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Abstract 
The Ombilin Basin is one of several Tertiary basins that are presently located in the Sumatran Arc, in 

close vicinity of the active dextral strike-slip Sumatran Fault System (SFS) and surrounded by an active 

Quaternary volcanic complex. The Cenozoic geologic history of the basin is subjected to the oblique 

convergence between the Indo-Australian oceanic plate to the southwestern edge of Sundaland. The 

Ombilin Basin formed in the Paleogene and as its origin pre-dates the Mid-Miocene SFS, its basin 

architecture, therefore, forms an excellent recorder of tectonism in the pre- and early history of the 

SFS. Since the early Paleogene strata are well exposed in this basin, the Ombilin Basin can be 

considered as an analogue for other Sumatran basins, especially their syn-rift phase. Using surface 

geology, detailed Digital Elevation Models (DEM), and subsurface data i.e., 2D seismic lines and 

exploration wells, the study has been conducted to decipher the initial condition, development, and 

current interior structures of the basin in response to the regional tectonic settings. The research 

reveals that the Ombilin Basin originated in the extensional phase of Sumatra since the Early 

Paleogene to the Early Miocene. The geometry and structural development of the basin was then 

controlled by the NW-SE inherited structural fabrics, which later inverted since the Mid-Miocene 

onward during the intensive growth of the Barisan Orogeny. A new model for the basin development 

is then proposed.  

Keywords: Tectonic, basin origin, geological modeling, seismic interpretation, Ombilin Basin, Sumatra, 

Indonesia   
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 Introduction 
The Ombilin Basin is one of several basins in Sumatra, Indonesia. It lies along the strike-slip 

deformation zone of a large dextral fault system, the Sumatran Fault System (SFS) (Figure 1). Formed 

in the Paleogene, the Ombilin pre-dates the Miocene Sumatran Fault System and may thus provide 

information on the pre- and early history of the Sumatran Fault System. 

 

Figure 1. Map showing Sumatra Island with the location of the research area. The Ombilin Basin inside the yellow box in 
comparison with other basins, which are indicated by the orange dashed line (North Sumatra, Central Sumatra, and South 
Sumatra basin). 

The Ombilin Basin is situated just next to the Sumatran Arc where the dextral Sumatran Fault coexists 

with the Quaternary volcanic centers. The Ombilin Basin extends in the NW-SE direction with sub-

rhombohedral geometry around 1500 km2. The orientation of the Ombilin Basin is at an angle of 

approximately 20 degrees with respect to the Sumatran Fault System. The basin consists of two main 

depocenters, the Talawi and a larger one, the Sinamar. The Talawi sub-basin is in the northwest of the 

basin and has been up-thrown and heavily eroded, resulting in exposure of lower-lying Tertiary strata. 

The Sinamar sub-basin is the down-thrown part that extends from the northeast of the Talawi sub-

basin divided by the basement high of Pre-Tertiary rock at Bukit Tungkar (Koesoemadinata & Matasak, 

1981) and the N-S structural trend to the entire southern area.  

The Ombilin Basin is located on the southwest side of the Central Sumatra Basin, which is a much 

larger basin (Figure 2). According to Barber et al. (2005), the horst and graben stage in the Late Eocene-

Oligocene developed a mountainous landscape with an isolated lake in the region of the Ombilin 

Basin. In a later stage, during the initiation of Barisan Orogeny in the Late Miocene, Barber et al. (2005) 

suggested that the Ombilin was separated from the rest of the Central Sumatra Basin (Barber et al., 

2005). Subsequently, located at the eastern edge of the Barisan Orogenic belt, Ombilin Basin 
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experienced uplifting and erosion which removed most of the Ombilin Neogene strata. At present day, 

it is considered an intra-montane basin, which is surrounded by a Quaternary volcanic complex 

(Barber et al., 2005). 

 

Figure 2. Regional structural setting of Sumatra including the Ombilin Basin. Right: The subsurface structures after (Barber 
et al., 2005) and (Heidrick & Aulia, 1993) with the Ombilin Basin (green line) and other basins including Central Sumatra 
basin (dashed line). Left: The regional cross-section after Koning (1985). 

However, the development of the Ombilin Basin seems more complicated, reflected in contradicting 

concepts regarding the origin of the basin. Koesoemadinata & Matasak (1981) suggested that the 

development of the Ombilin Basin began with the formation of a graben-like depression that resulted 

from block faulting following the tensional stresses of Upper Cretaceous orogenesis. This graben-like 

depression was filled by the Tertiary lake deposits to transgressive marine sediments at the end of its 

deposition cycle. Alternatively, Koning (1985) suggested that the Ombilin Basin is a graben-like, pull 

apart structure that formed as a product of the Early Tertiary tensional tectonics of the Great 

Sumatran Fault Zone. Then, Situmorang et al. (1991) postulated that the dextral motion of the 

Sumatran Fault System controlled the structural development of the Ombilin Basin. Later on, those 

arguments were contested by Howells (1997) interpreting the Ombilin Basin not as a pull-apart basin 

but rather a more complex story of wrench-modified rift basin. He argued its genetic origin was similar 

to the other early Tertiary basins of Sumatra, which originated by normal fault displacements. Noeradi 

et al., (2005) also considered the Ombilin Basin as a rift -related basin.  

Therefore, this study was conducted to reconstruct the geometry of the Ombilin Basin and its 

structural features that have been developed in response to the occurrence of regional tectonic 

settings. The newly drilled exploration wells together with the seismic lines and detailed Digital 

Elevation Model were used in order to decipher its structural development. Hence, a new model for 

the origin of the Ombilin Basin is proposed. 

 Geological Background 
Reconstructing the geometry and the structural elements of the basin requires an understanding of 

its regional geology. Therefore, the tectonic evolution of the Sumatra as a whole and the Ombillin 

Basin including its associated stratigraphic units are described in this section.  

2.1. Tectonic Setting 
Sumatra is the biggest island in the western Indonesian archipelago. The current structure of Sumatra 

is mainly affected by the northward subduction of the Indian Plate under the Eurasian Plate at an 

approximate rate of 7 cm a-1. ¢ƘŜ ǎǳōŘǳŎǘƛƻƴ ƛǎ ƻōƭƛǉǳŜ ǊŜƭŀǘƛǾŜ ǘƻ ǘƘŜ ƛǎƭŀƴŘΩǎ b²-SW orientation. 

The convergent movement of these plates yields the main structural features and the development 

of several Tertiary basins in Sumatra, which is divided into three regions (Barber et al., 2005): the 



9 
 

forearc, the Barisan Mountains including the Sumatran Fault System and volcanic chain, and the 

backarc region. 

The Barisan Mountains concurrently extend along the whole length of Sumatra and include the 

uplifted Pre- Tertiary rocks of Permo-Carboniferous to Cretaceous age forming the basement rocks of 

Sumatra, and which are overlain by the Tertiary sediments and volcanics as well as the recent volcanic 

products (Barber et al., 2005).  

Sumatra as a whole is part of a bigger tectonic block, Sundaland, which has been developed since the 

Devonian (Barber et al., 2005). Since the basin is composed of the Pre-Tertiary basement and the 

Tertiary basin fill, hence, the tectonic outline is narrated in two sections: Pre-Tertiary and Tertiary. 

2.1.1. Pre-Tertiary Tectonic 
Sundaland was formed by several accreted Gondwana-derived crustal blocks (continental and oceanic 

microplates) of Indochina/East Malaya, which include the Cathaysia, Sibumasu, and West Sumatra 

blocks. These blocks were detached from Gondwana initiated by the opening of the Palaeo-Tethys 

(Figure 3A) that separated the Indochina/East Malaya and the West Sumatra Block from the 

northeastern margin of the Gondwana in the Devonian (Metcalfe, 2013; Barber et al., 2005). 

During the Carboniferous to the Early Permian (Figure 3B), the northward rifting of the Sibumasu from 

Gondwana, with the West Sumatra Block forming its southern continental margin, resulted in the 

development of the Meso-Tethys (Barber et al., 2005). The Permo-Carboniferous metasediments of 

the Kuantan Formation are suggested as a continental margin sediment product of the West Sumatra 

Block (Barber et al., 2005). The Kuantan Formation is composed of lower grade metamorphic rocks: 

quartzite, phyllite/slate, and recrystallized limestone.  In the present-day, this formation can be found 

extensively exposed on the east to the south of the Ombilin Basin.  

Later in the Mid-Permian, rifting of the Meso-Tethys ocean evoked the detachment of the West 

Sumatra Block from northern Gondwana (Figure 3B). Meanwhile in the northern area, the northward 

subduction of Sibumasu beneath the East Malaya closing the Palaeo-Tethys and generated an Andean-

type magmatic arc in the West Sumatra Block. In the Ombilin Basin, the product of this tectonic event 

is the Silungkang Formation of Mid-Permian age (Barber et al., 2005), composed of volcanic materials, 

andesite, basaltic lava, tuff, and limestone. The formation can be found around the Silungkang Village 

between the Sawahlunto and the Solok area (Silitonga & Kastowo, 1975; Koesoemadinata & Matasak, 

1981; Barber et al., 2005). 

The collision of Sibumasu with East Malaya in the Late Permian (Figure 3C) created the accretionary 

complex of the Malay Peninsula, the Bentong-Raub Suture Zone (Barber et al., 2005; Metcalfe, 2013; 

Advokaat et al., 2018). During this time, the Permo-Triassic sediments of the Tuhur Formation were 

deposited, which is composed of re-crystalline limestone, slate, and shale (Silitonga & Kastowo, 1975; 

Barber et al., 2005). In the present-day, this formation is sparsely outcropped on the east of Lake 

Singkarak and the southwest of the Ombilin Basin. 

In the Early Triassic, the continuous expansion of the Meso-Tethys ocean provoked the translation of 

the West Sumatra Block from the southeast of East Malaya to its present position, on the west of 

Sibumasu (Figure 3D) (Barber et al., 2005). This major NW-SE transcurrent strike-slip, which is now 

recognized as the Medial Sumatra Tectonic Zone (MSTZ) (Figure 3D) (Barber et al., 2005; Metcalfe, 

2013). The transcurrent movement was inferred since there are no former ocean basin rocks or 

ophiolitic remnants found within the MSTZ that would represent a true suture (Metcalfe, 2013). These 

three major blocks, the East Malaya, the Sibumasu, and the West Sumatra Block together form 

Sundaland. 
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Figure 3. Pre-Tertiary tectonic evolution of the Sundaland. (Redrawn from Barber et al. (2005), positions of the SW. Borneo 
and Woyla blocks from Hall (2012)). 

Through the Mid- and Late Triassic, the NE-SW regional extension phase occurred in the whole of 

Sumatra and Peninsular Malaya. This resulted in the development of several north-south and NW-SE 

trending horsts and grabens. In Sumatra, these include the Kualu and Tuhur basins and the Medial 

Sumatra High (Barber et al., 2005). Carbonates were deposited on the horst blocks while the 

terrigenous sediments of cherts in the grabens suggest sediment-starved conditions (Barber et al., 

2005). Meanwhile, during the Late Triassic, the opening of a new ocean, the Ceno-Tethys, had 

commenced on the south of Meso-Tethys (Figure 3E) (Metcalfe, 2013). 

Following the transcurrent motion of the West Sumatra Block in the Early Triassic, part of the Meso-

Tethys Ocean segment shifted to the western coast of Sundaland (Barber et al., 2005). In the Mid-

Jurassic, this segment of Meso-Tethys Ocean subducted eastward under the West Sumatra Block 

resulting in the Andean magmatic arc in the western part of Sibumasu (Figure 3E) (Barber et al., 2005; 

Metcalfe, 2013). In the present-day, this Andean arc is located in the central Sumatra (Figure 4B) 
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(Barber et al., 2005). The subduction also commenced westward in the late Jurassic, together with the 

expansion of the new ocean on the northern Gondwana, the Ceno-Tethys (Figure 3E).  Subsequently, 

the intra-oceanic arc was formed at the southern edge of the Meso-Tethys:  the Woyla Arc (Figure 3E) 

(Barber et al., 2005; Hall, 2012). 

 

Figure 4. A) Tectonic block configuration of Sumatra by Late Cretaceous (around 90 Ma) which from the west to the east 
comprised of the Woyla Arc, West Sumatra Block, and Sibumasu Block respectively (Redrawn from Barber et al. (2005)). B & 
C: the Schematic cross-section of the southwestern margin of Sundaland in the Middle to Late Cretaceous respectively 
(Redrawn from Barber et al. (2005) in Advokaat et al., (2018)).    

The widening of the Ceno-Tethys Ocean in the early Late Cretaceous led the northwards movement 

of the Woyla Arc towards the West Sumatra Block and the closure of the Meso-Tethys (Figure 3F) 

(Barber et al., 2005; Hall, 2012). Subsequently, in the early Late Cretaceous (ca. 110 Ma in the Hall 

(2012) model) Woyla Arc and its associated accretionary complex (oceanic assemblage) collided over 

the West Sumatra Block to develop the Woyla Nappe (Figure 3F) (Barber et al., 2005). Barber et al. 

(2005) also suggested that the collision of the Woyla Arc responsible for folding and the slaty cleavage 

development in pelitic rocks of Kuantan Formation. Following the collision of the Woyla Arc, the 

initiation of the present-day subduction of the Indo-Australian ocean plate (Indian ocean plate) 

beneath Sundaland evoked the initiation of the Late Cretaceous magmatic arc of the future Barisan 

Mountain (Figure 4C) (Barber et al., 2005).  

2.1.2. Tertiary Tectonic and Stratigraphic evolution   
Following the collision of the Woyla Nappe in the Late Cretaceous, Sundaland appears to have been 

almost completely elevated to the subaerial conditions and surrounded by passive margins (Hall, 

2012). At that time, Sumatra was comprised of three tectonic blocks from west to east, the Woyla,  

West Sumatra, and the Sibumasu blocks, respectively (Figure 4A). Hall (2009) suggested that a passive 

margin was established after the termination of subduction beneath Sundaland from the early Late 

Cretaceous (ca. 90 Ma) until Mid-Eocene (ca. 45 Ma), as evidenced by the absence of a volcanic and 

plutonic record in most of Sumatra and Java. As a result, the Tertiary sediments unconformably cover 

the uplifted Pre-Tertiary rocks that act as a basement rock (Barber et al., 2005). Hall (2012) also 

suggested that moderate extension and dextral strike-slip motion may have occurred at the Sumatra 

and Java margin (70-65 Ma). 

Consequently, the Late Cretaceous to Mid-Eocene (90-45 Ma) is marked by a period of erosion, non-

deposition, and redeposition of sediments from previous volcanic activity (Hall, 2012). The Paleocene 

to Eocene is referred to as Pre-Rift in Sumatra.  


































































