
UTRECHT UNIVERSITY

BACHELOR THESIS

Automatic Categorization of Electronic
Music Genres

Author:
Noah Dani KREBBERS

Student Number:
6215327

Supervisor:
Prof. dr. ir. Jan BROERSEN

Second reader:
Gijs WIJNHOLDS

A 7.5 ECTS thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in

Artificial Intelligence
at the

Faculty of Humanities

June 26, 2020

https://www.uu.nl/
https://www.uu.nl/medewerkers/JMBroersen
https://www.uu.nl/medewerkers/GJWijnholds
https://www.uu.nl/bachelors/kunstmatige-intelligentie
https://www.uu.nl/en/organisation/faculty-of-humanities

i

Abstract

Noah Dani KREBBERS

Automatic Categorization of Electronic Music Genres

In this research we have used three different machine learning approaches on
the automatic categorization of electronic music genres. We used Spotify for the col-
lection of the data set, together with their custom track features. The selection of
algorithms consists of K-nearest neighbors (KNN), Support vector machine (SVM)
and K-means. The comparison between the supervised methods (KNN & SVM)
was done using confusion matrices. We achieved an accuracy 70.1% and 75.5% re-
spectively. For the unsupervised method (K-means) the performance was measured
using the purity (49.7%) and Silhouette score (0.283). Principal Component Analysis
(PCA) was used to visualize the clustering of K-means. We compared this to the orig-
inal visualization of the data set to find differences and similarities. After this com-
parison, we came to the conclusion that unsupervised machine learning methods
find different ways of genre categorization compared to our current classification.
We can use these findings to improve our current ways of automatic genre classifi-
cation. In addition to it, noticeable differences in both supervised and unsupervised
categorization provide new grounds for more detailed comparison between certain
genres.

ii

Contents

Abstract i

1 Introduction 1
1.1 Research questions . 2
1.2 Academic relevance . 2
1.3 Overview . 3

2 Background 4
2.1 Genres . 4

2.1.1 Genres used for this research . 4
2.2 Supervised versus Unsupervised learning 5

3 Methodology 6
3.1 Data set . 6
3.2 Feature extraction . 6
3.3 Machine learning methods . 7

3.3.1 Supervised learning . 7
K-Nearest Neighbors . 7
Support Vector Machine . 8

3.3.2 Unsupervised learning . 9
K-Means . 9

3.4 Implementation . 9

4 Results 11
4.1 Supervised performance . 11

4.1.1 K-Nearest Neighbors . 11
4.1.2 Support Vector Machine . 12
4.1.3 Feature selection . 12

4.2 Unsupervised performance . 13
4.2.1 K-means . 13

5 Discussion 16
5.1 Conclusions . 17
5.2 Further research . 18

References 19

A Used playlists 21

B Feature data set sample 22

C Figures 23

1

Chapter 1

Introduction

The interdisciplinary science of music information retrieval (MIR) focuses on the un-
derstanding and practical uses of music data, including for example recommenda-
tion systems, instrument recognition and music creation. A particular field within
MIR aims at improving the automatic categorization of genres, which is the topic
of this research. At the annual Music Information Retrieval Evaluation eXchange
(MIREX)1, genre classification is one of the subjects which is largely discussed. Each
year, they hold multiple genre classification contests, which shows that this topic
is of great relevance in the world of MIR. Since this genre classification is an auto-
mated process, it relies heavily on machine learning models. The performance of
such a model relies on the given input data. That, in combination with the massive
amount of different kinds of genres, results in classifiers which are mostly limited to
a certain subset of genres.

Music genre categorization is a way to differentiate and group songs, or on a
larger scale albums and artists. However, the way we decide what song belongs to
what genre is not always clear (Scaringella, Zoia, and Mlynek, 2006). Oftentimes
songs could fit in multiple genres, which adds another layer of difficulty to auto-
matic categorization. An additional way genre categorization is troublesome, is be-
cause the classification of a song is not always based on the auditory features. In
those cases, genres are defined by certain time periods, such as baroque music for
example, or by the culture of the musicians who created it (Mörchen et al., 2005).

To cope with the ever growing amount of songs, it is almost a necessity to have
automatic systems for genre categorization, since these machines will have a more
objective view. With automatic systems we might open doors which lead to a better
understanding of our own ways of categorization, and perhaps find different ways
to classify music. Therefore, automatic genre categorization is an interesting scien-
tific research field.

A lot of research has been conducted on this topic. Here, the variance mostly
lies within the used genres and the classification methods being used. Furthermore,
most research use a set of upper level genres, one example of this is a research that
used a classification between rock, classical and jazz (Deshpande, Singh, and Nam,
2001). Another example used a categorization between rock, classical and new wave
(Mostafa and Billor, 2009). Several studies found classifiers which could differenti-
ate well between multiple genres. Some studies even found recognition rates as
high as 86.7 % on three genre classification (Classical, Hip-hop and Rock) (Kim, Yun,
and Kim, 2015). Or even higher: 96% accuracy using neural networks on 4 genre
classification (Haggblade, Hong, and Kao, 2011). However, with the ever growing
collection of music, we are in need of more refined systems, which can distinguish
sub-genres within genres and more genres at a time. This opens a whole new world
for research, waiting to be explored.

1MIREX The annual exchange for music information retrieval enthusiasts.

https://www.music-ir.org/mirex/wiki/MIREX_HOME

Chapter 1. Introduction 2

1.1 Research questions

A particular genre which holds many sub-genres, is electronic music. This type of
music is defined by its usage of mostly electronic instruments. The several sub-
genres within electronic music however, are often distinguished from one another
by their signature sounds, tempo and type of beat.

Since most genre categorization research has been done on distinctive genres,
such as rock, classical and jazz, more intertwined genres remain to be explored for
scientific research. Electronic music has a substantial amount of sub-genres, each in
relatively close relation to each other, making it an excellent candidate for research
in sub-genre categorization. By using machine learning methods, we try to find out
whether these sometimes subtle differences could be distinguished automatically
and also provide a reliable solution for automatic categorization within this genre.
In addition, this research differentiates itself from related work by attempting to
automatically categorize a larger set of genres. Therefore the main research question
that we would like to answer is:

How do different machine learning approaches compare with each other,
regarding the automatic categorization of electronic music genres?

Within machine learning there is a distinction between supervised and unsuper-
vised methods, which we will explain in 2.2. As we are using methods of both of
these categories, it would be interesting to find out whether there are significant
differences between these methods. Unsupervised methods could provide us with
new ways to classify music, since it produces a categorization completely on its own.
Hence, interesting sub questions that we would like to answer are:

How do supervised genre categorization methods differ
from unsupervised genre categorization methods?

and

Do unsupervised machine learning methods find
new ways of classifying electronic music?

1.2 Academic relevance

By comparing the results of the different machine learning techniques, we can gain
more understanding of the compatibility of certain approaches. Not only in the dis-
cipline of genre classification, but also in the wider sense of machine learning. This
will be useful for further research, especially for optimizing genre classification sys-
tems.

Another interesting part of this study, is that since we are using unsupervised
methods as well, we might find other ways in which genres are classified. This
could potentially provide new insight in our current ways genre classification and
perhaps makes us reconsider the way we define genres.

This research also broadens the perspective of genre classification within the sci-
entific field of music information retrieval. By exploring more and more sub-genres
we could create more unified categorization systems. These systems could also be
of use in music generation, which is another field within MIR and is closely related.

Chapter 1. Introduction 3

1.3 Overview

In the next chapter we first elaborate on the the concept of genres. Followed by
the sub-genres of electronic music that have been chosen for this research and their
characteristics. Apart from the different genres we will also talk about the differences
between supervised and unsupervised machine learning 2.

Next we discuss the data set that has been used for this research, followed by
the feature extraction method. In this chapter a detailed explanation is given of
the machine learning methods that have been used in this project. And finally the
implementation of the algorithms is discussed 3.

The results of the experiment will be given in chapter four, where each of the
machine learning methods are analyzed independently 4.

In chapter five we first discuss the results in respect to each other. Thereafter,
answers to the research questions and the implications of this research are discussed.
And we finish this research by discussing the possibilities for future research 5.

4

Chapter 2

Background

2.1 Genres

It is no secret that music is embedded in our everyday life, we listen to it while
traveling, doing chores, studying and going to live performances (Sloboda, Lamont,
and Greasley, 2009), just to name a few examples. Even though genres are extremely
useful for the distinction of music themes, getting clear definitions of them seems to
be quiet hard. Not surprisingly, because we essentially have to translate from one
sense to another. What makes it even harder, is that music is not only a stimulus for
our ears, it is connected to our emotions as well (North, Hargreaves, and Hargreaves,
2004; Shifriss, Bodner, and Palgi, 2015). Thus, the following descriptions only barely
grasp what these genres truly hold. Nonetheless, they do provide a way to distinct
genres from one another.

2.1.1 Genres used for this research

In total, nine different sub-genres of electronic music are used. The selection of
these genres is mostly based on the magnitude of the genres, the popularity and
the amount of genres within these sub-genres.

Disco is a genre that emerged in the nightlife scene of the 1970s, with influences
of soul and funk. It has a lively and positive feel to it, which stimulates dancing. 4/4
beats and groovy bass lines are highly present in this genre.

Drum and Bass is characterized by its break-beat rhythm with a focus on the
bass and sub-bass lines, with an energetic feel to it. The general tempo lies in the
higher range of around 165 to 185 beats per minute.

Dubstep is somewhat related to drum and bass regarding the emphasis on bass-
lines. The rhythm however, is generally more of a half-step tempo. A large part of
dubstep is the wobble bass, where a bass note is extended in a rhythmic fashion.

Downtempo is more or less a mixture of different genres (soul, ambient, jazz,
etc.). While there is an emphasis on the beat, it’s not as insistent as trance. The overall
mood is mellow and relaxed. A mix between acoustic and electric instruments is
also typical for this genre. As the name suggests, the tempo is on the lower side,
compared to other genres.

Hardcore is characterized by its cold and minimalist sounds, with powerful and
oftentimes aggressive constant beats. With tempos from around 160 to 200 bpm and
up, it is one of the faster types of genres.

House is a very broad genre within electronic music with lots of sub-genres. In
essence, it’s characterized by repetitive 4/4 rhythms with off-beat hi-hats, typically
between 115 and 130 bpm, making it a very dance-able genre.

Chapter 2. Background 5

Techno is a genre with long and repetitive songs, between 120 and 140 bpm.
Typically, it uses harsh mechanical beats at its base, accompanied with repetitive
simple melodies. Usually, the beat remains audible trough out the song, making the
sections within a song more overlapping.

Trance music has melodic and repetitive phrases, typically between 120 and 140
bpm. It focuses on the build-up, having beat-less sections and then slowly gaining
more depth. Because of this, the tracks are often on the longer end of the timescale.

Trap is a genre which is a combination of hip-hop and dance music. Hi-hat
triplets are present in the majority of these kinds of songs, together with loud low-
end kicks. The tempo is more on the lower side of the spectrum, making it a more
relaxing type of genre.

2.2 Supervised versus Unsupervised learning

Machine learning is a well-known concept within Artificial Intelligence. Over the
last two decades, machine learning has developed into a wide-spread, commercially
available tool, for both research and other uses (Jordan and Mitchell, 2015). The
main distinction between the algorithms used in this research is whether it is a su-
pervised or unsupervised machine learning algorithm. Both have their strengths
and weaknesses, making it interesting to explore the differences and similarities.

Supervised algorithms have labeled data, which is used for the verification of the
algorithm’s performance (Bhavsar and Ganatra, 2012). An advantage of this, is that
the models can make classifications using the input data and their respective labels,
often resulting in better performance. An issue however, is that real-world problems
do not always have labeled data available.

For these supervised algorithms, we need to split our existing data set if we want
to determine the classifying power. One part of the set will be used of the actual
training of the model, while the other part is used for measuring the performance
of the model. This performance measure can be done by comparing the the model’s
labels to the actual labels of the input. This is a very simple process since the labels
are already at hand.

Unsupervised algorithms on the other hand, do not require labeling for the de-
velopment of the model. The most commonly used unsupervised algorithms rely
on clustering techniques. The goal of an unsupervised clustering method is to dis-
cover natural groupings within a set of points or objects (Jain, 2010). Finding clusters
might not be that hard when we work in a 3-dimensional space, working in consid-
erably higher dimensions calls for sophisticated methods.

Clustering algorithms can be divided into hard- and soft margin methods (Mc-
Gregor et al., 2004). Hard clustering algorithms categorize data points to only one
cluster, while soft clustering methods can assign data points to multiple groups.
The clustering methods of both of these types can be used on data sets with large
amounts of dimensions. Though, the soft-margin clustering methods are more flex-
ible and might provide more logical clustering.

6

Chapter 3

Methodology

3.1 Data set

For this research, no suitable data set was already openly available. Therefore, we
created a data set specifically for this project with the help of Spotify. By combining
numerous playlists, made by users and Spotify themselves, we were able to create
a labeled data set which we could expand when needed. See Appendix A for the
complete list of playlists used.

Initially a set of around 150 songs per genre was chosen, which turned out to be
too little after initial results. Ultimately we gathered a set of 300 songs per genre. By
distributing the data evenly, we hoped on creating machine learning algorithms that
were less prone to uneven classification.

The selection of the playlists used for the data set is based on the title of the
playlist and the amount of followers the list has. By using this selection criteria, we
can assume that the data is mostly labeled correctly. However, we are aware that the
labeling might not be 100 percent correct. The human-made playlists might contain
songs from different genres than what the playlist is intended for.

Spotify already has song features available for development and research pur-
poses1. By requesting this for all the songs from the playlists we were able to gen-
erate a data set of our own, in a fairly reasonable amount of time. This process of
feature extraction would have definitely taken more time, if we were to create a data
set where we had to manually gather tracks and their features.

3.2 Feature extraction

Using Spotify’s developer tools we can extract song features easily by simply re-
questing song features online. On the upside, it saves us a lot of time regarding the
assembly of the data set. Features are directly available, instead of analyzing all of
the songs in the data set, which would take a lot of time. Another positive note, is
that Spotify provides almost perfectly clean data. The only thing we need to correct,
is that the beats per minute of a song is halved, sometimes.

On the downside, by using Spotify’s self-made features, we are limiting our-
selves to features that are not available to everyone. That is because you need per-
mission from Spotify to make use of those features. Though, we can assume that one
of the largest music streaming services in the world, has carefully crafted the algo-
rithms for these features, probably resulting in better performing machine learning
models.

1Spotify provides special development/research tools on request

https://developer.spotify.com/

Chapter 3. Methodology 7

Spotify provides both objective and subjective features (Spotify, 2020). Some of
the objective features however, might not be useful for our research, because they
have little meaning for genres and have low variance. The available objective fea-
tures are as follows:

Duration (ms) Duration in milliseconds
Key Estimated overall key
Mode Indicates modality (major or minor)
Time signature Estimation of how many beats are in a bar
Tempo Overall estimated tempo of a track in beats per minute

Features such as the key and mode are most likely not really useful, because there
is very little distinction within these features. The key of a song is represented as an
integer between 0 and 11 and the mode is represented as 1 (major) or 0 (minor). Be-
cause of this low variance, and the high number of genres, we expect that the impact
of these features will be small. Though, we will initially be using these features for
the models.

The following features are made by Spotify, and unfortunately it is not known
how these features work exactly. Nevertheless, they have been crafted for data anal-
ysis and most of them already have normalized values (floating point numbers be-
tween 0 and 1).

Acousticness Confidence measure whether a track is acoustic or not
Danceability Describes how suitable a track is for dancing
Energy Perceptual measure for intensity and activity, perceptual features to this

include dynamic range, loudness and timbre
Instrumentalness Predicts whether a song does not contain vocals
Liveness Detects presence of an audience
Loudness Overall loudness of a track in decibels
Speechiness Detects presence of spoken words, mostly used to distinguish talk-

shows/podcasts from songs
Valence Describing the musical positiveness (high valence indicates positive and

happy songs, while low valence indicates negativity)

Initially, all mentioned features will be used for the models. During training
however, we found that certain features were of negative impact for the perfor-
mance. These features were therefore removed, this will be discussed in 4.1.3. See
Appendix B for a sample of the feature data set.

3.3 Machine learning methods

3.3.1 Supervised learning

K-Nearest Neighbors

The K-nearest neighbors algorithm uses instance-based learning where the gener-
alization process is delayed until classification is performed (Kotsiantis, Zaharakis,
and Pintelas, 2007). These type of algorithms require less computation time in the
training phase than eager-learning algorithms, but more time during the classifica-
tion stage.

In principle, the idea behind this algorithm is very simple. Given an input, we
look for the k nearest already identified input(s), and classify it as such. To determine

Chapter 3. Methodology 8

which neighbor is most nearby, commonly the Euclidean distance is used between
the test and training samples (Peterson, 2009).

The distance is calculated as follows. We define xi as an input sample with p
features. The input sample will then be: (xi1, xi2, ..., xip). The total number of input
values is n (i = 1, 2, ..., n) and the total number of features is p (j = 1, 2, ..., n). The
distance between two points xi and xk is then defined as:

d(xi, xk) =
√
(xi1, xk1))2 + (xi2, xk2))2 + ... + (xip, xkp))2

A drawback of the nearest neighbor approach, is when the class distribution is
skewed, the algorithm tends to classify more input as the more represented class
(Coomans and Massart, 1982). However, since we chose to use an evenly distributed
data set, we were able to avoid this problem.

Support Vector Machine

Support vector machine can be used for both regression and classification tasks.
While regression is about predicting a quantity, classification is about predicting a
label. Since we are trying to find labels for our inputs, we will be using SVM for clas-
sification. The main goal of this machine learning technique is to find hyperplanes
in a d-dimensional space that distinctly classify data points, where d is the number
of features being used. Commonly, there are multiple hyperplanes available that
separate classes, SVM works by searching for the maximum margin for these hyper-
planes. In other words, we want to define our hyperplanes with maximum distance
to the separating classes. By defining these margins, we can classify new data ac-
cording to on which side of the hyperplane the new point is (Gandhi, 2018). The
data points on which the margins rely are called support vectors, hence the name of
the algorithm.

For this research we use a linear SVM using soft-margins, to counteract for the
probably not linearly separable data being used, caused by errors in the data set. If
we were to use hard-margins, the classification would then fail. Soft-margin SVMs
use hinge loss functions to maximize the margins. The hinge loss function is defined
as:

c(x, y, f (x)) = (1− y ∗ f (x))+

If both the predicted label f (x) and the actual label y are of the same value,
then the cost function is equal to zero, since f (x) and y are either 1 or 0. This is
because originally the Support vector machine is a binary classifier, but can be used
as multi-class classifier by solving individual "one-vs-many" problems. After adding
a regularization parameter to balance the margin maximization and loss, the loss
function is as follows (Gandhi, 2018):

minwλ ‖w‖2 +
n

∑
i=1

(1− yi 〈xi, w〉)+

Updating the weights depends on whether the classification of a point is correct.
When no mistake is made, only the regularization parameter is used for updating:

w = w− α ∗ (2λw)

Chapter 3. Methodology 9

When we do make a mistake however, the weights are updated by including the
loss with the regularization parameter:

w = w + α ∗ (yi ∗ xi − 2λw)

Compared to KNN this machine learning model is more complex, although it is
more robust regarding high number of features (Kotsiantis, Zaharakis, and Pintelas,
2007). However, since we are using a rather small set of features, this advantage will
most likely not be seen in our results.

3.3.2 Unsupervised learning

K-Means

We define our data in the same fashion as in K-NN. This results in our set X = {xi}
where i = (1, 2, ..., n) for all n data points. Where we want to group our set in K
clusters C = (1, 2..., K). With the K-means algorithm the goal is to create clusters
where the error between the mean of a cluster and all the points within the cluster is
as little as possible (Jain, 2010). We define µk as the mean of cluster Ck. The squared
error of a cluster is then defined as:

J(Ck) = ∑
xi∈Ck

‖xi − µk‖2

By minimizing the the squared error for all the clusters we get the objective function
of the algorithm:

J(Ck) =
K

∑
k=1

∑
xi∈Ck

‖xi − µk‖2

The squared error uses the distance between a certain point and the mean of
the corresponding cluster. This distance can be measured in multiple ways. The
most common way for this is by using the Euclidean distance, as we have used
in K-nearest neighbors. Even though the Euclidean distance is used in both these
methods, it unfortunately does not provide a direct way of comparison between
them, since the distance is used for different purposes in these different methods.

Since the minimization of this function has proven to be an NP-hard problem
(Drineas et al., 2004), the algorithm converges to a local minimum. Therefore, the
outcome of the algorithm is not deterministic, but will be slightly different each time
we run it.

3.4 Implementation

Before implementing the machine learning methods, we first gathered our data set.
By using the Spotify tools for developers mentioned earlier, and combining this with
the Spotipy python library (Lamere, 2014) we created a data set which could be
extended easily by simply adding more Spotify playlist IDs.

Next, some analysis of the data set was done using R. Here we noticed that
the tempo of the tracks was sometimes off. An explanation for this, is that Spo-
tify assigns these features automatically. By doing so, the automatic system wrongly
halved or doubled tempos, resulting in skewed representations for the genres. We
corrected this by doubling/halving the tempo below/above a certain threshold. The
rest of the data set was left as it was. Thanks to Spotify’s sophisticated system, no

Chapter 3. Methodology 10

missing data was found and the data set was easily applicable for machine learning
purposes.

For the actual different machine learning algorithms, we started off by convert-
ing the data set to a pandas2 data frame. For the different machine learning algo-
rithms we used implementations provided by the Scikit-learn library (Pedregosa et
al., 2011). The data was split into train and test sub-sets for the supervised methods
and was scaled for all algorithms.

After testing we found that most of the parameters of the different methods were
best kept to their default values, provided by Scikit-learn. We did use certain al-
terations that improved the performance. For K-nearest neighbors the amount of
neighbors was set to 9. For Support vector machine we used a linear kernel with
regularization parameter of 8.1. For K-means we used 9 clusters and the number
of time the k-means algorithm will be run with different centroid seeds, was set to
1000, to find a near optimal convergence.

Even though the inclusion of the parameters might come across as unnecessary,
we provide this to make the research as open as possible and in support of the Open
Science3 initiative of Utrecht University.

The representation of the supervised methods performance was done using con-
fusion matrices, the formatting of these matrices was done using the Seaborn4 li-
brary. For the unsupervised method we used Python’s plotting library to visualize
the data, after using Principal Component Analysis (Jolliffe and Cadima, 2016) on
the data, to reduce the amount of dimensions to a more easily interpretable fashion.
PCA translates high-dimension data sets to data sets of lower dimensions, making
it possible to visualize a d-dimensional set as a 2-dimensional graph.

2Pandas Python data analysis library
3Open Science Utrecht University’s initiative to promote open and reliable research
4Seaborn Statistical data visualization

https://pandas.pydata.org/
https://www.uu.nl/en/research/open-science
https://seaborn.pydata.org/generated/seaborn.heatmap.html

11

Chapter 4

Results

4.1 Supervised performance

4.1.1 K-Nearest Neighbors

When we initially ran the K-Nearest Neighbors algorithm with the standard param-
eters, the results were promising, given we achieved an accuracy 67.7%. By altering
the amount of neighbors that the algorithm uses, and removing certain features (see
4.1.3), we were able to achieve an accuracy of 70.1%. We used confusion matrices to
visualize the results for the supervised algorithms, making it easy to identify notable
mix-ups.

FIGURE 4.1: Confusion matrix for K-Nearest Neighbors

As seen in figure 4.1 (See Appendix C for enlarged versions of the figures), over-
all the algorithm performs quite well for all genres. There are some genre misclassi-
fications which are notable. There seems to be a large part of trap which is identified
as dubstep. Which is quite remarkable, since by ear these genres are very different.
However, since there is also a part dubstep which is wrongly identified as trap, it is
an indication to further examine these genres.

Another mix-up between genres is notable between hardcore - drum and bass.
As seen in the figure, this mix-up happens both ways. Which shows that these genres
do have similarities according to the features that we used.

Chapter 4. Results 12

Furthermore we can see some smaller misidentifications such as between disco -
house, dubstep - trap and trance - house. Since these are one way misinterpretations,
they draw less attention for further investigation.

4.1.2 Support Vector Machine

The support vector machine algorithm performed better than the KNN algorithm,
with an initial accuracy of 74.5%. After some alterations an accuracy 75.5% was
achieved. For the sake of time preservation we only used linear classification, i.e.
no polynomial functions were applied. The increase in accuracy was achieved by
adjusting the penalty parameter and performing feature selection (see 4.1.3). The
results led us to the following confusion matrix.

FIGURE 4.2: Confusion matrix for Support Vector Machine

If we compare both the confusion matrices, we can see that they are quite similar.
However, the most noticeable difference is the misidentification of trance which is
identified as trap. Another interesting difference is that the drum and bass - hardcore
mix-up is not as prevalent as in the KNN matrix.

We do see however, that the amount of trap wrongly identified as dubstep, is
still highly present. Therefore, it might be worth looking into the similarities and
differences between these genres.

4.1.3 Feature selection

After obtaining the initial results from both classification algorithms, we decided to
perform a feature selection method to increase the scores and remove unnecessary
features. Feature selection provides a way to select the best contributing features,
and remove the features that are irrelevant and negatively impacting the accuracy.
Though results may improve using feature selection, it is not guaranteed that the
performance will be better. This procedure was done using the SelectKBest algorithm
provided by Scikit-learn. The algorithm uses ANOVA F-values to determine which
features have the most impact, and selects the K best features.

Chapter 4. Results 13

By selecting the desired number of features, we ran the algorithms multiple
times, in order to determine the optimal amount of features. In the following table
we can see the accuracy of both KNN and SVM classifiers on the amount of features
used.

TABLE 4.1: The effects of the amount of features(K) on the accuracy
of the classifying algorithms (SVM & KNN)

K (n) SVM (%) KNN (%)

13 75.8 64.0
12 75.5 63.7
11 75.4 64.1
10 75.8 67.1
9 75.5 69.3
8 74.5 67.8
7 72.7 69.3
6 71.5 69.6
5 70.8 70.8
4 67.5 66.8
3 64.7 65.6
2 62.9 65.9

By choosing the amount of features according to the best combined result, the
optimal value for K seemed to be 9. The features removed by the algorithm were
liveness and all of the categorical variables: key, mode and time signature. We have
chosen for this best combined result, in order to provide an optimal feature set for
the unsupervised algorithm.

4.2 Unsupervised performance

4.2.1 K-means

For the unsupervised method we used a different technique to determine the accu-
racy, since we are clustering instead of classifying. First, let us visualize the data set
by using Principal Component Analysis to reduce the amount of features to a two-
dimensional graph. During this process however, we lose our original variables,
which are replaced by newly created functions. Hence the axes of the plot are not
clearly defined.

Chapter 4. Results 14

FIGURE 4.3: Visualization of data set using PCA

It seems that some genres do in fact have some sort of cluster formation. How-
ever, this is not the case for all genres. For example, drum and bass is spread across
the graph.

By starting with the same feature set used in the the supervised methods, we
hoped to maximize our results. By comparing the purity and the Silhouette score,
we determined the model’s performance.

The purity score is defined as the percentage correctly classified data (Christo-
pher and Schütze, 2008). This was possible for us, since we were using labeled data.
The Silhouette score defines how well the clusters are defined in a range from -1 to
1. Scores below zero indicate wrong type of clustering. The closer to one, the better
the seperation between clusters.

We further increased results by performing PCA on the unsupervised data set.
Since PCA uses dimensionality reduction, it can be useful for increasing perfor-
mance, apart from it being able to visualize data. By reducing the amount of features
to 5 using PCA, we were able to get a purity of 49.7 % and a Silhouette score of .283.
This resulted in the following visualization.

Chapter 4. Results 15

FIGURE 4.4: Visualization of data after clustering

Since the clustering algorithm does not define the genres, we cannot create a
legend for this plot. Disregarding the color however, we can directly compare the
two figures since the data points in the two figures are the same.

After the initial clustering using the desired amount of genres. We compared
different amounts of genres to their respective scores, in hope of finding a better
way to categorize genres.

TABLE 4.2: The effects of the amount of clusters(C) on the purity and
Silhouette score

C (n) Pur. (%) Sil.

14 54.3 0.229
13 53.6 0.226
12 53.0 0.260
11 51.2 0.234
10 50.3 0.253
9 49.7 0.283
8 48.5 0.258
7 48.7 0.278
6 44.3 0.286
5 38.4 0.318
4 38.4 0.337

Using the table, we can see an increase in purity if we were to use more different
genres, but this would be of negative impact for the Silhouette score. Nevertheless,
The Silhouette scores are all fairly similar, which can be explained by the spread of
the genres in the data set before K-means has been applied.

16

Chapter 5

Discussion

The results of our research are very promising. The fairly high scores using the
supervised machine learning algorithms, indicate that the data set and features were
usable for this project, even though some of the features were better off removed. It
gave us a good indication whether the unsupervised method results are accurate.

The confusion matrices provided insight in the supervised classification algo-
rithms. Some notable anomalies such as the trap - dubstep misclassification and the
drum and bass - hardcore misclassification might be worth looking into. It might be
that these genres have more in common than we think. Nevertheless, we are aware
of the fact that the data set is probably not perfectly categorized, which might also
be a cause for genre mix-ups.

Using the feature selection method, we found that certain track features were
negatively impacting the performance of the models. Liveness and the categorical
variables key, mode and time signature do not seem to be of influence on the type of
genre, meaning that there is no relation between the distribution of these values and
the genres.

The clustering method using K-means resulted in an interesting graph, looking
vastly different than the initial PCA reduced visualization. Since it is a clustering
algorithm, we can not use the model to classify what cluster belongs to what genre.
However, a side-by-side comparison of the two graphs gives some interesting cluster
information.

The first point of interest is that the trance genre (lower left corner) is very well
defined. Being almost totally similar in both graphs. The same goes for downtempo
and techno, in the upper right corner. The same is true for the upper-left corner,
which takes up a cluster similar to the disco cluster in the real graph. Dubstep and
trap seem to be split in a different fashion by K-means. This different categorization
found by K-means might be interesting for further exploration, to find out what the
similarities and differences are exactly. Interestingly, more evenly spread genres (in
the real representation), such as house and hardcore, are hardly noticeable in the
K-means graph.

The initial representation of the data set using PCA showed that the genres were
greatly intertwined, which shows that the electronic music genres used are closely
related to each other. That comes to no surprise, since they are all sub-genres of an
overarching genre. Therefore, the results obtained by all three methods are to our
satisfaction, though we hoped the supervised methods would obtain higher results.

Some annotations about our own research are the following. First, the labeling
of the tracks in the data set is most likely not 100 percent correct. Even though the
playlists used for the data set were carefully selected, some mix-ups were almost
inevitable. Especially because of the close relations between the genres used for the
research. Secondly, the features developed by Spotify were not completely accurate.
We noticed some errors in the assignment of tempo to the tracks. The automated

Chapter 5. Discussion 17

process sometimes wrongly halved our doubled track tempos, resulting in skewed
values. Though we have tried to rectify this, it is not certain that this process worked
perfectly. In addition to this, different undetected errors might also be present, since
the data set’s validity was not manually checked for the entire data set.

Since this field of research has been closely studied, it might be interesting to
compare our results to similar research. However, because we used Spotify for fea-
ture extraction and a custom data set, comparison might not be totally significant.
Nevertheless, our accuracy shows great resemblance to earlier research, mentioned
in the introduction. This suggests that the feature set provided by Spotify, is of high
value for genre classification.

This research contributes to the development of machine learning methods, by
showing where the strengths and weaknesses of certain methods are. We can see
that the supervised methods are useful for correctly classifying genres to our current
standards. Unsupervised methods might not be as useful for this. It might however,
show us to think in different ways to classify our music. In addition, this research
contributes to the greater, more specified field of genre classification, by using genres
that were not thoroughly examined.

5.1 Conclusions

With the results and the discussion, we were able to answer our research questions.

How do different machine learning approaches compare with each other,
regarding the automatic categorization of electronic music genres?

The supervised algorithms showed reasonable results in classifying the data set.
Support vector machine performed slightly better than K-Nearest neighbors, but
the results were fairly similar. K-means, on the unsupervised side, showed a purity
score noticeably lower than the performance of the supervised methods. This is not
a bad thing however, since this supports the hypothesis that unsupervised genres
use different ways of classification.

How do supervised genre categorization methods differ
from unsupervised genre categorization methods?

and

Do unsupervised machine learning methods find
new ways of classifying electronic music?

As mentioned above, there is a noticeable difference between the performance of
supervised and unsupervised machine learning methods regarding the classification
of the electronic music genres used in this research. As seen in 4.4, the clustering
is vastly different compared to 4.3, by attempting to create better defined borders
between the genres. As a result, the genres that we know, have been combined to
form new groups. We can conclude that unsupervised learning does provide new
ways of genre categorization.

The categorization is based on the features that we have used in this model, with
a different set of features we might find different clusterizations. We compared the
feature set, which was determined by the selection algorithm, to the initially found
feature set. We found that the subset provided better purity scores. Therefore, the
decision to use the subset for the unsupervised algorithm has paid off.

Chapter 5. Discussion 18

5.2 Further research

From here on, we can continue research on the comparison between supervised
and unsupervised machine learning algorithms, within the music industry. First,
it would be interesting to recreate this experiment, but with even more attention to
the data set. We acknowledge that this is a very time consuming project, though it
might be of great importance for the performance of the different algorithms.

Furthermore, we can continue research into two different directions. The first
being the alteration of the machine learning algorithms. Since there are more ma-
chine learning methods than we have used in this research, it would be interesting
to use different methods on both the supervised and unsupervised side. Secondly,
we could use the current algorithms on different types of genre sets. Of course we
can continue endlessly by combining different kinds of genres. What we have seen
in this research however, is that some genre combinations might be exceptionally in-
teresting to explore. We have seen that dubstep and trap are noticeably more mixed
up in the confusion matrices, as were drum and bass - hardcore. The clustering
method also showed us that dubstep and trap might be worth looking into, since
the method categorized this entirely different. Further investigation in these gen-
res might lead to similarities we have not yet considered. Maybe one day, genre
categorization could be an entirely automated process.

19

References

Bhavsar, Hetal and Amit Ganatra (2012). “A comparative study of training algo-
rithms for supervised machine learning”. In: International Journal of Soft Comput-
ing and Engineering (IJSCE) 2.4, pp. 2231–2307.

Christopher Manning, Prabhakar Raghavan and Hinrich Schütze (2008). Introduction
to Information Retrieval. Cambridge University Press.

Coomans, Danny and Désiré Luc Massart (1982). “Alternative k-nearest neighbour
rules in supervised pattern recognition: Part 1. k-Nearest neighbour classification
by using alternative voting rules”. In: Analytica Chimica Acta 136, pp. 15–27.

Deshpande, Hrishikesh, Rohit Singh, and Unjung Nam (2001). “Classification of mu-
sic signals in the visual domain”. In: Proceedings of the COST-G6 Conference on
Digital Audio Effects, pp. 1–4.

Drineas, Petros et al. (2004). “Clustering large graphs via the singular value decom-
position”. In: Machine learning 56.1-3, pp. 9–33.

Gandhi, Rohith (2018). Support Vector Machine — Introduction to Machine Learning Al-
gorithms. Accessed:2020-13-06. URL: https://towardsdatascience.com/support-
vector-machine-introduction-to-machine-learning-algorithms-934a444fca47.

Haggblade, Michael, Yang Hong, and Kenny Kao (2011). “Music genre classifica-
tion”. In: Department of Computer Science, Stanford University.

Jain, Anil K (2010). “Data clustering: 50 years beyond K-means”. In: Pattern recogni-
tion letters 31.8, pp. 651–666.

Jolliffe, Ian T and Jorge Cadima (2016). “Principal component analysis: a review and
recent developments”. In: Philosophical Transactions of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences 374.2065, p. 20150202.

Jordan, Michael I and Tom M Mitchell (2015). “Machine learning: Trends, perspec-
tives, and prospects”. In: Science 349.6245, pp. 255–260.

Kim, Kyuwon, Wonjin Yun, and Rick Kim (2015). Clustering Music by Genres Using
Supervised and Unsupervised Algorithms. Tech. rep. Technical report, Stanford Uni-
versity.

Kotsiantis, Sotiris B, I Zaharakis, and P Pintelas (2007). “Supervised machine learn-
ing: A review of classification techniques”. In: Emerging artificial intelligence appli-
cations in computer engineering 160, pp. 3–24.

Lamere, Paul (2014). Spotipy python package. Accessed:2020-14-06. URL: https : / /
spotipy.readthedocs.io/en/2.12.0/.

McGregor, Anthony et al. (2004). “Flow clustering using machine learning tech-
niques”. In: International workshop on passive and active network measurement. Springer,
pp. 205–214.

https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47
https://spotipy.readthedocs.io/en/2.12.0/
https://spotipy.readthedocs.io/en/2.12.0/

References 20

Mörchen, Fabian et al. (2005). MusicMiner: Visualizing timbre distances of music as to-
pographical maps. Univ.

Mostafa, Mohamed M and Nedret Billor (2009). “Recognition of western style mu-
sical genres using machine learning techniques”. In: Expert Systems with Applica-
tions 36.8, pp. 11378–11389.

North, Adrian C, David J Hargreaves, and Jon J Hargreaves (2004). “Uses of music
in everyday life”. In: Music Perception: An Interdisciplinary Journal 22.1, pp. 41–77.

Pedregosa, Fabian et al. (2011). “Scikit-learn: Machine learning in Python”. In: The
Journal of Machine Learning Research 12, pp. 2825–2830.

Peterson, Leif E. (2009). K-nearest neighbor. Accessed:2020-13-06. URL: http://scholarpedia.
org/article/K-nearest_neighbor.

Scaringella, Nicolas, Giorgio Zoia, and Daniel Mlynek (2006). “Automatic genre clas-
sification of music content: a survey”. In: IEEE Signal Processing Magazine 23.2,
pp. 133–141.

Shifriss, Roni, Ehud Bodner, and Yuval Palgi (2015). “When you’re down and trou-
bled: Views on the regulatory power of music”. In: Psychology of Music 43.6,
pp. 793–807.

Sloboda, JA, Alexandra Lamont, and Alinka Greasley (2009). “Choosing to hear mu-
sic”. In: The Oxford handbook of music psychology 1, pp. 431–440.

Spotify (2020). Get Audio Features for a Track. Accessed: 2020-26-05. URL: https://
developer.spotify.com/documentation/web-api/reference/tracks/get-
audio-features/.

http://scholarpedia.org/article/K-nearest_neighbor
http://scholarpedia.org/article/K-nearest_neighbor
https://developer.spotify.com/documentation/web-api/reference/tracks/get-audio-features/
https://developer.spotify.com/documentation/web-api/reference/tracks/get-audio-features/
https://developer.spotify.com/documentation/web-api/reference/tracks/get-audio-features/

21

Appendix A

Used playlists

ID Title Creator

0HdP9VAO6ydihgNgEN6Cp3 DISCO HITS 70s-80s-90s Alessio Tamburo de Bella
37i9dQZF1DX2GKumqRIZ7g Disco Fever Spotify
37i9dQZF1DXbS8bPVXXR2B Disco Hi-Life Spotify
37i9dQZF1DX1MUPbVKMgJE Disco Forever Spotify
3AtFItPTNrmxqREWOWZV6e Disco 70’s Hits Nobby Clarke
068WHS0zOWsqvn2uIBYb5D Drum and Bass 2020 Elon Musk
3gqEaRQUN0xYi9kHexWQpY DnB - Best drum and bass songs! Yung Fortnite God
0TNtOQpT4BP3F1bIMWAAPG DRUM AND BASS ReadyToFestival
37i9dQZF1DX5wDmLW735Yd Massive Drum & Bass Spotify
4oOZJEq1TBUti6PSouTo5M UKF Drum & Bass UKF
3ObJ6Qra3CkV0gNCRTtK0c Dubstep Bangers 2020 knivgaffel
37i9dQZF1DX4arVIN5Cg4U Dubstep Classics Spotify
37i9dQZF1DX5Q27plkaOQ3 Dubstep Don Spotify
5wNRJwSnBImUuZXJW1TiAj Dubstep 2020 Filtr Sweden
4oluc1u5nMoUItgaO48OxV Dubstep 2020 - UKF UKF
3JCd8rIuqDJQWo5AhTDq71 DUBSTEP dubstepgutterofficial
2d6sogVjwXrnxC0IAXFwcl Downtempo Deep Electronica Joanna Hengstebeck
37i9dQZF1DWWQp0YMTvpD3 Downtempo Beats Spotify
4JE6MxO5jXQAaeCEp1UR83 Downtempo Jo Hannes
1tey17jGZg2tp6woRxvolN HARDCORE 2020 d-ceptor
0tIJcuikyYauclNo6FeQAX MASTERS OF HARDCORE Art of Dance
2GEXzPeksIINQMTivWQ2el HARDCORE Masters of Hardcore
3dUZ038b8Wew9D2A9tVh1V Masters of Hardcore 2020 Simon Wyssen
37i9dQZF1DWXDvpUgU6QYl House is a Feeling Spotiy
2otQLmbi8QWHjDfq3eL0DC House Music 2020 Topsify
37i9dQZF1DXa8NOEUWPn9W Housewerk Spotify
46GbJCgS1j3YiWTfTs7kCy HOUSE CLASSICS (1992-2020) Wolfgang Wee
37i9dQZF1DX6J5NfMJS675 Techno Bunker Spotify
76TlgpqdBryXFAcrHmiGWH Techno Bangers Adam Heaton
2oz1zP2wII4W2bhNYfIUD1 Techno Tuesday otterkids
5XR0PF0thgGhoWy8Xw47p9 TECHNO 2020 No Mercy - Techno
5JyM6mqPEDLcToVHY5HlY4 TRANCE MUSIC 2020... UNKNOWN
260cw4PvjDjcWuCi5duiEf TRANCE CLASSICS (90s/2000) Wolfgang Wee
37i9dQZF1DXbtYAdenGE9U Trance Energy Spotify
78AFAJFvRzboZfEDnAkkFn Trance Anthems 90s-00s Shane Codd
2iTMQ36cvjhxgIYGv7uld5 Trance 100 - by Armada Music Armada Music
0NCspsyf0OS4BsPgGhkQXM Trap Nation Trap Nation
37i9dQZF1DX1OIMC8iDi74 Trap Mojito Spotify
5aPwKjwNHr6dnCejLcPTVx Trap Nation 1198177587
7Kk0KvfzcaX4QLtli1rIBK Trap City Trap City

22

Appendix B

Feature data set sample

23

Appendix C

Figures

FIGURE C.1: Confusion matrix for K-Nearest Neighbors

Appendix C. Figures 24

FIGURE C.2: Confusion matrix for Support Vector Machine

FIGURE C.3: Visualization of data set using PCA

Appendix C. Figures 25

FIGURE C.4: Visualization of data set after clustering

	Abstract
	Introduction
	Research questions
	Academic relevance
	Overview

	Background
	Genres
	Genres used for this research

	Supervised versus Unsupervised learning

	Methodology
	Data set
	Feature extraction
	Machine learning methods
	Supervised learning
	K-Nearest Neighbors
	Support Vector Machine

	Unsupervised learning
	K-Means

	Implementation

	Results
	Supervised performance
	K-Nearest Neighbors
	Support Vector Machine
	Feature selection

	Unsupervised performance
	K-means

	Discussion
	Conclusions
	Further research

	References
	Used playlists
	Feature data set sample
	Figures

