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Abstract 
Maintaining the condition of the drainage areas is an important task of the regional water 

authority “Hoogheemraadschap De Stichtse Rijnlanden”, abbreviated by HDSR. HDSR prefers to 
monitor the maintenance condition of the drainage areas continuously in order to keep the condition 
at an acceptable level. However, observing this condition continuously for each drainage area is 
financially unfeasible. The aim of the study is to develop an approach to measure the maintenance 
condition of the main waterways of the drainage areas of HDSR in real time. This approach requires 
the water level difference in the waterways, Δh, as a parameter of the maintenance condition, since 
Δh is linked to flow resistance. In order to develop the approach, two case studies were performed: 
one in the Amerongerwetering drainage area and one in the Lange Weide drainage area. During the 
study, machine learning techniques, such as a linear regression model, a random forest model and a 
gradient boosting model, were applied. The models required a large input dataset to predict the Δh 
values. These value were compared to the observed values of Δh. When observing a significant 
difference between the predicted and the observed values, the date was classified as an anomaly. The 
data included in the study were provided by HDSR and KNMI. The linear regression model was not 
suitable for the study, because of insufficient prediction quality. Both the results of the random forest 
and gradient boosting model showed that most of the anomalies were detected. The anomalies were 
analysed and were linked to possible explanations. This analysis explained that excessive vegetation 
has large influence on Δh. The approach proved more promising for the (simpler) Amerongerwetering 
drainage area, compared to the Lange Weide drainage area. The random forest model proved to be a 
better performing model, both statistically and visually. The study concludes that machine learning 
provides opportunities for the water management in the drainage areas of HDSR. However, it is 
recommended that these opportunities are further examined in future studies. 
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1 Introduction 
 

1.1 Background 
Over time, the maintenance condition of the main water ways of drainage areas tend to get 

worse. Most often, the conditions decrease is a result of excessive vegetation and dreck that decrease 
the flow velocity, broken pumps that do not deliver the required capacity and obstructions in the 
streams. The regional water authority “Hoogheemraadschap De Stichtse Rijnlanden”, abbreviated with 
HDSR, does not have a real time view on the full maintenance condition, since it is financially unfeasible 
to observe the condition of each drainage area by hand. However, HDSR is interested in knowing the 
maintenance condition since it is responsible for the surface water in the area. Drainage areas with a 
decreased condition could lead to several different problems as improper functioning of the system, 
floods and overall, an increase in costs. An approach which could help with assessing the maintenance 
condition automatically and real time could decrease the monitoring costs for HDSR intensively and 
problems could be detected earlier. 

The research takes place at the regional water authority HDSR in the form of an internship. 
The focus of the research is on the development and testing of an approach to detect the maintenance 
condition of the main waterways of the drainage areas with the help of machine learning and anomaly 
detection techniques. After the development of the approach, it is tested in two different drainage 
areas. These tests will be described in the form of case studies. 

By conducting two case studies, the approach will be tested for both a simple and a complex 
situation. The first case study is conducted in the Amerongerwetering drainage area, which has a 
relatively simple hydrology and land use. These factors make the drainage area perfect for a first test 
case for the methodology. The second case study is performed in the Lange Weide drainage area. 
Because of the complex hydrology and frequently changes over time, this drainage area is perfect for 
testing the capability of using the approach in such a situation. The relation between these two 
drainage areas could help with developing a more generic approach for more drainage systems. The 
locations of the two case studies and the total area that is managed by HDSR are highlighted in figure 
1.1. 

 

 
Figure 1.1: The area that is managed by HDSR and the location of the Amerongerwetering and Lange Weide drainage areas. 
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1.2 Problem description 
The problem to be faced during this study is the issue that monitoring the maintenance 

condition of drainage areas real time is financially unfeasible, when done manually. This study focusses 
on the development of a new approach using anomaly detection and machine learning techniques on 
the stream gradient within the drainage areas. Resulting in a continuous view on the maintenance 
condition of the main waterways of the drainage areas of HDSR. 

It is important to study whether there is a correlation between the gradient and irregularities 
in the drainage area, since this correlation could be used for various means, like finding irregularities 
in the, and assessing the condition of the drainage area remotely. Studying this area can also argued 
to be relevant because of the following reasons. 

At first, the research topic is scientifically relevant since this is the first study on this specific 
topic. There is a knowledge gap present, as there is no literature which combines machine learning 
techniques and stream gradients in drainage areas. Most literature is focussed on the relationship 
between resistance and the stream gradient in high-gradient streams (Yochum & Bledsoe, 2010).  

In addition, the societal relevance of the research is comprehensive, since the new approach 
could be used in order to increase the maintenance condition of the streams. Overall the drainage area 
could be working more efficient after the implementation of the method, so less problems are to be 
expected. Improving the efficiency of the regional water authority could save public capital, since 
regional water authorities are governmental organisations, financed by public funds. In this way, the 
approach could be advantageous for both HDSR as other regional water authorities in The Netherlands. 

At last, the societal relevance has an overlap with the specific relevance for HDSR, since the 
regional water authority is interested in knowing the maintenance condition of the main waterways of 
the drainage areas. HDSR does not have a real time view on the maintenance condition of the drainage 
areas since it is financially unfeasible to observe the condition of each separate location continuously. 
However, an alternative approach of monitoring the maintenance condition could be interesting for 
HDSR. In particular if the approach is able to measure the condition automatically and real time. 
Potential changes in maintenance condition could be detected earlier by the new approach compared 
to the use of the current approach, due to the continuous measurement and a lower threshold. As a 
result, a more efficient maintenance schedule of the drainage areas could be designed. Furthermore, 
the approach has the potential to decrease the monitoring costs significantly, since the required data 
is already measured. 
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1.3 Literature review 
Since flow resistance is proportionate with gradient and disproportionate with the flow 

velocity in a stream, it is argued to be important to study the gradient (Yochum & Bledsoe, 2010). As 
such, an increase of flow resistance could be the result of a decrease in maintenance condition of the 
stream. During this study, a new approach is be developed which is able to find the locations with 
decreased maintenance condition of the drainage area and to identify its causes. The approach uses 
machine learning techniques and anomaly detection on stream gradients on the main waterways of 
the drainage areas. This is studied because the slope of the stream gradient could be the result of the 
resistance in the stream.  

 
Anomaly detection or outlier detection is a method that is specialized into finding patterns in 

data that are not in line with expectations considering the bulk of the data (Hodge & Austin, 2004). 
This method has several applications, such as fraud detection, medical applications, text errors and 
others. All of these applications have different anomaly detection techniques. There is an overview by 
Chandola et al. (2009) which reviews a number of these techniques and the advantages and 
disadvantages are given (Chandola, Banerjee, & Kumar, 2009). The most notable advantage of using 
the method for this study is that it is relatively simple. However, a disadvantage of using this method 
could be the amount of data needed, but because of a large available dataset this will not be an issue 
in this study. 

For each problem where anomaly detection could be used, a decision has to be made on what 
specific technique is to be used. During the study, this decision is made considering the problem and 
the available data.  Anomaly detection could be used for problems in water management as well. Raciti 
et al. (2012) describe the detection of contamination in water distribution systems. The ADWICE 
algorithm is used to find anomalies in the water quality of the system, real-time (Raciti, Cucurull, & 
Nadjm-Tehrani, 2012). In the Materials & Methods chapter of this proposal, a more in-depth 
description of the methods is given. 

Most of the algorithms based on anomaly detection are classified as machine learning 
algorithms. Machine learning is divided into two main classes, supervised and unsupervised machine 
learning. Supervised machine learning is a technique where an algorithm is given a certain amount of 
training data in order to find relationships between the data. The training data is well monitored and 
the reasons for the anomalies are known (Kotsiantis, Zaharakis, & Pintelas, 2007). By analysing the 
training data, the algorithm produces a function that describes the data and is able to predict patterns. 
The perfect supervised learning algorithm will detect all the anomalies, labels them correctly and is 
able to predict anomalies. 

Unsupervised machine learning does not use training data, but detects patterns based on 
clustering of the data. It leaves the steps of the algorithm unknown to the user (Kotsiantis, Zaharakis, 
& Pintelas, 2007). The latter method was not used in this study since the lack of data and the 
complexity of the method. 

The stream gradient of a stream is the difference between the upstream and downstream 
water-level over the length of the stream. The steepness of the gradient is dependent on the flow 
velocity, the resistance of the stream and other factors (Ferguson, 2012). Overall, the flow velocity is 
relatively low in the study area, resulting in the fact that the relative dependency of the resistance to 
the gradient is high. An unusual high resistance in the stream could imply a bad maintenance condition. 
Since the machine learning domain is relatively new and changing fast, combining it with stream 
gradients in drainage areas is not yet present in the literature and will be done during this study. Since 
the stream gradient is proportional to the difference between the upstream and downstream water 
level (Δh), this value is used during the study in order to make it more comprehensible. 

Anomaly detection and machine learning have a number of different techniques. The 
techniques used in this study are described in the next chapter of this report. 
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1.4 Research aim 
The aim of the study is to develop an approach which is able to detect the maintenance 

condition of the main waterways of the drainage areas of HDSR which should result in better insights 
in the maintenance condition of drainage areas. This is important for increasing the efficiency of the 
maintaining schedule of the drainage areas of which HDSR in generally will benefit. In addition, the 
study will try to fill the gap in the literature on combining machine learning techniques with stream 
gradients. The following research question will be answered by the study. 

 To what extend is it possible to detect unwanted consequences of a decreased 
maintenance condition on the main waterways in drainage areas of HDSR, with 

the help of machine learning techniques? 

In order to make the study and report clearer and more comprehensible, the main research question 
is divided into five sub-questions. 

1. What are unwanted consequences of a decreased maintenance condition of the main 
waterways in the drainage systems of HDSR? 

2. Which machine learning technique is most suited to detect unwanted consequences of a 
decreased maintenance condition of the main waterways in draining areas of HDSR? 

3. To what extend does the approach work for the Amerongerwetering drainage area specific? 
4. To what extend does the approach work for the Lange Weide drainage area specific? 
5. What kind of anomalies is the developed approach able to detect? 
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2 Site description and theory 
 

2.1 Site description 
The area that is managed by HDSR reaches from Schoonhoven to Rhenen, bordered by the 

Nederrijn and the Lek. In the Netherlands, the main rivers are managed and measured by the 
Department of Waterways and Public Works. The other surface water bodies are managed and 
measured by the regional water authorities, such as HDSR. The first case study is conducted in the 
Amerongerwetering drainage area, which is located in the south-eastern part of the managed area of 
HDSR, as seen in figure 1.1. The second case study is conducted in the Lange Weide drainage area, 
which is located in the western part of the managed area of HDSR. Since the research consists of two 
case studies, these two drainage areas are the research areas. 

 
2.1.1 The Amerongerwetering drainage area 

The Amerongerwetering is perfect for the first case study as the input of water is provided 
from a single geographical location and the design of the system is rather simple, since there is a 
natural gradient present that controls the downstream discharge (Kort, 2010). The elevation of the 
drainage area ranges between +3 and +5 meter above NAP, the Dutch mean sea level (Actueel 
Hoogtebestand Nederland, 2020). The subsurface of the Amerongerwetering drainage area consists 
mostly of river clay above a layer of sand (TNO, Geologische Dienst Nederland, 2020). The clay and the 
sand are part of the Echteld Formation, deposited in the Holocene (TNO, Geologische Dienst 
Nederland, 2020). 

In some locations there is a small layer of peat present between the clay and the sand. Figure 
2.1 shows a schematic view of the subsurface at the location of the borehole. The clay is deposited by 
the flooding of the Nederrijn, just south of the drainage area. All of these boundary conditions make 
this first case study well constrained, so that the research is focussed on the methodological 
developments. As seen in figure 2.1, the Amerongerwetering drainage area is located relatively close 
to the Nederrijn river and the Kromme Rijn river. These two rivers could have an influence on the water 
level of the Amerongerwetering, which is considered in the research. Due to the fact that there are 3 
measuring locations and weirs present in the Amerongerwetering, the waterway is divided into 2 parts. 
The upper part is located between the weirs Kolland and Nooit Gedacht and is about 700 meters in 
length. The lower part of the Amerongerwetering is located between the weir Nooit Gedacht and the 
location where it discharges into the Kromme Rijn. The length of the lower part is about 4.8 kilometres. 

 

 
Figure 2.1: Location of the Amerongerwetering drainage area with the location of the borehole and the lithology of the 
subsurface (TNO, Geologische Dienst Nederland, 2020). 
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2.1.2 The Lange Weide drainage area 
The second case study was performed in the Lange Weide drainage area, in the western part 

of the managed area of HDSR. The more complex situation of this drainage area makes it perfect for 
testing whether the approach is suitable for more complex situations as well. A long data record is 
available for the Lange Weide drainage area and several changes in the hydrology have been 
implemented over the years in order to decrease the land subsidence. 

The subsurface of the Lange Weide drainage area consists of different layers of peat with 
smaller layers of clay in between, as seen in figure 2.2. The top clay layer of the schematic view of the 
subsurface, in figure 2.2, is part of the Echteld Formation. Below that, about 7 meters of peat is present, 
alternating with small clay layers, which is part of the Nieuwkoop Formation. This is deposited in the 
Holocene as well (TNO, Geologische Dienst Nederland, 2020). Below this layer of peat, sand is present 
of the Boxtel formation which is deposited during the previous glacial period, which ended about 11.65 
thousand years ago, and after (Stouthamer, Cohen, & Hoek, 1996). 

One of the first Dutch experimental “underwater drainage systems” is located in Lange Weide, 
designed to decrease land subsidence caused by peat oxidation, which is irreversible. This specific 
technique uses tile drains that are situated below the surface water level to decrease the range in 
groundwater level between periods. This technique assists to link the groundwater level to the surface 
water level, in a way that the groundwater level is managed more easily (Nationaal kennisprogramma 
bodemdaling, 2019). 

Furthermore, there is a network of pressure drainage located near Lange Weide. This network 
could have an influence on the hydrological situation at the Lange Weide drainage area (Nationaal 
kennisprogramma bodemdaling, 2019). The elevation of the drainage area is around 2 meters below 
NAP, resulting in a much more complex situation without a strong natural gradient (Actueel 
Hoogtebestand Nederland, 2020). A pumping station is located in the drainage area which generates 
the gradient automatically. 

As a result of the complexity of the Lange Weide drainage area, HDSR monitored it for a longer 
period of time and there is a maintenance dataset available. Figure 2.2 shows that the Lange Weide 
drainage area is located between the Oude Rijn river and the Hollandsche IJssel river. This is considered 
in the research, since it could have an influence on the water levels in the Lange Weide drainage area. 
Since there are no weirs situated in the main waterway of the Lange Weide drainage area, this area is 
not divided. 

 

 
Figure 2.2: Location of the Lange Weide drainage area with the location of the borehole and the lithology of the subsurface 
(TNO, Geologische Dienst Nederland, 2020). 
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2.2 Machine learning techniques 

 
2.2.1 Linear regression model 

A linear regression model is a simple model that describes a situation with a linear regression 
equation (Zeileis, Leisch, Hornik, & Kleiber, 2001). Given below is an example of such an equation: 

 
 ! = #$ + & (1) 
   
 ! = #!$! +	#"$" + ##$# + & (2) 

 
Such a linear regression model is used in this study. The gradient of the stream is represented 

by the y variable. The x in equation 1 can be represented by different variables like, precipitation, 
evaporation, water-level. The linear regression could be extended to more than one variable, as the 
gradient is dependent on more variables. Such a model is called a multivariate linear regression model 
(Kabe, 1963) and an example is given in equation 2. The a and b in the equation are two constants, a 
is a specific constant linked to the variable x and b is a constant which is not linked to a variable in the 
equation. However, the situation might be too complex for such a linear regression model. So different 
models for the study are investigated as well, such as a gradient boosting model and a random forest 
model. Both of these models are predictive models based on decision trees. 

 
2.2.2 Decision tree 

A decision tree breaks down data in smaller sets with the help of decisions (Priyam, Abhijeet, 
Gupta, & Srivastava, 2013). Figure 2.3 is an example of a simple decision tree. The data is divided into 
four subsets with the help of 3 decisions. Decision tree could have an infinite number of layers and 
thus an infinite number of subsets. Both a gradient boosting model and a random forest model use 
decision trees in order to predict the relationship between variables. 

 

 
Figure 2.3: Example of a simple decision tree. 
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2.2.3 Gradient boosting model 
Gradient boosting is a machine learning technique which produces a model out of several 

different decision trees in series. The input of the first decision tree is the training data. The output of 
tree number 1 is used as input for tree number 2 in order to learn from the process of tree number 1. 
This is commonly done by increasing the weights of the wrongly classified results, causing the second 
tree to focus more on classes that are harder to classify. This generally done with a number of different 
decision trees. An advantage of this method is that the processes of the different trees contribute to 
the total model. Many “weak learners” are converted into one stronger learner, which is called 
“boosting”, which helps decreasing the computing time (Natekin & Knoll, 2013).  

 
2.2.4 Random forest model 

Random forest is a technique which uses multiple decision trees in parallel, all using a small 
set of the training data. All the different trees run the process simultaneously and all have their own 
answer to the problem. The random forest method then reviews all the answers of the decision trees 
and decides which answer or solution to the problem is the most abundant in this list (Liaw & Wiener, 
2002). The solution is chosen as the result of the random forest method.  
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3 Materials & Methods 
 

3.1 General approach 
The study consists of three phases, the introduction, data collection and data analysis phase. 

The introduction contains a thorough review of the previous studies on a similar subject, which is 
mostly described in the previous chapters. The data collection and data analysis phase are described 
in this chapter. 

 
3.2 Data collection 

 
3.2.1 Input datasets 

There were three different kinds of datasets used during the research, which are listed in table 
3.1. Firstly, the meteorological data used during the research was collected by the Royal Dutch 
Meteorology Institute, the KNMI, in De Bilt and in Cabauw (Koninklijk Nederlands Meteorologisch 
Instituut, 2020). This dataset originally consists of 39 different variables and was downloaded from the 
website of the KNMI. Before the dataset was used, the time components of some variables were 
deleted. Since these variables were not used in the research, 26 variables remained. The KNMI data 
has been made freely accessible, as it is part of the Ministry of Infrastructure and Water Management. 

Secondly, the water levels in and around the drainage areas were included. The water levels 
in the drainage areas resulted in the difference in water level, Δh called in the rest of the report. The 
water levels outside of the drainage areas can have an influence on the Δh in the studied stream. For 
the Amerongerwetering drainage area this is the Nederrijn and the Kromme Rijn, for the Lange Weide 
drainage area this is the Oude Rijn and the Hollandsche IJssel. The data for this dataset is collected by 
HDSR and the Department of Waterways and Public Works. 

The last dataset used for the research consists of area-averaged values of the precipitation and 
evaporation, collected by HDSR. These values contain the daily amount of precipitation and the actual 
evaporation. Using R programming language, a routine was developed to calculate the weekly, 2-week 
and 3-week mean values. These mean values were needed in the research in order to let the model to 
get familiar with long term patterns that are not visible in daily values. The three described datasets 
were combined into one dataframe with the help of a R script. 
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Table 3.1: List of all variables with their description and unit that are part of the input for the model. 

Variable abbreviation Description Unit 
DDVEC Vector averaged wind direction Degrees 

FHVEC Vector averaged wind speed m/s 

FG 24-hours averaged wind speed m/s 

FHX Maximum hour-averaged wind speed m/s 

FHN Minimum hour-averaged wind speed m/s 

FXX Maximum wind gust m/s 

TG 24-hours average temperature °C 

TN Minimum temperature °C 

TX Maximum temperature °C 

T10N Minimum temperature at 10 cm from surface °C 

SQ Duration of sunshine (calculated from Q) h 

SP Percentage of longest possible sunshine - 

Q Global radiation J/cm
2
 

DR Duration of precipitation h 

RH Daily precipitation mm 

RHX Maximum hourly precipitation mm 

PG 24-hours averaged air pressure converted to mean sea level, calculated from hourly 

values 

hPa 

PX Maximum hourly value of air pressure converted to mean sea level hPa 

PN Minimum hourly value of air pressure converted to mean sea level hPa 

VVN Minimum sight m 

VVX Maximum sight m 

NG 24-hours averaged cloud cover - 

UG 24-hours averaged relative humidity - 

UX Maximum relative humidity - 

UN Minimum relative humidity - 

EV24 Reference crop evaporation mm 

PD Area-averaged precipitation per day, a corrected value of the KNMI data for the 

research area. 

mm 

P1W One week running mean value of PD mm 

P2W Two week running mean value of PD mm 

P3W Three week running mean value of PD mm 

ETD Area averaged actual evapotranspiration per day mm 

ET1W One week running mean value of ETD mm 

ET2W Two week running mean value of ETD mm 

ET3W Three week running mean value of ETD mm 

OR.sluice.down Water level of the Nederrijn downstream of sluice Amerongen m 

OR.sluice.up Water level of the Nederrijn upstream of sluice Amerongen m 

KR.AW Water level of the Kromme Rijn at the location where the Amerongerwetering 

discharges in the Kromme Rijn 

m 

KR.MW Water level of the Kromme Rijn, approximately 1 km downstream of discharge point 

of Amerongerwetering into Kromme Rijn 

m 

KR.WbD Water level of the Kromme Rijn, approximately 1 km upstream of discharge point of 

Amerongerwetering into Kromme Rijn 

m 

OR.WbD Water level of the Nederrijn at start of Kromme Rijn m 

Enkele.Wiericke Water level of the Enkele Wiericke water way, the western border of the Lange Weide 

drainage area 

m 

Oude.Rijn Water level of the Oude Rijn river, near the village of Bodegraven m 

Dubbele.Wiericke Water level of the Dubbele Wiericke water way, the eastern border of the Lange Weide 

drainage area 

m 

Hollandsche.IJssel Water level of the Hollandsche IJssel river, south of the Lange Weide drainage area m 

peil Factor whether the water level is at summer or winter level - 

Δh The difference between the upstream and downstream water level of a waterway m 

date The date - 

 
 

3.2.2 Accuracy of the datasets 
For this research, the KNMI meteorological data proved most accurate since the data was 

acquired directly from the source, which quality is controlled extensively by the KNMI.  However, since 
the data was collected at the meteorological stations in De Bilt and Cabauw, the geographical location 
of the data is not the same as the research area. This difference might lead to minor spatial and 
temporal mismatches in data, such as precipitation data. HDSR estimates the accuracy of the water 
level data that 90% of the time, the error is less than 10 cm. This is generally due to the possibility that 
the staff gauge in the water can subside. 
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Over the last years, HDSR has made a lot of effort to increase the accuracy of the water level 
data. This is done by recalibrating the staff gauges, controlling the state of the staff gauges and logging 
all situations considering the staff gauges. By doing this, HDSR tends to increase the quality of the 
water level measurements. 

The area-averaged precipitation data that was used during the research is a calculation of the 
KNMI radar data in order to make it representable for a specific research area. KNMI estimates the 
accuracy of the data at 96 – 98%. However, HDSR assumes that the accuracy of the area-averaged 
precipitation data is lower, since it is dependent of more factors than just the KNMI data. An estimation 
of the accuracy is not given by HDSR and was not calculated during this study since it is out of the scope 
of the study. 

There is no estimation for the accuracy of the evapotranspiration present either, since this 
value depends on a number of different meteorological input factors. The data is achieved by eLEAF 
for HDSR; however, no accuracy is provided (eLEAF, 2020). It happens to be difficult to give a clear 
estimate of the accuracy, since a lot of different atmospheric processes have an influence on the 
evapotranspiration, as well as biological processes. Since it is out of the scope of this study, no estimate 
was calculated during this study. 

 
3.2.3 Vegetation cover 

HDSR measures the vegetation cover on several locations. This is done by logging the 
impression of the vegetation cover. This data is an impression and thus rather subjective and there are 
several data gaps present in the dataset as well. In 2019, consultancy firm Nelen & Schuurmans studied 
the vegetation cover measuring method. The firm concluded that the way of measuring has changed 
in January 2015. Before 2015, vegetation as algae, duckweed and other floating weed were included 
in the measurements. Since 2015, these forms of floating vegetation are not part of the measurements 
anymore, resulting in a shift in measurement output. The firm also concluded that the staff who 
performed the measurements changed over time, resulting in a shift in measurement results once 
more (Nelen & Schuurmans, 2019). The numerous data gaps in the vegetation cover dataset made it 
impossible to use it as an input for the models. However, the vegetation cover was used in the anomaly 
detection process of this research, which is described later in this chapter. Figure 3.1 shows the 
vegetation cover over time for the Amerongerwetering and the Lange Weide drainage areas. 
 

 
Figure 3.1: The vegetation cover over time for the Amerongerwetering (left) and Lange Weide (right) drainage areas. 
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3.3 Data analysis 
In order to analyse the data for the research, different techniques were used. First a linear 

regression model was created in the software R. This linear regression model is a simplified version of 
the approach that was developed during this study. By studying this linear regression model, important 
lessons were learned which were used when developing the approach. As a result, the linear regression 
model acted as a benchmark for the other two models. Second, the random forest and gradient 
boosting models, which are described before, were used to analyse the data as well. These models 
were used to predict the Δh of the waterways assisted by all the input data. 

 
3.3.1 Training and test dataset diversion 

Before the models were able to predict Δh, training of the models had to be performed. In 
order to train the models, a training dataset is required. Training of the model is done by running it 
and let the model predict values, according to the input data. When the training is done, the model 
can be tested with the help of a test dataset. The testing is done in order to assess whether the 
predicted values of the model are similar to the observed values in the test dataset. 

Although, there is no scientific consensus about a specific diversion ratio between the training 
dataset and the test dataset in the hydrology department, it is clear that the majority of the data should 
be used for training. In order to reduce overfitting, in this study a portion of ⅓ of the total dataset was 
used for testing (ResearchGate, 2020). The other ⅔ was used for training, since most data should be 
used for training. When using data that is dependent on time, for instance precipitation or water level, 
usually the first ⅔ part of the input dataset is taken as training dataset and the last ⅓ part is taken as 
test dataset. However, when this was done sequentially during the research, the results of the model 
were not accurate. The models had some problems with predicting longer periods with low 
precipitation rates and low water levels, as these periods were not present in the training dataset. A 
reason for this was that the summer of 2018, a relative dry period, was not part of the training dataset 
but was part of the test dataset. This resulted in a relatively low quality of the results during this period. 
This was a problem for the approach, since longer periods of dry conditions are prone to occur in the 
future. This problem was fixed by assigning the training dataset and test dataset at random points in 
time. As a result, the diversion ratio did not change. However, the two datasets did change. 

 
3.3.2 Settings of the models 

Both the random forest and the gradient boosting model are found in the R package “caret”. 
This free package consists of a set of functions that assist in creating predictive models. Prior to the 
running, the models require specific settings in order to prepare them for the data. For both the 
random forest as the gradient boosting model the training dataset was divided into 10 folds cross-
validation (number). The repeat was set to 3, which means that the model is required to complete 3 
sets of folds (Kuhn, 2020). 

The random forest model only needs the mtry set to the situation. This setting is the number 
of randomly collected variables to be sampled at each split time. In an ideal situation this number 
would be the total number of variables. However, since the model input consists of 38 to 43 variables, 
depending on the model, the computing time would exceed the computation resources in this study. 
The mtry was optimized by letting the model run for different mtry settings. The mtry was set as 24, 
since this was an optimal value compared to the computing time and the quality of the model. 

The gradient boosting model has several other settings, such as n.trees, interaction.depth, 
shrinkage and n.minobsinnode (Kuhn, 2020). The values of these settings were obtained with a similar 
method as the mtry. The computing time and quality of the model compared for different settings. 
The n.trees setting represents the number of trees or iterations the model used in the computation. 
This value was set to 3000. 

The interaction.depth stands for the complexity of the tree (i.e. the numbers of splits of a single 
decision tree). This value was set to 5, meaning that the total number of terminal nodes per tree is 6. 
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Shrinkage represents the learning rate of the model meaning that this factor signals the model 
when to stop. The used value of 0.01 for this study signals the model to stop when the difference 
between the different trees is less than 0.01. 

The final setting is called the n.minobsinnode, which represents the minimal number of 
observations per node. When a tree ends with less observations in a node, the model is stopped as 
well. For this study, this value was set to 5. The previously described settings and their values are 
shown in table 3.2. 
 

Table 3.2: Settings of the models and their explanation and value (Kuhn, 2020). 

Setting Explanation Value 
number Number of fold cross-validation 10 

repeats Required number of complete folds 3 

mtry Number of randomly collected variables to be sampled at each time split 24 

n.trees Number of trees 3000 

interaction.depth Number of splits per tree 5 

shrinkage Learning rate 0.01 

n.minobsinnode Minimal number of observations per node of a tree 5 

 
3.3.3 Anomaly detection 

The number of predicted values differs for each area, since NA value datapoints result in model 
errors. Therefore, the decision was made to delete all dates with a NA value in one or more of the 
variables from the input. Since each area has different input data, the total number of train 
observations differs for each location. This resulted into a different number of predicted values per 
location. Since the top rank and bottom rank 5% of the residual values are classified as anomalies, 50% 
of the anomalies were predicted with a too large value and the rest with a too low value of Δh. 

 
After running the models, the predicted Δh was compared with the observed Δh from the test 

dataset. This was done with equation 3, which calculates the difference between those values. In 
equation 3, Δhobs is the value of the observed and Δhpred the value of the predicted Δh. The residual 
value was used to find the date which are not predicted well enough. 

For this research, the top rank 5% and the bottom rank 5% of the residuals were classified as 
“not sufficient predicted”, which are called the anomalies. The reason for classifying the top rank and 
bottom rank 5% of the residual factors as anomalies is because these values are not in order with the 
rest of the data. These top rank and bottom rank 5% represent the anomalies that are studied in this 
research. Classifying anomalies with the help of the top rank and bottom rank 5% helps find anomalies 
in the positive and negative side of the histogram. Using the standard deviation when classifying the 
anomalies, several important anomalies would be lost due to the fact that the standard deviation 
focusses on two equal borders, positive and negative. Using 5% as the border for which the anomalies 
are detected, the border is area-specific. Since the water levels, and thus Δh, in both case study areas 
are different, no strict border can be taken. Creating a border which is based on a percentage 
overcomes this problem. 

 
 ()*+,-#. = Δh$%& − Δh'()*  (3) 

 
After the anomalies are detected, it is important to find possible reasons that explain why the 

model did not predict Δh sufficiently in such a situation. This process was done with the help of the 
vegetation cover data and the water level data of the researched waterways in the 
Amerongerwetering and Lange Weide drainage areas. As is previously described, the vegetation cover 
is a rather subjective dataset since it is an impression and there are several data gaps present. 
Therefore, the vegetation cover was not used as an input for the model. However, the quality of the 
data is appeared to be sufficient enough to visually compare the anomalies with this dataset. The 
vegetation cover patterns were studied over a period of a few days and the relative change was used 
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to compare the anomalies. Examples of vegetation cover patterns are given in table 3.3 including the 
predicted effect on Δh. The water levels in the drainage areas were used to find explanations for the 
anomalies as well. The patterns in the water levels were added in table 3.3 in addition, with the 
expected effects. 

 
Table 3.3: Vegetation and water level pattern with their possible explanation and predicted effect on Δh. 

Vegetation cover pattern Possible explanation Predicted effect on Δh 
Sudden steep decrease Mowing of the vegetation Decrease of Δh afterwards 
Increase over time Growing of the vegetation Slow increase of Δh during this period 
No change, after a period of increase End of growing season After a slow increase, Δh now does not 

change 
Water level pattern Possible explanation Predicted effect on Δh 
Sudden increase difference between the 
water levels 

A weir has been closed more than 
usual 

Increase 

Sudden decrease in difference between 
the water levels 

A weir has been opened more than 
usual 

Decrease 

A negative difference between the water 
levels 

A peak in precipitation Negative value 

 

To decide which model suits each drainage area, the RMSE value of the models was used. This value is 
calculated with equation 4 and gives the root-mean-squared error of the model. This equation has 
proven to be useful to compare the different models for the same data; a comparison within the case 
studies. For comparison of the quality of the models outside the case studies, the R2 value is used. This 
value provides a better view of the quality of the models with different input data and their temporal 
dynamics. The RMSE value ranges from 0 to 1, the lower the RMSE value, the better the fit of the 
predicted values to the observed data. The R2 value ranges from 0 to 1 as well. However, the an R2 
value of 0 implies no correlation between the input data and the observed Δh. 

 (234 = 54((Δh$%& − Δh'()*)") (4) 

 

3.3.4 Unwanted consequences of decreased maintenance condition 
In order to study the maintenance condition of drainage areas, it is needed to find the 

unwanted consequences of such. The data that is available for the drainage areas (i.e. the input data 
and the logging data of situations at the weirs) was studied in order to find these unwanted 
consequences. This is described in the introduction phase of the research, since the outcome of this 
is needed during the research phase. By studying the data, there was found that the most important 
factor is the fact that non-mowed vegetation decreases the maintenance condition of the drainage 
area. An excessive amount of vegetation in the water and on the banks could lead to increased flow 
resistance, which is classified as a decrease in maintenance condition since it could increase flood risk 
(Darby, 1999). 

A broken weir fails to do the job it is built for, which could decrease an influence on the 
maintenance condition. However, such a situation has not occurred in the study period at any of the 
studied weirs. Other factors like trees that might have fallen into the water, broke piping under 
roads, broken pumping stations have similar effects. However, these situations were not present in 
the study period. The total influence of these consequences is considered small because of a 
significantly low probability of occurrence. 
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4 Results 
In this chapter, the results of the linear regression model are described, followed by the results 

of the two case studies. The Amerongerwetering was divided into an upper and lower part, since a 
weir is located in the drainage area. For each case study, the results of the random forest model and 
the gradient boosting model will be described subsequently. As explained in the previous chapter, for 
each model, the top rank 5% and bottom rank 5% of the residual values per model are classified as 
anomalies. 

 
4.1 Linear regression model 

The linear regression model was developed in the preliminary part of the study. After running 
the model, the RMSE values revealed that the research problem was too complex for a linear 
regression model to solve. The model that consisted of the input data for the lower part of the 
Amerongerwetering resulted in a RMSE value of 0.145. Due to these results, the linear regression 
model was removed from the study. Although the R2 value could provide insights to compare different 
areas, this value was not calculated, since a linear regression model was only applied to the lower part 
of the Amerongerwetering. 

 
4.2 Results of the case studies 

The number of predicted values of Δh differs per model, due to the fact that the dates with NA 
values for one or more variables were deleted from the input dataset. Since this is different for the 
separate areas, the total number of predicted values differ per area. Ten percent of the predicted 
values were classified as anomalies, so the number of anomalies differ per area as well. These values 
are shown in table 4.1. The number of anomalies were equal for the different models of the same area. 
However, these anomalies could represent different dates and values. The RMSE and R2 values are 
shown in the table as well. 

 
Table 4.1: Number of predicted values, anomalies and the RMSE and R2 values per model. 

 

 
In order to statistically compare the results of the different models, the RMSE value was used. 

The RMSE values in table 4.1 show that for the upper part of the Amerongerwetering the gradient 
boosting model is better. However, the difference between the values is not statistically significant. 
For the lower part of the Amerongerwetering, the random forest model scores better. The models for 
the Lange Weide drainage area have lower but similar RMSE values, which were lower than the values 
of the other areas. It was impossible to distinguish the better model based on these values. 

The models show rather different results, as is shown on the following pages. The R2 was used 
to compare the results of the different areas. Table 4.1 shows that, for the upper and lower part of the 
Amerongerwetering, the models display relatively high R2 values as compared to the results of the 
Lange Weide models. This implies that the models are less suited to predict the Δh for the Lange Weide 
drainage area. 

Model and area Number of 
predicted values 

Number of 
anomalies 

RMSE R2 

Random forest for upper 
Amerongerwetering 

696 70 0.0829 0.6719 

Gradient boosting for upper 
Amerongerwetering 

696 70 0.0814 0.6718 

Random forest for lower 
Amerongerwetering 

571 58 0.0778 0.7310 

Gradient boosting for lower 
Amerongerwetering 

571 58 0.0849 0.6690 

Random forest for Lange 
Weide 

587 60 0.0592 0.2977 

Gradient boosting for Lange 
Weide 

587 60 0.0550 0.3737 
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Figure 4.1: The observed (black) and predicted (blue) difference in water level. A: Random forest, upper 
Amerongerwetering; B: Gradient boosting, upper Amerongerwetering; C: Random forest, lower Amerongerwetering; 
D: Gradient boosting, lower Amerongerwetering; E: Random forest, Lange Weide; F: Gradient boosting, Lange Weide. 

 

  

  



 20 

 

Figure 4.2: Histograms of the distribution of the residual values. A: Random forest, upper Amerongerwetering; B: 
Gradient boosting, upper Amerongerwetering; C: Random forest, lower Amerongerwetering; D: Gradient 
boosting, lower Amerongerwetering; E: Random forest, Lange Weide; F: Gradient boosting, Lange Weide. 
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Figure 4.3: The anomalies plotted over time with their possible explanation, based on appendices 1 -6. A: Random 
forest, upper Amerongerwetering; B: Gradient boosting, upper Amerongerwetering; C: Random forest, lower 
Amerongerwetering; D: Gradient boosting, lower Amerongerwetering; E: Random forest, Lange Weide; F: Gradient 
boosting, Lange Weide. 

 

 
4.2.1 The upper part of the Amerongerwetering drainage area 

The graphs clearly show that the results of the two models used for the same area, are rather 
different. In figure 4.1, it is clear that, for the upper part of the Amerongerwetering, the curve of the 
random forest model is a better predictor of Δh. Although the overall curve of the observed Δh is better 
predicted by the random forest model, the peaks in the observed curve do not always align with the 
peaks in the predicted curve. The gradient boosting model predicted these peaks better but showed 
more errors overall. These peaks are important, because of the fact that if the Δh at these dates is not 
predicted accurately enough, it implies that such conditions have not occurred during the training data. 
Since the training dataset is quite large, this means that these dates have specific conditions that do 
not occur often. By studying these conditions, the anomalies could be explained. The histograms in 
figure 4.2 shows that the residual values are distributed according to a normal distribution. It is clear 
that the distribution of the random forest model is better, since is it narrower to the top and the slopes 
of the histogram are smoother. This is another advantage of choosing this model over the gradient 
boosting model. 

Figure 4.3 shows the spread of the anomalies over time with possible explanations on the y-
axis. The colour of the dot indicates whether the anomalies are located in the top (red) or bottom 
(blue) rank of the residual values. The anomalies are evenly distributed over time. It should be noted 
that when an anomaly has multiple possible explanations, the dot in the figure is located in the row of 
the vegetation change. This way the number of anomalies that could be explained by the water level 
pattern seems lower than it really is. However, the number of anomalies with multiple possible 
explanation is low, so the effect of this is relatively small. The figures show that most of the anomalies 
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are classified under the “other” category. This is due to the fact that it is not always clear what caused 
the anomaly. An anomaly could be caused by one larger factor or by several smaller factors. The cause 
of an anomaly that is created by one large factor is distinguished more easily. The anomalies that are 
classified in the top three rows in the figures are anomalies that have at least one large factor of 
influence that is linked to the anomaly. Of these anomalies, vegetation change, both positive and 
negative, are possible explanation to a higher number of anomalies than the water level pattern in the 
upper part of the Amerongerwetering. This is due to the fact that this drainage area has a natural 
gradient, meaning no pumping station is needed to create a gradient. This natural gradient creates a 
stable water level pattern, resulting in a stronger influence of the vegetation cover on Δh 

 
4.2.2 The lower part of the Amerongerwetering drainage area 

In figure 4.1, the results of the lower part of the Amerongerwetering are shown. It is clear that 
the curve of the random forest model predicted the observed values better than the gradient boosting 
model. Similar to the upper part of the Amerongerwetering, the random forest model is clearly better 
in predicting the Δh values for this part of the drainage area. The histograms in figure 4.2 confirm this, 
as the histogram of the gradient boosting model is rather wide and shows rougher slopes. 

The anomalies plotted over time (figure 4.3), show a pattern similar to the upper part of the 
drainage area. The anomalies are evenly distributed over time, except for 2018 and 2019 in the 
gradient boosting model. This period has a relative low number of anomalies. Most of the anomalies 
are classified in the “other” category, and for the rest of the anomalies, the vegetation is the most 
important possible explanation. Figure 4.3C shows that, in the random forest model, no anomaly can 
be explained by the water level pattern. However, eight anomalies not only had a water level pattern 
as a possible explanation, but a change in vegetation cover as well. Since the vegetation cover is 
thought to have a larger influence on the Δh, these anomalies are present in the vegetation change 
row of the figure.  

 
4.2.3 The Lange Weide drainage area 

The figures that show the results of the models on the Lange Weide drainage area are rather 
different from the other figures, since the Δh is relatively small compared to the Amerongerwetering 
drainage area. There is a large negative peak visible in figure 4.1, which should be interpreted as a 
measuring error. In a regulated polder, it is highly unlikely that the difference in upstream and 
downstream water level will decrease with about 55 centimetres in such a short period of time. Seeing 
is that both models do no predict this peak fully, it implies an extraordinary situation. While the curves 
of the Lange Weide models are rather different from the other models, a similar pattern is present, 
when looking at Δh. Compared to the gradient boosting model, the random forest model is clearly 
better in predicting Δh. The gradient boosting model has more errors and sometimes positive peaks 
are predicted as negative peaks. Although, the histograms of both models are rather similar (figure 
4.2), the histogram of the gradient boosting model is wider, which is seen in the other areas as well. It 
can be concluded from the results that the random forest model is best in predicting the Δh for the 
Lange Weide drainage area. 

Figure 4.3, that show the distribution of the anomalies over time, reveals that the anomalies 
are evenly distributed over the study period. A similar pattern is visible compared to the other areas, 
meaning that most of the anomalies are classified in the “other” category regarding possible 
explanations. The reasons for this classification are stated in section 4.2.1. The figures show that the 
water level pattern has a greater influence compared to the other two areas, as more anomalies  can 
be explained by water level pattern. This is due to the pumping station creating water level patterns 
that are not always natural, such as a reversed gradient. The vegetation change has a similar number 
of anomalies compared to the other areas.  
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5 Discussion 
It is important to assess the reliability of the results. In this chapter, the assumptions and 

choices made during the study are discussed and justified. Furthermore, the possible effects of these 
assumptions and choices are described. Next, it is discussed whether the results are reliable enough 
to answer the research questions. Lastly, recommendations are given on how to increase the reliability 
of the results and how to further study this topic. 

 
5.1 Machine learning in literature 

It is in the nature of the gradient boosting model to focus on peaks and outliers (Son, Jung, 
Park, & Han, 2015). Focussing on the peaks, logically results in a decreased focus of the model on the 
bulk of the data. During the study, this resulted in the gradient boosting models predicting the overall 
peaks better than the random forest models. However, the results also show that the random forest 
models predicted the non-anomalous values of Δh better than the gradient boosting models. This can 
be attributed to the random forest model does not focussing on the peaks, but having the focus divided 
randomly over the dataset (Biau, 2012). For this study, an increased focus on the peaks was not 
necessary. 

Most of the studies using anomaly detection technologies in combination with water 
management focus on water quality, since it is an important part of water management and anomaly 
detection is of a great value for this topic (Raciti, Cucurull, & Nadjm-Tehrani, 2012), (Leigh, et al., 2019).  

 
5.2 Assumptions 

The first assumption underlying this study, is that the data, either used as input or during the 
analysis, is of sufficient accuracy and reliability. Although, measuring errors could be present in the 
data, most errors will have no significant influence on the results. The period 18/10/2014 to 
31/10/2014 shows patterns in the observed values of Δh which can only be explained as a period of 
measuring errors at the inlet of the drainage area. The Δh value dropped from around 0 to -0.60 m in 
less than a day, resulting in a strong gradient towards the inlet of the drainage area, away from the 
pumping station. No logging data from the pumping station has been recorded for that period, 
implying that no abnormal events occurred. When combined with the fact that the drainage area is 
situated 2 meters below mean sea level, it is reasonable to conclude that an error occurred during 
these measurements. During the data processing, datapoints with any NA values or values that imply 
errors (e.g. -999.999) were deleted from the dataset, resulting in these datapoints being excluded from 
the analysis. Further periods of measurement errors were not detected during this study. 

The vegetation cover data was not used as an input for the models, since the data was rather 
subjective and several data gaps were present. However, the data was used in the analyses. Originally 
it was planned to use a soil moisture dataset in the input for the models as well. However, the dataset 
suffered from multiple large data gaps, resulting in insufficient accuracy. 

Another assumption in this study, was that all of the important influences on the water levels 
in the water ways were included. However, there might be influences that were not considered. For 
example, the fact that the grasslands next to the water ways are irrigated with water from the water 
ways. This was discovered when the report was being written. The amount of irrigation water that is 
extracted from the water ways in the drainage areas of HDSR is not measured or logged. Resulting in 
no available data for this study. However, future studies could include the factor by assuring that the 
amount of irrigation water is measured. This would increase the accuracy of the models and 
predictions, so it is recommended to include it in further research. 

During the study, the value of Δh was used instead of the gradient. Since the gradient is 
proportional to Δh and this value is easier to interpret, the choice was made to use Δh. 
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Models are a simplified version of reality, and thus assumptions have to be made in order to 
make the models computable and comprehensible. During studies, it has to be clear that models per 
definition are not equal to reality. 

A basic assumption during anomaly detection studies is that anomalies are the product of an 
unusual situation. This assumption is made in the early stages of the anomaly detection techniques 
and is copied for most of the anomaly detection studies (Gates & Taylor, 2006). This assumption could 
not be true for this specific topic, since it is not investigated. However, no indication is present that 
the assumption is not true, so the assumption is made for this study. 

Another basic assumption for anomaly detection is that anomalies are assumed to be rare 
compared with normal data points (Chandola, Banerjee, & Kumar, 2009). While this assumption is 
generally true, it is not true that anomalies are always rare. Although anomalies are rare for this 
specific study, the measurement errors at the inlet of the Lange Weide drainage area at the period 
18/10/2014 to 31/10/2014 show that this assumption has to be considered for each study separately. 
Since supervised anomaly detection models are used during this study, the errors in October 2014 
were quickly discovered. 

 
5.3 Recommendations 

HDSR could use the results and outcome of the study to develop the tool further and use it for 
other drainage areas as well. By doing this, the condition of the waterways, and thus the drainage 
areas, could be assessed remotely. The data from this study is publicly available, resulting in no 
additional costs for data collection. Developing the tool into a working approach for all the drainage 
areas requires a rather simple follow-up study which could be performed in a relatively short period 
of time. However, some drainage areas might require more research due to the complexity of the 
hydrology of these areas. It is recommended that HDSR uses the results and outcomes of this study to 
further research and develop an approach for all the drainage areas. Studying the influential factors 
for each drainage area is important as well. 

As stated in one of the previous sections, it is recommended that the effect of irrigation water 
being pumped from the water ways on the Δh is studied and considered during further research. 
Depending on the result of such a study, this factor should be either included or excluded in the 
approach. Since the effect was unknown in the current study, anomalies might be explained by the 
extraction of irrigation water by farmers. 

It is recommended that further research redefines the boundary of the explanation of 
anomalies. Since the current boundary could be stricter, it should be studied how the approach defines 
and handles anomalies with multiple explanations. By doing this, more anomalies will be explained 
and the quality of the approach will increase. 
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6 Conclusion 
The study concludes that unwanted consequences of a decreased maintenance condition of 

the main waterways in the drainage areas is an excessive amount of vegetation in and around the 
waterways. As a result of vegetation, flow resistance increases, which is considered unwanted since it 
could increase flood risk. Other factors as broken weirs, broken pumping stations, fallen trees into the 
waterways, and broken piping under roads are unwanted consequences as well. However, their 
influence is considered to be small. 

The results of the study uncover that when the random forest model is used, the unwanted 
consequences are better detected. This can be explained by the fact that the prediction of the Δh is 
more accurate in the random forest models compared to the gradient boosting models. A gradient 
boosting model focusses not the peaks, while a random forest model focusses on all the data, which 
results in a better prediction by the random forest models. 

As the RMSE values confirm, the approach is working well for the Amerongerwetering. This is 
clearly visible in the results as well. Further research can enhance the accuracy by making some 
adjustments, such as adding more data and studying the influential factors in the area. Further 
research can optimize the approach for the Lange Weide drainage area as well. This can be done by 
studying the influential factors in the drainage area and the complex situation more in-depth. 

As seen in the results of the models, it is difficult to find explanations for the anomalies since 
most anomalies can occur because of multiple reasons. However, the approach was able to detect 
most anomalies. The process of explaining the anomalies takes time and further research to enhance. 
During this study, the detected anomalies were presumably caused by excessive amounts of 
vegetation, a drop of amount of vegetation cover and some extraordinary water levels. 

Finally, the study concludes that machine learning provides opportunities for the water 
management in the drainage areas of HDSR. However, the results differ between the different study 
areas. The approach works relatively well for the Amerongerwetering drainage area due to its 
simplicity, compared to the Lange Weide drainage area. For this area, the approach does not work 
well, due to the pumping station and the complexity of the drainage area. This implies that the 
approach works well for relatively simple drainage areas, compared to areas that are considered 
complex. Most of the anomalies were detected by the approach. I recommend to further study the 
opportunities that machine learning and anomaly detection have for water management of the 
drainage areas.  
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Appendices 
Abbreviations in the appendices: 
K = Water level at weir Kolland 
NG = Water level at weir Nooit Gedacht 
AW = Water level at location where Amerongerwetering discharges into Kromme Rijn 
IN = Water level at inlet Lange Weide drainage area 
PS = Water level at pumping station Lange Weide drainage area 
Residual factor 1 = top rank 5% of the residual values 
Residual factor -1 = bottom rank 5% of the residual values 

 
Appendix 1: The anomalies of the random forest model for the upper Amerongerwetering 
 

date residual 
factor 

current 
vegetation 
state 

next vegetation 
state 

relative change 
in vegetation 
state 

interpretation 
vegetation 

particularities water 
level 
Amerongerwetering 

observed gradient 
of the 
Amerongerwetering 

modelled gradient 
of the 
Amerongerwetering 

residual 

12/03/2014 1 normal increase normal increase / non-growing 
season 

NG increase 0,362 0,241 0,121 

10/06/2014 1 relatively steep 
increase 

relatively steep 
increase 

/ growing season / 0,281 0,150 0,131 

16/06/2014 1 relatively steep 
increase 

no change negative end of growing 
season 

/ 0,302 0,144 0,158 

03/07/2014 1 no change no change / growing season / 0,292 0,156 0,136 

05/07/2014 1 no change no change / growing season K increase 0,287 0,129 0,158 

06/07/2014 1 no change no change / growing season K increase 0,289 0,097 0,192 

19/08/2014 1 data gap data gap / growing season K increase and NG 
decrease 

0,474 0,305 0,169 

29/09/2014 1 normal increase no change negative end of growing 
season 

/ 0,397 0,257 0,140 

11/10/2014 1 no change normal decrease negative mowing / 0,481 0,333 0,148 

19/12/2014 -1 steadily 
increase 

steadily increase / growing season K decrease and NG 
increase 

0,136 0,308 -0,172 

28/05/2015 -1 normal increase normal increase / growing season K decrease 0,026 0,152 -0,126 
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29/01/2016 1 possible data 
gap 

possible data gap / non-growing 
season 

K increase and NG 
decrease 

0,453 0,329 0,124 

01/06/2016 1 normal increase no change negative growing season K increase 0,516 0,339 0,177 

14/06/2016 1 no change normal decrease negative mowing K increase 0,562 0,336 0,226 

25/06/2016 -1 normal 
decrease 

normal increase positive growing season K decrease and NG 
decrease 

0,264 0,390 -0,126 

30/07/2016 1 no change no change / growing season K increase and NG 
increase 

0,368 0,244 0,124 

04/08/2016 1 no change no change / growing season peak K 0,550 0,404 0,146 

10/08/2016 1 no change steep decrease negative mowing / 0,518 0,242 0,276 

11/08/2016 1 no change steep decrease negative mowing / 0,555 0,279 0,276 

15/08/2016 1 no change steep decrease negative mowing K decrease and NG 
decrease 

0,367 0,239 0,128 

25/08/2016 1 steep decrease normal increase positive growing after 
mowing 

/ 0,282 0,158 0,124 

26/08/2016 1 steep decrease normal increase positive growing after 
mowing 

NG decrease 0,288 0,091 0,197 

02/09/2016 1 normal increase normal increase / growing season NG decrease 0,448 0,287 0,161 

03/09/2016 1 normal increase normal increase / growing season both curves flat 0,448 0,237 0,211 

04/09/2016 1 normal increase normal increase / growing season / 0,448 0,233 0,215 

24/11/2016 -1 no change no change / non-growing 
season 

/ 0,129 0,288 -0,159 

26/11/2016 -1 no change no change / non-growing 
season 

/ 0,104 0,241 -0,137 

26/02/2017 -1 no change no change / non-growing 
season 

just after peak of K 
and NG 

0,184 0,324 -0,140 

27/02/2017 -1 no change no change / non-growing 
season 

/ 0,168 0,328 -0,160 

04/03/2017 -1 no change no change / non-growing 
season 

/ 0,179 0,348 -0,169 

06/03/2017 -1 no change no change / non-growing 
season 

/ 0,210 0,368 -0,158 

09/03/2017 -1 no change no change / non-growing 
season 

small peak K and NG 0,279 0,416 -0,137 

17/03/2017 -1 no change no change / non-growing 
season 

/ 0,090 0,219 -0,129 
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18/03/2017 -1 no change no change / non-growing 
season 

increase K and NG 0,091 0,226 -0,135 

23/04/2017 -1 no change no change / non-growing 
season 

NG higher than K -> 
flow direction 
reversed 

-0,010 0,140 -0,150 

03/05/2017 -1 no change normal increase positive start of growing 
season 

NG higher than K -> 
flow direction 
reversed 

-0,014 0,146 -0,160 

07/05/2017 -1 no change normal increase positive start of growing 
season 

both curves flat -0,009 0,116 -0,125 

08/05/2017 -1 no change normal increase positive start of growing 
season 

both curves flat -0,010 0,126 -0,136 

12/05/2017 -1 normal increase normal increase / growing season both curves flat -0,011 0,122 -0,133 

13/05/2017 -1 normal increase normal increase / growing season both curves flat -0,010 0,195 -0,205 

17/05/2017 -1 normal increase normal increase / growing season both curves flat -0,009 0,122 -0,131 

18/05/2017 -1 normal increase normal increase / growing season NG higher than K -> 
flow direction 
reversed 

-0,010 0,160 -0,170 

02/07/2017 -1 normal increase normal increase / growing season NG higher than K -> 
flow direction 
reversed 

-0,011 0,298 -0,309 

07/07/2017 -1 normal increase normal increase / growing season just before return to 
original flow 
direction 

-0,010 0,232 -0,242 

16/07/2017 -1 normal increase normal increase / growing season NG higher than K -> 
flow direction 
reversed 

0,002 0,186 -0,184 

19/07/2017 -1 normal increase normal increase / growing season just before return to 
original flow 
direction 

-0,011 0,151 -0,162 

20/07/2017 -1 normal increase small period of no 
change (minor 
influence) 

negative probably 
continuous 
growth 

just before return to 
original flow 
direction 

-0,012 0,175 -0,187 

27/07/2017 1 small period of 
no change 

normal increase positive probably 
continuous 
growth 

K increase and NG 
decrease 

0,238 0,072 0,166 

30/08/2017 -1 normal increase normal increase / growing season just before return to 
original flow 
direction 

-0,010 0,202 -0,212 
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02/09/2017 -1 normal increase steep decrease negative mowing / 0,065 0,221 -0,156 

05/09/2017 -1 normal increase steep decrease negative mowing / 0,071 0,203 -0,132 

09/09/2017 -1 steep decrease steep decrease / mowing strong increase K and 
NG 

0,116 0,349 -0,233 

22/11/2017 1 no change no change / non-growing 
season 

small peak K and NG 0,444 0,299 0,145 

02/05/2018 1 no change no change / growing season / 0,576 0,431 0,145 

10/05/2018 -1 no change no change / growing season / 0,043 0,183 -0,140 

13/05/2018 -1 no change no change / growing season / 0,047 0,184 -0,137 

29/05/2018 -1 no change no change / growing season / 0,111 0,239 -0,128 

02/06/2018 1 no change no change / growing season increase K and NG 0,352 0,227 0,125 

09/06/2018 1 no change no change / growing season K increase and NG 
decrease 

0,420 0,170 0,250 

23/06/2018 -1 no change no change / growing season strong decrease K 0,015 0,173 -0,158 

08/09/2018 1 no change no change / end of growing 
season 

small peak K and NG 0,294 0,158 0,136 

11/12/2018 1 no change no change / non-growing 
season 

K increase and NG 
decrease 

0,451 0,293 0,158 

14/06/2019 1 normal increase steeper increase positive growing season strong increase K and 
decrease NG 

0,592 0,281 0,311 

19/06/2019 -1 normal increase normal increase / growing season strong decrease K 0,085 0,302 -0,217 

20/06/2019 -1 normal increase normal increase / growing season increase K 0,123 0,314 -0,191 

06/09/2019 1 steep increase no change negative end of growing 
season 

/ 0,354 0,078 0,276 

07/09/2019 1 steep increase no change negative end of growing 
season 

/ 0,342 0,113 0,229 

18/09/2019 1 no change no change / end of growing 
season 

/ 0,349 0,225 0,124 

22/09/2019 1 no change steep decrease negative mowing / 0,291 0,171 0,120 

29/09/2019 1 no change steep decrease negative mowing strong increase NG 0,512 0,287 0,225 
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Appendix 2: The anomalies of the gradient boosting model for the upper Amerongerwetering 
 

date residual 
factor 

current 
vegetation 
state 

next 
vegetation 
state 

relative change 
in vegetation 
state 

interpretation 
vegetation 

particularities water 
level 
Amerongerwetering 

observed gradient of 
the 
Amerongerwetering 

modelled gradient of 
the 
Amerongerwetering 

residual 

12/03/2014 1 normal 
increase 

normal 
increase 

/ non-growing 
season 

NG increase 0,362 0,237 0,125 

16/06/2014 1 normal 
increase 

no change negative growing season / 0,302 0,103 0,199 

06/07/2014 1 no change no change / growing season K increase 0,289 0,109 0,180 

19/08/2014 1 data gap data gap / growing season K increase and NG 
decrease 

0,474 0,309 0,165 

24/09/2014 1 normal 
increase 

no change negative end of growing 
season 

/ 0,343 0,197 0,146 

29/09/2014 1 normal 
increase 

no change negative end of growing 
season 

/ 0,397 0,272 0,125 

11/10/2014 1 no change normal 
decrease 

negative mowing / 0,481 0,339 0,142 

11/11/2014 -1 steadily 
increase 

steadily 
increase 

/ non-growing 
season 

/ 0,115 0,251 -0,136 

12/11/2014 -1 steadily 
increase 

steadily 
increase 

/ non-growing 
season 

/ 0,112 0,239 -0,127 

19/12/2014 -1 steadily 
increase 

steadily 
increase 

/ non-growing 
season 

K decrease and NG 
increase 

0,136 0,293 -0,157 

24/12/2014 1 steadily 
increase 

steadily 
increase 

/ non-growing 
season 

large peak K 0,392 0,270 0,122 

16/03/2015 -1 steadily 
increase 

steadily 
increase 

/ non-growing 
season 

increase NG 0,117 0,262 -0,145 

22/03/2015 -1 steadily 
increase 

steadily 
increase 

/ non-growing 
season 

/ 0,146 0,269 -0,123 

08/04/2015 -1 steadily 
increase 

steadily 
increase 

/ growing season low peak K 0,137 0,269 -0,132 

28/05/2015 -1 steep 
increase 

normal 
increase 

negative growing season decrease K 0,026 0,189 -0,163 

19/07/2015 -1 steep 
increase 

normal 
increase 

negative growing season K and NG almost same 
value 

0,053 0,204 -0,151 

01/05/2016 1 possible 
data gap 

steep 
increase 

positive growing season / 0,374 0,227 0,147 
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02/05/2016 1 possible 
data gap 

steep 
increase 

positive growing season / 0,356 0,213 0,143 

04/05/2016 1 possible 
data gap 

steep 
increase 

positive growing season / 0,347 0,219 0,128 

01/06/2016 1 normal 
increase 

no change negative growing season K increase 0,516 0,343 0,173 

14/06/2016 1 no change normal 
decrease 

negative mowing K increase 0,562 0,334 0,228 

30/07/2016 1 no change no change / growing after 
mowing 

increase K 0,368 0,222 0,146 

31/07/2016 1 no change no change / growing season increase K 0,442 0,311 0,131 

10/08/2016 1 no change steep 
decrease 

negative mowing / 0,518 0,211 0,307 

11/08/2016 1 no change steep 
decrease 

negative mowing / 0,555 0,289 0,266 

15/08/2016 1 no change steep 
decrease 

negative mowing decrease K 0,367 0,203 0,164 

26/08/2016 1 normal 
decrease 

normal 
increase 

positive growing after 
mowing 

NG decrease 0,288 0,117 0,171 

02/09/2016 1 normal 
increase 

normal 
increase 

/ growing season NG decrease 0,448 0,231 0,217 

03/09/2016 1 normal 
increase 

normal 
increase 

/ growing season both curves flat 0,448 0,230 0,218 

04/09/2016 1 normal 
increase 

normal 
increase 

/ growing season / 0,448 0,215 0,233 

24/11/2016 -1 no change no change / non-growing 
season 

/ 0,129 0,309 -0,180 

26/02/2017 -1 no change no change / non-growing 
season 

/ 0,184 0,342 -0,158 

27/02/2017 -1 no change no change / non-growing 
season 

/ 0,168 0,332 -0,164 

01/03/2017 -1 no change no change / non-growing 
season 

 
0,244 0,390 -0,146 

04/03/2017 -1 no change no change / non-growing 
season 

/ 0,179 0,365 -0,186 

06/03/2017 -1 no change no change / non-growing 
season 

/ 0,210 0,376 -0,166 

09/03/2017 -1 no change no change / non-growing 
season 

increase K and increase 
NG 

0,279 0,451 -0,172 
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18/03/2017 -1 no change no change / non-growing 
season 

just before increase K 0,091 0,247 -0,156 

23/04/2017 -1 no change no change / non-growing 
season 

NG higher than K -> 
flow direction reversed 

-0,010 0,174 -0,184 

12/05/2017 -1 normal 
increase 

normal 
increase 

/ growing season both curves flat -0,011 0,134 -0,145 

13/05/2017 -1 normal 
increase 

normal 
increase 

/ growing season NG higher than K -> 
flow direction reversed 

-0,010 0,200 -0,210 

17/05/2017 -1 normal 
increase 

normal 
increase 

/ growing season NG higher than K -> 
flow direction reversed 

-0,009 0,164 -0,173 

18/05/2017 -1 normal 
increase 

normal 
increase 

/ growing season NG higher than K -> 
flow direction reversed 

-0,010 0,146 -0,156 

02/07/2017 -1 normal 
increase 

normal 
increase 

/ growing season NG higher than K -> 
flow direction reversed 

-0,011 0,278 -0,289 

07/07/2017 -1 normal 
increase 

normal 
increase 

/ growing season just before return to 
original flow direction 

-0,010 0,233 -0,243 

16/07/2017 -1 normal 
increase 

normal 
increase 

/ growing season / 0,002 0,144 -0,142 

19/07/2017 -1 normal 
increase 

normal 
increase 

/ growing season just before return to 
original flow direction 

-0,011 0,145 -0,156 

20/07/2017 -1 normal 
increase 

normal 
increase 

/ growing season just before return to 
original flow direction 

-0,012 0,141 -0,153 

27/07/2017 1 normal 
increase 

normal 
increase 

/ growing season K increase and NG 
decrease 

0,238 0,045 0,193 

30/08/2017 -1 normal 
increase 

steep 
decrease 

negative mowing just before return to 
original flow direction 

-0,010 0,147 -0,157 

02/09/2017 -1 normal 
increase 

steep 
decrease 

negative mowing increase K and increase 
NG 

0,065 0,215 -0,150 

05/09/2017 -1 normal 
increase 

steep 
decrease 

negative mowing decrease K and 
decrease NG 

0,071 0,196 -0,125 

09/09/2017 -1 steep 
decrease 

steep 
decrease 

/ mowing strong increase K and 
NG 

0,116 0,437 -0,321 

08/10/2017 -1 no change no change / non-growing 
season 

decrease K and increase 
NG 

0,253 0,423 -0,170 

22/11/2017 1 no change no change / non-growing 
season 

small peak K and NG 0,444 0,316 0,128 

02/05/2018 1 no change no change / growing season decrease K and 
decrease NG 

0,576 0,371 0,205 

29/05/2018 -1 no change no change / growing season / 0,111 0,283 -0,172 
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02/06/2018 1 no change no change / growing season increase K and increase 
NG 

0,352 0,229 0,123 

07/06/2018 1 no change no change / growing season / 0,206 0,079 0,127 

09/06/2018 1 no change no change / growing season K increase and NG 
decrease 

0,420 0,206 0,214 

13/06/2018 1 no change no change / growing season / 0,234 0,093 0,141 

08/09/2018 1 no change no change / end of growing 
season 

small peak K and NG 0,294 0,148 0,146 

11/12/2018 1 no change no change / non-growing 
season 

decrease K and 
decrease NG 

0,451 0,321 0,130 

14/06/2019 1 normal 
increase 

steeper 
increase 

positive growing season strong increase K and 
decrease NG 

0,592 0,302 0,290 

19/06/2019 -1 normal 
increase 

normal 
increase 

/ growing season strong decrease K 0,085 0,258 -0,173 

20/06/2019 -1 normal 
increase 

normal 
increase 

/ growing season increase K 0,123 0,291 -0,168 

22/06/2019 -1 steep 
increase 

steep 
increase 

/ mowing decrease K 0,088 0,223 -0,135 

06/09/2019 1 steep 
increase 

no change negative end of growing 
season 

/ 0,354 0,078 0,276 

07/09/2019 1 steep 
increase 

no change negative end of growing 
season 

/ 0,342 0,156 0,186 

29/09/2019 1 steep 
decrease 

steep 
decrease 

/ mowing strong increase NG 0,512 0,269 0,243 
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Appendix 3: The anomalies of the random forest model for the lower Amerongerwetering 
 

date residual 
factor 

current 
vegetation 
state 

next 
vegetation 
state 

relative 
change in 
vegetation 
state 

interpretation 
vegetation 

particularities water level 
Amerongerwetering 

observed gradient of 
the 
Amerongerwetering 

modelled gradient of 
the 
Amerongerwetering 

residual 

11/04/2014 -1 steadily 
increase 

steadily 
increase 

/ non-growing 
season 

/ 0,085 0,214 -0,129 

29/04/2014 -1 steadily 
increase 

steadily 
increase 

/ non-growing 
season 

/ 0,088 0,286 -0,198 

30/04/2014 -1 steadily 
increase 

steadily 
increase 

/ non-growing 
season 

/ 0,090 0,239 -0,149 

10/07/2014 1 no change steep 
increase 

positive growing season NG increase 0,312 0,159 0,153 

15/08/2014 -1 data gap data gap / growing season / 0,089 0,236 -0,147 

05/09/2014 -1 data gap data gap / growing season / 0,090 0,272 -0,182 

16/08/2015 -1 data gap data gap / growing season NG increase 0,230 0,356 -0,126 

19/08/2015 1 normal 
increase 

normal 
increase 

/ growing season NG increase 0,541 0,284 0,257 

04/09/2015 1 normal 
increase 

no change negative growing season NG decrease and AW 
increase 

0,623 0,444 0,179 

05/09/2015 -1 normal 
increase 

no change negative growing season NG decrease and AW 
increase 

0,494 0,652 -0,158 

06/09/2015 1 normal 
increase 

no change negative growing season NG increase and AW 
decrease 

0,910 0,712 0,198 

07/09/2015 1 normal 
increase 

no change negative growing season NG increase and AW 
decrease 

0,903 0,693 0,210 

18/09/2015 1 no change steep 
increase 

positive growing season / 0,598 0,410 0,188 

21/09/2015 1 no change steep 
increase 

positive growing season / 0,712 0,393 0,319 

22/09/2015 1 no change steep 
increase 

positive growing season NG decrease 0,611 0,457 0,154 

17/10/2015 1 steep 
increase 

normal 
decrease 

negative mowing NG increase 0,610 0,432 0,178 

22/02/2016 1 possible 
data gap 

possible 
data gap 

/ non-growing 
season 

NG increase and AW 
decrease 

0,677 0,404 0,273 
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26/02/2016 -1 possible 
data gap 

possible 
data gap 

/ non-growing 
season 

NG decrease 0,239 0,371 -0,132 

02/04/2016 -1 possible 
data gap 

possible 
data gap 

/ non-growing 
season 

/ 0,085 0,204 -0,119 

08/04/2016 -1 possible 
data gap 

possible 
data gap 

/ non-growing 
season 

/ 0,091 0,231 -0,140 

25/04/2016 -1 possible 
data gap 

possible 
data gap 

/ non-growing 
season 

/ 0,084 0,230 -0,146 

01/05/2016 -1 possible 
data gap 

steep 
increase 

positive growing season / 0,123 0,241 -0,118 

02/05/2016 -1 possible 
data gap 

steep 
increase 

positive growing season / 0,099 0,236 -0,137 

03/05/2016 -1 possible 
data gap 

steep 
increase 

positive growing season NG and AW increasing 0,094 0,241 -0,147 

21/05/2016 1 steep 
increase 

normal 
increase 

negative growing season / 0,512 0,314 0,198 

01/06/2016 1 normal 
increase 

no change negative growing season NG increase 0,471 0,291 0,180 

15/06/2016 1 no change normal 
decrease 

negative mowing NG increase and AW 
decrease 

0,758 0,574 0,184 

18/06/2016 1 no change normal 
decrease 

negative mowing NG increase and AW 
decrease 

0,827 0,539 0,288 

25/06/2016 -1 normal 
decrease 

normal 
decrease 

/ mowing NG decrease and AW 
increase 

0,354 0,512 -0,158 

24/02/2017 1 no change no change / non-growing 
season 

NG increase 0,586 0,429 0,157 

17/03/2017 1 no change no change / non-growing 
season 

/ 0,429 0,139 0,290 

18/03/2017 1 no change no change / non-growing 
season 

/ 0,424 0,184 0,240 

11/09/2017 1 steep 
decrease 

steep 
decrease 

/ mowing NG decrease and AW 
increase 

0,831 0,581 0,250 

17/09/2017 1 steep 
decrease 

less steep 
decrease 

negative mowing NG at high peak and AW at 
low peak 

0,843 0,590 0,253 

18/09/2017 1 steep 
decrease 

less steep 
decrease 

negative mowing NG decrease and AW 
increase 

0,812 0,610 0,202 

06/04/2018 1 no change no change / non-growing 
season 

small increase peak of both 
NG and AW 

0,380 0,184 0,196 

01/05/2018 1 no change no change / growing season NG at high peak and AW at 
low peak 

0,761 0,422 0,339 
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16/05/2018 1 no change no change / growing season small increase peak NG and 
small decrease peak of AW 

0,387 0,230 0,157 

03/06/2018 1 no change no change / growing season NG increase and AW 
decrease 

0,492 0,288 0,204 

08/08/2018 1 steep 
increase 

no change negative end of growing 
season 

AW increase after low peak 0,605 0,403 0,202 

07/03/2019 -1 no change no change / non-growing 
season 

NG increase after low peak 0,092 0,253 -0,161 

25/03/2019 -1 no change no change / non-growing 
season 

NG decrease 0,143 0,271 -0,128 

04/04/2019 -1 no change no change / non-growing 
season 

NG and AW increasing 0,093 0,269 -0,176 

24/04/2019 -1 no change no change / non-growing 
season 

/ 0,043 0,192 -0,149 

08/05/2019 -1 no change no change / growing season small decrease peak of both 
NG and AW 

0,063 0,238 -0,175 

09/05/2019 -1 no change no change / growing season / 0,060 0,224 -0,164 

10/05/2019 -1 no change no change / growing season / 0,069 0,201 -0,132 

11/05/2019 -1 no change no change / growing season / 0,066 0,191 -0,125 

14/06/2019 1 normal 
increase 

steep 
increase 

positive growing season NG increase peak and AW 
decrease peak 

0,513 0,280 0,233 

26/09/2019 -1 no change steep 
decrease 

negative mowing NG increase and AW 
decrease 

0,171 0,307 -0,136 

27/09/2019 -1 no change steep 
decrease 

negative mowing NG increase and AW 
decrease 

0,199 0,320 -0,121 

02/10/2019 1 steep 
decrease 

no change positive mowing NG increase peak and AW 
decrease peak 

0,804 0,525 0,279 

03/10/2019 1 steep 
decrease 

no change positive mowing NG decreasing and AW 
increasing after peaks 

0,784 0,584 0,200 

04/10/2019 1 steep 
decrease 

no change positive mowing NG decreasing and AW 
increasing after peaks 

0,441 0,222 0,219 

13/11/2019 -1 no change no change / non-growing 
season 

/ 0,226 0,375 -0,149 

27/11/2019 -1 no change no change / non-growing 
season 

just before NG high peak 0,138 0,264 -0,126 

02/12/2019 -1 no change no change / non-growing 
season 

NG decrease 0,165 0,307 -0,142 

07/12/2019 -1 no change no change / non-growing 
season 

NG increase 0,235 0,370 -0,135 
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Appendix 4: The anomalies of the gradient boosting model for the lower Amerongerwetering 
 

date residual 
factor 

current 
vegetation 
state 

next 
vegetation 
state 

relative change 
in vegetation 
state 

interpretation 
vegetation 

particularities water 
level 
Amerongerwetering 

observed gradient of 
the 
Amerongerwetering 

modelled gradient of 
the 
Amerongerwetering 

residual 

11/04/2014 -1 steadily 
increase 

steadily 
increase 

/ non-growing 
season 

/ 0,085 0,267 -0,182 

29/04/2014 -1 steadily 
increase 

steadily 
increase 

/ non-growing 
season 

/ 0,088 0,329 -0,241 

30/04/2014 -1 steadily 
increase 

steadily 
increase 

/ non-growing 
season 

/ 0,090 0,271 -0,181 

01/05/2014 -1 steadily 
increase 

steadily 
increase 

/ growing season / 0,095 0,250 -0,155 

20/10/2014 -1 normal 
decrease 

steadily 
increase 

positive non-growing 
season 

just before high peak of 
NG 

0,115 0,279 -0,164 

30/10/2014 -1 normal 
decrease 

steadily 
increase 

positive non-growing 
season 

just after high peak of 
NG 

0,099 0,268 -0,169 

13/12/2014 1 steadily 
increase 

steadily 
increase 

/ non-growing 
season 

high peak of NG 0,477 0,268 0,209 

19/08/2015 1 normal 
increase 

normal 
increase 

/ growing season NG increase 0,541 0,220 0,321 

04/09/2015 1 normal 
increase 

no change negative growing season NG decrease and AW 
increase 

0,623 0,385 0,238 

05/09/2015 -1 normal 
increase 

no change negative growing season NG decrease and AW 
increase 

0,494 0,699 -0,205 

06/09/2015 1 normal 
increase 

no change negative growing season NG increase and AW 
decrease 

0,910 0,741 0,169 

21/09/2015 1 steep 
increase 

steep 
increase 

/ growing season / 0,712 0,330 0,382 

22/09/2015 1 steep 
increase 

steep 
increase 

/ growing season NG decrease 0,611 0,360 0,251 

23/09/2015 1 steep 
increase 

steep 
increase 

/ growing season NG increase 0,635 0,292 0,343 

30/09/2015 1 steep 
increase 

steep 
increase 

/ growing season NG decrease and AW 
increase 

0,392 0,224 0,168 

01/10/2015 1 steep 
increase 

steep 
increase 

/ growing season / 0,370 0,179 0,191 
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17/10/2015 1 steep 
increase 

normal 
decrease 

negative mowing NG increase 0,610 0,459 0,151 

16/11/2015 1 possible 
data gap 

possible 
data gap 

/ non-growing 
season 

high peak of NG 0,535 0,340 0,195 

13/12/2015 1 possible 
data gap 

possible 
data gap 

/ non-growing 
season 

high peak of NG 0,440 0,256 0,184 

19/01/2016 -1 possible 
data gap 

possible 
data gap 

/ non-growing 
season 

NG decrease 0,158 0,308 -0,150 

08/03/2016 -1 possible 
data gap 

possible 
data gap 

/ non-growing 
season 

NG decrease 0,254 0,403 -0,149 

04/04/2016 -1 possible 
data gap 

possible 
data gap 

/ non-growing 
season 

/ 0,076 0,251 -0,175 

08/04/2016 -1 possible 
data gap 

possible 
data gap 

/ non-growing 
season 

/ 0,091 0,302 -0,211 

09/04/2016 -1 possible 
data gap 

possible 
data gap 

/ non-growing 
season 

/ 0,085 0,256 -0,171 

10/04/2016 -1 possible 
data gap 

possible 
data gap 

/ non-growing 
season 

/ 0,079 0,253 -0,174 

12/04/2016 -1 possible 
data gap 

possible 
data gap 

/ non-growing 
season 

/ 0,067 0,256 -0,189 

13/04/2016 -1 possible 
data gap 

possible 
data gap 

/ non-growing 
season 

NG and AW decrease 0,075 0,232 -0,157 

14/04/2016 -1 possible 
data gap 

possible 
data gap 

/ non-growing 
season 

/ 0,082 0,265 -0,183 

18/04/2016 -1 possible 
data gap 

possible 
data gap 

/ non-growing 
season 

/ 0,092 0,292 -0,200 

20/04/2016 -1 possible 
data gap 

possible 
data gap 

/ non-growing 
season 

/ 0,089 0,286 -0,197 

21/04/2016 -1 possible 
data gap 

possible 
data gap 

/ non-growing 
season 

/ 0,081 0,283 -0,202 

23/04/2016 -1 possible 
data gap 

possible 
data gap 

/ non-growing 
season 

/ 0,081 0,234 -0,153 

24/04/2016 -1 possible 
data gap 

possible 
data gap 

/ non-growing 
season 

/ 0,081 0,270 -0,189 

25/04/2016 -1 possible 
data gap 

possible 
data gap 

/ non-growing 
season 

/ 0,084 0,254 -0,170 

26/04/2016 -1 possible 
data gap 

possible 
data gap 

/ non-growing 
season 

NG increasing 0,092 0,349 -0,257 

01/05/2016 -1 possible 
data gap 

possible 
data gap 

/ growing season NG decreasing 0,123 0,347 -0,224 
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02/05/2016 -1 possible 
data gap 

possible 
data gap 

/ growing season NG decreasing 0,099 0,340 -0,241 

03/05/2016 -1 normal 
decrease 

steep 
increase 

positive growing season / 0,094 0,317 -0,223 

04/05/2016 -1 normal 
decrease 

steep 
increase 

positive growing season NG and AW increasing 0,097 0,260 -0,163 

05/05/2016 -1 normal 
decrease 

steep 
increase 

positive growing season NG and AW increasing 0,080 0,244 -0,164 

09/05/2016 -1 steep 
increase 

steep 
increase 

/ growing season datagap NG 0,071 0,246 -0,175 

16/05/2016 1 steep 
increase 

steep 
increase 

/ growing season just after data gap 0,472 0,330 0,142 

18/05/2016 1 steep 
increase 

normal 
increase 

negative growing season / 0,476 0,293 0,183 

01/06/2016 1 normal 
increase 

no change negative growing season increase NG and 
decrease AW 

0,471 0,336 0,135 

19/06/2016 1 steep 
increase 

normal 
increase 

negative growing season just after high peak of 
NG 

0,797 0,508 0,289 

06/02/2017 1 no change no change / non-growing 
season 

/ 0,404 0,270 0,134 

17/03/2017 1 no change no change / non-growing 
season 

/ 0,429 0,188 0,241 

21/03/2017 1 no change no change / non-growing 
season 

/ 0,413 0,273 0,140 

27/07/2017 1 normal 
increase 

normal 
increase 

/ growing season NG increase and AW 
decrease 

0,435 0,301 0,134 

06/10/2017 1 steep 
decrease 

no change positive non-growing 
season 

NG high peak and small 
AW low peak 

0,625 0,409 0,216 

09/06/2018 1 no change no change / growing season small NG high peak and 
small AW low peak 

0,428 0,233 0,195 

10/06/2018 1 no change no change / growing season small NG high peak and 
small AW low peak 

0,457 0,220 0,237 

08/02/2019 1 no change no change / non-growing 
season 

high peak of NG 0,506 0,350 0,156 

28/09/2019 1 steep 
decrease 

steep 
decrease 

/ mowing high peak of NG and 
low peak of AW 

0,495 0,185 0,310 

02/10/2019 1 steep 
decrease 

no change positive mowing NG increase peak and 
AW decrease peak 

0,804 0,545 0,259 

03/10/2019 1 steep 
decrease 

no change positive mowing NG decreasing and AW 
increasing after peaks 

0,784 0,567 0,217 
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04/10/2019 1 steep 
decrease 

no change positive mowing NG decrease and AW 
increase 

0,441 0,304 0,137 

03/11/2019 1 data gap data gap / / high peak of NG and 
low peak of AW 

0,475 0,302 0,173 
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Appendix 5: The anomalies of the random forest model for the Lange Weide drainage area 
 

date residual 
factor 

current 
vegetation 
state 

next 
vegetation 
state 

relative change 
in vegetation 
state 

interpretation 
vegetation 

particularities water level Lange 
Weide 

observed gradient of 
Lange Weide 

modelled 
gradient of Lange 
Weide 

residual 

12/05/2014 1 no data no data / / / 0,078 -0,024 0,102 

10/07/2014 1 no data no data / / / 0,125 0,043 0,082 

28/07/2014 -1 no data no data / / just before positive peak IN and 
PS 

-0,036 0,126 -0,162 

31/07/2014 -1 no data no data / / just after positive peak IN and PS -0,008 0,034 -0,042 

02/08/2014 -1 no data no data / / IN and PS almost same value -0,008 0,037 -0,045 

17/08/2014 -1 no data no data / / IN and PS almost same value 0,017 0,082 -0,065 

27/09/2014 -1 no change no change / end of growing 
season 

just before positive peak IN and 
PS, PS positive peak higher 

-0,049 0,004 -0,053 

12/10/2014 -1 no change no change / non-growing 
season 

IN and PS almost same value -0,007 0,044 -0,051 

17/10/2014 -1 no change slow 
increase 

positive non-growing 
season 

IN and PS almost same value -0,178 0,048 -0,226 

18/10/2014 -1 no change slow 
increase 

positive non-growing 
season 

just before large negative peak IN -0,651 -0,028 -0,623 

19/10/2014 -1 no change slow 
increase 

positive non-growing 
season 

large negative peak IN -0,612 -0,044 -0,568 

25/10/2014 -1 slow 
increase 

slow 
increase 

/ non-growing 
season 

large negative peak IN -0,622 -0,032 -0,590 

17/11/2014 -1 slow 
increase 

slow 
increase 

/ non-growing 
season 

/ 0,011 0,056 -0,045 

21/01/2015 -1 slow 
increase 

slow 
increase 

/ non-growing 
season 

IN and PS almost same value -0,038 0,000 -0,038 

10/03/2015 -1 slow 
increase 

slow 
increase 

/ non-growing 
season 

PS larger than IN -0,035 0,006 -0,041 

29/03/2015 -1 slow 
increase 

slow 
increase 

/ non-growing 
season 

/ 0,032 0,069 -0,037 

06/04/2015 -1 slow 
increase 

slow 
increase 

/ non-growing 
season 

IN and PS almost same value -0,021 0,016 -0,037 

06/09/2015 1 steep 
decrease 

less steep 
decrease 

positive mowing large positive peak IN, data gap PS 0,195 0,102 0,093 
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17/11/2015 1 no change no change / non-growing 
season 

positive peak IN, negative peak PS 0,195 0,099 0,096 

29/11/2015 1 no change no change / non-growing 
season 

just before positive peak IN and 
small negative peak PS 

0,210 0,090 0,120 

20/02/2016 1 no change no change / non-growing 
season 

just before positive peak IN and 
small negative peak PS 

0,154 0,064 0,090 

02/06/2016 1 steep 
increase 

steep 
increase 

/ growing season / 0,103 0,014 0,089 

15/06/2016 1 steep 
increase 

steep 
increase 

/ growing season just before large positive peak IN 
and large negative peak PS 

0,244 0,031 0,213 

16/06/2016 1 steep 
increase 

steep 
increase 

/ growing season large positive peak IN and large 
negative peak PS 

0,356 0,111 0,245 

17/06/2016 1 steep 
increase 

steep 
increase 

/ growing season large positive peak IN and large 
negative peak PS 

0,313 0,100 0,213 

18/06/2016 1 steep 
increase 

steep 
increase 

/ growing season large positive peak IN and large 
negative peak PS 

0,226 0,073 0,153 

27/06/2016 -1 steep 
increase 

steep 
increase 

/ growing season just after large positive peak IN 
and negative peak PS 

0,068 0,111 -0,043 

01/07/2016 -1 steep 
increase 

steep 
increase 

/ growing season / 0,053 0,094 -0,041 

08/07/2016 -1 steep 
increase 

less steep 
increase 

negative growing season / 0,043 0,082 -0,039 

09/08/2016 1 no change no change / end of growing 
season 

large peak IN and negative peak 
PS 

0,207 0,107 0,100 

10/08/2016 1 no change no change / end of growing 
season 

large peak IN and negative peak 
PS 

0,229 0,090 0,139 

11/08/2016 1 no change no change / end of growing 
season 

large peak IN and negative peak 
PS 

0,226 0,087 0,139 

14/08/2016 1 no change no change / end of growing 
season 

large peak IN and negative peak 
PS 

0,225 0,143 0,082 

20/08/2016 1 no change no change / end of growing 
season 

large peak IN and negative peak 
PS 

0,214 0,128 0,086 

17/11/2016 1 normal 
decrease 

normal 
decrease 

/ non-growing 
season 

just before large positive peak IN 
and large negative peak PS 

0,221 0,088 0,133 

22/06/2017 1 normal 
increase 

normal 
increase 

/ growing season just before positive peak IN and 
negative peak PS 

0,171 0,057 0,114 

14/07/2017 -1 normal 
increase 

normal 
increase 

/ growing season just after positive peak IN and 
negative peak PS 

0,032 0,071 -0,039 

20/07/2017 -1 normal 
increase 

normal 
increase 

/ growing season / 0,050 0,092 -0,042 
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29/07/2017 1 normal 
increase 

normal 
increase 

/ growing season just before positive peak IN and 
negative peak PS 

0,176 0,094 0,082 

30/07/2017 1 normal 
increase 

normal 
increase 

/ growing season just before positive peak IN and 
negative peak PS 

0,141 0,037 0,104 

15/08/2017 1 no change normal 
increase 

positive growing season positive peak IN and negative 
peak PS 

0,217 0,082 0,135 

16/08/2017 1 no change normal 
increase 

positive growing season positive peak IN and negative 
peak PS 

0,164 0,082 0,082 

15/09/2017 1 no change no change / end of growing 
season 

just before positive peak IN and 
negative peak PS 

0,217 0,107 0,110 

16/09/2017 1 no change no change / end of growing 
season 

just before positive peak IN and 
negative peak PS 

0,210 0,109 0,101 

21/09/2017 -1 no change no change / end of growing 
season 

/ 0,030 0,079 -0,049 

06/10/2017 1 no change no change / non-growing 
season 

just before positive peak IN and 
negative peak PS 

0,123 0,005 0,118 

08/10/2017 1 no change no change / non-growing 
season 

just before positive peak IN and 
negative peak PS 

0,226 0,012 0,214 

08/12/2017 1 normal 
decrease 

normal 
decrease 

/ non-growing 
season 

just before large positive peak IN 
and  negative peak PS 

0,241 0,108 0,133 

12/12/2017 1 normal 
decrease 

normal 
decrease 

/ non-growing 
season 

just before large positive peak IN 
and large positive peak PS 

0,126 0,050 0,076 

24/01/2018 -1 normal 
decrease 

normal 
decrease 

/ non-growing 
season 

/ 0,014 0,051 -0,037 

16/05/2018 -1 no change no change / start of growing 
season 

IN and PS almost same value -0,004 0,042 -0,046 

31/05/2018 1 no change steep 
increase 

positive growing season just before positive peak IN and 
negative peak PS 

0,174 0,085 0,089 

02/06/2018 1 no change steep 
increase 

positive growing season positive peak IN and negative 
peak PS 

0,144 0,066 0,078 

09/09/2018 -1 no change no change / end of growing 
season 

just after large positive peak IN 
and positive peak PS 

0,020 0,072 -0,052 

15/09/2018 -1 no change steep 
decrease 

negative mowing / 0,011 0,048 -0,037 

08/06/2019 -1 no change steep 
increase 

positive growing season large positive peak IN and large 
negative peak PS 

0,014 0,059 -0,045 

12/07/2019 -1 no change no change / end of growing 
season 

/ 0,043 0,096 -0,053 

26/09/2019 -1 no change normal 
decrease 

negative mowing IN and PS almost same value 0,043 0,090 -0,047 
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29/09/2019 -1 no change normal 
decrease 

negative mowing decrease IN and PS 0,028 0,123 -0,095 

30/09/2019 -1 no change normal 
decrease 

negative mowing / 0,042 0,087 -0,045 
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Appendix 6: The anomalies of the gradient boosting model for the Lange Weide drainage area 
 

date residual 
factor 

current 
vegetation 
state 

next 
vegetation 
state 

relative change 
in vegetation 
state 

interpretation 
vegetation 

particularities water level 
Lange Weide 

observed gradient of 
Lange Weide 

modelled gradient of  
Lange Weide 

residual 

12/05/2014 1 no data no data / / / 0,078 -0,087 0,165 

16/05/2014 1 no data no data / / / 0,051 -0,030 0,081 

26/05/2014 1 no data no data / / / 0,082 -0,001 0,083 

28/07/2014 -1 no data no data / / just before positive peak IN 
and PS 

-0,036 0,111 -0,147 

17/08/2014 -1 no data no data / / IN and PS almost same value 0,017 0,086 -0,069 

27/09/2014 -1 no change no change / end of growing 
season 

just before positive peak IN 
and PS, PS positive peak higher 

-0,049 0,016 -0,065 

01/10/2014 -1 no change no change / non-growing 
season 

/ -0,022 0,030 -0,052 

12/10/2014 -1 no change no change / non-growing 
season 

IN and PS almost same value -0,007 0,062 -0,069 

17/10/2014 -1 no change slow 
increase 

positive non-growing 
season 

IN and PS almost same value -0,178 0,029 -0,207 

18/10/2014 -1 no change slow 
increase 

positive non-growing 
season 

just before large negative peak 
IN 

-0,651 -0,088 -0,563 

19/10/2014 -1 no change slow 
increase 

positive non-growing 
season 

large negative peak IN -0,612 -0,149 -0,463 

25/10/2014 -1 slow 
increase 

slow 
increase 

/ non-growing 
season 

large negative peak IN -0,622 -0,123 -0,499 

17/11/2014 -1 slow 
increase 

slow 
increase 

/ non-growing 
season 

/ 0,011 0,069 -0,058 

21/01/2015 -1 slow 
increase 

slow 
increase 

/ non-growing 
season 

IN and PS almost same value -0,038 0,007 -0,045 

29/01/2015 -1 slow 
increase 

slow 
increase 

/ non-growing 
season 

IN and PS almost same value 0,040 0,092 -0,052 

06/09/2015 1 steep 
increase 

steep 
increase 

/ mowing large positive peak IN, data gap 
PS 

0,195 0,071 0,124 

10/09/2015 1 steep 
increase 

steep 
increase 

/ mowing just before large negative peak 
IN 

0,047 -0,104 0,151 

20/09/2015 1 steep 
increase 

normal 
increase 

negative mowing just after positive peak IN 0,053 -0,047 0,100 
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14/11/2015 1 no change no change / non-growing 
season 

/ 0,130 0,041 0,089 

29/11/2015 1 no change no change / non-growing 
season 

just before positive peak IN 
and small negative peak PS 

0,210 0,120 0,090 

31/01/2016 -1 no change no change / non-growing 
season 

negative peak PS 0,064 0,113 -0,049 

20/02/2016 1 no change no change / non-growing 
season 

just before positive peak IN 
and small negative peak PS 

0,154 0,073 0,081 

15/06/2016 1 steep 
increase 

steep 
increase 

/ growing season just before large positive peak 
IN and large negative peak PS 

0,244 0,024 0,220 

16/06/2016 1 steep 
increase 

steep 
increase 

/ growing season large positive peak IN and large 
negative peak PS 

0,356 0,165 0,191 

17/06/2016 1 steep 
increase 

steep 
increase 

/ growing season large positive peak IN and large 
negative peak PS 

0,313 0,123 0,190 

18/06/2016 1 steep 
increase 

steep 
increase 

/ growing season large positive peak IN and large 
negative peak PS 

0,226 0,087 0,139 

27/06/2016 -1 steep 
increase 

steep 
increase 

/ growing season just after large positive peak IN 
and negative peak PS 

0,068 0,134 -0,066 

01/07/2016 -1 steep 
increase 

steep 
increase 

/ growing season / 0,053 0,104 -0,051 

04/07/2016 -1 steep 
increase 

less steep 
increase 

negative growing season / 0,056 0,115 -0,059 

09/07/2016 -1 steep 
increase 

less steep 
increase 

negative growing season / 0,031 0,088 -0,057 

05/08/2016 -1 no change no change / end of growing 
season 

large positive peak IN 0,133 0,188 -0,055 

11/08/2016 1 no change no change / end of growing 
season 

large peak IN and negative 
peak PS 

0,226 0,136 0,090 

13/10/2016 1 no change no change / non-growing 
season 

/ 0,049 -0,098 0,147 

15/10/2016 1 no change no change / non-growing 
season 

/ 0,063 -0,080 0,143 

17/11/2016 1 normal 
decrease 

normal 
decrease 

/ non-growing 
season 

just before large positive peak 
IN and large negative peak PS 

0,221 0,066 0,155 

23/11/2016 -1 possible 
data gap 

possible 
data gap 

/ non-growing 
season 

/ 0,009 0,057 -0,048 

12/01/2017 1 possible 
data gap 

possible 
data gap 

/ non-growing 
season 

/ 0,122 0,042 0,080 

22/06/2017 1 steep 
increase 

steep 
increase 

/ growing season just before positive peak IN 
and negative peak PS 

0,171 0,064 0,107 
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14/07/2017 -1 normal 
increase 

normal 
increase 

/ growing season just after positive peak IN and 
negative peak PS 

0,032 0,089 -0,057 

29/07/2017 1 normal 
increase 

normal 
increase 

/ growing season just before positive peak IN 
and negative peak PS 

0,176 0,067 0,109 

30/07/2017 1 normal 
increase 

normal 
increase 

/ growing season just before positive peak IN 
and negative peak PS 

0,141 0,020 0,121 

15/08/2017 1 no change normal 
increase 

positive growing season positive peak IN and negative 
peak PS 

0,217 0,084 0,133 

16/08/2017 1 no change normal 
increase 

positive growing season positive peak IN and negative 
peak PS 

0,164 0,078 0,086 

14/09/2017 1 steep 
decrease 

no change positive mowing just before large positive peak 
IN 

0,186 0,104 0,082 

18/09/2017 -1 steep 
decrease 

no change positive mowing just after large positive peak IN 
and negative peak PS 

0,070 0,128 -0,058 

21/09/2017 -1 no change no change / end of growing 
season 

/ 0,030 0,114 -0,084 

06/10/2017 1 no change no change / non-growing 
season 

just before positive peak IN 
and negative peak PS 

0,123 0,027 0,096 

08/10/2017 1 no change no change / non-growing 
season 

just before positive peak IN 
and negative peak PS 

0,226 0,058 0,168 

08/12/2017 1 normal 
decrease 

normal 
decrease 

/ non-growing 
season 

just before large positive peak 
IN and  negative peak PS 

0,241 0,052 0,189 

19/12/2017 -1 possible 
data gap 

possible 
data gap 

/ non-growing 
season 

/ 0,006 0,060 -0,054 

15/01/2018 1 possible 
data gap 

possible 
data gap 

/ non-growing 
season 

/ 0,104 0,003 0,101 

31/05/2018 1 no change steep 
increase 

positive growing season just before positive peak IN 
and negative peak PS 

0,174 0,086 0,088 

02/06/2018 1 no change steep 
increase 

positive growing season positive peak IN and negative 
peak PS 

0,144 0,023 0,121 

09/09/2018 -1 no change no change / end of growing 
season 

just after large positive peak IN 
and positive peak PS 

0,020 0,075 -0,055 

21/09/2018 -1 steep 
decrease 

steep 
increase 

/ mowing / 0,048 0,097 -0,049 

25/10/2018 -1 normal 
decrease 

normal 
increase 

positive non-growing 
season 

/ 0,008 0,063 -0,055 

12/07/2019 -1 no change no change / end of growing 
season 

/ 0,043 0,113 -0,070 

13/08/2019 -1 no change no change / end of growing 
season 

just before positive peak IN 
and negative peak PS 

0,056 0,113 -0,057 
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26/09/2019 -1 no change normal 
decrease 

negative mowing IN and PS almost same value 0,043 0,103 -0,060 

29/09/2019 -1 no change normal 
decrease 

negative mowing decrease IN and PS 0,028 0,148 -0,120 

 

 


