
Utrecht University

Artificial Intelligence

Masters Thesis

Visual Analytics for
Improving Deep Learning

Multidimensional Projections

Author:
Terri Modrakowski
(6498914)

Supervisor:
Prof. dr. Alexandru C. Telea

Second Supervisor:
Dr. Michael Behrisch

External Supervisor:
Mateus Espadoto

July 2020



Abstract

Deep learning has recently shown the ability to construct dimensionality reduction, or projections, with
high quality and computational scalability. However, such methods have the major drawback of operating
as black boxes, hence, it is hard for users to fine-tune them to achieve more specific projection styles.
An important instance of this problem is the learning of t-SNE projections: The learned projections are
typically fuzzier than the original t-SNE ones, making them less suitable for many visual analysis use-
cases for which t-SNE was originally proposed. We aim to adapt and use classifier visualization methods
to get a better understanding of the reasoning behind the network’s inference of projections. We pinpoint,
and apply fixes to ultimately reduce the causes of diffusion in the learned projections, culminating in
the application of KNNP, a nearest-neighbors approach to the original NNP which further increases the
quality of deep learning projections.

1



Acknowledgements

I wish to express a specific sincere appreciation to
my supervisor Professor Alexandru Telea, for his
patience with me, encouragement and access to his
elevated insight.
I want to thank Doctor Michael Behrisch for agree-
ing to be my second supervisor, being supportive
and enthusiastic during demonstrations of my work
and for providing assistance when I needed it.
I convey my admiration for Mateus, for his profi-
ciency in deep learning models and skill in simpli-
fying difficult concepts.
I express the deepest gratitude to all of my super-
visors for providing boundless inspiration by be-
ing themselves, giving me their valuable time and
allowing me to experience and be a part of their
genius. I have gained so much by the freedom and
guidance to experiment and explore within the field
of their expertise.
I am indebted to the facilities at the university of
Utrecht, which allowed me the exposure to such
academic pursuits in my areas of interest. I rec-
ognize the invaluable input of my mother, Trish
Modrakowski, in her affection for computing and
for my ability to be standing here today. And fi-
nally, Francesco Vaglienti and Dr. Amelia Beans
for bringing stability and comfort to my studies.
To everyone who was a part of my thesis, whether
a contributor or bystander, thank you for being a
kindred spirit and keeping the passion for artificial
intelligence and computing alive.

2



Contents

1 Introduction 5
1.1 t-SNE Projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Deep Learning Projections (NNP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 Structure of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Related Work 8
2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 t-SNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Benefits of t-SNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Disadvantages of t-SNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 NNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Architecture of NNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Benefits of NNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Disadvantages of NNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Visual Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 Visualization of Classifier Decisions through Activations . . . . . . . . . . . . . . . 15
2.4.2 Other Learned Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.3 Visual Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.4 Distinctions from this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.5 Similarities with this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Visual Exploration of Deep Learned Projections 18
3.1 Examining the problem: Applying our Tools . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Projection, Training and Testing Views . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Identifying the Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 What is the Error? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 The Error is Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Isolating the Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 The Thresholding Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Examining the Network’s Decisions: Method and Baseline . . . . . . . . . . . . . . 29
3.3.3 Nearest Neighbors Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.4 Extracting Learned Representations vs Euclidean Distance . . . . . . . . . . . . . 31
3.3.5 Interpolation Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Examining the Learning: Ensuring Correct Training . . . . . . . . . . . . . . . . . . . . . 33

3



3.4.1 Establish a Baseline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.2 Successful Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Examining learned features: Influence of Input on Generalization . . . . . . . . . . . . . . 37
3.5.1 Generalization in MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5.2 Generalization in Dogs vs Cats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 Applying our knowledge: Improvement Phase . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.6.1 Selecting a Cause: Distance from the Known . . . . . . . . . . . . . . . . . . . . . 42
3.6.2 Fixing a Cause: Adapting the Input for Distance . . . . . . . . . . . . . . . . . . . 46
3.6.3 Re-evaluating: Distance from the Known . . . . . . . . . . . . . . . . . . . . . . . 50
3.6.4 Selecting a Cause: Distance Preservation . . . . . . . . . . . . . . . . . . . . . . . 51
3.6.5 Isolating a Cause: Neurons Responsible for Patterns . . . . . . . . . . . . . . . . . 51
3.6.6 Isolating a Cause: Midpoint or Repulsion . . . . . . . . . . . . . . . . . . . . . . . 55

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.7.1 Find and Isolate the Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.7.2 Exploring Causes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.7.3 Narrowing Down a Cause: Distance . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.7.4 Fixes for Input Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.7.5 Narrowing Down a Cause: Activations . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.7.6 Narrowing Down a Cause:

Midpoint or Repulsion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.7.7 Improving Deep Learned

Multidimensional Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Improving Deep Learning through Neighborhood Preservation 62
4.1 Introducing KNNP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 KNNP Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 Quality on training data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4 Quality on testing data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5 Quality as function of training set size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6 Computational scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.7 Projection scatterplots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Conclusion 69
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Part 1: Understanding Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Is Distance from the Known the Reason for Diffusion? . . . . . . . . . . . . . . . . 69
5.2.2 Which parts of the network are responsible for which parts of the projection? . . . 69

5.3 Part 2: How can we improve the projections once we have this understanding? . . . . . . 70

6 Future Work 71

4



Chapter 1

Introduction

Following the evolution of technology, more and
more professions are having to deal with larger and
larger data. The information contained in this data
has become increasingly available and necessary to
form a competitive edge. Such data is large in
terms of the amount of observations and the fea-
tures each contains within. Every additional fea-
ture adds another dimension of complexity, increas-
ing the difficulty in processing this kind of data.
This difficulty comes in the form of large compu-
tational time and resource costs. The impossibility
of human users assimilating so many dimensions,
creates a dependency on this difficult computation.
To bridge the gap between large amounts of use-
ful data and human memory limits, dimensionality
reduction methods are commonly used. These di-
mensionality reduction methods aim to create ab-
stractions of the data, abstractions which distill the
data into the most digestible interpretation of each
sample’s discriminatory characteristics.

These abstractions, called projections, condense the
high-dimensional data into a low dimensional rep-
resentation while maintaining the underlying struc-
ture as much as possible. The structure defines the
distribution of the data and how the points relate
to each-other, whether in simple groups or in more
complex relations. Often this low dimensional map-
ping is conveyed as a scatter-plot, which allows the
user to reason about the original structure by ob-
serving the shapes and placements in the projec-
tion. Similar observations that exist in the data
are grouped into clusters, which allow projections
to scale well with regard to the space they require
to visualize any number of samples and total di-
mensions.

1.1 t-SNE Projection

One of the most widely used methods of projec-
tion is t-SNE [1]. t-SNE is widely praised for pro-
viding good visual separation when placing similar
featured points into groups on a scatter-plot. How-
ever, t-SNE has quadratic runtime depending on
the number of samples and parameter dependent,
meaning that the incorrect choice of any such pa-
rameter may have a large cost in computational
time. t-SNE is non-deterministic, lacking stability
and generalization. This means that there is un-
predictability and small changes in the data lead
to reproductions of the projection which are com-
pletely different.

1.2 Deep Learning Projec-
tions (NNP)

As an alternative to t-SNE for dimensionality re-
duction, a deep-learning approach called Neural
Network projection (further called NNP) is pro-
posed in [2]. NNP has a compact implementa-
tion, making use of a fully-connected, feed-forward
regression network with relatively few nodes and
layers compared to other deep learning techniques.
Furthermore this approach overcomes the flaws of
t-SNE mentioned above, through its ease of repro-
duction and out-of-sample capability. NNP trains
using any projection technique and a subset of
available data to create a mapping from high to low
dimensional space. Once the training is complete,
the majority of computational cost has been paid.
The network can then be used to infer indefinitely,
on the same or even similar unseen data. This cre-
ates stable projections within a fraction of the time

5



needed for t-SNE for large amounts of data.
The projections created by NNP have some diffu-
sion or ’fuzziness’ when compared to the original
projection technique used for training. This diffu-
sion creates some doubt in the separation of clus-
ters. This visually blurs the distinctions that make
the groups of points different. The borders of simi-
lar points become less clear and we lose some of the
efficiency inherent to projections. Figure 1.1 shows
this diffusion and the lack of clarity in clusters be-
tween t-SNE and NNP.

Possible hypothetical causes of this diffusion in-
clude: [3]

• Underfitting: either by training too little or by
not providing a large enough sample size to be
representative

• Overfitting: by fitting too closely to the data
through lacking regularization or validation.

• Optimization: by stopping the training before
the model reaches its full potential, in cases
where the optimizer gets stuck at local opti-
mum instead of finding the best possible solu-
tion.

However, since the hyperparameters such as opti-
mizers and regularization have already been stud-
ied in [3], we build on this work and try pinpoint
the exact cause of diffusion outside of that search
space.

This brings us from the parameter choice to the
examination of the model itself. Examining the
model is non-trivial, as deep learning methods of-
ten function as a black box. In such a case, the
root-causes of the problems remain hidden which
exaggerates the difficulty in understanding the ac-
tual issue. Deep learning models are notoriously
difficult to interpret, because they are usually very
large and use many parameters which lead to deci-
sions that are difficult for humans to trace. In most
applications of deep learning the user supplies in-
put and is only aware of the resulting output which
is taken at face value, while the internal computa-
tions are obscured within. This restricts the users
options and forces them to trust the model, tweak
it blindly or discard it completely. Due to this and
the rapid adoption of deep learning models, there
is a surge of interest and need for techniques that

inspire trust in these models and help us under-
stand their behavior, especially since their profi-
ciency seems to be a promising direction for ad-
vancing the way we look at the information at our
disposal. The transparency of this model and the
improvement of the diffusion within must be ad-
dressed together, as they are compounding prob-
lems.

1.3 Research Question

So far we have discussed t-SNE, NNP and the fea-
tures of both. What is clear is that NNP is strong
competition to t-SNE, held back slightly by its dif-
fusion and black-box properties but boasting many
powerful advantages. Given some improvements,
NNP is not only a strong competitor but also a
potential replacement for t-SNE.

How then, can we improve the quality of deep
learned multidimensional projections? To address
this complicated problem we propose the explo-
ration of this deep learning projection technique,
NNP, through the adaption and creation of tools
within a visual analytics toolkit. With such visual
applications we can convey the quality of the pro-
jection through quality metrics in order to measure
the performance of the model and define improve-
ment and add explanability to the model.

Exploration of the model with such tools will also
allow us to get a better understanding of the funda-
mental behavior of the underlying model, revealing
what drives its decision process during projection.
Using these tools we gather knowledge of the deci-
sion process and gain insight into the creation of the
diffusion found in the projections. Once causes of
this diffusion are found, we aim to isolate them and
therefore focus our search space onto these issues.
We then propose and investigate solutions to cor-
rect these underlying causes in order to clarify the
clusters in the projections. Once the cluster sepa-
ration is improved, NNP will be much more com-
petitive with industry leaders such as t-SNE. This
thesis will detail an exploration using this visual
analytics toolbox in an attempt to unearth causes
which can be fixed to improve the diffusion in NNP.

6



Figure 1.1: Example of diffusion in t-SNE (a) versus NNP (b). Insets show diffusion details.

a) b) c)

Figure 1.2: Example of diffusion introduced by NNP. (a) Ground-truth t-SNE projection (b) Inferred
NNP (10K samples), (c) Inferred KNNP (10K samples). Insets show diffusion details.

1.3.1 Structure of this Thesis

The structure of this thesis is as follows.
In Sec. 2 we examine related work on dimensional-
ity reduction, deep learning and visualization tools.
We do this to define the lineage of our work, the
terminology, main concepts and the academic con-
text to this thesis.

This thesis is then divided into two parts, one
for each sub-question relating to our research ques-
tion.
The first sub-question is How can we understand
the diffusion or limited quality in projection? This
will be addressed in Sec. 3.2. The second sub-
question, How can we improve the projections once
we have this understanding? will be addressed Sec.
3.7.7. Sec. 4 details the final fix we apply as a result
of the findings in Sec. 3, by using KNNP, a vari-
ant of NNP which uses a neighborhood approach.
KNNP improves the visual separation in the pro-
jections, as shown in Fig. 1.2.

Finally, in Sec. 5 we conclude our work and sug-
gest potential future research directions.

7



Chapter 2

Related Work

So far we have briefly discussed t-SNE and its deep
learning rival NNP. In this chapter we will go more
into detail about these methods as the foundation
of this thesis. First in Sec. 2.1, we will introduce
some of the core terms related to this work. We
then discuss the technical fundamental methods t-
SNE (Sec. 2.2) and NNP (Sec. 2.3) in more depth
before finishing the chapter with other related work
in Sec. 2.4.

2.1 Terminology

2.1.1 Projections

Let D = {xi} be a dataset of N samples so that
1 ≤ i ≤ N , where each x = (x1, ..., xn), xi ∈ R, and
1 ≤ i ≤ n is an n-dimensional sample. Therefore
D has N samples or rows, and D has n dimensions
or columns.

Figure 2.1: The projection from Rn data to an R2

scatter-plot

Dimensionality reduction can be used to preserve
the high-dimensional structure of D while distill-
ing it into a more interpretable and usable for-

mat. This trade-off of dimensionality and inter-
pretability comes at minimizing an objective func-
tion that measures discrepancy between the origi-
nal data D and any resulting format that reduces
the dimensions. One method to perform dimen-
sionality reduction is through projections. A pro-
jection method is a function

P : Rn → Rm (2.1)

where m � n. This maps the same information
in each sample to lesser dimensions, generally m
= 2. In this way every x ∈ D is projected from
an n-dimensional sample, to a 2-dimensional point
P (x) by the projection function P (), each of these
points are then grouped into a scatter-plot which
is denoted as P (D). Projections are particularly
valuable in cases where individual identity is
less important, [4] which is useful for the goal
of creating clusters of points that have a group
identity without the fine-grained details.

Many projection techniques exist; we now discuss
some examples of projections that are particu-
larly relevant to this thesis. For a more in-depth
overview of state of the art projection algorithms a
reader may examine [4].

Some projections aim to preserve the distance in
the global data, maintaining the overall structure
when projecting. The examples we will mention
include: PCA, LSP and MDS.

Principal component analysis (PCA) [5] is a tech-
nique that creates and projects principal compo-
nents which maximize variance through solving an
eigenvalue problem.

Least Square Projection (LSP) [6] is a method of
preserving global structure by approximating the

8



least squares to the coordinates of a few control
points with defined geometry.

Metric Multidimensional Scaling (MDS) [7] is a
nonlinear technique that creates a projection based
on a matrix of the distances between them. Other
projection techniques aim to preserve local struc-
ture instead of these global distances, examples of
this include: t-SNE (described in Sec. 2.2), LAMP,
Isomap and IMAP.

Local Affine Multidimensional Projections
(LAMP) [8] is a spring embedding technique
that relies on a mathematical formulation derived
from orthogonal mapping theory to build local
transformations.

Isometric feature mapping (Isomap) [9] is a non-
linear learning technique which creates a low di-
mensional embedding by computing the geodesic
distances between neighbors in the high dimen-
sional space.

Uniform Manifold Approximation and Projec-
tion (UMAP) [10] which, based on assumptions in
the data, models a fuzzy topological manifold and
then minimizes the discrepancy between this and
the fuzzy topological structure of a projection.

2.1.2 Metrics

In order to focus our search to improve the diffu-
sion of the points, we require a way to determine
where the errors are. Usually when dealing with
deep learning methods, a metric of error is defined
as the difference between true and predicted val-
ues. This is still the case here, as we minimize
the training loss to create the NNP model. How-
ever, this accuracy is very little indication of how
useful the model is as a projection compared to t-
SNE. This loss is designed to fit to t-SNE’s ground
truth coordinates, not a measure of projection per-
formance. For example we could train NNP on t-
SNE until NNP is fit with exact precision, but we
have gained nothing from this new projection. At
best, this model is the same as the t-SNE projection
used to fit it. With a model which fits so closely
to the t-SNE we likely lose any generalizability. So
then how can we measure how well the projection
is doing?

To accomplish this we use three methods that
are shared by [2]. Both [2] and this thesis evaluate
the NNP method, so it makes sense to use these
same methods as a baseline for comparison. These

methods are in the form of quality metrics, namely:
trustworthiness, continuity and neighborhood hit.
In [2], these methods are computed at a global scale
while ours are not. The average of the metric over
the projection does not help us to find small dif-
ferences. We instead compute these metrics locally
per point, to preserve finer local behavior. This is
especially interesting as different projection meth-
ods preserve small distances better than others [4].
Since we are comparing at least two different pro-
jection methods (NNP and t-SNE), it is worth com-
puting these metrics at a finer scale to determine if
there is some change in small distance preservation
between them. This is not evident since these two
methods optimise different kinds of objective func-
tions. NNP is concerned with preserving distances
while t-SNE is concerned with preserving neighbor-
hood structure.

Trustworthiness T :

Trustworthiness penalizes the missing neighbors in
the neighborhood of k-points of each projected
point. Missing neighbors are points which are close
in D but not in the projection. Neighbors in D that
remain close in P (D) give a good trustworthiness
score of 1. For a user this score implies that the
neighbors in the data are visually projected nearby
and that their appearance replicates the local pat-
terns in D. If we have points with low trustworthi-
ness, i.e. points which are close in the projection,
but are not supposed to be because the points in D
are not close, this will cause the user to misinter-
pret how the similarity of the points changes with
respect to distance.

Given N nodes in the data, and the ranking of
nodes r(i, j) as the ranking of sample j accord-
ing to its shortest distance to the sample at in-
dex i and the neighborhood of size k around sam-
ple i denoted Uk(i) in the n-dimensional data,
Trustworthiness is then:

T = 1− 2

Nk(2N − 3k − 1)

N∑
i=1

∑
j∈Uk(i)

(r(i, j)− k)

(2.2)

Continuity C:

Continuity measures false neighbors in the neigh-
borhood of k-points of each projected point. This

9



penalizes points that are close in the projection but
not in D. Neighbors in P (D) that are consistently
close in D give a good continuity score of 1. For a
user this score implies that points that the user sees
nearby in the projection are actually nearby. If we
have points with low continuity, i.e. points which
are close in D but are not close in the projection,
this will cause the user to see points as much more
similar than they actually are by misjudging how
far away significantly different points are.

Given N nodes in the projection P (D), and the
ranking of nodes r̂(i, j) is the ranking of point j ac-
cording to its shortest Euclidean distance to point
i in P (D) and the neighborhood of size k around
point i is denoted Vk(i) in the projection,
Continuity is then:

C = 1− 2

Nk(2N − 3k − 1)

N∑
i=1

∑
j∈Vk(i)

(r̂(i, j)− k)

(2.3)

Neighborhood Hit NH:

Neighborhood hit compares the neighborhood for
homogeneity in class label. This measures the sep-
aration of clusters, penalizing by neighborhoods
with different class labels. A high score of 1 occurs
where all of the points in the neighborhood have
the same label, in a perfect separation from other
points. This requires that the clusters we want to
see completely separated actually exist in the data,
and that we have class-labels for computation of
the metric.

Note that we do not use labels in the compu-
tation of either t-SNE or NNP, so the choice of a
metric that evaluates labels may seem strange, but
generally the label is a good indicator of similar-
ity. More importantly, this similarity allows us to
measure neighborhood preservation which is prior-
itized by t-SNE. Prioritizing this metric is then a
good indicator for success in mimicking t-SNE.

For a user this score implies that a point is with
others of the same kind and far enough away from
other points.

We denote the neighborhood k of point y ∈ P (D)
as yk and the number of shared labels as ylk.
Neighborhood hit is then:

NH =
1

N

∑
y∈P (D)

ylk
yk

(2.4)

Shepard Diagram [8]:

A Shepard diagram is a scatter plot which compares
how far apart data points are pairwise in P (D) and
D. The main diagonal line indicates how well pre-
served the distances are when projected.

Spearman Rank Correlation R:

R can be used to measure the Shepard diagram
correlation through its quantitative measurement
of relations between two variables. For a user, a
high R value means that the distances in the input
are well preserved in the output projection and that
the projection fits well to the data.

Normalized Stress [11]:

Normalized Stress also measures the differences in
the projection and data, creating a global badness-
of-fit measure. This is a badness measure instead
of a quality metric, so it is inverted. A user would
like to see a score of 0, which indicates a lossless
mapping, between D and P (D). This lossless map-
ping would mean that no information is lost in the
compression of the n-dimensional data during the
projection process.

The R metric, which is present in previous iter-
ations of work on NNP, was exchanged in favor of
such a stress metric in the proposed visualization.
However, this was omitted from the final solution
as it was found to be a poor indicator of diffusion,
as shown in Figure 2.2. In this figure the lighter,
more yellow points score highly, while the darker,
more red points have high error. We see that the
points that are diffuse suffer less from stress, while
the points within the clusters that we do not con-
sider diffuse are penalized heavily. Furthermore,
there is no clear separation in color of these two
groups, as not all diffuse points are lightly colored
and not all internal clusters are dark.

2.1.3 Deep Learning

Also particularly relevant for this work is the no-
tion of artificial neural networks (ANN). A neu-
ral network is an algorithmic model that can learn
patterns. These are made of artificial neurons
placed into layers which are linked together. A
fully connected network has each neuron in a layer
connected to every neuron in the next layer.

10



Figure 2.2: A heat colormap of the stress metric on
an NNP projection

Each neuron computes a linear function with added
bias using the output of the neurons in a previous
layer.
This is in the form:

z
(i)
j = b

(l)
j +

∑
k

w
(l)
j,ka

(l−1)
k (2.5)

where b
(l)
j , w

(l)
j,k ∈ R are the bias and weights respec-

tively, and a
(l−1)
k is the activation of a connected

neuron k in the previous layer l − 1. Each neu-
ron computes a linear combination of the previous
activations weighted before adding a bias.

The two most influential components within a
neural network are the loss function and activation
function. The loss function helps the network to
learn what is correct. The activation function al-
lows the network to approximate a wider range of
mathematical functions. In the next sections we
will discuss these components and the specific vari-
ations chosen for this thesis.

Loss Functions

The learning in a network occurs as a result of
weight adaption according to the minimization of a
loss function. This adaption is computed through
back-propagation of error, which commonly uses a
method such as gradient descent. Gradient descent
is used to compute the direction needed to tune the
sensitivity of weights through the network. Once
tuned these weights minimize the error across the
entire network and every training sample. In the
original NNP paper [2], MSE (mean squared error)
was used but during hyperparameter tuning [3]
MAE (mean absolute error) performed better.

Since we build on that model, in this case we
use the loss function MAE:

MAE =

∑N
i=1 |yi − ŷi|

N
(2.6)

where yi is the expected true value, and ŷi is the
predicted answer to the same sample as given by
the network. In this way we minimize the differ-
ence between expected and predicted to guide the
network towards correct choices.

Activation Functions

Recall that the neural network function is just a
computation of a previous activation, multiplied by
a weight and a bias, so this is a linear equation. If
we were to try to fit a linear equation to the hidden
function within the network, we would lose a lot of
important information. To help the network more
easily approximate a wider variety of more complex
non-linear functions, the activation function adds
a non-linearity. Activation functions are applied to
each of these linear functions, and passed onto the
next layer for this process to happen again. Lay-
ers subsequent to the input layer are called hidden
layers. These hidden layers make up the black box
that obscures the computation of the Neural Net-
work. In this case, we activate our hidden layers
using a rectified linear layer, which removes nega-
tive values replacing them with 0, this is commonly
called ReLU:

a
(l)
j = max(0, z

(i)
j ) (2.7)

The final layer or output layer is where the result
of total computation is revealed. For projection
purposes we require a pair of coordinates between
0 and 1. For this final layer we use a 2 neuron
sigmoid activation of the form:

a
(l)
j = 1/(1 + exp(−z(i)j )) (2.8)

Activations as Learning

The result of a neural network can come in the form
of a prediction of a discrete (classification) or con-
tinuous (regression) value. Once created the model
can be used repeatedly for inference. Inference in-
volves making predictions for any data similar to
training samples at a fraction of the computational

11



cost of initial training. Activation values change
according to the weighted features in the input to
minimize loss. This means that these features mea-
sure how much a node contributes to a certain kind
of point. Thus, activations can be interpreted as
an abstraction of the given observation. These ab-
stractions reveal which features of the input the
network has learned and the decisions the network
has made to differentiate the samples.

2.2 t-SNE

As mentioned in Sec. 1 the projection technique
we wish to emulate is t-SNE [1]. t-SNE is a non-
linear dimensionality reduction technique, part of
the family of SNE (Stochastic Neighbor Embedding)
techniques. It is currently very popular for its high
degree of neighborhood separation and is consid-
ered a gold standard in 2D Projection.
t-SNE uses Stochastic Neighbor Embedding by con-
structing a probability distribution over pairs of ob-
jects in D. This distribution is such that similar ob-
jects are assigned a higher probability while dissim-
ilar points are assigned a very low probability. This
probability is computed by focusing a Gaussian dis-
tribution over a point in a neighborhood and noting
the probability distribution at that point. There
is a scaling factor to account for density in points
and an averaging operation where the points meet
in each other’s distribution.
Then t-SNE defines another distribution over the
points in P (D), except this time it uses a t-
distribution instead. The goal is to make the prob-
abilities in D the same as P (D); to do this the
similarities must be measured. The measurement
of similarities across these two probability distri-
butions is taken using the Kullback–Leibler diver-
gence between them with respect to the locations
of points, which is minimized by gradient descent.
This divergence metric penalizes differences specif-
ically when similarity is large in D. This penal-
ization helps to preserve the local structure while
not emphasising further differences as much. The
heavier ’tail’ of the t-distribution allows additional
compromise when placing points further than they
would accurately be, which paired with disregard
to the placement of points that are not at a neigh-
borhood scale by the divergence metric, leaves t-
SNE with large cluster separation that is accurate

at a local scale but may exaggerate gaps between
neighborhoods. The t-SNE projection iteratively
fits its points by an accumulation of the attractive
forces of similar points and the repulsive forces of
dissimilar points

2.2.1 Benefits of t-SNE

Figure 2.3: Cluster separation without class labels,
well separated (left) and indistinguishable (right).
Insets provide class information.

The separation of neighborhoods clearly in visual
space is a substantial benefit of using t-SNE. Con-
sider the case of unsupervised learning where no
class data is available, such as the case of Figure
2.3 where we have omitted the class data from the
main projection. In such a case we are only able
to tell that there are distinct groups because t-SNE
provides clear visual separation between groups as
seen in Figure 2.3 (left). In the right of Figure 2.3
we see the opposing side; two clusters which are not
well-separated and the user has no way of knowing
they are two mostly distinct groups. These two
groups happen to overlap in similarity, so even t-
SNE struggles to split them clearly, but without the
visual separation prioritized by t-SNE, all groups
may be similarly indistinguishable.

12



2.2.2 Disadvantages of t-SNE

Parameter Sensitivity

The benefit of cluster separation, as mentioned in
Sec. 2.2.1 can be tricky to achieve as t-SNE is
very sensitive to parameterization. This sensitiv-
ity makes implementation complicated, as some do-
main expertise may be required to convince it to
behave as intended.

(a) Original Data [12] (b) Perplexity: 2

(c) Perplexity: 5 (d) Perplexity: 30

Figure 2.4: How t-SNE varies with respect to pa-
rameters, courtesy of [12]

In Figure 2.4 we demonstrate the range by which
t-SNE fluctuates based on a single parameter – per-
plexity. Each projection generated by t-SNE tells a
very different story about the structure of the data
and may mislead a user.
A search through the space of potential parameter
settings would take a large amount of time. More-
over, even once the optimal parameter values were
found, they would not generalize to other datasets
or even data subsets of different densities. Hence,
t-SNE is hard to use as a replicable method.

Quadratic Nature

t-SNE has a quadratic runtime, subject to the num-
ber of points, making it very slow for large datasets

and completely infeasible on very large datasets.
This becomes especially problematic with the other
drawbacks of t-SNE. Specifically, that the initial
dataset must contain all observations of interest
because of t-SNE lacking consistency and out of
sample support.

Out-of-sample

t-SNE cannot project out-of-sample data, which
means that every point of data that needs to be pro-
jected in an experiment space needs to be present at
the creation of the model and any new additions re-
quire a full re-computation. These re-computations
come with some other issues, which are outlined in
this section.

Consistency

Consistency is a complication that arises with re-
computing t-SNE. If a user wishes to add new data
or simply another subset of the same data they
must recreate a projection. Unfortunately t-SNE
has no stability and is stochastic. Models change
disproportionately with respect to any alterations.
This randomness makes subsequent projections on
similar data inconsistent and prevents a user from
making comparisons between two projections cre-
ated on very similar data.

2.3 NNP

The projection technique we wish to improve is
NNP [2]. NNP is a Deep learning projection tech-
nique, which means that it is an ANN that learns
without class-labels. NNP takes D and some pro-
jection already computed on D, P (D) as input. D
can be any kind of high-dimensional data that can
be represented as multidimensional vectors, such as
image or sentiment datasets.

2.3.1 Architecture of NNP

A compatible input is fed into a shallow, fully-
connected, regression neural network which learns
how to place D with respect to the ’truth’ in
P (D) by minimizing the MAE (EQN. 2.6) between
actual t-SNE P (D) values and NNP predicted
P (D) values.

13



Projection technique

Training dataset DsTest dataset Dp

Projection

P(Ds)

Deep network

Deep network

Learning phase

Inference phase
Projection

Pnn(Dp)

Data universe D

Deployment

Figure 2.5: The learning process of NNP (Figure from [2])

The hidden layers of the network activate us-
ing the ReLU function described in EQN. 2.7
and the output layer returns a 2d coordinate as
a result of a sigmoid function, outlined in EQN.
2.8. The decision of these components follows the
parameter optimization in [3]. The layer sizes
in Figure 2.6 correspond to a shape and style
of standard/wide, where standard refers to the
multiplier of nodes, while wide refers to the pattern
given to a layout of nodes. Regardless of layout,
NNP has a small amount of layers which makes it
easy to implement.
Other layouts are listed below:

• Small - straight : 120, 120 and 120 units;

• Small - wide: 90, 180 and 90 units;

• Small - bottleneck : 150, 60 and 150 units;

• Medium - straight : 240, 240 and 240 units;

• Medium - wide: 180, 360 and 180 units;

• Medium - bottleneck : 300, 120 and 300 units;

• Large - straight : 480, 480 and 480 units;

• Large - wide: 360, 720 and 360 units;

• Large - bottleneck : 600, 240 and 600 units.

Figure 2.6: The architecture of NNP, showing
the hidden layers and activation functions of each.
(Figure from [2])

2.3.2 Benefits of NNP

We have positioned NNP as a strong competitor to
t-SNE, this is because NNP projects very similarly
in terms of performance, while excelling exactly
where t-SNE falls short as listed in Sec. 2.2.2. NNP
is incredibly simple to use and parameter agnostic
as shown in [3], as opposed to t-SNE which heav-
ily requires expertise to set its parameters. NNP is
much faster than t-SNE and is stable with regards
to small changes in the data [2].

14



Parameter Sensitivity

NNP is stable with regard to parameters, as shown
in [3]. This was proven by tuning the training-set
size, node quantity, layer shape and selecting the
best performing regularizers, optimizers and loss
functions. The end result was a slight improve-
ment in results from the original NNP and a verifi-
cation that the NNP method does not heavily rely
on any of these tune-able parameters to perform
well. This optimization did not specifically target
the diffusion, but we will build off of the work in
[3] to continue to search the solution space in a di-
rection orthogonal to hyper-parameter tuning.

Linear Complexity

To make the most effective use of training time,
NNP uses ’early stopping’, which is effectively a
heuristic to determine when to stop training.
The loss is monitored and if it does not go down
by at least δ in the number of epochs given by the
patience parameter, the model assumes this is the
maximum and stops training. This has the poten-
tial drawback of getting stuck at a local optimum
but often the training investment for a true maxi-
mum is not worth the performance difference from
a local maximum. This training investment time is
linear with respect to number of dimensions and ob-
servations, regardless of the technique NNP learns
from.

Out-of-sample

Due to the ease at which NNP recognizes the struc-
ture in the training projection, it generates pro-
jections which are difficult to distinguish from the
original training projection at a glance. This struc-
ture is present even when NNP is projecting data
that was not part of the training set, i.e. unseen
test data, therefore content that does not actu-
ally exist in the learned projection will have similar
structure.

Consistency

The stability of NNP means it will project the same
or a similar point in approximately the same place
once trained, as it learns where to place based on
abstractions of the features within the data. By
virtue of being a Neural network, NNP is able to

create stable projections on unseen data. Neu-
ral networks require only initial training, at which
point most computational resources in time and
processing are invested. The model is then reused
on similar data for inference multiple times, assum-
ing that the training data is somewhat representa-
tive of the unseen data.

2.3.3 Disadvantages of NNP

The out-of-sample capability, stability of NNP and
speed comes at the cost of the diffusion of some
points, which can be seen as a reduction in cluster-
separation and in quality metrics. This is a large
issue, as the popularity of t-SNE is due to its cluster
separation which NNP loses through diffusion.

2.4 Visual Exploration

In this chapter we describe the literature which pro-
vides context to this thesis. Specifically we describe
similar methods of visualization to those we are go-
ing to use. Both to present our projections, but
also to understand how certain visualization meth-
ods work and gain inspiration from these. Next we
give a necessarily brief overview of such visualiza-
tion methods.

Similar in purpose to our proposed solution, in
[13] a pipeline is used to explore, visualize and
refine machine learning. Although this toolkit is
much larger in scope than ours, it provides a good
example of the kind of iterative, interactive and
interpretable framework for AI methods which we
aspire to create.

2.4.1 Visualization of Classifier De-
cisions through Activations

A classifier is a kind of neural network that are
trained to predict discrete class labels. Classifiers
make clear cut decisions by grouping samples into
one of a subset of categories. Perhaps because of
this strict decision process they are very popular
for exploration with visualization.

Discriminatory Neurons in Classification

The representations of observations learned by
the neural network on three image classification

15



Figure 2.7: A visualization showing the evolution
of cluster separation in a classifier over progressive
training epochs. (Figure from [14])

datasets are visualized in [14]. The understand-
ing of the evolution of differing representations and
inter-neuron relations is used to plot a trajectory of
the network’s learning during training. By scoring
the contribution of neurons, they successfully iso-
late certain discriminatory groups of neurons which
contribute the most to certain class labels. Simi-
larly in [15] the activations of the neurons are used
to distinguish misclassifications from the correctly
classified points. These approaches are able to show
how the contribution of neurons can be used to iso-
late discriminatory groups to reveal the decision
process.

Discriminatory Super-pixels in Image
Classification

Similar to these previous classification visualiza-
tions, the paper [16] introduces the LIME tech-
nique which aims to explain predictions through
visual representations that show the relationship
between observations and the predicted outcome.
This brings specific emphasis to interpretability in
models, accounting for the user’s limitations when
designing visualizations. In particular they show a
selection of super-pixels on top of an image classi-
fication sample to convey easily to a human which

Figure 2.8: LIME visualization of super-pixels,
used as a discriminatory measure for explanations.
(Figure from [16])

parts of an image were responsible for a class pre-
diction. These super-pixels are a form of local ex-
planation which approximates the closest decision
boundary. This explanation contains the discrimi-
natory information which guides the decision pro-
cess of the network. This decision in visual form,
can be conveyed to and interpreted by a user.

2.4.2 Other Learned Representa-
tions

Broader methods in the visualization of deep learn-
ing concern models which are not as simple as the
NNP model. These more complex models learn in
different ways which give them more options to con-
vey their decision process.

Recurrent Neural Networks

Recurrent neural networks (RNNs) are a form of
temporally sensitive ANN, where each time step
has a recursive state. The hidden representations
of these intermittent recursive states are obscured.
In LSTMVIS [17] these hidden states are visual-
ized and the technique is able to use this to return
similar learned representations to a user supplied
hypothesis.

Convolution Neural Networks

Another commonly used visualization application
is that of convolutional neural networks (CNNs).
These are networks which slide filters over an image
and activate where these filters match; matching
defines a feature of the image.

16



These features can then be visualized to intuitively
see what that filter specializes in, for example a
filter may learns to detect edges in an image. In
[18] the activations of user input are displayed in
real-time across the feature maps in the convolution
layer and traced upwards into the output layer to
show the user exactly how the network formed a
prediction.

2.4.3 Visual Analytics

Regarding principle of user interaction within vi-
sualization tools for analytics, papers such as Dis-
function [19] and FDive [20] allow the user to shape
the model interactively.

Dis-function proposes a method to adapt the
distance function through users dragging a point
in a scatter-plot to facilitate an update of feature
weights.

FDive uses relevance models and pattern-based
similarity to rank features by how they distin-
guish their data. A user can then navigate multi-
dimensional data by changing what is or is not con-
sidered relevant data by labelling a point.
The relevance is updated and FDive will empha-
sise the discriminatory features on similarly rele-
vant data.

In both cases the user is guided into reaching the
results that are relevant to them by directly shaping
the feedback that they receive.

2.4.4 Distinctions from this Thesis

Distinctions in Visual Analytics Techniques

There are two distinctions between the previously
mentioned methods and our methods which we
present in Sec.3 for visualizing NNP.
Firstly, most listed methods are focused on explain-
ing classifiers or some categorical quality and NNP
is a regression network. Instead of predicting a class
label or category we predict coordinate placement,
so we cannot declare something a misclassification.
We can only compute how far it is from ideal and
we do not have the liberty of having limited dis-
crete outcomes to predict. Secondly, certain mod-
els like convolutional neural networks have feature
maps, or some other view-able learned representa-
tion. Our model is a simple feed forward network
which has no such abstraction component. Due to

these two distinctions the application of visualiza-
tions to NNP is seemingly novel.

Distinctions in User Interaction

Recall that FDIVE and Dis-function allow the user
to shape the feedback they receive. These meth-
ods demonstrate the importance of user input, in
our method the shaping of user feedback is mostly
constrained to the on the fly re-computation of dis-
tance metrics according to new neighborhoods, or
in the usage of specific tools. This is because in-
stead of relying on a user to shape our model, re-
quiring their input to reduce error and possible ob-
scure causes, we would rather use our quality met-
rics as an objective measure of the projection’s per-
formance to guide exploration into explicit causes.

2.4.5 Similarities with this Thesis

The most relevant part to our NNP problem is the
ability to isolate discriminatory groups in order to
interpret the network’s decision process.

In ’Visual Analysis of Dimensionality Reduction
Quality for Parameterized Projections’ [21], Mar-
tins et al. allow the user to access a set of inter-
active visualizations which help iteratively explore
the space of parameter choices.
The user has the ability to directly select points of
interest in the visualization for scrutiny by the qual-
ity metrics. The user has access to freely available
perspectives, and is able to isolate and focus on
selected problematic points. Our method accom-
plishes many of the same things - allowing multiple
perspectives, isolation methods and focus areas -
but instead of computing the metrics based on the
selection of a point, we compute metrics as individ-
ual values with respect to a neighborhood. We be-
lieve such a neighborhood is the unit of value when
mimicking a projection with such specific neighbor-
hood preservation as t-SNE.

We also emphasize the great importance of the
concept of activations as learned representations as
being fundamental for this thesis, as proposed in
papers such as [21].

17



Chapter 3

Visual Exploration of Deep Learned
Projections

In the previous chapter we introduced the back-
ground of our research, and what we hope to
achieve in contrast to other approaches.
The first part of our research goal is: How can we
understand the diffusion or limited quality in pro-
jection? To get this understanding we use the met-
rics we outlined in Sec. 2.1.2. We apply these met-
rics as the first of our tools, in order to discriminate
between the well and badly performing points. The
arrangement of these points outlines the hot spots
of diffusion.

3.1 Examining the problem:
Applying our Tools

The goal of our research is to be able to explore
the black box of the neural network. By designing
and applying tools to NNP within our solution, we
aim to visualize and explain the reasoning behind
NNP’s choices. We can then use this understanding
to find areas which show potential for improvement.
We will now detail our visualization solution, start-
ing with the general workflow and the interface.
In Figure 3.1 we outline an overview of our method,
the starting steps are the same as those in Figure
2.5, with the additional workflow of this thesis. Ex-
amining the problem begins with a heat colormap
applied to each projection, as a basis for all exper-
iments. We use the heat colormap in each view to
locate the error. Pnn(Ds) and Pnn(Dp) are the
projections created by NNP that we wish to im-
prove, so we focus on the error in those views in
particular.

Projection technique

Training dataset DsTest dataset Dp

Projection

P(Ds)

Deep network

Deep network

Isolate cause

Select cause

Apply fix

Learning phase

Inference phase
Projection

Pnn(Dp)

Data universe D

Deployment

Improvement phase

Examining the Problem

Projection View 

P(Ds)
Training View 

Pnn(Ds)

Testing View 

Pnn(Dp)

Examine learning

Global metrics

Class Labels

Establish a baseline
Isolate error

Examine decisions

Select error

Brushing

Threshold tool

Nearest neighbor tool

Interpolation tool

Identifying the Error

Heat map 

of Pnn(Dp)

Heat map 

of Pnn(Ds)

Heat map 

of P(Ds)Recompute

and

re-evaluate

Repeat 

for all 

points of 

interest

Examining the Learning Examining what is learned

Applying knowledge

Figure 3.1: An overview of the exploration process
in this thesis

When hot-spots of diffusion are found, we start the
cycle of selecting, isolating and exploring this er-
ror. We repeat this process for a subset of inter-
esting points to gain insight into the causes behind

18



the error and outline possible causes. Once we have
documented causes we start the process of selecting
and isolating again but this time with the noted po-
tential causes instead of error. Once the causes are
isolated we can apply fixes. Finally, we recompute
and evaluate the improvement, continuing from the
best performing model at that time.

Initialization

In the following section we introduce the datasets
and the available parameters for initialization of
NNP within the toolbox.

Figure 3.2: The first screen of the proposed visual-
ization solution

NNP Parameters
When the user first enters our proposed visualiza-
tion solution, they will be met with the initializa-
tion screen. This is for the parameters to train the
model, which are required before any exploration
can take place. The N samples input allows the user
to select how many samples they want to include
in the training and test set, the sizes and styles are
discussed in Sec. 2.3.1. ’Train without error’ is re-
lated to removing points in Sec. 3.6.2. The option
for neighbors has to do with the implementation
in Sec. 4. The distance choice allows the user to
opt for a time-accuracy trade-off: the visualization
solution becomes faster to start up by selecting an
approximate distance [22] that may be less accurate
instead of absolute (Euclidean) distance.

Finally the confirm button signals to the visualiza-
tion solution that the user has selected the param-
eters that they would like, and begins to generate
the model.

Unfamiliar Options on the UI
A reader may notice the exclusion of standard/wide
option for size/style. This is because the size con-
ventions of that architecture are not as easy to gen-
eralize into other styles while remaining consistent
with the existing styles. The model using stan-
dard/wide itself did not stand out in any partic-
ular case. Furthermore an ’xl’ option was added,
particularly for exploration with the architecture
introduced in Sec. 4. The xl architecture is:

• Xl - straight : 960, 960 and 960 units;

• Xl - wide: 720, 1440 and 720 units;

• Xl - bottleneck : 1200, 480 and 1200;

We do not commonly use this architecture in these
experiments, particularly because it did not bring
additional results and did have an increase in com-
putation time. It is important to mention this ad-
ditional architecture, because a fear of KNNP in
Sec. 4 is the network size throttling the input and
by using this size we made sure to provide KNNP
enough space.

Datasets:
A user can select from a list of currently supported
datasets, which are a subset of those used in the
original NNP evaluation [2]: MNIST[23] and
Dogs vs Cats [24]. Any dataset that works with
NNP is compatible, however some datatsets will
need an adaption to specify the things they want
to visualize. For example, a text database would
need slight adaptions to show a tokenized word
instead of an image in the hover tool.
MNIST [23]: 70K observations of handwritten
digits from 0 to 9, rendered as 28x28-pixel gray-
scale images, flattened to 784-element vectors;
Dogs vs Cats [24]: 25K images of varying sizes
divided into two classes (cats, dogs). We used
the Inception VGG16 [25] convolutional neural
network pre-trained on the ImageNet data set [26]
to extract features of those images, yielding
2048-element vectors for each image.

19



While the vectors are used for the model itself, the
raw images are used for the exploration of the re-
sulting projection in the hover tool as a means to
convey trust to the user.

(a) Dogs vs. cats: 2 classes, 25k samples [24](Figure
from [2])

(b) MNIST: 10 classes, 70k samples [23](Figure from [2])

Once the user has clicked confirm, the projection
of t-SNE, NNP training and NNP test views are
computed. These are the three models/views that
form the basis of the examining the problem in the
workflow Figure 3.1.

Caching
The models created on the back-end are saved us-
ing a unique identifier flag according to the dataset,
parameter set and state of the model, so the same
parameters on multiple runs will resume an older
model. This makes subsequent runs much faster,
as our solution has significant computational over-
head from the original NNP. We compute t-SNE as
a training projection and NNP, which are both part
of the basic process of NNP, but for the visualiza-
tion we need to compute activations for every layer,
as well as distance computations between training,
test and ground-truth projection. This is not a de-
sired process, but a coping mechanism to allow the
proposed visualization solution to be interactive.

Likely an optimization could easily overcome this
problem but that is not within the scope of this
thesis.

3.1.1 Projection, Training and Test-
ing Views

In this section we only detail the basics of tools
as not to overwhelm the reader; we go into further
detail of tools as they become relevant for the ex-
periments we perform in Section 3.3.2.
All components of our visualization solution fit into
’views’ divided into dataset types for ease of use and
specialization within the space of examining of the
problem. (Figure 3.1):

• Projection View: Examine global metrics to
examine the ground truth.

• Training View: Examine the learned structure
and comparison to ground truth.

• Testing View: Examine the inferred structure
and generalizability, relations between neu-
rons, which features are learned and the effect
of the training process.

The user is able to use any appropriate tool in any
view, as many of the tools listed in previous views
are available in others. For example, the test view
contains all tools within the projection and train
view. However this inheritance is order dependent
because neurons do not exist in the projection, so
the tool for examining neuron relations is unavail-
able in that view. The above list is the intended
usage for our experiments but the user is in no way
restricted.

In this section we begin to examine how the in-
put affects the diffusion through instance based in-
terpretations of training sample neighborhoods. In
this way we introduce the user to a baseline ex-
ample of our proposed solution that forms the first
steps of our evaluation.

Figure 3.4 shows the Projection View, which
shows the ground truth projection that NNP will
use as the ’correct’ predictions for the training set.
This is our least detailed view, and as such the
other views inherit from it, i.e. every other view
has these tools and more.

20



Figure 3.4: The dataset selection tabs (a), each showing a heat colormap of projected points (b) which
are coloured according to color bar (c) as specified by the errors selected by error toggles (i). A range
of interactions (d) is available to the user for this heat colormap. A user may click to select points
(q) or move the mouse over a point to view the hover tooltip (l). The default hover conveys the class
label (m), the index of the point (n), the x and y coordinates in 2d space (p) and the error metric
defined by the toggles (o). Global metrics are shown (e) while the local metrics are computed at a scale
of neighborhoods that contain (f) points. (g) and (k) allow selection by error or index respectively;
non-selected points can be hidden by changing their transparency with (h). The Tools tab (k) has more
usage in other views but remains consistently placed for similarity across views.

21



The user interactively selects the subset of
the data they would like to investigate by se-
lecting one of the view tabs Figure 3.4(a), either
the ’Dataset’, GT ’Projection’, ’Training’ set or
’Testing’ set. The dataset view is the same as the
start page in Figure 3.2 and this allows the user
to recompute the model during the same session.
The other views provide different perspectives of
the training data for the user. In the training set
view they can see the NNP projection. In the
testing set view a user can see the generalizability
of the model on the test set. In this way the
user remains involved through each step of the
exploration space.

Global Metrics and Global Tools

The Global metrics are shown in Figure 3.4(e) as
a means of reducing the search space. If the user
finds these satisfactory, they may move on to an-
other sub-set of data. Alternatively if these are
very low then something external has gone wrong
in the training process and an adjustment of model
parameters or checking the dataset may be more
useful in reducing error than specific examination
of the points with the tools listed here.

Finally Figure 3.4(j) allows the selection and us-
age of the specific subsets of tools, more are avail-
able in other views such as the training set view.
Here we can see the ’Dataset’ view, containing the
selection text area. The components listed above
are consistent across all views, but there are addi-
tional tools on other views. For example Training
and Test set views have access to the tools which
are contained within tabs such as ”Distance” for
finding neighbors or mapping by distance and ”Vi-
suals” for creating activation graphs. These tools
will be demonstrated in future sections with exam-
ples of their usage.

Local Tools

The heat colormap is present in every view, but
each is a unique projection. The heat colormap
shows the projected points in Figure 3.4(b). This
heat colormap is colored according to error per
point, with darker points having higher error. The
color scale 3.4(c) shows this gradient. This color
range was chosen for two reasons. Firstly with
the error points being the darkest, they form dark

clusters in areas where the error is highest, giv-
ing intuition to the user at which severity these
errors occur. A darker color for errors combined
with a lighter color for low error makes the errors
more pronounced and less obscured visually by the
lighter colors. Secondly, choosing a lighter color
for these lowest error points allows us to under-
state them in order to focus on our goal of fixing
the error. The errors themselves are specified by
user input of one or more toggle buttons in Fig-
ure 3.4(i). Each button when toggled ’on’ enables
a quality metric to contribute to the ’metric’ score
of the error per point. If multiple are selected they
are aggregated by averaging, while a singular error
metric toggled on is displayed as only that metric
per point. Recall that the metric per point is com-
puted based on a neighborhood around the point.
Figure 3.4(f) is used to define how many neighbors
are in the scope of this neighborhood and adjust
the error accordingly. If no error metrics are ’tog-
gled’, the heat colormap displays discrete colours
according to class label. For ease of use in isolating
specific points Figure 3.4(g) and Figure 3.4(k) allow
selection by error or index respectively. The non-
selected points can be hidden as desired by chang-
ing their transparency with Figure 3.4(h).

Interacting with the heat colormap

A range of interactions is available to the user for
the heat colormap in the toolbar shown in Fig-
ure 3.4(d); the first tool is a lasso selection tool.
The user may select points using Figure 3.4(q) for
isolation, at which point the selected point will be-
come darker and all other points become less pro-
nounced through the loss of opacity and outline.
Selecting points is a key way to isolate points that
they will perform further exploration on, making
it a commonly used first step for other tools. The
next button on toolbar Figure 3.4(d) is a box-zoom,
which allows zooming in/out according to a user’s
interest scale, which prevents the large amount of
points from cluttering the view. The distance be-
tween points scales by the zoom while the size of
the points remains consistent with respect to screen
size. In the case that points overlap, the zoom can
be used to bypass the visual clutter to a more man-
ageable scale where all points are visible. The third
tool on toolbar Figure 3.4(d) is a tap tool, which
is a more subtle selection method, selecting only

22



clicked points instead of by lasso. This is followed
by a zoom out tool, to recover from any zooming
in that the user has done. The fifth tool is a save,
which exports the heat colormap and color bar to
an image. Next we have the reset button, which
undoes any interactions and reverts the graph back
to its original state.
This gives the user the option to back-out at any
time and fix unintended consequences. Finally, we
have two speech bubble tooltips. These are the
hover selections and the hovers can be toggled on
or off depending if the user wants to see them or
not.

Hover Tooltips

The default hover tooltip in Figure 3.4(l) conveys
the class label in a visual and textual format to
encourage trust in the model, as shown in Figure
3.4(m). The user can be assured that these are the
points given in the training set and that training
went as expected. The hover also contains the in-
dex of the particular training point in the dataset
shown in Figure 3.4(n) which is useful for selection
at a later point, as well as identification. The final
information displayed on the hover are the x and
y coordinates in 2d space as projected in Figure
3.4(p) and the error metric as defined by the user
toggles in a numerical format for trust and trans-
parency in the colormap.

The hover is intended to provide a qualitative un-
derstanding of the sample instances and their com-
ponents, displaying the relationship between the
class, input image and prediction. Each glyph re-
quires its own hover to have differing information.
For example the two displayed in the projection
graph are for the class and metric heat colormaps.
It makes no sense to have a metric showing on the
hover Figure 3.4(l) when no metric is selected in
class view, so it has its own hover-tooltip in Fig-
ure 3.4(d).

3.2 Identifying the Error

In this section we will answer the question: ’How
can we understand the diffusion or limited quality
in projection?’ by exploring how to determine a
projection’s quality. This is the subset of Figure 3.1
encapsulated under ’Find the error’. This model

cannot be simply evaluated on a test set for accu-
racy like other deep learning models. Instead we
use the metrics specified in Sec. 2.1.2 to outline
in heat colormap form, the areas of error to see
how error is spread over the 2d space. In this way
we can qualitatively and quantitatively see where
the errors are. We then focus on these points of
error specifically while avoiding focus on the well-
performing points to guide us towards an effective
remedy to the diffusion.

The Heat Colormap

We will now examine the heat colormap that vi-
sualizes the hotspots of error and the context in
which they occur. Knowing which points are worst
affected by each error metric will allow us to know
where we wish to focus our search for improvement.

3.2.1 What is the Error?

Recall the heat colormap displayed in Figure 3.4;
this displays a local quality metric for each point
color-coded as a score on a particular metric. This
metric is selected by the user from the three met-
rics and computed at a local neighborhood. The
neighborhood size is defined by a user input value
in Figure 3.4(f). We call the inverse of a quality
metric ’error’. The error refers to a low score of a
particular metric, which then evaluates how badly
a point is projected with regards to the neighbor-
hood. This is in stark contrast with the kind of
error in accuracy that is usually found in neural
networks, as there is no easily ’correct’ answer for
where these points should go. If we were to eval-
uate the points based on their MAE for example,
we would be left with the points that are furthest
away from their t-SNE counterparts, but what we
are actually interested in is not explicitly distance
from t-SNE but rather whatever property causes
points to become diffuse, whether far from t-SNE
or not. We intend to use these hot spots of error
as a means to focus our search. By using quality
metrics, we open our search space to the possibili-
ties of identifying errors across a variety of causes
rather than just the failure to copy t-SNE exactly.

23



Class Labels

Without metrics, we show the heat colormap col-
ored according to classes. This allows the user to
make sense of the projection at a glance. Class la-
bels are a more intuitive way to convey structure of
the data, so we can see if NNP learned the struc-
ture by observing the class labels. Class labels are
not provided to NNP for projection, training or in-
ference; only for conveying the classes to the user.
In Figure 3.5 we show the class view of MNIST in
t-SNE.This serves as a means of showing the reader
what they can expect from this dataset and intuit
about the structure of each. In Figure 3.6 we do
the same for the Dogs vs cats dataset.

Figure 3.5: MNIST: Class View in t-SNE. Each
color corresponds to a different class label.

Metric Comparison to t-SNE

In this section, we briefly compare the metrics on
t-SNE to NNP to verify that the error is consistent
across both methods of projection.
For all three cases listed in Figure 3.7, t-SNE and
NNP share the same error placements, but with
NNP having comparatively more. NNP is good at
mimicking t-SNE’s success, but not the scale of its
flaws. This is expected due to the differences in
the global quality metrics but is important to note
as we can draw two conclusions from this. Firstly,
that NNP captures the structure of t-SNE. We can
see this from the class labels, as well as the layout
of the hot-spots of error.

Figure 3.6: Dogs vs Cats: Class View in t-SNE.

Figure 3.7: Error hot spots in t-SNE and NNP.
Darker/more red areas show lower metrics. Notice
the similar placements of the darker points, indi-
cating training success.

24



This is not evident, as projection styles often have
very different errors to those outlined here [21]
and the structure of clusters could be formed in
the same general position without having the same
kinds of errors at a fine-grain scale. This suggests
that NNP has these errors in the same places as t-
SNE because NNP is capturing some mechanism of
the ground truth projection, rather than trying to
capture the effect of t-SNE in a completely different
way. Secondly and more crucial for our goal, the
error is of a similar scope to t-SNE. We have error
in the same areas so if we reduce the error we are
likely to see a much closer similarity and therefore
competition, which is our main objective.

Continuity C

Figure 3.8: Continuity heat colormap

Continuity (formally defined in Sec. 2.1.2) mea-
sures how many points in the projection neighbor-
hood of a point should actually be in that neigh-
borhood, or are falsely shown as neighbors. As
visible in Figure 3.8, these points tend to appear
between or on the edges of clusters. If being closer
to the center of the cluster signifies a solid identity
within that cluster, then these points are the ones
who are not sure of their identity and are among
other points who are not sure, leading to neighbors

in the projection that should not be. The lowest
score of continuity corresponds with the points in
the midpoints between clusters and on the border,
this is the same position that we see the diffusion
in points.

Trustworthiness T

Figure 3.9: Trustworthiness heat colormap.
Darker/more red areas show lower metrics.

Trustworthiness (formally defined in Sec. 2.1.2)
measures how many neighbors in the data are miss-
ing from the projection neighborhood. We see a
similar distribution of error in 3.9 to those in the
previous Figure 3.8; the worst scoring points are
those between clusters and on the borders. Trust-
worthiness seems to more harshly penalize certain
points in the projection, particularly those between
multiple clusters like in the top center of the heat
colormap, while less harshly rating those that are
within clusters, evidenced by the black stripe of
dots in the left of the center cluster present in
continuity but absent in trustworthiness. With
these two metrics examined, we can see the case
for aggregation. Both metrics target the diffusion
harshly, while calming the areas only present in
one, creating a smoothing factor.

25



Neighborhood Hit NH

Figure 3.10: Neighborhood hit heat colormap.
Darker/more red areas show lower metrics.

Neighborhood hit (formally defined in Sec. 2.1.2)
is a metric that is very harsh on the points between
clusters. This is expected as cluster separation
is exactly what neighborhood hit measures. The
severity of this harshness is shown in 3.10, where
much darker points can be seen than in the Fig-
ures 3.8-3.9. Neighborhood hit may sound like it is
the perfect metric for judging similarity to t-SNE
which prioritises neighborhood preservation, how-
ever this metric also strongly negatively emphasises
’misclassifications’ that appear in both t-SNE and
NNP.
That is, points which are similar to their cluster in
the input, but share a different class label to those
points, e.g.: A 1 that is indistinguishable from a 7.

Why not be harsh on misclassifications?
Since we are ideally trying to match t-SNE, we ig-
nore cases that are incorrect in both NNP and in t-
SNE. Focusing instead on areas to improve to meet
the level of t-SNE. We may have such cases where
both projections are correct in placing this point as
a misclassification, which is most likely the behav-
ior we see in Figure 3.10. A point may be correct

with respect to D in P (D) but because the class
labels, which the projection is unaware of, are dif-
ferent the neighborhood hit decreases significantly.
This means that sometimes neighborhood hit can
be detrimental to the kind of behavior we want to
see.

Aggregate Metrics

So far we have identified metrics that are able to
quantify the diffusion that we want to remove, how-
ever some of these are too harsh on non-diffuse
parts of the projection. This harshness appears as
distracting dark spots that we do not want to focus
on when isolating diffusion. By aggregating two or
more metrics, we are able to compound the harsh
penalization of diffuse points, while points which
are not diffuse are weighed on their performance
between metrics. The higher score in one metric of
points that are low in others, will bring the score of
those points to a higher total value and allow the
discrimination of the diffuse points which are low
in all metrics.

Figure 3.11: Exclusivity of quality metrics: conti-
nuity (Green), trustworthiness (Orange), neighbor-
hood hit (Blue) and aggregate of 3 (Purple)

In Figure 3.11 we demonstrate the usage of the ag-
gregated metrics compared to each metric when

26



computed by itself, for this diagram we chose to
show the training projection in gray-scale to eas-
ier emphasize which points are selected by which
metric exclusively, i.e. by only one and no others.
We take the 10% lowest scores for each metric, and
subtract from these the points which are in the low-
est 10% of other metrics, including aggregate met-
rics. Green are the lowest 10% of continuity that
are only selected by continuity and not by other
metrics. Orange are the lowest 10% of points high-
lighted only by trustworthiness, blue are the lowest
10% of neighborhood hit and purple are the lowest
10% only selected by an aggregate of all three met-
rics.
We highlight four situations in this graph, which fit
into two cases. The center most inset illustrates the
case of points that are ’smoothed’ by the aggrega-
tion. These are points that are picked up by some
error metric that are not desired when focusing on
diffusion. In this case we can compare the training
set and t-SNE and find no obvious diffusion.

In the other case, we see points that are not con-
sidered the lowest 10% of metrics until all three are
aggregated. These cases demonstrate where diffuse
points exist by showing the insets of direct compar-
ison between t-SNE and the training set. We see
many scattered points that are split from clusters,
that only are selected by the purple aggregate. In
this way we more concretely isolate the diffusion, as
illustrated by the purple dots in the figure mostly
lying in the diffuse areas between clusters.

Neighborhood size for Metrics

The neighborhood size we use in this thesis is the
same value as the t-SNE perplexity. This is sim-
ply a rule of thumb, and could be set to any in-
teger value with the caveat that a neighborhood
too small means that small groups of badly placed
points escape detection by clustering and forming
entire neighborhoods. A size too large means that
inter-cluster dependencies form in the metric and
we start evaluating the metrics of points that be-
long in a small cluster by the nearest points outside
of the cluster as well, regardless of distance or sim-
ilarity.

3.2.2 The Error is Diffusion

In this chapter we showed that we have found that
the errors occur at the same places as the diffu-
sion that we wish to reduce. Some metrics are bet-
ter than others when alone, but aggregation com-
pounds the effectiveness of the error of interest to
more concretely outline this diffusion. We found
that the error lies in the same place as t-SNE’s
error, which is important for establishing that im-
proving these metrics will bring us closer to t-SNE.
With these two pieces of information, we know that
we have found the error that we want to reduce and
that if we do so we can expect to behave more like
the t-SNE ground truth. So now we can focus on
this error and try to reduce it to reach our goal of
making NNP more competitive with t-SNE.
We can answer the sub-question: On which points
does NNP work well? Simply, these are the same
places that t-SNE performs well, and provides a
good example to learn from.

Figure 3.12: Diffusion within Dogs vs Cats. Insets
show diffusion compared to t-SNE. Darker/more
red areas show lower metrics.

27



3.3 Isolating the Error

With the error heat colormaps defined in Section
3.2.1 we now know where the largest errors are im-
plicitly. The threshold tool aims to explicitly iso-
late the error, so that we can focus our attention
into these areas. This focus narrows down the space
of causes to those that only occur in the error that
we want to reduce to improve the projections.

Although not traditionally applied to a dataset
before establishing a baseline as in Figure 3.1, we
will use the isolation tools to explore the points as
a first exposure to the problem. Usually we rely on
only the class labels and quality metrics to deter-
mine our baseline. We will apply these additional
tools to the training set in order to demonstrate the
usage of locating, selecting and isolating error and
to become more familiar with the data.

3.3.1 The Thresholding Tool

The process of selecting the lowest performing point
is trivial; the user simply inputs a number in Fig-
ure 3.4(g). The threshold operation then takes the
current selected metric that is applied to the heat
colormap, finds and then selects the smallest scores
in this metric. This selection invokes the same be-
havior as that of the lasso tool in Figure 3.4(d). In
this way all selected points are treated as equals,
whether user or threshold selected. This is useful
so that the user is able to manually select through
brushing instead of by threshold if they wish to use
a different subset of points for further steps, giving
them much more freedom to explore.

Selection and Isolation

We can use a threshold parameter to reduce the er-
ror we see to only the highest percentile.
For the purposes of this experiment, to demonstrate
the tools usage, we find the worst performing point
in the test set. This performance is according to the
neighborhood hit, and a metric neighborhood size
of 30. If we can isolate and focus on this point, we
aim to find a reason for it’s low metrics. Given the
layout of error in Figure 3.11 we can say that the
error metric is related to the diffusion in points. We
aim to reduce diffusion by finding the same prob-
lems that reduce the quality metrics and increase
error.

Figure 3.13: Two main tools for focus used on the
same point (a), visibility slider (b) and zoom tool
(c)

This particular point is a big contributor to error
by being the largest error in the projection.

Once selected the points can be isolated in two
main ways, shown in Figure 3.13 these ways can
be used together if desired but mostly depend on
context.

Isolation by Opacity
If the user wishes to keep the global context of
the point in mind, the visibility slider Figure
3.13(b) will control the opacity of all non-selected
points. The user can make all uninteresting points
increasingly transparent until they can focus on
the selected points. The non-selected points can
be tuned to a desired transparency so that they
still provide a context to the selected points, as
shown in Figure 3.14.

Isolation by Zoom
If the user wants to examine the neighborhood con-
text by fully focusing on a single neighborhood they
can use the zoom tool in Figure 3.13(c), allowing
a more precise movement between points and us-
age of tools without the other points cluttering the
view. Any points will scale their metric color ac-
cording to view, allowing the user to easily see how
points in a neighborhood relate to each other.This
color scaling allows the user to focus on a specific
scope of the projection. The user is able to move
around at this local scale through the help of a pan-
ning tool , and can also easily reset the projection
to the original context through the reset button.

28



Figure 3.14: Slices of the visibility slider used to set
the opacity of the points to 75%(a), 50%(b), 25%
(c), 0%(d).

Both the reset button and panning tool are found
in the toolbar (Fig. 3.4(d)).

Usage of the Zoom Tool:
The usage of the zoom tool is demonstrated in Fig-
ure 3.15. In this figure we see the context of a point
in the projection (a), we then zoom into this point’s
neighborhood (b) and are able to see the relative
colors of its neighbors. Finally we use the zoom
tool again to see the point by itself in (c)

3.3.2 Examining the Network’s De-
cisions: Method and Baseline

From the previous subsections, we learned how to
use multiple avenues of selection and isolation. We
apply these and find that the lowest performing
point in neighborhood hit is a ’misclassified’ 0. This
point is ’misclassified’ because it is placed within a
cluster of 1s, leading to it’s low quality metrics.
The nearest neighbors of this point by proximity
in the projection do not seem to share any easily
identifiable features with it, as far as we can see in
Figure 3.16 and it is not an obviously misleading
case of a 0 that looks like a 1. There is no simi-

lar ’misclassification’ in the t-SNE projection, as is
the case with those errors that are present in both
t-SNE and NNP projections that we justify ignor-
ing in Sec. 3.2.1. In fact no single class 0 point
is placed into this cluster in the original t-SNE, al-
though because this is a test sample we cannot say
for sure where exactly this point would or would
not be placed by t-SNE as we are unable to stably
generate a test projection.

We want to answer the sub-question: On which
points does NNP work poorly? At this point we
know that NNP performs poorly on the point
selected in Sec. 3.3.1, but we do not know which
properties of this point places it within that
category. We want to know more about this point,
but simply looking at the neighborhood, metrics
and hover is not enough. What we have done so
far is look at the results of the projection and
compare them to what we have seen before. What
we want to do is look inside the black box rather
than reason about what comes out of it. We want
to be able to tell the diffuse points apart from the
well performing points by finding some discrimina-
tory property within the input or network behavior.

These two experiments help build a founda-
tion for opening the black box. We have justified
our metrics as being helpful in identifying error,
which is in turn helpful for seeing if we improved
the projection. Furthermore, the hover, threshold
and selection tools that we have established
are widely used in our experiments and will be
useful when investigating these points in the next
sections.

We were able to isolate a point as outlined by the
error metrics in the previous section and we were
able to focus and dive down into this point to in-
vestigate it. We found some clues and made some
conclusions based on this, but have no actionable
information to improve the projection from the us-
age of the tools we have so far. We must use more
complex tools to get into the decision process of the
neural network.

At this stage, we have examined some of the
largest errors superficially, but we want to go more
in depth. Now we introduce some tools to focus
explicitly on investigating NNP’s decision process.
We do this to gain intuition from the similar
samples in the data.

29



Figure 3.15: The zoom tool to focus on the point (a), inlets show each subsequent magnification. (b =
x1, c = x2)

Figure 3.16: The pixel values of the worst point
(right) and its two closest neighbors outlined so far
accessed by the hover tool

In this experiment we will determine why a
specific point was placed in a particular location
by tracing the choices back to training and the
characteristics of the input provided. We focus on
the input and its relation to the diffusion in order
to narrow down if something in the input directly
influences the diffusion, as opposed to something
that is part of the network architecture.

For this purpose we will be using two main tools:
the nearest neighbors tool, to see which points are
most similar according to the network, and the in-
terpolation tool which allows us to see how far a
point has moved from its placement in the ground
truth t-SNE projection.
The nearest neighbors tool allows us to determine
if the network judges a point to be similar to an-

other and placed nearby, where we would expect
similar points to be, therefore demonstrating if the
learned features are correct . The interpolation tool
allows us to see if the training struggled to grasp
some aspect of the original projection by showing
the disagreement between the predicted NNP and
actual t-SNE values, therefore demonstrating that
the learning did not succeed completely.

Before we apply these tools, we explain the logic
and formulation of them:

3.3.3 Nearest Neighbors Tool

The nearest neighbors tool provides a method
of answering: What did the network learn? by
demonstrating the similarity of points across
datasets. The tool takes a number from the user,
as well as a subset of the points selected by any se-
lection method. The selected test point activations
are compared for similarity with the other training
point’s activations, and the most similar activations
are returned. In this way we let NNP tell us which
of the training-set points had the strongest influ-
ence in determining where a test-point was placed
by interpreting its learned representations [14].

For our experiments we will be using the near-
est neighbor tool to select the 30 nearest neighbors.

30



This will allow us to get some idea of the
neighborhoods in D that are being evaluated for
the scores we are seeing.

For a user, a nearest neighbors tool in the train-
ing set indicates points that we should like to see to-
gether if the network has learned them correctly. A
nearest neighbors tool used in the test set indicates
points that show what the network has learned. In
both circumstances we would like the points that
are close together to be similar, to indicate that the
network has learned the correct properties. How-
ever, since the network learns weights globally, it
can be expected that not every point fits perfectly
as a result of the weights fitting the majority rather
than a specialized case.

Intended Usage is Iterative
It is important to note that the neighbors are added
in order of similarity during normal usage. In most
experiments within this thesis we do not show the
gradual addition of neighbors. The most informa-
tive use is to use the incremental counter on the
neighbors tool to add one at a time, thereby getting
a feel for the positions of neighbors in similarity.

3.3.4 Extracting Learned Represen-
tations vs Euclidean Distance

The nearest neighbors tool can compare the train
and test set at the same time through differing in-
puts to specify from which set to fetch how many
neighbors from. A user may select a test sample,
find the nearest neighbor to this test sample, the
nearest training sample and visa versa.

The Relevant Neighbors

For comparisons between the training and test set
we care the most about how the network interprets
their similarity. For the other views looking at their
same subset of data, i.e. the training set view look-
ing for closest training samples, the nearest neigh-
bors tool does not use the neuron activations for
comparison. In these cases we are showing the clos-
est samples in that subset of data by Euclidean dis-
tance. This is because the most similar activation
within one subset of the data, is already shown im-
plicitly through the train or test graph as nearby
predictions.

How to Extract Activations

Retrieving the activations for comparison is not ob-
vious, since the activations are part of the black box
mechanism that is obscured. To do this we create
a surrogate model of the NNP model which was
used to create the projection. We give this model
a duplication of the activations and weights so that
the model is functionally the same except that we
remove the output layer. This leaves the sub-final
layer exposed to output the activation of the layer
before the final processing. We can then use this
headless model to predict the activations, as the
output is now the untouched computation of the
layer without final activation. Once we have com-
puted these activations, we use sorted Euclidean
distance between activations to compute the most
similar activation and this is treated as the most
similar sample according to the network’s decision
process which it has learned from the input.

Nearest Neighbors Visualization

These nearest neighbors in D are placed over their
respective coordinates in P (D) so that the user can
see where the projection has placed them. To dif-
ferentiate these points they are marked with a tri-
angle glyph instead of the usual circular glyph, but
remain colored according to the metric the user has
selected.

Nearest neighbors from the test set, when used in
both views are coloured by their class label. Firstly
this allows them to be differentiated from the near-
est training neighbors when viewed on the same
projection. Secondly, although we do not rely on
or prioritize class labels, they serve as a way for the
user to tell at a glance how the network learned a
sample. If the nearest test samples vary in color
and placement, we know that we have failed to
learn some property that defines that sample.

A Caution of Nearby Test Samples

The third and final reason we do not show the met-
rics of the nearest neighbors in the test set is that
we know that the test set is a generalization of the
training set. Problems in the training set will prop-
agate to the test set; moreover we can only hope to
focus on problems within the training set. If we see
a point that we want to investigate, we can exam-
ine it’s nearest training set partners and see if they

31



score badly to determine a problem; we can hypoth-
esise about what was or wasn’t learned about the
sample, what the network thinks is similar, what
t-SNE thinks is similar and what is similar. If we
instead try to examine the most similar test points
and see that they also score badly, we are unable
to draw conclusions from this about our network
other than this point and ones that are similar to
it score badly. We cannot compare the test to the
ground truth and if we want to try understand the
decision behind this test point we must examine
the training set anyway. Thus, the test neighbors
largely function as a way to examine if the point is
confusing or unfamiliar rather than a more infor-
mative exploration.

3.3.5 Interpolation Tool

The interpolation tool shows the distance between
the ground truth t-SNE projection, and that same
sample’s placement in the NNP training projection.
This distance provides insight into answering What
did the network not learn? by means of a compar-
ison between t-SNE and NNP samples and specifi-
cally identify the disagreements between these two
training sets.

Interpolation Formula

The formula for the interpolation is:

Xi(t) = (1− t)xnni + txgti (3.1)

where Xi(t) is the new placement of the i-th
training point in x or y coordinate. xnni is the
position of the i-th training point in NNP. xgti is
the position of the i-th training point in the t-SNE
projection, while 0 ≤ t ≤ 1 is the current value of
the slider as placed by the user.

Figure 3.17: A training sample on a trail, t/1 of the
way to that same point’s placement in GT t-SNE
(red). Note the t-SNE point is not visible.

Interpolation Tool 1: Slider

The interpolation tool can be used in two ways.
The first usage is a slider where t = 0 corresponds

to the placement in the NNP projection and t = 1
is the placement in the t-SNE projection. The user
can move the slider in real-time to create an ani-
mation between the location of the points to un-
derstand their movement. This is useful for inter-
pretability, as the user can move the points in real
time and judge the distance by the relative speed
and difference covered by a point at each step of
the slider.

Interpolation Tool 2: Trails

The other usage is a toggleable path, which simply
draws a line between the two points at t = 0 and
t = 1 of the slider. This path is much more useful
when tracking multiple points, as it can be hard to
keep track of many moving points, especially when
they may overlap or cross each other. It is also
the only one that conveys itself well in images, and
as such will be the main usage within this thesis.
Figure 3.17 demonstrates the the notation of the
visualisations used by the tool.

Interpolation Trail Visualization

The path is colored by the magnitude of the dif-
ference of distance in the two points. Dark blue
means that the NNP point is much lower than its
t-SNE counterpart in x and y. Dark red means
NNP places this point much higher in x and y. If a
point is about the same placement the line is white,
but will likely not be visible as the length will be
too small. The trails do not use the metric of the
points as a color for two reasons; first of all the met-
ric score of a point in t-SNE and NNP may differ
and more importantly, the light yellow which serves
to draw the user’s attention away from the well per-
forming points, does not stand out when used for
the trails and the tool becomes very difficult to use.

For a user, the trails indicate a discrepancy be-
tween NNP and t-SNE. Long trails indicate that
NNP chose to place this point far away from t-
SNE, as a product of the learning. Either the func-
tion computed by NNP was not specific enough,
restricting placement based on the computation of
other points or NNP learned something different.
In the case that trails are long and cross over each
other NNP may be trying to preserve the distances
between these similar points while t-SNE does not.

32



Interpolation with the Nearest Neighbors
Tool

In the test set the interpolation tool behaves
slightly differently as no direct comparison to t-
SNE can be made. Instead the user may use the
Nearest neighbors tool explained above to show
points from the training set, which can then be used
with the interpolation tool above in the same way.
Yet again to differentiate these points they will be
marked with a triangle glyph, while the points be-
longing to that view remain circles. This can be
seen in Figure 3.18 where a training point is placed
as a triangle near its nearest test set in the test
view and can then be compared to t-SNE.

Figure 3.18: A test sample (circle) and its near-
est training sample (triangle) placed by the nearest
neighbors tool in the test set projection, followed
by the trail leading to that same training point’s
placement in GT t-SNE (red)

3.4 Examining the Learning:
Ensuring Correct Training

3.4.1 Establish a Baseline

We have introduced the basic tools that we use in
our workflow (Figure 3.1). We are now able to ap-
ply these to go deeper into the points isolated in
the same way as in the previous section. Before we
go deeper, we should ensure that the biggest prob-
lem we have is actually deeply hidden, not a super-
ficial mistake caused by an implementation error.
To ensure this, as the first step to evaluating any
projection, is to check if the training went well. We
expect that the visualization of cluster separation
is better in the training set because we have ex-
plicit examples to learn from. If the training is not
successful there is little hope that the model will
be able to generalize well in the test set, so we set
a baseline by examining the training set for obvi-
ous problems. Since we are examining the train-
ing set first, we do not need to examine activations
only Euclidean distances, as the most similar acti-
vations are conveyed through the nearest neighbors

in the projection and there is no need to examine
test samples.

We will theorize as to what makes these points
behave how they do. We do this to gain intuition
as to the kinds of situations we are likely to find.
Since we will examine what NNP has learned in
future sections, we will focus here on what is being
taught; how the training process went, and what we
think t-SNE has seen versus what it appears NNP
has seen based on each decision process.

Step 1: Select and Isolate

We first start by applying the threshold tool to
specify the worst n = 1 training points, accord-
ing to the aggregate metrics. We do this by mak-
ing sure that all of the metrics are toggled on and
putting a value of 1 into the threshold input.

The tool returns a point, but it may be difficult
to see without searching. The point is selected as
part of the return of the threshold tool, so to help
us to find the point we can use the visibility slider
(Introduced in Section 3.3.1).

We set the undesired points to a level of trans-
parency where we can clearly focus on our selected
point and then use the hover tool to get some idea
of this point.

Figure 3.19: Step 1: Using the selection tool and
visibility slider to find the worst training point

33



Using the hover tool in Figure 3.19, we know that
this point is index 9760, with the label 6. The
image attached to the tool confirms that this is a 6
and does not seem to be a difficult case. This point
is between the clusters, so it is part of the diffusion.

Step 2: Find the Nearest Neighbors

We then move over to the distance tab in train-
ing which is placed at the same position as Fig-
ure 3.4(j). We simply input the amount of neigh-
bors k = 30 into the input specifying ’nearest train
neighbors’.

Each of the most similar neighbors in D as eval-
uated through Euclidean distance appear on the
heat colormap as a triangle glyph in their positions
as projected by Pnn(Ds).

Figure 3.20: Step 2: Using the nearest neighbors
tool to examine the most similar points in Eu-
clidean distance

We are able to evaluate this point objectively
with regards to its metric, as we can compare the
metric in the hover tool to that of its neighbors.
This worst point is very low scoring compared to
it’s 30 nearest neighbors, and of those neighbors
the lowest scoring points seem to be much more
difficult cases than our worst point 9760. The first
thing to note here, is that these points seem to be

from varying classes, so it may be that this point is
dissimilar from other points in its class and there-
fore pulled away towards other classes. Of its 30
nearest neighbors only 2 are sixes in the cluster
we would expect. Secondly the placement of these
neighbors is very spread out, this point appears to
be placed in the center of these points as a result of
placement at a midpoint between groups of neigh-
bors.

Evidence of a First Cause
We have found that this point appears to be at a

midpoint of its furthest neighbors. We would as-
sume it would like to preserve the distance globally
between points, but un-intuitively it does not scale
with proximity, i.e., the closest neighbors do not
appear to have more weight than the further neigh-
bors when determining distance, nor does quantity
of neighbors. If proximity were the case we would
expect to see the point closer to the sixes, since
they are the closest neighbors (seen through iter-
atively adding neighbors). If quantity was able to
weigh the point closer, in Figure 3.20 we would ex-
pect to see the point placed 28/30 of the way to the
cluster on the right as 28 of its neighbors are there.
In absence of both of these, we hypothesize that
this point is pushed further away from its nearby
samples by a form of global distance preservation
but one that does not focus explicitly on placing at
a midpoint, but rather maintaining global distance
between two groups of very dissimilar points while
placing a point that is equally far from both. How-
ever we do see this midpoint case quite frequently,
so we will have to explicitly disprove it before it is
removed from our potential causes.

Step 3: Interpolate to Ground Truth

For this section we will be relying on the trails
of the interpolation tool. The usage of these
trails begins by toggling them on, which is as
simple as clicking a button below the nearest
neighbors tool. Once this is done trails will be
visible from the nearest neighbor triangle glyph
to the place where that point is placed in the
ground truth projection (t-SNE). In Figure 3.21
we can see that this point in t-SNE is much closer
to the other neighbors than to the ones that ar-
guably, should be more similar given the class label.

34



Figure 3.21: Step 3: Using the interpolation tool
to examine the similarity in training (NNP) and
ground truth (t-SNE)

t-SNE is paying attention to the local scale
of neighborhoods when projecting a point and
the similarity computation seems to have picked
up that the 6 appears similar to an upside-down
version of the points in the right cluster. Since
NNP learns abstractions for all of the points, it
may be learning similar features instead, a kind
of ’definition’ of what makes a six across all sixes,
that t-SNE does not see by similarity computation.
This is evidenced by NNP trying to place the
features it sees in point 9760 near points that it
sees as similar in the 6 cluster, pulling it in that
direction. This seems to point to a problem in the
architecture of NNP that restricts the function of
the network, forcing it to place this point further
apart from similar samples.

Application on Dogs vs Cats

Now we apply the same steps in the previous sec-
tion to another dataset, to demonstrate the usage
of other datasets and to give some insight into the
network’s decisions in a different scenario.
In Figure 3.22, we see the worst performing point

in the Dogs vs Cats dataset, is a cat that NNP
places near a cluster of dogs, while t-SNE places

Figure 3.22: All three steps mentioned previously,
applied to Dogs vs Cats training projection.
Inset shows instances in the nearest cluster to NNP
placement.

it right in the center where the two classes merge.
This t-SNE placement may not teach NNP a clear
class identity for this point. We notice that NNP is
placing this sample near other points where the an-
imal is fairly small in the picture while t-SNE just
seems to have placed all of the ’strange’ examples
together in the most error part of the projection
(visible as the hot-spot in error in Figure 3.12).
Examples of strange points within the center clus-
ter include a clip art image of a cat with a mailbox,
and a image of a dog framed in a star shape (Fig.
3.23(c). The images that t-SNE sees as most similar
are very small in resolution, while NNP may have
focused on objects in the photos or the relative size
of the animal in frame (Fig. 3.23(b). There may be
some artefact that low resolution images have from
the feature extraction model that t-SNE is seeing
as a feature. We receive the input data from the
VGG16 model, which extracts the features using a
model that is trained on a very large dataset to rec-
ognize images. We do not know the features that
the model has to work with; it would seem NNP is
putting more weight on features with objects such
as toys.

35



The feature extraction model is trained on images
of all kind, not explicitly of pets so it may identify
objects easier.
The point’s placement in t-SNE and Euclidean dis-
tance nearest neighbor point 4798 seem to have
nothing in common. This suggests that this point
is a difficult case, which brings uncertainty to the
evaluation of training performance. Recall that
we can judge how well training went with our
global quality metrics. When examining these qual-
ity metrics we find they are very high and NNP
matches t-SNE excepting a -0.01 to trustworthi-
ness. Clusters and error distribution are the same
across NNP and t-SNE so we conclude that the
training was sufficient. Again we see that there
seems to be a mismatch in how the two projections
make decisions; t-SNE wanted to keep the point
close to its most similar points so desperately that
it formed a cluster of strange points in the middle,
while NNP seems to have learned something else
completely.

3.4.2 Successful Training

We performed these experiments in this chapter to
set a baseline and make sure that training went as
planned. There is no evidence of a false signal here
causing undesirable correlations. In MNIST, the
decisions made by the network seem to make sense
and are quite easy to interpret. The clusters seem
to have formed well as for the most part classes are
grouped together. Our worst performing point ap-
pears to be a case of mismatch between the local
and global methods of t-SNE and NNP rather than
a mistake in training. This is not an actionable
point as of yet, but rather a point of interest to re-
member for later. For Dogs vs Cats we see the same
situation as in MNIST, except this time we are un-
able to justify this as a midpoint between what was
considered similar, which is evidence against the
first part of the theory in Sec. 3.4.1. Another po-
tential reason for this could be that the input is
too far from what the network has learned, making
NNP place it randomly or with emphasis on very
distant similarities.
In the next chapter we apply these tools again and
some new ones in a more advanced experiment to
further investigate the results found here. With
this baseline established here we know that we have
a working implementation of NNP, which did learn

and is performing as expected. So we can finally an-
swer:On which points does NNP work poorly? by
examining the points in the next chapter, where
they are without the guidance of t-SNE and must
rely on learned features.

(a) The worst performing point

(b) Most similar point in NNP (left) and t-SNE (right)

(c) Two samples within the center cluster that t-SNE
considers similar to point (a)

Figure 3.23: NNP considering objects in photos
while t-SNE seemingly considers resolution

36



3.5 Examining learned
features: Influence of
Input on Generalization

In the previous section we concluded that training
went suitably; we did this by examining the the
global metrics in comparison to t-SNE and exam-
ining structure in class labels.
We also went into some detail on the worst per-
forming points and made some assumptions about
the decisions that NNP made to place these specific
samples. Such assumptions are not widely applica-
ble, because we focused on the identity of those spe-
cific points. We did see some indicators of potential
causes of error that could be persistent across all
subsets of data.
Some of these causes that may be more significant
are:

• A mismatch between t-SNE and NNP that
manifests as either a repulsion of points in
NNP, or the placement of a point at a mid-
point of neighbors.

• Distance from the known or unfamiliarity with
samples confusing NNP.

In this chapter we try to isolate and solidify these
potential causes, moving from the training view to
the testing view in our workflow (Figure 3.1).

Why Examine the Test Set and the Input?

We examine the test view to get an idea of infer-
ence as the test set more clearly shows the decision
process without guidance. In the training view,
the projection is told to place a point based on a
given label of coordinates; with the test set it can
only apply learned knowledge. We examine the in-
put because we break our network into two compo-
nents when trying to examine potential problems,
the first is the input and the second is the network
architecture.

We examine the performance of inference with
regard to input so that we can isolate the causes
that occur because of input so that we can deal
with them separately.

How do we Examine the Input through In-
ference?

Each test point (selected here as the worst perform-
ing point) is placed based on the features learned
during training. Therefore, every inference decision
can be traced back to an observation seen during
learning. In other words the input data told the
network to infer this way in the test set. We break
down the placement of each point to a combination
of its training samples through the nearest neighbor
tool, as training samples are the input processed
through the network.

Experimental Setup

Now we will apply the tools in the previous chapter,
along with the nearest neighbors tool for test sam-
ples; recall that before we only used it to see train-
ing neighbors. We apply the same line of queries
to the test set: locate error, select points, isolate,
examine and find neighbors. We do this in order
to examine the effect of input on the generaliza-
tion of the network and discover what properties of
input control the inference and placement of an un-
seen test sample. We will attempt to use this new
understanding of placement to answer: On which
points does NNP work poorly?

Since we explained the functionality of the near-
est neighbor and thresholding tool in the previous
section, all figures from this point forward will con-
tain steps 1-3 from the previous section in one fig-
ure, to show the selection of the error point, its
neighbors and their comparison to ground truth.
We will then use an additional figure to show the
comparison with the test set neighbors which we
haven’t explored before.

3.5.1 Generalization in MNIST

The Worst Point in MNIST

In Figure 3.24 we can see point 7945 which is the
worst performing in the test set of MNIST, accord-
ing to an aggregate of the metrics. This point lies
at the midpoint of its 30 nearest neighbors by ac-
tivation distance; that means that NNP considers
these 30 points the most similar according to what
it has learned. This midpoint aligns with a hypoth-
esis we had in Sec. 3.4.1, where there seems to be
repulsion from similar points.

37



Figure 3.24: Worst point in MNIST Test (7945)
outlined and it’s 30 nearest training set neighbors
by activation.

Some property of the input given, which in this case
is a direct pixel translation of the picture in the
hover tool, leaves the network to learn that these
samples are similar. The network’s decision process
chooses to place this in the middle of the similarity
neighborhood. i.e. The illustrations of numbers in
Figure 3.24 are the pixel input that leads the net-
work to decide these points are similar, and infer
its placement at a distance from all similar points.

Is this a Hard Case?

This does not seem to be an unusual looking 2 in
any particular way, it’s not as angled or distorted
as some of the harder cases in MNIST. Visually
there is some similarity visible across these neigh-
bors, they all have somewhat similar curved shapes.
This point may be far from the learned values be-
cause of the variance in neighbors. If this is the
case, then we see the same case of repulsion as be-
fore, where the network preserves this distance but
is forced to balance two groups of similarity.

Figure 3.25: Worst point (7945) outlined and it’s
30 nearest training set neighbors with interpolation
trails showing comparison to t-SNE.

Examining the Interpolation Trails

In Figure 3.25 we visualize the interpolation trails
and things become a bit clearer. As previously
discussed, we see a large discrepancy between
the choices in t-SNE and NNP. This means that
NNP is failing to grasp some feature of this point.
This can be due to the distance preservation
maintaining the distance from most similar or
the learned representations being too far away.
Figure 3.26 demonstrates the nearest neighbors
in the test set, which are computed by objective
Euclidean distance on the test samples. We can
see that these neighbors are all over the projection
and belong to a variety of different classes. This
variety is evidence that the badly performing point
is unlike the other points, since it shares some
vague feature with points which should have very
different features judging by their placement.

Remember that although the neighbors are
highlighted by objective distance, the placement of
these neighbors is by their learned representation
by NNP, meaning that NNP decided to place sixes
in the bottom (pink) because it learned those
features belong to 6, and the same for 2.

38



Figure 3.26: Worst point in MNIST Test (7945)
outlined and it’s 30 nearest test set neighbors by
Euclidean distance, colored by class

The neighbors of point 7945 are so spread out
because NNP recognises some features of both of
these classes and is unsure about where on the
spectrum of what it’s learned this point should go.
This leaves point 7945 as a diffuse point in limbo
between the clusters.

The Second-worst Point in MNIST

In Figure 3.27 we see point 4205, the second-worst
point in the test set according to our aggregated
metric.
This point is a 2 which is placed between a cluster
of 0s and an 8 which are considered similar to 4205
by the network.
The interesting thing to note here is that the 8 has
a very low metric and appears to be ’corrupting’
this point by pulling it from its cluster.
This is an example of the midpoint case from Sec-
tion 3.3.2.

The trails are not very confused at all. Once
again the 8 is the only problematic point, all of
the other neighbors are basically agreed between t-
SNE and NNP (there are very small trails from the
neighbors in the 0 cluster). The activations for the
cluster of 0 must be very well formed, since these

Figure 3.27: The second-worst point in MNIST
Test (4205) outlined and it’s 30 neighbors with in-
terpolation trails showing comparison to t-SNE.

project very well. 4205 does not seem to be very
strange (the shape of the 2) suggesting that this
lowest scoring point may not be learned correctly.

We see the test neighbors of this second-worst
point in Figure 3.28, and we see a trail of points
leading to a cluster of 1s that are objectively more
similar according to a distance computation. These
points are not placed all around, but rather seem
to be pulled by some feature towards the cluster
of 1s. It is clear in this case that NNP and the
Euclidean distance function applied to D focused
on something very different. NNP seems to have
focused on the curled shape of the top to differen-
tiate this point, while the objective distance seems
to have focused on a the large line of filled in pixels
in the center (that are common in ones).

3.5.2 Generalization in Dogs vs Cats

The Worst Point in Dogs vs Cats

In Figure 3.29, we see this test point (4874) is
placed above all of its nearest 30 training examples,
which are the nearest as found similar by NNP.

39



Figure 3.28: The second-worst point in MNIST
Test (4205) outlined and it’s 30 nearest test set
neighbors by Euclidean distance, colored by class.

Figure 3.29: The worst point in Dogs vs Cats Test
(4874) and it’s 30 nearest training neighbors with
interpolation trails showing comparison to t-SNE.

Given no point pulling 4874 away, it should be
predicted as similar to those points NNP learned
as similar, however it is not. This is evidence
that NNP is trying to preserve some distance
between these points even though they are similar
in features that it recognizes.
If we examine the interpolation trails in Figure
3.29, the same situation above persists. We do not
see points wildly fluctuating, in fact the movement
of NNP seems to have clustered these points
less closely than t-SNE, and this effect became
magnified when inferring based on these points.

Figure 3.30: The worst point in Dogs vs Cats Test
(4874) outlined and it’s 30 nearest test set neigh-
bors by Euclidean distance, colored by class.

The final step is examining the test neigh-
bors in Figure 3.30. These are spread over class
and over the center of the projection. Once again
it seems that NNP has learned different features.
NNP has decided this is similar to animals stand-
ing near sunlight or natural colored backgrounds
(brown/green) while Euclidean distance seems to
have found all instances of light brown animals
across the projection. This point may be far away
from the known, as indicated by the spread of the
test samples. Since these points do not move much

40



in t-SNE which is visible in the interpolation we
know that NNP chose this placement based on
t-SNE. During training t-SNE showed NNP that
similar points (according to NNP) belong in this
subsection, and NNP may have pushed it further
away to be closer to preserve the distance between
the t-SNE ’similar’ points.

The Second-worst Point in Dogs vs Cats

Figure 3.31: The second-worst point in Dogs vs
Cats Test (591) outlined and it’s 30 nearest training
neighbors with interpolation trails showing com-
parison to t-SNE.

In Figure 3.31 we see the second-worst point in
Dogs vs Cats, at index 591. This seems to be an-
other case of the midpoint theory. All of its nearest
activations are nearby and it is placed in the mid-
dle. We can see that of these points, only one is
dissimilar to t-SNE (9583) as evidenced by the long
trail. If we take the lacking of long trails to mean
that NNP learned quite well from t-SNE for this
point and its neighbors, then we would expect that
if this point is similar to those it would be placed
well.
Now we look at the nearest test neighbors in Fig-
ure 3.32, they are quite spread out. If NNP learned
this test point based on some training points placed
correctly compared to t-SNE, then we would expect

Figure 3.32: The second-worst point in Dogs vs
Cats Test (591) outlined and it’s 30 nearest test set
neighbors by Euclidean distance, colored by class.

that it learned correctly. Now that we come to the
test set we see diversity in placement again.
The most similar test samples are very different
from the most similar training examples, mean-
ing that the testing set was too far away from the
known to apply learned representations to this this
point.

3.6 Applying our knowledge:
Improvement Phase

In the previous section we examined the effect of
the input data on the generalization by reasoning
about the worst 2 points in each dataset and in ev-
ery case we reached some conclusion in-line with a
theory suggested in Sec.3.4.
We answered the question: On which points does
NNP work poorly? We conclude that NNP works
poorly on difficult or unfamiliar cases, but also
when exposed to some aspect of the implementa-
tion. What is not clear is the exact causes of this
difficulty or failure to learn. We are not sure if
there is repulsion, a midpoint or simply distance
from the known.

41



To reach our end goal we need to improve the pro-
jection. To do this we need to outline these exact
causes. Firstly, if the input data is very far away
from the known or difficult, the network may be
forced to place it incorrectly by being mislead by
similar features it has learned.
We explore further in Sec. 3.6.1 to see if we simply
do not have a representative training set, because
this is a problem that is difficult to fix. If the in-
put is far from the known: we try to clean up and
modify the input data in Sec. 3.6.2, to see if we can
remove such misleading components.
If the input data is just difficult, we try in Sec. 3.6.2
to more efficiently learn the more difficult points by
reordering the input. There are cases (such as Fig-
ure 3.27) where the point does not seem to be unfa-
miliar, evidenced by the similarity and agreement
of the placement of training samples in NNP and
t-SNE. For these cases it seems that there is some
issue with the projection function of the network,
particularly with regard to the network’s inability
to approximate t-SNE on account of NNP of pri-
oritizing distance preservation over the local struc-
ture. We will search for answers to this in Sec. 3.6.5
and try to find a more suitable projection function
in Sec. 4.
We have used the knowledge gained from ’Exam-
ining the Problem’ to outline some theories for
the causes of diffusion, namely: distance from the
known and distance preservation. We can examine
each of these in detail in order to grain understand-
ing and then use this understanding to improve
multidimensional deep learned projections. First we
examine the cause of diffusion we have outlined in
the most cases, and with the most certainty, which
is a large distance from the learned examples.

3.6.1 Selecting a Cause: Distance
from the Known

Many times when exploring the projections in
the previous sections, we hypothesized that some
points may be too far away from the known to
project correctly. It is impossible for a neural net-
work to learn things completely dissimilar to things
it has seen in the training set. We have chosen to
select and focus on ’Distance from the known’ from
our list of causes. We evaluate if this cause shows
evidence of being a potential source of diffusion and
evaluate the extent of its influence.

Isolating a Cause: Is the distance the reason
for diffusion?

The evidence we have seen so far brings up the
question: Is distance the reason for diffusion?. To
answer this question, we add a distance tool to our
proposed visualization solution. This tool has two
visualizations; the first is simply a display of the
distance as another heat colormap, while the sec-
ond computes a division of the error and distance
in order to plot a correlation. This metric, which
colors the new plot is a function of metric and dis-
tance as such:

metric =
1−metric
distance

(3.2)

The intuition for this visualization is that if the
distance in the test set is correlated to the error,
then we will see a similar color across all the test
points.

We have seen a lot of cases which point to dis-
tance being a factor, but we are skeptical to say
that distance is the only factor.
Doing so ignores the existence of other strange cases
such as Figure 3.27 where this point has low metrics
despite not seeming (visually to a human) to be an
unfamiliar case. This point also has no particularly
confused neighbors in training or test sets.

In this section we will justify our hypothesis by
demonstrating the distance relation to diffusion.
Once we demonstrate that distance is a factor, we
will apply the two visualizations of the distance
tool on the samples we chose as ’worst perform-
ing points’ in the previous sections. We hope to
figure out if the distance from the known is really
the only cause of the diffusion in these worst per-
forming points.

Isolating the Cause

The Figure 3.33(a-d) present the case that the high-
est distance is in the same places as the highest er-
ror and that this is also the location of the diffuse
points. The higher we bring the threshold (white
points), only focusing on higher percentages of to-
tal distance, the fewer dark points we see within
clusters and the more they start to align with the
diffusion in the projection.

This distance is by activation, so we are judging
the distance between test samples from learned
representations.

42



Figure 3.33: Distance colormaps, the highest distances range from blue (relatively lower) to red (relatively
higher). White points show a threshold cutoff, meaning distance values below this percentage are not
colored. The threshold for each is: a - 0.8, b - 0.9, c - 0.99 , d- 0.999. The higher the threshold, the
fewer points within clusters and variance.

This suggests that diffuse points are unfamil-
iar to what the network learned and as a result,
are projected badly. It may be that the network
is unsure and is then making very low or very
high activations for these points which brings
them further from the well projected points.
If the points are being influenced this way, it
may seem that there are not enough neurons to
adequately fit to all of these points. Instead of
using a new neuron they signal a certain feature
through very high or very low activations. Due to
the hyperparameter training done in [3] and the
addition of ’xl’ architectures during this thesis,
we know this is not the case as diffusion persists
regardless of additional neurons. The network
may lack discriminatory neurons, so that it does

not define learned features by which to place into
clusters, but rather the combination of activations
leads to placement. In which case these distantly
placed points hold these learned features much
more or much less than other points and as such
the network attempts to maintain the distance
between them.

Distance Tool on the Worst Test Points

The distance tool works as follows when using the
first component, which is simply a heat colormap
of distance. The user may apply a filter to thresh-
old the colors, similar to the error threshold, with
the same opacity slider applied to it. The color is
different in this heat colormap though, as we want
to focus on the distance only, and we want to see

43



the other points for context so that we can iden-
tify the diffuse points. So we make any distance
above the threshold red and any point below the
threshold white. The more red a point gets, the
higher it is relative to the distances that are above
the threshold.

Distance Distribution in MNIST

In Figure 3.34 we see the MNIST test set, with
the worst performing points that we isolated in
Sec. 3.5. At that time we hypothesized that they
may be placed poorly due to distance; we can
now confirm this. The white points are below the
distance threshold, while the more red a point
is, the more distant it is. Both of the points we
outlined as the worst error are very dark red.

By using the distance threshold to slowly in-
crement the threshold, we can determine that
point 7945 is in the top 1.4% of distances, while
point 4205 is even further away at a distance in
the top 0.06%.

Figure 3.34: MNIST: threshold of the highest dis-
tance and the worst test points. White shows
points lower in distance than the worst points.

Figure 3.35: MNIST: error/distance, the consistent
color shows correlation. The worst test points and
two new isolated points which were colored darker
or lighter than the surrounding points.

Figure 3.36: A closer view of the lighter and darker
points in 3.35

Distance Related to Error in MNIST

Figure 3.35 shows the error divided by the distance,
we see a solid color heat-map that confirms that the
error is correlated with distance.

There are two exceptions to this case, which
are the points 5 (6880) and 9 (1640) added to the
graph and shown more specifically in Figure3.36.
They appear as very light yellow and very dark
black, having a very high and very low divided
metric respectively. Remember that the color is
scaled according to the metric, so the darkness of
the color is relative to the current metric.

44



Being very dark in this context simply means
you are much lower (relatively) than everyone else.

This 5 performs very well in the original data
(0.965 aggregate metric), and it has a very small
distance so it is very familiar. While the 9 per-
forms adequately (0.754 aggregate metric), and is
harshly penalized by its high distance.
This is not a diffuse point, if distance was responsi-
ble for diffusion we would expect that it would be,
however just because this 9 is harmed by its metric
more than the others, does not mean it is in the
highest distances. This 9 is within the lowest 3%
of points, but Figure 3.33 shows that only the top
1-0.01% of distances contain the diffusion.

The Same Pattern in Dogs vs Cats

Figure 3.37: Dogs vs Cats: threshold of the highest
distance and the worst test points. White shows
points lower in distance than the worst points.

We repeat the same procedure for the Dogs vs
Cats dataset and find similar results which are
shown in Figure 3.37. The two worst perform-
ing points from the test set belong to a subset of
the darkest red points in the distance threshold;
both are in the top 3% of distances. Furthermore
we divide the error by the distance again and find
the same pattern present in the MNIST distances,

Figure 3.38: A closer view of the lighter and darker
points in 3.37

shown in Figure 3.39. We have two kinds of points
that stand out, some very light and some very dark,
these are illustrated in Figure 3.38.

A Cause of Diffusion is Distance

In this chapter we have shown that unfamiliarity,
so far called ’distance from the known’ is a source
of problems in the input and it is also a solid
indicator for the diffusion that we want to reduce.
We have confirmed this is consistent behavior
across both datasets.

Now that we have isolated a cause for the
diffusion and applied our tools to understood it,
we can attempt to fix it.

The solution to errors which are caused by the
distance from the training data may be as simple
as adding more representative training examples.
Ideally, this would allow NNP learn to better
predict similar samples. Extra data is not always
available and with the computation time of t-SNE,
adding more data every time we do poorly is not
a feasible solution. On top of this, the training set
will never be completely representative; otherwise
there would be no need for generalization and
we would somehow have to account for every
possibility perfectly. So there is no easy solution
for distance in training, however we know that
the distance from the known is not the only
problem. This means that even if this distance
from the known is an irreducible error brought
on by distance from training data; we have other
opportunities to solve our research question.

So with what we know now, how can we im-
prove the quality of deep learned multidimensional
projections?

45



Figure 3.39: Dogs vs Cats: error/distance, the
consistent color shows correlation. The worst test
points and two new isolated points which were col-
ored darker or lighter than the surrounding points.

We cannot completely reduce the error that
comes from distance from the training data, but
we have found cases which point to other causes
that we may be able to solve. Evidence of these
causes are the unusually dark or light points in
the correlation as well as the worst error not
being exactly indicative of the worst distance. We
see the highest error in the top percentages of
distance, but the highest error is not the highest
distance. These two points suggest that distance
is not the only problem. In Sec. 3.6.2 we modify
our training to try learn easier and clean unrepre-
sentative lessons from the training. Once we have
applied these two fixes, we will have outlined and
addressed the causes of diffusion within the input
and we can move on to examining problems in the
architecture. We stop searching for more causes
while we implement the fixes to the causes we have
outlined, so that we can incrementally improve
the model with successful fixes and are not finding
additional causes that would be fixed already by a
proposed fix to another problem.

3.6.2 Fixing a Cause: Adapting the
Input for Distance

So far in the previous experiments, we isolated and
focused on some points of error according to our
quality metrics and determined that there was some
issue that had stemmed from the input data with
particular emphasis on distance from the known.
Distance from the known may have two causes
within the input. The distance we see as error may
be created by a failure of the network to learn dif-
ficult samples, so we try to teach the network to
learn more efficiently so that difficulty is handled
better. Secondly, we try to remove points from the
training set based on those which perform badly in
the training projection, with the theory that these
may be misleading or confusing NNP into believing
the samples are more distant than they should be.
This has the added side-effect of simply removing
the highest error, which happens to be some of the
highest distance.

This chapter has two parts, one for each kind of
input that we use to train NNP, which learns both
an input dataset and input projection.

We therefore manipulate the input from both
sides to try improve the NNP projection:

• Experimenting with preprocessing and order-
ing the raw data samples

• Cleaning the training projection

Fixing Diffusion through Preprocessing and
Data Ordering

In this section we try to experiment with prepro-
cessing the input to see if we can improve the net-
work.
The previous paper aiming to improve the model
[3] had supplied the model with noisy data, both
before and after producing the ground truth t-SNE
projection. The idea was to force NNP to learn to
be more resilient to noise when placing a point. We
then try a similar idea but with different applica-
tion. Instead of forcing NNP to be more resilient
to noise, we try to teach it to be more resilient to
the error that we define as low quality metrics.

Firstly, we try to retrain with ’good’ data in an
attempt to reinforce good behavior. We do this by
computing the aggregate metrics on the training
projection.

46



Intuitively the points that are placed badly are the
ones that are the most difficult. Then by sorting
these metrics in descending order we can get those
points that are easy for the network to project and
we then refit the network for a few epochs. The
result of this is a loss in overall quality metrics.
It may be that the good data is easy and refit-
ting to this biases the network towards easy cases,
making it lose some of the more difficult niche
cases it learned to predict. This line of thought
suggests that the network establishes most of its
larger weight adaptions when fitting easier points
and when learning harder points these weights are
adjusted to be detrimental to the easy points, to
accommodate the difficult points.

The intuition then, is to try and teach our
network as you would teach a human. We start
with the easy points, and progressively get harder.
The network learns the easier points with less effort
and as a result has some context and experience
in order to tackle the more difficult points. So we
feed the network the points in the order supplied
by the sorted metrics in descending order.

We repeat this experiment multiple times to
get an idea of consistency. Overall the default
order seemed to perform better in most cases,
there was no consistent benefit to this training
order. We conclude that training with easy points
first does not explicitly help the network. We then
try the opposite and supply the points in the most
difficult first, this also proves to be ineffective.

So there is no explicit fitting to harder points
at a later stage of the training and we were just
biasing the network weights towards easy points by
supplying more data.

We conclude that no preprocessing of the input
data in terms of ordering or proportional difficulty
seemed to improve the projection.
We now move to try modify the input itself.

Fixing Diffusion through a Clean Input

The neural network can only learn what it has seen.
Ideally this would mean that it would have to see
a mistake in order to make a mistake. Unfortu-
nately the black box workings of a deep learning
model are not so simple. Still, there may be some
benefit to not teaching the network some difficult
samples. These are samples that may be scoring

badly in some metrics in t-SNE such that the net-
work learns ’bad habits’ from them. These bad
habits come in the form of increased uncertainty in
the points that are known, as the weights within
the network may be modified to accommodate this
new confusing sample.The weights worsen because
of this and can no longer perfectly place another
sample. We saw evidence of this when learning to
fit good points overwrote weights that accommo-
dated strange or difficult points. In this section we
try to modify the input explicitly, by cleaning the
training projection of bad performing points. We
hope this will make the training easier for the net-
work by removing cases that mislead the network
into learning undesirable rules and in the end we
should get better results.

Removing Points

To explore this idea we remove a subset of the worst
performing points, simply through the option to do
so on the home page of our proposed visualization
solution. Here can select which metric we want to
score by, and then how many points we want to
remove as a percentage. The visualization solution
creates the Ground Truth t-SNE projection, applies
the filter on the given metric, removes points up to
the specified amount and then trains NNP.

By computing aggregated quality metrics on the
t-SNE projection, we can then sort the points by
their score in ascending order and simply remove
the lowest desired percentage from the training set
before recomputing the model. In the following
graphs we remove these points ranging from 0%-
50% of the total, sorted by highest error and ex-
amine the differences in our three quality metrics
for each. For comparison on the training set we
show the new quality metric subtracting t-SNE, as
a comparison. In these cases the default NNP can
be seen when 0% of the points are removed. While
for the test set, recall that t-SNE is not stable and
will change with exposure to new data, making a
direct comparison impossible. In this case we sub-
tract the original NNP, with 0% removed. The sub-
traction in both cases means that we can easily see
which is the highest based on how high (green) it is
or how much worse (red) it is to the ground truth
t-SNE or NNP (white).

47



Projection on MNIST (10K samples) NH C T
GT t-SNE Training 0.94 0.99 0.98

Clean -22% t-SNE Training 1 0.99 0.99
Default NNP Training 0.89 0.96 0.98

Clean -22% NNP Training 1 0.97 0.99
Default NNP Testing 0.83 0.91 0.97

Clean -22% NNP Testing 0.88 0.91 0.97

Table 3.1: The absolute values of NNP and t-SNE
on a default and cleaned training set.

Results of Removing Points
After computing the quality metrics, removing the
worst points up to a percentage and projecting this
same data as training data, we get the following
results in Figures 3.40 and 3.41 for the train and
test set respectively. It is important to examine the
performance on both training and test set, because
the test set allows us to check for two problems that
may not show in the training set: Overfitting and
Generalizability.

Overfitting
We are cautious of overfitting, since we have fewer
samples, in some cases 50% less, but still use the
same architecture and train for the same amount
of epochs.

Generalizability
We are concerned that regardless of overfitting,
we may lose some generalizability just because the
network has never seen some points. Recall that
we explicitly aimed to show the network less error
but struggle with distance cases.

What happens if the network sees a point in
the test set that is only similar to ’error’ points in
the training set?

If we were overfitting we would expect to see an
increase in the training set performance, which we
do, and if both were occurring we would expect a
decrease in the test set performance, which we do
not.

NNP is very good at performing with fewer sam-
ples, and is able to generalize very well even without
a large amount of samples. The graphs show rel-
ative metrics, for an easy comparison between the
baseline and the removed points, but to further il-
lustrate what the network has learned we show the
absolute values in Table 3.1.

By teaching NNP on only clean training data, we
can reach metrics much better than t-SNE, almost
the same as the t-SNE which had all of its error
explicitly removed. We find a Neighborhood hit of
1, which means a perfect separation in clusters.
This is a good indicator for performance when com-
peting with t-SNE because of it’s preference for
cluster separation.

We are also performing better on the test, specif-
ically with Neighborhood hit. There are the same
amounts of missing and false neighbors in the test
set - remember that the test set remains completely
unaltered during this removal, so it may be that
any benefit to removed points in the training cre-
ates false/missing neighbors in points that the net-
work is unsure where to place because it has not
seen similar. We can see that the network has im-
proved however, because the clusters have become
better separated even on unseen data, the features
that are learned are key to the identity of these
samples, at least by label.

Results of Re-adding Removed Points

At this point we have simply removed problematic
points, and this seems to be an effective method
of improving the model. This is a shallow victory,
as we have just forgotten some points rather than
improved the process of NNP when dealing with
them. So now we perform the same method as be-
fore but we pass the entire training set, without re-
moved points, to the network to project. Note that
we did not move these ’removed’ training points
into the test set, we simply supplied the original
training. This means that the training projection
is evaluated on this full training set, which now
contains unseen points which must be generalized
by the network and may score lower than expected
because of this. The results of this are shown in
Figure 3.43.

The visual effect on the projections is displayed
below in Figure 3.42. Recall that t-SNE is unstable
meaning that subsequent recreations of the t-SNE
projections with different points leads to different
layouts, hence the differing projections.

48



Figure 3.40: The quality metrics after cleaning the projection MNIST train projection. Darker green
are higher than t-SNE, red are lower.

Figure 3.41: The quality metrics after cleaning the projection MNIST test projection. Darker green are
higher than default NNP, red are lower.

Figure 3.42: The comparison of diffusion on NNP projection of MNIST when training with removing 0
points removed (default) on the training set(a), the test set (b) and with 13% removed, on the training
set (c) and the test set (d). Notice the seemingly less diffuse points between clusters.

49



Figure 3.43: The quality metrics after cleaning the projection MNIST test projection and adding those
points out-of-sample. Darker green are higher than default NNP, red are lower.

3.6.3 Re-evaluating: Distance from
the Known

After we have applied a fix, we need to recompute
and re-evaluate the performance of the solution.
In this case we found that the final step did not
yield an overall better model than before the fixes
were applied. So we revert back to the default
version. The most important re-evaluation was at
the time of computing Figure 3.40. At this time

we had removed some badly performing points
from training and had not yet re-added them to
the metrics. We examine the same steps as before
in the workflow (Figure 3.1), we recreated NNP so
we enter the ’Examining the problem’ phase again.
We find that when examining the training set
with the removed points compared to the default
version without removed points, the variance in
the range of distance is drastically reduced.

50



Figure 3.44: The distance on a clean projection, insets show inner cluster distance

We observe this through the distance tool,
which we used in Sec. 3.6.1. We found that there
was some relation between distance and error,
but that distance was likely not the sole cause of
diffusion. The ranking of distance did not match
the ranking of the error we relate to diffusion.
The important thing to note here is that we
say we reduced the distance range, not that we
removed the distance. We removed the highest
error points, in Figure 3.44, which left distance
within the clusters themselves. These points are
not obviously diffuse, nor are they error points.
This contrasts the distance we see portrayed in
the figures in Sec. 3.6.1. This is important to
bring up at this stage, because it confirms that the
distance is not the only factor that causes diffusion
and we cannot have some quick fix based only on
the distance, nor can we give up finding solutions
based on irreducible error as a cause.

3.6.4 Selecting a Cause: Distance
Preservation

Previously, we tried two methods of correcting po-
tential causes in the input. First we changed the
order of the input and found that it didn’t improve
the projection significantly. Then we tried to pro-
vide a clean projection example for training.
Although we have found some improvements we
lack a fundamental change that makes NNP bet-
ter. The other cause that we had outlined previ-
ously during the ’Examining the problem’ phase is
that of Distance preservation, that some property
of the architecture of NNP is preventing the points
from being placed closely together. Now we move
our focus to narrowing down on that cause.

3.6.5 Isolating a Cause: Neurons
Responsible for Patterns

In this section we will examine the activations of
groups of similar neurons in order to try and find
some property in activations that distinguishes the
well clustered points from the diffusion.

51



We want to be able to tell which parts of the NNP
architecture are responsible for which parts of the
projection by examining the activations.
If we can isolate a subset of the neurons which ac-
tivate predominantly on diffuse points but not on
the well-performing points, then these may be con-
tributing to the diffusion. We may then be able to
modify the weights to those neurons to make them
less significant and therefore lessen the diffusion.

The Activation Tool

In this section we will answer the question: Which
parts of the network are responsible for which parts
of the projection? To answer this question, we add
an activations tool to our proposed visualization so-
lution. We get these activations through the same
method of extraction in Sec.3.3.3 for the nearest
neighbor tool.
We create a surrogate model without the final ac-
tivation and extract the activations by predicting
with this model. This idea can be generalized to
get the activations from each layer of the network.
Recall that NNP uses very few layers so it is not
difficult to retrieve all of them.
To define the query, the user selects some points.
The user invokes the activation viewer by simply
toggling a button. The activation graph of each
selected point is then added to the interface.

Earlier iterations of the Activation Tool
Originally the activation graphs depicted the av-
erage of neuron activations over all of the points,
with the logic being that averaging them would
smooth out the differences while keeping the defini-
tive points across groups.
In contrast to smoothed commonalities these defini-
tive points would be more obvious. What we found
instead was that this smoothed all of the activa-
tions and no obvious group was defined for differ-
ent subsections. This may have more to do with
actually lacking different subsections than an issue
with display, but we wanted more detail. We then
changed from this averaging view to one graph per
point, the initial idea being to display this graph
as a compact line of tiny neurons per layer for each
layer in the network, where each neuron is a circle
with a color corresponding to the strength of the ac-
tivation. Finally we settled on an implementation
of individual bar charts per layer. This allows the

color and size of bars to convey activation strength
while keeping each node unique. This approach has
the disadvantage of isolating every activation and
making comparing them difficult. To assist with
this we link the bar charts, so that using the zoom
tool, or panning on the graph prompts the same ac-
tions in all the graphs. For a user this means that
if you are examining node 0 in the input layer of
the first selected point’s activation, all of the other
selected points will focus their activation graph on
that node. In this way every graph shows the same
position to allow for easy visual comparison. The
process becomes as simple as trying to find a node
of interest and zooming in on it to compare in all se-
lected points. The hover tool can be used on these
graphs as well, to convey the exact activation value
and node number.

Adaptability
The activation graphs build and scale on screen
based on the amount of neurons in the currently
active size and style of NNP. The first layer at the
bottom of the bar charts in Figure 3.45 corresponds
to the input layer, the second is the second hidden
layer. In this case this is the bottleneck layer (recall
we use the best implementation from [3] which is a
large bottleneck) making it smaller than the other
layers. The third line of bars from the bottom is
the 3rd hidden layer and the top-most line of bars
in the bar-chart is the sub-final activation.
The activations are automatically computed for all
selected points, as well as any nearest neighbors
placed by the nearest neighbor tool.

Examining Activations
To understand which parts of the NNP architecture
are responsible for which parts of the projection,
we can examine activations according to three sub-
questions which can give us understanding into the
parts we want to differentiate:

• 1) are close/clustered points affected by small
groups of neurons?

• 2) are there different activation patterns when
examining the inside and borders of clusters?

• 3) is there a obvious discriminatory pattern in
diffuse points compared to clustered points?

52



Figure 3.45: Activations of the two groups we wish to differentiate, clustered (a) and diffuse (b). Differ-
ences are not obvious.

Close Points and Close Neurons
We perform the examination of these activations
on large groups of points; we choose to examine
50 at a time. Figure 3.45 shows a subset of the
examined points. Are close points affected by small
groups of neurons? Yes. When comparing the close
points and the diffuse points, we see much more
focused activation in small groups in the network,
however this answer generalizes to: diffuse points
are affected by a larger amount of small groups of
neurons. Rather than isolating the close points, we
see their behavior is quite similar.

Differences in the Inside and Borders of
Clusters
Are there different activation patterns when exam-
ining the inside and borders of clusters? Yes.
We see three different kinds of patterns in Figure
3.47, one for each: border, inside of cluster and dif-
fusion. Although what we do not expect is that the
cluster borders have a stronger diffusion in terms
of activation than the diffuse points. We see an
average of the most varied ’hot’ points in the bor-
ders of clusters, while the most focused ’hot’ points
are within the clusters and the diffuse points are
in-between.

53



Figure 3.46: Internal cluster activations across locations in the projection

Are there Differences in Activations across
Parts of the Projection?
We are unable to find groups of neurons that explic-
itly differentiate diffuse points, but we know from
this experiment that the internal cluster points
have very focused activations. Do these activations
correspond to a particular placement? In Figure
3.46 we take a point central to each cluster, and ex-
amine its activations. We may expect that because
we compute a regression problem that the lower val-
ues in x and y would have lower activations. This
may be the case, but it is not obvious. There are
fewer high activations in the bottom graphs. Over-
all these lower graphs do not seem particularly low,
or different from other groups. Furthermore we do
not see a distinction between left and right parts of
the projection in any layer of the activation graph.
This tells us that the decision process is more com-
plicated than an activation of certain groups of
nodes to reach spaces in the projection, which fur-
ther evidences the lack of discriminatory neurons.

Lacking Discriminatory Neurons

We had hoped to isolate some component that was
responsible for diffusion, which we could simply
modify or remove from the network to stop the
diffusion, but we were not able to identify such a
component. Perhaps because the network is fully
connected, or because it is a regression problem we
find patterns which we can hypothesize belong to
certain points but we have to infer these to a cause
based on the neural network’s broad architecture
rather than a focus point within activations.

As evidenced by the results of Figure 3.47 where
activations seem to be superlatives of each other, it
would seem that diffusion is not caused explicitly by
a property of the network, but rather a side effect
of what is happening to the points at the borders
applied in a less strict manner. We can see this
through the diffuse points being less severe ’hot’
areas when compared to the cluster borders. This
means we cannot target a focus point in the layers.

54



Figure 3.47: Groups of neurons examined in Dogs vs Cats, their placement shown in (a). Diffuse (b)
with an average of 27 ’hot’ neurons, black box (e) as a rule to count the ’hot’ in the top row. The distant
cluster (b) with an average of 30 ’hot’ neurons and an internal cluster (d) with an average of 7 ’hot’
neurons.

We are sure that this activation difference is a prop-
erty of the distance preservation but have seen mul-
tiple manifestations of this. We have two cases, ei-
ther the activations at the borders are more similar
to those points outside which makes the network
strictly focus on both to preserve the distances, or
we see the distance preservation based on the simi-
larity without the comparison to another dissimilar
point.

3.6.6 Isolating a Cause: Midpoint or
Repulsion

In the previous section we came to the conclusion
that the activations are diluted because the net-
work is explicitly trying to differentiate points as a
product of its implementation. We also concluded
that this differentiation seems to specialize at the
borders and clusters. So far we have suggested two
possible cases when we came across indications of
the kind of problems that relate to this differentia-
tion.

Firstly in cases such as Figure 3.27, the point be-
came diffuse by seemingly being pulled away in
placement by sharing learned features with a dis-
tantly placed point. In such case the network
prioritizes the shared learned features with a dis-
tance point, rather than similarities with other-
wise nearby points. We hypothesize that this situa-
tion is a product of differentiation between multiple
groups of similar points and as a side effect our dif-
fuse point is placed at a midpoint of similar subsets
of neighborhoods.
This is our ’midpoint’ theory.
Secondly, in examples such as Figure 3.22 we see
a point that does not seem to be compared to any
particular distant features, but is pushed away from
its most similar points anyway.
This is our ’repulsion’ theory.
In this section we examine some such points, to go
deeper into the two theories and attempt to un-
derstand one root cause for both of them. We have
already examined the worst performing points in all
views, so now we will simply choose some specific
diffuse points.

55



We will examine these cases, and their nearest
neighbors to try and find if a distantly placed point
with similar learned features is causing each of
these points to become confused, or more likely:
that the network is distancing these points because
it wants to the preserve distance it sees in dissimi-
larity.
If we examine the neighbors and find a corrupt-
ing influence in all cases, then we know that the
midpoint scenario is the cause we see. If we find
a case where we do not find a corrupting influence
we know it is the repulsion case, since the midpoint
requires a corrupting influence.

The Context of these Points

Figure 3.48: Three diffuse points, 6688, 551 and
8128

We have found these three points, (Fig. 3.48) orig-
inally chosen in order to investigate if diffusion was
somehow learned in the test set, by being similar
to diffuse training points.
The process of this was to select groups of test
points of greater than 10 within the diffuse points
and examine their nearest training samples.
After examining a few such groups we concluded
that a diffuse test point does not often have many
diffuse training points and a well performing test

point can easily have many diffuse training sam-
ples to learn from. It is obvious that the points
do not learn ’diffusion’ as they would a class label,
but from this we can also know that there is no
property on the input that once learned leads to
propagation of diffusion into inference.
This means that diffuse points are learned as place-
ment compared to what the network has learned,
happening to end up diffuse as a side effect of the
computation of ’known’. This is evidence that there
is some underlying structure in the network that
conforms to this rule, and that is where our prob-
lem lies.

Distance Preservation

So we are here to show that the neural network’s
function wants to preserve the distance and that,
as a side effect causes diffusion. We know that
the network wants to preserve distance between the
points, in contrast to t-SNE which preserves neigh-
borhoods.
However, we do not know if the distance being pre-
served to cause diffusion is exclusively distance be-
tween several points or distance equivalent to sim-
ilarity between at least one point.
We want to demonstrate that these diffuse points,
and their neighborhoods indicate that distance
preservation that specifically pushes similarity
away is the problem rather than a midpoint be-
tween outliers.

The Neighborhoods of Point 6688

First we begin by evaluating point 6688. This point
does have distantly placed neighbors, the first ap-
pears at 23 neighbors and more arrive after that.
These neighbors are shown in Fig. 3.49. At this
point, it seems as if we do have the midpoint situ-
ation here. However the point 6688 is placed much
closer to the cluster within the orange than we
would usually find with the midpoint case; it is not
actually at a midpoint. When examining a typi-
cal midpoint case we found that the neighbors did
not seem to matter in quantity or ranking to pull
the point away. It seems then, that this point was
placed near the cluster because it was more simi-
lar to that cluster, which is more in line with the
repulsion case.

56



Figure 3.49: Point 6688 and its 60 nearest neigh-
bors

Figure 3.50: Point 8128 and its 60 nearest neigh-
bors

The Neighborhoods of Points 8128 and 551

In Figures 3.50-3.51, we see the same pattern across
these two points. We have a diffuse point and its
closest neighbors are all within a cluster nearby.

Figure 3.51: Point 551 and its 60 nearest neighbors

There is no consideration of a midpoint when plac-
ing these points, and we cannot seem to find a dis-
tantly placed neighbor in the most similar points.
This distant neighbor may be at a similarity that’s
incredibly low, but at that stage we would hope
that it doesn’t influence the projection as much.
We can take this result to mean that the network is
trying to preserve distance, by pushing these points
outwards away from the others and not by placing
exclusively between points.

Re-evaluating: Distance Preservation

We examined the activations of the points and
found no discriminatory groups. We did find some
patterns that suggest that the network is more dis-
persed in activations when placing points on bor-
ders and the diffuse points. We were unsure if
points were pushed away due to a distantly placed
outlier which was pulling the point towards it, or
the network trying to preserve distance from the
few similar samples and this happened to push the
point away. We are reasonably sure it is the second
case, but in either case the problem relates to dis-
tance preservation and the network’s architecture,
so it’s time to try and apply a fix to that in the next
chapter to finally accomplish our research goal of
improving the quality of deep learned multidimen-
sional projections.

57



3.7 Discussion

In this chapter we discuss the performance of this
thesis in context with the research goals we speci-
fied in Sec. 1.

We set out to improve the quality of deep learned
multidimensional projections. To reach this goal
we split it into two smaller questions: ’How can we
understand the diffusion or limited quality in pro-
jections?’ and ’How can we improve the projections
once we have this understanding?’.

To examine the first question we split it yet again
into it’s most atomic parts, each representing the
components of the network left unexplored before
now. These atomic parts are: ’How can we under-
stand the diffusion or limited quality in projection
as a product of the input?’ and ’How can we under-
stand the diffusion or limited quality in projection
as a product of the architecture?’

3.7.1 Find and Isolate the Error

To be able to understand or find the causes of diffu-
sion or limited quality, we first had to define what
that means. In Sec. 3.2 we applied the tools we
introduced in previous sections to outline what we
mean by error. We described the issue with trying
to relate the classical kinds of error to our problem
and successfully isolated the error we wish to re-
duce through a combination of the quality metrics
that were used to assess NNP in the original work.

We showed that NNP captures the structure and
error of t-SNE, such that a reduction in error will
guarantee proximity to t-SNE.

We then introduced tools that isolated these
points of error, for ease of use in focusing on the
highest error and demonstrated the ability to iso-
late these points in a range of ways.

Contradictions with Existing Studies

We did not find hot-spots in metrics similar to
those in the literature, particularly in [21]: the
false neighbors were found at the centers of clus-
ters. Both the method used there (LAMP) and
t-SNE prioritize local clusters so we would expect
to see similar patterns. The reason proposed in
the paper above is that the projections struggle to
place points within the limited space within clus-
ters and thus we get false neighbors. We reason

that the difference could be due to the fact t-SNE
and therefore NNP, do not struggle with this be-
cause t-SNE is given a lot of leeway due it’s t-tail
distribution when placing points which are not in
local structure.

3.7.2 Exploring Causes

In Sec. 3.3.2 we applied all of the tools so far in
an attempt to answer: How can we understand the
diffusion or limited quality in projection?. We hy-
pothesize causes to understand diffusion related to
either the input or the architecture.
We outlined a few hypothesis, theorizing that the
main factors that cause diffusion are some combi-
nation of: Distance from the known, repulsion by
distance preservation and the placement of a point
at a midpoint as a method of preserving distance
between a cluster and a distantly placed point with
similar learned features.

We reached these hypothesis through a demon-
stration of visual representations that show the re-
lationship between observations and the predicted
outcome using the nearest neighbors tool, which
is fundamental in gaining understanding into the
black box network.

Defining Sample relationship by Weights

Ideally we would like this visual representation
within the neighbors tool to show a weighted con-
tribution for each test point based on the train-
ing points but we have already discussed how we
found that neighbors do not contribute more de-
pending on proximity or quantity. Furthermore it
does not seem useful to compute the weights sep-
arately, as these are factored into the activations
and also change with every training epoch, mak-
ing it impossible to pass in a sample and check the
changes in weights attributed to that sample. This
would make the order of training very important
as the first few samples would have much larger
contribution to shaping the network from its base
structure. This assumption is based on the findings
of [14], that there was some structure in activations
before training but the structure after training was
much more specialized and completely overhauled
in visual separation.

58



3.7.3 Narrowing Down a Cause:
Distance

We explore the first cause, ’distance from the
known’ in Sec. 3.6.1. We demonstrate tools to view
the projections from various perspectives related to
distance. The results show that there is a strong
correlation between distance and error. However
we also find contradicting exceptions to this in one
or two points. This is in-line with the hypothe-
sis that the causes of diffusion are not only those
found in the input, meaning they cannot be fixed by
modifying the distance alone. Despite this we show
that distance is a good measure for the location of
the diffusion. With the findings that the reason for
distance from the known is tied to the activation
spread, along with the theory that diffusion is a side
effect of distance preservation, it suggests that the
hotspots of distance within the clusters are also dif-
fusion. This would be the distance which remains
in clusters after cleaning. This diffusion is not the
kind that harms the quality metrics so we did not
see it. It appears as a slight misplacement within
a cluster so it is obscured.

3.7.4 Fixes for Input Problems

We showed in Sec.3.6.1 that the distance has some
kind of relationship to the error. To use this un-
derstanding to improve the projections we try two
approaches:
Based on the application of noise in [3] to make
the network more resilient, we tried to give the
network easier samples or bias it, but we found
that the order of points did not matter and nei-
ther of these helped with the quality metrics. This
makes some sense as the weights adapt after every
batch of training samples, with no knowledge of
what makes then difficult or not. It is more likely
that the training weights do not adjust to specific,
difficult or unusual cases, rather they learn a gen-
eral rule of well performing cases and apply that to
the other points. That is why we see the difficulty
in placement, because they are difficult as a result
of general rules not specific ones.

In Sec. 3.6.2 we try to apply a filter to grab some
’low hanging fruit’ that is, to expose the network to
less error in the hopes that it will learn less error.
This works, but if we re-add the removed points
this does not have quite as impressive results.

In examining this ’clean’ data we perform another
experiment to examine the distance on this new
projection. The highest distance points in this
clean projection are not all diffuse, nor are they all
error points. The results confirm that the distance
is not the only reason for the error, evidenced by
the in-cluster distribution of the highest distances
that remain in the projection once the most error
is removed. As a result of this, distance remains a
good indicator of the diffusion but we are sure it is
not the only cause.

3.7.5 Narrowing Down a Cause: Ac-
tivations

In Sec.3.6.5 we explore the two other causes that we
have named ’midpoint’ and ’repulsion’ with the in-
tuition that they appear from the same root cause.
We examine the activations in different parts of the
projection, finding that the points within the clus-
ter have the most focused activations.
Both the points on the borders of clusters and
the diffusion have high average activation, with
the borders having even more spread in activations
across neurons than the diffusion.
These results suggest that the focus found in these
activations may be a part of cluster identity, while
the spread activations explicitly push points fur-
ther from this identity. In this case diffusion would
be those points pushed away, but less explicitly be-
cause they lack core identity in the first place.

To reinforce this idea of cluster identity we no-
tice that in the input layer the clustered points re-
act more strongly which may give NNP a stronger
idea of where to place the points immediately. This
strong reaction is a strong identity. The activation
layers are less specified in the diffuse points, leav-
ing them more open to identity defined by a dis-
tantly placed point with similar learned features.
In cases such as Figure 3.27, the activation is dis-
proportionately split between a distantly point and
other neighbors which are focused in one group.
Alternatively phrased, these diffuse activations are
not as close to the others because they have some
property learned in a distant point that makes them
stranger than their neighbors and the network is de-
ciding to distance them because of that distance to
the cluster identity.

59



Differences from related work

The lack of discriminatory neurons differs from the
existing literature in related works, such as [14]: the
last layer of a classification network had become in-
creasingly proficient at discriminating groups closer
to the output layer, with each later after input re-
fining the cluster coherence. NNP does not behave
like this, which can be explained as a product of the
classification vs regression difference in the applica-
tion. If classification decides on a class, and regres-
sion computes a number then it makes sense that
our network is not as decisive in cluster separation.
This may suggest that regression approximates a
simple function. We briefly explored if this was the
case by observing if there was some explainable de-
cision present in the activations from the core of
each cluster. We expected to see higher activations
relating to being placed higher in the projection or
the opposite and concluded that there was no ob-
vious computation of such. So far in this thesis
we have seen no qualitative or quantitative prop-
erty related only to diffuse points, which is in-line
with the hypothesis that these diffuse points are a
side-effect of the distance preservation rather than
caused explicitly.

We had wanted to examine activations to find
some layer or group of discriminatory neurons, that
we could tweak to improve the network but no such
easy fix was found.

Re-examining Distance with Understanding

The understanding of the activations gives us more
insight into the distance problem in the previous
sections: The distance in activations went down
when we removed the error points, this is because
the activations that belong to the error points are
very large and very spread while those that are not
have focused, relatively smaller total activations.

3.7.6 Narrowing Down a Cause:
Midpoint or Repulsion

In Sec. 3.6.6 we go deeper into the two causes which
we hypothesize are one and the same: midpoint
and repulsion. We try to eliminate the behavior
in the two cases above which does not fit, so that
we can isolate the true cause. We examine points
which seemingly have no distant similarities which

could cause the ’midpoint’ scenario and therefore
reason that the second outcome, that the distance
is preserved by repulsion is more likely. We can use
these results to then justify the appearance of the
’midpoint’ case by re-framing it as repulsion from
both sides.

If NNP is only concerned with preserving dis-
tance to similarity then the diffusion has nothing
to do with the learning of dissimilar points. Rather
the network wants to preserve the distance from
the existing points. It does not matter if there is
another point, the network will place far based on
distance from cluster samples. In the cases where
we do have a similar point that is far away we
are placed at a midpoint of the similarities be-
cause of repulsing distance from both sides rather
than a computed midpoint. This leads to place-
ments which are not biased by rank or quantity.
This mechanism makes sense given the cases we
have seen within the diffuse train and test samples,
as well as the layout of distance in the projection
relating to activation variance. The lack of rela-
tion diffuse points have with each other in terms of
training samples or qualitative properties can also
be explained as the points having nothing in com-
mon but happening to end up near each other as a
product of repulsion.

Learning from a Neighbor

The inability to find an distant point in the two
cases outlined in Sec.3.6.6 does not rule out the
possibility that one exists. The distance in similar-
ity that one would have to be to not be featured in
the most similar 60 points probably means that it
is not similar enough to contribute much. Either
way the repulsion hypothesis seems to fit the most
appropriately given the context of the rest of the
experiments, as well as the ability for the midpoint
case to exist with it. Whether we are incorrect in
this notion, both are cases of NNP preserving dis-
tances in some form so the fix remains the same.

Understanding Diffusion

The results in the above sections answer: How can
we understand the diffusion or limited quality in
projection?. We can understand the diffusion as a
combination of distance from the known and the
distance preservation in the network’s formulation.

60



This is in line with the causes we outlined from our
exploration in the first few sections, where some
points seemed to be far away while others just
seemed to be problematic for no visible reason.

3.7.7 Improving Deep Learned
Multidimensional Projections

The next question: How can we improve the pro-
jections once we have this understanding? is only
partially fulfilled at this stage. We have understood
some causes, and applied fixes to these causes. For
’distance from the known’ as a cause we saw some
improvements, specifically in visual clarity. We
specify visual clarity instead of performance, be-
cause although we see some changes in the results of
Sec. 3.6.2 these are not as prominently reflected in
the quality metrics. Along with our need to aggre-
gate the quality metrics to outline our error, there
seems to be a case to be made that there is an eas-
ier or more straightforward metric which could help
us identify the error, and evaluate our projections
more accurately; perhaps some modification of the
distance colormap. Regardless there seems to be
some discrepancy between what we hope the exist-
ing quality metrics will measure and what they ac-
tually measure. Since the overall goal is to improve
NNP to reach a level similar to t-SNE, we continue
despite the small improvements in Sec. 3.6.2.

We found several insights pointing to various
potential causes of our diffusion problems during
the investigation of NNP, but we could not find a
way to apply this insight to fundamentally improve
NNP. So instead we try to overhaul NNP by intro-
ducing a new mechanism to the internal distance
preservation function that we find causes error.

61



Chapter 4

Improving Deep Learning through
Neighborhood Preservation

We have examined the architecture of NNP and
have not found any specific area of focus, conclud-
ing that there must be some cause inherent to the
structure of the projection with regard to its imple-
mentation. We hypothesize that this cause is to do
with NNP wanting to preserve distances. To exam-
ine if this is the case, we try a new implementation
of NNP, that seeks to mimic the strong visual sep-
aration of data clusters produced by t-SNE. t-SNE
achieves this by essentially considering the preser-
vation of neighborhoods rather than of point-pair
distances. We apply this consideration to NNP in
an attempt to harmonize the two methods and re-
move the problems we have seen within the archi-
tecture. We show Figure 4.1 to contrast the per-
formance of these two methods with regards to the
problems we have seen so far in this thesis.

The following chapter describes the implementa-
tion of NNP with neighbors as detailed in Mod-
rakowski et al. [27]. 1

4.1 Introducing KNNP

Consider the NNP approach, where each training
sample x is fed into the network with its corre-
sponding ground-truth (t-SNE) coordinate P (x) as
a training label. We replace each such training pair
(x, P (x)) a pair of neighborhoods (ν(x), P (ν(x)).
Here, ν(x) are the K nearest neighbors of x in
D; and P (ν(x)) are the ground-truth projections
of these neighbors. We compute neighborhoods

1Work described in this chapter has been submitted for
publication in the CCIS Series of books with Springer. [27]

ν using both a fast approximate nearest-neighbor
search [22] and an exact, slower, brute-force search,
to check whether the approximate search has any
negative impact on quality. We call our new model
K-nearest-neighbors NNP, or KNNP.

During inference, we compute nearest neighbors
over points from the training set. There are two
reasons for this: (1) The training set is already
learned (known) by the network; (2) The training
set is already indexed for fast search [22].

We tune the hyperparameters of the KNNP
model following the results in [3]. We use MAE
as our loss function, which is averaged over the K
neighbors as each one is treated as a single sam-
ple or label. We chose ADAM as our optimizer.
The architecture of the network follows the one in
Figure 2.6 aside from the input and output layers
which are scaled so that each input layer containing
K nD points outputs a single 2D point.

4.2 KNNP Evaluation

We next compare the KNNP method introduced
in this chapter with the original NNP method
using the optimized hyperparameter settings and
with the ground-truth t-SNE projection. For this,
we use the four quality metrics in Sec. 2.1.2. In
addition to the MNIST dataset (Sec. 3.1), we add
two more datasets to the comparison, namely:

Fashion MNIST [28]: 70K observations of 10
types of pieces of clothing, rendered as 28x28-pixel
gray-scale images, flattened to 784-element vectors;

62



Figure 4.1: The placement of the points in (Figure 3.50-3.51) in NNP (a) and in KNNP (b)

IMDB Movie Review [29]: 25K movie reviews
from which 700 features were extracted using
TF-IDF [30], a standard method in text processing.

We next show the performance of KNNP vs NNP
and t-SNE, for training data (Sec. 4.3) and test
data (Sec. 4.4). We also show how quality de-
pends on the training set size (Sec. 4.5) and eval-
uate KNNP’s speed vs other techniques (Sec. 4.6).
Finally, we show actual projection plots computed
by KNNP, NNP, and t-SNE (Sec. 4.7). We present
a subset of our results; the remainder is found in
the supplemental material of [27].

4.3 Quality on training data

Figure 4.6 compares the performance of KNNP, the
original method (NNP), and the ground truth (GT,
t-SNE) across four quality metrics. Red, yellow,
and green indicate that the respective method has
a quality lower than, similar to, respectively higher
than GT. We see that, for K = 5 neighbors, KNNP
performs slightly better than NNP, in virtually all
cases and for all quality metrics. We also see that
quality does not vary much with architecture style
or size. Hence, when running on a tight computa-
tional budget (where one cannot train or test large
architectures), KNNP has a small edge over NNP.

4.4 Quality on testing data

So far, we compared both deep learning projections
(KNNP and NNP) against each other and against
the GT (t-SNE). For testing data, we cannot do the
latter comparison, since t-SNE is not a determin-
istic method, and does not have an out-of-sample
capability. Hence, for testing data, we next com-
pare KNNP and NNP – trained on the same data,
and tested on the same data – against each other
only.

Figure 4.7 shows that KNNP gets the largest
quality boost vs NNP for K = 5 neighbors again.
As in Fig. 4.6, the style and size of architecture
do not influence the results. Overall, KNNP yields
better quality than NNP. However, which metric
(of the four evaluated) is most improved depends
on the dataset. This is expected, since neither NNP
nor KNNP explicitly optimize a given quality met-
ric.

4.5 Quality as function of
training set size

Figure 4.2 shows how the quality of KNNP com-
pares to that of NNP for different training-set sizes.
We see that the added-value of KNNP vs NNP is
higher for fewer training samples, particularly so for
K = 5 neighbors. Hence, when the user can only
use a small training-set, the relative added-value of
KNNP vs NNP increases.

63



lo
w

er
 th

an
 N

N
P

sa
m

e 
as

 N
N

P
hi

gh
er

 th
an

 N
N

P

Figure 4.2: Comparison of KNNP vs NNP quality metrics for different training set sizes on MNIST (left)
and Dogs vs Cats (right). Green marks cases where KNNP outperforms NNP.

4.6 Computational scalability

pr
oj

ec
tio

n 
tim

e 
(lo

g 
sc

al
e)

#samples

Figure 4.3: Comparison of training times between
parametric techniques

We next compare the speed of KNNP, NNP, and
other well-known techniques for up to 1M test
samples. All methods were run on a 4-core Intel
E3-1240v6 at 3.7 GHz with 64 GB RAM and an
NVidia GeForce GTX 1080 Ti GPU with 11 GB
VRAM. Figure 4.4a shows the projection time
(log scale) as a function of the dataset size for
parametric techniques. We see that all techniques
are linear with dataset size.

NNP is the fastest of all compared techniques,
with KNNP using approximate nearest-neighbor
(ANN) search coming close. Figure 4.4b adds
non-parametric techniques to the compari-
son, specifically MDS [7], t-SNE, LSP [6], and
LAMP [8]. We see the same trend as before. Also,
we see that KNNP is faster than all non-parametric
techniques. Figure 4.3 shows training time for
the parametric techniques for up to 1M training
samples. Beyond 250K samples, UMAP failed to
finish training. NNP and KNNP with ANN search
show the same speed, both are faster than KNNP
with brute-force search.

4.7 Projection scatterplots

Figure 4.5 shows samples of scatterplots created
with t-SNE, NNP, and KNNP with ANN and brute
force search. We see that KNNP creates scatter-
plots which are less fuzzy than NNP, being very
close to the ones that t-SNE creates. For test data,
note that both NNP and KNNP place point clusters
at different locations than t-SNE. This is expected
since, as explained, t-SNE is non-parametric. We
also see that KNNP delivers visually identical plots
for approximate vs exact search. Hence, we can use
the faster approximate (ANN) search without fear
of quality loss.

64



a) b)

pr
oj

ec
tio

n 
tim

e 
(lo

g 
sc

al
e)

pr
oj

ec
tio

n 
tim

e 
(lo

g 
sc

al
e)

#samples #samples

Figure 4.4: Projection times for parametric techniques only (a) and for parametric and non-parametric
techniques (b)

65



Figure 4.5: Projections created by t-SNE, KNN, and KNNP (approximate and exact search variants)
on MNIST and Dogs vs Cats datasets during training and testing (inference).

66



Figure 4.6: Comparison of the difference in four quality metrics NH, T , C, and R between t-SNE and
NNP, respectively t-SNE and KNNP. The comparison is done on the MNIST and Dogs vs Cats datasets,
for five K values, using both exact and approximate search, for three architecture styles (wide, straight,
bottleneck), each having three sizes (small, medium, large). Red colors indicate cases which are farthest
below t-SNE’s quality.

67



S
tr

ai
gh

t
B

ot
tle

ne
ck

W
id

e

Small Medium Large
Approximate Exact Approximate Exact Approximate Exact

lower than NNP equal to NNP higher than NNP

S
tr

ai
gh

t
B

ot
tle

ne
ck

W
id

e

M
N

IS
T

D
o

g
s 

vs
 C

at
s

NH T C R NH T C R NH T C R NH T C R NH T C R NH T C R

Appr

ig
ig

5

10

25

50

5

10

25

50

5

10

25

50

5

10

25

50

5

10

25

50

5

10

25

50

K

Figure 4.7: Comparison of quality metrics of KNNP vs NNP for the same datasets, architectures, and
parameters as in Fig. 4.6. Green indicates cases where KNNP performs better than NNP.

68



Chapter 5

Conclusion

5.1 Overview

We presented an in-depth summary of our experi-
ments in this thesis, aimed at assessing issues and
improving the quality of dimensionality reduction
using deep learning. Specifically we aim to reduce
the diffusion in the projections, as a means of an-
swering our research question: How can we improve
the quality of deep learned multidimensional projec-
tions?

We answer this question in two parts, based on
sub-questions: How can we understand the diffu-
sion or limited quality in projection? and How can
we improve the projections once we have this un-
derstanding?

5.2 Part 1: Understanding
Diffusion

We set out to understand the diffusion based on
two fronts: the input and the architecture. These
are the two components to the network. The input
component could be broken down further into: the
data and the training projection.

We isolated some problems in the input, deter-
mining where NNP worked well and where NNP
worked poorly. Based on neighbors we were able
to understand properties of what NNP did and did
not learn. We gained some understanding of possi-
ble causes of diffusion, selecting ’Distance from the
known’ and ’Distance preservation’ as the two we
would pursue based on our understanding.

5.2.1 Is Distance from the Known
the Reason for Diffusion?

We select ’distance from the known’ as our focus
cause, and examine it in more detail. Finding that
the distance is strongly correlated with the error.
We applied some fixes to this which involved mod-
ifying the input through ordering the training data
and cleaning the training projection. We found
some success in this, but we did not reach the goal
of competing with t-SNE. In applying this fix we
gained more understanding of this distance, and
were able to conclude that distance is not the root
cause of diffusion.

5.2.2 Which parts of the network are
responsible for which parts of
the projection?

We then select ’distance preservation’ as our fo-
cus cause, and attempt to isolate problems in the
architecture of the network, by examining the ac-
tivations. We did not find significant evidence of
discriminatory patches of neurons, but we did find
that there was more dispersed activity in the points
which are not in the center of clusters. We used
this discovery to theorize that the activations are
diluted because the network is explicitly trying to
differentiate points as a product of its implemen-
tation. We further explored this implementation
problem to choose the most likely from the two
hypothesis we had so far. We did this by find-
ing points which do not appear to be pulled away
by any distantly placed point with similar learned
features and concluded that this must be a result
of NNP preserving the distances from the nearby
points.

69



5.3 Part 2: How can we im-
prove the projections once
we have this understand-
ing?

With all of our experiments complete, we have
gained understanding. In some cases we iteratively
explored causes in order to improve this under-
standing in those areas. We found that the ’Dis-
tance from the Known’ is not the only cause, but
also that it is entwined with the activation dilution.

We were unable to pinpoint a cause for these spe-
cific problems in the architecture, so we are unable
to apply tweaks to layers or neurons that we wanted
to perform. As a result we explore KNNP: an ap-
proach which tries to prioritize neighborhoods in
much the same was as t-SNE does. With this we
see some improvement quantitatively in the met-
rics, and a large increase in visual clarity qualita-
tively with regards to diffusion.

Figure 5.1 shows this visual improvement, par-
ticularly in the triangular base.

Figure 5.1: Projections created by t-SNE(a), NNP
(b) and KNNP (exact search variant)(c) and KNNP
(approximate search variant)(d) on Dogs vs Cats
during training (Large/Wide).

70



Chapter 6

Future Work

In this chapter we detail the future work that has
come into suggestion as a result of this thesis.

Quality Metrics
We examined three quality metrics, trustworthi-
ness, continuity and neighborhood hit in the pro-
posed solution, with the addition of Shepard’s di-
agram correlation coefficient in the additional ex-
periments. However, through our exposure to these
metrics we find that they do not accurately pro-
vide a quantitative measure of the visual quality of
the graph. For example some visible improvements
seem to lead to minuscule quality improvements,
so we are interested in the idea of applying a wider
variety of quality metrics in the event that some
may be more appropriate for outlining the exact
properties we desire.

To fit closer to a qualitative evaluation of diffu-
sion, we aggregated our metrics. This idea could be
generalized further. We formed this aggregation as
a simple combination of these metrics into one. By
weighting these three metrics, we can more specifi-
cally tune the error to exclude some points that we
would not like to see as error. One such case is the
misclassifcations in the clusters which harshly re-
duce neighborhood hit values regardless of correct
placement.

Distance and Loss Functions
We found in Sec.3.6.1 that we had correlation with
the distances between the activations and the er-
ror. We theorize that incorporating this measure
into the loss function or as some kind of error sig-
nal, may help the network learn to be aware of it.
Similar to this, if we could bias the network, or ma-
nipulate the weights in order to force the network

to bring points closer to the similar values rather
than pushing points away, this may be helpful in
bringing the diffusion closer to the clusters. The
quality metrics, may be suitable as an error signal
as well, more directly relating to the network what
we want.

Iterative Pruning with Error Metrics
An extension of this idea is that if we are unable to
incorporate the quality metrics as an error signal,
we compute the quality metrics at each step of some
stage of advanced training, and prune any weight
modifications that would decrease the quality met-
rics. The idea being that if we only change weights
that would improve the projection, we could end
up with an optimal model with regard to quality
metrics rather than accuracy to a training label.

KNNP
The current implementation of KNNP, as of writing
this paper considers the neighbors which are most
similar by an exact or approximate distance ma-
trix. It may be the case that these neighborhoods
could be specifically tailored in a more preferred
way, such as tailoring each neighborhood to fit the
point’s desired location rather than it’s most simi-
lar location. The most obvious way to do this is by
manually tailoring these groups for training. If this
process shows results, the process could be made
implicit through means such as quality metrics, as
we had done for removing points.

Furthermore, exploring KNNP with the same
methods detailed here could be helpful in examin-
ing if the causes of diffusion have changed or if the
causes we see here were simply obscuring another
root cause.

71



Bibliography

[1] L. van der Maaten and G. Hinton, “Visualizing
high-dimensional data using t-sne,” Journal of
Machine Learning Research, vol. 9, no. nov,
pp. 2579–2605, 2008. Pagination: 27.

[2] M. Espadoto, N. S. T. Hirata, and A. C. Telea,
“Deep learning multidimensional projections,”
2019.

[3] M. Espadoto, N. Hirata, A. Falcão, and
A. Telea, “Improving neural network-based
multidimensional projections,” pp. 29–41, 01
2020.

[4] M. Espadoto, R. M. Martins, A. Kerren,
N. S. T. Hirata, and A. C. Telea, “Towards
a quantitative survey of dimension reduction
techniques.,” IEEE transactions on visualiza-
tion and computer graphics, 2019.

[5] I. T. Jolliffe and J. Cadima, “Principal com-
ponent analysis: a review and recent de-
velopments,” Philosophical Transactions of
the Royal Society A: Mathematical, Physical
and Engineering Sciences, vol. 374, no. 2065,
p. 20150202, 2016.

[6] F. V. Paulovich, L. G. Nonato, R. Minghim,
and H. Levkowitz, “Least square projection:
A fast high-precision multidimensional projec-
tion technique and its application to document
mapping,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 14, no. 3,
pp. 564–575, 2008.

[7] W. S. Torgerson, “Theory and methods of scal-
ing. new york: John wiley and sons, inc., 1958.
pp. 460,” Behavioral Science, vol. 4, no. 3,
pp. 245–247, 1959.

[8] P. Joia, D. Coimbra, J. A. Cuminato, F. V.
Paulovich, and L. G. Nonato, “Local affine

multidimensional projection,” IEEE Transac-
tions on Visualization and Computer Graph-
ics, vol. 17, no. 12, pp. 2563–2571, 2011.

[9] J. B. Tenenbaum, V. d. Silva, and J. C.
Langford, “A global geometric framework for
nonlinear dimensionality reduction,” Science,
vol. 290, no. 5500, pp. 2319–2323, 2000.

[10] L. McInnes, J. Healy, and J. Melville, “Umap:
Uniform manifold approximation and projec-
tion for dimension reduction,” 2018.

[11] E. Pekalska, D. de Ridder, R. P. W. Duin, and
M. A. Kraaijveld, “A new method of gener-
alizing sammon mapping with application to
algorithm speed-up,” 1999.

[12] M. Wattenberg, F. Viégas, and I. Johnson,
“How to use t-sne effectively,” Distill, 2016.

[13] T. Spinner, U. Schlegel, H. Schafer, and M. El-
Assady, “explainer: A visual analytics frame-
work for interactive and explainable machine
learning,” IEEE Transactions on Visualiza-
tion and Computer Graphics, p. 1–1, 2019.

[14] P. Rauber, S. Fadel, A. Falcão, and A. Telea,
“Visualizing the hidden activity of artificial
neural networks,” IEEE Transactions on Vi-
sualization and Computer Graphics, vol. 23,
pp. 1–1, 01 2016.

[15] M. Kahng, P. Y. Andrews, A. Kalro, and
D. H. Chau, “Activis: Visual exploration of
industry-scale deep neural network models,”
2017.

[16] M. T. Ribeiro, S. Singh, and C. Guestrin,
“”why should i trust you?”: Explaining the
predictions of any classifier,” 2016.

72



[17] H. Strobelt, S. Gehrmann, H. Pfister, and
A. M. Rush, “Lstmvis: A tool for visual analy-
sis of hidden state dynamics in recurrent neu-
ral networks,” 2016.

[18] A. Harley, “An interactive node-link visu-
alization of convolutional neural networks,”
pp. 867–877, 12 2015.

[19] E. Brown, J. Liu, C. Brodley, and R. Chang,
“Dis-function: Learning distance functions in-
teractively,” pp. 83–92, 10 2012.

[20] F. L. Dennig, T. Polk, Z. Lin, T. Schreck,
H. Pfister, and M. Behrisch, “Fdive: Learn-
ing relevance models using pattern-based sim-
ilarity measures,” CoRR, vol. abs/1907.12489,
2019.

[21] R. Martins, D. Coimbra, R. Minghim, and
A. Telea, “Visual analysis of dimensionality
reduction quality for parameterized projec-
tions,” Computers & Graphics, vol. 41, 06
2014.

[22] Y. A. Malkov and D. A. Yashunin, “Effi-
cient and robust approximate nearest neigh-
bor search using hierarchical navigable small
world graphs,” 2016.

[23] Y. LeCun, C. Cortes, and C. Burges, “MNIST
handwritten digit database,” AT&T Labs
http://yann.lecun.com/exdb/mnist, vol. 2,
2010.

[24] J. Elson, J. J. Douceur, J. Howell, and J. Saul,
“Asirra: a CAPTCHA that exploits interest-
aligned manual image categorization,” in Proc.
ACM CCS, pp. 366–374, 2007.

[25] X. Zhang, J. Zou, K. He, and J. Sun,
“Accelerating very deep convolutional net-
works for classification and detection,” CoRR,
vol. abs/1505.06798, 2015.

[26] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li,
and L. Fei-Fei, “Imagenet: A large-scale hi-
erarchical image database,” in Proc. CVPR,
pp. 248–255, 2009.

[27] T. S. Modrakowski, M. Espadoto, A. X. Fal-
cao, N. S. T. Hirata, and A. C. Telea, “Improv-
ing deep learning projections by neighborhood
analysis,” 2020.

[28] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-
MNIST: a novel image dataset for bench-
marking machine learning algorithms,” arXiv
preprint arXiv:1708.07747, 2017.

[29] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang,
A. Y. Ng, and C. Potts, “Learning word
vectors for sentiment analysis,” in Proc. of
the 49th Annual Meeting of the Association
for Computational Linguistics: Human Lan-
guage Technologies, pp. 142–150, Association
for Computational Linguistics, 2011.

[30] G. Salton and M. J. McGill, Introduction to
modern information retrieval. McGraw-Hill,
1986.

73


