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CHUNKING AS PREDICTOR OF READING TIMES

Abstract

Elaborating on earlier theories in the field of sentence processing and
parsing strategies, Hale (2014) proposed that the Chunking Theory of
Learning (CTL) might be considered a good potential for relating a
concrete mechanism to the sentence complexity metric Surprisal (Hale,
2001), which provides a mathematical specification of the probability
of the next word in the sentence. Applying CTL to sentence process-
ing, Hale assumed that parsing operators can be fused together into
a quicker executing macro-operator if used more often, resulting in
faster parsing for more familiar sentence structures, at the same time
reducing surprisal effects. The present study provides an examination
of Hale’s theory on parsing action chunking, testing its predictions on
the Natural Stories Corpus (Futrell et al., 2018). The results show a
correlation between cohesion degree of parsing operator trigrams and
average reading times, supporting the idea that parsing action tuples
can be learned to be a chunk. We will conclude that the presented
results are in line with Hale’s predictions, and that further research
should give insight into possible internal or external effects at play.

Keywords: sentence processing, parsing, surprisal, chunking, self-paced
reading times
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CHUNKING AS PREDICTOR OF READING TIMES

Introduction

How are human beings so proficient in understanding spoken and written
sentences effortlessly? In this comprehension process many informational
features are involved, ranging from phonetic and morphological features, so-
ciolinguistic aspects and semantic interpretation to syntactic structure.

This study’s focus lays on the grammatical knowledge involved in sen-
tence processing. Psycholinguists continue being puzzled about humans’
overwhelming skill to build syntactic representations of sentences. Exper-
iments on sentence processing difficulty have led to theories such as the
Sausage Machine theory by Frazier and Fodor (1978), various formal parsing
algorithms such as Generalized Left-Corner parsing (Demers, 1977) and to
the well-known Garden-Path Theory (Frazier & Rayner, 1982), which gives a
heuristic account for processing difficulties in parsing garden-path sentences.
More recently, a different perspective on syntactic processing has become
popular, finding its roots in the information theory in the tradition of Shan-
non (1948), in which sentence processing difficulties are related to sentence
complexity metrics such as Surprisal (Hale, 2001), which give a mathematical
specification of the probability of the next word in the sentence.

Although correlations are found between the log-probability of the next-
word and empirical sentence processing measures such as eye-tracking and
self-paced reading times, complexity metrical accounts abstract away from
a clear specification of a particular parsing strategy. Hale (2014) therefore
proposed to relate the Chunking Theory of Learning (CTL) (Rosenbloom &
Newell, 1987) to Surprisal Theory, with chunking as a mechanism that op-
erates in accordance with this surprisal metric. Applying CTL to sentence
processing, the idea is that parsing operators can be fused into a quicker exe-
cuting macro-operator for more familiar sentence structures. Hale predicted
that surprisal effects, signaling a higher processing difficulty, would occur
exactly on those points where fused macro-operators cannot account for less
common sentence structures.

In this study, Hale’s application of the Chunking Theory of Learning (CTL)
has been evaluated and examined. In section 1, a history of sentence com-
prehension theories will be presented and the predictions of these will be
evaluated according to empirical findings on sentence processing difficulties.
Furthermore, Hale’s application of CTL will be considered in detail, leading
to a substantiation of the relevance of our research statement in section 2.
An improvement on Hale’s method to test the predictions of CTL will be
proposed in section 3, and the results of my execution of this method will be
displayed in section 4 and discussed in sections 5 and 6.
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1 Theoretical Background

1.1 Context-free grammars

Table 1

Example of a Context-Free Grammar

S — NP VP DT — the
NP —» NP VP NN — horse
NP — DT NN NN — barn
VP — VBD PP VBN — raced
VP — VBD VBD — raced
VP — VBN PP VBD — fell
PP — IN PP IN — past

Before discussing sentence parsing strategies, it is first necessary to have
a detailed and well-defined theoretical account for the syntactic analysis of
sentences. This article will reason from context-free grammars (CFGs) only,
which render a rather simple mathematical model for sentence structure.
In this formal system, rules are given such that single non-terminals can
be rewritten as a sequence of terminals and/or non-terminals, providing a
hierarchical system of sentence structure, while the rule choice does not de-
pend on the context of these non-terminals (hence such a grammar is called
context-free). Parsing itself is the process of constructing a syntactic analysis
for a sentence; for CFGs this process can be defined as assigning the correct
derivation to a sequence of terminals. CFGs can provide an account for
various linguistic properties, such as syntactic types, hierarchical structure,
constituency, syntactic ambiguity, and precedence relationships, but they are
not able to express displacement phenomena, such as relative clauses, topical-
ization and questions (Hale, 2014, pp. 11-17). An example of a context-free
grammar is displayed in table 1 above.

(1.1)  The horse raced past the barn fell.

The famous sentence from Bever (1970) in example 1.1, which can be con-
structed by this grammar, shows that grammatical sentences might be am-
biguous locally (having multiple possible analyses in the parsing process),
while having only one possible derivation globally, as presented in figure
1. When the local ambiguity is resolved towards the dispreferred structure,
the processing difficulties involved are referred to as the garden-path effect,
because listeners or readers are then led into the incorrect derivation, figu-
ratively having to trace back to be able to find the correct derivation. Being
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S
/\
S NP VP
NP VP NP VP VBD
PN N PN N |
DT NN VBD PP DT NN VBN PP fell
I | N I | RN
the horse raced IN NP the horse raced IN NP
EZEN ZN
past DT NN past DT NN
I I
the barn the barn

Figure 1. A local and global derivation for the sentence in example 1.1.

led into a garden-path is viewed as choosing the wrong structural alternative,
and this abstract idea of garden-pathing has been formalized throughout the
past decades.

1.2 Cognitive architecture

Besides choosing a formal grammar to reason from, it is important to deter-
mine which properties would nominate a parsing theory as a good candidate
for modeling human parsing. That is, a good theory would reflect the pow-
ers and limits of the human mind in all its facets. The just explained effect
of local ambiguity and selecting the incorrect derivation is only one of the
properties of language that need a proper formalization. Crocker (1999) has
mentioned three important properties of a cognitive model. Firstly, one ba-
sic property that a cognitive model should exhibit is incrementality, which
is defined as the item-by-item (or in this case, word-by-word) processing of
information. Secondly, the parsing mechanism should reflect how structural
ambiguities (either local or global) are dealt with by a human. Thirdly,
the processing complexity, for instance measured in time or space complex-
ity, should increase for sentences which are shown to be more difficult by
psycholinguistic experiments on sentence processing (Crocker, 1999). Such
necessary properties are indicators of a good mental model of parsing, and
should therefore be taken into account when the respective models are eval-
uated and compared.

6 Elze van der Werf
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1.3 Sentence parsing strategies

Some famous parsing mechanisms for context-free languages are top-down,
bottom-up and left-corner parsing. Hale (2014) introduced these mechanisms
by making use of pushdown automata.

In short, a top-down parser starts by assuming the word sequence is
of type S (sentence) and works its way down the derivation tree by using
depth-first search in expanding nodes according to the grammar rules. This
algorithm assumes a hypothesis without checking it against the sentence,
with the effect that at many points more than one rewrite rule can be chosen
and there is no strategy to chose one above the other, resulting in a high
degree of non-determinism.

Bottom-up parsing works in the opposite direction, starting from the en-
countered words by shifting them onto the stack, reducing combinations of
words into higher categories according to the rewrite rules, and ending with
the symbol S on the stack if the sentence is grammatical. In more detail, the
two actions ’shift” and 'reduce’ can be formalized as follows (Hale, 2014):

SHIFT: If the next word w in the sentence is a terminal in the grammar,
push w onto the stack.

REDUCE: If the top of the stack contains a sequence of symbols s;ss...5,
and there is a grammar rule X — s155...5,, then pop the
symbols from the stack and push X onto the stack.

This algorithm might seem more efficient, because unlike a top-down parser
it does not work out a hypothesis about the sentence structure before hav-
ing seen the words. However, similar to top-down parsing, it does operate
with some degree of non-determinacy, since at some points more than one
reduction rule might be applicable.

A more "psychologically plausible” algorithm, as Crocker (1999, p. 15)
formulates it, would be left-corner parsing, which is a combination of top-
down and bottom-up parsing. In this parsing strategy, the left-corner of
a grammar rule is chosen to project the mother category of a (bottom-up)
encountered word and predict the remaining categories on its right-hand
side (top-down). This strategy captures some degree of expectation and
anticipation in the human mind. A disadvantage of this algorithm is that
it is less applicable to head-final languages than to head-initial languages,
because heads are predictive for the rest of the phrase. A more universal
mechanism would be Generalized Left-Corner (GLC) parsing, in which the
left-corner can be stretched over more than one word (Demers, 1977). In
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Table 2

A demonstration of how announce points are placed; every symbol left of the
announce point is parsed bottom-up and predictive for the rest of the phrase,

every symbol right of it is parsed top-down.
Announce point location Symbols parsed bottom-up Symbols parsed top-down Example phrase

PP — P _ NP P NP [on] [the beach]
VP — VP AdvP _ VP, AdvP [sleep][furiously]
S — _ AdvP S AdvP, S [Fortunately][he agreed]

Note: Announce point locations are displayed as an underscore

GLC parsing, each rewrite rule receives an announce point on its right-hand
side. The symbols left of the announce point are said to be predictive for
the rest of the phrase. Depending on the placement of the announce point,
bottom-up or top-down parsing will take place. Each rule is parsed bottom-
up, until the announce point is reached. Then the predicted remainder of
the rule is pushed onto the stack and parsed top-down. It is different from
regular left-corner parsing only in its arbitrary placement of the announce
point: in regular left-corner parsing, the announce point is always placed next
to the first symbol on the rule’s right-hand side. Table 2 shows for different
grammar rules how the announce points are placed and which symbols are
parsed bottom-up and which are parsed top-down. (Crocker, 1999; Demers,
1977; Hale, 2014).1

1.4 Garden Path Theory

The most well-known theory on the garden-path effect is the Garden Path
Theory of Frazier (1978). This theory gives a heuristic account for sentence
processing difficulties in parsing garden-path sentences: in a case of local am-
biguity, ambiguity-resolution heuristics, such as the famous Minimal Attach-
ment and Late Closure, are used to guide the parser into one interpretation.
Minimal Attachment, for example, prefers derivations with less nodes over
derivations with more, attaching incoming symbols into the phrase marker
already being constructed. This also applies to the sentence in example 1.1:
at first, the left analysis in figure 1 for "the horse raced past the barn” is
favored over the right, because the right derivation takes an extra NP node,
signaling incompleteness of the phrase. The garden-path effect occurs when
heuristics guide the parser into a globally incorrect and syntactically impos-
sible interpretation, and can be resolved by backtracking to the place in the
sentence where the wrong analysis was chosen and pursuing an alternative

'For more detailed information on context-free languages, pushdown automata, and
automaton parsing mechanisms, read Crocker (1999), Hale (2014) and Sipser (1996).
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analysis (Crocker, 1999). Some fundamental ideas of Garden Path Theory
are the assumption that comprehension is single-path (as the words are heard
or read, only one analysis is considered at a time), the principle of local in-
determinacy and the modular approach that there are two subsequent stages
in comprehension, namely a syntactic and a semantic stage, uninfluenced by
each other (Hale, 2014). One might, however, doubt whether these stages
are completely separate, because it has been found in many empirical studies
that syntactic comprehension is influenced by factors such as prosody, refer-
ential context, animacy and thematic role assignment, favoring an approach
of interaction between different linguistic modules (Crocker, 1999).

1.5 Sausage Machine Theory

Another theory that reasons from two separate stages is the Sausage Ma-
chine Theory by Frazier and Fodor (1978). In contrast to Garden Path the-
ory, this theory does not assume modularity of different linguistic domains,
but instead it states that there are two distinct steps of assigning syntactic
structure to the word string. In the first stage, substrings of the sentence are
assigned lexical and phrasal nodes by what is called the Preliminary Phrase
Packager (PPP, or Sausage Machine), and in the second stage, these strings
are linked together with higher nodes to combine them into a sentence by the
Sentence Structure Supervisor (SSS). These two mechanisms have a consid-
erably different behavior: the shortsighted PPP analyzes only a few words at
a time, joining them into clauses or sub-clausal phrases, while the SSS can
keep track of long-distance dependencies and commitments between phrases
and takes into account the well-formedness rules when combining the phrases
into higher non-terminal nodes.

One general motivation that Frazier and Fodor give for their model is that
it considers the limits of the human cognitive architecture: in a single-stage
parser, the computational complexity would increase exponentially with the
sentence length, yet it is believed that amount of words is not a good predictor
of sentence processing difficulty. In the two-stage Sausage Machine model,
the computational complexity would not increase exponentially with sentence
length, but the demand on working memory can be kept within reasonable
limits, because analyses of subphrases can be dropped from the first stage as
they are established in the second stage: the more structured the information
that has to be stored, the lower the demand on working memory storage
(Frazier & Fodor, 1978).

Elze van der Werf 9
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1.6 Surprisal Theory

One method to relate proposed parsing algorithms to corresponding observed
difficulty measures in psycholinguistic experiments (e.g. reading times, eye-
tracking or brain activity experiments) could be to calculate the correlation
between the number of parsing operations and the observed difficulty. How-
ever, in a different perspective, one may start from information-theoretical
accounts about processing difficulty and then relate them to real parsing
mechanisms that might account for them (Hale, 2001, 2014, 2016). The in-
tention is that processing difficulty on a word is high when its conditional
probability is low, which means it has a low probability given the words al-
ready heard or read. This probability of a derivation can be calculated with
use of probabilistic grammars, by determining the conditional probability of
rewrite rules in a corpus, and then multiplying the probability of all rules
that were applied in the given derivation.

One sentence complexity metric in the information-theoretical perspec-
tive is Surprisal, which calculates, given an incoming successor word w, the
logarithm of the reciprocal of its probability as follows:

surprisal(z) = log, (m) (1)

In this equation, PrefP(w) is the prefix probability at word w divided by
the prefix probability at the previous word, or in simpler words, the change
in probability of the previous derivation in contrast to the derivation when
word w is encountered (Hale, 2014, 2016). Although Surprisal Theory is
supported by several empirical studies , it models syntactic processing only
computationally, not algorithmically: it gives a specification of how high the
difficulty of parsing would be, given the syntactic structure of the sentence,
but does not characterize a mechanism that operates in accordance with
these metrics. One reason for the productivity of such complexity metrics is,
in Hale’s words, "the combinality of these information-theoretical complexity
metrics with essentially any model of language” (Hale, 2014, p. 86), and that
is exactly what he started working on.

1.7 The Chunking Theory of Learning

Hale suggested that surprisal could be viewed as a consequence of the Chunk-
ing Theory of Learning (CTL) (Rosenbloom & Newell, 1987), which states
that cognitive operators can be fused together into a quicker executing macro-
operator if used often. Applying this theory to sentence processing, the idea
is that parsing operators such as ’shift’ and 'reduce’ (see the paragraph on

10 Elze van der Werf
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bottom-up parsing in section 1.3) can be merged into one macro-operator if
the sentence structure is more familiar: the operators are then learned to be
a chunk. Hale’s prediction was that surprisal effects would occur exactly on
those points where highly general chunking mechanisms cannot account for
syntactic structures that are less familiar for that particular context, which is
among others the case for garden path sentences. A combination of CTL with
Generalized Left-Corner parsing could give an explanation of how frequency
and probability influence parsing. In order to identify potential chunks, he
introduced cohesion as a measure of how well triples of parsing operators go
together, such that a higher cohesion degree would signal they are more likely
to become a macro-operator. This cohesion value can be calculated, based on
Manning & Schiitze (1999), as the likelihood-ratio between the (null) hypoth-
esis that parsing actions are probabilistically independent of previous parsing
actions, and the hypothesis that they are dependent. A high cohesion value
for one action triple would signify that this triple is more likely under the hy-
pothesis that a parsing action would follow the two previous parsing actions
than its base rate of occurrence would suggest, therefore being more likely
to become a macro-operator under CTL. This will be formalized further in
section 3. Using linear regression to predict eye-fixation duration in an En-
glish and French eye-tracking corpus, Hale showed that cohesion degree of
chunks is indeed a positive predictor of comprehension (Hale, 2014, ch. 8),
supporting the idea that parsing action chunks get stronger with usage.

2 Research Statement

The purpose of this study is to investigate further Hale’s claim that chunks
of parsing operators can be learned to go together, resulting in faster pars-
ing for familiar sentence structures, while inducing surprisal effects for less
familiar structures. In his study on English, Hale used the Charniak parser
(Charniak & Johnson, 2005), which is an automatic, and therefore slightly
flawed, parser, to obtain the phrase structures for the prominent English
eye-tracking corpus called Dundee Corpus (Kennedy & Pynte, 2005). To
improve on the validity of this method, we will evaluate on chunking by us-
ing the Natural Stories Corpus (Futrell et al., 2018), which is an already
parsed and hand-corrected reading-times corpus of English: the fact that it
is hand-corrected will prevent that wrongly parsed sentences are taken into
account in the calculations, in contrast with what would be the case for an
automatic parser. As our research statement, we will argue that our results
are in agreement with the prediction that parsing action chunks get stronger
with usage, resulting in faster reading times for more familiar parsing action

Elze van der Werf 11
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sequences, while inducing surprisal effects and longer reading times for less
familiar parsing action sequences. In the following sections, we will give a
thorough explanation of our methodology, our results and their implications.

3 Method

In the same way as Hale went through the corpora to come up with a list of
candidate chunks ranked by cohesion degree, and similarly to how he com-
pared these measures to the eye-tracking data, we have analyzed the data of
the Natural Stories Corpus (Futrell et al., 2018). This corpus consists of En-
glish texts, containing many low-frequency sentence structures, without any
disfluency effects for native speakers. It is annotated with hand-corrected
parse trees in Penn Treebank-style and includes self-paced reading (SPR)
times, averaged out over 181 native English speakers. Firstly, we have calcu-
lated the cohesion of all parsing action bigrams and trigrams, by extracting
from the corpus the frequencies of the individual occurrences of parsing ac-
tions and how often they appear together, using the association measure as
introduced by Manning and Schiitze (1999). Secondly, we have analyzed the
correlation between cohesion degree and reported self-paced reading times,
averaged over participants (mean RTSs).

As for the calculation of cohesion, this is a likelihood-ratio between the hy-
pothesis that parsing actions are probabilistically independent of previous
parsing actions and the hypothesis that they are dependent. Formally, these
alternative explanations for the occurrence of a trigram of parsing actions
aiagaz can be represented as follows, where hypothesis 1 is a formalization
of independence and hypothesis 2 a formalization of dependence:

Hypothesis 1. P(aslajas) = p = P(as|—(a1az))

. 2
Hypothesis 2. P(aslajas) = p1 # pa = P(as|-(aras)) @)

The likelihood of occurrences of ajas, az, and ajasas is calculated as in
equation 3 for the two hypotheses, where b is the binomial probability mass
function, b(k,n,p) = (Z) pF(1—p)"~* where ¢ stands for the frequency count
of an action or action tuple, p = 3, p1 = 22, py = %, and N is the

C12
total amount of parsing actions in the corpus.

L(H,)
L(H,)

(0123, 012,]9) : b(C3 — c123, N — 012,]9)

=9
= b(C123, 012,]91) : 5(03 — Ci23, N — 012,p2)

(3)
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The logarithm of the likelihood ratio is then given by the following equation:

L(H,)
L(H>)
5(01237 012729) : b(C3 —c123, N — 012729)
b(ci23, 12, p1) - b(c3 — cra3, N — c12,p2)
= log L(c123, c12,p) +1og L(c3 — c1a3, N — c12,p)
— log L(ci23, c12, p1) — log L(c3 — c123, N — c12,p2)

log A = log

= log

where L(k,n,p) = p*(1 — p)"~*. By convention, the cohesion value is dis-

played as the log likelihood ratio multiplied by negative two, resulting in the
quantity —2log A (Manning & Schiitze, 1999)2.

To come up with a list of cohesion values per word, in order to be able to
find a correlation between cohesion degree and mean RT per word, we have
calculated the maximum and mean of the bigram and trigram cohesion val-
ues for the parsing actions for each word (this is because words often would
be considered by more than one parsing action). In addition to that, for
each word we have taken a look at the parsing action trigram whose middle
action was the shift of that word; this is what Hale called the ”presumably
relevant chunk” (Hale, 2014, p. 95) and the cohesion value that he used in
his study. The final step was to calculate the Pearson correlation between
the calculated cohesion values and the mean RT per word. If the hypothesis
that chunks of parsing operators can be learned to go together, resulting in
faster parsing for more familiar sentence structures, is true, we would expect
a negative correlation between cohesion degree of parsing action chunks and
mean RT: the higher the cohesion of parsing actions on a word, the shorter
the reading time expected.

4 Results

Table 3 presents some parsing action triples with corresponding frequencies
as counted in the corpus, and their calculated cohesion values (note that the
bar after a phrase marker indicates that the phrase is not ended yet). The
Pearson correlation coefficients for the different calculated cohesion values per
word (maximum, mean and cohesion of the relevant parsing action trigram
as in Hale (2014), see section 3) and the mean RT on that word in the corpus
are presented in table 4. The results show a significant but small negative

2The equations for pairs of actions, taken from and substantiated by Manning & Schiitze
(1999, §5.3.4), are customized here for triples of actions.
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Table 3

Some Fxample Parsing Action Trigrams from the Natural Stories Corpus
with Frequencies and Cohesion Values

ai; Gg; ag 1 C2 C3 C12  ci3  —2log A
reduce-binary VP;
reduce-unary [I-BAR,; 2161 1531 1531 999 893 5587.1601

reduce-binary 1P

shift;
reduce-unary VP; 11727 118 2161 112 46  114.8011
reduce-unary VP-BAR

reduce-binary IP;
shift; 1513 11727 325 266 1 1.1075
reduce-unary AdvP

correlation between cohesion degree of action trigrams and mean RT (only for
the maximum trigram cohesion and cohesion of the relevant trigram). This
means, participants spent significantly less time on the words with a higher
maximum trigram cohesion and a higher cohesion of the relevant trigram
(the parsing action triple with as second action the shift of that word). An
unexpected positive correlation between the average cohesion value of all
bigram actions for a word and the average reading time on that word was
found.

Table 4

Pearson Correlation Coefficient for the potential Predictors of the Mean RT,
together with Significance Value

Predictor Pearson’s r 2-tailed p-value
Maximum bigram cohesion 013 169
Mean bigram cohesion .043 .008*
Maximum trigram cohesion —.027 .006*
Mean trigram cohesion —.011 271
Cohesion of the relevant trigram —.023 021%*

*n < .05

14 Elze van der Werf
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5 Discussion

The results are in agreement with Hale’s results (Hale, 2014) and in line with
our expectations: a significant negative correlation is found between cohesion
degree of parsing operator trigrams and average reading times, in accordance
with Hale’s analysis that the degree to which triples cohered was a negative
predictor of the average eye-fixation duration in English.

It is, however, hard to make a strict comparison between the two stud-
ies. Firstly, because the data of the corpora could not be directly compared:
the Dundee corpus, as used by Hale, applied a different reading complexity
metric than the Natural Stories Corpus, as used in the current study, namely
eye-fixation duration versus self-paced reading times. Moreover, the corpora
made use of different reading genres, namely newspaper articles versus writ-
ten stories. A second reason why a strict comparison between the studies
is hard to make, is the fact that the Natural Stories corpus was annotated
with a different parser than Hale used on the Dundee corpus, namely the
hand-corrected Penn Treebank-style parse trees versus the automatic Char-
niak parser. A third reason is that we used a different method of analyzing
the relation between chunking and reading difficulty: as opposed to Hale,
who used a linear regression analysis model, we have used the Pearson corre-
lation measure. It is encouraging to find that despite these discrepancies, our
results are in agreement with the results of Hale. This might therefore indi-
cate a generalization of the effect over different corpora, different processing
difficulty measures and different parsers.

As for the significant correlation which was found for the mean bigram
cohesion of all parsing actions for a word and its the mean RT, this correlation
was positive, which means the higher the average cohesion of all bigram
actions for a particular word, the longer the reading duration averaged over
participants. Even though this correlation is only small, we could find no
other explanation for this unexpected result than that parsing action bigrams
could be too small to be learned a chunk, such that a calculation of a cohesion
value for bigrams is relatively meaningless.

Furthermore, it is important to mention that there are other predictors
of mean RT which we have not accounted for in this short study. Futrell
and colleagues (2018, p. 78) reported that basic psycholinguistic effects are
present in the SPR data of the Natural Stories Corpus: frequent words were
read faster, longer words were read more slowly and words with a higher
surprisal (having a lower log probability under a word trigram model) were
read more slowly. In addition to these, other effects could be thought of,
such as the effect that words at the ends of sentences are read more slowly,
which is the so-called sentence wrap-up effect (Just & Carpenter, 1980), and
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the processing delay effect called spill-over, in which increased processing
(slower reading) does not take place on the word causing the increase, but
on one or two words later in the sentence (Just, Carpenter, & Woolley, 1982).

Based on the found agreement in results between Hale’s study and the cur-
rent, we conclude that the suggestion that parsing actions can be learned
by practice is a good start of a promising approach on sentence processing,
which in future studies should be examined in more detail by considering
all possible effects at play, and accounting for the necessary properties of a
parsing model. In comparison to the Garden Path Theory and Sausage Ma-
chine Theory, the Chunking Theory of Learning offers a more direct link to
sentence processing measures, because log likelihood ratios of parsing action
chunks can be directly compared to processing difficulty measures. One neg-
ative implication of the Garden Path Theory (Frazier & Rayner, 1982) is that
it reasons from a separate syntactic and semantic stage, while empirical evi-
dence advocates interaction between these linguistic domains (Crocker, 1999;
Tanenhaus, Spivey-Knowlton, & Hanna, 2000). Besides that, studies on the
theory that there is a preference ordering on automaton parsing actions have
shown that there is no fixed set of heuristic principles that performs well
enough to be taken as a psycholinguistic a law. Chunking, however, could
offer a reasonable and psycho-linguistically plausible explanation for garden
path effects. Compared to the Sausage Machine approach of Frazier and
Fodor (1978), CTL might be more practical to apply to different parsers and
therefore can be more thoroughly examined in empirical research. Maybe
it could, for example, be applied to parsing techniques for more complex
grammars (e.g. using complex categories or lexicalized grammars to express
displacement phenomena), thereby approaching a natural language theory.

6 Conclusion

In this study, we have examined Hale’s proposal (Hale, 2014) that the Chunk-
ing Theory of Learning can be considered a concrete mechanism to relate to
the sentence complexity metric of Surprisal, such that sentence parsing oper-
ators can be fused into a quicker macro-operator if practiced often, account-
ing for the comprehension effects as found for different sentence structures.
We have tested his predictions on the Natural Stories Corpus (Futrell et al.,
2018), which is a self-paced reading corpus, annotated with hand-corrected
parse trees. The results demonstrate a correlation between cohesion degree
of parsing operator trigrams and average reading times, supporting the state-
ment that parsing action triples can be learned to be a chunk. Therefore, we
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conclude that the presented results are in line with Hale’s results and are in
support of his predictions: it is likely that triples of parsing operators can
be learned to be a chunk when having a higher cohesion, such that surprisal
effects are reduced for more familiar sentence structures.

From the above evaluation and reflection (section 5), we further con-
clude that more research is needed to be able to give an answer to the risen
questions about differences between corpora and analyses, external effects
and whether the implications of the proposed theories are in agreement with
empirical findings on human sentence processing and the human sentence
parsing mechanism.
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