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Abstract

Flood events worldwide are likely to occur more frequently in the future as a result of a
changing climate. Inundation models are thus an important tool to understand, assess
and predict both flood events and their impacts. For 1D/2D model schemes, the drainage
network and bathymetry of the river are essential inputs. Various river network densities
and bathymetry schematizations are likely to affect the results of flood inundation models.
The river drainage network determines flow path lengths and hence travel times. River
bathymetry defines whether overland flow may occur and has also a determining influence
on the channel friction because it affects water depths. In this study, the effect of different
river network extents and bathymetry parameterizations on the simulation of discharge,
water level, and inundation extent was investigated by performing a sensitivity and
accuracy analysis. In addition, run times due to different 1D channel network densities
were compared to investigate the trade-off between computational costs and output yield.
The hydrodynamic model Delft3D Flexible Mesh (FM) was applied for the Amazon River
basin. By means of a synthetic test case, Delft3D FM ran standalone for the sensitivity
analysis. For the accuracy analysis, Delft3D FM was one-directionally and spatially
coupled to the hydrological model PCR-GLOBWB, which provided daily water inputs to
Delft3D FM. The agreement between simulated discharge, water level, and inundation
extent was subsequently validated against observations.

The sensitivity analysis shows that in case of dry initial conditions in the 1D/2D do-
main, both 1D network and river bathymetry impact simulated discharge and water levels.
A higher 1D network density accumulates and conveys more water downstream, causing
also a higher peak discharge compared with a sparser network. In addition, it results in
a faster hydrologic response since water in the channel flows at a higher rate than on the
floodplain. Validating modelled discharge results shows that during low water the impact
of the 1D channel network dominates over river bathymetry, whereas during high water
river bathymetry was found to be dominant. River bathymetry derived from remote sens-
ing techniques on a sparser network leads overall to the best model performance regarding
Kling-Gupta efficiency (KGE) in which computational costs are minimized as well. During
low and high water, however, the applied validation measures vary considerably among
the bathymetry parameterizations indicating that river bathymetry has a profound effect
on simulated discharge. Inundation extent was found to vary with both 1D network extent
and river bathymetry, although the applied validation measures indicate similar scores.
We identified that water on the floodplain of the Amazon River is not able to drain, hence
leading to a consistently inundated floodplain which possibly hampers the potential effect
of the different river network schematizations on the simulation of discharge, water level,
and inundation extent. This issue needs to be addressed in future studies, for instance,
by including a river bifurcation scheme allowing the enormous water volumes occurring in
the river delta to be allocated over multiple river branches.
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Chapter 1

Introduction

1.1 Large-scale flood modelling

1.1.1 The relevance of large-scale flood modelling

In many parts of the world, flooding is the leading cause of losses from natural phenomena
accounting to more than US$ 250 billion damage worldwide over the period 1995-2005
(Kron, 2005). Floods also claimed about 100,000 human lives and affected over 1.4 billion
people in the last decade of the 20th century (Jonkman, 2005). On-going climate change,
intensified urbanization and land use changes amplify flood risks globally and thus mod-
elling flood hazard and risk take on greater significance (Hollis, 1975; Bradshaw et al.,
2007; Hirabayashi et al., 2013). Flood risk assessments are carried out at any spatial scale
depending on the area of interest, ranging from micro-scale (e.g. effects of flooding on crit-
ical infrastructures) to larger scales such as national, continental, or even global scales (e.g.
total effects of catastrophic flooding for a country). From a modelling point of view, flood
waves show strong spatial correlation between neighbouring river basins which therefore
evokes the need for large-scale modelling approaches (Jongman et al., 2014). It is also the
major scale for evaluating how water resources will be influenced by e.g. climate change
and variability (Paz et al., 2011). In addition, national risk policies, large-scale disaster
management planning, and the (re-)insurance sector rely on large-scale risk assessments
and hence large-scale models (de Moel et al., 2015; Falter et al., 2016). Thus, in the last
few years, various flood inundation models have been developed to understand, assess,
and predict both flood events and their impacts (Teng et al., 2017). The simulation of
flood wave propagation and attenuation, water level and flood extent is crucial to denote
flood hazard. The propagation and timing of the flood wave for instance is critical for
evacuation planning whereas water level is a main factor to assess flood damage (de Moel
et al., 2009).

1.1.2 Large-scale flood modelling in the Amazon Basin

The Amazon Basin has experienced several flood and drought events during the last
decades whereby these extreme climate events are often driven by ENSO (El Niño-Southern
Oscillation) episodes in the tropical Pacific (Chen et al., 2010; Marengo and Espinoza,
2016) and are likely to occur more frequently in the future due to climate change. The
Amazon flood wave is known to be diffusive and subcritical in its characteristic (Trigg et al.,
2009) and hence facilitates backwater effects which in turn are crucial flood-triggering pro-
cesses in the Amazon Basin (Meade et al., 1991; Paiva et al., 2013b). To capture these
flow characteristics, a hydrodynamic model is needed. There are three commonly used
schemes for hydrodynamic river modelling which are: i) 1D, ii) 2D, and iii) 1D/2D models
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CHAPTER 1. INTRODUCTION

(Figure 1.1). One-dimensional (1D) models describe the river channel as a series of cross
sections perpendicular to the flow direction, and employ the Saint Venant equations based
on conservation of mass and momentum equations for flow routing at these cross sections.
Floodplain is either considered as storage areas or extended cross sections are used to
represent both main channel and floodplain. By interpolating cross sections of water level
and using a digital elevation model, 2D inundation maps can be derived (Paz et al., 2011).
1D models lack to simulate the lateral water exchange between the channel and the flood-
plain as well as floodplain flow which are both important processes especially in flat river
systems with large floodplains like the Amazon (Alsdorf et al., 2010; Trigg et al., 2012;
Yamazaki et al., 2012a; Paiva et al., 2013a). 2D schemes solve the Saint Venant equa-
tions two-dimensionally on a grid or mesh, representing river hydraulics which are more
consistent with known processes (Bates and De Roo, 2000). However, 2D river flow mod-
elling requires a precise meshing of the river bed in order to correctly take the topography
into account which in turn results in increased computational cost (Finaud-Guyot et al.,
2011). Especially for large-scale model applications, using a complete 2D river scheme
may be not suitable due to excessive computational costs, and limited bathymetric data
availability (Smith et al., 2006; Legleiter and Kyriakidis, 2008; de Moel et al., 2015; Falter
et al., 2016). More recent modelling approaches employ a 1D model for simulating the
hydrologic regime of rivers and a 2D model for simulating the inundation and flow on the
floodplains (Paz et al., 2011; Falter et al., 2016). The present study simulates the Amazon
flood wave, that is flood wave propagation and attenuation, water level, and flood extent,
by means of such a 1D/2D model scheme. The large-scale model domain covers an area
of around 1.2 x 106 km2 which is a fifth of the entire Amazon Basin.

Figure 1.1: Commonly used schemes in hydrodynamic modelling; 1D, 2D, 1D/2D.

1.1.3 The crux of river network parameterization

1D/2D model schemes require topographic data of the channel and the floodplain to act
as model bathymetry (Mason et al., 2010). 1D channel representations assume typically
rectangular channel geometry and hence bathymetric data such as river width and depth
along the river channel is needed. Especially for large-scale applications, the acquisition
of river bathymetry is not straightforward. Besides, only a few approaches have been
proposed which derive bathymetric information from remote sensing techniques (Pavelsky
and Smith, 2008; Yamazaki et al., 2014a) and from empirical relationships which link river
bathymetry to either upstream area (Coe et al., 2008; Paiva et al., 2011b) or discharge
(Moody and Troutman, 2002; Getirana et al., 2012). River bathymetry is known to play
a crucial role in modelling flow hydrodynamics (Merwade et al., 2008; Merwade, 2009)
and that variations in river bathymetry affect the simulation of discharge, water depth
and inundation extent (Yamazaki et al., 2012b; Paiva et al., 2013a). River bathymetry
defines whether inundation may occur and hence plays an essential role in regulating flood
extents (Getirana et al., 2012). Since inundation in upstream areas attenuates and delays
peak discharge in downstream areas, river bathymetry is likely to impact the hydrologic
response in a watershed in terms flood wave propagation and attenuation, and water
stages as well. Moreover, channel friction is most pronounced at the bottom and the walls

2



CHAPTER 1. INTRODUCTION

of the river which in turn is defined by the river bathymetry. If the friction influence is
larger, this may cause water to be stored in the channel rather than being discharged. All
aforementioned parameterization strategies are commonly used in large-scale inundation
modelling but no study so far evaluated how different bathymetry parameterizations
may influence the hydrodynamic simulation of floods. The present study explores the
role of river bathymetry resulting from different parameterization strategies in terms
of model sensitivity and accuracy. It is expected that river bathymetry derived from
remote sensing depicts local conditions more accurately than when obtained by a simple
empirical relationship.

For large, flat river systems where floodplains play an important role, the existence
of small channels which ensure floodplain connectivity is crucial and improve simulation
accuracy in terms of water level simulation, wave propagation speed, and inundation extent
(Neal et al., 2012; Trigg et al., 2012). For the 1D/2D model scheme, a distinction of the
model domain between the channel (1D) and the floodplain (2D) has to be made. Channel
and floodplain exhibit different roughness coefficients in which the latter is typically larger
(Mason et al., 2010). The channel network extent thus might influence the hydrologic
response since water is able to flow at a higher rate within the channels. There is still a lack
of knowledge to what extent model sensitivity and accuracy, in terms of flood simulation,
are reliant upon the river network extent. In addition, different river network densities
come with a different amount of computational nodes which will translate in increased
computational costs in case of a higher channel density. Therefore, it is important to
understand the role of different network densities on the simulation of floods. If the
model results are insensitive to the river network, a sparser river network could be used
to minimize computational costs which is an important economical aspect.

1.2 Research objective and research questions

The present research project applies a 1D/2D hydrodynamic model to simulate river
discharge (i.e. flood wave propagation and attenuation), water level, and inundation
extent. The study aims at gaining new insights into the role of the 1D channel network
density and bathymetric input for large-scale hydrodynamic simulations of floods. This
impact is explored by performing both a sensitivity and an accuracy analysis. By means
of a synthetic test case, the former identifies to what extent different 1D channel network
densities and river bathymetries (henceforth referred to as schematizations) affect the
model results. The latter investigates the agreement between the model outcomes
resulting from the different schematizations and observations. The Amazon Basin is used
as test side.

This work aims to answer five research questions:

1. How sensitive is the model to different 1D channel network densities in terms of
overbank storage and the consequent flood wave propagation and attenuation?

2. How sensitive is the model to varying river bathymetries, originating from different
parameterization strategies, in terms of overbank storage and the consequent flood
wave propagation and attenuation?

3. Which 1D channel network density results in the most accurate model performance
with regard to river discharge, water level, and inundation extent when compared
with in-situ measurements and remote sensing observations, respectively?
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4. Which parameterization strategy, used to derive river bathymetry, results in the
most accurate model performance with regard to river discharge, water level, and
inundation extent when compared with in-situ measurements and remote sensing
observations, respectively?

5. Is there a possible trade-off between computational costs and model accuracy in
terms of discharge, water level, and inundation extent?

1.3 Approach

To simulate the Amazon flood wave, the state-of-the-art hydrodynamic model Delft3D
Flexible Mesh (FM) (Kernkamp et al., 2011; Deltares, 2016) is used. The sensitivity
and accuracy analyses are performed using four different 1D channel network densities
and four different bathymetry parameterizations. River bathymetry was derived based on
empirical relationships which link bathymetry to either discharge (Getirana et al., 2012),
or upstream area (Paiva et al., 2011b), and satellite imagery (Yamazaki et al., 2014a).
Delft3D FM rely on boundary influxes which can be set up in two ways; throughout
model internal boundary conditions or a coupled model framework in which the output
from another numerical model is used as input to Delft3D FM. To exclude any external bias
and uncertainty influences introduced by e.g. such a coupled model framework, Delft3D
FM run standalone for the sensitivity analysis. This means that model internal boundary
conditions were used to supply Delft3D FM with water. The model outcomes from the
schematizations are validated against observations in the accuracy analysis. This requires
that the boundary conditions are based on observational data in order to reproduce a
real world scenario. Discharge boundary conditions might be derived for instance from
observation stations which in turn makes the model highly dependent on the availability
and location of these stations (Hoch et al., 2017a). Important spatially distributed rainfall
events might not be captured by the stations. Due to the lack of simulating significant
processes such as evapotranspiration, infiltration, soil water storage, groundwater storage,
or canopy interception in Delft3D FM, using rainfall boundary conditions will consequently
cause all incoming precipitation to be discharged. This, however, would not represent the
Amazon hydrology in a realistic manner. Therefore, in order to supply water to the
hydrodynamic model, Delft3D FM is coupled to the hydrological model PCR-GLOBWB
(van Beek and Bierkens, 2009) as done by Hoch et al. (2017a). The authors used a one-
directional and spatially explicit coupling approach between the large-scale hydrological
model PCR-GLOBWB and Delft3D FM.

1.4 Thesis outline

The thesis firstly provides a brief literature review about the state of the art in the area
of flood inundation modelling and how various model structures, input data, and param-
eterizations affect the simulation of floods (Chapter 2). The study area in the Amazon
Basin is then described in Chapter 3. Afterwards, the river network parameterizations as
well as the methods for the respective sensitivity and accuracy analysis are outlined in
Chapter 4. The results for both sensitivity and accuracy analysis are provided in Chapter
5. Chapter 6 discusses subsequently the obtained results. The conclusions are drawn in
Chapter 7 and final recommendations given in Chapter 8.

4



Chapter 2

Literature review

There are many ways to set up a flood inundation model. During the modelling pro-
cess, modellers have to make various choices and assumptions such as: i) the processes to
be modelled, ii) the mathematical representation of these processes, iii) the spatial and
temporal scale and resolution on which the processes will be modelled, iv) the model’s
parameters, and v) the model’s input data (Guswa et al., 2014). The choices made can
have a considerable impact on the resultant model performance and accuracy. How differ-
ences in e.g. the mathematical representation of certain processes, the model structure,
parameterization or input data affect the simulation of floods has been investigated in
many studies. On the one hand, such studies provide crucial understanding of how to
improve the general performance of flood inundation simulations and, on the other hand,
how to facilitate the decision-making process if setting up a new model. The present study
tries to contribute to the valuable information gained from such studies by investigating
the effect of river network parameterization on large-scale flood modelling.

2.1 Model schemes

2.1.1 1D, 2D, and 1D/2D

Horritt and Bates (2002) evaluated a 1D, 2D and 1D/2D numerical model for predicting
river flood inundation on a 60 km reach of the river Severn, UK. The study revealed that
the 1D/2D and 2D model are capable of making equally good predictions of inundated
area. Apel et al. (2009) also compared models of different complexities for a case study
in Germany. The authors concluded that the 2D and 1D/2D model gave the best overall
model performances with good matches to the surveyed inundation depths and extent.
However, they also highlighted the drawback of the 2D hydrodynamic model in terms of
long run times and concluded that the 1D/2D model provides the best compromise between
data requirements, simulation effort, and acceptable accuracy of the results. For large-scale
applications where a fully 2D model scheme is almost not feasible due to computational
constraints and limited data availability, a 1D/2D model scheme is preferable. According
to Hoch et al. (2017a), it also yields a better spatial resolution of the river network than the
2D scheme which is more dependent on the quality and resolution of the digital elevation
model (DEM). Depending on the study site, Neal et al. (2012) found that models neglecting
either the channels or the floodplain lacked any predictive skill. For large, flat river
systems, a channel and floodplain component are both necessary to accurately simulate
the hydraulics.
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2.2 Model structure

2.2.1 Model resolution

The model structure (i.e. process description, coupling of processes, numerical discretiza-
tion or spatial resolution) is known to strongly impact the model performance (Butts et al.,
2004). Horritt and Bates (2001) tested how different spatial model resolutions ranging from
1,000 m to 10 m (pixel size) performed in terms of predicted inundated area and flood
wave travel times. The authors showed that predicted flood wave travel times are strongly
dependent on the model resolution. Inundation extent, in turn, was constant with respect
to changes in scale. Another study carried out by Horritt et al. (2006) stated that their
model showed greater sensitivity to mesh (grid) resolution than topographic sampling.
Their model resolutions ranged from 2.5 m to 50 m. The model’s spatial resolution is,
however, restricted to the computational costs. For large-scale model applications, the ex-
isting trade-off between model resolution and computational costs consequently results in
the usage of coarser grids (meshes) and hence in greater losses of topographic information.
A finer spatial model resolution is able to comprise more topographic details but leads
to more model grid elements and requires also smaller model time steps which in turn
increases computational costs. Furthermore, the flood pulse may well travel for months
over a large model domain which then also requires a certain minimum of simulation time
(Paz et al., 2011).

2.2.2 River drainage network

River networks are mainly extracted from digital elevation models based on the procedure
proposed by O’Callaghan and Mark (1984). This automated procedure includes first the
creation of a drainage direction matrix as well as a pit removal. Secondly, a drainage
accumulation matrix is generated. River channels are then obtained by defining all points
with accumulated drainage areas above some threshold (O’Callaghan and Mark, 1984).
The river network density is thus controlled by the threshold criterion of accumulation area.
The threshold ideally represents the critical accumulation area where runoff is sufficiently
concentrated and fluvial processes dominant (O’Callaghan and Mark, 1984). Tarboton
et al. (1991) emphasize the relevance of this threshold and suggest that the extracted
drainage network should have a resolution as high as possible and “be close to what
traditional workers using maps or fieldwork would regard as channel networks” (Tarboton
et al., 1991, p. 84). To date, many researchers investigated and explored various ways
to extract river networks from digital elevation models, for instance by applying several
drainage direction algorithms (see e.g. Zhao et al., 2009) and pit removal techniques (see
e.g. Poggio and Soille, 2012).

2.3 Model input data

2.3.1 DEM

The geometric description of the floodplains and sometimes of the river channels as well is
derived from DEMs. The quality (accuracy) and resolution (precision) vary considerably
among available DEMs and affect the model output performance when used as input to
hydrodynamic modelling (Ali et al., 2015). Casas et al. (2006) compared the effects of
DEMs derived from GPS, LiDAR, and vectorial cartography on hydrodynamic modelling
of floods. Regarding the estimation of water level and inundated area of the floodplain,
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the contour-based DEM input resulted in the least accurate estimate whereas the LiDAR-
based DEM input showed the highest accuracy. LiDAR-DEMs are known to exhibit very
high spatial resolution and great vertical accuracy. However, the acquisition on large
scales is very costly and is limited in wetland areas as well as under cloudy and rainy
conditions (Schumann et al., 2016). Contour mapping may also not be favourable for
large scales as it is time consuming and may not be possible for some remote areas (Ali
et al., 2015). Low-cost DEMs such as SRTM (Shuttle Radar Topography Mission) are
globally available but have a coarse spatial resolution (around 30 m to 90 m, Farr et al.,
2007) and a coarse vertical resolution (average absolute height error of around 6 m to 7
m globally, Rodŕıguez et al., 2005). Schumann et al. (2008) compared water stages and
inundation area derived from three different DEM sources (LiDAR, topographic contours,
and SRTM). The LiDAR input resulted in the best performance followed by the contour
DEM and SRTM. Despite having a low vertical precision, SRTM performed relatively good
and the authors suggested that for large, homogeneous floodplains SRTM is a valuable
source of information. Yan et al. (2013) explored the potential of SRTM topographic data
for flood inundation modelling by comparing a hydraulic model based on high-quality
topography (LiDAR) and one based on SRTM topography. The results showed, despite
significant differences between the two topography models, an accuracy that is typical
for large-scale flood studies (Yan et al. 2013). Ali et al. (2015) mentioned also the
importance of the DEMs accuracy over the DEMs resolution. The authors resampled
the high resolution LiDAR DEM to the same resolution (90 m) than the SRTM DEM
and compared then the performances of a 1D hydraulic model using both inputs. The
model based on the 90 m DEM derived from the resampled LiDAR performed better than
the model based on the 90 m DEM derived from SRTM. Besides the lower accuracy and
precision of available DEMs on larger scales, the possibility to describe the geometry of
the floodplains and river channels in great detail for large-scale model applications is also
severely limited by the aforementioned resolution of the computational grid or mesh of
the hydrodynamic model.

2.3.2 Hydrology

Flood inundation models require discharge data to provide model boundary conditions
(Mason et al., 2010). As mentioned in Chapter 1.3, deriving upstream boundary condi-
tions from observation stations makes the hydrodynamic model highly dependent on the
presence and spacing of the stations (Hoch et al., 2017a). Pappenberger et al. (2006) also
found that uncertainty of upstream boundary can have significant impact on the model
results. Besides, hydrodynamic models are forced with synthetic storm events of vary-
ing return periods to derive for instance flood inundation maps for extreme storm events
(Ghimire, 2013). Rather than being measured, input flow rates can also be predicted
by a hydrological model and added to the hydrodynamic model throughout a coupled
model framework. Large-scale hydrological models such as VIC (Liang et al., 1994), PCR-
GLOBWB (van Beek and Bierkens, 2009), and SWAT (Arnold et al., 2012) describe the
terrestrial water cycle and try to represent the role of different soil and vegetation types on
the streamflow generation processes and on water and energy budgets of the basin (Paiva
et al., 2011b). Based on the water balance equation and hence by considering processes
such as evapotranspiration, infiltration, percolation, and soil and groundwater storage in-
teractions, these hydrological models are capable of simulating available runoff volumes.
In the last few years, inundation modelling has begun to integrate both hydrological and
hydrodynamic models. That is lateral inflows to a river network from e.g. rainfall which
occurred in the catchment area are calculated by a hydrological model, whereas afterwards
the propagation of the flood wave along the river reach is simulated by a hydrodynamic
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model (Biancamaria et al., 2009; Bravo et al., 2011; Paiva et al., 2011b; Schumann et al.,
2013; Amir et al., 2015). Hoch et al. (2017a) assessed, among others, the model perfor-
mance when the hydrodynamic model Delft3D FM was forced with upstream discharge
boundary conditions as well as when Delft3D FM was spatially coupled with the hydrolog-
ical model PCR-GLOBWB. The results yielded that inundation cannot be simulated if the
river reach is not fed by upstream discharge boundaries and that the peak flow is better
captured by the coupled framework than by forcing Delft3D FM with discharge boundary
conditions. Coupling hydrology and hydrodynamics has been shown to provide a more co-
herent and comprehensive description of runoff phenomena and flow characteristics (Kim
et al., 2012) and hence might improve flood hazard and risk assessments. The subsequent
Chapter 2.3.2.1 gives a brief description of the hydrological model PCR-GLOBWB applied
in the present study.

2.3.2.1 The hydrological model PCR-GLOBWB

PCR-GLOBWB, short for PCRaster GLOBal Water Balance (hereinafter termed PCR),
is a grid-based model written in PCRaster (Wesseling et al., 1996) which describes the
global terrestrial water cycle (van Beek and Bierkens, 2009). The current resolution is 30
arcmin which is approximately 55 km x 55 km at the Equator. The model differentiates
between two vertically stacked soil layers, an underlying groundwater layer and a surface
canopy layer. Water storage is calculated for each of these aforementioned compartments
on a cell-by-cell basis and for each daily time step. Water can exchange between the
layers (percolation, capillary rise) and between the top layer and the atmosphere (rainfall,
evaporation and snowmelt). In addition to the canopy interception, the model is also able
to simulate snow storage (van Beek and Bierkens, 2009). Vertical water fluxes between the
lower soil reservoir and the groundwater reservoir are mainly downwards but capillary rise
may force the water to enter the soil reservoir during periods of low soil moisture contents
(Wada et al., 2010). Water can leave a cell laterally as overland flow (QDR), interflow
(QSf) and baseflow (QBf), as indicated in Figure 2.1, and may finally end up in the river
channel (QChannel) where specific runoff is routed along a local drainage direction (LDD)
network. Routing of surface water flow is based on the kinematic wave approximation
of the Saint-Venant Equation and includes evaporative losses from lakes, reservoirs and
floodplains (van Beek and Bierkens, 2009). In addition, advanced schemes for subgrid
parameterization of surface runoff, interflow and baseflow are implemented which consider
separately tall and short vegetation, open water, different soil types, fractional area of
saturated soil, and frequency distribution of groundwater depth based on surface elevations
(van Beek et al., 2012).
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Figure 2.1: Scheme of the four vertically stacked, interactive layers representing canopy,
soil, and groundwater in PCR (van Beek and Bierkens, 2009).

PCR can be forced with observed global climate data (e.g. Climate Research Unit) or
with simulated precipitation and evaporation from climate models (e.g. GCM). Alterna-
tively, the model is also able to calculate actual evaporation from potential evaporation
and soil moisture status based on Penman-Monteith (van Beek and Bierkens, 2009). The
model provides also an option to include human water use such for irrigation, households
and industry (Wada et al., 2016). Various studies applied PCR for instance to simulate
global freshwater surface temperatures (van Beek et al., 2012), global water stress (van
Beek et al., 2011), and global depletion of groundwater resources (Wada et al., 2010), to
assess global river flood risk (Winsemius et al., 2013), to provide inputs of recharge and
surface water levels for groundwater models (Sutanudjaja et al., 2014; de Graaf et al.,
2015), or to model global water use (Wada et al., 2014, 2016).

2.4 Model parameterization

2.4.1 Friction coefficient

The channel and floodplain roughness coefficients are considered to be sensitive model
parameters. Paiva et al. (2013a) and Yamazaki et al. (2011) showed that changes in the
channel friction affected simulated discharge, flooded area, and water depth. The chan-
nel friction value is often determined throughout a calibration procedure (Horritt and
Bates, 2001; Trigg et al., 2009; Rudorff et al., 2014). For 1D/2D model applications where
the floodplain flow is also taken into account, a floodplain friction is required. Different
vegetation types such as forest or grassy landscape are represented by different friction
values. Rudorff et al. (2014) emphasized the importance of spatially varying floodplain
frictions as heterogeneous, distributed floodplain vegetation makes the use of a single flood-
plain friction value inappropriate. In addition, using spatially variable floodplain frictions
resulted in a lower model sensitivity than compared with a constant, single floodplain
coefficient (Werner et al., 2005). A variable-floodplain-friction model makes it possible
to use different input data to predict flood extents for different flood events whereas a
constant-floodplain-friction model would then require a recalibration (Mason et al., 2003).
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Horritt and Bates (2002) evaluated the effect of different channel and floodplain frictions
on flood inundation. They showed that the sensitivity of floodplain friction is minimal
when the channel friction is low. A low channel friction leads to low water levels which in
turn causes little inundation. If the channel friction is high, water depth in the channel is
increased and hence more water is spilled onto the floodplain. As a result, the floodplain
friction takes on greater significance regarding its influence on travel times and inundation
extents (Horritt and Bates, 2002). However, it should be noted that different hydrody-
namic models respond differently to changes in channel and floodplain frictions (Horritt
and Bates, 2002).

2.4.2 River bathymetry

River bathymetry is commonly represented one- or two-dimensionally and depending on
which model scheme (Figure 1.1) is used, different methods exist to derive this bathymetric
information. 2D hydrodynamic models, for instance, require detailed channel topography.
High resolution sonar (Horritt et al., 2006), airborne LiDAR (Hilldale and Raff, 2008),
remote sensing imaging (Legleiter and Roberts, 2009), and traditional survey and GPS
are a few methods to name. Traditional survey and GPS are limited to wadeable river
stream conditions and are not favourable on larger scales. Sonar data cannot be acquired
in shallow waters, whereas LiDAR does not work well in deep waters. Moreover, sonar
and LiDAR are both expensive methods (Conner and Tonina, 2014). Another technique
is to collect cross-section data with traditional survey or sonar equipment and interpolate
a channel surface between the cross-sections (Merwade et al., 2008; Conner and Tonina,
2014). However, for large-scale model applications where a fully 2D model scheme is not
possible due to computational constraints, a 1D/2D model is usually used.
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Chapter 3

Study area

3.1 Geography of the Amazon Basin

Surrounded by the mountain range of the Andes in the west, the Guianas massif in the
north, and the Central Brazil massif in the south, the Amazon Basin comprises a drainage
area of around 6 x 106 km2 (Salati and Vose, 1984). In the middle of these high elevation
border zones lie the vast Amazonian lowlands which are open to the east where the Amazon
River empties into the Atlantic. The entire river system is located in the tropics and
around 5 x 106 km2 of the Amazon Basin is covered by high tropical rainforest (Sioli,
1984). Regarding the Brazilian naming, the mainstem river is called Solimoes River until
the confluence with the Negro River at Manaus, after which it is called the Amazon River.
With respect to the average discharge of around 200,000 m3 s-1 at its mouth, the Amazon
River is the world’s largest river (Meade et al., 1991). In terms of river length, the Nile
(6,671 km) is slightly longer than the Solimoes-Amazon main river (6,518 km). The river
widths and depths of the Solimoes-Amazon, however, are incomparable with any other
rivers where widths range on average from 4 km to 5 km and depths from 40 m and 50 m
(Sioli, 1984). The Amazonian lowlands compose a river system with minimal river slopes
and large floodplains. The river level at low-water season for instance at the mouth of
the Negro River, 1,500 km from the sea, is only about 15 m above sea level (Sioli, 1984).
Likewise in the low-water season, the physical influence of sea tides can be felt more than
1,000 km upstream from the sea (Sioli, 1984; Kosuth et al., 2009). The vast floodplains
in the middle and lower Amazon are annually flooded for several months (Sioli, 1984) and
play an important role in terms of dampening discharge extremes in the Solimoes-Amazon
River mainstem due to seasonal water storage on the floodplain (Meade et al., 1991). The
floodplains further impact large-scale flood propagation (Paiva et al., 2011a; Yamazaki
et al., 2011), and play a significant role in biological and biochemical processes (Trigg
et al., 2009), sediment dynamics, and chemical and ecological conditions (Paiva et al.,
2013a).

3.2 Climatology of the Amazon Basin

The average annual rainfall of the Amazon Basin is about 2,300 mm (Sioli, 1984; Bonell
et al., 2005). Together with the great extent of drainage area it generates enormous water
volumes. Being situated at the Equator, the Amazon Basin receives at its upper limit of
the atmosphere a solar radiation of around 354-429 Watt/m2 (Salati and Marques, 1984).
The portion which reaches the ground is considerably less though. This is due to the
high humidity and cloudiness which causes absorption and reflection of incoming solar
radiation in the troposphere. The solar energy reaching the ground is then mainly driving
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evaporation processes, leaving only 30% of the energy for sensible heat flux. This gives the
Amazon Basin an isothermic characteristic where monthly mean temperatures range from
24 °C to 28 °C with an annual variation of around 5 °C (Salati and Marques, 1984; Bonell
et al., 2005). Around 55% of precipitation in the basin is evaporated or transpired by
the forest and the remaining 45% is drained by the Amazon River (Salati and Marques,
1984). Extreme climate events such as floods and droughts are often driven by ENSO
(El Niño-Southern Oscillation) episodes in the tropical Pacific or sea surface temperature
(SST) anomalies in the tropical Atlantic and are thus likely to occur more frequently
and severely with a warmer climate (Marengo et al., 2011). Additionally, humans have
impacted the Amazonian ecosystem for centuries by deforestation and establishing grass
or soy plantations. These human actions might well impact the hydrological cycle due to
the changes in vegetation (Marengo et al., 2011). Deforestation leads to higher amounts
of available runoff and increased temperatures as evapotranspiration and interception are
reduced.

3.3 Model domain

The still relatively unaffected river basin in terms of man-made structures (Constantine
et al., 2014), together with the occurrence of seasonal flooding (Sioli, 1984; Coe et al., 2002)
makes the Amazon a widely used research object in the field of inundation modelling. The
study area covers an area of around 1.2 x 106 km2 which is a fifth of the entire Amazon
Basin and is located in the Amazonian lowlands in Central Brazil (Figure 3.1). This area
includes among other the river reaches from the Negro River in the north, Solimoes in the
west, and Madeira in the south as well as the Amazon River itself up to its mouth in the
east.

Figure 3.1: The study area is situated in the Amazonian lowlands and represents a fifth
of the entire Amazon Basin.
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Methods

4.1 Delft3D Flexible Mesh

The integrated modeling suite Delft3D Flexible Mesh, developed by Deltares, provides a
state-of-the-art model, D-FLOW Flexible Mesh (hereinafter termed DFM), for hydrody-
namic calculations (Kernkamp et al., 2011). Non-steady flow and transport phenomena
can be simulated in either one, two, or three dimensions. The flexible mesh allows
the combination of rectilinear or curvilinear grids and unstructured grids composed
of triangles, quads, pentagons, and hexagons (Deltares, 2016). Owing to this flexible
discretization of the model domain, a finer grid can be implemented where high accuracy
in the process description is needed (e.g. meandering river), while a coarser grid in areas
where processes spatially less vary (e.g. a large, flat floodplain area) can be used to reduce
runtime (Castro Gama et al., 2013). Unstructured grids also minimize discretization
errors which are introduced by curved features such as boundaries of a river, an estuary
or a coastal sea on structured grids (Deltares, 2016). DFM has been shown to be an
efficient solver for shallow water equations on unstructured grids for tidal propagation on
the Continental Shelf (Kernkamp et al., 2011). Muis et al. (2016) used the Delft3D FM
software to simulate storm surges and thus calculate extreme sea levels on a global scale
which showed good agreement with observed sea levels. DFM was also applied for inunda-
tion modelling along the highly modified Yellow River in China (Castro Gama et al., 2013).

The system of equations consists of the equations of continuity (mass conservation) and
motion (momentum conservation), and transport equations for conservative constituents
(Deltares, 2016). In the two-dimensional mode, DFM solves the Reynolds-averaged Navier-
Stokes equations (RANS) for an incompressible fluid, under the shallow water and the
Boussinesq assumptions (Deltares, 2016). Hence, vertical momentum exchange is assumed
to be negligible as well as that the vertical velocity component (z direction) is much smaller
than the horizontal ones (x and y direction). In addition, pressure gain is assumed to be
linear with depth which leads to a hydrostatic pressure distribution. This means that
the three-dimensional RANS equations can be reduced to the two-dimensional so-called
shallow water equations by averaging the RANS equations over depth. The Boussinesq
assumption implies that density variability is a function of pressure only (Deltares, 2016).
Conservation of mass and momentum are expressed in the shallow-water equations by
(Kernkamp et al., 2011):

∂H

∂t
+∇ ∗ (Hu) = q, (4.1)
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∂u

∂t
+ adv(u) + g∇ζ + cfu‖u‖+ 2Ω× u = d, (4.2)

where H denotes the total water depth, ∇ ≡ [∂x, ∂y]T the horizontal gradient operator,
u the depth-averaged horizontal velocity vector, adv(u) the advection term, ζ the water
level relative to a reference plane, and Ω the earth rotation vector. The constants g and
cf express the gravity constant and the bottom-friction coefficient, respectively. The
right-hand side q contains source terms and d contains external forcing.

The set of equations are formulated in orthogonal curvilinear coordinates or in spheri-
cal coordinates (Deltares, 2016). Orthogonality of the grid is a crucial condition to main-
tain an implicit time integration of the equations (Kramer and Stelling, 2008) and is,
in addition, computationally efficient (Kernkamp et al., 2011). For the two-dimensional
(depth-averaged) mode, only one computational layer exists which is represented by an un-
structured, staggered grid in the horizontal plane. Unlike collocated grids, variables such
as pressure and directional velocity components in a staggered grid are defined at differ-
ent positions. This provides an efficient implicit solution technique (see further Stelling
and Duinmeijer, 2003). Figure 4.1 illustrates how two grid sections of differently sized
quadrangles can be connected via triangles. In addition, it shows the concept of staggered
grids where pressure and velocity points are separately located. The pressure points are
defined at the cell circumcentres, whereas the velocity points are on the cell faces (Figure
4.1). A grid is considered to be orthogonal if the flow link or line segment which connects
two adjacent cell circumcentres intersects orthogonally with the interface between them.
The pressure gradient for instance, hence, can be described by only two pressure points
which is computationally efficient.

Figure 4.1: Unstructured grid of DFM with differently sized quadrangles and triangles.
Principle of staggered grids where variables are separately located (Kernkamp et al., 2011).

DFM uses a finite volume discretization method where the continuity equation is solved
implicitly for all points in a single combined system. However, the advection terms are
treated explicitly with a time-step limitation based on the Courant criterion in order to
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ensure numerical stability (Deltares, 2016). The Courant number which is defined in
one-dimension as C = u∗∆t

∆x provides a measure of how fast a quantity (e.g. a fluid)
propagates through a grid cell within a given time step, where u denotes the velocity
of the fluid under consideration, ∆t the time step of the model, and ∆x the size of the
grid cell. Preferably, the quantity travels from one grid cell to its adjacent grid cell
within the given time step. If the time step is too large and the quantity travels further
within a time step, this would lead to missing information at the adjacent grid cell for the
numerical calculations and might cause numerical instability. In order to ensure numerical
stability, the Courant-Friedrichs-Lewy (CFL) condition (Courant et al., 1928) limits the
aforementioned equation to 1 (C <= 1). Hence, implementing a finer resolution of the
grid cells would require also smaller time steps (assuming velocity u remains unchanged)
which in turn would lead to increased computational time. In DFM, the user can specify
the maximum allowed Courant number and is advised to select a value of 0.7 or lower due
to the explicit advection scheme used in DFM (Deltares, 2016). Based on the various sizes
of the grid cells and the maximum allowed Courant number, DFM computes subsequently
the time steps of the model. For further documentation on DFM, this paper refers to
Kernkamp et al. (2011) and the DFM user manual (Deltares, 2016).
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4.2 Model setup

4.2.1 Defining the model domain

The area in this study was limited to flood-prone areas since hydrodynamic computa-
tions still require significant computational power for multi-year simulations (Hoch et al.,
2017a). This was achieved by applying the terrain descriptor height above nearest drainage
(HAND) (Rennó et al., 2008). The HAND grid yields the relative vertical distance to the
nearest drainage network and can be used to classify terrain according to its drainage
potential. Only grid cells exhibiting HAND values less than or equal to 25 m were used to
delineate the study area. Additionally, the study extent comprises the most downstream
hydrological observation station at Obidos (Figure 3.1) which discharge data was used to
validate the model.

4.2.2 Defining the 2D flexible mesh

The floodplain is represented by a 2D mesh composed of differently sized quadrangles and
triangles. The flexible mesh was generated by automatic local grid refinement of a coarser
regular grid based on the obtained HAND values (Hoch et al., 2017a). The flexible mesh
has the finest spatial resolution of 1.3 km for areas with lowest HAND values such as water
bodies and floodplains while areas with higher HAND values and thus areas further away
from water bodies exhibit a coarser spatial resolution (up to 5.4 km). Such a coarse model
resolution is inevitable at this spatial scale (∼1.2 x 106 km2) to maintain a reasonable
computational effort. The 2D flexible mesh composed of differently sized grid cells is
shown in Figure 4.2. The 2D mesh represents the floodplain and thus surface elevations
have to be assigned to each 2D grid cell. This can be achieved by interpolating elevation
values from a DEM to the flexible mesh of DFM. The surface elevations for the study
area were derived from the SRTM DEM, having a raster resolution of 0.025°(∼1.5 km at
the Equator). The vertical accuracy of DEMs emanating from SRTM is influenced by
vegetation cover where dense forest canopy and high vegetation heights such as present in
the Amazon Basin leads to diminished accuracy (Baugh et al., 2013). Hence, an absolute
vertical SRTM error of around 22 m was found in the Amazon (Carabajal and Harding,
2006). This is due to the inability of the C-band radar signal to fully penetrate dense
vegetation canopy which in turn generates an overelevated DEM. Such overelevated DEMs
prevent the correct simulation of overbank inundation and is improved when vegetation
heights are removed from the DEM (Baugh et al., 2013). For this study, vegetation cover
was removed as proposed by Baugh et al. (2013).

4.2.3 Defining the 1D network

The centre line of the 1D river network was derived based on the GWD-LR algorithm by
Yamazaki et al. (2014a). Figure 4.2 shows for a section in the study area the centre line
of the 1D river network as well as the 1D computational cross section nodes along the
centre line. The spacing between the 1D cross section nodes is 1.3 km which equals the
smallest grid size of the 2D domain for optimal flux exchange. The 1D cross section nodes
represent the locations where channel bathymetry is inserted into the model. Therefore,
sample points were created along the 1D river centre line with a spacing of around 5 km
which contained river width and bed elevation information. The procedure to assign the
required river widths and bed elevations to the computational nodes in DFM is summarized
as follows:
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1. For each sample point,

1.1. obtain river width and depth

1.2. obtain surface elevation

1.3. derive river bed elevation by subtracting river depth from surface elevation

1.4. store river width and bed elevation

2. Load sample points into DFM and interpolate bathymetry to the computational
cross section nodes.

Figure 4.2: 2D floodplain mesh composed of quadrangles and triangles, 1D computational
cross section nodes (magenta squares) and sample points (cyan dots) along the 1D network.

4.2.3.1 River network densities

River networks are usually derived from digital elevation models consisting of all cells with
accumulated drainage area above a certain threshold (O’Callaghan and Mark, 1984). In
the present study, four different thresholds of accumulation area were used to derive the
1D channel network densities: 10%, 1%, 0.1%, and 0.01% of the upstream area of the
entire Amazon catchment (∼6 x 106 km2). Figure 4.3 shows the resulting 1D channel
network extents based on these four thresholds. The networks are henceforth referred to
as N10, N1, N01, and N001. Typically, hydrological software applications such as Arc
Hydro use a default threshold of 1% (see e.g. Dixon et al., 2015).
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Figure 4.3: Resulting 1D channel network extents by using 10%, 1%, 0.1%, and 0.01% of
accumulated drainage area as threshold.

4.2.3.2 River bathymetries

4.2.3.2.1 Parameterization strategies
River width and depth are essential first order parameters and have a profound effect on
modelled discharge, inundation extent, and water depth (Yamazaki et al., 2012b; Paiva
et al., 2013a). Leopold and Maddock (1953) linked river width and depth via power
law relationships to discharge. This geomorphologic relationship between the hydraulic
geometry and discharge has been widely used in literature (e.g. Moody and Troutman,
2002; Decharme et al., 2012). Based on the same relationship, Andreadis et al. (2013)
derived a global river bankfull width and depth database. Besides discharge, river width
and depth can also be connected via power law relationships to upstream area as done
for instance by Coe et al. (2008) or Paiva et al. (2011b). More recent approaches derive
river width from remotely sensed imagery (Pavelsky and Smith, 2008; Yamazaki et al.,
2014a). River depth is afterwards obtained by using an empirical width-depth relation.
For this study, four approaches were used to derive river width and depth information
at the location of each sample point. Hereafter, these four approaches are named PS
(Parameterization Strategy) followed by two letters defining the source (first letter from
the authors which applied them originally) of river width and depth:

PS GG

Getirana et al. (2012) derived both river width and depth empirically from discharge by
applying the subsequent power law relationships:

w = max(10, βQ0.5), (4.3)
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d = max(2.0, αw) α = 3.73 ∗ 10−3, (4.4)

where w is river width [m], d denotes river depth [m], and Q is the annual mean discharge
[m3 s-1]. The basin β coefficient for equatorial and subtropical basins is equal to 18
(Getirana et al. 2012). The raster resolution of available discharge data is often quite
coarse (e.g. 1°in the hydrographic database from Cogley, 2003) which creates the problem
that a single width and depth would be assigned to a large river segment and that smaller
scale variability in width and depth is not taken into account. Additionally, all river
channels within such a raster cell, being main stream or small tributaries, will have the
same width and depth. This, of course, does not represent reality properly and therefore
discharge was downscaled to a higher raster resolution by linking upstream drainage area
to total runoff. To this end, PCR was used to simulate annual mean runoff over the
period 1979 to 2001 (data from Weedon et al., 2014) at 5 arc min raster resolution. By
multiplying annual mean runoff (m per year) with upstream drainage area (m2) on a cell
by cell basis, discharge at the same resolution (0.025°) of the upstream drainage area
raster was obtained. At each sample point, the values of the underlying rasters, upstream
drainage area and total runoff, were obtained and multiplied so as to derive discharge.
River width and depth were then computed according to (4.3) and (4.4) and assigned to
each sample point.

PS PP

Paiva et al. (2011b) derived river width and depth empirically from upstream drainage
area. The authors used following geomorphologic equations for the Amazon River basin:

w = 0.8054A0.52892
d , (4.5)

d = 1.4351A0.1901
d , (4.6)

with Ad being the upstream area [km2]. The coefficients of these two equations are based
on cross section profiles from 341 gauge stations in the Brazilian part of the Amazon
Basin (Paiva et al., 2011b). The same upstream drainage area raster is used as in the
aforementioned discharge downscaling method applied in PS GG. Subsequently, the
upstream drainage area at the location of each sample point along the river network was
extracted and then linked via (4.5) and (4.6) to derive river width and depth.

PS YG

Yamazaki et al. (2014a) developed the global width database for large rivers (GWD-LR)
and by linking the obtained river widths with the width-depth relation (4.4) from PS GG,
river depth was retrieved. The GWD-LR database was used to extract the river width at
the location of the sample points along the 1D channel network and river depths were
subsequently assigned to them via the aforementioned width-depth relation. Yamazaki
et al. (2014a) applied an algorithm which calculates river width from satellite-based
water masks and flow direction maps. The GWD-LR database is based on the SRTM
Water Body Data and the HydroSHEDS (Hydrological data and maps based on SHuttle
Elevation Derivatives at multiple Scales) flow direction map. The SRTM Water Body
Database itself is a by-product of the SRTM Digital Terrain Elevation Data where
water bodies such as ocean, lakes or river shorelines were identified and delineated. The
algorithm first fills island gaps in the water body mask, determines afterwards the river
centerlines, generates then flow directions toward the centerlines and calculates finally the
river width (see further details Yamazaki et al., 2014a). The HydroSHEDS flow direction
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map is used to ensure upstream-downstream connectivity along the river network in the
water mask. It is worth noting that the SRTM Water Body Database is a snap shot of
the water situation at the time of the shuttle flight in February 2000.

PS YP

Likewise PS YG, river width was derived from the GWD-LR database (Yamazaki et al.,
2014a). The combination of the geomorphologic equations (4.5) and (4.6) from Paiva et al.
(2011b) reveals the following width-depth relation:

d = 1.55w0.36. (4.7)

River depths were then acquired by inserting the river widths into equation (4.7). PS YG
and PS YP, hence, exhibit the same river widths but differ in the way how river depth
was obtained.

4.2.3.2.2 Data post-processing
Spatial differences between input rasters and the 1D channel network required additional
processing steps. Besides, DEM irregularities along the river path and dissimilarity be-
tween the parameterization strategies induced also the need for data processing.

4.2.3.2.2.1 Upstream drainage area filtering in PS GG and PS PP
The upstream drainage area raster was used, as described above, to both link its values
for downscaling purposes (PS GG) and directly to river width and depth (PS PP). Both
approaches extract the value of the raster cell at the location of each sample point along
the 1D channel network. However, in some cases, the sample points on the 1D network
do not coincide with the river stream represented by the accumulated upstream drainage
area raster (Figure 4.4). Due to the sinuosity of the 1D network, the sample point may
lie on the raster cell adjacent to the main accumulation path. For example, an upstream
drainage area of 5.7 x 106 m2 (highlighted in yellow) is extracted which results for instance
by applying equation (4.5) from PS PP in a river width of two meters. However, a river
width of two meters for the Amazon River near the river mouth is highly unlikely and
would further create a bottle-neck effect. To avoid such distortions in river width and
depth along the 1D channel network, a filter at the location of each sample point was
applied, extracting the highest raster value within a 3x3 window (Figure 4.4). In the
example of Figure 4.4, by applying the filter an upstream drainage area of 5.9 x 1012 m2

(highlighted in red) is extracted which results in a river width of 3,070 meters instead.
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Figure 4.4: Applied filter extracts at each sample point the highest upstream area within
a 3x3 window.

4.2.3.2.2.2 DEM smoothing along the river path
At each sample point location, the surface elevation from the DEM is extracted and
stored as attribute in the sample point file. The required river bed elevations were then
derived by subtracting the river depth from the surface elevation at each sample point.
Therefore, water surface elevations of the river itself were needed which we assume to be
identical with the elevation of the SRTM DEM as the radar signal is not able to penetrate
water bodies. Even though vegetation canopy was removed, systematic errors related
to vegetation on the river banks, surface water effects, and also random error related to
noise in the DEM data introduce elevation irregularities along the river, thus possibly
deteriorating the quality of our bathymetry calculations (Paiva et al., 2011b; Yamazaki
et al., 2017). To ensure flow connectivity on the DEM along the 1D river network, surface
elevations in the DEM were smoothed using the algorithm proposed by Yamazaki et al.
(2012a). This algorithm either ’digs’ or ’fills’ the elevation values along a one-dimensional
streamline on a drainage network. More specifically, it aims to remove the pits in a
DEM, that is a pixel which is surrounded by pixels with higher elevations, with the least
required modification steps. Consequently, the adjusted DEM is kept as close to the
original values as possible (Yamazaki et al., 2012a). In this study, only raster cells covered
by the densest 1D channel network (N001) were smoothed to maintain most of the original
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surface elevation values in the DEM (shown as gray cells in the small raster in Figure 4.5).
Figure 4.5 illustrates the surface elevations extracted from the DEM at the sample point
locations along a certain flow path from the original (canopy removed) DEM and from the
smoothed DEM. Finally, the smoothed river surface elevations were then used to derive
the river bed elevations by subtracting smoothed surface elevation and river depth.

Figure 4.5: Original and smoothed surface elevations extracted at each sample point
location along a certain flow path (yellow line). Small raster on the right-hand side shows
the concept of surface elevation smoothing: only DEM cells representing the river channel
(gray cells) are smoothed and then extracted at the location of each sample point.

4.2.3.2.2.3 Accounting for lakes in PS YG and PS YP
The GWD-LR database from Yamazaki et al. (2014a) calculates the river width based on
SRTM Water Body Data. Yet, this water body mask not only contains rivers but also
lakes. PS YG and PS YP result therefore in enormous river widths (up to ∼22 km) as
well as river depths (up to 82 m). These lakes create great dead storage volumes which
have to be filled first with water in order to enable water to flow further downstream along
the channel (see fictive example in Figure 4.6). PS GG and PS PP, however, do not take
these lakes into account. In order to ensure consistency throughout all parameterization
strategies, sample points representing large lakes in PS YG and PS YP were manually
manipulated. Only sample points which exhibit river widths larger than 8,000 m were
inspected with OpenStreetMap and its bed elevations altered. River width, however,
remained unaltered to contain the purpose of using widths determined by the GWD-LR.
The threshold of 8,000 m was arbitrarily chosen and had the purpose to select a reasonable
amount of sample points which could be manually manipulated. OpenStreetMap showed
that some sample points exceeding river widths of 8,000 m agreed well with actual river
widths and that not all sample points above the threshold represent lakes. Therefore,
sample points needed to be inspected and altered individually which in turn precludes
the usage of a more automatic procedure to cope with dead storages due to lakes. The
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new bed elevation of the sample points describing lakes was obtained by linear averaging
of the bed elevations of the adjacent up- and downstream sample points (Figure 4.6). If
there was no further upstream sample point, for instance at the end of a river branch, bed
elevation was then lifted to the bed elevation level of the downstream sample point. A list
of all sample points whose bed elevations were altered (averaged) is given in Appendix A.

Figure 4.6: Fictive illustration of dead storage along the channel path where downstream
bed elevation is higher than the upstream. Dead storages due to lakes were adjusted by
averaging the bed elevations of the adjacent up- and downstream sample points (red dot).

4.2.3.2.2.4 Interpolation of river bed elevations and widths to DFM
Assigning river bed elevations and river widths to the 1D computational nodes in the
hydrodynamic model DFM takes place throughout a model internal interpolation of
the sample points. The interpolation methods between bed elevations and river widths
differ though. River bed elevations from the sample points are assigned to the 1D
computational nodes via (2D-)spatial interpolation such as triangulation or cell averaging.
The interpolation of the river width samples, in turn, takes place via linear interpolation
in between the sample points along the 1D river branches.

The spatial interpolation method for the bed elevations creates a problem for one-
dimensional applications because the bathymetric information on spatially different river
branches will interact the interpolation. Desirably, bed elevations from the sample points
are linearly interpolated along each 1D river branch without any interference from nearby
sample points located on other river branches. This is, however, not the case because of the
spatial interpolation and further adaptation of the bed elevation sample points is required.
To prevent the interpolated bed elevation to be biased from bed elevations belonging to
adjacent river branches, additional sample points were created as a buffer around each river
branch (Figure 4.7). To that end, sample points were firstly rasterized to a grid. Between
the sample points along the river, the bed elevations were then linearly interpolated.
Subsequently, a buffer around each river branch was created where the interpolated values
from the adjacent raster cells were assigned to. In order to cope with overlapping buffers
at river confluences, river branches had to be buffered stepwise according to its Strahler
order, starting from low to high Strahler order. In this manner, the buffer of a river branch
having a high Strahler order was favored over those with a low Strahler order. Finally,
the raster cells containing bed elevation values (i.e. buffer and river) were converted back
into a DFM compatible format (Figure 4.7).
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Figure 4.7: Left-hand side: original distribution of the sample points containing bed
elevations. At the confluences of river branches or where river branches are spatially close
to each other, the interpolation of bed elevations on each river branch will be negatively
impacted due to the other one. Right-hand side: additional sample points arranged as a
buffer.

4.2.4 Defining roughness coefficient and downstream boundary condi-
tion

The roughness coefficient Manning’s n for the channel was uniformly set to 0.03 s m-1/3.
DFM does not allow for spatially varying floodplain friction coefficients and hence also
a uniform value for the entire 2D domain was used and set to 0.08 s m-1/3. This is in
accordance with values used in other studies in the Amazon Basin (LeFavour and Alsdorf,
2005; Trigg et al., 2009; Rudorff et al., 2014; Hoch et al., 2017a). Besides the friction
coefficients for channel and floodplain, open boundary conditions defined downstreams
where the Amazon River drains into the sea are required in order to enable water to flow
out of the system. Further, tidal and surge motions towards the land can be described
by the downstream boundary conditions. Even though the sea-tide influence on the hy-
drodynamics of the Lower Amazon is known to be significant (Kosuth et al., 2003, 2009),
we excluded the tidal forcing in this study and defined a constant water level of 0 m as
downstream boundary condition.
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4.3 Analysis

4.3.1 Sensitivity analysis

4.3.1.1 Boundary conditions

Water can be supplied to DFM by discharge or rainfall boundary conditions. Discharge
boundary conditions operate outside the model domain and supply the model with water
input from discharge timeseries by means of spatially defined polylines. To deliver water
to all river branches, especially to those which lie completely within the model domain,
might not be suitable by means of discharge boundary conditions. Thus, a synthetic
rainfall event was set up to supply DFM with water over the entire 1D/2D model domain.
The simulation time of three years was randomly chosen but aimed at allowing a sufficient
timeframe for the hydrologic response in such a large area. A spatially and temporally
uniform rainfall event (10 mm day-1) over the entire 1D/2D model domain was inserted
after the first half year for a period of six months (Figure 4.8). The rainfall amount of 10
mm day-1 for a period of six months was chosen after trial and error to avoid supplying
too much water in which river channel and floodplain is completely flooded.

Figure 4.8: Synthetic rainfall of 10 mm day-1 for a period of six months was inserted over
the entire 1D/2D model domain in DFM.

4.3.1.2 Initial conditions

To represent a perennial river as realistically as possible, the simulation preferably starts
with initial water in the river channels. Starting with dry initial conditions for the 1D
channels might also cause water to be stored in the channels due to dead storages as
a result of varying river bed elevations. This could bias the response of the different
1D networks as the densest network (N001) will have more channels and hence possibly
greater dead storage volumes compared with the smaller network extents. To reduce
the possibly biased response caused by these dead channel storages, initial model runs
for all schematizations were performed to obtain model states at the last time step to
be used as restart files. The last time step of the initial model runs shows the residual
water which could not drain because of local elevation depressions in both the 1D and
2D domain. These restart files were then inserted as initial water condition for the new
model runs. The drawback of using the aforementioned restart files is that not only
the 1D channels but also the 2D floodplain receives initial water. As a consequence of
the various 1D network extents, the residual water depths on the floodplain vary among
the schematizations. Figure 4.9 illustrates the resulting initial water conditions on the
2D domain for the networks N001 and N10. These differences in initial water depths
on the floodplain might bias the hydrologic response among the schematizations because
friction on the floodplain is lessened with an increase in water depth and might lead to
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less conclusive results regarding the model sensitivity to the 1D network densities. The
sensitivity analysis was thus performed for both, with and without the usage of the restart
files.

Figure 4.9: Initial water depth on the 2D floodplain at time step t0 for the densest network
N001 (left-hand site) and sparsest network N10 (right-hand site).

4.3.1.3 Model variables

With respect to the model outputs, only flood wave propagation and attenuation, and
water level were examined in the delta region of the Amazon River (obs-loc in Figure
4.9). Flood extent was excluded in this case because water was supplied and discharged
over the entire 1D/2D model domain. The main attention was on how the hydrologic
response observed in the downstream part of the study area is affected by the different
schematizations.

4.3.2 Accuracy analysis

4.3.2.1 Boundary conditions

The coupling between DFM and PCR was achieved by means of the basic model interface
(BMI) (Hoch et al., 2017a). The BMI facilitates the information exchange between models
at any given time step and for any model internal state variable. By coupling models to
a BMI, internal state variables can be retrieved, manipulated, and re-inserted into the
original model or used to overwrite variables in another model. Because of the possibility
to update models connected to a BMI at a user-specified timestep, the manipulation of
the state variables is feasible during the execution of the models in use (Hoch et al.,
2017a). PCR and DFM were coupled where the cells of both models spatially overlay.
With regard to the model domain in DFM, PCR was coupled to the 1D network. This
means that all computational nodes of the 1D network in DFM which lay within a PCR
cell were connected and received water input from this specific PCR cell. To this end,
both models run simultaneously whereby within the coupled area water input from PCR
to DFM was updated on a daily basis. PCR run spatially for the entire Amazon Basin
(Figure 3.1) calculating surface runoff on a cell-by-cell basis and subsequently routing
water along an LDD my means of the kinematic wave approximation towards the model
domain of DFM. If the routed water in PCR reached the overlapping model domain
where the coupled model cells were present, no further routing along the LDD in PCR
was performed. Instead, the available water volume (i.e. river discharge inflow and local
surface runoff) in the PCR cells were divided over and added to all computational nodes in
DFM within the respective PCR cells. Yet, the coupling only took place one-directionally
where information from PCR was transferred to DFM without the possibility to reversely
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exchange information (Hoch et al., 2017a). Consequently, water added to DFM can only
be discharged, excluding further infiltration or evaporation in the channel or on the 2D
floodplain in case of flooding. This may cause an overestimation of modelled discharge,
water depth, and inundation extent. For further information about the BMI and the
coupling framework, this study refers to Hoch et al. (2017a).

The described coupled model run was performed for the time period 2004 to 2009 with
the first year being used for spin-up of the coupled settings. This time period includes the
severe flood event which occurred in 2009 (Paiva et al., 2013a). The central and northern
region of the Amazon Basin experienced extensive flooding which created many casualties
and left more than 376,000 people homeless (Chen et al., 2010).

4.3.2.2 Model variables

Discharge, inundation extent and water level were modelled in DFM for the time period
2005 to 2009 and validated against observations. Simulated discharge was compared with
observed discharge at the station Obidos (Figure 3.1). In addition, to validate high and
low water flows separately, the simulated discharge time series were separated by the
observed mean discharge into high and low water. The root mean square error (RMSE)
and the Kling-Gupta efficiency (KGE) (Gupta et al., 2009) provided measures for the
overall performance of the hydrographs and the model’s skill, respectively. The RMSE is
defined as:

RMSE =

√√√√ 1

T

T∑
t=1

(St −Ot)2, (4.8)

where St is the simulated discharge at time step t, Ot is the observed discharge at time
step t, and T the total number of time steps. KGE, in turn, is given by:

KGE = 1− ED, (4.9)

with
ED =

√
(r − 1)2 + (α− 1)2 + (β − 1)2

r = Pearson product-moment correlation coefficient
α = σs/σo
β = µs/µo

where σs and σo denote the standard deviation of the simulation and observation,
respectively. µs and µo are the simulated and observed mean.

The RMSE states the mean deviation of the simulated to the observed values and
has the same units as the quantity being evaluated. Hence, the lower the RMSE value,
the smaller the differences between simulated and observed values. KGE, in turn,
considers three components to measure model performance which are variability, bias
and correlation. The components variability and bias compare simulated and observed
standard deviations and means, respectively. Further differences between simulated and
observed, such as timing of the peaks, and shapes of the rising and falling limb of the
hydrographs, are analyzed by the correlation coefficient (Gupta et al., 2009). These
three components are then combined and yield the KGE in which a value of one is
ideal. Modelled water level was also compared at the station Obidos with observed
water level. Both, observed discharge and water level data at Obidos were derived from
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the Observation Service SO HYBAM. Simulated water levels in DFM ranged between
21 m and 27 m whereas the measured ones at Obidos ranged between 0 m and 9 m.
This discrepancy could be caused by elevation errors in DFM introduced by the SRTM
DEM as we only smoothed DEM values along the 1D channels. In order to still allow
for comparability between simulation and observation, water levels were normalized by
subtracting the respective means from both data sets. By doing so, timing and amplitude
of the water levels remain comparable.

Regarding the inundation extent, satellite imagery was used to provide validation data.
To perform a comprehensive flood extent validation, the entire study domain was included.
The validation of inundation extent was performed for the flood event in 2009. According
to Chen et al. (2010), the flood began in early 2009 and reached the maximum in March
2009 in the northern Amazon. The flood continued into July in the central Amazon
where the study domain is situated. The Global Surface Water dataset (Pekel et al.,
2016) provides, among many other products, monthly water body layers derived from an
extensive collection of Landsat 5, 7, and 8 images. These water body layers are binary maps
in which each pixel is either classified as water or no water. The frequent occurrence of
cloud cover in humid tropical regions such as the Amazon is known to severely hamper the
usage of optical remote sensing (Asner, 2001; Brivio et al., 2002). As a result, the monthly
water body layers from the Global Surface Water dataset may contain substantial amount
of unclassified pixels due to cloud cover. In order to deal with that, water body layers
from multiple months were merged together illustrating the maximum inundation extent
which occurred within the months. This was achieved by producing a new water body
layer in which a pixel was classified as water if the pixel in one of the months was once
classified as water. The months May to July 2009 were chosen for the benchmarking flood
extent map. In DFM, simulated inundation depicting the water situation in July 2009 was
extracted and used for validation. Inundation extent did not change spatially in DFM over
the period May to July 2009 and hence the single date (July 2009) was considered to be
sufficient for the validation procedure. Subsequently, the agreements between simulated
and observed inundation extent were assessed using measures of hit rate (Hr), false alarm
rate (Far) and critical success rate (Csr) according to the following relations (Hoch et al.,
2017b):

Hr =

(
NS ∩NO

NO

)
100, (4.10)

Far =

(
NS \NO

NS ∩NO +NS \NO

)
100, (4.11)

Csr =

(
NS ∩NO

NS ∪NO

)
100, (4.12)

where NS and NO indicate the number of simulated and observed inundated cells, respec-
tively. Hit rate indicates the agreement between simulated and observed flooded cells.
The number of cells which were only flooded in DFM but not in the benchmark map are
provided by the false alarm rate. The latter of the three, critical success rate, gives the
overall performance between cell agreements and cell mismatches.
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Results

5.1 River network parameterizations

PS PP relates river width and depth to upstream drainage area which leads to a continuous
increase of river width and depth with flow distance. Compared to this, river width
and depth were calculated from discharge in PS GG, producing more variation along
the channel network than PS PP. This is mainly because discharge was derived from
average long-term annual runoff simulated by PCR and upstream drainage area. Runoff
is an integrated component of the water balance equation and depends on precipitation,
evapotranspiration, soil water storage, and groundwater storage. Therefore, runoff as
well as the obtained bathymetry may transit less smoothly from upstream to downstream.
Empirical equations, however, are not able to capture the local variability of river channels
and may thus be not realistic for many river reaches (Yamazaki et al., 2014a). In PS YG
and PS YP, satellite imagery is used to obtain river widths which in turn results in a better
representation of the river channels than PS GG and PS PP (Figure 5.1). Especially the
river widths of the Negro River are not captured by the last two. Figure 5.1 illustrates
also that the water body mask, on which the river widths in PS YG and PS YP are based,
includes lakes as well as island gaps where the latter will cause oversized channel widths
(see downwards part from the confluence at Manaus).
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Figure 5.1: Projected river widths derived from empirical relationships (PS PP, PS GG)
and satellite imagery (PS YG/PS YP). The Figure shows the area where the Negro River
meets the Solimoes River at Manaus.

Table 5.1 provides descriptive statistics, that is minimum, maximum, mean, and stan-
dard deviation, for river width and depth resulting from the different parameterization
strategies on the densest river network (N001). PS PP shows the smallest widths with a
mean of 288 m as well as the lowest variation (SD 540 m). In turn, river widths derived
from remote sensing show the largest widths (22,148 m) and greatest variation (SD 2,107
m). The river widths obtained by PS GG are situated somewhere in between these two.
Regarding the river depths, greater depths are generated by PS PP than by PS GG. PS
YG and PS YP have both the same river width but by linking river widths to depths
via equation (4.7), a deeper river channel will be created than with equation (4.4) (mean
depths of 16 m and 5 m in PS YP and PS YG, respectively).
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Table 5.1: Descriptive statistics (in meters) for river width and depth derived from the
four parameterization strategies on the densest river network (N001).

PS GG PS PP PS YG PS YP

Width Depth Width Depth Width Depth Width Depth

Min 33 2 24 5 31 2 31 5

Max 8933 33 3068 28 22148 61 22148 51

Mean 747 4 288 9 1241 5 1241 16

SD 1350 5 540 5 2107 7 2107 8

As a result of the differences in river width and depth, all parameterization strategies
exhibit also diverse storage volumes of their channel networks (Table 5.2). For almost
all river network densities, the channel storage volumes increase in the following order;
PS PP, PS GG, PS YG, and PS YP. This order agrees with the aforementioned width
and depth characteristics of the different approaches. Interestingly, the storage volume for
the densest network (N001) in PS PP is larger than in PS GG while for the other three
network densities (N01, N1, N10) PS GG leads to larger channel storage volumes. Table
5.2 reveals that the width-depth equations (4.4) and (4.7) result in widely different storage
capacities (see PS YG and PS YP in Table 5.2).

Table 5.2: Channel storage capacities (in km3) of each river network parameterization.

PS GG PS PP PS YG PS YP

N001 486 493 983 1952

N01 439 376 767 1353

N1 412 292 588 948

N10 341 200 349 567
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5.2 Sensitivity analysis

5.2.1 Model runs with initial water depths in the 1D/2D domain

5.2.1.1 Discharge at observation location

The resultant river discharges for all imposed schematizations at the observation location
(obs-loc in Figure 4.9) are presented in Figure 5.2. Figure 5.2 illustrates for each param-
eterization strategy the outcomes from the four 1D network densities. For an optimized
visualization of the graphs, only the period including the rising and falling limb of the
flood hydrograph is plotted. The shapes of the hydrographs in terms of flood wave prop-
agation and magnitude resulting from the different schematizations look near-identical.
For all parameterization strategies, the densest network (N001) responds most rapidly to
the rainfall event. The differences to the other network extents, however, are very small.
The densest network (N001) leads only in PS GG and PS PP to a higher peak discharge.
In PS YG and PS YP, peak discharge in N001 is attenuated. In return, a higher amount
of water is drained during the falling part of the hydrograph when more channels exist
(N001). This is the case for all parameterization strategies. The densest network (N001)
leads in all parameterization strategies to the highest cumulative discharges. Even though
peak discharge in PS YG and PS YP in N001 is attenuated, yet these two yield the highest
cumulative discharges of 1.76 x 1012 m3 and 1.78 x 1012 m3, respectively.

Figure 5.2: River discharge at the observation location (obs-loc) illustrated for each pa-
rameterization strategy and the respective 1D networks. Model runs were initialized with
water depth from restart files to provide the 1D channels with initial water.

The same results as in Figure 5.2 are shown in Figure 5.3 but plotted in respect of the
1D network densities. It becomes apparent that the variation of the flood hydrographs
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between the parameterization strategies increases with an increase in channel density. For
the same network density, PS GG leads to the highest peak discharge followed by PS
PP, PS YP, and then PS YG. This order is consistent for the networks N001, N01, and
N1. Regarding the falling limb of the hydrograph, the above mentioned order is reversed
whereby PS YG drains the greatest amount of water. Furthermore, the flood hydrographs
are hardly distinguishable from each other in the sparsest network (N10).

Figure 5.3: River discharge at the observation location (obs-loc) illustrated for each 1D
network extent and the respective parameterization strategies. Model runs were initialized
with water depth from restart files to provide the 1D channels with initial water.

5.2.1.2 Water level at observation location

The findings at the observation location in the downstream part of the study area reveal
that the water level amplitude decreases with an increase in channel density (Figure 5.4).
In PS YG and PS YP this reduction in the water level amplitude is more pronounced than
in PS GG and PS PP. The same pattern occurs when the resultant water levels among
the parameterization strategies are compared. There are almost no differences between
the parameterization strategies in the sparsest network (N10) but with a higher channel
density, the distinctions become clearer. The water level amplitude in PS GG and PS PP
for the densest network (N001) is very similar and larger than the amplitudes of PS YG
and PS YP.
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Figure 5.4: Water level at the observation location (obs-loc) illustrated for each parame-
terization strategy and the respective 1D networks. Model runs were initialized with water
depth from restart files to provide the 1D channels with initial water.

5.2.2 Model runs without initial water depths in the 1D/2D domain

5.2.2.1 Discharge at observation location

In the second case, the model schematizations were run without initial water depth (i.e.
without restart files) meaning that the 2D floodplain was completely dry at the beginning
of the simulation. The same does not necessarily apply to the 1D channels since DFM
fills automatically all channels which lie below the water level of 0 m specified in the
downstream boundary condition (Chapter 4.2.4). The results from the model runs without
initial water depths are presented in Figure 5.5. The densest network (N001) generates in
all parameterization strategies the greatest amount of discharge. In PS GG and PS PP,
the water surplus indicated as mean relative difference between N001 and N10 accounts to
94% and 81% respectively. The mean relative differences in the two other parameterization
strategies, PS YG and PS YP, between N001 and N10 are in the order of 72% and 80%,
respectively. The densest network (N001) responds most rapidly to the rainfall event in all
schematizations. This early response to the rainfall event is reflected in a very steep rise in
PS GG and PS PP, whereas in PS YG and PS YP the rising limb of the hydrograph is more
curved and the response thus more decelerated. The flood peak in all parameterization
strategies arrives approximately one month earlier in the densest network when compared
with the sparsest network.
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Figure 5.5: River discharge at the observation location (obs-loc) illustrated for each pa-
rameterization strategy and the respective 1D networks. In this case, model runs started
with dry conditions (i.e. without restart files).

Figure 5.6 shows clearly the difference in response time between PS GG/PS PP and
PS YG/PS YP for especially the densest network (N001). Similar to the pattern in Figure
5.3, the differences among the parameterization strategies becomes more pronounced with
an increase in channel density. Besides the response timing, also the peak discharges
differ. Compared with PS YG, the peak discharge in PS GG is increased by around
30% in the densest network (N001). Regarding the cumulative discharges between the
parameterization strategies, PS GG in N001 exhibits the largest amounts of 1.33 x 1012

m3. In the other three 1D networks, however, PS PP drains the largest amount of discharge
and exhibits also the highest peak discharge.
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Figure 5.6: River discharge at the observation location (obs-loc) illustrated for 1D network
extent and the respective parameterization strategies. In this case, model runs started with
dry conditions (i.e. without restart files).

5.2.2.2 Water level at observation location

Likewise the previously observed pattern, Figure 5.7 illustrates the water levels from im-
plemented schematizations in which the water level variation is more pronounced for the
densest network (N001) compared with the other networks. Also for each parameteriza-
tion strategy, the densest network (N001) responds most rapidly and generates the highest
water levels. With regard to the parameterization strategies, PS PP leads in all network
densities to the highest water levels and responds most rapidly to the rainfall event.
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Figure 5.7: Water level at the observation location (obs-loc) illustrated for each parame-
terization strategy and the respective 1D networks. In this case, model runs started with
dry conditions (i.e. without restart files).
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5.3 Accuracy analysis

5.3.1 Discharge at Obidos

Simulated and observed discharge at Obidos for the time period 2005 to 2009 are plot-
ted in Figure 5.8. From a visual point of view, all schematizations perform fairly well
when compared with observed discharge. This is especially evident in the first half of
the simulation period for the high water flows of the Amazon River. In the second half
of the simulation, that is from 2008 onwards, the schematizations overpredict the peak
discharge. In addition, all schematizations overestimate constantly the low water flows of
the Amazon River during the dry seasons. The mean relative difference between two hy-
drographs indicates the mean increase (or decrease) of one hydrograph over the other one.
The hydrograph from the densest network for all parameterization strategies increases by
around 8% (mean relative difference) when compared with the hydrograph from the spars-
est network (N10). A similar pattern between the networks is visible which applies to all
parameterization strategies. During the rising limb of the hydrograph, there are hardly
any differences recognizable between the network extents. For the peak and the falling
limb of the hydrograph, however, the densest network (N001) yields more discharge than
the sparsest one. Distinctions between the parameterization strategies are discernible for
instance for the high water flows in 2005 and 2006 in which PS GG and PS YP seem likely
to be closer to the observations than PS PP and PS YG. In addition to Figure 5.8, the
same results are plotted with respect to the network densities in Figure B.1 in Appendix
B.1.
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Figure 5.8: Observed and simulated discharge at Obidos.

Table 5.3 provides the resultant RMSE and KGE for all schematizations. The RMSE
is lowest for all parameterization strategies in the sparsest network (N10) and increases
with an increase in channel density. The differences between the parameterization strate-
gies are not as pronounced than between the network extents. Contrary to this, KGE
values show a higher variation between the parameterization strategies than between the
network densities. Overall, KGE values range between 0.69 and 0.77 indicating that all
schematizations perform fairly well. The best model performance with respect to the KGE
is achieved by PS YG and PS YP on network N1 (KGE 0.77) whereas parameterization
strategy PS PP on network N001 performs worst (KGE 0.69). Parameterization strategy
PS YG on the sparsest network, in turn, yields the lowest RMSE of 24,707 m3.
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Table 5.3: Root mean square error (RMSE) and Kling-Gupta efficiency (KGE) obtained
to evaluate discharge.

RMSE KGE

PS GG PS PP PS YG PS YP PS GG PS PP PS YG PS YP

N001 30886 33825 34778 31903 0.75 0.69 0.73 0.73

N01 27420 28738 29632 27508 0.75 0.70 0.74 0.74

N1 25863 26081 26293 25433 0.76 0.72 0.77 0.77

N10 26464 25432 24707 26688 0.76 0.72 0.75 0.76

Tables 5.4 and 5.5 show the RMSE and KGE for only high and low water, respectively.
During high water, network N01 performs best regarding the RMSE, except in parame-
terization strategy PS YG. KGE indicates contrasting tendencies in which PS GG and PS
YP perform best with the densest network (KGE of 0.63 and 0.64, respectively) whereas
PS YG exhibit the highest KGE (0.66) in the sparsest network (N10). The lowest RMSE
and highest KGE is given by PS PP. Regarding low water, the sparsest network (N10)
results in all parameterization strategies in the lowest RMSE and highest KGE.

Table 5.4: Root mean square error (RMSE) and Kling-Gupta efficiency (KGE) obtained
for high water only.

RMSE KGE

PS GG PS PP PS YG PS YP PS GG PS PP PS YG PS YP

N001 21663 19255 21758 20217 0.63 0.68 0.58 0.64

N01 20309 17677 19208 19302 0.61 0.71 0.63 0.64

N1 21688 18339 18996 21040 0.57 0.70 0.64 0.57

N10 23573 19984 19239 23968 0.50 0.65 0.66 0.49

Table 5.5: Root mean square error (RMSE) and Kling-Gupta efficiency (KGE) obtained
for low water only.

RMSE KGE

PS GG PS PP PS YG PS YP PS GG PS PP PS YG PS YP

N001 40549 45674 44875 42833 0.36 0.17 0.01 0.29

N01 34603 38647 38902 35314 0.42 0.36 0.21 0.41

N1 30588 33340 33160 30244 0.46 0.44 0.37 0.47

N10 29761 31269 30193 29729 0.48 0.47 0.47 0.48

5.3.2 Normalized water level at Obidos

The model schematizations capture the timing of the water levels better than the ampli-
tude (Figure 5.9). In terms of water level amplitude, simulated high water level underes-
timates the observed one by around 1 m and the simulated low water levels overestimates
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it by around 2 m. For all parameterization strategies, the sparsest network (N10) reveals
the largest water level amplitude. On the other side, the highest channel density leads to
the smallest water level amplitude. The parameterization strategies PS GG and PS PP,
in turn, generate also slightly larger water level amplitudes than PS YG and PS YP. The
calculated RMSE yields a value of 1 m for each parameterization strategy in the sparsest
network (N10) and 1.1 m, 1.2 m, 1.4 m, and 1.3 m for PS GG, PS PP, PS YG, and PS
YP, respectively for the densest network (N001) (Table 5.6). In addition to Figure 5.9, the
same results are plotted with respect to the network densities in Figure B.2 in Appendix
B.2.

Figure 5.9: Observed and simulated normalized water levels at Obidos.
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Table 5.6: Root mean square error (RMSE) obtained to evaluate normalized water level.

PS GG PS PP PS YG PS YP

N001 1.1 1.2 1.4 1.3

N01 1.1 1.1 1.3 1.2

N1 1.0 1.0 1.2 1.1

N10 1.0 1.0 1.0 1.0

5.3.3 Inundation extent

Figure 5.10 and Figure 5.11 illustrate simulated and observed inundation extents for the
time period May to July 2009. The networks N001 and N01 with the respective param-
eterization strategies are plotted in Figure 5.10. The remaining two networks, N1 and
N10, are given in Figure 5.11. The densest network leads overall to the highest hit rates,
ranging between 78% and 89%. Not only the hit rate but also the false alarm rate is largest
in this river network. Hit rates and false alarms continuously decrease with a decrease
in channel density. The critical success rate ranges for all schematizations between 40%
and 46%. Inundation in the upstream area is omitted in the sparser networks (e.g. N1
and N10) leading on one side to a low hit rate, but on the other side also to a minimized
false alarm rate. The best agreement between simulation and observation is achieved by
P01 having a critical success rate of 46.38%. The other parameterization strategies in
this network, G01, YG01, and YP01, perform only slightly poorer exhibiting a critical
success rate of 45.88%, 45,51%, and 46.09%, respectively. Simulated inundation resulting
from the bathymetry parameterizations in N001 and N01 varies spatially most notably in
the northern and western part, that is the upstream area of the study area. Hardly any
differences are visible among all schematizations for the Lower Amazon and its mouth. In-
undation between the channel networks varies mainly due to the existence or non-existence
of river branches. In some cases, for instance, in G001 and G01 at 4.5°South and 66°West,
inundation extent varies also for river branches both networks have in common. Visual
inspection indicates that PS YG leads overall in all network extents to the largest amount
of flooded area.
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Figure 5.10: Simulated and observed inundation extent (May to July 2009) where inunda-
tion occurred in both maps (green cells), only in DFM (blue cells), or only in benchmark
map (red cells). Network N001 and N01 with the respective bathymetry parameterizations
are shown in this graph.
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Figure 5.11: Simulated and observed inundation extent (May to July 2009) where inunda-
tion occurred in both maps (green cells), only in DFM (blue cells), or only in benchmark
map (red cells). Network N1 and N10 with the respective bathymetry parameterizations
are shown in this graph.
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5.3.4 Model run times

All simulations were performed in a Linux environment with an Intel i7-4790 core at 3.90
GHz and 16 GB memory. The run times for all simulations are given in Table 5.7. The
sparsest network, having the fewest 1D computational nodes, results in the fastest run
times of around 18 h and 19 h for the respective parameterization strategies. The run
times increase steadily with an increase in channel density as a consequence of a higher
amount of computational nodes in the 1D network. The densest network N001 leads to
the longest run times ranging between 24 h in PS YP and 29 h in PS YG.

Table 5.7: Run times (in hours) for each schematization.

PS GG PS PP PS YG PS YP

N001 26 28 29 24

N01 25 24 26 23

N1 20 21 22 20

N10 18 18 19 18
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Chapter 6

Discussion

The 1D channel network extent as well as the bathymetry parameterizations are likely to
impact the simulation of flood-relevant parameters. This is because the former changes
travel times since river channels exhibit smaller friction forces than the floodplain. The
latter defines whether inundation occurs (Getirana et al., 2012) and probably modifies the
friction influence within the channel as a result of different river widths and depths as well.
The present study investigates how sensitive the model is to different 1D channel network
densities and bathymetry parameterizations in terms of overbank storage and the conse-
quent flood wave propagation and attenuation. Moreover, the study explores which 1D
channel network density and parameterization strategy results in the most accurate model
performance with regard to river discharge, water level and inundation extent when com-
pared with in-situ measurements and remote sensing observations, respectively. Last, the
possible trade-off between computational costs and model accuracy in terms of discharge,
water level, and inundation extent is investigated.

6.1 Sensitivity analysis

The sensitivity analysis was performed by using two different initial water conditions in
the model domain which can be considered as two extreme states at both ends. In the first
case, that is starting the simulations with initial water depths in the 1D/2D model domain,
an extremely wet floodplain environment is represented where local topographic depres-
sions are transformed into lakes. The results from these model runs look near-identical
suggesting an insensitive hydrologic response at the downstream observation location, es-
pecially to the 1D river network. The second case, in turn, describes the opposite situation
in which the floodplain as well as part of the river channels are completely dry. This yields
different hydrologic responses due to the implemented schematizations and thus introduces
model sensitivity. Both extreme states, completely wet and dry, do not reflect the Ama-
zonian conditions in a realistic manner and the real conditions are more likely to range
between these two extreme states. However, the results show that with different initial
conditions, be it in the 1D channel or 2D floodplain, the system is likely to respond in a
different way to a hydrological event.

6.1.1 Wet conditions (i.e. model runs with initial water depths)

6.1.1.1 Discharge and water level at observation location

Further analysis of the results shows that the floodplain of the Amazon River is completely
flooded from the early beginning of the rainfall event until the end of the simulation period.
This is the case for all parameterization strategies. This fact is likely to impact the possible
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influence of the 1D networks and river bathymetries on the hydrological response because
floodplain and channel act as a whole and the influence of river bathymetry in terms of
channel storage and friction is hampered.

6.1.1.1.1 1D network density
The resulting flood wave propagation and water level seem to be insensitive to the different
1D network extents. Only marginal variations in the flood hydrographs are distinguishable.
The densest network responds more rapidly to the rainfall event than the other channel
networks and leads in case of PS GG also to a higher peak discharge. Regarding the
parameterization strategies, PS YG and PS YP, the peak discharges in the densest network
(N001) are slightly attenuated and delayed. The cumulative discharges, however, for all
parameterization strategies are largest in the densest network (N001). The attenuated
peak discharge in the densest network (N001) in PS YG and PS YP could be caused
by inundation in the upstream area due to local variations in channel bathymetry. The
reduced water level amplitude in PS YG and PS YP with increased 1D channel density
supports this assumption. Besides the all-time inundated Amazon River and its floodplain,
another possible explanation for the almost insensitive outcomes is the initial water depths
on the 2D floodplain (Figure 4.9). Because of the initial water depths on the 2D domain,
the floodplain acts like a channel where friction is diminished and topographic depressions
filled. Consequently, the hydrologic response at the observation location (obs-loc) yields
near-identical flood hydrographs.

6.1.1.1.2 River bathymetry
The findings suggest that the bathymetry parameterizations affect the hydrologic response
in the study area slightly larger than the 1D network extents. During the simulation
period, a cumulative discharge of 1.78 x 1012 m3 is drained by PS YP, 1.76 x 1012 m3

by PS YG, 1.70 x 1012 m3 by PS GG, and 1.65 x 1012 m3 by PS PP for the densest
channel network (N001). This order reflects the differences in channel storages (Table 5.2)
whereby greater channel storages cause more water to be accumulated and transported
within the channel. The river geometry derived from PS YG and PS YP, however, exhibit
a larger wetted perimeter, that is the interfacial area between water and the bed and walls
of the river, than PS GG and PS PP which in turn may lead to a deceleration of the flood
wave propagation in PS YG and PS YP. Channel friction is highest at the river bottom
and walls (i.e. wetted perimeter) and thus, water tends to be stored within the channels
in the parameterization strategies PS YG and PS YP. This may explain the smaller peak
discharge when compared with PS GG and PS PP (Figure 5.3). One might expect that
due to narrower river widths and/or shallower river depths, and hence also smaller channel
storages in PS GG and PS PP, more flooding occurs which delays and attenuates the flood
wave as well. This, for instance, was encountered in the sensitivity analysis performed by
Yamazaki et al. (2011) who showed that indeed a time delay of the flood peak as well as
a reduced discharge fluctuation occurred when river depth was shallower and river width
narrower. The same was also found by Paiva et al. (2013a). Figure 5.4 in Chapter 5.2.1.2
illustrates a smaller water level amplitude for PS YG and PS YP than for the other two
parameterization strategies. A reduced water level amplitude indicates an attenuation of
the flood wave. The reason for this attenuation could be attributed to local inundation
in upstream areas and higher channel frictions. The findings between this study and the
ones obtained by Yamazaki et al. (2011) and Paiva et al. (2013a), however, cannot be
compared directly in that Yamazaki et al. (2011) and Paiva et al. (2013a) altered the river
parameters separately and, more importantly, homogeneously (i.e. the river widths for the
entire network are either increased or decreased) whereas in this study different parame-
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terization strategies are used which leads to heterogeneity among them (i.e. river widths
in PS YP are overall larger than for instance in PS PP, but may locally be smaller as well).

The results in Chapter 5.2.1.1 also indicate that the differences in the hydrological
response between the river bathymetries are minimal for the sparsest network (N10).
Network N10 represents the main stems of the Amazon River and its major tributaries.
These river branches exhibit the largest drainage areas in the watershed and therefore the
largest water volumes are available because rainfall is distributed spatially uniform. The
enormous water volumes occurring in the Amazon River may diminish the influence of
channel friction, as noted by Sioli (1984). In addition, the difference in channel storages
between the parameterization strategies is lowest for the sparsest network (N10), ranging
between 341 km3 and 567 km3 (Table 5.2) which may also explain the minimised differences
among the parameterization strategies.

6.1.2 Dry conditions (i.e. model runs without initial water depths)

6.1.2.1 Discharge and water level at observation location

6.1.2.1.1 1D network density
The model runs with dry floodplain conditions reveal that the hydrologic response in
the study area changes with different 1D channel densities. The mean relative difference
indicates the mean increase of the flood hydrographs from the densest network over the
sparsest network. It describes the differences between paired members of each group
(i.e. the differences between the discharges from N001 and N10 at each time step).
The comparison between the densest (N001) and sparsest (N10) network yields a mean
relative difference of 94%, 81%, 72%, and 80% for PS GG, PS PP, PS YG, and PS
YP, respectively. The cumulative discharge resulting from the densest network (N001)
increases in PS GG by 64%, in PS PP by 59%, PS YG by 53%, and PS YP by 48%
over the cumulative discharge from the sparsest network (N10). If more channels are
present, more water can be accumulated and conveyed downwards. The larger amount
of discharge results subsequently in higher water stages as well. In addition, the densest
network leads to a quicker flood wave propagation in which the flood peak arrives
approximately one month earlier than compared with the sparsest network. These
findings follow the GIUH (Geomorphologic Instantaneous Unit Hydrograph) theory
(Rodŕıguez-Iturbe and Valdes, 1979) which implies that the network structure and
hence the network path lengths result in different hydrologic responses due to different
travel times (Rinaldo et al., 1991; Saco and Kumar, 2004; Pattison et al., 2014). This
is because of the lower friction (Manning’s n 0.03) of the river channel compared with
the one of the floodplain (Manning’s n 0.08). With a higher channel density, the flow
paths for water on the 2D floodplain are likely to be shortened as more channels ex-
ist in the study area and once it reaches a channel it will flow downstreams at a higher rate.

The results in Figure 5.5 not only highlight the differences in flood wave propagation
among the network densities but also indicate the variations in the cumulative discharge
volumes. These findings demonstrate that the cumulative discharge at the observation
location (obs-loc) increases with an increase in network density. In the absence of 1D
channels, more water is restrained on the 2D floodplain due to topographic depressions,
whereas the drainage in these depressions is enabled when channels are present. This
finding agrees well with other studies investigating the impact of 1D channels on water
volume conveyance (Hoch et al., 2017a).
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6.1.2.1.2 River bathymetry
The model runs without the restart files result in more pronounced changes among the
parameterization strategies. This is mainly due to the empty dead storages in the channels
which are subsequently filled. The parameterization strategy exhibiting the lowest channel
storage in the respective 1D channel network (PS GG in N001, and PS PP in N01, N1,
and N10) yields also the highest cumulative discharge. As a result of water storage in the
channels owing to dead storages, our ability to further investigate the possible impacts of
bathymetric input on the hydrologic response is limited.

6.1.3 Limitations

To our knowledge, no other study explored yet the effects of 1D network extents on the
hydrologic response, therefore excluding the possibility to compare the obtained results
with existent literature. The sensitivity of the model results to the 1D channel networks
might be influenced by the quality of the DEM representing the floodplain topography
and the degree of modification the DEM experienced (e.g. alteration of elevation values
by a pit removal algorithm). Misrepresentation of elevation values in the DEM may
hamper the water supply from the floodplain to the river channel and could lead to a
more approximated effect (in terms of the hydrologic response) between the different 1D
networks if water flows besides the channel on the floodplain. The primary reason for the
different hydrologic responses resulting from the network extents is the varying friction
coefficient between channel and floodplain in which the latter is typically larger. Hence,
by using other friction values than the ones used in this study, the hydrologic response is
likely to change as well. The channel friction is mainly determined by the type and size of
the material composing the river bed and walls as well as by the channel shape (Arcement
and Schneider, 1989). Not only the the vegetation, but also the physical shape impact the
roughness coefficient of the floodplain. As noted by Werner et al. (2005), using a single
friction coefficient for the entire floodplain introduces a higher model sensitivity than when
spatially different friction coefficients are implemented. DFM allows to specify a single
friction coefficient only for the floodplain. The used floodplain friction has consequently
a large influence on the performed sensitivity analysis. The spatially uniform floodplain
friction of 0.08 in this study is slightly lower than the floodplain friction coefficient of 0.10
applied for instance by Wilson et al. (2007), Yamazaki et al. (2012a), and Baugh et al.
(2013). Rudorff et al. (2014) used values of 0.14 and 0.10 for the vegetation classes forest
and scrub, respectively. By applying a higher floodplain friction coefficient than 0.08, the
differences in the hydrologic response may become even more pronounced. The channel
friction of approximately 0.03, in turn, is widely used among the studies in the Amazon
Basin (Trigg et al., 2009; Yamazaki et al., 2011; Baugh et al., 2013; Rudorff et al., 2014;
Hoch et al., 2017a). The potential influence of river bathymetry on the hydrologic response
in terms of friction depends largely on the friction value itself. Paiva et al. (2013a) and
Yamazaki et al. (2011) showed that changes in the channel friction affected simulated
discharge, flooded area, and water depth. A larger friction value probably increases also
the impact due to the river bathymetries. The Amazon River and its floodplain, however,
are consistently flooded during the simulation period and the influence of channel friction
becomes less significant due to increased water depths. In this sensitivity analysis, water
is spatially supplied to the entire 2D floodplain which in turn limits to test the model
sensitivity to inundation extent.
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6.2 Accuracy analysis

Simulated discharges produced by all schematizations perform fairly well when compared
against in-situ observations. Despite the overall good model performance, the diverse
schematizations yield slightly different validation outputs. As already mentioned in Chap-
ter 4.3.2.2, water levels were normalized in order to maintain a certain degree of com-
parability between observed and modelled values. The simulated water levels capture
the timing reasonably well but underestimate the water level amplitude. Simulated wa-
ter levels seem to be almost insensitive to both 1D channel network density and river
bathymetry. Inundation pattern, in turn, varies with both, 1D channel network density
and bathymetry.

6.2.1 Validation of discharge

6.2.1.1 1D network density

Regarding simulated and observed discharge at Obidos, the RMSE increases with an
increase in channel network density (Table 5.3). The hydrograph resulting from the
sparsest network (N10) hence fits the observed hydrograph better. KGE shows no
clear trend between the network densities in which the best fit is performed by network
N1 for all parameterization strategies. Overall, the high water flows of the Amazon
River are better captured by the schematizations than the low water flows during the
dry seasons in which discharges are overpredicted. The overprediction of low water
flows may be attributed to two reasons. First, DFM lack to simulate evaporation (and
infiltration) and hence is likely to overpredict discharge especially in the dry season in
which evaporation rate is highest (also noted in Hoch et al., 2017a). Second, water
on the floodplain is not able to fully drain back to the channel. The floodplain, in
fact, stays completely inundated during all times (Figure 6.1). This phenomenon is
also observed in the sensitivity analysis. Two years after the synthetic rainfall event,
the floodplain is still inundated (∼5 m water depth) indicating an extremely slow drainage.

A similar problem was encountered by Wilson et al. (2007) and Rudorff et al. (2014) as
a result of small misrepresentation in the DEM. Some parts of the floodplain become hy-
draulically disconnected from the river channels during low water resulting in a patchwork
of small lakes and channels that drain slowly back to the river (Wilson et al., 2007). In
the performed accuracy analysis, the floodplain during low water, however, is completely
flooded and thus a disconnectivity of the floodplain to the river channel can be excluded.
The problem may lie in a poor representation of the delta region in terms of topography
on the one hand, and river bifurcation on the other hand. The former is introduced by
irregularities in the SRTM DEM leading to over-elevated areas and hence hindering water
on the floodplain to flow out of the system. The Amazon delta consists of a complex net-
work of bifurcating river branches which allows the vast water volumes to be allocated to
multiple river streams. The complex bifurcating river system in the delta is in this study
represented by one single main stem which needs to drain the immense water volumes
occurring at the mouth of the Amazon River. Not accounting for river bifurcation in the
delta region possibly cause water to be dammed and hence affecting upstream areas as a
result of backwater effects, as noted in Yamazaki et al. (2014b). Yamazaki et al. (2014b)
found, although for the Mekong River basin, that around 50% of water is transferred from
the main stem to surrounding bifurcation channels in the delta. By not including bifurca-
tion channels, water levels in the main stem were overestimated and the hydrodynamics
of the wider river basin were affected due to backwater effects. These two factors may
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generate a bottle-neck effect whereby water is obstructed to flow out of the system. This
would explain the all-time inundated floodplain and the very slow drainage which in turn
is also indicated by extremely slow flow velocities of around 0.25 m s-1 during high water
in the Lower Amazon. Values of 0.5 - 1.0 m s-1 at low water and 2.0 m s-1 at high water
are stated in literature for the Lower Amazon (Sioli, 1984).

Figure 6.1: Floodplain water depths during high water (June 2006) and low water (De-
cember 2005) for the network with the highest channel storage (YP001). Shown here is
the floodplain of the Lower Amazon and the delta region.

As shown in Figure 5.8, the densest network (N001) leads to higher peak discharges
as well as higher discharges during low water. By comparing the entire simulated
hydrographs (i.e. high and low water), the sparsest network (N10) results consequently
in a better fit (indicated by the lower RMSE in Table 5.3) because low water flows are
less overpredicted than by the densest network (N001). This is in line with the findings
in Table 5.5. The sparsest network (N10) overpredict the low water flow less than the
denser networks and thus results in the best model performance regarding RMSE and
KGE. Since water is added from PCR directly to the 1D channel network in DFM, the
channel density has an impact on the allocation of the available water volumes in DFM.
During high water, denser 1D channel networks show a better agreement in both RMSE
and KGE (for PS GG, PS PP, and PS YP in Table 5.4) indicating that when water inputs
to DFM are largest (i.e. during high water) the channel density play an important role
in regulating river hydrodynamics.

The densest network (N001) produces in all parameterization strategies higher dis-
charges during both high and low water. In addition, the peak in the N001 arrives in
general a bit later (in the range of days). This could be attributed to the longer flow
paths and hence travel times in the densest network (N001). The four implemented net-
work extents receive diverse water volumes from PCR which are in total 4.59 x 1013 m3,
4.47 x 1013 m3, 4.36 x 1013 m3, and 4.34 x 1013 m3 in N001, N01, N1, and N10, re-
spectively. Expressed as percentage, network N1 receives 0.5%, network N01 3.0%, and
network N001 5.8% more water than network N10. Thus, as more water is supplied to
the densest network, also more water can be drained than by the other networks. Water
from PCR is supplied directly to the 1D network which means that in case of the sparsest
network (N10) water stays for a longer time in PCR as a larger spatial distance needs to
be covered until the coupled PCR-DFM cells are reached (explained in Chapter 4.3.2.1).
Consequently, due to the prolonged retention time in PCR, a higher amount of water may
be lost by evaporation and infiltration processes. This could explain the decreasing water
input into DFM when using a sparser channel network.
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6.2.1.2 River bathymetry

Similar to the 1D networks, the resultant hydrographs obtained from various river
bathymetries look near-identical. The RMSE in Table 5.3 indicates that the different river
bathymetries have a minor impact on the simulated discharge and that the 1D networks
have a greater influence. Contrary to this, obtained KGE implies that river bathymetry
affects the model outputs stronger than the 1D networks. Parameterization strategy PS
PP exhibits the lowest KGE (0.69) whereas both PS YG and PS YP result in the highest
KGE (0.77). Compared with the other parameterization strategies, PS PP leads in all net-
work extents to the lowest peak discharges. In fact, PS PP shows the smallest discharge
amplitude which is probably caused by larger inundation in upstream areas due to mini-
mized channel storage capacity. Discharge is highly dependent on the spatial and temporal
occurrence of precipitation, evaporation processes and runoff generation (Yamazaki et al.,
2012b). PCR accounts for these hydrological processes and plays thus an essential role
in regulating river discharge. River bathymetry defines weather river overflow may occur
(Getirana et al., 2012), but as a result of the hampered floodplain drainage of the Ama-
zon River (discussion in Chapter 6.2.1.1), river channel and floodplain are consistently
inundated. This, of course, diminishes the potential influence of river bathymetry on the
hydrologic response since channel storages are filled up and friction minimized. The flow
velocities at Obidos resulting from the bathymetry parameterizations differ only marginal
around 0.03 m s-1. PS YP and PS YG yield slightly higher flow velocities than PS PP
and PS GG. During high water, PS PP leads overall to the lowest RMSE (17,677 m3)
and the highest KGE (0.71). Parameterization strategies PS GG and PS YP perform best
at low water (Table 5.5). Regarding the model skill at high water, the effect of channel
morphology dominates over the 1D network. The influence of the 1D channel network on
the model output, however, dominates during low water.

6.2.2 Validation of water level

6.2.2.1 1D network density

Since simulated water levels at Obidos showed a significant overprediction compared with
observed stages, possibly due to elevation irregularities on the one hand and the hampered
floodplain drainage on the other hand, observed and simulated water levels were normal-
ized to ensure comparability in terms of amplitude and timing. Normalized water levels
simulated by all 1D networks underestimate the observed amplitude. The mean deviation
to the observed water levels varies between 1.0 m and 1.4 m (RMSE in Table 5.6). The
network densities result in very similar water levels and differ in the range of centimeters.
The temporal variation of water stages seems to be captured fairly well by the schemati-
zations. The sparsest network (N10) exhibits the largest water level amplitude among the
1D networks. A lower water level amplitude suggests that water is possibly attenuated as
a result of flooding in the upstream areas. This is reasonable due to two reasons. First,
water from PCR is supplied over a larger area in the densest network (N001) in which
flooding and hence attenuation may occur because of local variations in river bathymetry.
Second, the total water volume from PCR is basically added to one single river branch in
N10, although this is the main stem, which is likely to inundate the floodplain of the main
stem as well and probably with a greater extent. Since the floodplain of the Amazon River
is unable to drain, the increase in water depth on the floodplain may not cause such a
large attenuation effect in that friction becomes less pronounced with larger water depths.
The simulated water level amplitude would further be enlarged and hence closer to the
observed amplitude, if water on the floodplain is able to drain. As noted by Yamazaki
et al. (2012b), water level is strongly affected by local processes and characteristics such
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as channel bathymetry, river bed slope as well as infilling and draining of floodplains and
hence may be less sensitive to different 1D channel networks.

6.2.2.2 River bathymetry

Water levels are locally affected for instance by river bathymetry (Yamazaki et al., 2012b).
The normalized water stages, however, indicates an almost insensitive response towards
the varying river bathymetries. Not only bathymetry but also filling and drainage of the
floodplains play an important role in regulating water stages. Because the floodplain at
Obidos is not able to drain, this consequently leads to almost identical water levels. The
lowest RMSE (1.0 m) is obtained in all parameterization strategies (Table 5.6). On the
other end, PS YP generates the highest RMSE (1.4 m) in the densest network (N001).

6.2.3 Validation of inundation extent

6.2.3.1 1D network density

Network N01 results overall in the best model performance with respect to the critical
success rate between simulated and observed inundation extent. A higher hit rate is
scored by the densest network (N001) but this is accompanied by a higher false alarm
rate as well. More channels exist and hence the probability to hit an observed inundated
cell is maximized as well as the probability to erroneously predict flooding. PS YG in
the densest network (N001) generates both the highest hit rate (89.2%) and highest
false alarm rate (55.01%). With a decrease in channel density, the chances to wrongly
predict a flooded cell becomes smaller including the probability to miss an actual flooded
cell. PS YP in the sparsest network (N10) yields the lowest false alarm rate (40%).
This is because fewer areas are inundated and hence the chance to erroneously predict
inundation is minimal. The same schematization, however, produces also the lowest
hit rate (54.42%) and yields the lowest critical success rate (39.52%). Interestingly,
inundation occurs in the upstream part in the northern region (Negro River) of the
sparsest network (N10) even though there are no channels present in this upper region.
This is facilitated owing to the excessive water stages occurring in the entire Amazon River.

Water from PCR is supplied to DFM by dividing the available water volumes from
the coupled PCR cell over all available river branches (computational nodes) within the
specific PCR cell. A higher channel network density is likely to have more river branches
within a specific PCR cell and water volumes are thus collocated to more branches. If
only a few river branches exist within the PCR cell, all available water volumes will be
added to these few branches. For example, if all available water volumes are added to
one single river branch, inundation at this specific river branch is more likely to occur
as if the same water volumes are divided over multiple river branches. This in turn may
cause inundation in the other river branches but not in the specific river branch in this
example. Thus, the 1D channel density occurring within a PCR cell has an impact on
whether inundation occurs in a specific river branch because it defines how much water
will be added to this river branch (seen for instance in Figure 5.10 the the western part
of the study area in G001 and G01).

6.2.3.2 River bathymetry

Even though the critical success rate among the parameterization strategies in the respec-
tive river networks differs only by 2% or 3%, it is visible that due to variations in river
bathymetry different areas are flooded. The flood extents among the bathymetry inputs
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disagree most notably in the northern part and western part of the study area. Not only
river bathymetry but also the topography influences the flood extent since it describes the
flow paths over the floodplain. Further differences in flood extent due to river bathymetries
might emerge if a finer model resolution is used which provides more topographic details.
Based on the critical success rate, P01 shows the best model performance (46.38%).

6.2.3.3 Limitations

The coarse spatial model resolution (up to 5 km) limits the ability to simulate accurately
overbank flow as detailed topography is required which cannot be represented by such
coarse grid cells (Yamazaki et al., 2012b). The existing trade-off between spatial model
resolution and computational effort in large-scale model applications is well-known (Savage
et al., 2016). Implementing a finer spatial model resolution consequently leads to a higher
number of calculations and reduced model time steps (required to ensure numerical sta-
bility) and therefore to excessive computational costs especially for multi-year simulations
(Savage et al., 2016). Moreover, by not including river bifurcation in the delta region, the
overall model performances in terms of flood extent are further deteriorated. In DFM, the
entire river delta is flooded which leads to a substantial amount of erroneously flooded
cells which impacts the binary inundation measures false alarm rate (increased) and crit-
ical success rate (decreased). The comparison between the schematizations, however, is
not affected by this since the delta region is inundated in all schematizations. The used
benchmarking inundation data, having a native spatial resolution of 30 m (Landsat), was
upscaled to a cell size of 1 km using the nearest neighbour method. Simulated flooded
extent emanating from a much coarser resolution (up to 5 km) was downscaled to the
same raster resolution of 1 km in order to apply the binary inundation measures. The val-
idation data includes also lakes (e.g. at 1.5°South, 60°West) which also impact the scores
of the hit rate and critical success rate. The model performance in terms of inundation
extent cannot be compared with other studies as they are either on a smaller spatial model
resolution (∼100 m Rudorff et al., 2014), or are non-existent for the Amazon Basin.

6.2.4 Run times

The run times increase with the usage of higher channel network densities. This is because
more 1D computational nodes exist which expands the number of calculations. The run
times might be further influenced by more computationally expensive interaction between
the coupled 1D/2D cells in DFM (Hoch et al., 2017b). The model run with the densest
network (N001) lasts between 6 h and 10 h (i.e. 33.3% and 55.6%) longer than the runs
with the sparsest network (N10). Variations in model run times among the parameteriza-
tion strategies may emerge for instance through diverse flow velocities affecting computed
model time steps. In terms of validating discharge and water level results, the accuracy
analysis suggests using a sparse 1D network (e.g. N1, N10) in which model run times and
thus computational costs are reduced. Considering the multi-year simulation of 6 years
(including one spin-up year) resulting in run times of the order of a day, there may be
a potential to implement a finer model resolution than the one used in this study. To
minimize the increased computational effort as a result of a finer model resolution, the
simulation period could be shortened.

6.2.5 Limitations

So far, it remains ambiguous whether the overlapping part in DFM between 2D cell and
1D computational node has an impact on the drying and wetting process of the 2D cell
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and on water exchange between them as the cell areas are double counted. Once a 2D cell
in DFM is flooded it will remain in this state and no drying (0 m water depth) takes place.
According to Neal et al. (2012), floodplain connectivity enabled through small channels
improved simulation accuracy in terms of water level simulation, wave propagation speed,
and inundation extent. This cannot be tested in this study as floodplain is consistently
inundated which results in uniform water stages and inundation extents in the Amazon
River among the different 1D network densities.
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Conclusion

This study assessed how different 1D channel network densities and river bathymetries
originating from various parameterization strategies affect the outputs of hydrodynamic
modelling. The Amazon River was used as the test side. First, the model sensitivity in
terms of flood wave propagation and attenuation, and water level to the diverse schema-
tizations was analyzed. To this end, DFM run standalone and model internal boundary
conditions were set up in order to create a synthetic rainfall event. Second, DFM was spa-
tially coupled to PCR from which daily water volumes were supplied to the 1D network.
This was done by dividing available water volumes from a PCR cell over the computa-
tional nodes of the 1D network lying within the specific PCR cell. The period between
2005 and 2009 was subsequently simulated and the agreement between the model out-
comes and observations evaluated. In addition, run times due to the different 1D channel
network extents were compared to investigate the trade-off between computational costs
and output yield.

7.1 Model sensitivity

The sensitivity analysis was performed by using two different initial conditions in the
1D/2D model domain, that is wet and dry conditions. The relevance of the network extent
and the river bathymetry on the hydrologic response is likely to change with varying initial
conditions. The findings suggest an almost insensitive model output in which flood wave
propagation and attenuation, and water level differed only marginal with the implemented
1D network extents. This is probably due to the initial water on the 2D domain which
reduces the friction difference between channel and floodplain. The river bathymetries
were found to have a slightly larger impact. More water is transported downstreams if the
channel storage capacity is larger. The variation among the outputs resulting from the
bathymetry parameterizations becomes more pronounced with a higher channel network
density. This is because flow path lengths are larger and friction forces and local inunda-
tion thus are able to act on a greater area. Moreover, we found that the parameterization
strategies, PS YP and PS YG, leads to a larger flood peak attenuation than PS GG and
PS PP. This is possibly attributed to a higher friction influence within the channel as a re-
sult of a larger wetted perimeter and inundation due to local variation in river bathymetry.

Flood wave propagation and attenuation, and water level were found to be sensitive to
the 1D network density in case of dry floodplain conditions. Conveyed discharge with the
densest network increase by more than 50% when compared with the sparsest network.
With a higher 1D channel extent, more water is accumulated and conveyed downstreams
which results in a higher peak discharge as well. River channels enable water in topographic
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depressions to drain while water remains in these areas without the presence of channels. A
higher channel density results additionally in a faster hydrologic response in terms of flood
wave arrival time. In the densest network, the flood peak arrives one month earlier than in
the sparsest one. Since different water volumes are stored in the river channels due to dead
storages originating from the diverse river bathymetries, the resulting differences between
the hydrologic response cannot be attributed to friction and inundation processes only.
We expect, however, that especially for low water the friction influence within the channel
will take on greater significance. A single uniform friction coefficient for the channel and
floodplain was used in this study. Hence, the obtained results are bound to the used
values and may thoroughly change with other friction values. A higher or lower floodplain
friction coefficient may alter the model’s sensitivity regarding the hydrologic response.
Therefore, the obtained results cannot be translated directly to other river basins as the
friction coefficients of the floodplain but also from the channel certainly change.

7.2 Model accuracy

In the second part of this research, the agreement between simulations and observations in
terms of discharge, water level, and inundation extent was analyzed. The RMSE increases
with an increase in channel network density. No clear trend was given by the second
measure, KGE, in which network N1 performed best. The fact that the sparser networks
tend to produce a better agreement between observed and modelled can be attributed
to the better performance of the sparser networks during low water. Since DFM lack to
simulate evaporation (and infiltration), discharge is likely to be overpredicted during the
dry season. Compared to the densest network, the sparsest one leads to lower discharges
during both high and low water. Hence, for the overall performance of simulated
discharge, the densest network is consistently closer to the observed low water discharge
than the denser networks. This is confirmed by applying the measures RMSE and KGE
separately to only high and only low water discharges. The findings demonstrate that the
sparsest network performs best during low water whereas the denser networks tend to
show a better agreement during high water. The differences in the hydrographs among
the 1D networks may arise due to different water inputs from PCR as more water is
supplied to the densest network. The flow paths in PCR are longer in case of a sparse
network because the spatial distance to the coupled PCR-DFM cells becomes larger and
thus water is exposed to infiltration and evaporation in PCR for a longer time than when
PCR is coupled to the densest network. Hence more water is supplied to the densest
network and more water is able to drain through the network. In this sense, the hydro-
logic response in terms of discharge seems to be driven primarily by water input from PCR.

With respect to river bathymetry, the overall best performance regarding simulated
discharge is obtained by the parameterization strategies PS YG and PS YP (KGE 0.77).
During high water, however, PS PP performs best. This study shows that different
bathymetry parameterizations lead to different model outcomes. The most important
limitation of this study lies in the inability of water to drain from the floodplain and out of
the system. We speculate that misrepresentation of elevation emanating from the SRTM
DEM and the omission of river bifurcation in the Amazon delta might be responsible for
the hindered water drainage. This fact may well offset the possibly distinct occurring
model outputs due to the implemented schematizations and needs to be investigated in
future studies. Since the Amazon River is consistently flooded, river bathymetry plays
only a minor role where channel friction influence is hampered as a result of the large
water depths. This is in accordance with the simulated water levels at Obidos which
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indicated to be excessively high and needed to be normalized in order to compare them
with in-situ measured water levels. All schematizations capture the temporal variation in
water level fairly well but underestimate the water level amplitude as a possible result
of hampered floodplain drainage. The differences among the network extents and among
the river bathymetries are consequently marginal.

The validation of the flood extent demonstrated that both 1D network density and
river bathymetry change inundation patterns in the study area. Despite the fact that
all schematizations yield similar critical success rates ranging between 40% and 46%,
inundation varies spatially due to the differences in river bathymetry on the one hand
but also since different water volumes are transferred to the 1D network from PCR on
the other hand. Daily available water volumes from a PCR cell are divided over the
computational nodes of the 1D network in DFM. Hence, the channel density within a
PCR cell defines whether the available water volumes are split over a large number of
river branches or only a few. The amount of water added to a certain river branch has a
determining influence on whether overbank flow may occur.

The coarse model resolution used in this study presents another major limitation
especially in terms of simulating and validating inundation extent. A precise prediction
of flooded extent is not able on such a coarse scale since detailed topography is required
to accurately describe overland flow. As a result of the large grid cells, flooded area is
likely to be overestimated by the model.

The run times among the schematizations differ in the order of hours. Yet, the findings
indicate that a sparser network results in a better performance regarding overall discharge
simulations (low RMSE, high KGE) in which the run times are minimized as well. Con-
trarily, an intermediate network density is favourable in terms of inundation extent but
consequently causes an increase in computational costs. From a computational point of
view, there is a potential to implement a higher model resolution and therefore include
more topographic details which may improve model accuracy as a whole and may provide
more in-depth insights about the role of the 1D network extent and river bathymetry.
We found that for discharge, water level and inundation extent, different schematizations
result in the best model performance. Hence, further research is needed in this regard
in which more clarity could be established once water on the floodplain is able to drain
properly.
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Recommendations

The current results lead to the conclusion that the 1D network densities have an impact
on the hydrologic response. The 1D network extent should thus be represented as close
to reality as possible. In case of the coupled modelling framework, inundation can only
be modelled if river channels exist since water is added to them directly. This also evokes
the need for a realistic 1D channel network representation.

This study shows further that different bathymetry parameterizations have an
influence on the hydrodynamic modelling of floods. Therefore, the parameterization
strategy needs to be chosen carefully and should represent the actual river bathymetry as
accurately as possible. Regarding the simulation of discharge, water level and inundation
extent, different bathymetry schematizations result in the best model performance. The
analysis of the results revealed that there are certain issues which possibly limit the
examination of the effect various river bathymetries have on the resultant model outputs.
The same is true for the 1D river network extent as well. The floodplain of the Amazon
River is not able to drain during low water as a possible result of misrepresentation of
elevation values from the SRTM DEM and the omission of river bifurcation in the delta
region leading to an obstructed drainage. We recommend that further research should be
undertaken to tackle the encountered issues for instance by applying a river bifurcation
scheme in the river delta and to investigate whether these issues considerably obscure the
possibly occurring differences among the river bathymetries as well as 1D network extents.

Moreover, potential differences in the simulated inundation extent among the river
bathymetries might disappear with a coarse spatial model resolution such as used in this
study. By applying a finer spatial model resolution, more topographic details can be
included which in turn might reveal spatially varying inundation patters along the river
channels due to variations in river bathymetry. It would be thus beneficial to investigate
whether greater variations in the inundation extent may occur among the diverse river
bathymetries when a higher spatial model resolution is used. To this end, the multi-year
simulation used in this study could be shortened in order to reduce computational efforts.
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Falter, D., Dung, N., Vorogushyn, S., Schröter, K., Hundecha, Y., Kreibich, H., Apel, H.,
Theisselmann, F., and Merz, B. (2016). Continuous, large-scale simulation model for
flood risk assessments: proof-of-concept. Journal of Flood Risk Management, 9(1):3–21.

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M.,
Paller, M., Rodriguez, E., Roth, L., et al. (2007). The shuttle radar topography mission.
Reviews of geophysics, 45(2).

Finaud-Guyot, P., Delenne, C., Guinot, V., and Llovel, C. (2011). 1D–2D coupling for
river flow modeling. Comptes Rendus Mécanique, 339(4):226–234.
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Appendix A

Accounting for lakes in PS YG and PS YP (Chapter
4.2.4.2.2.3)

Table A.1 shows the original and adjusted (averaged) riverbed elevations in PS YG and
PS YP. Only sample points exhibiting river widths larger than 8,000 m were inspected
with OpenStreetMap and its riverbed elevations altered in case they represented lakes.

Table A.1: Original and adjusted riverbed elevation values (in meters) in PS YG and PS
YP.

lon lat riverbed elevations

PS YG PS YP

original adjusted original adjusted

-54.247 -2.301 -82.6 -36.1 -56.8 -42.2

-54.302 -2.351 -53.1 -36.1 -48.5 -42.2

-54.650 -2.372 -43.7 -28.5 -45.2 -38.3

-54.668 -2.250 -73.4 -28.5 -54.5 -38.3

-54.599 -2.149 -38.7 -28.5 -42.7 -38.3

-54.728 -2.150 -58.1 -28.5 -50.1 -38.3

-54.827 -2.105 -34.7 -28.5 -41.0 -38.3

-54.907 -2.075 -39.9 -28.5 -43.1 -38.3

-54.981 -2.126 -41.0 -28.5 -43.5 -38.3

-55.776 -1.936 -58.3 -28.8 -49.5 -38.3

-55.877 -1.913 -59.2 -28.8 -49.7 -38.3

-56.031 -1.826 -34.4 -17.3 -40.9 -31.1

-56.625 -2.257 -32.7 -10.6 -40.1 -22.8

-55.950 -1.957 -46.3 -28.8 -45.5 -38.3

-56.925 -2.634 -34.5 -21.8 -39.2 -33.3

-57.027 -2.625 -42.7 -21.8 -42.3 -33.3

-59.550 -1.823 6.3 28.4 -2.3 12.6

-59.643 -1.750 -17.7 28.4 -11.3 12.6

-59.739 -1.624 -12.1 28.4 -7.3 12.6

-59.676 -3.146 -36.2 -10.1 -38.0 -25.0

-62.131 -4.427 -22.9 -2.4 -29.7 -17.9

-55.250 -2.204 -33.2 -34.6 -40.4 -41.0

-55.376 -2.211 -51.2 -34.6 -47.2 -41.0

-55.526 -2.141 -29.8 -34.6 -38.8 -41.0

-55.650 -2.144 -35.2 -34.6 -41.2 -41.0
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Appendix B

Results - Accuracy Analysis (Chapter 5.3)

B.1 Discharge at Obidos (Chapter 5.3.1)

Figure B.1: Observed and simulated discharge at Obidos.
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B.2 Normalized water level at Obidos (Chapter 5.3.2)

Figure B.2: Observed and simulated normalized water levels at Obidos.
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