].
For this research, nodes that were originally deemed too hard to measure, such
as “Soil Moisture Infiltration” and “Plant Water Uptake”, had to be added to
the network. For these nodes, no data was available. However, these conditional
probabilities were assumed to exist in literature or be available in specialised
models. Parent divorcing thus introduced a trade-off between ease of probability
learning and network complexity.

In this research, parent divorcing was done by returning to the entity selec-
tion step. Parent divorcing adds semantically meaningful nodes to a Bayesian
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network. A good place start looking for such nodes is in the entities that were
not selected. This is reflected in Figure by the arrow with the script big
complezity issues and the selection criterion called “Complexity Selection Cri-
terion”. For this criterion, entities being influenced by too many entities are
prevented by allowing some variables that are harder to measure to stay in the
network.

A possible reason why only in the application of the method of Helsper &
Van der Gaag the entity selection criteria “Remove Unmeasurable Variables”
surfaced lies in the design goal of the ontology used. The ontology used by
Helsper & Van der Gaag was designed for storing background knowledge that
did not fit in a Bayesian network [49]. In trying to turn this ontology back
into a Bayesian network, this difference in granularity resulted in entities that
were part of the scope but did not have a place in the Bayesian network. Other
methods did not report the goal for which the ontologies used were designed.
One can imagine that these ontologies were made just for the paper in which
they were used and therefore did not have entities that did not fit in the Bayesian
network.

This research aims at building a Bayesian network graph from existing on-
tologies. In this context, differences in granularity between the ontology and
Bayesian network are quite common, as ontologies have been developed with
other purposes than transformation to Bayesian networks. Therefore, complex-
ity issues could thus be more common for methods making this transformation
in practice than current research suggests.

6.3 Tool Similarity

Even though this research looked into several methods that transform ontolo-
gies into Bayesian networks, just one was applied, as many other methods would
return the same results as the one used. The reason that they return the same
results is that, apart from some entity selection criteria and checks on the re-
sults, most methods essentially contain the same tasks. These tasks are depicted
graphically in Figure This similarity in methods might stem from the under-
lying idea being quite intuitive. This intuitiveness can also be an explanation
for the high number of scientific papers making an unelaborated transformation
from ontologies into Bayesian networks.

The differences between these methods that do exist, lay in the entity selec-
tion and graph checking. An overview of possible selection criteria is given in
table[I] Helsper & Van der Gaag include steps to check for cycles and incorrect
independencies and correct these [48]. These steps were not explicitly included
in other methods, but some correcting can be assumed to be necessary for most
transformations from ontology to Bayesian network. Lastly, the complexity of
the graph has to be checked and corrected for. This step is again not explicitly
included in other methods. It was necessary for this research though.

The tasks that are at the core of this transformation from ontologies into
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Bayesian networks are “Turn Entities into Nodes” and “Turn Relations into
Arcs”. These tasks are the most repetitive tasks in the process and do not
require much domain knowledge. Therefore, these tasks are ideal to be auto-
mated.

Most of the methods creating Bayesian networks from ontologies are guide-
lines structuring the manual process. Some automated tools exist, but these
are specific to the format those methods use 31} [57]. As many of the meth-
ods revolve around the same repetitive tasks, a general automated tool could
speed up this process. Such a tool would require a single ontology notation.
For this, the W3C supported OWL seems to be a good candidate [62], as many
ontologies are available in this notation [60]. The existence of a dominant upper
ontology would be very beneficial to such a tool, as this could make entity se-
lection more efficient, for example by omitting all children of particular entities
or only selecting leaf nodes [6, 31].

Additionally, a dominant upper ontology could make ontology merging easier
[79]. Currently, methods creating a Bayesian network from an ontology require
much domain knowledge, as well as understanding of the modelling tasks [6].
The described tool could also reduce the required knowledge to use these meth-
ods.

Although it did not happen during this research, one can expect the scope
relevant to a company to change sometimes. This makes it likely that companies
using an ontology for Bayesian network creation would run through a method
making that transition multiple times. This stresses the usefulness of a user-
friendly tool that can do this automatically.

6.4 Threats to validity

During the research, a few threats to the validity of the research have been
identified. First, the analysis of methods going from ontologies to Bayesian net-
works was based on literature and experience from one application. For some
of the issues encountered, such as the frequency of occurrence of cycles and the
necessity to correct for complexity, it is therefore hard to judge whether they
are common in creating Bayesian networks from ontologies or particular to the
domain. These complications were not reported on in most of the discussed
methods. Although these issues could have been dealt with implicitly or par-
ticular to the practical nature of this research, one cannot rule out issues being
specific to the domain as an explanation. Therefore, application of the methods
described in this research in more domains could improve generalisability.

As discussed in section [4:2] this research could not use data to evaluate its
results. Even though it has been argued that using data for evaluation has its
limitations |74], this is the standard. Evaluation with a dataset would allow for
comparison with other models and give more points of reference.

The lack of data had another influence on the validity of the research. When
building a Bayesian network for which conditional probabilities have to be drawn
from a dataset, the selection of entities would be dictated by the availability
of data in the dataset. However, as there was no dataset for this research,

33



measurability was more flexible in this research than it might have been had
there been a dataset.

Although I did have some domain knowledge, it was limited. As domain
knowledge was necessary for the construction of the Bayesian network graph,
this could have influenced the results. To mitigate this threat, domain experts
have been involved in evaluation of the ontology as well as the Bayesian net-
work.

7 Conclusions

This research aimed to answer the question whether ontologies can help a com-
pany like Land Life Company model their data in a Bayesian network. It tried
to do so by transforming an ontology mapping out the context relevant to this
company into a Bayesian network. This was done by merging two existing
ontologies into one. This ontology has been used as input for the method of
Helsper & Van der Gaag to turn it into the graph of a Bayesian network [48].

This section first answers the sub-questions posed in the introduction, after
which it tries to answer the main research question.

What challenges does one encounter when applying existing methods
in creating Bayesian Networks from ontologies?

To apply existing methods in creating Bayesian Networks from ontologies,
the first step is to obtain an ontology. Not many companies have an ontology
readily available. Therefore, this can pose the first challenge.

Another issue encountered in this research, lies in the role of time in Bayesian
networks. Existing methods that transform ontologies into Bayesian networks
do not provide help when time needs to be considered in creation of the Bayesian
network.

The complexity of the Bayesian network can be an issue as well. The network
created from an ontology can turn out to require too many probabilities to be
feasible for implementation.

The last issue identified in this research is the manual work needed for the
transformation, which seems unnecessary, due to its repetitive nature.

How can existing methods in creating Bayesian Networks from on-
tologies be adapted to become better applicable for companies like
Land Life Company?

This research chose to obtain an ontology by merging two existing ontologies.
The result from this process indicate that tools for merging ontologies could see
higher adoption rates if their ease-of-use were increased.

Research on methods transforming ontologies into Bayesian networks could
become more streamlined by advances in research on ontologies. Particularly the
emergence of a dominant upper ontology structure could make transformations
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more efficient. For example, by making it possible to draw from the structure
of this upper ontology during entity selection.

Many of the methods transforming ontologies into Bayesian networks are
built around the same core activities. An overview of the common structure of
these methods was given in Figure Differences between methods lie in the
entity selection criteria and Bayesian network checking. An overview of these
criteria can be found in Table [Il

The criteria list of Table [1| contains two criteria from literature, as well as
two new criteria added by this research. First, "Time Scope Selection” was
introduced. Although some related work mentions the issues that time can
cause in methods creating Bayesian networks from ontologies [6, [21], this work
is the first to treat it explicitly. This can offer some perspective on how tackle
this challenge. However, further progress can be made through research on
methods that create DBN’s from ontologies.

Second, ”Complexity Selection” was introduced. This type of selection is
mentioned by Helsper & Van der Gaag [48], but this research offers a more
thorough discussion. It is not known how common these complexity issues are
in applications of methods creating Bayesian Networks from ontologies. More
research could help determine in which applications these issues surface and how
to address them.

Although the tasks that the methods transforming ontologies into Bayesian
network have in common are the most repetitive ones, no automated tool for
this task exists apart from two method specific ones. Such a tool could speed
up this transformation and therefore improve adoption rates. Some possible
features of such a tool and their benefits have been discussed in Section

Can an ontology help a company like Land Life Company model their
data in a Bayesian Network?

Despite the challenges faced in implementing a method for transforming on-
tologies into Bayesian networks, construction of the Bayesian network required
little time from the domain experts. Therefore, this method can be helpful for
a company like Land Life Company.

However, the usefulness of ontology for modelling data in a Bayesian Network
can be increased in multiple ways. First, it could be sped up through automation
of transformation from ontologies to Bayesian networks. Second, the emergence
of a dominant upper ontology would enable a method for this transformation
tailored to the upper ontology, which could further increase efficiency. Lastly,
the transformation from ontologies to Bayesian networks could benefit from
further research, for example in applications of this transformation in practice
and the potential DBN’s have in this transformation.
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A Ontology Example Figures
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Figure 14: All children of “Soil Process” and their relations. “Soil Process” and
its children can be found on the left of the figure. Entities influencing them can
be found on the bottom. Entities that are influence by “Soil Process” and its
children can be found at the top. The entities on the right influence some but

are influenced by other entities.
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Figure 15: All entities relating to the water balance and their relations.
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Figure 16: All children of “Soil Process” and their relations. “Soil Process” and
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structure of children of “Physical Soil Property” is presented.
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B Ontology Evaluation Figures

Figure 17: A graphical representation of part of the merged ontology modelling
the influence of “Cocoon Use” on “Plant Growth”, as used in the evaluation of
the ontology.
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Figure 18: A graphical representation of part of the merged ontology modelling
the influence of “Carbon Supplement Use” on “Plant Growth”, as used in the
evaluation of the ontology.
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Figure 19: A graphical representation of part of the merged ontology modelling
the influence of “Irrigation” on “Plant Growth”, as used in the evaluation of
the ontology.
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Figure 20: A graphical representation of part of the merged ontology modelling
the influence of “Mycorrhiza” on “Plant Growth”, as used in the evaluation of
the ontology.
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Figure 21: A graphical representation of part of the merged ontology modelling
the influence of “Season” on “Plant Growth” through “Solar Radiation”, as
used in the evaluation of the ontology.
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Figure 22: A graphical representation of part of the merged ontology modelling
the influence of “Season” on “Plant Growth” through “Rain”, as used in the
evaluation of the ontology.
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Figure 23: A graphical representation of part of the merged ontology modelling
the influence of “Season” on “Plant Growth” through “Wind”, as used in the
evaluation of the ontology.
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Figure 24: A graphical representation of part of the merged ontology modelling
the influence of “Shelter” on “Plant Growth”, as used in the evaluation of the
ontology.
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C Method Structure
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Figure 25: A PDD of the overall structure of methods creating a Bayesian
network from an ontology.
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D Bayesian Network Structure
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Figure 26: The Bayesian network used for domain expert evaluation.
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