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Abstract

The OmbilirBasin is one of severdlertiarybasinsthat are presently located in the Sumatran Arc,
close vicinity ofhe active dextral strikeslip SumatrarFault System (SFS) asutrounded byan active
Quaternary volcanic compleXhe Cenozoic geologic history of the basin is subjected to the oblique
convergence between the Indaustralian oceanic plate to the southwestexdge of Sundaland. The
Ombilin Basindrmed in the Paleogenand as its origin prelatesthe Mid-Miocene SFSits basin
architecture therefore,forms an excellent recorder of tectonism inet pre- and early history of the

SFS Since the early Paleogendraga are well exposed in this basin, the Ombilin Basin can be
considered as an analogue for other Sumatran basins, especially theiiftgyinase.Using surface
geology, detailed Digital Elevation Models (DEM), and subsurface data i.e., 2D seismandines
exploration wells, the study has been conducted to decipher the initial condition, development, and
current interior structures of the basin in response to the regional tectonic settings. The research
reveals that the Ombilin Basin originatéd the exensional phase of Sumatra since the Early
Paleogene to the Early Miocene. The geometry and structural development of the basin was then
controlled by the NWSE inherited structural fabrics, which later inverted since the-Midcene
onward during the intasive growth of the Barisan Orogenynéw model forthe basin development

is thenproposed

Keywords:Tectonic, basin origin, geological modelisgismic interpretationOmbilin Basin, Sumatra,
Indonesia
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1. Introduction

The OmbilinBasin is one of several basims Sumatra Indonesia It lies along the strikeslip

deformation zone of large dextral fault system, thBumaran Fault System (SF&)gurel). Formed

in the Paleogene, the Ombilin pdates the Miocene Sumatrafault Systenand may thus provide
information on the preand early history of th&umatranFault System
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Figurel. Map showingSumatra Islandvith the location of the research aredhe Ombilin Basin inside the yellow box in
comparison with other basins/hich are indicated bthe orange dashed line (North Sumatra, Central Sumatra, and South
Sumata basin).

The Ombilin Basin is situated just next to the Sumatran Arc where the dextral Sumatran Fauls coexist
with the Quaternary volcanic centershe Ombilin Basin extenda the NWSE direction with sub
rhombohedral geometry around500 knt. The oriertation of the Ombilin Basin is at an angle of
approximately 20 degreesith respect to the Sumatran Fault Systefinebasin consists of two main
depocenters, the Talawi and a larger one, the Sinamar. The Talawasibis in the northwest of the
basinand has beenp-thrown and heavily erodedresulting in exposure of lowdying Tertiary strata

The Sinamar subasinis the downthrown part that extends from the northeast of the Talawi sub
basin divided by thbasement high of le-Tertiary rock at Bukit Tungkéifoesoemadinata & Matasak,
1981)and the NS structuratrend to the entire southern area.

The Ombilin Basin is located on the southwest side of the Central Sumatra, Bdsah is a much
larger basir{Figure2). According t@Barber et al. (205), the horst and graben stage in the Late Eocene
Oligocene developed a mountainous landscape with an isolated lake in the region of the Ombilin
Basin. In a later stage, during the initiation of Barisan Orogeny in the Late Mi&aaher et al. (2005)
suggested thatthe Ombilin was separated from the rest of ther@ral SumatraBasin(Barber et al.,
2005) Subsequently, located at the eastermge of the Barisan Orogenic beltOmbilin Basin



experienced uplifting and erosion which removed most of the Ombilin Neogene strata. At present day,
it is considered @ intra-montane basinwhich is surrounded bya Quaternary volcanic complex
(Barber et al., 2005)
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Figure2. Regionalstructuralsetting of Sumatra includintpe OmbilinBasin Right: The subsurface structures aft@arber
et al., 2005pmnd (Heidrick & Aulia, 1993)ith the Ombilin Basin (green line) and other basins including Central Sumatra
basin (dashed line). Left: The regional ciesstion afteirKoning(1985)

However, the development of the Ombilin Baseemsmore complicatedreflected in contradicting
conceptsregarding the dgin of the basinKoesoemadinata & Matasak (198d)ggestedthat the
development of the Ombilin Basin began with the formatioa gfabenlike degressiorthat resulted
from block faulting 6llowingthe tensional stresses of Upper Cretaceous orogendsis grabetike
depressiorwasfilled bythe Tertiary lake deposit® transgressivenarine sedimentat the end of its
deposition cycleAlternatively Koning (1985%uggestd that the Ombilin Basin ia grabenlike, pull
apart structure that formed as aroduct of the Early Tertiary tensional tectoniof the Great
Sumatran Fault Zonéelhen, Situmorang et al. (1991postulated that the dextral motion ofthe
Sumatran Fault Systegontrolled thestructural development of the Ombilin Baslmater on, those
arguments were contested towels (1997)nterpretingthe Ombilin Basin notsa pull-apart basin
but rather a more complex stogf wrenchmodified rift basin He arguedtsgenetic origirwassimilar
to the other early Tertiary basins of Sumatndich originated by normal fault displacementoeradi
et al.,(2005)alsoconsideed the Ombilin Basias arift-related basin.

Therefore, thisstudy was conducted to reconstruct the geometry of the Ombilin Basinitnd
structural features that have been developed in response to the occurrence of regional tectonic
settings The newly drilled exploration wells together with the seisfines anddetailed Digital
Elevation Modelvere usedn order todecipherits structural developmentHence,a newmodel for

the origin of the OmbiliBasinis proposed

2. Geological Background

Reconstructing the geometry and the structural elements of the basin reqairesderstanding of
its regional geologyTherefore,the tectonic evolutionof the Sumatra as a whole and the Ombillin
Basin including its associated stratigraphic uaresdescribed in this section.

2.1. TectonicSetting

Sumatra is the biggest island in the western Indonesian archipeldgocurrent structure of Sumatra

is mainlyaffected by the northward subduction of the Indian Plateder the Eurasian Platat an
approximate rate of 7cma¢ KS & dz RdzOGA2Y Aa 20f A-BwWzSienddon.l 4 A 3S
The convergent movement of these plates ystlde main structurafeatures andhe development

of several Tertiary basiria Sumatrawhich is divided into three regiong¢Barber et al., 2005%he
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forearc, the Barisan Mantains includingthe Sumatran Fault Systeand volcanic chainand the
backarc region

The Barisan Mountainsoncurrently extend along thewhole length ofSumatraand includethe
uplifted Pre Tertiary rocks oPermaCarboniferous to Cretaceous age forming the basementsrock
Sumatra andwhichareoverlain by the Tertiary sedimengsd volcanisas well as the recent volcanic
products(Barber et al., 2005)

Sumatra as a wholis part of a bigger tectonic block, Sundalamdich has been developed since the
Devonian(Barber et al., 2005)Since the basin is composetithe PreTertiary basement and the
Tertiary basin fill, hence, the tectonic outlirenarrated in two sections: Pf€ertiary and Tertiary.

2.1.1. PreTertiary Tectonic

Sundalandvas formed by several accret@bndwanaderivedcrustal blocks (continental and oceanic
microplates)of IndochindEast Malayawhich includethe CathaysiaSibumasu, and West Sumatra
blocks. These blocks werdetachedfrom Gondwanainitiated bythe openingof the Paheo-Tethys
(Figure 3A) that separated the Indochina/East Malayand the West Sumatra Blodkom the
northeastern margin of tle Gondwanan the Devonian(Metcalfe, 2013Barber et al., 2005)

During the Carboniferous the EarlyPermian(Figure3B), the northwardrifting of the Sibumasu from
Gondwana, with the West SumatraoBk forming its southern continental margin, reselt in the
development of the Mesd ethys(Barber et al., 2005)'he PermeCarboniferous metasedimestof

the Kuantan Formatioare suggested aa continental margin sedimergroductof the West Sumatra
Block(Barber et al., 2005)The Kuantan Formation is composed of lower grade metamorphic rocks:
guartzite, phyllite/slate, and recrystallized limes®nn thepresentday, this formationcan be found
extensively exposedn the east to the south of the Ombilin Basin.

Later in the MidPermian rifting of the MesoTethys ocearevokedthe detachmentof the West
Sumatra Block from northern @dwana(Figure3B). Meanwhile in the northern areahe northward
subduction of Sibumadweneaththe East Malayaclosing the Palaedethys and generated an Andean
type magmatic arc in the West Sumatra Blolckthe Ombilin Basinhe product of thigectonic event
isthe Silungkang Formation of Mermian agéBarber et al., 2005 omposed of volcanic materials,
andesite, basaltic lava, tuff, and limestorighe formatiorcan be foundaround the Silungkang Village
between the Sawahlunto and the Solatea Silitonga & Kastowo, 197Boesoemadinata & Matasak,
1981;Barber et al., 2005)

Thecollisionof Sibumaswvith East Malayan the Late PermiafFigure3C)created the accretionary
complex ofthe Malay Peninsulahe BentongRaub Suture Zon@arber et al., 2008Metcalfe,2013
Advokaat et al., 2008During this time, the Perma@riassic sedim#s of the Tuhur Formatiorwere
deposited, which is composed of-ceystalline limestone, slate, and shdfilitonga & Kastowo, 1975
Barbe et al., 2005) In the presenday, this formationis sparsely outcropped on the east of Lake
Singkarak and the southwest of the Ombilin Basin.

In the Early Triassic, the continuous expansiotheMeso Tethys ocean provoked the translation of

the West Sumatra Block from the southeast of East Malaya to its present position, on the west of
SibumasuyFigure3D) (Barber et al., 2005)This major NWSE transcurrent strikslip, which is now
recognized as the Medial Sumatra Tectonic Zone @WIE&Igure3D) (Barber et al., 2005Metcalfe,

2013. The transcurrent movement wasferred since there are no former ocean basin rocks or
ophiolitic remnants found within the MSTZ thabuldrepresent a true suturéMetcalfe, 2013) These

three major blocks, the East Malaya, the Sibumasnd the West Sumatra Blotgether form
Sundaland
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Figure3. PreTertiary tectonic evolutionf the SundalandRedrawnfrom Barber et al. (2005)positions of theSW. Borneo
and Woylablocksfrom Hall (2012).

Throughthe Mid- and Late Triassithe NESWregionalextenson phase occurred in the whole of
Sumatra ad Peninsular Malayarhisresulted in the development of several norteouth and NWSE
trending horsts and grabers. In Sumatrathese includethe Kualu and Tuhur basiesd the Medial
Sumatra High(Barber et al., 2005)Carbonates were deposited on the horst blockkile the
terrigenous sediments ofhertsin the grabens suggesedimentstarved condiions (Barber et al.,
2005) Meanwhile, during the Late Triassic, the opening of a new ocean, the-Te¢imgs, had
commenced on the south of Mestethys(Figure3E)(Metcalfe, 2013)

Followingthe transcurrent moion of the West Sumatra Block in the Early Triagsict of the Meso
Tethys Ocean segmeshifted to the wesern coastof SundalandBarber et al., 2005)n the Mid
Jurassicthis segmentof MesoTethys Ocearsubducted eastwardinder the West Sumatra Block
resulingin the Ardean magmatic arc in th@estern part of Sibumasfrigure3g)(Barber et al., 2005
Metcalfe, 213). In the presertday, this Andean aris located in the entral Sumatra(Figure4B)
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(Barber et al., 2006 The subduction also commenced westwandhe late Jurassjtogether with the
expansion of the new ocean on the northern Gondwgha CeneTethys(Figure3E). Subsequently,
the intra-oceanic aravas formedat the southern edge of the Mesbethys the Woyla Ar¢Figure3E)
(Barber et al., 2005; Hall, 2012)

Figure4. A) Tectonic block configuration of Sumatra by Late Cretaceous (around 90 Ma) which from the west to the east
comprised of the Woyla Arc, West Sumatra Block, #@mth#&su Block respectivélRedrawn fronBarber et al(2005). B &

C the Shematic crossection ofthe southwestern margin of Sundaland in the Middle to Late Cretaceous respectively
(Redrawrfrom Barber et al(2005)in Advokaa et al.,(2018).

The widening of the Cendethys Oceain the early Late Cretaceous led the northwards movement
of the Woyla Arc twardsthe West Sumatra Block aride closure of the MesaeTethys(Figure3F)
(Barber et al., 2005; Hall, 201Zubsequentlyin the early Late Cretaceo(sa.110 Ma inthe Hall
(2012 model)Woyla Arc andts associated accretionary compl@ceanic assemblagedllidedover

the West Sumatra Blodik develop the WoyldNappe(Figure3F) (Barber et al., 2005Barber et al.
(2005) also suggested thataltollision of the Woyla Aresponsible for folding and the slaty cleavage
development in pelitic rocks of Kuantan Formatidiollowing the collision of the Woyla Arc, the
initiation of the presentday subduction of the Indéustralian ocean plate (Indian ocean plate)
beneath Sundaind evoked the initiation of the Late Cretaceous magmatic arc of the future Barisan
Mountain (Figure4C)(Barber et al., 2005)

2.1.2. Tertiary Tectoniand Stratigraphic evolution

Following the collision of the Woyla Napjethe Late Cretaceous, Sundaland appgaarhavebeen
almost completely @lvatedto the subaerial conditios and surrounded bypassivemargins(Hall,
2012) At that time, Sumatrawas comprised of three tectonic blocksom westto east the Woyla
West Sumatra, and the Sibumaslocks respectivelyFigure4A). Hall (2009suggestedhat apassive
marginwasestablishedafter the termination of subductionbeneath Sundalanéfom the early Late
Cretaceous (ca. 90 Mantil Mid-Eocene ¢a.45 Ma) asevidenced by the absence of a volcanic and
plutonic record irmost of Sumatra and Javas a resultthe Tertiary sedimentanconformably cover
the uplifted PreTertiary rocksthat act asa basement rockBarber et al., 2005Hall (2012) also
suggestedhat moderateextension and dexal strikeslip motionmay haveoccurred at the Sumatra
and Java margifvr0-65 Ma).

Consequentlythe Late Cretaceous to Milocene (9815 Ma)is marked bya period of erosion, non
deposition, andedeposition of sediments from previous volcanic actiyitall, 2012)The Paleocene
to Eocenas referred to a$re-Riftin Sumatra
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