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Abstract 

 
 
The stomata on plant leaves are crucial for gas exchange and, when observed on (sub)fossil 
leaves, also provide insight into historic plant growth conditions such as atmospheric CO2 and 
humidity. Current methods to quantify stomatal traits rely on manual analysis of microscopic 
images, which is labour-intensive and requires expert knowledge. The use of computer-aided 
methods has the advantage to increase efficiency in data acquisition due to time-savings as the 
sample throughput is higher in a shorter time and thereby the potential of more reproducible 
results. This study applied a machine-learning approach developed by Jayakody, Liu, Whitty, 
& Petrie (2017). The aim was to test the effectiveness of the automated detection method for 
identifying stomata in microscopic images and its sensitivity towards stomata size and image 
quality. Two major experiments have been conducted using the originally introduced image 
dataset of grapevines from Jayakody et al. (2017), and an additional set of images from differ-
ent plant types consisting of ferns and grasses, since specifically grasses feature a more com-
plex stomata type. The outcome was compared to results by Jayakody et al. (2017) and manual 
counts of the fern and grass images. The images of the original dataset were manipulated by 
undergoing treatments of enlargement and reduction to mimic stomata size differences. For 
testing the influence of image quality, the original images were downsampled to achieve qual-
ity loss, while the fern and grass image dataset was classified into quality categories based on 
the perceived image quality by a human viewer. Additionally, comparisons between the de-
tection accuracy of the different stomata types were carried out. It has been found that the 
algorithm reaches a limit in respect to stomata size leading to greater numbers of missed sto-
mata indicating a lower tolerance towards variations in stomata size. In contrast, the method 
shows a high level of robustness in terms of image quality for the downsampled images gen-
erating a low number of incorrect detections. Also, the image quality of the fern and grass 
images does not seem to have a significant influence on the effectiveness of detecting stomata. 
In terms of stomata type, the algorithm handled both types well and no significant difference 
in accuracy has been found.  
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Chapter 1 

 

Introduction  

When plants left their aquatic environment and colonised terrestrial areas around 450 million 
years ago (Willis, 2014), they had to adapt and develop structures that helped them to survive 
on land. They had to make sure that there is adequate water supply – without excessive water 
loss – while making it possible to take up carbon dioxide (CO2) to be able to perform vital 
photosynthesis. This is assumed to be the birth of the cuticle, stomata and vascular tissue of 
terrestrial plants. Stomata have been found on plant fossils of the age of more than 400 million 
years (Vatén & Bergmann, 2012). Stomata are pores on the surface of the plant’s aerial struc-
tures and their main function is to facilitate gas exchange between the plant interior and the 
atmosphere (Willmer & Fricker, 1996a). 

1.1 The importance and functions of stomata  

To highlight the importance of stomata research, key functions of stomata are elucidated here. 
Understanding stomata, their characteristics and behaviour plays an important role in predict-
ing the health of plants (e.g. Bhugra et al., 2018; Jayakody, Liu, Whitty, & Petrie, 2017) and 
therefore their capacity to affect the carbon cycle of the planet. 

Stomata fulfil a variety of key functions for plants to be able to survive in the terrestrial envi-
ronment. The capability of stomatal opening and closure goes beyond the mere facilitation of 
gas exchange between plants and the atmosphere involving CO2, O2 and water vapour re-
quired for photosynthesis. Restriction of water loss from the plant’s tissue delaying desiccation 
on terrestrial grounds while optimising the carbon gain per unit water loss are one of the other 
crucial functions. Especially the capacity to limit water loss is crucial for plants to thrive in 
environments with fluctuating water supply and is assumed to be one of the earliest functions 
of stomata. Furthermore, possible transpiration through stomata and related transport of so-
lutes across the plant leading to increased delivery of important nutrients to various sites in 
the shoot (Raven, 2002) is an essential role involving stomata. 

Other selective pressures on stomata are the variations in atmospheric CO2 concentration (Ca) 
and changes in moisture. Hence, the need to adapt and increase the conductance to CO2 diffu-
sion to meet the desired CO2 flux, and regulating the balance between water transpired and 
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CO2 fixed by enhancing transpiration efficiency (Franks & Farquhar, 2007). In respect to envi-
ronmental change and a changing climate, the first stomata played a key role in enabling ter-
restrial vegetation and changing the climate thereof (Berry, Beerling, & Franks, 2010). Through 
their capacity to regulate the pore’s aperture for water and CO2 fluxes to occur, stomata are 
having a significant influence on the global water and carbon cycles (e.g. Hetherington & 
Woodward, 2003). Early climate change took place due to the feedback between the increased 
transpiration and rise in precipitation over land and thus leading to the expansion of climate 
zones facilitating the spread of plants (Berry et al., 2010). 

1.2 Stomatal characteristics  

Stomata being key features to survive terrestrial conditions have undergone changes through-
out evolutionary time creating a variety in stomata morphology likely due to different diver-
gence times and evolutionary pressure. Also, between distinct clades such as ferns, 
gymnosperms and angiosperms there are stomatal differences; and even amongst different 
angiosperms with grasses being outstanding. Stomata morphology is characterised by varying 
shapes, sizes and distributions (i.e. densities) (e.g. Franks & Beerling, 2009; Vatén & Bergmann, 
2012; Willmer & Fricker, 1996b). While the specific stomata anatomy of the individual stomatal 
complex remained mostly unaltered over geologic time, changes occurred in respect to the 
number of stomata on the leaf epidermis as well as the pore size and stomatal density (e.g. 
Beerling & Franks, 2009; de Boer, Eppinga, Wassen, & Dekker, 2012; Franks & Beerling, 2009; 
Vatén & Bergmann, 2012). For example, the same valve mechanism of turgor pressure is op-
erating in stomata for the last hundreds of millions of years (Berry et al., 2010). With the emer-
gence of different species and with that accompanied variety in stomatal morphology, 
environmental change played a role in this stomatal development. It is known that stomatal 
changes are correlated to the atmosphere’s Ca with increasing stomatal density while Ca is 
decreasing (Franks et al., 2013). The reason for developing smaller stomata over time is shown 
to be of positive influence on the carbon uptake under low Ca while leading to a rise in produc-
tivity. Additionally, smaller stomata allow more of the leaf’s epidermal space for other cell 
types and functions such as subsidiary cells or oil cells (de Boer et al., 2012; Franks & Beerling, 
2009) which are important adaptations. Being able to conduct stomata analysis in an efficient 
manner while including a variety of plants, i.e. stomata types and sizes, is crucial when it 
comes to gaining new insights. New and advanced methods of analysis using artificial intelli-
gence such as machine learning, for example, can support the research (see also Section 1.3).  
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Stomata types  
In respect to stomata morphology, there are two basic types: the elliptical type (kidney-
shaped) and the graminaceous type (dumbbell-shaped, typical for grasses) (Jones, 2014; 
Willmer & Fricker, 1996b). Particularly grass stomata are important to be included in studies 
on stomatal morphology since they feature different characteristics such as distinctive dumb-
bell-shaped guard cells arranged in rows with parallel running subsidiary cells next to each 
guard cell unlike, for instance, fern stomata, which feature the other type of kidney-shaped 
stomata (Franks & Farquhar, 2007; Jones, 2014). It was of interest to test an automated detec-
tion method on both stomata types.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.3 Stomata images-based research 

Since stomata are microscopic structures on plant leaves, stomata research depends micro-
scopic images for studying their behaviour and carrying out measurements. Ongoing research 
has contributed to the investigation of stomatal traits of various plant types by using micro-
scopic images while manually counting and measuring stomata (e.g. Casado-García, Heras, & 

(a) (b) (c) 

(d) (e) 

Figure 1.1: Examples of stomata from different plant types showing their distinct shape.     
a Sample stoma from the image dataset by Jayakody et al. (2017). b and c Fern stomata at 
20× and 63× magnification, respectively. d and e Grass stomata at 20× and 63× magnifica-
tion, respectively. 
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Sanz-Sáez, 2020; de Boer et al., 2016; Fetter, Eberhardt, Barclay, Wing, & Keller, 2019; Jayakody 
et al., 2017; Laga, Shahinnia, & Fleury, 2014). However, this process is expensive as a single 
image of the plant epidermis may contain dozens of stomata. Thus, automated computer-
aided methods to detect and count stomata may offer benefits such as saving time compared 
to manual counting, leading to an increase in efficiency in data acquisition and the subsequent 
analysis (see Fetter et al., 2019; Jayakody et al., 2017). 
 
Developments involving algorithms to accelerate the resource-intensive process have been 
made. Previous research applied the problem of stomata detection in microscopic images such 
as Laga et al. (2014) and Liu, Tang, Petrie, and Whitty (2016) who both used samples of only 
one species (i.e. wheat and grapevine, respectively). Jayakody et al. (2017) also only tested their 
automated stomata detection method on only one species (grapevines). Thus, this research 
aimed to add a variety of species for testing the algorithm developed by Jayakody et al. (2017). 

1.3.1 Theoretical groundwork  

At the basis of these aforementioned developments is the theoretical groundwork. The algo-
rithms which form the foundation of each method for the automation of object detection in 
images were established by previous researchers from different fields. 
 
The algorithm on which the customised classifier by Jayakody et al. (2017) is based on is the 
so-called Viola-Jones algorithm (Viola & Jones, 2001). This algorithm was initially developed 
to detect faces but was re-trained for the purpose of detecting stomata using a different feature 
type as learning descriptor: histogram of oriented gradients (HOG) instead of Haar-like wave-
let features (Jayakody et al., 2017; Viola & Jones, 2001). The implementation of HOG de-
scriptors for machine-learning algorithms was pioneered by Dalal & Triggs (2005). HOG 
features perform well when it comes to the detection involving a shape-based object classifi-
cation where the shape of the object of interest occurs in many variations such as direction, for 
example, since HOG capture the overall shape of the object (Dalal & Triggs, 2005; The Math-
Works, 2020). A visual explanation of HOG features based on the image dataset used in this 
research can be found in Section 1.3.2.  

1.3.2 Automated stomata detection  

Below, the basic workflow of appearance-based object detection involved in identifying sto-
mata in microscopic images is briefly outlined.  
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Firstly, a dataset of images needs to be acquired which is representative of the data that is 
subject to testing at a later stage. Secondly, the algorithm needs to be trained on a set of images 
which is similar to the test images. One set features the object of interest (i.e. single or multiple 
stomata) and the other set must not contain any stomata but be of similar make-up as the first 
dataset (i.e. microscopic images of the leaf’s cuticle with veins, air bubbles, dust particles, etc.). 
Next, manual annotation of the regions containing the object of interest indicates the positions 
of objects of interest in these training images. During manual labelling it is important to cap-
ture variations in object appearance to create a representative dataset. The training leads to the 
algorithm learning to distinguish between positive and negative samples on which the object 
detection is based on. The final stage is the evaluation of the object detection using metrics 
such as precision and recall and the F-measure. These are commonly used metrics to evaluate 
results of image analyses (e.g. Casado-García et al., 2020; Tharwat, 2018). Details on the exact 
method of stomata imaging, object detection and the training process tailored to this case, as 
well as the evaluation of the algorithm’s performance can be found in Section 2.4 and 2.6.  
 
The algorithm used here implementing a Cascade Object Detector was developed by Jayakody 
et al., 2017 using the program Matlab®. For this research, Matlab® R2019b was used. Training 
the classifier involves a feature type on which the detection is based on. Jayakody et al. (2017) 
makes use of the feature type of histogram of oriented gradients (HOG) and thus building a 
HOG descriptor that, after training, is able to detect stomata as regions of interest (ROI) based 
on HOG features (see Figure 1.2) in a microscopic image. 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

(a) (b) (c) 

Figure 1.2: Examples of HOG feature visualisation for positive samples from each dataset.  
a Grapevine stoma (from original dataset by Jayakody et al. (2017). b Fern stoma. c Grass stoma. 
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1.4 Scientific relevance  

As mentioned previously, stomata research is an important part in determining the vegeta-
tion’s influence on the carbon cycle. This is especially crucial in a changing climate affected by 
rising CO2 levels due to the anthropogenic impact. Thus, stomata research has a predictive 

power in respect to future developments. Yet, paleoecologists and paleoclimatologists are also 
interested stomatal characteristics. This is due to the stomata’s function in atmospheric gas 
exchange. Stomatal density measurements from fossil plants can act as an indicator of paleo-
atmospheric CO2 concentration and thus serving as a prediction tool for reconstructing paleo-
climates (Fetter et al., 2019). Such measurements can be accelerated by making use of 
computer-based methods as it has the potential to decrease resource-intensive and human la-
bour and the need for expert knowledge in identifying stomata in microscopic images 
(Casado-García et al., 2020; Jayakody et al., 2017). Additionally, when measuring cell proper-
ties based on micrographs it is crucial to (spatially) calibrate the image to obtain correct meas-
urements in real units (e.g. μm). This intermediate step could also be avoided by setting up 
the automated measurement method beforehand.  
 
The application of computer-based analysis is getting increasingly widespread attention due 
to time-savings and the ability to process greater amounts of data. Here, the automated detec-
tion method is expected to analyse microscopic images and detect objects of interest in a faster 
manner than a human would be able to. Thus, automated methods improve the efficiency in 
data acquisition as the sample throughput is higher in a shorter amount of time (e.g. Bhugra 
et al., 2018; Fetter et al., 2019) and can therefore advance research and allow the focus to be on 
the interpretation of results provided by the automated analysis and in turn leading to possible 
quality improvements in that regard. Additionally, there is a greater potential of more repro-
ducible results as the method has already been established (Bhugra et al., 2018). Testing the 
performance of such a method is crucial to identify limitations and the necessity of improve-
ment to achieve a better applicability, also to being able to implement the method in various 
fields of research like, for instance, detecting and identifying pollen grains from microscopic 
images. Similarly, testing on a broad range of input data (test data) with varying conditions is 
essential to understand the requirements the data needs to fulfil for the method to be success-
ful, i.e. image quality requirements, but also regarding the most suitable method of preparing 
samples as different methods generate varying results not only in terms of quality but also 
regarding the time investment (e.g. epidermal leaf impressions or bleached leaf cuticles) (see 
also Yuan et al., 2020). 
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In terms of having large sample sizes of images, the problem of storing them arises as some 
microscopic image acquisition techniques, such as stacked image generation for instance, pro-
duce large files that take up a great amount of memory. By knowing the requirements for 
successfully applying automated image analysis in this case, the usage of memory can be kept 
to a minimum. Savings in memory also allow for obtaining a greater amount of data leading 
to a higher degree of completeness, as well as greater robustness in respect to results and sta-
tistical models through obtaining more data (Jayakody et al., 2017; Laga et al., 2014). 

1.5 Objectives and research questions  

This thesis aimed to subject the computer-aided method developed by Jayakody et al. (2017) 
using a self-learning algorithm to detect objects of interest (i.e. stomata) in microscopic images 
to various tests. Under these different conditions, the performance and limitations of the algo-
rithm were assessed. The research project consists of two main parts: 

Part I – Expansive testing of the original image dataset provided by Jayakody et al. (2017) by 
undertaking the images various treatments and manipulations, and 
Part II – Testing the algorithm on a new sample of different plant types such as ferns and 
grasses. 

For each of the two parts, the algorithm was tested in respect to its sensitivity towards stomata 
size and image quality. Firstly, size differences were mimicked by manipulating the image (i.e. 
enlarging or reducing the original images), and by using microscopic images taken at different 
magnification levels (fern and grass images). Secondly, image quality was being defined as, 
on the one hand, a quantifiable criterion of image resolution (downsampling the manipulated 
dataset), and on the other hand, as a perceived quality by a human viewer (fern and grass 
images). A detailed elucidation of the different experiments can be found in Section 2.1. 
 
Regarding part II, the stomata type plays a major role as well in testing the algorithm’s perfor-
mance as specifically grass stomata are differing from grapevine of the original set of images 
and fern images (see also Section 1.2). 
 
Research questions 
To achieve the aforementioned research objectives, the following research question is the main 
focus of the thesis: 
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Can the automated detection method be successfully applied to a variety of microscopic 
images featuring stomata including the more complex type of grass stomata, and differing 

stomata sizes as well as changes in image quality to correctly identify stomata? 
 
And to be able to answer the main research question, these sub-questions are formulated: 
 

1. To what extent is the algorithm sensitive towards differences in size of the object of in-
terest (i.e. stomata) and how does this sensitivity influence detection accuracy? 

2. To what extent is the algorithm sensitive when it comes to the quality of the image (i.e. 
differing resolution or disturbance) and how does this sensitivity affect detection accu-
racy? 

3. To what extent does the complexity of the object of interest (i.e. distinct stomata type of 
grasses) influence detection accuracy? 

 
To answer each of these research questions, various experiments and tests have been con-
ducted with assessing the results using a common set of metrics and comparing the result to 
the outcome of the non-manipulated original images (part I), and an established reference for 
the fern and grass images (part II) See also Section 2.3.  
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Chapter 2  

 

Methods  

In this chapter, the exact methodology including collection of plant material, preparation of 
microscopic images and image acquisition, as well as statistical testing and evaluation will be 
described.  
 
Sample preparation for taking microscopic images took place in the GeoLab at Utrecht Uni-
versity. In this research, the standard protocol for the preparation of microscope slides of leaf 
samples was followed. The exact methodology for this will be described in Section 2.2.2. The 
implementation and testing of the computer-aided method is based on the algorithm’s script 
provided by Jayakody et al. (2017).  
 
Firstly, to achieve part I of the research objective, a number of different test images was estab-
lished by performing various manipulations on the original image dataset from Jayakody et 
al. (2017). The kinds of treatments are described in Section 2.1.1. Secondly, regarding part II 
and testing whether the algorithm can successfully detect stomata in microscopic images of 
different plant types, a new sample collection of ferns and grasses was obtained by preparing 
microscopic images. A list of all collected species can be found in Appendix A. 
 
For both parts of the research, the application of the computer-aided method is equal. Both, 
training and testing on the image datasets has been carried out, followed by manual counting 
of the algorithm’s image output of annotated detected regions of interest in the image. Statis-
tical analysis has been performed to evaluate the algorithm’s accuracy using common evalua-
tion metrics (see Section 2.5).  

2.1 Data collection  

The data collection mainly involved two steps. Firstly, the extension of the original dataset by 
Jayakody et al. (2017) by means of manipulation of these images. And secondly, the addition 
of newly collected microscopic images covering other plant types that have not yet been tested 
as input for the self-learning algorithm (i.e. ferns and grasses).  
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2.1.1 Manipulation of original image dataset 

As mentioned in Section 1.5, testing the algorithm’s performance under various conditions 
involved the manipulation of the original image dataset. To cover a wide range of possibilities 
and to prompt the algorithm’s performance and accuracy, a number of different experiments 
were conducted which are given below in Table 2.1. 

Table 2.1: Experiments for manipulating the original image dataset by Jayakody et al. (2017) by means 
of enlarging, reducing or downsampling (changing the resolution) the image. The percentage refers to 
the size in relation to the original image with corresponding pixel dimensions where 4800×3600 being 
the original pixel dimensions. Downsampling was done leading to the respective percentage of the orig-
inal image with resizing to the original size afterwards.  

Enlargement Reduction Downsampling 
150  (72005400) 75  (36002700) 24001800 (50) 
200  (96007200) 60  (28802160) 1200900 (25) 
250  (120009000) 50  (24001800) 600450 (12.5) 
300  (1440010800) 40  (19201440) 480360 (10) 
400  (1920014400) 30  (14401080) 240180 (5) 
  144108 (3) 
  192144 (4) 
  9672 (2) 

 

2.1.2 Addition of fern and grass images  

For the purpose of testing the algorithm on a wider range of microscopic images featuring a 
variety of stomata types and magnification levels, in addition to the original image dataset by 
Jayakody et al. (2017), new microscopic images of a broad sample including ferns and grasses 
were obtained. This addition posed a more appropriate database for the algorithm and lead to 
a suitable sample size to perform statistical analysis. Collection of plant material from the bo-
tanical gardens of Utrecht University and Amsterdam was carried out, generating a sample of 
14 species with five fern and 9 grass species (see Appendix A, Table 1). From all samples im-
ages were obtained which were used to train and test the automated stomata detection algo-
rithm.  
 
First, sample slides of the collected fern and grass leaf samples were prepared which was fol-
lowed by acquiring microscopic images of these samples. The sample slides show the leaf’s 
cuticle and stomata of a bleached leaf fragment. For more details on preparation and make-up 
of the samples see also Section 2.2.2. These microscopic images served as input for training 
and testing the automated algorithm (see Section 2.3).  
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2.2 Materials and preparation  

The preparation of appropriate images involved two aspects: (i) the creation of manipulated 
images based on the original dataset, (ii) the preparation and creation of new microscopic im-
ages by means of bleaching the whole leaf or producing an epidermal impression depending 
on the quality of the leaf sample. The following section elucidates the process of the image 
preparation, specifically of the fern and grass images, and the different treatments to obtain a 
larger sample of test images of the original image dataset.  

2.2.1 Manipulated images  

As the algorithm analyses pixels in an image, manipulations were a feasible approach to ex-
amine the algorithm’s performance. To mimic differences in image quality as well as size dif-
ferences of stomata in microscopic images taken using various methods and at different 
magnifications, the manipulation of the original published dataset by Jayakody et al. (2017) 
was conducted. This available set of images was used as it was proven that the object detection 
of the self-learning algorithm is successful in relatively accurately detecting stomata. Manipu-
lation of the original image dataset was done by using Adobe® Photoshop® CC 2018. Three 
different experiments were conducted on a number of 12 images from the original image da-
taset. These 12 images were selected based on subjective assessment regarding quality to build 
a relatively representative sample size for the experiments that followed. The treatments of 
enlargement and reduction were used to test the sensitivity to image size (i.e. stomata size) 
and the downsampling treatments were used testing the sensitivity to image quality.  
 
Enlargement 
With respect to the experiment of enlargement, five treatments were chosen that represent a 
percentage change in image size as shown above in Section 2.1.1. The automatic setting for the 
resampling method was selected to increase the image size in Photoshop®. These enlarged 
images were then used as input to the algorithm. 
 
Reduction 
For the experiment of reducing the image, five treatments were chosen that represent a per-
centage change in image size as specified earlier. The automatic setting for the resampling 
method was selected while decreasing the image size in Photoshop®. Similarly, these de-
creased images were then used as input to the algorithm. 
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Downsampling 
The third experiment involved image scaling in the form of downsampling generating a 
smaller image from the higher-resolution image and thus leading to a decrease in image qual-
ity and lost detail in the final image (i.e. lower number of pixels). Firstly, to reduce image 
quality, the resampling method "bicubic sharper (reduction)" was selected to downsample the 
image in Photoshop® according to the aforementioned experiments. Each experiment involves 
to a two-step approach. The first step corresponds to a change in image size in % and, as a 
second step, rescaling of the images to the original pixel dimensions equal to the original im-
ages’ pixel dimensions of 4800×3600. The final images served as input for the algorithm. 

2.2.2 Fern and grass images  

Establishing samples to acquire suitable images for the image detection, the samples of the 
plant material needed to be prepared. The following describes the process of microscopic sam-
ple preparation by using a bleaching technique as well as a superficial impression method. 
Moreover, to test the algorithm’s sensitivity to quality, two quality categories were established 
to which the selected test images have been allocated to.  
 
Bleached leaf samples  
During lab work and the preparation of the microscope slides, as well as the acquisition of the 
images the following materials end equipment was used:  

• Plant material: collected fern and grass leaves  
• Clear nail polish 
• Clear scotch tape 
• Chlorine bleach 5 % 
• Forceps, spatulas, slides and cover slips.  
• Colouring agent safranin 
• Glycerin jelly 
• Microscope system Leica® DM6000 B 
• Software Leica® Application Suite (version 4.12.0) for Windows® 

Generally, the standard procedure to obtain suitable microscopic images of stomata from leaf  
samples was followed by conducting these steps:  

1. Per leaf a number of 3 samples was taken.  
2. Soaking the leaf sample in chlorine bleach or a solution of bleach and water.  
3. Thoroughly rinsing the now white or transparent sample to wash off any bleach to stop 

the bleaching process.  
4. Adding safranin as counterstain where necessary to aid in visibility (i.e. contrast) of 

the stomata of the sample.  
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5. When sample was appropriate, it was made permanent by mounting it in glycerin onto 
the slide.  

To observe stomata under the microscope, it is often necessary to bleach the leaves beforehand 
as the thickness and the pigments in the leaf cause difficulties in viewing stomata and epider-
mal cells clearly (Sharma, 2017). The rate of the bleaching is dependent on several factors such 
as species, the freshness of the leaf or whether it was dried, the thickness of the leaf, or if the 
cuticle features a protective, waxy layer. Generally, dry leaves and leaves from fern species 
were bleached in less amount of time than grass leaves. Bleaching time varied between a few 
hours to two nights depending on the concentration of bleach and water as well as the above-
mentioned factors. Dilution in various levels was undertaken to make the solution less aggres-
sive keeping the bleaching process under better control. To accelerate the bleaching process, 
the samples in tubes with bleach were put in a block heater at a temperature between 30 °C 
and 50°C. The bleaching process was completed as soon as the leaf turned transparent and lost 
its green pigment. The leaf samples were rinsed thoroughly and were then ready to be 
mounted on a microscope slide. Glycerin jelly was melted, the sample mounted within and a 
cover slip was added. This method preserves the samples to be stored permanently. 
 
In some cases (e.g. Oryza sativa, Milium effusum L.), the preparation of a suitable slide of a 
bleached leaf fragment was not possible, and an epidermal impression using nail polish was 
produced. For details, see the following section. 
 
Epidermal impressions 
Producing a nail polish impression of the leaf’s epidermis aided to determine whether the 
stomata are on the abaxial (lower) or the adaxial (upper) side of the leaf’s surface in a fast 
manner. Hereby, a thin layer of clear nail polish was painted on both sides of the epidermis. 
After the nail polish layer had completed dried, the tape was applied to carefully peel off the 
nail polish film which was sticking to the tape. This was then be pressed tightly onto a micro-
scope slide and thus the permanent leaf epidermis imprint has been generated from which an 
image can be taken. 
 
The collected ferns are hypostomatous and thus are only equipped with stomata on the abaxial 
side of the leaf. In respect to the grasses, it is dependent on the species. Some are hypostoma-
tous, while some are amphistomatous, with the former meaning to feature stomata on only 
one side, mostly the abaxial one, and the latter having stomata on both sides of the leaf surface. 
Thus, samples were made from each side of the leaf of amphistomatous species. 
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Quality categories 

To test the algorithm’s sensitivity to image quality, two quality categories were established. 
Only the test images were assigned to either one of the quality categories. The distinction of 
the categories was based on the following definitions (see Table 2.2). Note, that these quality 
categories depend on the perceptual assessment of a human viewer. Figure 2.1 shows sample 
images for each quality category. 

Table 2.2: Criteria for defining the two quality categories of low to medium and medium to high for the 
test images of the fern and grass image dataset.  

Low to medium quality Medium to high quality 
• Large parts ( 50%) of the image is out of focus 

• Great disturbance and noise in the image (i.e. air 
bubbles, cell tissue, etc.) 

• Blurry cell boundaries 

• Stomata often times hardly visible 

• Minor parts ( 25%) of the image 
out of focus 

• Clear cell boundaries 

• Stomata clearly visible 

• No disturbance like air bubbles, 
cell tissue, etc. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Image acquisition 

Once the microscope sample slides were completed, images were acquired using the fully au-
tomated upright microscope system Leica® DM6000 B and the accompanied software Leica 
Application Suite® (version 4.12.0) for Windows®. Images at two different objective lens 

(a) (b) 

Figure 2.1: Sample images for each quality category. a Sample fern image of the lower image qual-
ity. b Sample grass image of the higher image quality.  
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magnifications (20× and 63×) were obtained. Two different magnifications were chosen for the 
purpose of testing the algorithm’s sensitivity to size of the object of interest.  

2.3 Manual counting 

To establish a benchmark that represents the expected result which serves as the ground truth, 
manual countings of stomata in each test image of both the manipulated images and the addi-
tional fern and grass species were necessary. All visible and partly visible but clearly recog-
nisable stomata of the entire image were counted by using the software ImageJ® and recorded 
as ground truth. In the case of the manipulated images, the manual countings of detected re-
gions of interest (ROI) annotated by bounding boxes (i.e. true positives, false positives and false 
negatives, see Section 2.6 for a detailed explanation) of the results from the original (non-ma-
nipulated) images were used as reference point since the algorithm was tested on its sensitivity 
to changes in size and resolution. In respect to the fern and grass image dataset, the initially 
established counting represents the reference point. Note, that there is a large variance in the 
number of stomata between the test images as the images were of varying quality and partly 
blurred possibly hiding stomata.  

2.4 Automated image processing and object detection 

The algorithm developed by Jayakody et al. (2017), detects stomata as regions of interest (ROI) 
based on HOG features in a microscopic image after being trained utilising a specified training 
dataset. Details of the training process will be explained in the following section. 
 
After automatically detecting stomata in the given microscopic image, the algorithm creates a 
bounding box around the ROI which will be found on the final output image as a result (see 
Figure 3.1 for a visual example). These bounding boxes were determined as correct or incorrect 
classification and recorded. Based on this data, the metrics of precision (or positive prediction 
value), recall (or hit rate) and the F-measure (or F1-score) could be calculated. More details re-
garding the evaluation of the outcome can be found in Section 2.6. 
 
The original image dataset and the corresponding results act as reference points when it comes 
to comparing and evaluating the results of the manipulated image results of all three experi-
ments. In regard to the expanded image dataset of fern and grass species, the manually gen-
erated ground truth functions as reference for evaluation. 
 



 16 

Another factor that influences the result of the object detection is a parameter that can be set 
before running the script and testing the algorithm. Since the algorithm makes use of a sliding 
window that searches the images for the ROI based on the HOG descriptor, it can be fine-
tuned to meet the requirements of the test image with the respective object of interest. This 
parameter is given as an area range in pixels of the ROI in the test images. It should roughly 
resemble the size of the stomata found in the microscopic images, as otherwise the detector is 
searching for an object that does not relate to the object of interest and the outcome is not valid. 

2.4.1 Training 

Training of the algorithm is necessary to build a customised classifier that detects objects of 
interest – in our case stomata – with adequate accuracy. The training dataset needs to be rep-
resentative of the images subject to the application of the object detector model (Casado- 
García et al., 2020). 
 
The training involves building a training dataset beforehand made up of positive and negative 
images that the algorithm uses as reference to learn and distinguish ROI as positive meaning 
an object of interest has been found, or to classify the region as negative meaning no object has 
been reported. An object of interest has been found when it represents the specified feature of 
the histogram of gradients (HOG). 
 
For both datasets, positive and negative samples were generated by utilising a script devel-
oped by Jayakody et al. (2017) that, through manual indication, crops the original image and 
thus generates separate smaller samples that together are used as training data. Each positive 
sample contains a single stoma. To generate representative positive samples, stomata in vary-
ing quality and size were selected in a random manner. 
 
To build the classifier, the algorithm draws on the training dataset as well as a ground truth 
specified by using the Image Labeler App® provided by Matlab®. The ground truth contains 
rectangular ROI that have been manually labelled in each of the positive samples with a 
bounding box (see Figure 2.2).  
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Manipulated images 

The training dataset was used to train the classifier for testing the manipulated images. This 
classifier was built based on 8 cascade stages with a False Alarm Rate of 0.1, and a Negative 
Sample Factor of 1. These parameters yielded acceptable results without a large number of false 
detections (false positives). The training dataset is made up of 555 positive samples and 309 
negative samples. The classifier was only trained on stomata from the original size image and 
not on stomata from the manipulated images. 
 
Fern and grass images 

The complete image dataset of 278 fern and grass images was split in two with each 139 im-
ages. Each set of 139 images was used as either training or testing dataset to achieve differing 
image datasets for the purpose of establishing an 'unbiased' classifier. To build a classifier that 
yields acceptable results, all of the respective 139 images were used for the training process, 
while for the testing only a selection of images (n=20) was used after being separated into the 
two quality categories (see Section 2.2.2, Table 2.2). 
 
The training dataset contains 2072 positive samples, and 1154 negative samples of both ferns 
and grasses including both magnifications. Overall, it has been found that a classifier with 10 
cascade stages, a False Alarm Rate of 0.1, and a Negative Sample Factor of 2 generates acceptable 
results regarding the ratio of correct and false detections with a relative low number of false 
positives. 
 
 

(a) (b) 

Figure 2.2: Examples of the labelled ground truth using Matlab’s® Image 
Labeler App®. a Sample stoma from the original image dataset. b Sample 
stoma from the fern image dataset.  
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2.4.2 Testing 

The actual test of the algorithm’s performance was done by running the code written by Jaya-
kody et al. (2017). The execution of the script utilises the previously built classifier to analyse 
the given test images by using a sliding window approach. This means, according to The 
MathWorks (2020), that a window to detect the object of interest slides over the image while 
deciding whether the current region of the location of the sliding window contains the object 
of interest or if it does not, i.e. labelling the region as positive or negative, respectively. Based on 
these labels, the classifier passes the region to the next stage of the Cascade Classifier and only 
if the last stage labels the region as positive, an object of interest has been found and the region 
is labelled as ROI and a bounding box on the final output image is created. If the label is nega-
tive, the region’s classification is complete and the window slides to the next location and con-
tinues to label each region (The MathWorks, 2020). 
 
Manipulated images 

In respect to creating a reasonable sample size for testing the algorithm and to start to see a 
pattern in the outcome, 12 images for each experiment have been chosen. The trained classifier 
was also tested on the same 12 images of the original dataset for reference purposes. The ROI 
area range that specifies the area range of the stomata found in the images was between 14000 
pixels and 150000 pixels. This area range has been kept the same throughout all experiments 
to test the performance of the algorithm without adjusting the parameters to the respective 
stomata size in the enlarged or reduced images. As expected, the larger images (250%, 300% 
and 400%) took a longer time to be analysed and classified since the images have larger pixel 
dimensions and a great file size and thus big amount of data to be analysed. 
 
Fern and grass images 

A number of 20 images of each quality category, i.e. low to medium, and medium to high 
quality, was selected to test the performance of the detection algorithm. All 40 of those images 
encompassed both magnifications, however in varying proportions. There were 11:9 (20×:63×) 
images for the lower quality image dataset. For the higher quality images, the ratio was 17:3 
(20×:63×). An additional 2 images have been used resulting in a total of five 63× images for the 
purpose of having a slightly bigger sample size when testing the algorithm’s performance for 
each magnification. 
 
Three test rounds were conducted. All tests have been done including both fern and grass 
images. The only distinction between test rounds was based on the difference in magnification 
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and lower or higher quality. One of the test rounds was done by using a generic ROI area. The 
generic ROI area parameter covers the full range of possible ROIs in all images containing both 
magnifications. The two other test rounds made use of an adjusted ROI area parameter that 
was tailored to the respective magnification level (i.e. the stomata size range in the image). 
This adjustment was performed for the purpose of testing whether a fine-tuning to the test 
image will be yielding an improvement in accuracy. The results will be shown in the following 
chapter. 

2.5 Statistical analysis 

As part of both research objectives, the effectiveness of the algorithm for all tests was com-
pared between the ground truth, i.e. results of the original, non-manipulated image dataset 
(part I) and the respective manipulated images (i.e. enlarged, reduced or downsampled), and 
the generic outcome of the fern and grass image dataset (part II) with the adjusted fern and 
grass image results, respectively. To achieve comparability between tests of the different ma-
nipulation experiments, and to determine significant results among all tests, statistical testing 
methods were applied. Statistical analysis was performed using R (version 4.0.2). 
 
Manipulated images 

The original test image dataset was used as the best achievable result and thus used as refer-
ence point to which the experiments’ results were compared to. To determine to what extent 
the algorithm’s effectiveness in terms of mean difference m of precision and recall changes for 
each manipulation experiment (i.e. the significance of each treatment), multiple paired t-tests 
with a sample size of 12 were conducted. The null hypothesis H0 is that there is no difference 
in precision or recall after each treatment when compared to the original image  
(H0: m = 0). The alternative hypothesis Ha is that a difference can be found (Ha: m ≠ 0). 
 
Fern and grass images 

To compare the algorithm’s performance between quality categories, a Welch t-test was con- 
ducted. This compared the means of the two independent groups of the two quality categories 
(i.e. lower and higher quality images). The sample size of each testing group was 20. It was 
tested whether the mean m of the lower quality (LQ) image results (mLQ) is different to the 
mean m of the higher quality (HQ) images (mHQ). The expectation was that the higher quality 
images show higher precision values as there is less disturbance in the image that could lead 
to false positive detections. The null hypothesis H0 is that there is a difference in precision or 
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recall when compared to each other (H0: mLQ ≠ mHQ). Whereas, the alternative hypothesis Ha is 
that no difference can be found (Ha: mLQ = mHQ). 
 
Similar to the original and manipulation experiments, when comparing the generic and the 
adjusted ROI area parameter, a paired t-test was applied. Here, the null hypothesis H0 is that 
there is a difference in precision or recall after adjusting the parameter when comparing to the 
generic outcome (H0: m ≠ 0). The alternative hypothesis Ha is that no difference can be found 
(Ha: m = 0). The expectation is that there is an improvement in accuracy as the detector was 
fine-tuned to its test input. 
 
Moreover, a statistical test determining whether there is a difference in the algorithm’s perfor-
mance between the two stomata types of ferns and the more complex type of the grasses was 
conducted. A Welch t-test in the same manner as the significance test for image quality com-
pared the mean difference between both groups. 

2.6 Evaluation 

To assess the algorithm’s performance, the metrics of precision and recall as well as the F- 
measure, or F1-score, of the test’s accuracy were determined. These are commonly used metrics 
to evaluate results of image analyses (e.g. Casado-García et al., 2020; Tharwat, 2018). Precision 
"represents the proportion of positive samples that were correctly classified to the total num-
ber of positive predicted samples" (Tharwat, 2018, p. 4), while recall "represents the positive 
correctly classified samples to the total number of positive samples" (Tharwat, 2018, p. 3, 4) 
where positive samples are all stomata in the image irrespective of being detected or not. The 
F-measure can be determined using the previous metrics and it "represents the harmonic mean 
of precision and recall" (Tharwat, 2018, p. 5). 
 
Each metric makes use of the previously determined correct or incorrect classifications involv-
ing true positives (TP), false positives (FP) and false negatives (FN). True positives are positive 
samples correctly classified as positive, i.e. true positives equal the number of detected stomata 
(ROIs). False positives are negative samples that have been classified as positive, i.e. corre-
sponding to the number of bounding boxes that were incorrectly classified as stomata. False 
negatives are positive samples (ROIs) that have been mistakenly classified as negative, i.e. 
stomata that the algorithm missed. Equations 1-3 show how precision (Eq. 1), recall (Eq. 2) and 
the F1-score (Eq. 3) were calculated:  
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The results from each of these statistical tests are presented in the following chapter.  
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(2) 

(3) 
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Chapter 3 

  

Results  

In this chapter, all the results obtained from testing the algorithm on the manipulation experi-
ments as well as the fern and grass images are shown.  
 
The numerical results refer to the manual counting involving correct stomata detections (true 
positives), incorrect predictions (false positives), and missed stomata (false negatives). The 
statistical tests make use of the previously described metrics showing the significance of the 
manipulation treatments while comparing to the original results. The fern and grass image 
results were compared in relation to lower or higher image quality and using a test involving 
a generic and an adjusted ROI parameter setting of the algorithm.  
 
Additionally, results comparing the two stomata types are presented as it was expected that 
the more complex stomata type of the grasses might pose difficulties to the algorithm due to 
more complex HOG feature descriptor, consequently leading to a poorer performance. These 
results can be found at the end of this chapter.  

3.1 Numerical results  

Here, the outcome of the manual counting of all tests is presented and briefly outlined. Figure 
3.1 shows the results generated by the stomata detection method for sample microscopic im-
ages for the original, the fern and the grass image datasets of lower and higher quality, respec-
tively.  
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3.1.1 Manipulated images 

A set of 12 images containing 395 stomata was tested. Table 3.1 shows the manually counted 
variables for each experiment with Original being the reference. 
 
Overall did the various experiments involving the enlargement, reduction and downsampling 
of the original image dataset from Jayakody et al. (2017) yield varying results. The algorithm 
generated the highest number of true positives (TP) and the least number of false positives 
(FP) and false negatives (FN, i.e. missed stomata) for the non-manipulated original images. 
This was expected and thus these images were also used as reference for comparison of the 
experiments’ outcome. The highest number of TP and lowest number of FP and FN was 

(a) 

(b) (c) 

Figure 3.1: Stomata identification results for three sample images of each of the datasets of original, fern 
and grass images. The yellow bounding boxes show automatically detected regions of interest (ROI).  
a Result of an original image of the dataset by Jayakody et al. (2017). b Result of a fern image (lower 
quality). c Result of a grass image (higher quality).  
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achieved by the downsampling experiment. The reduction experiments yielded the lowest re-
sults for TP and FP while having the highest number of missed stomata (FN) (see Table 3.1). 
 

Table 3.1: Numerical results obtained for the original image dataset and its manipulated experiments 
(i.e. enlargement, reduction and downsampling treatment) using 12 microscopic images containing 395 
stomata. 1An average value (combining all 12 images and experiments within each treatment) for each 
variable was calculated.  

 Actual number 
of stomata 

ROIs  
detected 

True positive False positive False negative 

Original 395 324 266 58 129 
Enlargement1 395 260 148 112 247 
Reduction1 395 102 75 27 320 
Downsampling1 395 406 245 161 150 

 

3.1.2 Fern and grass images 

A set of 20 images for each quality category was tested, where the lower quality images contain 
360 stomata, and the higher quality images contain 128 stomata. This difference in the number 
of stomata is due to fact that images of higher quality were images of larger magnification 
(63×) in most cases. Table 3.2 shows the manually counted variables for each quality category 
as well as results of the adjusted tests. 
 
The results for both quality categories vary when comparing all recorded variables. The lower 
quality images did achieve a higher number of TP but also a greater number of FP and FN 
than the higher quality images. 

Table 3.2: Numerical results obtained for the fern and grass dataset for each quality category using 20 
microscopic images containing 360 stomata for the lower quality images, and 128 for the higher quality 
images. 1Adjusted to the magnification levels of 20×, and 63×, respectively.  

 Actual num-
ber of stomata 

ROIs detected True positive False positive False negative 

Lower quality 360 260 117 143 243 
LQ (20)1 312 191 102 89 210 
LQ (63)1 48 3 1 2 47 
Higher quality 128 157 52 105 76 
HQ (20)1 77 80 29 51 48 
HQ (63)1 58 9 7 2 51 
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3.2 Statistical results  

As the interest of this research is to test the algorithm’s accuracy in respect to stomata size and 
image quality, each treatment (i.e. manipulations of enlargement, reduction or downsam-
pling) was compared to the non-manipulated, original test images while fern and grass images 
of different quality were compared to each other. To determine the significance of each test 
variable (size or quality) for each of the datasets (i.e. original and the fern and grass images), 
statistical tests were conducted. Paired t-tests reveal the significance in changes of precision 
and recall for the manipulations and for the adjustment of the ROI area for the fern and grass 
images. A Welch t-test determines the significance in differences of precision and recall when 
taking both image quality categories into account. 
 
For all statistical tests, a significance level α of 0.05 was applied, meaning the null hypothesis 
was rejected for a p-value being inferior or equal to the significance level α, and thus the alter-
native hypothesis was accepted, respectively. Further details on this can be found in Section 
4.2.3 when discussing which hypotheses were accepted. 

3.2.1 Manipulated images 

All treatments of manipulated experiments were compared to the original, non-manipulated 
results using paired t-tests. As mentioned in the previous chapter (see Section 2.5), the follow-
ing statistical hypotheses were stated: 
 

Null hypothesis H0: m = 0 
Alternative hypothesis Ha: m ≠ 0 

 
The results are shown in Table 3.3, as well as in Figures 3.2, 3.3 and 3.4. The respective results 
for individual treatments of each experiment (i.e. enlargement, reduction and downsampling) 
can be found in Appendix B. 
 
For all manipulation experiments, the F1-score indicates a varying performance. The highest 
score was obtained by testing the algorithm on the original images, as expected. The second 
highest score was achieved by the downsampling experiments, followed by the enlargement 
and finally the reduction experiments. 
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Table 3.3: Statistical results obtained for the original image dataset and the manipulation experiments 
(enlargement, reduction and downsampling). Each value represents the mean of all 12 tested images 
for each experiment combined. Note, the sample size of the mean of each manipulation experiment is 
greater than 12 as each experiment is made of these 12 images with varying treatments (see 2.1.1).  

 Precision Recall F1-score 
Original 0.80 0.67 0.72 
Enlargement 0.48 0.36 0.40 
Reduction 0.54 0.19 0.25 
Downsampling 0.64 0.62 0.61 

 
 
 

 

Figure 3.2: Precision and recall for manipulation experiment of enlargement with significance levels 
from the paired t-test when compared to the original image results. 
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Figure 3.3: Precision and recall for manipulation experiment of reduction with significance levels from 
the paired t-test when compared to the original image results. 

 

 

Figure 3.4: Precision and recall for manipulation experiment of downsampling with significance levels 
from the paired t-test when compared to the original image results. 
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3.2.2 Fern and grass images 

Using a Welch t-test, the lower quality images were compared with the higher quality images 
in terms of precision and recall. As described before, paired t-tests were conducted to deter-
mine a difference between the generic and an adjusted ROI area parameter for both image 
qualities. The basis of the statistical tests were the following hypotheses: 
 

Null hypothesis H0: mLQ ≠ mHQ 
Alternative hypothesis Ha: mLQ = mHQ 

 
The results can be found in Table 3.4 as well as in Figures 3.5 and 3.6. 
 
For all tests of both image quality categories, the F1-score indicates a varying performance. The 
highest score was obtained by testing the algorithm on the 20× images of both image qualities 
and the overall score of the generic ROI test of the higher quality images. The other tests in-
volving the generic ROI test and the 63× images achieve lower F1-scores, where the 63× yield 
the lowest. 
  

Table 3.4: Statistical results obtained for the fern and grass image dataset for each quality category. Each 
value represents the mean of all 20 tested images. 1Adjusted to the magnification levels of 20×, and 63×, 
respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Precision Recall F1-score 
Lower quality 0.34 0.31 0.29 

LQ (20)1 0.49 0.32 0.35 

LQ (63)1 0.11 0.04 0.06 

Higher quality 0.45 0.54 0.37 

HQ (20)1 0.42 0.64 0.41 

HQ (63)1 0.29 0.17 0.20 
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3.3 Results comparing stomata types 

Here, the results comparing the two stomata types of the fern and grass families are presented. 

3.3.1 Numerical results 

A set of a total of 40 images with 16 and 24 for each family of ferns and grasses, respectively, 
was tested. The fern images contain 119 stomata, while the grass images contain 369 stomata. 
This difference in the number of stomata is due to fact that ferns have a lower stomata density 
than grasses. Table 3.5 shows the manually counted variables for each family combining both 
magnification levels (i.e. 20× and 63×). 
 
Relative to the overall number of total detected ROI, the grass images yield a greater number 
of TP compared to the fern images. Also, less stomata are missed (FN) in the grass images. 

Table 3.5: Numerical results obtained for the combined fern and grass images (i.e. 20× and 63× for each 
family together) using 40 microscopic images containing 488 stomata in total, with 16 images containing 
119 (ferns) and and 24 images containing 369 (grasses). 

 Actual number 
of stomata 

ROIs detected True positive False positive False negative 

Ferns 119 144 48 96 71 
Grasses 369 273 121 152 248 

 

3.3.2 Statistical results  

Using a Welch t-test, the fern images were compared with the grass images in terms of preci-
sion and recall. Due to the greater complexity in stoma type (i.e. the object of interest), it was 
expected that the performance of the algorithm was poorer and thus a difference between the 
mean precision and recall can be found. The basis of the statistical test were the following 
hypotheses: 
 

Null hypothesis H0: mFerns ≠ mGrasses 
Alternative hypothesis Ha: mFerns = mGrasses 

 
The Welch t-test revealed a p-value of p=0.59 for precision and p=0.60 for recall. Both p-values 
are not significant meaning neither precision nor recall differ significantly between the fern 
and grass images (see Table 3.6 below).  
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Table 3.6: Statistical results obtained for the fern and grass image dataset combined (i.e. 20× and 63× 
together). Each value represents the mean of the 16 fern and 24 grass test images. 

 Precision Recall F1-score 
Ferns 0.36 0.40 0.33 
Grasses 0.42 0.45 0.33 
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Chapter 4  

Discussion 

Studying stomata is an important part of research laying groundwork in predicting past and 
future climates, assessing their influence on the water and carbon cycles as well as the health 
and productivity of agricultural settings, among others. In this research, an automated 
machine-learning method was tested on a variety of plant types and stomata sizes but also 
different image qualities of the microscopic images that make up the foundation of stomata 
research. 
 
In this chapter, the methodology of the data collection involving sample preparation and the 
training process of the object detector are reviewed. Additionally, the evaluation of the detec-
tor’s performance is discussed, and limitations are highlighted. Finally, possible improve-
ments and current advancements are briefly presented. 

4.1 Methodology – Sample preparation 

There are a variety of methods for microscopic sample preparation and image acquisition. 
Obvious advantages and disadvantages of the selected sampling methods are discussed in the 
following. 
 
Such methods range from less complex methods such as applying a layer of nail polish on the 
leaf’s epidermis and lifting the print using the clear tape and thus obtaining a leaf epidermis 
impression; or a more complicated approach of bleaching the leaf fragment and mounting 
each sample on to the microscopic slide permanently fixating the sample with glycerin. The 
former method seems to be the quickest and easiest method to carry out as the time investment 
is merely several minutes for the nail polish to dry. Yet, this method did not work well for all 
samples collected here. Especially the ferns are flimsy and fragile and thus, while attempting 
to remove the dried nail polish layer, the impression was not successful. Also, it is important 
to be careful in applying the tape as air bubbles are easily captured in between leading to an 
unclear sample when mounted on the microscopic slide. When it come to the leaf bleaching 
method, the time investment has to be taken into account when collecting data for future anal-
ysis. The amount of time a leaf needs to be bleached depends on the freshness and the kind of 
the leaf sample, as mentioned before in Section 2.2.2. Additionally, even after bleaching the 
leaf sample for a significant amount of time, tissue can still remain in the sample and lead to 
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noise in the final sample. However, the leaf bleaching method leads to more detailed results 
as the cell boundaries are captured better compared to the epidermal impressions. 

4.2 Automated stomata detection 

Here, various aspects that affect the training and performance of the automated stomata de-
tection are discussed. Particular factors that have been tested and found to influence the out-
come are described as well as the statistical results of the manipulated dataset and the fern 
and grass dataset are interpreted. 

4.2.1 Influencing factors 

There is a range of factors that seem to influence the effect of successful stomata detection in 
the microscopic test images for both testes datasets of manipulated and fern and grass images. 
In the following these factors are discussed. 
 
ROI area range parameter 
The ROI area range parameter affected the performance of the algorithm by means of pre-
setting and thus aligning the detector’s sliding window search and thus looking for the correct 
object of interest. If the parameter was deliberately kept at a range that does not represent the 
rough size of the stomata in the test image, there were either almost no reports of detected 
objects (parameter too large) or a too big number of bounding boxes in the final outcome image 
(parameter too small). Thus, it is necessary for the detector to successfully detect stomata that 
the ROI area parameter is set correctly. This, however, poses a limitation of the applied detec-
tion method which is further explained in Section 4.4. 
 
To test the performance when fine-tuning the ROI parameter, it has been specifically adjusted 
to the different magnification levels of the fern and grass dataset. Adjustment took place for 
the 20× and 63× magnification, respectively. Both test results were compared to a test that used 
a generic ROI parameter which covers both magnifications by means of statistical tests. These 
results are discussed in Section 4.2.3. 
 
Image size 
The factor of image size is more or less directly related to the ROI parameter setting. Specifi-
cally, when testing the enlarged or reduced images from the original dataset, there seems to 
be a tipping point when the algorithm is not anymore able to detect stomata as well as in the 
original image. It is expected that this is related to the ROI area range which was not adjusted 
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when conducting the manipulation experiments and kept at the original setting. This is further 
discussed in Section 4.2.3. 
 
Image quality 
As the image quality was one of the objectives for testing the algorithm’s performance, it has 
been found that – similarly to image size – when there seems to be a threshold where the 
difference in precision and recall compared to the original results changes in significance or 
drops to a lower value, respectively. Detailed explanations can be found in Section 4.2.3. 
 
Note, that in terms of image quality, it has to be distinguished between the tests of the algo-
rithm’s sensitivity towards the quantifiable quality (i.e. resolution of the manipulated dataset) 
and the perceived quality (fern and grass dataset). Both appear to have a different influence 
on the detector’s performance. The manipulated image experiments seem to show a tipping 
point at which the algorithm is not anymore able to detect stomata correctly, similar to the 
image size experiments. At this point, the difference in precision, for instance, changes and the 
values drop significantly. When testing the fern and grass image dataset while looking at the 
lower or higher image quality, the difference in precision, for example, appears not to be of 
great significance. Relevant statistical results are discussed below. 

4.2.2 Training process 

The training process for building a customised classifier for detecting stomata in different  
microscopic images of different plant types and species worked well and the short amount of 
time the training takes is a great advantage of the algorithm compared to other automated 
methods (see Jayakody et al., 2017). Training takes up to a few minutes at most. This enables 
researchers to process a great amount of data in an efficient manner accelerating the data anal-
ysis. 
 
When training the object detector, it is assumed that the vast majority of the image – and thus 
the sliding window searching for the object of interest – does not contain stomata (The Math-
Works, 2020). This, however, poses difficulties analysing microscopic images of some plant 
species with high stomata densities. Therefore, creating a training dataset of positive images 
is complicated, especially for the grass species, as the density of stomata is very high often 
times leading to the cropped images of the individual stomata for positive samples containing 
more than one stoma or at least fractions of other stomata leading to a misconception of "neg-
ative area" around the object of interest in the image. This may be one of the reasons, the 
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training is less accurate, and the outcome shows poorer results compared to the original da-
taset by Jayakody et al. (2017). 
 
The purpose of selecting differing images for the training and test dataset was to test the 
method’s effectiveness without being biased by having classified the same images in the pre-
ceding training process leading to a seemingly distorted accuracy. Similarly, this approach is 
also applicable in a practical approach in utilising this method for future object detection in 
images as only a limited set of images will be needed to be prepared for the training stage 
while the remaining images will be analysed. Only this way, the method would truly aid in a 
more efficient data acquisition and analysis and thus more reproducible results. 

4.2.3 Performance and evaluation 

The performance of the automated stomata detection was evaluated using the metrics of pre-
cision and recall as well as the F-measure. In the following, the numerical and statistical test 
results are interpreted and discussed. 
 
For all statistical tests, a significance level α of 0.05 was applied, meaning the null hypothesis 
was rejected for a p-value being inferior or equal to the significance level α, and thus the alter-
native hypothesis was accepted, respectively. 
 
Manipulated images 

The algorithm generated the best results in terms of correct detections (i.e. highest number of 
true positives, least number of false positives and false negatives) for the non-manipulated 
original images. This was expected and thus these images were also used as reference for com-
parison of the experiments’ outcome. Thus, paired t-tests were carried out to determine the 
significance of the treatment on precision and recall. Both of these metrics would be ideal when 
the value is one. 
 
Enlargement 
The statistical tests reveal a significant difference between the result of all treatments when 
each was compared to the original outcome. There appears to be a tipping point where the 
difference represents a higher significance (250% and larger) after treatment. This pattern is 
true for both, precision and recall. Thus, the null hypothesis H0 (m = 0) was rejected and the 
alternative hypothesis Ha (m ≠ 0) was accepted. 
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Reduction 
Note, that the increments for reducing the image size are smaller than for the enlargement. 
The reason for this was that it was expected that the algorithm seemed to have a lower toler-
ance towards reducing the image size. 
 
The results of the statistical paired t-tests reveal a more complex result for the treatments of 
reduction. A significant difference between the original result for precision and the image size 
of 50% and smaller was found but not for 60% and 75%. Note, that the level of significance is 
lower for 40% but again greater for 30%. This may be due to the great variance of precision 
values of each of the reduced 12 images. In this case, some outcome images of the reduction 
experiment show values of zero or one for precision. Yet, when precision equals one, it seems 
to imply that the algorithm was 100 percent successful in detecting all objects of interest in the 
image. However, it has to be kept in mind that precision equals one when there are zero false 
positives. Thus, even when the algorithm detected one single stoma only, but has not yielded 
any false detections, precision equals one. Seemingly perfect results like this example, have to 
be interpreted carefully when interpreting the algorithm’s performance and also the signifi-
cance of the treatment compared to the original. Results like these could be improved by hav-
ing a larger sample. The metric recall, however, shows a clear pattern where all reduction 
treatments were significant except for the 75%. 
 
As shown above, for the case of reduction, the null hypothesis H0 (m = 0) was rejected and the 
alternative hypothesis Ha (m ≠ 0) was accepted as well. 
 
Downsampling 
The downsampling experiment includes the most extensive number of treatments thus lead-
ing to a greater sample size which may have an influence on the result. It has been found that 
a tipping point is existent, similar to the enlargement experiments. The change in significance 
occurs at a very low image resolution where the pixel dimensions were 5% of the original 
image. Also, the values for recall drop at the 5%-mark although the difference is not significant 
which may be due to the great variance of the original values itself. Yet, the value is lower than 
the original one indicating a visible difference. Overall, this change in significance and the 
decrease can be interpreted as the algorithm being relatively insensitive towards image qual-
ity. 
 
However, for the downsampling treatments, the null hypothesis H0 (m = 0) was rejected as 
well and thus the alternative hypothesis Ha (m ≠ 0) was accepted. Yet, this statement is solely 
based on the fact that six out of eight treatments showed a significant difference in terms of 
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precision when compared to the original result, despite only four showing the greatest signif-
icance and two being not significant. Conclusively it can be noted, there is a change in preci-
sion is existent, but the overall sensitivity is the least in terms of image quality (resolution). 
 
The F-measure for all three manipulation experiments 
The F-measure, or the F1-score, ranges from zero to one with high values indicating high clas-
sification performance (Tharwat, 2018). For all manipulation experiments, the F1-score indi-
cates varying performance. As expected, the highest score was obtained for the original 
images. The second highest score was achieved by the downsampling experiments, followed 
by the enlargement and finally the reduction experiments. Accordingly, the F1-score indicates 
the best classification performance for the downsampling treatment out of all three manipula-
tion experiments. This insight can be interpreted that the algorithm may be least sensitive to 
image quality, similar to what the precision values show as mentioned before. 
 
In conclusion, the manipulation experiments indicate that the object detector seems to be more 
sensitive to image size than image quality. Yet, this will be tested with the fern and grass da-
taset. Note, that the resolution (pixel dimensions) of the fern and grass images is lower than 
the dataset by Jayakody et al. (2017) to begin with. The images can be compared to around 
30% of the downsampling treatment. Accordingly, as the downsampling experiments show 
the significance of difference in performance show up only from 5% and lower, it is expected 
that the numerical (quantifiable) image quality was not having an impact. Therefore, it has to 
be kept in mind that the perceived image quality has been isolated as main influencing factor 
when performing the statistical tests involving the fern and grass image dataset.  
 
Fern and grass images 

The object detector generated the best results in terms of correct detections (i.e. highest number 
of true positives, least number of false positives and false negatives) for the lower image qual-
ity. When it comes to the ROI adjustment, the 63×-higher-quality images score the highest 
number of TP compared to all detected ROIs. 
 
Two different comparisons using statistical tests have been carried out determining whether 
there is a significant difference between the two image qualities itself (Welch t-test), and if a 
significant difference is present when adjusting the ROI area parameter and comparing it to a 
generic one (paired t-tests). 
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Comparison of lower and higher quality images 
The Welch t-test reveals no significant difference between both image qualities in terms of 
precision, but a significant difference for recall. Thus, for precision the null hypothesis H0 (mLQ 

Precision ≠ mHQ Precision) was rejected and thus the alternative hypothesis Ha (mLQ Precision = mHQ Precision) 
was accepted. For recall, the alternative hypothesis Ha (mLQ Recall = mHQ Recall) was accepted. Note, 
that the overall number of FN was greater than the overall FP (see Table 3.2) as recall relies on 
the number of FN compared to precision depending on the number of FP. This finding indi-
cates one of the average recall values – here the 63× lower quality image results (see Table 3.4) 
– was lower than the 63× higher quality image results meaning that more stomata have been 
missed in the lower quality images leading to a more significant difference despite not being 
of great significance. The F1-score supports this result. This is explained in more detail below. 
 
Comparison of a generic and an adjusted ROI parameter 
As the ROI parameter being a main influencing factor on the detector’s performance, it was 
tested whether an adjustment affects precision and recall in a significant manner when com-
paring to the non-adjusted (generic) results. Paired t-tests were conducted and it has been 
found that there is no significant difference for precision and thus the null hypothesis  
H0 (mPrecision ≠ 0) was rejected and the alternative hypothesis Ha (mPrecision = 0) was accepted. In 
terms of recall, a significant difference has been found, where the higher image quality results 
show a greater significance than the lower image quality images. In this case, the null hypoth-
esis H0 (mRecall ≠ 0) was accepted. 
 
The above described result of recall showing a significant difference after adjusting the ROI 
parameter, but precision showing no significance, is similar to the Welch t-test’s result and 
that the metric of recall depends on the number of FN. This implies that the number of missed 
stomata (FN) is greater for the adjusted ROI parameter than for the generic one. This result 
seems contradictory as adjustment of the ROI parameter was expected to improve the out-
come, or at least yield the same results as a test involving the generic ROI parameter. A possi-
ble explanation for this is that the adjustment constrains the algorithm to an extent that leads 
to the sliding window method being less effective as the window scales up and down within 
these constraints during the search. Subsequently, the search window inspects the image 
within the constraints and thus having less flexibility leading to missed stomata. 
 
The F-measure 
For all tests involving both image qualities as well as the generic and adjusted ROI parameter, 
the F1-score indicates a varying performance. The overall values were lowest for the lower 
quality images. Although the 20× images of both image qualities yield the highest scores, the 
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overall F1-score does not surpass 0.5 indicating a mediocre performance of the classification 
and object detection. 
 
The F1-score may indicate an overall poorer performance for the fern and grass dataset when 
compared to the original dataset by Jayakody et al. (2017). This may be due to different method 
of stomata imaging using a bleached-leaf approach instead of an epidermal leaf impression 
leading to a greater noise and a feature-rich background in the final image. This, in turn, re-
sults in more incorrect detections as these features function as distraction to the algorithm due 
to their similarity of the shape to the object of interest. 
 
In conclusion, testing the algorithm’s performance using fern and grass microscopic images, 
indicate that there is no significant sensitivity when it comes to image quality. Consequently, 
it can be said that for practical reasons it is not required to take microscopic images with a very 
high resolution and thus requiring a greater memory space. This finding can be taken into 
account when applying this particular object detector in future research where preparation of 
new images is necessary. 
 
Comparison of fern and grass stomata type 
The Welch t-test reveals no significant difference between both families in terms of precision 
and recall. Thus, in both cases, the null hypothesis H0 (mFerns ≠ mGrasses) was rejected and thus 
was the alternative hypothesis Ha (mFerns = mGrasses) accepted. This finding indicates no significant 
influence of the stomata type when it comes to automatically detecting stomata in microscopic 
images despite the more complex HOG feature descriptor of the grass stomata as object of 
interest. This is crucial as this outcome shows the wide applicability of the automated stomata 
detection method to a variety of stomata which is valuable for the research involving a broad 
sample. 

4.3 Conclusion – Comparing findings of manipulated images with fern 
and grass images  

When comparing the findings of the tests involving the manipulated image dataset and the 
fern and grass images, it can be stated that image quality of both, the quantifiable and the 
perceived quality, had the least significant influence on the correct detection of stomata in 
microscopic images. Precision and recall of the downsampling experiment show the highest 
numbers overall compared to the enlargement and reduction experiments. Also, no significant 
difference has been found when comparing the lower and higher image qualities of the fern 
and grass images.  
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In contrast, image size, i.e. mimicked or actual stomata size, appears to play a more important 
role when it comes to automatically detecting stomata in microscopic images. There are many 
more missed stomata (FN) in the enlarged or reduced images. 
 
Additionally, the stomata type appears to not be a crucial factor for the automated stomata 
detection. As long as the training involves both types, the algorithm shows an adequate per-
formance. Yet there are some limitations of the method which could be addressed to improve 
the overall detection accuracy, especially for the fern and grass image dataset based on the 
microscopic images taken for this research. Further remarks on this can be found in Section 
4.5.  

4.4 Limitations 

In respect to limitations of the object detection method, there are several aspects that make it 
somewhat cumbersome and time-consuming although the method attempts to accelerate the 
process of data analysis. In the following, these limitations are elucidated. 
 
ROI area range parameter 
As mentioned in Section 1.4, automated detection methods are assumed to reduce the amount 
of time needed to analyse microscopic images since spatial calibration is not needed as the 
algorithm was trained on the objects of interest and is thus analysing the image for the respec-
tive size. However, this algorithm needed to be given a parameter that pre-sets the area range 
of the ROIs (i.e. stomata found in the test images). This adds an additional step requiring meas-
urements of several stomata beforehand to determine the rough size which can then be set as 
ROI area range parameter for the detector. 
 
Setting a parameter that does not correspond with the images subject to testing, yields inaccu-
rate results. Either, the detector determines wrong objects that relatively closely resembles the 
previously defined feature type, or the detector does not find correct objects that fit to what it 
has learned during the training process. For example, if the parameter was set smaller than 
the rough size of the stomata in the test images, any object of elliptical shape (as defined by 
the HOG feature type) such as air bubbles will be found to be a ROI and annotated with a 
bounding box. Furthermore, if the parameter is larger than the stomata in question, the detec-
tor reports, for instance, epidermal cell boundaries that form a shape similar to the HOG de-
scriptor, as positive detection. In both cases, the results are not valid and the ROI needs 
adjustment in accordance with the images subject for testing. Thus, for the method to work 
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successfully, it is required to know the rough size of the object of interest (i.e. stomata) in the 
test images which does not lead to time savings in terms of avoiding manual measurements. 
 
Collection of training data 
To build a customised object detector, training on the image dataset in question is essential. 
For this, a set of positive and negative samples needs to be established. As suggested by Jaya-
kody et al. (2017), training samples can be obtained by manually cropping individual stomata 
from the training image dataset. Negative samples were obtained from the same training da-
taset in a similar manner. This process, however, is time-consuming and might need expert 
knowledge (Casado-García et al., 2020), but it is crucial for the training of the algorithm and 
thus inevitable. Note, that a sufficient number (approx. hundreds) of training samples is re-
quired to build an effective object detector. After all, the size of the training dataset has im-
proved using this method compared other classifiers that need thousands of samples to build 
an accurate classifier (Jayakody et al., 2017). Note, that the samples should be representative 
of the stomata found in the test dataset, i.e. including as many variations of appearance as 
possible. 
 
Moreover, annotating the positions of ROI in the positive training samples is crucial for the 
training to work properly as this step makes up for the ground truth. For this, rectangular 
annotations were manually added to the positive samples using the Image Labeler App® pro-
vided by Matlab® (see also Section 2.4.1). This step also consumes a reasonable amount of time 
and must be considered when preparing the data. 
 
Evaluation 
Similar to the collection and annotation of training data, the evaluation involves a substantial 
amount of manual labour. The process of obtaining the numerical results involved counting 
the bounding boxes in the outcome images. True positives, false positives and false negatives 
have to be determined and recorded. Yet, this step can only be done involving human assess-
ment but it is essential to get the results for determining the evaluation metrics of precision, 
recall and the F-measure. 
 
In conclusion, several aspects such as knowing the size of stomata in the variety of test images 
and adjusting the algorithm’s parameters, as well as manually annotating the ROI for the 
ground truth input for the algorithm leads to an overall great amount of manual labour that 
is still required to establish the training datasets and ground truth but also evaluating the final 
results by manually counting the bounding boxes are limitations of the training and testing of 
this particular machine-learning-based detector. 
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4.5 Improvements and advancements 

Although the here tested method works appropriately, and automated detection methods 
based on HOG features still achieve high accuracies (see also Aono et al., 2019 and Jayakody 
et al., 2017), there have been advancements in the work on detecting stomata in microscopic 
images progressing form machine-learning approaches, like the one used in this research, to 
deep- leaning methods (e.g. Li et al., 2019). Similarly, Jayakody et al. (2017) is working on a so-
called region based convolutional neural network (RCNN) method to automatically detect 
stomata (Jayakody et al., in prep.). Detection methods that implement deep leaning features 
outperform the classifiers build based on HOG features (Aono et al., 2019). 
 
Especially, working with microscopic images having a feature-rich background, such as the 
fern and grass images dataset used here, can be a challenge for the HOG-feature-based detec-
tion method as shapes similar to stomata can be found in these images. In this case it is pro-
posed that the more advanced methods using convolutional neural networks perform better 
and show high accuracy such as shown by (Bhugra et al., 2018). 
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Chapter 5  

Conclusion 

The aim of this research was to test the effectiveness of an automated self-learning algorithm 
in detecting stomata in microscopic images and how this is influenced by variations in stomata 
size and image quality using images of different plant types. 
 
The research questions whether the automated detection method can be successfully applied 
to a variety of microscopic images featuring stomata including the more complex type of grass 
stomata, and differing stomata sizes as well as changes in image quality to correctly identify 
stomata were answered. For both parts of the research objective and for all involved experi-
ments of enlarging and reducing, as well as testing on different image qualities by downsam-
pling and classifying images in terms of perceived quality, the algorithm proved to be 
successfully applicable in detecting stomata in all images, however, with varying accuracy. 
 
First, a sensitivity towards size differences has been tested by mimicking different sizes by 
manipulating images from the image dataset that was originally established alongside the im-
plemented method developed by Jayakody et al. (2017). A significant effect involving a tipping 
point has been found indicating a sensitivity towards stomata size. Secondly, the algorithm 
seems to be least sensitive towards image quality. Noe, that there is a significant effect in the 
detection accuracy but this only occurs at a low level and is thus disregarded as crucial influ-
encing factor. Yet, it has to be kept in mind that the image quality of the fern and grass dataset 
and, therefore the algorithm’s performance, could have been improved by using a different 
method of sample preparation leading to a less feature-rich background with less distraction 
for the algorithm. More advanced methods are being developed that seem to overcome this 
issue. Finally, a variety of stomata types was introduced and tested by obtaining a new set of 
microscopic images of fern and grass species where the grass stomata feature the more com-
plex stomata type. Here, the algorithm did not show a significant difference between both 
stomata types in the tested images indicating a wide applicability of the automated detection 
method to a variety of stomata which is a key finding of this research. 
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Appendix 

Appendix A 

The following tables present the exact species name of the collected plant material and the 
sample collection location. 
 

Table 1: List of sampled fern species with location of collection. 

Species Location 

Adiantum caudatum Hortus Botanicum Amsterdam 

Lygodium japonicum (Thunb.) Sw. Hortus Botanicum Amsterdam 

Matteuccia struthiopteris (L.) Tod. Hortus Botanicum Amsterdam 

Nephrolepis multiflora (Roxb.) F.M.Jarrett ex C.V.Morton Hortus Botanicum Amsterdam 

Pteridium aquilinum Utrecht Botanic Gardens 

 

Table 2: List of sampled grass species with location of collection. 

Species Location 

Arundo donax Utrecht Botanic Gardens 

Cortaderia selloana Utrecht Botanic Gardens 

Festuca flavescens Utrecht Botanic Gardens 

Melica uniflora Retz. Hortus Botanicum Amsterdam 

Milium effusum L. Hortus Botanicum Amsterdam 

Oryza sativa Utrecht Botanic Gardens 

Pharus latifolius L. Hortus Botanicum Amsterdam 

Panicum virgatum Utrecht Botanic Gardens 

Sorghum bicolor Utrecht Botanic Gardens 
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Appendix B 

Here, the results are reported separated by experiment and each treatment. Each value repre-
sents an average calculated by combining all 12 tested images. 
 

Table 3: Numerical results obtained for the original image dataset and each enlargement experiments 
using 12 microscopic images containing 395 stomata.  

 Actual number 
of stomata 

ROIs 
detected 

True positive False positive False negative 

Enlargement (150%) 395 411 310 101 85 

Enlargement (200%) 395 308 219 89 176 

Enlargement (250%) 395 198 101 97 294 

Enlargement (300%) 395 196 70 126 325 

Enlargement (400%) 395 183 38 145 357 
 
 

Table 4: Numerical results obtained for the original image dataset and each reduction experiments  
using 12 microscopic images containing 395 stomata.  

 Actual number 
of stomata 

ROIs  
detected 

True positive False positive False negative 

Reduction (75%) 395 279 218 61 177 

Reduction (60%) 395 149 109 40 286 

Reduction (50%) 395 60 37 23 358 

Reduction (40%) 395 19 10 9 385 

Reduction (30%) 395 4 2 2 393 
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Table 5: Numerical results obtained for the original image dataset and each downsampling experiments 
using 12 microscopic images containing 395 stomata.  

 Actual number 
of stomata 

ROIs  
detected 

True positive False positive False negative 

Downsampling (50%) 395 347 290 57 105 

Downsampling (25%) 395 363 296 67 99 

Downsampling (12.5%) 395 403 306 97 89 

Downsampling (10%) 395 417 310 107 85 

Downsampling (5%) 395 352 219 133 176 

Downsampling (4%) 395 303 184 119 211 

Downsampling (3%) 395 306 147 159 248 

Downsampling (2%) 395 758 211 547 184 

 

Table 6: Statistical results obtained for the original image dataset and the enlargement experiments. 
Each value represents the mean of all 12 tested images. 

 Precision Recall F1-score 

Enlargement (150%) 0.73 0.77 0.74 

Enlargement (200%) 0.68 0.54 0.59 

Enlargement (250%) 0.47 0.24 0.32 

Enlargement (300%) 0.34 0.17 0.22 

Enlargement (400%) 0.18 0.09 0.12 

 

Table 7: Statistical results obtained for the original image dataset and the reduction experiments. Each 
value represents the mean of all 12 tested images.  

 Precision Recall F1-score 

Reduction (75%) 0.77 0.56 0.64 

Reduction (60%) 0.70 0.27 0.39 

Reduction (50%) 0.55 0.09 0.16 

Reduction (40%) 0.51 0.03 0.06 

Reduction (30%) 0.17 0.01 0.02 
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Table 8: Statistical results obtained for the original image dataset and the downsampling experiments. 
Each value represents the mean of all 12 tested images. 

 

 

 

 Precision Recall F1-score 

Downsampling (50%) 0.81 0.72 0.76 

Downsampling (25%) 0.79 0.75 0.76 

Downsampling (12.5%) 0.74 0.77 0.75 

Downsampling (10%) 0.72 0.79 0.75 

Downsampling (5%) 0.62 0.54 0.57 

Downsampling (4%) 0.62 0.47 0.52 

Downsampling (3%) 0.49 0.38 0.41 

Downsampling (2%) 0.28 0.53 0.36 


