
Efficiency and Explainability of Support

Relations in Argumentation Frameworks

Zwierd Grotenhuis
Supervised by Henry Prakken

Artificial Intelligence
Department of Humanities

Utrecht University
z.grotenhuis@students.uu.nl

7.5 ECTS

June 22, 2020

Abstract

Discussions that happen daily in our lives can be formalized into ab-
stract frameworks that help us determine the dialectical status of the
arguments given in the discussion. This study aims to contribute to ongo-
ing research about different types of extensions to the abstract framework
introduced by Dung (1995). Specifically, it asks whether adding support
relations increases efficiency or explainability when determining its status
with relation to the old framework.
After making a program to automate the evaluation of such frameworks,
the results have indicated that there is no such increase. However, other
benefits may be gained by adding support relations or by researching dif-
ferent kinds of extensions to Dung’s framework. This is an interesting
topic for future research.

1

Contents

1 Introduction 3
1.1 Scientific Embedding . 3
1.2 Research Question . 4
1.3 Method . 4

2 Terminology 5
2.1 Argumentation Frameworks . 5
2.2 Support Relation . 5
2.3 Argument Game . 6

3 Labelling 7
3.1 Secondary attack . 7

4 Argument Game 7
4.1 Secondary attack . 7

5 Programming 8
5.1 Input . 8
5.2 Structure . 8
5.3 Output . 11

6 Results 12
6.1 Simplest . 12
6.2 Medium 1 . 13
6.3 Medium 2 . 14
6.4 Medium 3 . 15
6.5 Complex . 16

7 Conclusion 17
7.1 Efficiency . 17
7.2 Explainability . 18
7.3 Future research . 18

8 Literature 19

9 Appendix 20
9.1 Code Implementation . 20

2

1 Introduction

1.1 Scientific Embedding

Figure 1: four argumentation frameworks

To understand the research question
that this study aims to answer, some
background information is needed.
Dung (1995) studied the argumenta-
tion based inference mechanism we
humans use, and tried to come up
with ways to formalize this and imple-
ment that mechanism into comput-
ers. He came up with a very sim-
ple yet elegant way to display ar-
guments and their relation to each
other. He defined an abstract argu-
mentation framework as a pair of ar-
guments and the ‘defeat’ relation be-
tween them. In figure 1 (taken from Prakken, 2018), we can see some examples
of what this argumentation framework looks like. This argumentation frame-
work can then be extended by a labelling, where an argument is in if and only
if all arguments defeating it are out, and an argument is out if and only if it
is defeated by an argument that is in, as explained by Caminada (2006). This
labelling is a way to determine the status of all arguments in an argumentation
framework. If we are interested in the dialectical status of a single argument,
we can do so through argument games. These will be explained in chapter 2.3.
The advantage of using argument games to determine the status of an argument
is that the entire AAF does not need to be evaluated.

The reason we are studying this argumentation based inference mechanism in
AI is that it is considered a very natural way for us to formalize the way hu-
mans argue. With proper inference mechanisms it is easier to determine which
arguments are justified if it is not that clear at first sight.

Figure 2: example of
labelling

In the example in Figure 2 there are no other ways
to label according to our definition of in and out, but
as frameworks become increasingly complex, it turns
out that it is possible for frameworks to be labelled
in multiple ways. For our research, we are interested
in the grounded semantics. The grounded semantics
means we are looking to determine a labelling where
as few arguments are labelled in as possible, with re-
spect to the subargument relation. The nice thing
about grounded semantics is that there is always ex-
actly one labelling possible.

3

Since these frameworks can get quite large and complex, research has been done
to automatically determine the dialectical status of an argument by numerous
researchers, such as Vreeswijk (2003). The framework introduced by Dung has
also been extended by Cayrol and Lagasquie-Schie (2005). They introduced
notions of support relations (bipolar argumentation frameworks) between argu-
ments in abstract argumentation.

1.2 Research Question

During this study we will be trying to find out if this extension of the basic argu-
mentation framework will lead to any new insights in labelling. More specifically,
the extension of basic argumentation frameworks might lead to more efficiency
in evaluation, as the algorithm might discard tree paths before they would be
discarded without the support relation. Maybe the new extension can lead to
a form of lazy evaluation, so our program can go through large argumentation
frameworks in a smaller time. The extension might also lead to more insight in
the reasoning behind the evaluation of a framework.
This leads us to the following research question: “What is the effect of adding
support relations to the argumentation framework introduced by Dung on the
explainability and efficiency behind evaluating its dialectical status?”

1.3 Method

Before answering the research question, we need to do some research in existing
literature about ways to determine the dialectical status of an argument. Then
we will answer the research question using this information, by writing a pro-
gram that can parse a given argumentation framework with support relations,
and will give us the status of a given argument, as well as how the program has
decided on its outcome. In order to do this we will need to change some rules of
the argument games as defined by Vreeswijk and Prakken (2000), to encompass
our extension with support relations. We will then compare the reasoning be-
hind the evaluation with and without the support relations, and see if there are
any notable differences in number of reasoning steps. We can then conclude if
adding support relations has any (positive) effect on the reasoning done by our
program. If there is time, we might also research the effect of adding support
relations on the preferred semantics, but initially we will focus on the grounded
semantics.
The paper can be structured into the subjects:

1. Labelling

2. Argument game

3. Programming

4. Results

5. Conclusion

4

2 Terminology

As a starting point for our research I will take some definitions from the lit-
erature, and I will give a recap of the definitions that are important to our
research.

2.1 Argumentation Frameworks

Dung (1995) has introduced widely used formal definitions of argumentation
frameworks and related concepts.

An abstract argumentation framework (AAF) is a tuple < A,Def > consisting
of a set A of arguments and a binary defeat relation (Def ⊆ A x A). An ar-
gument A defeats argument B if and only if (A,B) ∈ Def, and that A strictly
defeats B if and only if A defeats B and B does not defeat A. An argument set
S defeats an argument A if any of the arguments in S defeat A.

We can label each argument in an AAF with in or out. An argument is labelled
in if and only if all arguments defeating it are out, and an argument is labelled
out if and only if some argument defeating it is in.

In this research, we are mainly focused on the grounded semantics, which means
we are aiming to minimize the set of arguments labelled in in our argument set.
In the grounded semantics, an argument A is:

1. Justified if and only if A is in.

2. Overruled if and only if A is not in in but defeated by an argument that
is in.

3. Defensible otherwise.

Important to note is that in the grounded semantics, there is always exactly one
unique labelling.

2.2 Support Relation

Cayrol and Lagasquie-Schie (2005) have extended Dung’s frameworks, and in-
troduced the Bipolar Argumentation Frameworks (BAF). These frameworks are
similar to the AAF, adding a support relation S. This leads to the following def-
inition:

A bipolar argumentation framework (BAF) is a tuple < A,R, S > consisting of
a set A and a binary attack relation (R ⊆ A x A) (referred to as defeat relation
in Dung’s AAF), and a binary support relation (S ⊆ A x A) such that if A
supports B and C attacks A then C attacks B.

5

Support relations are not transitive by definition.

From a set of attack and support relations, complex attacks are obtained. These
complex attacks are divided into supported attacks and secondary attacks.

� A supported attack from A to B is a sequence A1 r1 A2 ... An−1 rn−1 An,
with n ≤ 3 , where A1 = A and An = B, such that ri = S(1 ≤ i ≤ n− 2)
and rn−1 = R.

� A secondary attack from A to B is a sequence A1 r1 A2 ... An−1 rn−1

An, with n ≤ 3 , where A1 = A and An = B, such that r1 = R and
ri = S(2 ≤ i ≤ n− 1).

Informally, this means that a supported attack is a path through a bipo-
lar interaction graph where the first series of arguments are support relations,
followed by an attack relation. A secondary attack is an attack followed by a
number of support relations.

Every BAF can be reformulated as an AAF with the addition of a secondary
attack, and vice versa. Given arbitrary arguments A, B and C where A supports
B and C attacks A, then given the definition of the secondary attack, we can
rewrite this into an AAF where C attacks A and C attacks B.

2.3 Argument Game

Prakken (1999) proposed an argument game to decide the dialectical status of
an argument in the grounded semantics. The idea is an argument game be-
tween two players, a proponent and an opponent, where the proponent starts
with an argument that needs evaluation. The opponent will then try to de-
feat this argument, after which the proponent will try to do the same, and so
on. The winner is the player who makes the last move. Whoever has the win-
ning strategy decides the dialectical status of the argument. The player with the
winning strategy is the player that can win given any move the opponent makes.

To decide if an argument is in the grounded extension (if the argument is in in
the grounded semantics, it is part of the grounded extension), the opponent is
favored. His moves are allowed to be defeating, while the proponent’s moves
have to be strictly defeating. The proponent is also not allowed to repeat his
moves, and backtracking is not allowed for either player. A player wins the
argument game if and only if the other player has no legal moves.

This can be formalized into the following ruleset:

1. The opponent’s moves have to defeat the proponent’s argument

2. The proponent’s moves have to strictly defeat the proponent’s argument

3. The proponent may not repeat his moves.

6

4. Backtracking is not allowed for either player.

5. A player wins the argument game if and only if the other player has no
legal moves.

The argument game with these rules satisfied is called the G-game. This game
is both complete and sound for the grounded semantics, as Prakken has proven.

3 Labelling

One of the ways to determine the status of an argument is using labelling. To
implement the support relation into our AAF, we would need to change our
definitions of labelling. We will focus on implementing the secondary attack in
our research.

3.1 Secondary attack

A good new definition for labelling of an AAF with secondary attacks has been
given by Prakken (2013). An argument A is labelled in if and only if

1. All arguments that defeat A are labelled out, and

2. All arguments B1, ..., Bn that support A are labelled in.

An argument is labelled out if and only if

1. Some argument that defeats A is labelled in, or

2. Some argument B that supports A is labelled out.

4 Argument Game

We would also need to change our definitions for the argument game for the
secondary attack.

4.1 Secondary attack

Here is the ruleset of the new argument game, now with the secondary attack.

1. The opponent’s moves have to defeat the proponent’s argument OR an
argument that supports the proponent’s argument.

2. The proponent’s moves have to strictly defeat the proponent’s argument
OR an argument that supports the proponent’s argument.

3. The proponent may not repeat his moves.

4. Backtracking is not allowed for either player.

5. A player wins the argument game if and only if the other player has no
legal moves.

7

5 Programming

Our program needs to determine the dialectical status of our arguments. This
can be done via argument games or via labelling. Since the argument game has
been used more in literature, and argument games are more efficient for deter-
mining single arguments, we will also use this method of deciding the status
of our arguments. First we will need to implement the basic argument game
for grounded semantics, which we will do in C#, and after that we can look at
changing our code so that support relations are also included.

5.1 Input

Our program will take a text file as input with a BAF. An example input file
has been shown below, on the left side, where the right side are comments to
explain what is meant (not included in the input text file).

4 Number of arguments

(A,B,C,D) Arguments

2 Number of attack relations

(C;A,B;A) Attack relations

1 Number of support relations

(A;D) Support relations

After this file has been read, the user will be asked what argument has to be
evaluated.

5.2 Structure

The program has defined the following classes:

� Argument, which has a title

� Relation, which contains two arguments and the type of relation (i.e. at-
tack or support)

� DisputeTree, which contains a root node for our dispute tree

� Node, which contains an argument and a list of child nodes.

We will be using Depth First Search to construct the Dispute Tree, which
will contain all paths that can be taken, decided by the legal moves given the
argument framework, starting at the argument that needs to be evaluated.

8

This algorithm uses the GetLegalMoves function, which is the one we have
adjusted to take support relations into consideration. Inspiration is taken from
Modgil and Caminada (2009), definition 8, to determine legal moves for regular
AAFs.

i f PropOnTurn
{

f i n d a l l s t r i c t l y −d e f e a t i n g a t tacks on the argument g iven by OPP,
add to l i s t ;
f i n d a l l d i r e c t supports on the argument g iven by OPP,
add t h e i r a t tacks to the l i s t ;
remove arguments a l r eady played by PRO;

}
e l s e
{

f i n d a l l a t tacks on the argument g iven by PRO, add to l i s t ;
f i n d a l l d i r e c t supports on the argument g iven by PRO,
add t h e i r a t tacks to the l i s t ;

}

From this dispute tree, we will determine if there are any winning strategies,
by checking each argument’s status. This is done with the recursive algorithm
shown below. Informally, it starts at the root of the dispute tree, which is the
argument that needs to be evauluated, and determines if this node leads to a
guaranteed win for the proponent, given that he plays optimally. Notice that
if it is the proponent’s turn, any move that the opponent can do that does not
lead to a winning path makes it a non-winning strategy, so we dont have to
evaluate the other paths in the tree.
On the other hand, if it’s the opponent’s turn, a single move that the propo-
nent does that leads to a winning path means the strategy might be a winning
strategy, so we also dont have to evaluate all possible paths if we have already
found a winning path.
.

pub l i c s t a t i c bool CheckIfWin (Node node , bool onPropTurn)
{

c r e a t e s tack currentPath ;
push node to currentPath ;
i n v e r t onPropTurn ;
i f node has no c h i l d r e n
{

i f (onPropTurn)
{

re turn true ;
}
e l s e
{

9

re turn f a l s e ;
}

}
e l s e
{

f o r each (var c h i l d in node . c h i l d r e n)
{

bool childWon = CheckIfWin (ch i ld , onPropTurn) ;
i f (onPropTurn == true && ! childWon) // I f i t ’ s the
proponent ’ s turn , any move that the opponent can do

that does not l ead to a win makes i t a non−winning
s t r a t e g y .

{
re turn f a l s e ;

}
i f ((onPropTurn == f a l s e && childWon)) // I f i t ’ s the
opponent ’ s turn , a s i n g l e move that the proponent

does that l e ad s to a win means the s t r a t e g y might
be a winning s t r a t e g y .

{
push node to currentPath ;
re turn true ;

}
}
i f (onPropTurn) // i f a l l c h i l d r e n are checked and there
are no moves that the opponent can do that l ead to a l o s s ,

then the s t r a t e g y might be a winning s ta t egy .
{

push node to currentPath ;
re turn true ;

}
e l s e // i f a l l c h i l d r e n are checked and the proponent
cannot play a s i n g l e move that l e ad s to a win , t h i s
s t r a t e g y i s not a winning s t r a t e g y .
{
pop currentPath ;
re turn f a l s e ;
}

}
}

Once we have determined that a winning strategy is found, we have stored the
path that lead to this winning strategy. The program will also give some input
on how it has come to its conclusion, and based on this we can see if there’s a
difference between evaluating a BAF or a semantically identical AAF.

10

5.3 Output

Given the argumentation framework shown in 5.1 Input, the output of the pro-
gram will look something like this:

Choose the number cor re spond ing to the argument you want to eva luate :
1 : A
2 : B
3 : C
4 : D
5 : E
3
Evaluat ing argument C . . .
P o s s i b l e moves f o r opponent :
D
Determining the s t a t u s o f D
P o s s i b l e moves f o r proponent :
B E
Determining the s t a t u s o f B
P o s s i b l e moves f o r opponent :
D C
Determining the s t a t u s o f D
P o s s i b l e moves f o r proponent :
E
Determining the s t a t u s o f E
E i s a winning move !
Determining the s t a t u s o f C
C i s not a winning move . . .
Then B i s not part o f a winning s t r a t e g y e i t h e r .

−−−
Determining the s t a t u s o f E
E i s a winning move !
Then C may be part o f a winning s t r a t e g y !

−−−

A winning s t r a t e g y has been found !
C −−> D −−> E

Press any key to e x i t .

11

6 Results

The program has been run on the following AAF/BAFs. On the top part of
the image, an AAF can be seen while the bottom has an identical BAF with
support relations added. For each of the frameworks, the number of expanded
nodes has been displayed, as well as whether the evaluated argument has a win-
ning strategy (marked green and red). The number of expanded nodes relates
to the number of calculations our program has to do, so a low amount of nodes
means that our program can quickly decide the dialectical status of a given
argument. With this number we can determine if there is any efficiency gain
in adding support relations. Note that a black line indicates an attack relation
while a grey line indicates a support relation. The red and green marking in-
dicates whether the program has found a winning strategy. Of course, these
should always be the same whether we are checking the BAF or AAF.

For every one of these BAFs, they have been rewritten into an AAF: If there
is a support relation from argument A to argument B and a set of arguments
S attacks A, we rewrote this so that S attacks A and S attacks B.

6.1 Simplest

Below we see the simplest possible AAF that can be rewritten into a BAF.

BA C

BA C

(1)

A B C
AAF 2 1 2
BAF 2 1 2

12

6.2 Medium 1

Below we see a slightly more complex AAF and its BAF-counterpart. Inspiration
is taken from Modgil and Caminada (2006), figure 3.

B

A

C D

E

B

A

C D

E

(2)

A B C D E
AAF 5 4 3 2 1
BAF 19 4 7 10 1

13

6.3 Medium 2

Another slightly more complex AAF and its BAF-counterpart. Inspiration is
taken from Prakken (2018)), example 4.2.9.

B

A

C D

B

A

C D

(3)

A B C D
AAF 2 2 2 6
BAF 2 4 4 8

14

6.4 Medium 3

Another slightly more complex AAF and its BAF-counterpart. Inspiration is
taken from Prakken (2018)), excercise 4.8.11.

B

A

C

D

B

A

C

D

(4)

A B C D
AAF 1 2 4 2
BAF 1 2 4 4

15

6.5 Complex

A very complex framework, taken from Prakken (2018), figure 5.2, and again
modified for our own purposes. For this complex framework, a timer has been
implemented to see if there is any notable difference between the evaluation of
the two frameworks.

B
A

C

D G

FH

I

J

K L

M

N
P

Q

B
A

C

D G

FH

I

J

K L

M

N
P

Q

E

E

(5)

A B C D E F G H I J K L M N P Q
AAFNodes 14 30 14 14 2 6 14 1 2 2 12 12 12 2 6 14
AAFTime (ms) 64 121 45 52 5 16 54 4 7 5 41 39 41 6 20 54
BAFNodes 14 30 14 14 2 6 14 1 2 2 12 12 12 2 6 14
BAFtimes (ms) 54 143 50 49 5 18 48 4 8 7 40 40 40 4 25 48

16

7 Conclusion

To answer our research question “What is the effect of adding support relations
to the argumentation framework introduced by Dung on the explainability and
efficiency behind evaluating its dialectical status?”, we need to answer the two
subquestions.

7.1 Efficiency

Something interesting can be seen in our results: it seems that the BAF actu-
ally has more expanded nodes for some of the argumentation framework, and
evaluating an identical AAF has fewer or equal expanded nodes. For example,
in 6.2 we see a difference in output. Let’s take argument A. In both frameworks,
the opponent can only play B. Here is a difference: in the BAF, the proponent
is allowed to play D, as it strictly defeats B. In the similarly rewritten AAF
though, B is not strictly defeated by D. This results in our program expanding
the path to D first, where it will find out after a few steps into the game that
this is not a winning strategy. Note that the fact that D can be played by
proponent in the BAF is irrelevant for the evaluation of the program, as D is
not part of a winning strategy because the opponent can play B to defeat D’s
supporter: B. It only makes it so that more nodes have to be expanded. This
type of failure to detect a losing strategy early can be solved with extra checks.
However, this would greatly increase overall computation time and is not more
efficient.

Besides that, finding the legal moves for every support relation, we have to
check all attack relations to see if there is a supporter that can be attacked.
This makes it so that when adding 1 support relation, we have to do n + n
checks, where n is the number of attacks. Whereas if we would have rewritten
to an AAF, we would only have to do n + 1 checks in total. This increase in
computation time is not even taken into consideration in the expansion nodes
shown above, but it can be very significant. It is interesting to see that, on the
scale of 6.5’s complex frameworks, this does not yet have a noticable effect on
runtime. In future research it might be interesting to find out at which scale
the difference becomes noticable.

Another thing to keep in mind is that sometimes the program will explore differ-
ent paths first for the BAF compared to the AAF. If, for example, the opponent
can play arguments A, B and C, exploring C first compared to A might lead to a
faster conclusion that there is no winning strategy for this argument. This adds
some variation to the number of expanded nodes that is tied to the BAF/AAF
duo. This does not seem to have a significant effect on the argumentation frame-
works we have explored.

All in all, one would think that the BAF actually is less efficient than our orig-
inal AAF, even though the results only slightly back this up. It is certainly a

17

possibility that these effects are only noticable on extremely large argumentation
frameworks, where there are thousands of arguments and even more relations
between them.

7.2 Explainability

As far as explainability is concerned, our algorithm is very clear in which de-
cisions it makes, and there is no real gain when adding support relations. The
output is mostly the same, except for arguments that become strictly-defeating
when a secondary attack is rewritten into two regular attack relations, at which
point it takes more steps to discover that a path is not winning. This results in
the output to become more convoluted and thus less easy to follow.

We can now answer our research question. Adding support relations has a neg-
ative efect on the explainability and efficiency behind evaluation. Based on this
conclusion, support relations should be avoided when formalizing arguments
and aiming for efficiency, unless the extra information that support relations
offer are highly valued.

7.3 Future research

In future research it might be interesting to see how this conclusion changes when
adding supported attacks or considering transitive support relations, since these
all have an effect on the computation time but might also give new insights in
the dialectical status of arguments. Adding these concepts would also make
it easier to form an argumentation framework from real world examples, since
there are more ways to relate arguments to eachother. Another thing to look
into is how the extensions of the argumentation framework can lead to different
evaluations in other semantics, such as the preferred semantics.

18

8 Literature

References

[1] H. Prakken, Argument. In S.O. Hanson & V.F. Hendricks (eds.): “In-
troduction to Formal Philosophy”, Springer Undergraduate Texts in Phi-
losophy, Springer International Publishing AG, pp. 63-79, 2018.

[2] Cohen, A., Parsons, S., Sklar, E. I. and McBurney, P., A char-
acterization of types of support between structured arguments and their
relationship with support in abstract argumentation, International Jour-
nal of Approximate Reasoning, 94, pp. 76-104, 2018.

[3] S. Modgil and M. Caminada, Proof theories and algorithms for ab-
stract argumentation rameworks. Argumentation in AI , I. Rahwan and
G. Simari (eds), pp. 105-132, Springer-Verlag, 2009.

[4] Dung, P. M., On the acceptability of arguments and its fundamental
role in nonmonotonic reasoning, logic programming and n-person games.
Artificial intelligence, 77(2), p. 321-357, 1995.

[5] Modgil, S and Prakken, H, The ASPIC+ framework for structured
argumentation: a tutorial, Argument and Computation 5 : pp. 31–62,
2014

[6] GVreeswijk, G.A.W, An algorithm to compute minimally grounded
and admissible defence sets in argument systems. Proc. 1st International
Conference on Computational Models of Argument, pp. 109–120, UK,
2006.

[7] Cayrol, C and Lagasquie-Schiex, M.C, On the acceptability of ar-
guments in bipolar argumentation frameworks, Proceedings of the Eight
European Conference on Symbolic and Quantitative Approaches to Rea-
soning with Uncertainty, pp. 378–389, 2005.

[8] Vreeswijk, G.A.W and Prakken, H., Credulous and sceptical ar-
gument games for preferred semantics. Proc. 7th European Workshop on
Logic for Artificial Intelligence, pp. 239–253, 2000

[9] Prakken, H, Dialectical proof theory for defeasible argumentation with
defeasible priorities (preliminary report). Proceedings of the 4th Mode-
lAge Workshop on Formal Models of Agents. Springer Lecture Notes in
AI, Springer Verlag, pp. 202-215, 1999.

[10] Prakken, H, Relating ways to instantiate abstract argumentation
frameworks. In K. Atkinson, H. Prakken and A. Wyner (eds.) From
Knowledge Representation to Argumentation in AI, Law and Policy
Making. A Festschrift in Honour of Trevor Bench-Capon on the Oc-
casion of his 60th Birthday, College Publications, pp. 167-189, 2013.

19

[11] Prakken, H, On support relations in abstract argumentation as ab-
stractions of inferential relations. Proceedings of the 21st European Con-
ference on Artificial Intelligence (ECAI2 014), pp. -740, 2014.

9 Appendix

9.1 Code Implementation

Full source code and a compiled .exe file can be found in the attached file. Users
can add their own frameworks in the .txt folder.

20

