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Abstract

We consider Brauer groups of local fields and determine which of its ele-
ments can be reached by cyclic algebras of the form (χ,∆), where χ is a
character for a cyclic Galois extension L/K of degree dividing 12 and ∆ is
the discriminant of an elliptic curve over K. We answer this question using
the explicit norm groups of unramified extensions. For finite field extensions
of Q2 and Q3 we restrict ourselves further to discriminants of elliptic curves
over the ring of integers OK . For this restriction, the unramified extensions
no longer provide an answer. Instead we use local class field theory to con-
struct suitable cyclic extensions and prove that the image of the respective
cyclic algebras depends on the presence of certain roots of unity in K.

We also give a brief introduction to the mathematical theory we have
used. This includes the theory of local fields, Brauer groups and Hilbert
symbols.
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1 Introduction

The concept of a Brauer group of a field K was introduced by Richard
Brauer. He used them in particular as a way to classify central division
algebras of K. By Wedderburn’s theorem the Brauer group can also be
seen as a way to classify central simple algebras. We call two central simple
algebras A and B equivalent if they differ by a matrix algebra, i.e. if there
exist integers n and m such that

A⊗K Mn(K) ∼= B ⊗K Mm(K).

The Brauer group is defined as the set of equivalence classes of this relation.
Later, the Brauer group was identified with cohomology groups using

Galois cohomology. This allowed Grothendieck ([Gro66]) to generalize the
concept to Brauer groups of schemes. These groups have been used in math-
ematics ever since. One application is the Brauer-Manin obstruction, an
obstruction to local-global principles ([Sko99]).

Another topic of interest are Brauer groups of stacks. One can for in-
stance consider the Brauer group of the stack of elliptic curves over a scheme.
Antieau and Meier studied this problem and found for instance that the
Brauer group of the stack of elliptic curves over Spec(Z) is trivial ([AM16,
10.2]). In this thesis, we will further explore one question that came up in
this article.

Let L/K a cyclic Galois field extension and χ : Gal(L/K) → Z/mZ an
isomorphism. For any b ∈ K∗ we can define a cyclic algebra

(χ, a) := L〈y〉/(ym = a, and xy = yχ−1(1̄)(x) ∀x ∈ L)

This is a central simple algebra over K and we consider its class in Br(K). A
question that came up in [AM16] is what elements of Br(K) we can reach by
letting a be the discriminant of some elliptic curve over K. The discriminant
of an elliptic curve over K is defined modulo (K∗)12. In order for the cyclic
algebra (χ,∆) to be well-defined, we need that m divides 12. Therefore we
only consider cyclic field extensions of degree m|12.

In this thesis, we explore this question for local fields. We focus on
extensions of Q2 and Q3, since 2 and 3 are the prime divisors of 12 and
these are expected to be the most problematic cases. Using only unramified
extensions, we show the following theorem.

Theorem 1.1. Let K be any local field. Every element of Br(K)[12] is
represented by a cyclic algebra of the form (χ,∆), where χ : Gal(L/K) →
Z/12Z is some injective homomorphism associated to an extension L/K and
∆ ∈ K∗ is the discriminant of an elliptic curve over K. Any cyclic algebra
of this form induces a 12-torsion element of Br(K).
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We also consider the same question for elliptic curves over the ring of
integers OK of a local field K. We show that in this case the unramified
extensions lead only to trivial cyclic algebras. We prove the following results.

Theorem 1.2. Let K/Q2 be a local field.

• If K contains a primitive third root of unity, every element of Br(K)[12]
can be represented by a cyclic algebra (χ,∆), where χ : Gal(L/K) →
Z/12Z is an injective morphism associated to a cyclic Galois extension
L/K and ∆ ∈ O∗K is the discriminant of an elliptic curve over OK .

• If K does not contain a primitive third root of unity, every element of
Br(K)[4] can be represented by cyclic algebras of the form above, and
all of them induce 4-torsion points.

Theorem 1.3. Let K/Q3 be a local field.

• If K contains a primitive fourth root of unity, every element of Br(K)[12]
can be represented by a cyclic algebra (χ,∆), where χ : Gal(L/K) →
Z/12Z is an injective morphism associated to a cyclic Galois extension
L/K and ∆ ∈ O∗K is the discriminant of an elliptic curve over OK .

• If K does not contain a primitive fourth root of unity, every element
of Br(K)[6] can be represented by cyclic algebras of the form above,
and all of them induce 6-torsion points.

In order to prove these theorems we will need some preliminary theory.
The first part of this thesis is devoted to stating the definitions and results
that we will use as well as some general observations and examples that
illustrate how the theory can be used. We will refer to textbooks for most of
the proofs, but sometimes explore some of the ideas that go into the proofs.

We start of by stating the main results concerning local fields, including
Hensel’s lemma and the decomposition of the multiplicative group. We
will discuss extensions of local fields emphasizing the role of unramified
extensions, and introduce some relevant results from local class field theory.

Then we move on to a brief discussion of elliptic curves, Weierstrass
equations and their discriminants. We define what it means for an elliptic
curve to be defined over the ring of integers of a local field.

Thirdly, we introduce Brauer groups of fields. We will give the basic
definitions of central simple algebras as well as their primary example, cyclic
algebras. Here we will also make a brief note on Kummer theory.

After this, we introduce some important notions from (Galois) cohomol-
ogy. We identify the most important groups that go into our construction as
cohomology groups and see how cohomology can be applied to deduce some
basic properties. We will see for instance that the Brauer group of a field is
a torsion group. We will later use this observation in a brief illustration to
prove that the Brauer group of any local field is isomorphic to Q/Z.
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The last concept we will introduce in the preliminaries is that of Hilbert
symbols. They provide the main computational tools for dealing with cyclic
algebras. We will discuss some of the formulas that can be used to compute
them and provide some examples. Finally, we observe why we can often
reduce to the case where our field contains relevant roots of unity. This
is for instance important for defining Hilbert symbols and using Kummer
theory.

In the second part of the thesis, we focus only on proving Theorem 1.1,
1.2 and 1.3. We provide an example of how one can deal with norm equa-
tions by using techniques similar to ones used for dealing with Diophantine
equations, and also show how the theory of unramified extensions provides
a more robust way of computing the order of cyclic algebras and proving
Theorem 1.1.

In the final chapter we show that the unramified extensions are insuffi-
cient to prove Theorem 1.2 and 1.3. Instead we make explicit use of class
field theory and the decomposition of the multiplicative group of a local
fields to construct useful extensions and show that there are some obstruc-
tions when the base field does not contain the relevant roots of unity. Finally,
we observe that a specific form of elliptic curves can be used to answer our
questions without the need for explicit computations.

We end with a brief discussion on related questions and generalizations.
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Part I

Preliminaries

Before we tackle the main topic of this thesis, let us familiarize ourselves
with the underlying theory that we will make use of. The reader is assumed
to have a basic grasp of algebra, including knowledge of p-adic numbers,
commutative algebra and the basics of algebraic number theory. The most
important notions are covered in the first two chapters of [Neu99]. The
purpose of this part of the thesis is twofold: to introduce definitions and fix
notation; and to state the most important results and computational tools
we will use throughout the thesis. We will start by discussing the basic
theory of local fields including local class field theory. We move on to a
brief discussion of elliptic curves, including elliptic curves over the ring of
integers of a local field. Then we define the Brauer group of a field. In
Section 5, we will use cohomology to reformulate the main research question
and more closely inspect Brauer groups of local fields. Finally, we take a
look at Hilbert symbols, which give the main computational tools for dealing
with cyclic algebras.

2 Local fields

In this section we will introduce the concept of local fields. We will mainly
follow [Neu99, Ch. II] with some additions from [Lan94, Ch.I-II] and [Mil13,
Ch. 1]. We will give the definitions and results that are important for our
further study. Most proofs have been omitted but references have been
included to look them up. Where possible, we will provide the reader with
some general observations and examples that turn out to be useful later in
this thesis.

We start with the basic definitions regarding local fields and give a gen-
eral version of Hensel’s Lemma. Then we will describe the decomposition
of the multiplicative group of a local field. We consider extensions of lo-
cal fields, where we place special emphasis on ramification and cyclotomic
extensions. Finally, we state the main theorems of local class field theory.
Applying this theory together with the decomposition of local fields gives us
some powerful tools that we will use later on in this thesis.

For now, we will begin by recalling the definition of a valuation.

Definition 2.1. Let K be a field. A valuation on K is a function

v : K → R ∪ {∞},

with the following properties:

• v(a) =∞ if and only if a = 0.
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• v(ab) = v(a) + v(b).

• v(a+ b) ≥ min{v(a), v(b)}.

Here we adhere to the conventions a +∞ = ∞ and ∞ > a for all a ∈ K.
A valuation v is called discrete if v(K∗) = sZ and normalized if s = 1. An
element π ∈ K with v(π) = s is called a prime element or uniformizer.

Fixing an element q ∈ R>1, we also get an associated norm |a| := q−v(a)

with the convention q−∞ = 0. The norm is called non-archimedean if it
satisfies the strong triangle inequality |a+ b| ≤ max{|a|, |b|} for all a, b ∈ K.
Otherwise, we call it archimedean.

Definition 2.2. Let K be a field and v a valuation on K. We define the
ring of integers of K as

OK := {a ∈ K | v(a) ≥ 0}.

The units of OK are precisely those a ∈ K for which v(a) = 0. The unique
maximal ideal is given by

pK = {a ∈ K | v(a) > 0}.

We define the residue field of K as

κK = OK/pK .

We sometimes consider the higher order unit groups

U
(n)
K = 1 + pnK for n ≥ 1.

When there is no ambiguity about the field K, we will sometimes omit
the subscript.

Remark 2.3. Because the set of uniformizers of K is a strict subset of the
prime ideal pK , we will refrain from using the word prime element.

Example 2.4. Consider Q and some prime p. We have the valuation vp
defined as vp(

a
bp
n) = n for any a, b, n ∈ Z with a and b both non-zero and

coprime to p. The completion of Q with respect to this valuation is Qp. The
ring of integers is Zp and contains the uniformizer p. The residue field is Fp.

Given a field K, complete with respect to a valuation vK , and an exten-
sion L/K, there is a non-ambiguous way extend this to a valuation vL/K on
L. If the extension is finite and NL/K is the norm, we can set

vL/K(x) = vK(NL/K(x))/[L : K] for x ∈ L.

See [Neu99, Thm. II.4.8] for a proof and precise statement, also in the case
of infinite field extensions.

Since the norm can be extended this way, we get the inclusions

vK(K∗) ⊆ vL/K(L∗) and κK ⊆ κL.
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Definition 2.5. The index e(L/K) = (vL/K(L∗) : vK(K∗)) is called the
ramification index. The degree f(L/K) = [κL : κK ] of the associated exten-
sion κL/κK of residue fields is sometimes called the inertia degree.

Remark 2.6. In the remainder of this thesis, we use vK to denote the
normalized valuation, i.e. for any extension L/K

vL(x) = e(L/K)vL/K(x).

Proposition 2.7 ([Neu99, II.6.8]). If L/K is separable and vK is discrete,
the product of the ramification index and the inertia degree is

e(L/K)f(L/K) = [L : K].

We now move on to the definition of local fields. We use the following
two equivalent definitions interchangeably.

Proposition 2.8 ([Neu99, II.5.2]). Let K be a field. The following are
equivalent:

• K is complete with respect to a discrete valuation and has a finite
residue field.

• There is a prime p such that K is isomorphic to a finite field extension
of either Fp((t)) or Qp.

A field satisfying these criteria is called a local field.

Remark 2.9. Some authors do not require the norm of a local field to be
non-archimedean. In this case, R and C are also considered to be local fields.
In the remainder of this thesis, all local fields are non-archimedean and have
characteristic 0. Furthermore, we shall sometimes refer to finite extensions
of Qp as local fields over Qp.

One of the most useful tools for studying local fields is Hensel’s Lemma.
We will state a slightly more general version than used in some textbooks.

Lemma 2.10 ([Lan94, Proposition II.2.2]). Let K be any field complete
with respect to a valuation v. Let f ∈ OK [X] be a polynomial and f ′ its
formal derivative. If there exists a0 ∈ OK such that

v(f(a0)) > 2v(f ′(a0)),

then f(X) has a root a ∈ OK satisfying a ≡ a0 mod pK .

Since any local field is complete with respect to its valuation, we can
quickly deduce the more standard version of Hensel’s lemma.

8



Lemma 2.11 (Hensel’s Lemma). Let K be a local field and let f ∈ OK [X]
be a polynomial. If a0 ∈ OK satisfies

f(a0) ≡ 0 mod pK and f ′(a0) 6≡ 0 mod pK ,

then there exists some a ∈ OK with

f(a) = 0 and a ≡ a0 mod pK .

The reason we use Lemma 2.10 is illustrated by the following corollary.

Corollary 2.12. Let K/Qp be any local field and u ∈ O∗K a unit. The class
of u in K∗/(K∗)p is the same as that of u+ p3.

Proof. We claim that u+ p3 = uap for some a ∈ K∗. This is the case when
a is a solution to

ap − 1− p3u−1 = 0.

In other words, we need that f(X) = Xp − 1 − p3u−1 has a root in K.
Plugging in a0 = 1 ∈ OK , we get

v(f(1)) = v(−p3u−1) = 3v(p) > 2v(p) = 2v(f ′(1)).

By Lemma 2.10 f indeed has a root.

2.1 Structure of the multiplicative group

A direct consequence of Hensel’s Lemma is the decomposition of the multi-
plicative group of any local field. The details and proofs of these results can
be found in paragraph II.5 of [Neu99]. We will state the main results of this
paragraph as they are important for our study.

Proposition 2.13 ([Neu99, II.5.3]). Let K be a local field of residue field
order q = #κ and let π be a prime element. We have

K∗ = πZ ×O∗K = πZ × µq−1 × U (1),

where µq−1 denotes the group of roots of unity in K∗ whose order divides
q − 1.

For any unit u ∈ O∗K , we write ω(u) ∈ µq−1 for the root of unity with
u ≡ ω(u) mod p.

A further decomposition can be given by explicitly describing the unit
group U (1). For this we will need the log and exp maps.
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Lemma 2.14 ([Neu99, II.5.5]). Let K/Qp be a local field and let e ∈ Z>0

be such that pOK = peK .1 Let n > e/(p− 1) and consider the maps

pnK
exp

�
log

U (n)

given by the power series

exp(x) =
∞∑
j=0

xj

j!
and log(1 + y) = −

∞∑
j=1

(−y)j

j
.

These define inverse homeomorphisms

Using this lemma and the fact that U (1)/U (n) is finite, we can write U (1)

as the product of a torsion group and a finitely generated Zp-module. This
gives us the following decomposition statement.

Proposition 2.15 ([Neu99, II.5.7]). Let K/Qp be an extension of degree d.
Let q be the order of the residue field and let π be a prime element. We have

K∗ ∼= Z⊕ Z/(q − 1)Z⊕ Z/paZ⊕ Zdp,

where µpa are the roots of unity in K that have order divisible by p.

Proof sketch. The first and second summand are obtained from Proposi-
tion 2.13 and the isomorphisms

Z ∼−→ πZ, k 7→ πk,

Z/(q − 1)Z ∼−→ µq−1, b̄ 7→ ζbq−1,

for any choice of root of unity ζq−1 of order q−1 and any choice of lift b ∈ Z
of b̄. The other two summands can be obtained as follows: use Lemma 2.14
to get

U (n) ∼= pnK = πnOK ∼= OK .

We can write OK ∼= Zdp by choosing an integral basis. Since U (n) is a finitely

generated Zp-module and U (1)/U (n) is finite, U (1) is also a Zp-module of
rank d. The torsion subgroup is µpa , the group of roots of unity of p-power
order in K. This allows us to split U (1) as follows:

U (1) ∼= µpa × Zdp ∼= Z/paZ⊕ Zdp.

Using these isomorphisms and Proposition 2.13 gives us the decomposition
we want.

1Every local field is a dicrete valuation ring and in such rings every non-zero ideal is a
power of the maximal ideal.
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Example 2.16. Consider Q2(i)/Q2. Since X2 + 1 does not have a root
modulo 4, it does not have a root in Q2 and so Q2(i)/Q2 is an extension
of degree 2. Since the polynomial does have a root modulo 2, the residue
field κK is isomorphic to F2.2 The powers of i are the only roots of unity in
Q2(i). The multiplicative group K∗ is isomorphic to

Z⊕ Z/4Z⊕ Z2
2.

2.2 Local field extensions

For the study of local fields in general, and this thesis in particular, it is
important to understand the extensions of local fields. For brevity of results,
for any local field K we fix some algebraic closure K̄ and understand that
all extensions L/K are subextensions of K̄/K. At the start of Section 2
we saw that any extension L/K also has an associated extension κL/κK of
residue fields. One distinguishing property of local field extensions is the
relation between their degree and the degree of their residue fields.

Definition 2.17. Let L/K be an extension of local fields. If [L : K] is equal
to f(L/K) = [κL : κK ], we call the extension unramified. If f(L/K) = 1,
we call the extension totally ramified.

One can use Hensel’s Lemma again to prove the following proposition.

Proposition 2.18 ([Neu99, II.7.2]). Let L/K be an unramified extension
of local fields. Every subextension of L/K is unramified and for every finite
extension K ′/K, the extension LK ′/K ′ is unramified.

Note that given a degree n the (finite) residue fields always have a unique
extension of degree n. Lifting the corresponding defining polynomial to the
level of local fields, we get the following.

Proposition 2.19. Let K be a local field and n a positive integer. There
exists a unique unramified extension Kn/K of degree n. Moreover, this is a
cyclic Galois extension.

Proof. A proof following the argument above can be found in [Lan94, §II.4].
Another approach is to use local class field theory (Section 2.3) and note

that there is a unique subgroup of K∗ that corresponds to the unramified
degree n extension (see Example 2.32).

Example 2.20. Note that the polynomial X2 + 1 is irreducible modulo
3, and so Q3(i) is the unique unramified extension of degree 2 over Q3. To
contrast, we have already seen in Example 2.16 that Q2(i) is totally ramified.
The unramified degree 2 extension of Q2 is given by Q2(ζ3) = Q2(

√
−3),

where ζ3 is a primitive cube root of unity.
2We can pick the uniformizer 1− i.
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Remark 2.21. The composition of two unramified extensions is unramified.
The composite of all unramified subextensions of an extension L/K is TL/K ,
the maximal unramified subextension. The maximal unramified extension
of K̄/K is denoted by Kun =

⋃
nKn.

Proposition 2.22 ([Neu99, 7.5]). Let L/K be an extension of local fields
and T the maximal unramified subextension. Then κT equals the separable
closure of κK in κL.

The example above is actually interesting for our further studies. Let us
take a closer look at these cyclotomic extensions. We treat the two extreme
cases of unramified extensions and totally ramified extensions separately.

Proposition 2.23 ([Neu99, II.7.12]). Let K be a local field with residue field
Fpr and let n be an integer, prime to p. Consider the extension L = K(ζn)
for some primitive n-th root of unity. The extension is unramified of degree
d, where d is the smallest positive integer such that pdr ≡ 1 mod n. The
Galois group is canonically isomorphic to the Galois group of κL/κK and is
generated by ζn 7→ ζp

r

n . The ring of integers is given by OL = OK [ζn].

Corollary 2.24. The unique unramified extension of degree d over K is
given by K(ζqd−1), where q = #κK . Any uniformizer of K is also a uni-
formizer of K(ζqd−1).

Proof. The first follows immediately by picking n = qd−1 in the proposition.
To prove the second statement, we take any uniformizer π of K, i.e. an

element π ∈ K such that κK = OK/πOK . Let L = K(ζqd−1) and note that
by Proposition 2.23 we have that OL/πOL equals

OK [ζqd−1]/πOK [ζqd−1] ∼= (OK/πOK)[ζqd−1] ∼= κK [ζqd−1] ∼= Fqd−1
∼= κL.

This shows that π is a uniformizer for L as well.

Proposition 2.25 ([Neu99, II.7.13]). The extension Qp(ζpr)/Qp is totally
ramified of degree ϕ(pr) = (p − 1)pr−1, the Galois group is isomorphic to
(Z/rZ)∗. The element π = 1− ζpr is a uniformizer and the ring of integers
is given by Zp[π] = Zp[ζpr ].

For both Proposition 2.23 and 2.25, Neukirch uses Nakayama’s Lemma
to describe the ring of integers. The same argument applies in a more general
setting in Lang’s book.

Proposition 2.26 ([Lan94, I.8.23]). Let A be a discrete valuation domain,
K its quotient field, L a finite separable extension over K and B the integral
closure of A in L. Let p be the maximal ideal of A and assume q is the only
ideal of B above it. Let β ∈ B be a generator of B/q over A/p and let
π ∈ q \ q2. Then B = A[β, π].
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Corollary 2.27. Let L/K be a Galois extension of local fields. Let πL be
any uniformizer of L and set q = #κK and f = f(L/K) = [κL : κK ]. Then
OL = OK [ζqf−1, π], for a root of unity ζqf−1 of order qf − 1.

Proof. We shall apply Proposition 2.26 with

(A,B, p, q, β, π) := (OK ,OL, pK , pL, ζqf−1, πL).

To do this, we first need to show that these choices satisfy the criteria of
the proposition. Because πL is a uniformizer, we indeed have πL ∈ pL \ p2

L.
Also, we know that κL ∼= Fqf ∼= Fq[ζqf−1] is generated by ζqf−1. We only
have to prove that ζqf−1 ∈ OL.

Note that L contains the maximal unramified subextension TL/K . By
Proposition 2.22 TL/K is the unique unramified extension of K of degree f .
By Proposition 2.23, this extension is given by K(ζqf−1) and so ζqf−1 ∈ L.
Clearly, the valuation of ζqf−1 is zero and so it is an element of OL.

2.3 Local class field theory

One of the more complicated theories of this thesis is class field theory. As
usual, we are primarily interested in the application of this theory. As such,
we will only state the main results and refer to textbooks such as [Neu99]
and [Mil13] for a more in-depth approach. See [Ser79] for a cohomological
treatment of local class field theory. Also, we will only be considering the
local version of class field theory and avoid ideles, which are needed to study
the global version.

For the remainder of this section, we will fix a local field K. Its algebraic
closure is denoted by K̄ and the maximal abelian extension in K̄ by Kab.

Note that by the uniqueness of unramified extensions Proposition 2.23
gives all unramified extensions L/K. The Galois group of L/K is isomor-
phic to that of κL/κK . The latter is generated by the Frobenius morphism
α 7→ αq. The corresponding generator for Gal(L/K) is called the Frobenius
element FrobL/K .

One of the main results of local class field theory, the reciprocity law,
can be formulated as follows.

Theorem 2.28 ([Mil13, Thm. 1.1]). There exists a unique morphism

φK : K∗ → Gal(Kab/K),

satisfying the following properties:

• For any unramified extension L/K and uniformizer π ∈ K, we have
φK(π)|L = FrobL/K .

• For any abelian extension L/K, φK induces an isomorphism

φL/K : K∗/NL/K(L∗)→ Gal(L/K), ā 7→ φK(a)|L.
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Among other things, the theorem allows us to describe Gal(L/K) using
the norm subgroup NL/K(L∗) of K∗.

The other main ingredient for class field theory is the Existence Theorem.
It tells us that that the norm subgroups are actually all subgroups of K∗ of
finite index.

Theorem 2.29 ([Mil13, Thm. 1.2]). Let N ⊂ K∗ be a subgroup. Then
there exists a finite extension L/K with N = NL/K(L∗) if and only if N has
finite index.

Remark 2.30. By Theorem 2.28 the index of N equals the degree of L/K.

Corollary 2.31. The map L 7→ NL/K(L∗) is an inclusion reversing bijec-
tion between the finite abelian extensions of K and the subgroups of finite
index in K∗.

One interesting case to look at is that of unramified extensions. By their
uniqueness property they are often the easiest to work with.

Example 2.32. Let L/K be an unramified extension of degree d. Let π
be a uniformizer of K. By Corollary 2.24, π is also a uniformizer in L. By
Proposition 2.13 we have

NL/K(L∗) = NL/K(π)Z ×NL/K(O∗L)

= πdZ ×NL/K(O∗L).

Because NL/K(L∗) has index d by Theorem 2.28, it must equal πdZ × O∗K .
This also shows that the norm is surjective when seen as a map on the units
O∗L → O∗K . By Corollary 2.31 these arguments also show the uniqueness of
unramified extensions, which we stated in Proposition 2.19.

Corollary 2.33. Any subgroup N of finite index in K∗ that contains a
uniformizer π of K, is the norm group of a totally ramified extension L/K.

Proof. By Theorem 2.29, N is the norm group of some abelian extension
L/K. If L/K is not totally ramified, it has an unramified subextension
of degree d ≥ 2. This unramified subextension corresponds to a subgroup
M ⊂ K∗ containing N , because the assignment L 7→ NL/K(L∗) is inclusion
reversing. But by Example 2.32 π /∈ M . This is a contradiction, so L/K
must be totally ramified.

3 Elliptic curves

While elliptic curves play an important role for our research question, this
thesis mainly focuses on the discriminant of elliptic curves. The theory of
elliptic curves is vast and these curves play an important role in virtually
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any area of algebra. To see more than the bare minimum of the theory of
elliptic curves that we will present in this thesis, the reader is advised to
take a look at [Sil09] and [KM85].

We will define elliptic curves over fields and introduce Weierstrass equa-
tions of elliptic curves. Using Weierstrass equations, we also define the
discriminant of an elliptic curve, the primary invariant we are concerned
with. Finally we will give a definition of an elliptic curve over a the ring of
integers of a local field.

Definition 3.1. Let K be a field. An elliptic curve over K is a pair (E,O),
where E is a smooth curve of genus 1 over K and O ∈ E(K) is a desig-
nated element. An isomorphism of elliptic curves (E,O) and (E′, O′) is an
isomorphism of curves E

∼−→ E′ that sends O to O′.

Remark 3.2. As we are not focused on O in this thesis, we will often simply
write E for the elliptic curve (E,O) and assume O is understood.

Using the Riemann-Roch theorem ([Sil09, II.5.4]), one can show that
every elliptic curve over K is isomorphic to a curve given by a Weierstrass
equation.

Definition 3.3. A Weierstrass equation is an equation of the form

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3. (1)

If ai ∈ K, such an equation defines a curve over K.

Remark 3.4. The only point (X,Y, Z) on the curve above with Z = 0 is
[0 : 1 : 0] ∈ P2. Therefore, we often homogenize the curve to

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

remembering that there is one additional point outside this affine represen-
tation.

To a Weierstrass curve, we can associate a discriminant ∆ ∈ K which
indicates whether the curve is smooth or not.

Definition 3.5 ([Sil09, §III.1]). Let C be the curve defined by (1) over some
field K. The discriminant of C is

∆(C) = −b22b8 − 8b34 − 27b26 + 9b2b4b6,

where the bi are defined by3

b2 = a2
1 + 4a2, b4 = 2a4 + a1a3, b6 = a2

3 + 4a6,

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4.
3In some additions of Silverman’s book, there is a typo in the definition of b2.
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Example 3.6. One often considers short Weierstrass equations:

y2 = x3 + ax+ b.

The discriminant of such a curve is ∆ = −16(4A3 + 27B2).

Actually, when the characteristic of K does not equal 2 or 3, any Weier-
strass curve is isomorphic to a Weierstrass curve of this form with a, b ∈ K
and so this is one of the most important examples of a Weierstrass equation.

Example 3.7. Another important type of Weierstrass equations for us, is

y2 + xy = x3 − a.

The discriminant of such a curve is ∆ = a+ 16 · 27a2.

As we have said, the discriminant indicates the smoothness of a Weier-
strass curve. Furthermore, every elliptic curve is given by a (smooth) Weier-
strass curve.

Lemma 3.8 ([Sil09, III.1.4]). The curve C over K of a Weierstrass equation
is smooth if and only if ∆(C) ∈ K∗.

Proposition 3.9 ([Sil09, III.3.1]). Let (E,O) be an elliptic curve defined
over K. Then there exists a curve C given by an equation of the form (1) so
that E is isomorphic to C and O is mapped to [0 : 1 : 0] by this isomorphism.

If C ′ is another such curve, then C and C ′ are related by a change of
variables

(X,Y ) = (u2X ′ + r, u3Y ′ + su2X ′ + t),

for some u ∈ K∗ and r, s, t ∈ K.

Corollary 3.10. If E and E′ are elliptic curves over a field K given by
Weierstrass equations with discriminants ∆ and ∆′ respectively and E ∼= E′,
then there exists some u ∈ K∗ such that ∆ = u12∆′. In other words, the
discriminant of an elliptic curve defines an operation

∆: EllK → K∗/(K∗)12,

where EllK denotes the isomorphism classes of elliptic curves over K.

3.1 Reduction of elliptic curves

If R is a principal ideal domain and K its field of fractions, any elliptic curve
over K can be written in Weierstrass form (1) with ai ∈ R. For any maximal
ideal p in R, we can consider the associated Weierstrass equation over R/p,
where we reduce all the ai modulo p. If the resulting equation still gives an
elliptic curve, we say that it has good reduction modulo p.

Having good reduction depends on the choice of Weierstrass equation.
Using a change of coordinates as in Proposition 3.9 we can map a curve of
good reduction to a curve with bad reduction.
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Example 3.11. Let K = Q3 and consider the elliptic curve given by

E : y2 = x3 + x.

This curve has good reduction as can be seen by looking at the discriminant
∆ = −64 ∈ Z3. It is also isomorphic to the curve

E′ : v2 = u3 + 81u,

via the change of coordinates (u, v) = (9x, 27y). This curve has discriminant
∆′ = −64 · 312, which means it does not have good reduction.

A way to remove this ambiguity, is to agree on the type of curves we use
the reduction step on. In the case where R is the ring of integers of a local
field K, we can consider so-called minimal Weierstrass equations.

Definition 3.12. Let E be an elliptic curve over a local field K. A Weier-
strass equation as in (1) for E is called minimal when the coefficients ai
are in OK and the valuation of the discriminant vK(∆) is minimized with
respect to this condition.

Remark 3.13. Let E be an elliptic curve. By Corollary 3.10, any Weier-
strass equation for E with ai ∈ OK and vK(∆) < 12 is minimal.

Also, if there exists a minimal Weierstrass equation for E with good
reduction, then any other Weierstrass equation either has good reduction or
is not minimal, depending on the valuation of u ∈ K∗ in Corollary 3.10.

Definition 3.14. Let K be a local field and OK its ring of integers. An
elliptic curve E over K is said to be defined over OK if there is a minimal
Weierstrass equation that has good reduction over pK .

Remark 3.15. In general, the same definitions make sense when we replace
OK by an arbitrary discrete valuation domain R and K its field of fractions.

Remark 3.16. We have already mentioned that there is a general notion of
an elliptic curve over a scheme. For this, one considers (minimal Weierstrass)
models of elliptic curves. See [Liu02, §10] for more details.

4 Brauer groups

Now that we have dealt with the most important properties of local fields
and elliptic curves, it is time to introduce the other major concept of this
thesis, the Brauer group. As we have mentioned in the introduction, the
Brauer group of a field K was originally introduced as a way to classify
central division algebras over K, i.e. division algebras with centre K. By
Wedderburn’s Theorem it can also be used as a way to classify central simple
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algebras. This is the approach that we will take. We will recall the defini-
tion of central simple algebras and state Wedderburn’s Theorem. Then we
consider the most important class of central simple algebras, the cyclic al-
gebras. After this, we will define the Brauer group. In the next chapter, we
will discuss how this group can be described by cohomology, which matches
with most modern day definitions of the Brauer group. Proofs and more
details can be found in [GS06, Ch.2].

Definition 4.1. Let K be a field. A central simple algebra over K is an
algebra A over K satisfying the following two properties:

• The centre Z(A) is equal to K.

• The only non-zero two-sided ideal of A is A.

Example 4.2. Any division algebra D is a central simple algebra over its
centre Z(D). One can also check that the matrix ring Mn(K) is a central
simple algebra over K for n ≥ 1 (see [GS06, p.18]).

Wedderburn’s Theorem shows that central simple algebras and central
division algebras are interchangeable.

Theorem 4.3 ([GS06, 2.1.3]). Let A be a finite dimensional central simple
algebra over a field K. Then there exists an integer n ≥ 1 and a division
algebra D ⊃ K, unique up to isomorphism, so that A ∼= Mn(D).

More importantly for us, we can use base changes to show that any
central simple algebra can be moved to a matrix ring.

Theorem 4.4 ([GS06, 2.2.1]). Let A be a finite dimensional K-algebra.
Then A is central and simple if and only if there exists an integer n ≥ 1 and
a finite extension L/K such that A⊗K L ∼= Mn(L).

Definition 4.5. The field L in the theorem above is called a splitting field.
We also say that A is split by L.

Remark 4.6. The splitting field of a central simple algebra is not unique.
In fact, a theorem by Noether and Köthe shows that among all the splitting
fields, we can always pick a Galois extension of K ([GS06, 2.2.6]).

4.1 Cyclic algebras

We have already given some of the more trivial examples of central sim-
ple algebras. We will now devote some time to the introduction of cyclic
algebras. These are one of the most prominent examples of central simple
algebras.
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Definition 4.7. Let L/K be a cyclic Galois extension of degree m, pick
b ∈ K∗ and χ : Gal(L/K) → Z/mZ a choice of isomorphism. If χ(σ) = 1̄,
the algebra

(χ, b) := L〈y〉/(ym = b, and xy = yσ(x) ∀x ∈ L),

is called a cyclic algebra.

Remark 4.8. Note that (χ, b) ∼= (χ, bcm) by sending y to y′/c, where y and
y′ are the generators of (χ, b) and (χ, bcm) respectively.

The pair (L, χ) in Definition 4.7 above can be seen as a surjective homo-
morphism

χ : Gal(Ks/K)→ Z/mZ,
where Ks is the separable closure of K inside a fixed algebraic closure K̄.
The field L can be recovered as

Lχ := {a ∈ Ks | σ(a) = a ∀σ ∈ ker(χ)}.

Clearly Gal(Ks/Lχ) = ker(χ) and so Gal(Lχ/K) = Im(χ) = Z/mZ. We
conclude that

χ 7→ (Lχ, χ|Gal(Lχ/K)),

defines a bijection between hom(Gal(Ks/K),Z/mZ) and the set of pairs

(L, χ) of Galois extensions L/K and injective homomorphisms Gal(L/K)
χ−→

Z/mZ. Elements of hom(Gal(Ks/K),Z/mZ) are called (cyclic) characters.
In the case that Lχ/K is an unramified extension of local fields, we call χ
an unramified character.

If K contains a primitive m-th root of unity ζm and µm = 〈ζm〉 is the
group of m-th roots of unity in K, we have the following map

K∗ → hom(Gal(Ks/K), µm), a 7→ (σ 7→ σ(α)/α),

where α is any m-th root of a.

Proposition 4.9 ([GS06, 4.3.6]). The map above is a surjective homomor-
phism with kernel (K∗)m and so hom(Gal(Ks/K), µm) ∼= K∗/(K∗)m.

This result is also known as Kummer Theory. It shows that for any field
K containing a primitive m-th root of unity, its cyclic characters of degree m
are parametrized by K∗/(K∗)m. Any cyclic Galois extension L/K of degree
m can be written as K( m

√
a) for some a ∈ K∗ and K( m

√
a) = K( m

√
b) if and

only if a = bxm for some x ∈ K∗.

Example 4.10. If m is an odd prime and K(β)/K is a cyclic Galois exten-
sion of degree m, we can always recover a such that K(β) = K( m

√
a) using

the following steps. First, we set

α =

m−1∑
j=0

ζjmσ
j(β),
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where σ is a generator of Gal(K(β)/K). Note that σ(α) = ζ−1
m α and so

K(α) = K(β). Moreover, we have

NK(β)/K(α) =
m−1∏
j=0

σj(α) =
m−1∏
j=0

ζ−jm α = αm.

And so we set a := NK(β)/K(α) ∈ K∗.

If we assume that ζm ∈ K, we use Kummer theory to write any degree m
cyclic Galois extension L/K as L = K( m

√
a) for a ∈ K∗. If χ : Gal(L/K)→

Z/mZ sends the map m
√
a 7→ ζm m

√
a to 1̄, the cyclic algebra (χ, b) also has

the following presentation:

(a, b)ζm := K〈x, y〉/(xm = a, ym = b, xy = ζmyx).

Remark 4.11. By the same argument as in Remark 4.8, we have that
(acm, b)ζm

∼= (a, b)ζm . By reversing x and y, we also get (a, b)ζm
∼= (b, a)ζ−1

m
.

Example 4.12. Let K = R, m = 2 and a = b = −1. The cyclic algebra
(−1,−1)−1 is the quaternion algebra

R〈i, j, k〉/(i2 + 1, j2 + 1, k2 + 1, ijk + 1)

4.2 The Brauer group

We have defined central simple algebras and splitting fields and we looked
at the important example of cyclic algebras. Now it is time to introduce
the Brauer group. As mentioned before, the Brauer group will be a group
that classifies central simple algebras over K. We also discussed the most
trivial central simple algebras, the matrix algebras Mn(K). This triviality
is expressed by the following definition.

Definition 4.13. Let K be a field and let A and B be central simple K-
algebras. We call A and B Brauer equivalent if there exist integers n,m ≥ 1
such that A⊗K Mn(K) ∼= B ⊗K Mm(K).

In other words, two central simple algebras are equivalent if they differ
only by a (trivial) matrix algebra. To check that the definition above defines
an equivalence relation, one only has to verify that

Mn(K)⊗K Mm(K) ∼= Mnm(K).

Lemma 4.14 ([Mil13, IV.2.14],[GS06, 2.4.8]). The equivalence classes form
a set and the tensor product defines a group action on this set:

[A][B] := [A⊗K B]
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Remark 4.15. The neutral element of this group is of course [K] = [Mn(K)].
The inverse of [A] is [Aop], where Aop is the algebra with the same underly-
ing set as A, but reverse multiplication, i.e. the multiplication ∗ on Aop is
given by a ∗ b := ba.

Definition 4.16. The resulting group is called the Brauer group of K and
is denoted by Br(K).

Remark 4.17. Wedderburn’s Theorem (Theorem 4.3) shows that each class
in Br(K) is represented by a unique central division algebra (up to isomor-
phism). So Br(K) is also a way to classify central division algebras.

We have seen in Theorem 4.4 that every central simple K-algebra is
split by some finite extension L/K. The elements of Br(K) that can be
represented by an algebra split by L form a subgroup Br(L/K) of Br(K).
These subgroups are called the relative Brauer groups. By Remark 4.6 we
have

Br(K) =
⋃
L/K

Br(L/K),

where we take the union over all the Galois extensions L/K.
We are now in a position to understand the main construction we are

concerned with. Consider any local field K and an elliptic curve E over
K. To such a curve, we can associate a discriminant ∆(E) ∈ K∗ that is
uniquely defined modulo (K∗)12. We consider the image of the cyclic algebra
(χ,∆(E)) in Br(K) for some χ ∈ hom(Gal(Ks/K),Z/12Z).4 A natural
question to ask is which elements of Br(K) we can reach by only considering
cyclic algebras of this form. A follow-up question is what happens when we
restrict to elliptic curves over OK rather than K. To answer these questions,
we need some more tools.

5 Using cohomology

One of the main tools for studying Brauer groups is cohomology. The theory
of cohomology is used extensively in modern day mathematics and trans-
lating any mathematical problem to one in cohomology, allows us to make
use of many general statements that are sometimes hard to prove otherwise.
We will give a short introduction on the main cohomological tools necessary
for this thesis. Then, we shall identify some important groups we already
looked at as cohomology groups. We close of with an illustration of how this
theory can be used to explicitly describe the Brauer group of any local field.

Let us start with the definition of cohomology we will use.

4To assure that this cyclic algebra is well-defined, we can only consider cyclic extensions
of degree dividing 12 because ∆ is only defined up to 12-th powers.
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Definition 5.1. Let G be a group and M a left Z[G]-module. Consider a
projective resolution of Z[G]-modules

· · · p2−→ P1
p1−→ P0 → Z→ 0.

This gives us the following sequence of Z[G]-modules:

hom(P0,M)
d0−→ hom(P1,M)

d1−→ hom(P2,M)
d2−→ · · · ,

where di(f) = f ◦ pi+1. We now define H i(G,M) = ker(di)/ Im(di−1).

Remark 5.2. It is a routine check to verify that this definition does not
depend on the choice of projective resolution P• and satisfies the usual prop-
erties of cohomology, such as the long exact sequence ([GS06, Prop. 3.1.9]):
given an exact sequence of Z[G]-modules

0→ A→ B → C → 0,

there exists a long exact sequence of abelian groups

0→H0(G,A)→ H0(G,B)→ H0(G,C)
∂0−→ H1(G,A)→ · · ·

· · · → H i(G,A)→ H i(G,B)→ H i(G,C)
∂i−→ H i+1(G,A)→ · · ·

The maps ∂i are called the connecting homomorphisms.

Besides these connecting homomorphisms we usually use a few other
maps between cohomology groups such as the restriction and corestriction
maps.

Proposition 5.3 ([GS06, 3.3.7]). Let G be a group, H a subgroup and A
any Z[G]-module. For any i ≥ 0, there exist two natural morphisms

res : H i(G,M)→ H i(H,M),

cor : H i(H,M)→ H i(G,M).

Moreover, if the index [G : H] is finite, their composite

cor ◦ res : H i(G,M)→ H i(G,M),

is given by multiplication by [G : H].

Corollary 5.4. If G is a finite group of order n, A is any Z[G]-module and
i > 0 is an integer, the elements of H i(G,A) have order dividing n.

Proof. Consider the subgroup H = {1}. By the proposition any element
x ∈ H i(G,A) is mapped by cor ◦ res to nx. However, the image of res is
H i({1},M) = {0} and so nx = 0.
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Another map that is important to us, is the cup-product map. Similar
to the connecting homomorphism, we can use this map to describe elements
of higher cohomology groups in terms of lower cohomology groups.

Proposition 5.5 ([GS06, 3.4.5]). Let G be a group and let A and B be Z[G]-
modules. For any integers i, j ≥ 0, there exists a group homomorphism,
called the cup-product map

H i(G,A)×H i(G,B)→ H i+j(G,A⊗Z B), (a, b) 7→ a ∪ b.

Remark 5.6. The cup-product satisfies many properties that make it nice
to work with (see [GS06, §3.4]). Instead of stating them one by one, we will
state the one result we will make use of in the next section (see Proposi-
tion 5.14).

Let us finish with one example that shows how we can use an explicit
projective resolution to describe cohomology groups.

Example 5.7 (inhomogeneous cochains). Let G be a group and for each
i ≥ 0 consider the Z[G]-module Z[Gi+1]. For each 0 ≤ j ≤ i we define the
map

si,j : Z[Gi+1] 7→ Z[Gi], (σ0, . . . , σi) 7→ (σ0, . . . , σj−1, σj+1, . . . , σi).

The maps pi =
∑i

j=0 si,j give the projective resolution

· · · p3−→ Z[G3]
p2−→ Z[G2]

p1−→ Z[G]
p0−→ Z→ 0.

We can consider the non-standard basis of Z[Gi+1] given by elements of the
form

[σ1, . . . σi] := (1, σ1, σ1σ2, . . . ,
i∏

j=1

σj).

The maps pi act on these elements as

pi([σ1, . . . σi]) =σ1[σ2, . . . , σi] +

i∑
j=1

(−1)j [σ1, . . . , σjσj+1, . . . , σi]

+ (−1)i+1[σ1, . . . , σi−1].

Let A be a Z[G]-module. Elements of hom(Z[Gi+1], A) are of the form
[σ1, . . . , σi] 7→ aσ1,...,σi and the maps di between these homomorphism groups
are given by

aσ1,...,σi 7→ σ1aσ2,...,σi +

i∑
j=1

(−1)jaσ1,...,σjσj+1,...,σ1 + (−1)i+1aσ1,...,σi−1 .

In particular, an element of ker(d1) is a map σ 7→ aσ satisfying the equality
aσ1σ2 = σ1aσ2 + aσ1 . It is in Im(d0) precisely when aσ = σ(x) − x for
some x ∈ A. In particular, when G acts trivially on A, being in ker(d1) is
equivalent to σ 7→ aσ being a group homomorphism. Furthermore, the image
of d0 is clearly trivial. We conclude that in this case H1(G,A) = hom(G,A).
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5.1 Cohomological identifications

We have now discussed some important properties of cohomology groups.
In order to use this theory, we need to show that the groups we have so far
looked at, appear as cohomology groups.

First, we have to note that in general one does not use Definition 5.1
to describe cohomology of profinite groups such as the Galois group of an
infinite field extension. For this, we need continuous cohomology. Additional
details can be found in [GS06, §4.2].

Definition 5.8. When G is a profinite group and A a continuous Z[G]-
module, we define the continuous cohomology groups H i

c(G,A) as the direct
limit of H i(Gα, A) with inflation maps.

Remark 5.9. For finite groups, the continuous cohomolgy groups and the
cohomology groups defined in Definition 5.1 agree, i.e. H i(G,A) = H i

c(G,A)
for all i and A. In general the definitions do not agree. For the remainder
of this thesis, we will only talk about continuous cohomology and whenever
we use the notation H i(G,A), we mean continuous cohomology.

For any field K and group A, we can view A as a Z[Gal(Ks/K)]-
module by using the trivial action on A.5 We write H i(K,A) for the
corresponding cohomology group H i(Gal(Ks/K), A) and H i(L/K,A) for
H i(Gal(L/K), A). Such cohomology groups are sometimes called Galois
cohomology groups. Example 5.7 shows that

H1(K,A) ∼= lim
L/K

hom(Gal(L/K), A).

We have already seen in Section 4.1 that this group describes the pairs (L, χ),
where L/K is a Galois extension with Galois group equal to a subgroup B
of A and χ : Gal(L/K)→ B a choice of isomorphism.

The Brauer group also appears as a cohomology group.

Theorem 5.10 ([Mil13, IV.3.13]). Let L/K be any field extension. The
relative Brauer group Br(L/K) is isomorphic to H2(L/K,L∗). For the ab-
solute Brauer group we have Br(K) ∼= H2(K,K∗s ).

Remark 5.11. Milne actually gives very explicit constructions for defining
two inverse isomorphisms. The construction in [GS06] is very different and
uses an intermediate identification Br(K) ∼= H1(G,PGL∞) and a long exact
sequence.

Corollary 5.12. By Corollary 5.4, the group Br(L/K) is killed by the degree
[L : K] for any finite Galois extension L/K. This also shows that Br(K) =⋃
L/K Br(L/K) is a torsion group.

5Here Ks denotes the separable closure of K.
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The theorem allows us to explicitly compute Brauer groups by choos-
ing a projective resolution. We illustrate this by looking at cyclic Galois
extensions.

Let G be a cyclic group of degree m generated by σ. Consider the
operations N =

∑m−1
i=0 σi and σ − 1 on any Z[G]-module. These define the

explicit projective resolution

· · · N−→ Z[G]
σ−1−−→ Z[G]

N−→ Z[G]
σ−1−−→ Z[G]

σ 7→1−−−→ Z→ 0.

This yields H2(G,M) = MG/NM . In particular, if L/K is a cyclic Galois
field extension and G = Gal(L/K), we get

Br(L/K) ∼= H2(G,L∗) = K∗/NL/K(L∗). (2)

Example 5.13. Let K = R be the field of real numbers. Its algebraic
closure is given by the extension C/R. The corresponding Galois group is
G = Gal(C/R) ∼= Z/2Z, where G acts on C∗ by complex conjugation. We
get

Br(R) ∼= H2(R,C∗) = (C∗)G/N(C∗) = R/R>0
∼= Z/2Z.

The classes are given by the trivial class and the class of the quaternions:
Br(R) = {[R], [H]}.

Note that for each χ ∈ H1(K,Z/12Z) and ∆ ∈ K∗, the cyclic algebra
(χ,∆) induces an element of Br(Lχ/K), which is in the 12-torsion subgroup
of Br(K). In other words, this gives us the map

[(−,∆)] : H1(K,Z/12Z)→ Br(K)[12], χ 7→ [(χ,∆)]. (3)

To deduce the image of this map, we will first prove that it is a group homo-
morphism. This way, we may consider the 2- and 3-primary part separately.

Let K be a field and consider the exact sequence

0→ Z m−→ Z→ Z/mZ→ 0.

This gives us the coboundary map ∂ : H1(K,Z/mZ) → H2(K,Z) by the
long exact sequence. Note that

K∗ = (K∗s )Gal(Ks/K) = H0(K,K∗s ).

Consider the following sequence of group morphisms

H1(K,Z/mZ)×H0(K,K∗s )→ H2(K,Z⊗K∗s ) = H2(K,K∗s )
∼−→ Br(K),

where the first map sends a pair (χ, b) to ∂(χ) ∪ b, for any b ∈ K∗.

Proposition 5.14 ([GS06, 4.7.3]). Consider the setup above. The image of
the pair (χ, b) in Br(K) is the class represented by the cyclic algebra [(χ, b)].
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Remark 5.15. The isomorphism (2) can be induced by the map b 7→ [(χ, b)]
(see [GS06, 4.7.4]). Hence the cyclic algebra (χ, b) is trivial if and only if b
is a norm of the extension Lχ/K. This also shows that cyclic algebras play
a very special role in studying relative Brauer groups of cyclic extensions.

We now see that the map (3) is induced by the cup-product, so it is
a group morphism. Using this fact, we can show that it is surjective onto
Br(K)[12] if and only if it is surjective onto both Br(K)[3] and Br(K)[4].
To do this, we need to know what Br(K) looks like when K is a local field.

5.2 The Brauer group of a local field

Until now, we only looked at the cohomology of Brauer groups associated
to a general field K. In this thesis, we are only considering local fields.
For these, it has been shown that the Brauer group is isomorphic to Q/Z,
regardless of the local field. We will sketch the building blocks that go into
proving this. Details can be found in [Mil13, §III.2].

Let L/K be a finite unramified extension of local fields. Consider the
short exact sequence

0→ Z→ Q→ Q/Z→ 0.

By Corollary 5.4, H i(L/K,Q) is torsion, but because it is a Q-module, it
must be 0. The long exact sequence gives us an isomorphism

H1(L/K,Q/Z)
∂−→ H2(L/K,Z).

Since we are dealing with an extension of local fields, we also have the short
exact sequence

0→ O∗L → L∗
vL−→ Z→ 0,

which is split by Proposition 2.13. We can use this to write H i(L/K,O∗L)
as a direct summand of H i(L/K,L∗). Hilbert’s theorem 90 shows that
H1(L/K,L∗) = 0 and so H1(L/K,O∗L) is trivial too. One can make use of
the fact that the norm is surjective onto the units (see Example 2.32) to
deduce that H0(L/K,O∗L) = 0 as well. Using this, the long exact sequence
associated to the short exact sequence above gives an isomorphism

H1(L/K,L∗)
∼−→ H1(L/K,Z).

Using the discussion above we get the invariant map invL/K :

Br(L/K) ∼= H2(L/K,L∗)
∼−→ H2(L/K,Z)

∂−1

−−→ H1(L/K,Q/Z) = hom(Gal(L/K),Q/Z)
f 7→f(FrobL/K)
−−−−−−−−−→ Q/Z.
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Remark 5.16 ([Mil13, p. 82]). The construction above works also for infi-
nite unramified extensions and gives a canonical isomorphism

invK : Br(Kun/K)→ Q/Z,

where Kun is the maximal unramified extension. For each finite unramified
extension L/K, this invariant map induces an isomorphism

Br(L/K)
∼−→ [L : K]−1Z/Z.

Until now, we have only looked at the relative Brauer groups of unram-
ified extensions while ignoring all the ramified extensions. It turns out that
the unramified extensions are the only ones we need in this case, since every
element of Br(K) can be split by an unramified extension (see [Mil13, p.
109] or [CF10, VI.1.1.1]).

Corollary 5.17. For every local field K, we have

Br(K) = Br(Kun/K) ∼= Q/Z.

Finally, we can return to the main question of this thesis. We now know
that Br(K)[12] ∼= Z/12Z and that for any ∆ ∈ K∗, the map

[(−,∆)] : H1(K,Z/12Z)→ Br(K)[12] ∼= Z/12Z, χ 7→ [(χ,∆)],

is a group homomorphism. Therefore, if we can find an elliptic curve E over
K (or OK) and χ1, χ2 ∈ H1(K,Z/12Z) so that (χ1,∆(E)) and (χ2,∆(E))
induce elements of Br(K) of orders 3 and 4 respectively, we can deduce that
the map is surjective. This will be our method in the chapters to come.

We still need to be able to compute the order of a given cyclic algebra.
For this, we will introduce our final tool in this thesis, the Hilbert symbol.

6 Hilbert symbols

To compute the order of a cyclic algebra, one can use the so-called Hilbert
symbol. This symbol can be defined using both Kummer theory (Proposi-
tion 4.9) and local class field theory (Theorem 2.28). We will state some
basic properties that we will use later in this thesis. A discussion on the
most important formulas to compute Hilbert symbols is also included, al-
though for our main purpose we will only need one. Finally, we will argue
why we may use Kummer theory in the first place.

Neukirch uses a more general version of Kummer theory together with
class field theory to define Hilbert symbols. We will define them using the
Artin map of Theorem 2.28. Let µm denote the group of roots of unity of
order dividing m in K.
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Definition 6.1. Let K be a local field containing a primitive m-th root of
unity. For any a, b ∈ K∗ the Hilbert symbol (a, b)m is equal to

(a, b)m :=
φK(

m√
b)/K(a)( m

√
b)

m
√
b

∈ µm,

where φK(
m√
b) is defined as in Theorem 2.28 and m

√
b is any choice of root

of Xm − b in the algebraic closure of K.

Remark 6.2. Although Neukirch defines the Hilbert symbol slightly differ-
ently, he proves that this definition is equivalent ([Neu99, V.3.1]). He uses
the notation (a,bp ) to denote a Hilbert symbol in a local field with prime ideal
p. For us, the field K and maximal ideal p are both clear from the context
and instead we place emphasis on the degree m in our notation.

Hilbert symbols have the following key properties.

Lemma 6.3 ([Neu99, V.3.2]). Let K be a local field containing a root of
unity of order m. The Hilbert symbol has the following properties for any
a, b, x, y ∈ K∗:

• bilinearity: (ax, by)m = (a, b)m(a, y)m(x, b)m(x, y)m.

• (a, b)m = 1 precisely when a is a norm of the extension K( m
√
b).

• (a, b)m = (b, a)−1
m

Remark 6.4. Neukirch also shows some additional properties of the Hilbert
symbol. These are, however, the only properties we will use for our compu-
tations.

Using these properties, we also see that the Hilbert symbol is a bilinear
map

K∗/(K∗)m ×K∗/(K∗)m → µm.

Corollary 6.5. If m = 2, the Hilbert symbol can be determined as follows:
for a, b ∈ K∗, we have (a, b)2 = 1 if and only if the equation

ax2 + by2 = z2

has no solution (x, y, z) ∈ K3 \ {(0, 0, 0)}.

Proof. By the lemma we know that (a, b)2 = 1 precisely when a is a norm
of K(

√
b). This is the case when a = Z2− bY 2 for some Y,Z ∈ K (not both

zero). Multiplying by x2 6= 0 and setting (y, z) = (Y x, Zx), gives us the
desired equation.
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In some textbooks, the words cyclic algebra and Hilbert symbol are used
interchangeably. Milne even states the following alternative definition of the
Hilbert symbol without proving it is equivalent to the other definitions he
uses:

(a, b)m := ζ
n invK([(a,b)ζm ])
m .

One argument why we do not distinguish between them is the following.

Corollary 6.6. Let K be any local field containing a primitive m-th root of
unity ζm. The order of the Hilbert symbol (a, b)m in µm is equal to the order
of [(a, b)ζm ] in Br(K).

Proof. Using the properties of the Hilbert symbol, Remark 5.15 and the fact
that [(−, b)] : K∗/(K∗)m → Br(K) is a group homomorphism by Proposi-
tion 5.14 (and Kummer theory), we get

(a, b)nm = 1 ⇐⇒ (b, an)m = 1

⇐⇒ b ∈ NK( m
√
an)/K(K( m

√
an)∗)

⇐⇒ [(an, b)ζm ] is trivial in Br(K)

⇐⇒ [(a, b)ζm ] has order dividing n.

6.1 Formulas

The reason we translate the problem of finding the order of a cyclic algebra
to computing a Hilbert symbol, is because there are formulas for the latter.
We will state some of these formulas and discuss their application. Although
not all formulas will be used to answer our main research question, they do
allow explicit computations of Hilbert symbols and provide us with tools
we can use for specific local fields. We will provide some examples in this
section, as well as the next.

The formula that we will mainly use for computing the Hilbert symbol is
also the one that is the easiest to use. Recall that for any local field K with
residue field order q = #κK , we can write any unit u ∈ UK as u = ω(u)ũ

for ũ ∈ U
(1)
K and ω(u) ∈ µq−1 such that ω(u) ≡ u mod pK . Using this

notation, we have the following formula for the Hilbert symbol.

Proposition 6.7 ([Neu99, V.3.4]). Let K be a local field and set q = #κK .
Let m ≥ 1 be an integer coprime to q. For a, b ∈ K∗, we have

(a, b)m = ω
(

(−1)vK(a)vK(b) b
vK(a)

avK(b)

)(q−1)/m
. (4)

Note that this formula can only be used to compute Hilbert symbols
for local fields over Qp for p coprime to the degree m. Such a symbol is
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also called a tame Hilbert symbol. Using this formula is relatively easy and
for this reason we will mostly be interested in the case of the wild Hilbert
symbol, where m is a power of p. Our question concerns extensions of degree
12 and therefore we will focus on local fields over Q2 and Q3, in which case
Proposition 6.7 is not enough.

There are no formulas as nice as the one of Proposition 6.7 for the wild
symbol. The most general formulas are given by Brückner (for p odd) and
Henniart (p = 2). These are in general hard to use and we will not use them
for explicit computations. The formulas can be found in [Neu99, V.3.7] and
[Hen81, 7.5].

Another formula, that is more suited for explicit calculations is one by
Artin and Hasse.

Proposition 6.8 ([AH28, p. 147]). Let K = Qp(ζpn) for some pn-th root of
unity and let Tr be the trace of the extension. For any a ≡ 1 mod 1− ζpn,
we have

(ζpn , a)pn = ((−1)p+1ζpn)Tr(log(a))/pn .

Example 6.9. To see how this formula can be used for an explicit com-
putation, we compute the Hilbert symbol (2 + i, i)4 in the local field Q2(i).
This example is inspired by [AM16, §8], where a similar Hilbert symbol is
computed.

Since (1 + i)2 = 2i and therefore (1 + i)4 = −4, we get the following
formula for the trace of (1 + i)j :

Tr((1 + i)4k+`) =


(−1)k · 21+2k for ` = 0, 1,

0 for ` = 2,

(−1)k+1 · 22+2k for ` = 3,

where we take 0 ≤ ` < 4. This formula shows that Tr((1 + i)j)/j is divisible
by 8 for j > 8. So modulo 8 we get

Tr(log(2 + i)) = Tr
( ∞∑
j=1

(−1)j+1 (1 + i)j

j

)
≡

8∑
j=1

(−1)j+1 Tr((1 + i)j)

j

≡ 2− 4

3
+ 2− 4 ≡ −4 mod 8.

In other words, Tr(log(2 + i))/4 is odd. Using Proposition 6.8 we compute

(i, 2 + i)4 = (−i)Tr(log(2+i))/4 = ±i.

So the cyclic algebra (i, 2 + i)i induces an element of order 4 in the Brauer
group of Q2(i).
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An obvious downside to Proposition 6.8 is that we can only use this
formula for fields of the given form and only when both arguments of the
Hilbert symbol are of a specific form. A trade-off is achieved by Helou, who
only computes Hilbert symbols for fields of the form Qp(ζp), but allows other
elements as input into the Hilbert symbol.

Proposition 6.10 ([Hel02, Lemma 6]). Let u, v, x, y ∈ Zp be elements such
that p - (u+ v)(x+ y). Let ζp be a p-th root of unity and set

k =
(uy − vx)p − (u+ v)yp + vp(x+ y)

p(u+ v)(x+ y)
∈ Z/pZ.

For the p-th power Hilbert symbol in Qp(ζp) we have:

(u+ vζp, x+ yζp)p = ζkp

6.2 Adding roots of unity

Both in writing a cyclic algebra (χ, b) as (a, b)ζm and in defining the Hilbert
symbol we need an m-th root of unity in K. In the literature this is often
assumed without argument. Indeed, we would like to have a way to always
reduce to the case where K includes the m-th roots of unity. The following
argument is inspired by a small note by van der Kallen (see [Kal85, §3]).

To show the reduction step, we assume K does not contain a primitive
m-th root of unity and let K̃ = K(ζm). We consider the field extension
K̃/K of degree dividing ϕ(m), where ϕ denotes the Euler totient function.6

Let L/K be a cyclic Galois extension of degree m and choose an iso-
morphism χ : Gal(L/K)

∼−→ Z/mZ. We let K̃ = K(ζm) as above and define
L̃ := L(ζm) = L · K̃. This induces an injective homomorphism

χ̃ : Gal(L̃/K̃)→ Z/mZ, σ 7→ χ(σ|L). (5)

If m is prime, then [K̃ : K] divides ϕ(m) = m−1, and so it is coprime to
m. In this case, we know that L does not contain any primitive m-th roots of
unity because that would imply L/K has a subextension of degree dividing
m− 1. This means that L̃ =

⊕m−2
i=0 Lζim, so that to any σ ∈ Gal(L/K), we

can associate σ̃:

σ̃
(m−2∑
i=0

aiζ
i
m

)
=

m−2∑
i=0

σ(ai)ζ
i
m ∀(ai)i ∈ Lm−1.

Note that σ̃ is an element of Gal(L̃/K̃) such that σ̃|L = σ, which means
that χ̃ is an isomorphism too. The following diagram gives a representation

6The degree is not always exactly ϕ(m). Take for instance m = 8 and K = Q3:
Q3(ζ8)/Q3 is the unramified degree 2 extension by Proposition 2.23.
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of the field extensions we consider:

L̃ = L(ζm) = K̃( m
√
a)

L K̃ = K(ζm)

K

m

m

m−1

m−1

Since χ̃ is an isomorphism, we can consider the cyclic algebra (χ̃, b) over
K̃, which is isomorphic to (χ, b)⊗K̃. Kummer theory (Example 4.10) allows
us to write this cyclic algebra as (a, b)ζm for a ∈ K̃ such that L̃ = K̃( m

√
a).

We can compute the corresponding Hilbert symbol (a, b)m to see whether
the algebra is trivial in Br(K̃). If it is trivial, then [(χ, b)] is an (m − 1)-
torsion element in Br(K). Since it is an element of Br(L/K), it is also killed
by m, so it must itself be trivial. We conclude that (a, b)m ∈ µm has order
n if and only if [(χ, b)] ∈ Br(L/K) has order n.

Example 6.11. Let ζ9 be a primitive 9-th root of unity and let ζ3 = ζ3
9 .

Consider the field extension L = Q3(ζ9 + ζ−1
9 ) over K = Q3 and fix an

isomorphism χ : Gal(L/K)→ Z/3Z. We want to find b ∈ Q3 such that the
order of the cyclic algebra (χ, b) is 3.

Adjoining ζ3 to both K and L yields

L̃ = Q3(ζ9) = Q3( 3
√
ζ3).

And so, using the same notation as in (5), the cyclic algebra becomes

(χ, b)⊗ K̃ = (χ̃, b) = (ζ3, b)ζj3
,

where j ∈ {1, 2} is such that χ̃( 3
√
ζ3) = ζj3

3
√
ζ3. The appropriate Hilbert

symbol can be calculated using Proposition 6.10. We get k = 1−b2
3 . Plugging

in b = 2 gives (ζ3, 2)3 = ζ−1
3 . And so [(χ̃, 2)] has order 3 in Br(Q3(ζ3)). By

the main discussion of this section, we can conclude that [(χ, 2)] has order
3 in Br(Q3).

Instead of using Proposition 6.10, the final steps of this calculation can
be done similarly to Example 6.9 (see [AM16, §8]). In both cases one uses
the extension L̃/K̃.
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Part II

Applying the theory

We have no dealt with all relevant theory for answering the three theorems
we mentioned in the introduction. One by one, we will rephrase and specify
them before providing a proof.

7 Elliptic curves over local fields

We have now dealt with all relevant theory for answering our main research
question. In this section, we will prove Theorem 1.1. Let us rephrase the
theorem using the notation we have discussed so far.

Theorem 7.1. Let K be any local field. There exists an elliptic curve over
K with discriminant ∆ ∈ K∗ such that the following map is surjective

[(−,∆)] : H1(K,Z/12Z)→ Br(K)[12], χ 7→ [(χ,∆)]. (6)

By using Example 2.32, we will deduce conditions on ∆ (depending
on K) so that the map is surjective. For each local field K, we will give
an explicit elliptic curve whose discriminant satisfies the given criterion.
For local fields over Q2 we give an alternative proof which makes use of
Proposition 7.3 and 6.7, as well as Section 6.2. This proof is harder to
generalize to other local fields, but does allow for some observations that
are easily overlooked when using the more general approach we start out
with.

7.1 General approach

Let K be a local field with uniformizer π. As we have said, we will make use
of Example 2.32 to deduce some sufficient conditions for (6) to be surjective.

Proposition 7.2. Let ∆ ∈ K∗ such that vK(∆) ≡ ±1 mod 6. Then (6) is
surjective.

Proof. For the 3-primary part, we consider the unramified degree 3 exten-
sion K3/K with a choice of isomorphism χ : Gal(K3/K) → Z/3Z. By Re-
mark 5.15, the cyclic algebra (χ,∆) induces a non-trivial element of Br(K)
precisely when ∆ is not a norm of the extension K2/K. By Example 2.32
this is precisely when

∆ /∈ π3Z ×O∗K .

For vK(∆) ≡ ±1 mod 6 this is the case.
For the 2-primary part, we use a similar argument. If χ : Gal(K4/K)→

Z/4Z is a choice of isomorphism, the cyclic algebra (χ,∆) is non-trivial when
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∆ is not a norm of the extension K4/K. In this case however, the cyclic
algebra can still have order 2. In order to ensure that (χ,∆) induces an
element of order 4 in Br(K), we need that ∆ is not a norm of the subexten-
sion K2/K either. If χ′ : Gal(K2/K)→ 2Z/4Z is an isomorphism, we have
2[(χ,∆)] = [(χ′,∆)] in Br(K). By Example 2.32 again, we want that ∆ is
not in π2Z×O∗K , which means vK(∆) must be odd. This is also ensured by
picking vK(∆) ≡ ±1 mod 6.

We have shown that for vK(∆) ≡ ±1 mod 6, the map (6) is surjective
on both the 2- and 3-primary part of Br(K)[12] ∼= Z/12Z and so it must be
a surjection.

Using this proposition, we only need to find explicit elliptic curves over
K whose discriminant ∆ satisfies the condition of Proposition 7.2.

Proof of Theorem 7.1. Let K/Qp be a local field with uniformizer π and
ramification index e = e(K/Qp) = vK(p). Depending on p we consider
different curves that have valuation equivalent to ±1 mod 6 so that Propo-
sition 7.2 ensures that we can reach Br(K)[12] entirely.

If p = 2, consider the elliptic curve

E : y2 = x3 + (3π − 3)x+ 2.

Its discriminant is

∆(E) = −16(4(3π − 3)3 + 27 · 4) = 26 · 33(π3 − 3π2 + 3π).

The valuation of ∆(E) is 6e+ 1.
If p = 3, we distinguish two cases. If e is odd, we take

E : y2 = x3 + 3πx+ π.

Its discriminant has valuation 3e+ 2 ≡ −1 mod 6:

∆(E) = −16(4 · 27π3 + 27π2) = −24 · 33π2(1 + 4π).

If e is even, we consider the curve given by the Weierstrass equation

E : y2 = x3 + (3π − 3)x+ 2π − 2.

Its discriminant has valuation equal to 3e+ 1 ≡ 1 mod 6:

∆(E) = −16(4(3π − 3)3 + 27 · 4(1− π)2) = −26 · 33 · π(1− π)2.

If p > 3, we can also take this last elliptic curve. In this case, the
valuation of the discriminant is equal to 1.
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7.2 Alternative approach to the 2-adic fields

In this section we consider local fields K/Q2 and use a different approach
to find the condition vK(∆) ≡ ±1 mod 6 we found in Proposition 7.2. We
will still deal with the 2- and 3-primary parts separately. For the 3-primary
part, we will make use of Proposition 6.7. For dealing with the 2-primary
part we use an explicit way to write the unramified extension of degree 4
in order to apply tools reminiscent of the study of Diophantine equations.
This method allows for some quick observations that turn out to be useful
later.

The 3-primary part Of course, we again consider the extenson K3/K
for the 3-primary part. In order to make use of the Hilbert symbol, we
need that K contains a primitive third root of unity. Using the discussion
of Section 6.2 we may move our study of the extension K3/K to studying
the extension K̃3/K̃, where K̃ := K(ζ3).

Let f = [κK̃ : F2] be the residue field degree. Since we have ζ3 ∈ K̃, we

know that f is even. By Proposition 2.13 K̃ contains a root of unity ζ of
order 2f − 1. Since f is even, the order of ζ is divisible by 3. Any root of
the polynomial X3− ζ must therefore have order 3(2f − 1). Comparing this
to the order of the residue field

κK = F2[ζ] ∼= F2f ,

we see that κK does not contain a root of X3 − ζ. Therefore the extension
K( 3
√
ζ)/K is unramified of degree 3.

We let L = K( 3
√
ζ) be the extension above and consider the isomor-

phism χ : Gal(L/K) → Z/3Z sending 3
√
ζ 7→ ζ3

3
√
ζ to 1̄. For any choice of

∆ ∈ K∗, the cyclic algebra (χ,∆) is isomorphic to (ζ,∆)ζ3 . We can use
Proposition 6.7 to compute the corresponding Hilbert symbol:

(ζ,∆)3 = ω(ζ−vK(∆))(2f−1)/3 = (ζ(2f−1)/3)−vK(∆) = ζ
±vK(∆)
3 .

For the last equality, we conclude that ζ(2f − 1)/3 has order 3, hence equal
to ζ3 or ζ−1

3 . We conclude that the cyclic algebra (χ,∆) induces an element
of order 3 in Br(K) if and only if vK(∆) 6≡ 0 mod 3.

The 2-primary part Similar to what we did above, we consider the un-
ramified extension K4/K of degree 4 with character χ and want to find
conditions on ∆ under which (χ,∆) induces an element of order 4 in Br(K).
As we did in Proposition 7.2, we can argue that (χ,∆) has order 4 in Br(K)
if and only if (χ′,∆) has order 2, where χ′ is a character for K2/K.

To translate the cyclic algebra (χ′,∆) to a Hilbert symbol, we need to
write K2 = K(

√
a) for some a ∈ K. For this, let ζ ∈ K be a root of unity

of order 2f − 1, where f = f(K/Q2) is the inertia degree of K. We claim
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that K2 = K(γ), where γ is a root of X2 + X + ζ. To prove this, we show
that X2 + X + ζ is irreducible in the residue field F2[ζ] of K. Note that

{ζ2i}0≤i<f forms a basis for F2[ζ] over F2 and since
∑f−1

i=0 ζ
2i is invariant

under the Frobenius morphism, this sum must be equal to 1 in F2[ζ]. If
u ∈ F2[ζ] is a root of X2 +X + ζ, then

1 ≡
f−1∑
i=0

ζ2i ≡
f−1∑
i=0

u2i+1
+ u2i ≡ u2f + u ≡ 0 mod 2.

This is a contradiction, so the polynomial is irreducible. We can write
K(γ) = K(

√
1− 4ζ), because (2γ + 1)2 = 1 − 4ζ. So the Hilbert symbol

associated to the cyclic algebra (χ′,∆) is (1− 4ξ,∆)2.
It is not possible to use Proposition 6.7 to compute the Hilberts symbol

in this case because the degree is not coprime to the order of the residue
field. Since we are working over a general local field K/Q2 we cannot use
Proposition 6.8 or 6.10 either. One thing we can consider in this case is
Corollary 6.5.

Proposition 7.3. Let K/Q2 be a local field with uniformizer π and inertia
degree f . Let ζ be a root of unity of order 2f − 1 so that OK = Z2[π, ζ].7

There are no non-trivial solutions (x, y, z) ∈ K3 to the equation

(1− 4ζ)x2 + πy2 = z2. (7)

Proof. If there is a non-trivial solution to the equation, we can use the fact
that OK is a discrete valuation ring to find a non-trivial solution (x, y, z) ∈
O3
K . Moreover, we may assume x, y and z are not all divisible by the same

element of OK .
We claim that y, z ± x ∈ (2). We prove this by induction. We set

n = [K : Q2]/f so that (π)n = (2). Suppose y ∈ (π)k for some k < n. We
write

πy2 − 4ζx2 = (z − x)(z + x).

Since the left hand side is in (π)2k+1 and (π) is prime, we have that z−x or
z+x is in (π)k+1. Since 2x ∈ (2) too, both of z±x ∈ (π)k+1. Using this, we
deduce that πy2 ∈ (π)2k+2 and so y ∈ (π)k+1. By induction we have thus
proven that we can write y = 2v and z = x + 2w for some v, w ∈ Z2[π, ζ].
We plug this into equation (7):

(1− 4ζ)x2 + 4πv2 = x2 + 4xw + 4w2.

Subtracting x2 on both sides and dividing by 4 gives us

πv2 − ζx2 = (x+ w)w.

7This is by Corollary 2.27.
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We reduce this equation modulo π to get

ζx2 + xw + w2 = 0.

Since we assumed not all of x, y, z are divisible by π, we have that x 6≡ 0
mod π and so we may define x̃ = w/x. This gives

x̃2 + x̃+ ζ = 0, in F2[ζ].

By the same arguments as before the proposition, this equation has no
solutions.

Remark 7.4. Note that during the proof we have only looked at the equa-
tion modulo 8. So we have actually shown that there are no solutions modulo
8. Also, the argument does not depend on the choice of uniformizer. Actu-
ally, the coefficients in the equation can be multiplied by squares to obtain
the same result, so the coefficient in front of y2 can be taken to be anything
with odd valuation.

Corollary 7.5. If we pick some ∆ with odd valuation, the Hilbert symbol
(1 − 4ζ,∆)2 equals −1. And so for such ∆ the discussion before Proposi-
tion 7.3 shows that (χ,∆) induces an element of order 4 in Br(K).

Looking at the conditions we have obtained from considering the unram-
ified extensions of degree 3 and 4 over K, we get back Proposition 7.2.

8 Elliptic curves over the ring of integers

In the previous chapter we have seen that the unramified extensions provided
a simple answer to our problem. By considering norm groups associated to
unramified extensions, we showed that if ∆ has a valuation not divisible
by 2 or 3, all elements of Br(K)[12] can be reached by only considering
cyclic algebras associated to (unramified) cyclic Galois extensions of degree
divisible by 12. However, when we only consider elliptic curves over the ring
of integers OK , we see that we cannot use the same approach. Indeed, any
elliptic curve over OK has a minimal Weierstrass equation with discriminant
of valuation 0. By Example 2.32, these discriminants clearly are elements
of the norm groups associated to unramified extensions.

While the unramified extensions no longer give us the solution to our
problem, we can use Lemma 6.3 to reverse the roles of the first and second
argument of the Hilbert symbol. In other words, we consider the totally
ramified extensions obtained by adding roots of a uniformizer and take ∆ ∈
O∗K so that adding a root of ∆ defines an unramified extension over K.

We will only consider the case where K is a local field over Q2 or Q3.
For the other cases Proposition 6.7 can be used for all Hilbert symbol com-
putations. In the case of local fields over Q2 and Q3 we make use of elliptic
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curves of the form
y2 + xy = x3 − a. (8)

As we saw in Example 3.7, the discriminant of such curves is

∆ = a+ 16 · 27a2.

We observe that modulo 8 or 27 we can get essentially any discriminant we
want. This observation is important in our proof of Theorem 1.2 and 1.3.
Another important part of these theorems is that for some local fields, we
have some obstructions which make it impossible to find any unit ∆ ∈ O∗K
such that [(−,∆)] is surjective onto Br(K)[12]. We will deal with the 2-adic
and 3-adic fields separately. In both cases we consider the 2- and 3-primary
part as we did before. This time, we not only deduce sufficient conditions on
∆ so that the map [(−,∆)] is surjective, but also deduce some obstructions
that show that surjectivity is impossible for some local fields.

8.1 The 2-adic fields

In this section, we will prove Theorem 1.2. Actually, we prove a slightly
stronger result in which we can fix one discriminant ∆.

Theorem 8.1. Let K/Q2 be a local field. There exists an elliptic curve over
OK so that the following hold:

• If K contains a primitive third root of unity, the following map is
surjective

[(−,∆)] : H1(K,Z/12Z)→ Br(K)[12].

• If K does not contain a primitive third root of unity, the image of the
map above is Br(K)[4] and for any χ ∈ H1(K,Z/3Z) and b ∈ O∗K , the
cyclic algebra (χ, b) is trivial.

We will see that for local fields over Q2 some obstructions for surjectiv-
ity appear when we consider the 3-primary part of the map (6). We use
Proposition 6.7 to show this. To prove surjectivity on the 2-primary part,
we use the discussion of Section 2 and 7.2 in particular.

The 3-primary part The first obvious case to consider is the base case
K = Q2. We already see an obstruction in this case. One can prove that
there is no cyclic Galois extension of degree 3 over Q2 besides the unramified
extension.8 This means that the cyclic algebras (χ,∆) for χ ∈ H1(Q2,Z/3Z)
and ∆ ∈ Z∗2 are all trivial in Br(Q2) (see the discussion on the 3-primary
part in Section 7.2).

8We can use local class field theory for this or use [LMFDB].
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If K/Q2 has degree d > 1, we separate two cases. If K does not contain
a primitive third root of unity ζ3, we add it as per Section 6.2. This way, we
get a local field K̃ with residue field F4f , where f = f(K/Q2) is the inertia
degree of K. Using Proposition 6.7, we can see that for any a ∈ K̃∗ and
∆ ∈ O∗K , the Hilbert symbol equals

(a,∆)3 = ω(∆vK̃(a))(4f−1)/3 = ω(∆)vK̃
∑f−1
j=0 4j ∈ ω(∆)Z.

Since ∆ ∈ K∗, we have ω(∆) ∈ µ2f−1 and so

(a,∆)3 ∈ µ2f−1 ∩ µ3 = {1}.

The equality comes from the assumption that K does not contain any prim-
itive third roots of unity. We conclude that in this case the Hilbert symbol
(a,∆)3 is trivial for any choice of a ∈ K̃∗ and so for any χ ∈ H1(K,Z/3Z),
the cyclic algebra (χ,∆) is trivial.

If ζ3 ∈ K, there is no obstruction. For any choice of uniformizer π ∈ K
and any ∆ ≡ ζ2f−1 mod pK we get for instance

(π,∆) = ω(∆vK(π))(2f−1)/3 = ζ
(2f−1)/3

2f−1
= ζ±1

3 .

We can consider any character χ for the extension L = K( 3
√
π) over K to

get a cyclic algebra that induces an element of order 3 in Br(K).

The 2-primary part In Section 7.2 we considered the extension L/K
for L = K(

√
1− 4ζ) and took ∆ to be a uniformizer. This time we do

the converse. First, we need a totally ramified cyclic extension of degree
4. Theorem 2.29 and Proposition 2.15 give us an extension of degree 4 by
considering the norm subgroup of K∗ isomorphic to

Z⊕ Z/(q − 1)Z⊕ Z/2aZ⊕ 4Z2 ⊕ Zd−1
2 ,

where q, d and a are defined as in Proposition 2.15. By Corollary 2.33, the
associated extension is totally ramified. Finally, Theorem 2.28 shows that
the extension is indeed cyclic because the quotient of the norm group is
Z2/4Z2

∼= Z/4Z.
If we denote the extension defined above by L/K and pick a uniformizer

τ of L, we can write L = K(τ). Indeed, we have K(τ) ⊆ L and since K(τ)
has ramification index 4, it is not a strict subextension. The unique subex-
tension is given by K(τ2)/K. Again, we observe that for any isomorphism
χ : Gal(L/K) → Z/4Z, the cyclic algebra (χ,∆) has order 4 in Br(K) if
and only if (χ′,∆) has order 2 in Br(K), where χ′ : Gal(K(τ2)/K)→ Z/2Z
is an isomorphism. The latter cyclic algebra is trivial precisely when the
Hilbert symbol (τ2,∆)2 equals 1.
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Pick the uniformizer π = τ2 of K. If ∆ = 1− 4ζ, Proposition 7.3 shows
that the Hilbert symbol (π, 1− 4ζ)2 equals −1. In Remark 7.4 we observed
that we only have to consider ∆ modulo 8. Furthermore, since we only
consider ∆ up to squares, we can multiply with ζ, which is the square of
some ζk because its order is odd. We conclude that (π,∆)2 = −1 also for
∆ ∈ O∗K with

∆ ≡ ζ − 4ζ2 mod 8.

Lemma 8.2. Let K/Q2 be a local field with inertia degree f and let ∆ ∈ O∗K
satisfy ∆ ≡ ζ − 4ζ2, where ζ is a root of unity of order 2f − 1 in K.

• The map [(−,∆)] : H1(K,Z/4Z)→ Br(K)[4] is surjective.

• The map [(−,∆)] : H1(K,Z/12Z) → Br(K)[12] is surjective if and
only if K contains a primitive third root of unity. This is precisely the
case when f is even.

Proof. The first statement follows immediately by the discussion on the 2-
primary part above. The second follows by our discussion of the 3-primary
part. The parity of f follows by the observation that K(ζ3)/K defines the
unramified degree 2 extension when ζ3 /∈ K.

In order to prove Theorem 8.1, we only need to find an elliptic curve
whose discriminant ∆ satisfies the condition of the lemma above. As we
have mentioned, this is done by the elliptic curve

E : y2 + xy = x3 − ζ + 4ζ2.

8.2 The 3-adic fields

In this section, we prove Theorem 1.3, the final main theorem of this thesis.
As in the previous section, we show a slightly stronger result.

Theorem 8.3. Let K/Q3 be a local field. There exists an elliptic curve over
OK so that the following hold:

• If K contains a primitive fourth root of unity, the following map is
surjective

[(−,∆)] : H1(K,Z/12Z)→ Br(K)[12].

• If K does not contain a primitive fourth root of unity, the image of the
map above is Br(K)[6] and for any χ ∈ H1(K,Z/4Z) and b ∈ O∗K , the
cyclic algebra (χ, b) does not induce an element of order 4 in Br(K).

We use an approach similar to what we did for local fields over Q2.
We try to find conditions on ∆ to achieve surjectivity. This time we get
possible obstructions by looking at the 2-primary part and use the symmetric
property of the Hilbert symbol for the 3-primary part.
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The 2-primary part In order for a map [(−,∆)] to be surjective onto
Br(K)[4], we want to find a cyclic Galois extension L/K of degree 4 so that
∆ ∈ O∗K is not a norm of the extension. Moreover, we want that ∆ is not a
norm of the subextension either. By Example 2.32 this can only be the case
when L/K is totally ramified. Otherwise, the subextension is unramified and
the associated norm subgroup contains O∗K , including ∆. In other words,
we want to find a subgroup N ⊂ O∗K of index 4. By Proposition 2.15 this
means finding a subgroup of index 4 in

Z/(q − 1)Z⊕ Z/3aZ⊕ Zd3,

where d = [K : Q3], q = 3f is the order of the residue field κK and a is such
that µ3a ⊂ K. Because any morphism from this group onto Z/4Z must be
trivial on the second and third summands, such a subgroup only exists if
q − 1 is divisible by 4.

If i /∈ K, f is odd and so

q − 1 = 3f − 1 = (3− 1)

f−1∑
j=0

3j ≡ 2 mod 4.

So in this case (χ,∆) does not induce an element of order 4 in Br(K) for
any χ ∈ H1(K,Z/4Z) and ∆ ∈ O∗K . We can still get an element of order
2 by letting χ be a character of K(

√
π)/K for some uniformizer π ∈ K. In

this case we pick ∆ ∈ O∗K with ω(∆) = ζq−1 for some root of unity of order
q−1. Applying Proposition 6.7 to the corresponding Hilbert symbol (π,∆)2

gives an element of order 2.
If i ∈ K, we can consider the cyclic Galois extension K( 4

√
π) for any

uniformizer π ∈ K. Picking ∆ ≡ ζq−1 mod pK for some root of unity ζq−1

of order q − 1 and using Proposition 6.7 gives us

(π,∆)4 = ω(∆)vK(π)(q−1)/4 = ζ
(q−1)/4
q−1 = ±i.

So for any isomorphism χ : Gal(K( 4
√
π)/K) → Z/4Z, we get that [(χ,∆)]

has order 4.

The 3-primary part Different from our proof of Theorem 8.1 in the
previous section, we will not give an explicit ∆ ∈ O∗K such that [(−,∆)] is
surjective onto Br(K)[12] or Br(K)[6]. Intead we show that such an element
exists and is the discriminant of some elliptic curve over OK of the form (8).

First, we let L/K be the extension corresponding to the norm subgroup
N isomorphic to

Z⊕ Z/(q − 1)Z⊕ Z/3aZ⊕ 3Z3 ⊕ Zd−1
3 ,
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by Proposition 2.15. We set A = N ∩ U (1)
K , so that9

A ∼= Z/3aZ⊕ 3Z3 ⊕ Zd−1
3 .

For any b ∈ U (1)
K \A and character χ : Gal(L/K)→ Z/3Z we have that the

cyclic algebra (χ, b) has order 3 in Br(K) because by construction it is not
a norm of L/K. Since the order of (χ, b) only depends on the class of b in
K∗/(K∗)3, we claim that we can also take ∆ ≡ bζq−1 mod 27. Since q − 1
is coprime to 3, ζq−1 is a cube and so b ≡ bζq−1 in K∗/(K∗)3. The claim
now follows by applying Corollary 2.12.

Lemma 8.4. Let K/Q3 be a local field with inertia degree f and let ∆ ∈ O∗K
such that ∆ ≡ bζ3f−1pK with b as above.

• The map [(−,∆)] : H1(K,Z/6Z)→ Br(K)[6] is surjective.

• The map [(−,∆)] : H1(K,Z/12Z) → Br(K)[12] is surjective if and
only if K contains a primitive fourth root of unity. This is precisely
the case when f is even.

Proof. Both statements follow by our discussions on the 2- and 3-primary
part. The parity of f in the last statement is because K(i)/K defines an
unramified extension of order 2 when K does not contain a primitive fourth
root of unity.

As we mentioned at the beginning of this section, such a discriminant
∆ ∈ O∗K can be achieved by the elliptic curve

y2 + xy = x3 − bζq−1.

This proves Theorem 8.3.

9 Outlook

In this thesis we have solved the question of which elements of Br(K) can be
reached by cyclic algebras of the form (χ,∆), where ∆ is the discriminant
of an elliptic curve over a local field K or over the ring of integers of K/Qp

for p ∈ {2, 3}. There are some parts that have not been fully worked out
and some others where one might hope to get a more general statement.

First of all, we have tried to find explicit sufficient conditions on ∆ so that
(χ,∆) has the desired order for an appropriate choice of χ. In almost all cases
we have found a very explicit curve that has a discriminant satisfying these

9To get A more explicitly, one needs to write down the explicit isomorphism of Propo-
sition 2.15. This is somewhat troublesome as this depends on the choice of integral basis
of OK over Z3 and on the ramification index through the isomorphism U

(n)
K
∼= pnK for

n > e/(p− 1).
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conditions. One exception is Lemma 8.4, where we somewhat implicitly get

an element b ∈ U
(1)
K . If we fix K, we can use the exponent map to write

down an explicit isomorphism as in Proposition 2.15. This way we can get
a more explicit expression for b.

For elliptic curves over a local field K, we have shown that the unramified
extensions always allow us to reach Br(K)[12] with cyclic algebras of the
form (χ,∆). In the case of elliptic curves over OK , we only considered local
fields over Q2 and Q3. An interesting question is whether this approach
can also be generalized to arbitrary local fields. For instance, the same
obstruction that appears for Q2 also applies to Qp for p ≡ 1 mod 4. One
difficulty is that elliptic curves of the form (8) are not as useful for p > 3.
On the other hand, for larger p, we can use Proposition 6.7 for both the 2-
and 3-primary part. This makes computations much simpler.

As we have said before, we have focused on finding sufficient condi-
tions on ∆ to get a surjective map [(−,∆)] onto Br(K)[12]. An interesting
question is whether we can also find necessary conditions. When we re-
strict ourselves to unramified extensions for instance, we see that we need
vK(∆) ≡ ±1 mod 6 to get a cyclic algebra of order 3. On the other hand,
we have seen in Section 6.2 that for totally ramified extensions, we can also
find ∆ with valuation 0 so that (χ,∆) is non-trivial. By considering every
possible cyclic Galois extension of a given order, one can arrive at a list of
conditions on ∆ so that when ∆ does not satisfy any of them, there are no
cyclic algebras (χ,∆) of the desired order. Can we arrive at such a list of
necessary conditions for an arbitrary local field K?

Tying into this last question, we can also flip the main question we have
answered in this thesis. Instead of choosing ∆ and finding characters χ so
that (χ,∆) has the order we want, we can also fix χ and wonder what the
order of cyclic algebras of the form (χ,∆) is for a choice of discriminant. In
other words, we can consider the image of the map

[(χ,∆(−))] : EllK → Br(K).

In general this question is much harder than the question we answered in this
thesis. Different from the map [(−,∆)], this map is not a group morphism
and so we cannot consider the 2- and 3-primary part separately.

Finally, giving both sufficient and necessary conditions on ∆ allows us
to more easily consider a similar question for sets of numbers beside dis-
criminants of elliptic curves. For any subset A ⊂ K∗ we can consider which
elements of Br(K) can be reached by cyclic algebras of the form (χ, a) with
a ∈ A. To compute the Brauer group of the moduli stack of elliptic curves,
the question appears to be relevant for

A = {∆ | ∆ ≡ ∆(E) mod (K∗)12 for some elliptic curve E over K}.

For other problems, one might be interested in the problem for a different
choice of subgroup A.
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