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Abstract

This thesis proposes a novel approach to Music Structure Analysis (MSA). This
approach implements the Segmentation by Annotation (SbA) approach to MSA,
using a convolutional neural network (CNN) and an artificial neural network using
Long Short-Term Memory (LSTM) units. An overview of the current advances in
music structure analysis is given as well as the use of the proposed architectures
in similar research fields. A description of the evaluation methods is provided in
which the proposed architectures show promising results on the custom ground
truth used. This custom ground truth is a modified version of the humanly anno-
tated segments found in the internet archives subset of the SALAMI dataset. The
ground truth is modified by reducing the amount of unique high-level segment
functions from 26 to 9. By comparing the SbA approach to the (more symbolic)
Distance-based Segmentation and Annotation approach, a comparison between
using machine learning and non-machine learning techniques can be made. Fu-
ture research is proposed to enhance the segmentation by annotation approach as
well as music structure analysis in general.

Keywords: Music Structure Analysis, Music Information Retrieval, Segmenta-
tion by Annotation, Convolutional Neural Networks, Long Short-Term Memory
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The more we think we know about, the greater the unknown
We suspend our disbelief, and we are not alone
Mystic rhythms – capture my thoughts
Carry them away. . .

NEIL ELLWOOD PEART
Rush - Mystic Rhythms
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Chapter 1

Introduction

Music is all around us. Everybody listens to it in a different way [17], only a
few actually create it. Creating music takes a lot of effort; making sure all notes
and tones form some kind of harmony and melody, and that all harmonies and
melodies form a coherent piece, among many other difficult aspects that involve
creating music. Although these aspects are all very difficult and only some people
are actually good at it, computers are far worse in it.

Listening to music involves many subconscious processes that are influenced
by, among other things, emotion. Therefore making a computer understand the
concept of music is a difficult task. Due to the hierarchical properties of music
[15, 46], one of the first steps of this process is understanding the musical structure
of a piece of music. This will be the main focus of this thesis.

1.1 Musical Structure
The musical structure of a piece of music can be defined in many different ways;
on a high level or low level, and can be of different meanings in different kinds of
music.
Therefore, for the remainder of this thesis, I will refer to music as music in the
genre of Western Popular Music [74] and make the following definitions:

Definition 1.1.1 (Musical Structure). The Musical Structure of a piece of music
is a series of segments (1.1.2) that describes the high-level structure of a piece of
music.

Definition 1.1.2 (Segment). A Segment is one consecutive piece of audio in a
piece of music that has one segment function (1.1.3), with a start- and an end-
boundary.

Definition 1.1.3 (Segment Function). Following the definitions as they can be
found in Benward and Saker [5], Part B: The Structural Elements of Music, a
Segment Function is the function of a segment, this is either:
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1.2. APPLICATIONS CHAPTER 1. INTRODUCTION

Figure 1.1: Examples for musical structures as encountered in Western music. (a)
Strophic form. (b) Chain form with repetitions. (c) Rondo form. (d) Sonata form.
(e) Beatles song “Tell Me Why.” (f) Beatles song “Yesterday.”
Reprinted from Müller [59, p. 173] (Figure 4.4)

• Chorus
• Verse
• Bridge
• Interlude / Transition
• Intro
• Outro
• Solo
• (Silence)
• (Background Noise)

I will refer to the extraction of the musical structure of a piece of music as
Musical Structure Analysis or MSA. An example of musical structures can be
found in Figure 1.1. The aim of this thesis is to produce a structure of a song
similar to 1.1e and 1.1f, where I stands for intro, V1 stands for Verse 1, etc.

1.2 Applications
The musical structure of a piece of music has many applications, within research
and the industry. For example the musical structure can be used to only retrieve a
certain part of a piece of music. This can then be used to preview only the chorus
of a song when someone is browsing through a list of songs to find a certain song.
Being able to quickly seek through a song to its verses or chorus can be of great
addition to many music streaming, or other streaming, services.

More commercial applications could be to limit ones listening capabilities by
restricting a user to listen only to the verse or chorus of a song, while blocking the
other parts of a song behind some pay-wall. Less aggressive commercial applica-
tions could be to place an advert between for example the verse and chorus, when
the user is using a free subscription to a music streaming service.

The scope of this thesis, however, will be to place the music structure problem
in a more research driven, less commercial field, and the field of AI in particular.
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1.3. SBA VS DSA CHAPTER 1. INTRODUCTION

1.2.1 Relevance to AI
Finding and analyzing the structure of a musical piece is an important part of
music information retrieval and an important step in music processing and music
analysis, both for humans and computers. Once an understanding of the basic
structure of a piece of music is established, it can be used to establish more com-
plex understandings about that piece of music.

One of these uses may be to use the musical structure to get more insight in
how certain songs are equal to each other, or how certain structures are used for
certain kinds of songs or in certain genres. This thus may be used as additional
information when finding for example the genre of a piece of music. Another way
of using this musical structure could be to extract lower level musical patterns
from a piece of music. This could be leading melodies, a riff1, lyrics or the hook
[16] of a song [13].

Additionally, knowledge about the structure of songs that are produced by hu-
mans can be used for generating songs using computers. This information can
for example be used as additional information during the generation phase, or as
validation information for already generated songs to validate whether these gen-
erated songs comply to human musical structure.

For humans, finding the musical structure is quite trivial, because they con-
stantly and often unconsciously adapt themselves to the musical and acoustic
properties of what they listen to. However the amount of different musical struc-
tures make computational structure analysis a challenging problem.

1.3 Segmentation by Annotation versus
Distance-based Segmentation and Annotation

Extracting the musical structure of a piece of music can be done in a few ways,
however almost all of these methods can be generalized into two general ap-
proaches: Segmentation by Annotation (SbA) and Distance-based Segmentation
and Annotation (DSA).

Definition 1.3.1 (Segmentation by Annotation). Segmentation by Annotation
in the context of music structure analysis means first dividing a song into many
small pieces (e.g. pieces of 10ms or every beat). Thereafter a segment function is
assigned to each small piece using some kind of classification method (e.g. statis-
tics, support vector machine, deep learning). Sequences of similarly annotated
small pieces are then combined into segments, resulting in the musical structure
of the song.

1A famous example of a (rock) riff can be found in Smoke on the Water played by Ritchie
Blackmore of Deep Purple.
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1.4. COMBINED RESEARCH CHAPTER 1. INTRODUCTION

Definition 1.3.2 (Distance-based Segmentation and Annotation). Distance-based
Segmentation and Annotation in the context of music structure analysis means
first finding segment boundaries using some kind of distance metric. Subsequently
these segments are grouped into groups that are similar to each other in their struc-
tural role in the piece of music, using some kind of grouping method (e.g. nearest
neighbors, support vector machines), resulting in each segment getting a capital
letter denoting their function. Then, each capital letter is converted into a segment
function, this can be either done using some kind of statistics, pattern matching or
machine learning method.

Distance-based Segmentation and Annotation has been researched a lot in the
context of music structure analysis and was for a long time the best approach. See
chapter 2 for an overview of research in this areas. Segmentation by Annotation
has been used a lot less for this exact application but more for separating and
classifying pieces of speech, music and different kind of background noises in an
audio stream. This is because speech, music and background noise all differ a
lot more in their auditory features than different parts of music within the same
piece. Because the use of the distance-based approach yielded increasingly better
results, recent research focused on that. However with the increasing popularity
and performance of machine learning in many disciplines like computer vision
or natural language processing and production, applying machine learning to the
music structure problem has become increasingly popular.

1.4 Combined Research
Although the DSA approach to MSA has been the state-of-the-art for a long time,
and therefore has been exhaustively researched, its results can always be im-
proved. Therefore not only putting effort into improving the Segmentation by
Annotation approach but also the Distance-based Segmentation and Annotation
approach will benefit the Music Structure Analysis problem. This work is related
to Kuiper [43] in such a way that this work focuses on the Segmentation by Anno-
tation approach, and Kuiper focuses on giving an overview and improvement of
the Distance-based Segmentation and Annotation approach.

1.5 Research Questions
The following research questions can be formulated:

Research Question 1 (Main RQ). What is the feasibility of a machine learning
implementation of the Segmentation by Annotation approach to Music Structure
Analysis in Western Popular Music?

The sub-questions that are part of this main research question are:
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1.6. OUTLINE CHAPTER 1. INTRODUCTION

Research Question 2 (Sub-RQ 1). Which deep learning architecture, implement-
ing the Segmentation by Annotation approach to Music Structure Analysis, yields
the best relative results?

Research Question 3 (Sub-RQ 2). How does the performance of the best per-
forming deep learning architecture, implementing the Segmentation by Annota-
tion approach to Music Structure Analysis, compare to the performance of imple-
mentations of the Distance-based Segmentation and Annotation approach, and a
state-of-the-art implementation in particular?

To answer the main research question I will create different types of deep
learning models, using different kinds of architectures. Then I will train these
models on different combinations of musical features extracted from the songs
present in the internet archives subset of the SALAMI dataset (see section 3.1 for
an explanation of this dataset). I will use the annotations, produced by human
annotators, of these songs as ground truth to determine the absolute performance
of each implementation. The absolute performance of the best performing im-
plementation can then be used to compare a machine learning application of the
Segmentation by Annotation approach to MSA to the absolute performance of
a state-of-the-art implementation of the Distance-based Segmentation and Anno-
tation approach, determined in the same way. I will elaborate more on this in
chapter 3.

1.6 Outline
In chapter 2 I will first explore previous work regarding the SbA and DSA ap-
proach. Here I will also discuss the current state-of-the-art and describe the back-
ground of the models I created. Lastly I will give an overview of the dataset I
used, and a listing of possible acoustic features that can be extracted from this
dataset.

In chapter 3 I introduce the architectures of the models I created. In this chap-
ter I also describe the data preparation and feature selection that preceded the
testing phase of this research.

Then, in chapter 4 I describe the training and evaluation setup and some pre-
liminary results. A final test setup is described as well as the final results following
from this final test.

Thereafter, chapter 5 discusses these results and explores reasons for these
results. It concludes with a comparison between the segmentation by annota-
tion approach and distance-based segmentation and annotation approach to music
structure analysis.

This thesis ends with chapter 6. In this final chapter I propose future research
that can be performed to improve both the segmentation by annotation approach
to music structure analysis as well as music structure analysis in general. This
chapter ends with an comparison of machine learning versus symbolic approaches
to music structure analysis as well as artificial intelligence problems in general.
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Chapter 2

Related Work

In this chapter I will give an overview of branches of music information retrieval
that are related to music structure analysis. Two machine learning architectures
are introduced. Then previous work of the distance-based segmentation and an-
notation approach is reviewed and the current state-of-the-art to music structure
analysis is presented. This chapter ends with an overview of datasets and acoustic
features that can be used for music structure analysis.

2.1 Machine learning in Music Information
Retrieval

Although machine learning has not been applied on a wide scale on the SbA ap-
proach to Music Structure Analysis, it is already being used and researched upon
within Music Information Retrieval (MIR) and music generation. Because Mu-
sic Information Retrieval involves many disciplines regarding music that extend
well beyond the scope of this thesis, as does music generation, I will focus on
applications of machine learning closely related to Music Structure Analysis. See
Fundamentals of Music Processing [59] for an extensive introduction to basis and
main disciplines of Music Information Retrieval.

2.1.1 Machine Learning for Automatic Audio Segmentation
One of the fields in which machine learning has been (successfully) applied, is
classifying pieces of audio in an audio stream. The classes to be distinguished are
speech, music and various kinds of background noises or silence. Each class can
be made as specific as desired; one could be interested in finding only the parts
within an audio stream where the same person is talking, or where only music is
played. This is often referred to as Automatic Audio Segmentation (AAS).

Theodorou, Mporas, and Fakotakis [78] gives an overview of different ap-
proaches and implementations to automatic audio segmentation. They describe a
distance-based approach similar to the distance-based segmentation and annota-
tion approach to MSA. One of the downsides of this approach is that it does not
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2.1. ML IN MIR CHAPTER 2. RELATED WORK

Figure 2.1: Example multi-class classification tree for multi-class broadcast do-
main data classification or Automatic Audio Segmentation.
Reprinted from Lu, Li, and Zhang [53] (Figure 2)

classify each segment, because it is limited to solely finding the segment bound-
aries. One other approach they describe is the Segmentation by Annotation ap-
proach. Within automatic audio segmentation, this approach works in a similar
way as the SbA approach to music structure analysis, by subdividing an audio
stream into small pieces and assigning a class to each small piece. Theodorou,
Mporas, and Fakotakis mention this approach as being specifically suited for ma-
chine learning, because of the high performance of machine learning models on
classification problems.

First uses of machine learning used for automatic audio segmentation used
machine learning methods that did not employ deep learning, such as Gaussian
Mixture Models [58, 41, 82, 12, 18], Support Vector Machines [66, 53, 81, 18, 64,
50] or Decision Trees [64, 12], often combined into a hybrid model with a Hidden
Markov Model.

The main idea of these models is to first make a distinction between speech
and non-speech using a certain classification model and than use other classifica-
tion models to make further distinctions within speech like pure speech or silence
and non-speech like pure music or background noise (Figure 2.1). The Hidden
Markov Model in this context is used to combine the output of multiple models
trained on different labels and assign the final label to the audio sample.

A recent report of more advanced machine learning methods, such as deep
learning, being used within Automatic Audio Segmentation is from Gimeno et al.
[28]. They describe an implementation of the SbA approach to automatic audio
segmentation using a recurrent neural network, namely bi-directional long short-
term memory artificial neural networks. Their aim was to make use of this archi-
tecture with multiple different configurations to find the best model. These dif-
ferent configurations consisted of different pooling layers between multiple long
short-term memory layers and different input feature combinations.

11



2.1. ML IN MIR CHAPTER 2. RELATED WORK

Figure 2.2: Basic structure of a fully recurrent neural network.

Recurrent Neural Networks

A recurrent neural network (RNN) was used because of its capabilities in process-
ing temporal sequence data. These capabilities are a result of the recurrent archi-
tecture of these artificial neural networks, meaning that the output of the previous
sample is combined with the input of the current sample [20]. The connections
of the neurons can be compared to a directed graph. Due to this connectivity, the
internal state of the network at a certain point in its training or inference phase
can be called memory, because of the still existing output of the previous sam-
ple. However, a downside of this architecture is that the previous sample is very
present in this ‘memory’ while earlier samples are increasingly less present. These
fully recurrent neural networks therefore have very good short term memory while
lacking long term memory (figure 2.2).

Another downside is that back-propagation (the algorithm used to train arti-
ficial neural networks) now has to be performed over time. This specific type
of back-propagation is called back-propagation through time (BPTT) [35, 67, 80].
One characteristic of BPTT is that the output of each time step needs to be tracked,
which can become quite unwieldy. Elman [22] found a way around this problem
by truncating an unfolded fully RNN to just one time step. This way normal
back-propagation can be used again for time sequence data. Elman networks are
therefore also called simple recurrent (neural) networks (SRNN). Another type of
SRN are Jordan networks [39].

(Bi-directional) Long Short-Term Memory Networks

As mentioned earlier, SRNN and FRNN suffer from very good short-term memory
while lacking long-term memory. To account for this Long Short-Term memory
(LSTM) units were introduced [35]. These units were meant to replace the ‘nor-
mal’ neurons in a FRNN. LSTM units are different from normal neurons by its
inner structure. Normal RNN units work like neurons in a multi-layer perceptron,
however instead of only adding up all inputs (or outputs from previous layer),
previous outputs are also added to this sum.

12



2.1. ML IN MIR CHAPTER 2. RELATED WORK

Figure 2.3: Example Bi-directional long short-term memory neural network with
an output state per input and a single output after all inputs are processed.

A LSTM unit contains an internal state which acts as its memory. An input,
output and forget gate decide how the internal state is changed. The way these are
set up enables a LSTM to ‘remember’ important data and ‘forget’ less important
data. For each input these gates decide which data is remembered from previous
samples and what data is used and remembered of the current sample. Li and Wu
[48] found these properties especially suitable for Speech Recognition (‘forget’
noise, ‘remember’ phonemes), while Sak, Senior, and Beaufays [68] used these
properties for acoustic modeling, because of its performance on time sequence
data.

A LSTM network can receive a series of input. The network can then return
one output per input sample (sequence-output / many-to-many) or return one out-
put once all inputs are processed (single-output / many-to-one). If one is interested
in predicting the word being typed on a keyboard, sequence-output can be used. If
only the next word needs to be predicted when the previous word has been typed
out, single-output can be used.

A bi-directional (recurrent) neural network, first introduced by Schuster and
Paliwal [72], is a special kind of recurrent neural networks. A B-RNN works by
not only using the input data up to a certain frame, but also the input data from the
end to that certain frame. Training thus is performed in both positive and negative
time direction. Using both time directions during training enlarges the context of
a recurrent unit and was therefore proven to increase the performance of a model.
An example of a single-output bi-directional LSTM network can be found in Fig-
ure 2.3.

Going back to Gimeno et al.; by using a bi-directional RNN with LSTM units,
they reported a relative improvement of 19.72% and 5.35% compared to the best
results in the literature at that moment for their two datasets (Albayzín 2010 and
2012) respectively. This significant advance in the state-of-the-art of automatic
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2.2. CNN IN MIR CHAPTER 2. RELATED WORK

audio segmentation proves the potential of recurrent neural networks in music
information retrieval and automatic audio segmentation in particular.

Applications of AAS models

Many applications of models capable of performing automatic audio segmentation
are within the broadcast data domain. For example in a live radio broadcast these
models can be used to automatically apply the right type of audio filtering onto
the broadcast audio stream. This could be an audio filter focused on higher tones
when someone is talking or an audio filter focused on lower tones when music is
played. Also automatically distinguishing when a person’s voice or background
noise is being transmitted through a microphone, can be used to automatically cut
the audio feed of a microphone during a live broadcast.

Non-real time applications of these models are within audio indexing and re-
trieval of for example documentaries, podcasts or other broadcasts. Audio streams
automatically segmented by these models can then be used to speed up the pro-
cess of retrieving certain parts from documentaries or cut all parts where nobody
is talking in a podcast.

By modifying these existing models and extending them from multi-class au-
dio segmentation to multi-class music segmentation will not only benefit the field
of music structure analysis but also benefit the field of automatic audio segmenta-
tion by giving it more specific subclasses within the music class. Although these
models aim to find different kind of patterns within the features used, the basic
principles can be used to decrease the effort needed to create a good perform-
ing music segmentation model that uses machine learning or a recurrent neural
network in particular.

2.2 Convolutional Neural Networks in Music Infor-
mation Retrieval

Another type of machine learning commonly used in another field of computer
science and adapted to be useable in Music Information Retrieval are Convolu-
tional Neural Networks (CNN). CNN’s, first introduced by LeCun et al. [44] for
recognizing handwritten postal codes, and later most improved by Krizhevsky,
Sutskever, and Hinton [42], are a type of artificial neural networks that are spe-
cialized in processing –most often classifying– data that has a known grid-like
topology. This, as were its first applications, generally is image data, because im-
ages have a very well-defined grid-like topology. While binary images being the
most simple form of two-dimensional images with for each pixel only 2 possible
values, more complex images, like multi-channel images (red-green-blue images,
cyan-magenta-yellow-black images) or multi-view images (top view, bottom view,
etc,) can be processed too, albeit in a slightly different way.

Convolutional networks are inspired by the neural architecture found in the
human visual cortex by Hubel and Wiesel [37] in the V1 and V2 area [49]. Each
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2.2. CNN IN MIR CHAPTER 2. RELATED WORK

Figure 2.4: Basic structure of a convolutional neural network.

neuron in the V1 area is sensitive to a sub-region of the visual field, called a
receptive field. The activation of each neuron then depends on the occurrence of
certain visual features (like edges in certain orientations) in the receptive field.
The receptive fields are tiled to cover the entire visual field. The current way to
imitate this receptive field is to use convolutions, hence the name of this type of
artificial neural network. A convolution, or kernel, is a filter that is applied on
an image. This way, each neuron in the next layer is connected to a sub-region
in the output or image of the layer before (Figure 2.4). During training, neurons
of deeper convolutional layers learn to adapt their weights in such a way that the
neuron activates on certain patterns found in the (convolved) image from the layer
above, similar to how the neurons in the different visual areas in the visual cortex
work.

Feature vectors at first don’t seem to be multi-dimensional ’images’ however
when put in a time sequence one can construct a two-dimensional matrix from
multiple one-dimensional feature vectors. This principle makes it possible to also
apply convolutional neural networks to natural language processing (NLP) [52]
and music information retrieval. In the case of NLP, each word in a sentence is
first converted to a feature vector by either embedding it [27, 57], or using one hot
encoding. The feature vectors of multiple words concatenated can then be used as
two-dimensional input for a CNN, slightly imitating the way N-grams work [11].

Basili, Serafini, and Stellato [3] were the first to apply machine learning on
automatic genre classification of songs. However, they only used Naïve-Bayes,
Voting Feature Intervals, Decision Trees and Nearest-Neighbors classifiers. Li,
Chan, and Chun [47] actually were the first to use convolutional neural networks
for automatic genre classification. They were therefore the first to use convolu-
tional neural networks in music information retrieval, and make use of the one-
dimensional feature vector concatenation into two-dimensional ‘images’. Al-
though they reach over 85% accuracy when using a dataset with only 3 genres,
their accuracy heavily decreases to under 30% when they use a dataset with 6
genres.
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Figure 2.5: Final convolutional neural network created for onset detection by
Schlüter and Böck, starting from a stack of three spectrogram excerpts, ending
with one output unit indicating the chance of an onset.
Reprinted from Schlüter and Böck [69] (Figure 2).

2.2.1 Convolutional Neural Networks for onset detection
The next subdomain of MIR –related to MSA– where convolutional neural net-
works are being used with great success, is within musical onset detection.

Musical Onset Detection is the process of automatically extracting the point
of time of the musical onsets within a piece of music. A (musical) onset is the
beginning of a musical event, most often the beginning of a musical note, but may
also be other musical events [4, 83]. It was first introduced as a contest by Paul
Brossier and Pierre Leveau for the MIREX 2005 1. From this moment it has been
an annually recurring contest of the MIREX.

Again, using machine learning was on equal performance or outperformed
state-of-the-art at that time [23]. However, in contrast to the current models at that
time, this new approach was able to perform real time onset detection by actually
predicting the onsets. The proposed model, in multiple ways improved by Böck et
al., using a recurrent neural network with long short-term memory (LSTM) units
produced a 0.840 F-measure on real time onset detection compared to 0.826 and
0.866 F-measure on non-real time onset detection by state-of-the-art models at
that time [7].

After this success with the application of recurrent neural networks for on-
set detection, Schlüter and Böck [70] propose an onset detection method using a
convolutional neural network. Not only did this model perform better than the
(improved) bi-directional recurrent neural networks at that time (0.885 F-measure
compared to 0.873), it also required less (manual) pre-processing, since CNN’s
are able to ‘learn’ this pre-processing in their first layer(s). A year later Schlüter
and Böck [69] report improvements made on the initially proposed model, bring-
ing its F-measure above 0.9 to 0.903 respectively (Figure 2.5). Schlüter and Böck
explain the high performance of CNN’s on onset detection by their accuracy in
finding oriented edges in images. Musical onsets show up as ’edges’ in spectro-

1See the MIREX website for their proposal. (link)
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grams of a piece music and a CNN is therefore perfectly suited for finding these
edges and thus the onsets2.

After these successes with the application of CNN’s within musical onset de-
tection, Ullrich, Schlüter, and Grill made the link to musical structure analysis
and its similarity to musical onset detection. Their efforts to also apply convolu-
tional neural networks on this music information retrieval problem resulted in a
new state-of-the-art for music structure analysis, which I will describe below.

2.3 Music Structure Analysis
Music Structure Analysis, as described in the introduction, is the process of find-
ing important parts in a piece of music, on many possible hierarchical levels. As
per my definition I will focus on the functional high level segments in a piece of
music.

In many songs, a few of these high level segments have the same function (a
song may contain two or more verses or choruses, etc.), and are therefore grouped
together. This thus resulted in the two approaches to this problem described in the
introduction. Due to the many differences between different songs, even within
the same genre, it has always been very difficult to assign a function to a segment.
First research to this problem therefore initially focused on finding the segment
boundaries first and then grouped similar segments together. Similar segments
were then given the same capital letter denoting their similar function without
specifying it further (as verse, chorus, etc.).

2.3.1 Distance-based Segmentation and Annotation approach
to Music Structure Analysis

N.B. A more in depth overview of the Distance-based Segmentation
and Annotation approach can be found in Kuiper [43].

The distance-based segmentation and annotation approach can be summarized
into a few different sub-approaches; a novelty-, homogeneity- and repetition-
based approach.

Self-Similarity Matrix

All methods rely on the same main principle, a self-similarity matrix (SSM). A
self-similarity matrix, first introduced by Foote [25], is a matrix constructed by
calculating the distance of each feature vector to the other feature vectors. Lower
distance values mean that the two feature vectors compared are more similar to
each other than two feature vectors with a higher distance value. This will result
in a n × n matrix, where n is the amount of feature vectors of the song. The

2In practice this is a lot less trivial, however Schlüter and Böck [69] have put great effort into
trying to explain it.

17



2.3. MSA CHAPTER 2. RELATED WORK

Figure 2.6: Example of a Self-Similarity Matrix, created on Mrs. Robinson by
Simon & Garfunkel.
Reprinted from Kuiper [43] (Figure 2.2a).

distances are then normalized to a similarity value. If the distance between two
feature vectors is equal to 0, their similarity is equal to 1, all other distance are
normalized between a similarity value of 0 and 1. From the way self-similarity
matrices are calculated, a diagonal line of similarities with a value of 1 will be
seen. This line represents the similarity between each feature vector and itself,
which is obviously 1.

Repetition-based Approach

The repetition based approach to DSA makes use of this property of SSM’s by
detecting more diagonal lines in the SSM. Another diagonal line means that a cer-
tain part of the song is repeated elsewhere. The start and end of these repetitions
can than be used to determine the location of a segment boundary. One technique
used to do this is called Structure Features [73]. A (cyclic) time lag matrix is
constructed from a SSM. This time lag matrix shows horizontal or vertical lines
(depending on the exact process used). Each line shows for the frame the line
occurs in, the amount of time (in frames) it takes before that frame is repeated (in
terms of the feature used to create the time lag matrix).

Novelty-based Approach

The novelty based approach makes use of another property of SSM’s: blocks. A
block in a SSM denotes a section of consistent features for the duration of the
block. Foote [24] was the first to come up with a way to detect the transition
of one block into another along the main diagonal of the SSM. Their method
used a (Gaussian) checkerboard kernel. A most basic checkerboard kernel can be
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(a) Normal checkerboard kernel
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(b) Gaussian tapered checkerboard kernel

Figure 2.7: An example of a normal and Gaussian tapered checkerboard kernel.
Reprinted from Kuiper [43] (Figure 2.3).

constructed using a 2×2 matrix, like this:

K =

[
−1 1
1 −1

]
A checkerboard kernel functions in a similar way to how a Sobel Operator works
in image processing to detect edges. However, in contrast to the Sobel Opera-
tor, which uses a horizontal and vertical operator to detect horizontal and vertical
edges, a checkerboard kernel is specifically designed to detect diagonal edges.

Since the example kernel is a 2×2 matrix, only 2 different feature vectors will
be taken into account, it is therefore more common in music structure analysis to
use larger checkerboard kernels, like 64×64. To give more importance to closer
feature vectors, the checkerboard matrix can be tapered with a Gaussian function
(Figure 2.7).

By applying a checkerboard kernel over the diagonal of a SSM, an ‘edge ac-
tivation’ can be calculated for each feature vector. From this a novelty curve can
be constructed, denoting the amount of novelty (in terms of the acoustic features
used) between two adjacent feature vectors. By, for example, applying adaptive
thresholding, the peaks in this novelty curve can be extracted. The location of
each peak then stands for the location of a segment boundary.

Homogeneity-based Approach

The homogeneity-based approach to DSA has been researched a lot less. A most
recent research implements this approach using a Hidden Markov Model. Each
state stands for a homogeneous piece of music, and the chance to go to the next

19



2.3. MSA CHAPTER 2. RELATED WORK

state determines the chance of a segment boundary. Bigger advances within the
other DSA approaches led to this approach being put aside.

2D fourier Magnitude Coefficients

Once all segment boundaries are detected, the segments can be extracted. This
leads to the next step in most DSA approach: segment labeling. One of the most
common techniques for this is to use some kind of clustering method, and then
assigning a label to each cluster. Each segment, however, can be of different
length. A way to represent each segment in such a way that a distance metric could
be applied was therefore needed. The use of the magnitude of the 2D Fourier
Transform, originally a technique used in image processing, was therefore first
introduced by Ellis [21]. Nieto and Bello [61] were the first to apply the 2D
Fourier Magnitude Coefficients for segment clustering.

Clustering segments this way proved to be quite accurate. One big problem
however, was the amount of clusters that had to be used, since this could vary per
song.

2.3.2 Current State-of-the-Art
Due to the successes of CNN’s within onset detection and its similarity to finding
the segment boundaries –the start of a new high level segment can be compared
to a strong onset viewed in a big time window– , Ullrich, Schlüter, and Grill put
their effort into creating a convolutional network that is capable of finding these
boundaries, based on their model created for onset detection. Their first results
were presented in 2014 [79]. In this publication they report an advance of the
state-of-the-art of that time for MSA, F-measure of 0.33 to 0.46 for 0.5s tolerance
and F-measure of 0.52 to 0.62 for 3s tolerance.3 A few different input features
were tested (MFCC, Chroma, Mel spectrograms), and finally 5 different models
trained on Mel spectrograms were bagged [8] together for their final model.

To account for misses of boundaries between non-local musical cues, such
as segment repetitions, Grill and Schluter [29] presented an improvement on the
initial convolutional network by combining the Mel-scaled Log-magnitude Spec-
trograms (MLS) with Self-Similarity Lag Matrices (SSLM) as input. They tested
different models that each combined these inputs at a different moment in the
model (Figure 2.8). Their best model, fusing the inputs in the convolutional layer
(Figure 2.8d), advanced the F-measure from 0.46 [79] to 0.52.

Grill and Schlüter [30] further expanded this model by dividing the SSLM into
a near (14 second time context) and far (88 second time context) variant, each used
as different feature combined with a MLS as their input for their models. They
also added another neuron to the output layer giving it two neurons in total. One
of these neurons was trained on lower level annotation available in their dataset,

3A 0.5 or 3 second tolerance means that a segment boundary is counted as a hit if it lies within
0.5 or 3 seconds of the ground truth. Refer to Kuiper [43] (section 2.2.2) for more elaboration on
this subject.
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Figure 2.8: Four different CNN architectures for combining two input features.
Reprinted from Grill and Schluter [29].

while the other neuron was trained on the high level annotation. They show that
using two annotation levels increases the F-measure of over 0.3 on 0.5s tolerance.

Their final model was presented in their MIREX submission for the MIREX
2015 Music Structural Segmentation task [31].

2.4 SALAMI Dataset
Many datasets have been created and used for music structure analysis. An ex-
tensive listing with most well-known data-sets can be found on the website of the
International Society of Music Information Retrieval, or ISMIR (link). There are
a total of 16 data-sets listed there that cover musical structure. Only 5 of these
data-sets cover western popular music and feature a song total above 100, these
are the INRIA:Eurovision, INRIA:Quaero, QMUL:Beatles, RWC and SALAMI
datasets respectively.

Although these datasets contain the annotations, and some of them also the
features, of the songs, none of these actually provide the audio of the annotated
songs. The only dataset that did provide a link to the audio files is the SALAMI
dataset. The SALAMI dataset, or Structural Analysis of Large Amounts of Mu-
sical Information dataset, is an unprecedented large dataset that contains 2400
structural annotations [75]. This dataset contains, among many other subsets, an
internet archives subset. The internet archives subset contains the annotations of
songs publicly available on the internet together with a link to an .mp3 file with
the audio.

2.5 Acoustic Features
To represent the audio in a more meaningful way, many features have been used
or proposed in the past, in this section I will inspect a few of the most popular
features that are being used or have been used in music information retrieval and
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Figure 2.9: PCP chromagram compared to CENS chromagram, both constructed
with 12 bins, 2048 FFT window size and 512 hop length.

music structure analysis in particular. Further explanation of these features among
citations to great other sources about these features can be found in [65].

2.5.1 Chroma
The chroma, or ‘color’, of a song closely relates to the (generally twelve) different
pitch classes in music. There are multiple chroma types, each one calculated in a
different way to represent each pitch class in a slightly different way. The first step
for each chroma type however, is to first create a spectrogram. A spectrogram is
created by applying the discrete fourier transform (DFT) on a slice, or window, of
the audio. By repeatedly applying the DFT on the window, while it is being slid or
hopped through the audio, one can create a representation of the intensity of each
frequency over time. This technique is called the Short Time Fourier Transform
(STFT).

The window size in this context is called the Fast Fourier Transform or FFT
window size (often 2048 or 4096 audio samples). Each time the window is moved,
the amount of audio samples it moves is called the hop length (often 512 or 1024).
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If a FFT window size of 4096 is used and a hop length of 1024, one can see that
there is 75% overlap between each output of the DFT.

The Pitch Class Profile (PCP) [45] is one of the most low-level chroma rep-
resentations. The STFT spectrogram is converted to an intensity of each 12 pitch
classes (C, C], D, etc.) on the equal-tempered scale. If 12 bins are used, each
bin represents a semitone, if a multiple of 12 bins are used, each bin represents
an equal fraction of a semitone. The PCP has primarily been used to compute the
similarity between two songs, however more computation and analysis is needed
to extract higher-level patterns from the PCP.

The Chroma Energy Normalized Statistics, or CENS, chroma representation
[60] is another chroma representation commonly used in audio matching, audio
retrieval and music similarity. This feature is more popular in this fields because
of its robustness to audio dynamics, timbre and articulation. This robustness is
obtained by taking statistics over large windows, therefore smoothing local devi-
ations in tempo, articulation and music ornaments such as trills and arpeggiated
chords. A downside to this smoothing is that at some points in time it can be hard
to determine which pitch class is the most dominant.

A comparison between a PCP chromagram and CENS chromagram can be
found in Figure 2.9.

2.5.2 Timbre
Another way of representing audio is by its timbre. Timbre has no direct def-
inition, it however is generally described as "The perceived sound quality of a
musical note, sound or tone". Timbre was introduced to distinguish between two
instruments, since two instruments playing the same tone, will have the same
chroma value.

While the Fourier Transform is able to extract the intensity of each frequency,
it has a few flaws. That is why the Mel Scale was created. The mel scale, originally
introduced by Stevens, Volkmann, and Newman [76], is a perceptual scale that
scales each pitch judged by listeners to be in equal distance from each other. They
introduced this scale because the human auditory system is not equally sensitive
to each audio frequency, for example the human auditory system is most sensitive
to the 2000 to 5000 Hz range [26]4

Using the mel scale we can create so-called Mel-scaled spectrograms, or cep-
strograms, that represent the intensity of each mel-frequency at each audio sample.
A cepstrogram does represent the different sounds quite good, especially since the
vector length at each time point is a lot longer than 12 (or a low factor of thereof).
However, due to its enormous dimensions, using a cepstrogram as feature for a
model can be quite computational intensive.

Partly for this reason, the Mel Frequency Cepstral Coefficients (MFCC) were
created [51]. The MFCC discretize a mel-scaled spectrogram by first taking the
Fourier Transform of an audio stream. Then, the powers of the spectrum are

4It is therefore no surprise that the screams of a baby are around the 3500 Hz region.
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Figure 2.10: Mel-frequency spectrogram compared to Mel Frequency Cepstral
Coefficients with 20 bins.

mapped onto the mel-scale, using triangular overlapping windows. The log of the
power of each mel frequency is taken, followed by a discrete cosine transform
over the list of mel log powers. Often 20 bins are used for the final vector length
of the MFCC. A comparison between a mel-scaled spectrogram and the MFCC of
that same spectrogram can be found in Figure 2.10.

Although its high information density, MFCCs are not ‘the ultimate feature
to describe all audio’ [63]. Therefore, other timbre features still need to be con-
sidered, one example being the Constant-Q Transform (CQT) [9]. The CQT is
very closely related, but is calculated in a slightly other way. However, due to
the complex calculation, another way of calculating the CQT using the FFT in
conjunction with a kernel was proposed [10, 6].

2.5.3 Rythm
Not only the tones or harmony of a piece of music can be used as input for music
information retrieval models, rhythmic features can also add a lot of information.
This is especially applicable to the detection of the musical structure. Similar seg-
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Figure 2.11: A comparison of a Fourier tempogram and autocorrelation (cyclic)
tempogram made on the same onset strength envelope.

ments often employ similar rhythmic features, while different segments, like verse
and chorus, can differ in their rhythmic features. Rhythmic features therefore can
be used to both label or cluster segments, or to detect boundaries between two
segments (when a sudden change in a rhythmic feature is detected).

One of the most well-known rhythmic features is tempo. Tempo can be repre-
sented as the amount of beats per minute, or BPM. Tempo represented on a time
scale is called a tempogram; the feature vector at each time point represents the
probabilities of a certain BPM at that time point.

Since detecting the tempo at each time point turned out to be quite difficult,
cyclic tempograms were introduced [32]. A cyclic, or autocorrelation, tempogram
detects tempi differing with a power of two, thereby reducing the amount of pos-
sible tempi at a certain time point, and thus increasing the probability value of the
most probable tempo, since there will be more tempi differing with a power of
two around the true tempo.
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Another way of computing a tempogram is by using a (short-time) Fourier
transform on the onset strength envelope. A comparison between these tem-
pograms can be found in Figure 2.11.
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Chapter 3

Methodology

This chapter contains an extensive explanation of the dataset and the labels and
acoustic features that were extracted from it. I then introduce the architectures of
the models I have created.

3.1 The Data
As explained in the SALAMI Dataset section, the internet archives subset of the
SALAMI dataset was used for the models I created. Another benefit of using this
dataset, apart from the amount of publicly available songs, is that the SALAMI
dataset, and the internet archives subset in particular, have been part of the eval-
uation datasets for many MIREX Music Structural Segmentation contests. The
results of models created on this data will therefore be quite comparable to the
results reported in submissions to these MIREX contests.

The internet archives subset consists of two parts: A CSV file containing all
metadata about each song, and the actual annotations. Among this metadata is
a web-link to the audio file of that song in .mp3 format. Using these links and
the SONG ID given to each song, each audio file was downloaded and saved as
[song-id].mp3.

All annotations for a song are stored in a folder named by the ID of the song.
Since one or more annotators have annotated each song, this folder may contain
at least one, and often more, text files. Each line of text in these text files stand for
a segment. The first item of each line of text is a number denoting the time point
(in seconds) of the start of the segment. Then the labels describing the function of
the segment follow. Because two levels of annotation were used, the collection of
labels may contain one or more items.

The first item in the collection of labels always is a lowercase letter describ-
ing the low level function of the segment, often written in combination with a ’.
Segments with the same label are musically similar to each other, the ’ means
that although the (musical) function between the segments is similar, they differ
slightly in musical terms (e.g. key, mode).

Some collections of labels contain two more labels, the high-level annotation
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(denoted by an uppercase letter) and the segment function (chorus, verse, etc.). All
time points without high-level annotation and segment function implicitly have the
most recent high-level annotation and segment function that occurred.

Apart from the text files containing all annotations of one annotator, the folder
with annotations also includes a folder for each annotator. In this folder there are
multiple text files each one containing one type of annotation, thus one text file
contains the low-level annotations, another one contains the segment functions,
etc.

The exact instructions given to each annotator on how to annotate a song, and
how to format their annotations can be found in the annotator’s guide (link).

Using the time points and labels of each segment boundary the accuracy of
predicting the start of each segment can be determined for each model. I will
further explain the exact evaluation method in the Evaluation Method section.
The full list of songs used can be found in Appendix C.

Label extraction

To not have to manually parse each text file I have made use of the formatted
annotations in Json Annotated Music Specification (JAMS) format [38]. These
formatted annotations are available in the Music Structure Analysis Framework
(MSAF) [62].

For each song in the internet archives dataset the first annotation was chosen.
This reduced the amount of different annotators to under 5, thereby decreasing
the amount of ambiguity between the annotations of different songs. Still, there
were quite a lot of different labels present in the dataset (26), of which 10 labels
have around or under 10 occurrence within the 4000 segments present in the first
annotation of each song in the internet archives dataset.

By decreasing the amount of unique labels, the amount of ambiguity between
the annotations was decreased while presumably increasing the accuracy of the
models.1 The grouping of each label is based on the occurrence of the unique
label in the dataset, its musical function and the label of another annotator for the
same segment. By also listening to a few segments of each of the labels that had
a low occurrence in the data, my personal judgement of the relation between a
certain label and the sounds I associate with it were used for the grouping of the
labels.

One example of the benefit of using this subjective judgement are the segments
that were labeled as instrumental. These segments turned out to be musically
equal to solo in the context of the data. Since the data primarily consists of live
recordings of (alternative) Western Popular Music, both meant a sole guitar (sup-
ported by drums) without any lyric. This was the decisive factor to group these
labels together as solo. The other labels were grouped in a similar way, while
taking into account the other factors described as well. The final grouping of each
label can be found in Table 3.1.

1Less labels in general means that there is more difference between the labels, thereby increas-
ing distinguishability of the labels and making it easier for a model to differentiate them.
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Label Occurrence in data Grouped Label Occurrence in data
silence 446 silence 446
no_function 483 no_function 505
applause 12 no_function
stage_sounds 6 no_function
spoken 3 no_function
crowd_sounds 1 no_function
intro 243 intro 300
head 57 intro
verse 718 verse 726
pre-verse 7 verse
voice 1 verse
interlude 189 interlude 249
transition 51 interlude
break 9 interlude
solo 514 solo 717
instrumental 160 solo
theme 39 solo
main theme 4 solo
chorus 655 chorus 740
pre-chorus 61 chorus
post-chorus 24 chorus
bridge 106 bridge 107
build 1 bridge
outro 132 outro 182
coda 48 outro
fade-out 2 outro

Table 3.1: Grouping of all 26 unique labels into 9 main labels.

Once each raw label was converted to its grouped label, a one-hot-encoding
vector of each label was created. A one-hot-encoding vector of a beat is a vector
with the length of the amount of labels containing only zeros except for the index
of the true label for that beat. The indices of the grouped labels are 0 to 8 for
silence, no_function, intro, verse, interlude, solo, chorus, bridge and outro in that
specific order respectively.

3.2 Feature Selection
Feature Extraction

The LibROSA Python package for music and audio analysis [56] was used to
extract the features from each audio file. A hop length of 1024 together with a
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Feature Vector Length Matrix Size
CQT 84 84×4
CENS 12 12×4
PCP 12 12×4
Tonnetz 6 6×4
MFCC 14 14×4
Tempogram 192 192×4

Table 3.2: Vector length and matrix size of each feature extracted.

FFT window of 4096 for 75% overlap within each feature vector was used for the
extraction of each feature.

First the beats were extracted using the method introduced by Ellis [21]. Then
the Chroma Energy Normalized Statistics (CENS) [60] chroma variant was ex-
tracted. As low level harmonic/chroma features the Pitch Class Profile (PCP) [45]
was extracted. It was saved as self-contained feature and used to create the Ton-
netz features [33]. A Mel Spectrogram [76] was also created and used to create
the Mel-Frequency Cepstral Coefficients (MFCC) with 14 coefficients [51], these
represent the timbre of the song. As other timbre feature the Constant-Q Trans-
form (CQT) [9] was extracted, using the technique described by Schörkhuber and
Klapuri [71]. Because often a segment boundary goes hand in hand with a change
in tempo (e.g. a short speedup in tempo, or the next segment is in a lower or
higher tempo), the tempogram of each song with a window length of 192 [32] was
created too.

The resulting feature vectors had a length of 84, 12, 12, 6, 14 and 192 for the
CQT, CENS, PCP, Tonnetz, MFCC and tempogram feature vectors respectively
(Table 3.2).

Data Reduction

Each feature was first extracted based on the frames of a song. The amount of
frames of a song is calculated by the sample rate (amount of audio samples per sec-
ond) multiplied by the length of the song (in seconds) divided by the hop length.
Since each song was converted to Waveform (wav) audio format with a sample
rate of 22050, this meant, combined with an average song length of 4 minutes or
240 seconds and a hop length of 1024 for each feature, (240 ·22050)/1024= 5168
frames on average for each song.

To reduce the amount of feature vectors each feature was beat synchronized.
The means that for each beat in a song there is one vector for each feature. This
vector is calculated as the average of all vectors of that feature within the beat.
With an average beats per minute (BPM) of 120 for all songs (thus 2 ’frames’ per
second), the average amount of vectors per song was now reduced to 240 ·2= 480.
With a total of 277 songs (after data cleaning) I gathered a total of about 180000
vectors per feature.
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Figure 3.1: Proposed CNN architecture with CQT, MFCC and Tempogram as
example inputs.

3.3 Proposed Architectures

3.3.1 Preserving Temporal Aspect of Music
To obtain faster learning speeds of the models, the data needs to be shuffled; if all
beats of a song are kept in the initial order, the output labels will be sequences of
the same label. Even when the batch size is increased, samples with the same out-
put label are still being fed to the models in each learning iteration, thus lowering
its capabilities to learn multiple output labels in one learning iteration.

One problem of shuffling the data however is that one beat alone will not be
enough for a network to learn all patterns that can be associated with an output
label, thus requiring the temporal aspect of the song to be left intact. My proposed
solution to this problem is to, instead of using a single vector per feature per beat,
combine the vectors of two beats before the current beat, the vector of the current
beat and the vector of the beat after the current beat into a matrix for each feature.
The results is therefore a matrix, with a shape of length_ f eature×4, per feature
per beat.

In the next sections I will explain, per proposed model, how I used this matrix
as input.

3.3.2 Convolutional Artificial Neural Network
Because of the great results with convolutional neural networks in the music struc-
ture analysis field, I propose an implementation of the segmentation approach us-
ing a convolutional neural network.

This CNN has multiple input layers, one matrix per beat for each feature used.
Each input matrix will therefore act as the input image, as described in the CNN in
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MIR section. After each input layer there is a two-dimensional convolutional layer
with a 3× 1 kernel, followed by an optional two-dimensional max- or average-
pooling layer with a 2× 2 pooling size. Then another two-dimensional convolu-
tional layer follows with 128 neurons and 3×1 kernel.

The outputs of this last convolutional layer of each input is then concatenated
to one big n× 4 matrix. n represents the summed length of the first dimension
of each output shape. The concatenated outputs are then fed into a last two-
dimensional convolutional layer, with 64 neurons and 3×1 kernel.

The (two-dimensional) output of the final convolutional layer is flattened into
a single vector, and used as input for a dense layer with 9 neurons (each neu-
ron representing one output label) and softmax activation function. The softmax
activation function normalizes the outputs of each neuron into a probability dis-
tribution, thus each output is scaled to be within the [0,1] interval and all scaled
outputs sum to 1. The highest output is then selected as predicted label for the
input, with its activation as confidence or probability that this label is the true
label.

An example model, with CQT, MFCC and Tempogram as input features can
be found in Figure 3.1.

3.3.3 Bi-Directional Long Short-Term Memory Artificial Neu-
ral Network

Alongside a convolutional neural network, I also propose a bi-directional long
short-term memory neural network implementation of the segmentation by anno-
tation approach. This model will show if its capabilities to cope with temporal
data and its performance in the automatic audio segmentation field also apply
to music structure detection. The model is made bi-directional because of the
reported increased performance of bi-directional recurrent neural networks over
normal recurrent neural networks [72].

I propose two different architectures using long short-term memory units, a
model with one bi-directional LSTM layer (Figure 3.2a), and a model with a
double bi-directional LSTM layer, optionally combined with a max- or average-
pooling layer (Figure 3.2b). Both models first contain an input layer per feature
used, similar to the proposed CNN. In contrast to the CNN, all input is immedi-
ately concatenated into one matrix (with shape n×4).

When a single LSTM layer model is build, this matrix is fed into bi-directional
LSTM layer. However, since a (B-)LSTM layer has only one dimension, each col-
umn (or vector representing a beat) is separately evaluated. Because we want a
single output from the full network, the B-LSTM layer is set to put one vector out
after all 4 beats have been evaluated. This output is then passed into a dense layer,
containing 128 neurons, whose output ultimately is put in a dense layer contain-
ing 9 neurons (each one representing one output label), and a softmax activation
function (Figure 3.2a).

If a double LSTM layer model is built the first B-LSTM layer does not first
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evaluate all 4 beats, but gives an output for each of the 4 beats. Each output is
optionally passed through an one-dimensional max- or average-pooling layer with
a pool size of 2. Then another B-LSTM layer receives each output and evaluates
them all, before outputting a single vector which is fed into the final dense layer
with 9 neurons and softmax activation (Figure 3.2b).
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(a) Single B-LSTM layer architecture.

(b) Double B-LSTM layer architecture.

Figure 3.2: Proposed LSTM architectures with CQT, MFCC and Tempogram as
example inputs.
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Chapter 4

Experimental Results

In this chapter I report the initial results from the first test. After that I propose
changes to this first test, and report the results from this final test.

4.1 Evaluation Method
In order to find the best model on the dataset, multiple models were created, each
with different hyperparameters and combinations of features as input. This initial
test aimed to create a model on each possible hyperparameter value and feature
combination possible. Each model was created using the Keras [14] machine
learning framework originally build for Python. This framework is build on top of
the popular, well-known machine learning API Tensorflow 2.0 [55].

4.1.1 The Hyperparameters
For each generally important parameter for a neural network, a hyperparameter
was created. I will explain each hyperparameter below. A list of all hyperparam-
eters and their values can be found in Table 4.1.

Hyperparameter Values
Neurons 128, 256, 512
Activation function ReLu, Elu
Pooling no_pooling, max, average
Optimizer RMSprop, Adam
Dropout 10%, 20%, 30%, 40%, 50%
Epochs 1, 10, 50, 100
Batch size 1, 5, 10, 50, 100

Table 4.1: Initial hyperparameters and their initial range of values.
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Figure 4.1: Comparison of output of Elu, ReLu and Leaky ReLu activation func-
tions on varying input values. If x > 0, all activation functions have a linear output
of y = x.

Neuron Count

The first hyperparameter is the amount of neurons that make up the first layer.
This is the first convolutional layer for the CNN models and the first or only B-
LSTM layer of the LSTM models. 128, 256 and 512 were chosen as initial values
for this hyperparameter.

Activation Function

The second hyperparameter is the activation function of each neuron, the chosen
activation function is applied on each layer, except for the final dense layer, which
has a softmax activation function (as explained in the Methodology chapter). I’ve
included Rectified Linear Unit (ReLu) [1] and Exponential Linear Unit (Elu) as
possible values. ReLu was included because it is seen as goto activation function,
however because no negative activation is possible with this function, I’ve cho-
sen to include Elu as activation function as well. Another alternative activation
function close to ReLu allowing negative activation is Leaky ReLu, however this
activation function was not available in Keras. A visualization of the different
activation functions on varying input values can be found in Figure 4.1.

Pooling

The output feature maps of convolutional layers are sensitive to the location of
features in the input. One way of solving this problem is to down sample the
feature maps. An approach to down sampling is provided in the form of a pooling
layer. Two common types of pooling layers are defined: max and average. Max
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pooling works by returning the maximum value present in the pooling size as
output, while average pooling works by calculating the average. The pooling
layers defined in the models use local pooling with a pooling size of 2×2.

Not only is pooling being used in convolutional networks, Gimeno et al. [28]
employ pooling between their bi-directional LSTM layers. Therefore, no pooling,
max pooling and average pooling were chosen as possible pooling functions for
both the CNN and LSTM models. No pooling in this context meant that the
pooling layer addition would be omitted during model creation.

Optimizer and Dropout

Neural networks ’learn’ by applying back propagation each learning iteration.
During back propagation each weight is modified with regards to the output error.
The aim is to reduce the value of the loss function. Because the models created
for segment classification are multi-class classifiers with one true label, categori-
cal cross entropy is used as loss function in these models. Future research has to
prove whether using other loss functions may be better instead [36]. To reduce
the loss, the gradient is calculated. An optimizer is a function that can efficiently
use this gradient to update the weights of the models to decrease the loss as fast
as possible. One of the newest, most popular and best performing optimizers of
this moment is the Adam optimizer [40]. As comparison optimizer the RMSprop
optimizer was chosen.

Another way of boosting the learning rate (or speed of which the loss de-
creases) is to use dropout. Dropout, introduced by Hinton et al. [34], works by
randomly ‘dropping’ a percentage of the neurons of certain layers. This means
that all connections to these neurons are removed and that the other neurons are
required to ‘learn’ the same representations that were first captured by the now
removed neurons. Too low values for dropout are found to not have much impact,
while too high dropout rates will reduce the overall performance of the models.
50% dropout rate is generally seen as a the threshold from which the performance
of the models will decrease, but is still very popular in the field [79]. Therefore,
the range of dropout rates is defined between 10% and 50%, with a step size of
10%. The dropout is applied on each layer except for the last dense layer.

Epochs and Batch Size

The final two parameters are used during the training phase of a model. These are
the epochs and batch size parameters. The amount of epochs defines how many
times the training data is evaluated before the final model is returned. Increasing
the amount of epochs means that the model has more time to learn all patterns
into greater detail, however too high values will cause the model to overfit1 and
severely increases the time it takes to train the model. 1, 10, 50 and 100 epochs

1If the model evaluates each sample many times it will become very good in classifying each
sample, however new samples (less similar to the learned samples) will get a wrong classification
more often.
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Feature Combination
CQT, CENS, PCP, Tonnetz, MFCC, Tempogram
CQT, MFCC
CENS, MFCC
PCP, MFCC
Tonnetz, MFCC
CQT, MFCC, Tempogram
CENS, MFCC, Tempogram
PCP, MFCC, Tempogram
Tonnetz, MFCC, Tempogram
CQT, Tempogram
CENS, Tempogram
PCP, Tempogram
Tonnetz, Tempogram
MFCC, Tempogram

Table 4.2: Initial feature combinations.

were chosen as values for this field. Higher epoch values are not unused within the
field, however this are enough values to show the impact of the amount of epochs
without increasing the training process too much.

The batch size determines how many samples are passed through the network
before back propagation is applied. The back propagation then is applied with
the gradient of the loss of all these samples. Larger batch size generally speeds
up the learning process of a model since less updates per epoch are performed.
However, if the batch size is too large, a model will not always be able to learn
specific patterns for one specific output, thus lowering its precision. I’ve chosen
to create models on a wide range of batch sizes: 1, 5, 10, 50 and 100.

Feature Combinations

Based on previous research and type of each feature, 14 different sets of feature
combinations were created. An overview of these combinations can be found in
Table 4.2. The MFCC has been included relatively many times based on its overall
high success rate in previous research. A few benchmark combinations, without
the MFCC, were added as well. In general feature combinations combining mul-
tiple features of the same type were omitted.

Multi B-LSTM layer

The LSTM models were given an extra parameter. This parameter determined
whether a single or double B-LSTM layer would be added during model creation.
Only when a double B-LSTM layer model was created a pooling layer would be
added between the B-LSTM layers (if pooling was to max or average). Otherwise
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no pooling layer would be added to a LSTM model.

4.2 Initial Test

4.2.1 Initial Test Setup
Using the values of each hyperparameter and the feature combinations an attempt
had been made to create a model on each possible combination trained on 80%
of the total data (about 150000 samples) and evaluated on the remaining 20%
(35000). An output was registered as being correct when the index of neuron with
the highest activation in the output layer corresponded with the index of the 1 in
the one-hot-encoded true label vector and as a wrong classification otherwise. The
accuracy was then calculated as the ratio of correct to wrong classifications.

One machine, containing an AMD Ryzen 7 3700x CPU and a NVIDIA
GeForce GTX 1080 (8GB) GPU, was used to train and evaluate one CNN and one
LSTM model simultaneously. Keras and the Tensorflow 2.0 backend were set to
run on the GPU, while data flow was managed by the CPU.

4.2.2 Initial Test Results
Since both a CNN and LSTM model were trained simultaneously, one epoch with
a batch size of 1 roughly took 30 ∼ 50 seconds. A total of 50400 CNN models and
100800 LSTM models had to be trained. This meant that about 6 million epochs
of the data needed to be performed. Although only 20% of the models have a
batch size of 1, the expected time per epoch still was way above 10 seconds. This
meant that training and evaluating all CNN models would’ve taken 1 year and
training all LSTM models around 2 years2.

Therefore the initial test setup was aborted after 1.5 weeks. In this time 145
LSTM and 292 CNN models were trained and evaluated. These models did not
evaluate the impact of the amount of neurons, activation function and optimizer
used nor the impact of the dropout. However, I was able to derive the impact of
the amount of epochs, the batch size and feature combinations.

After preliminary data analysis, a number of trends were identified. The two
trends that stood out the most were the amount of epochs and the batch size.
A higher amount of epochs as well as a larger batch size always increased the
performance of the model. The CQT turned out to be the best performing feature,
with the Tempogram and MFCC being the two best features after that.

The best performing CNN model had an accuracy of 0.66 on the test data,
the best performing LSTM an accuracy of 0.43. No real performance increase of
using a double B-LSTM layer over one B-LSTM layer was noticed.

2This does not take the possible speedup when all CNN models are evaluated into account.
However, the optimistic 10 seconds per epoch accounts for that.
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Feature Combination
CQT, Tempogram
CQT, MFCC
CQT, MFCC, Tempogram

Table 4.3: Final feature combinations.

4.2.3 Adjustments
To also be able to evaluate the other hyperparameter values, some changes to the
search space were made.

Feature Combinations

The first modifications were in the feature combinations. The Tonnetz feature
turned out to be too small of a feature to be usable with any pooling, and was
therefore removed from the features. Since no improvement was obtained using
all features instead of only CQT, MFCC and Tempogram, the CENS and PCP
features were removed from the feature combinations as well. This reduced the
amount of feature combinations from 14 to 3. Thereby reducing the factor that
determined the amount of models that had to be trained and evaluated the most.
The final feature combinations can be found in Table 4.3.

Hyperparameters

After the feature combinations, the amount of values of some hyperparameters
were reduced as well. The most reduced ones were the epochs and batch size,
these have been truncated to only contain 10, 50 and 100. Furthermore, the
dropout rates were reduced to 10%, 25% and 50%.

To evaluate the impact of the activation function and optimizer, the best per-
forming CNN and LSTM were trained on ReLu and Elu activation while using
the Adam and RMSprop optimizer. This showed that using Elu did not improve
the accuracy, while using the Adam optimizer heavily increased the accuracy with
over 10%. The ReLu activation function was therefore chosen as the only acti-
vation function and the Adam optimizer as the only optimizer. As an additional
benefit, Adam is a faster optimizer and therefore decreased the time of each epoch
with quite a large factor. Furthermore, the double B-LSTM layer hyperparameter
was removed, thus allowing only the creation of single B-LSTM layer models.
The final hyperparameters and their values can be found in Table 4.4.

Final Test

One final big factor that increased the duration of each epoch was the amount of
data. To decrease this factor, the training and test data were reduced to only 10%
of its original size. The amount of samples used for training therefore decreased
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Hyperparameter Values
Neurons 1285,256,512
Activation function ReLu
Pooling no_pooling, max, average
Optimizer adam
Dropout 10%, 25%, 50%
Epochs 10, 50, 100
Batch size 10, 50, 100

Table 4.4: Final hyperparameters and their final range of values.

to 15000 and the amount of samples used for testing decreased to 3500. Although
overall accuracy of the models were expected to be lower on this subset than on the
full dataset, models with better hyperparameters and features will perform better
than other models on both the full dataset or a subset thereof. Therefore, deter-
mining the best hyperparameter values and feature combinations, would still be
possible. A downside of reducing the dataset too much can result in the training
data to not contain enough variation. However, 15000 samples were judged to be
quite representative for the full dataset, especially since all samples are chosen at
random and not on a song basis. Each sample in this context means the concate-
nation of the feature vectors of the two beats before the current beat together with
the feature vector of the current and the next beat, and not the feature vector of
one single beat.

The search space was now reduced to just above 700 different models. By
using the Adam optimizer, removing the batch size of 1 and reducing the size of
the dataset, the average time per epoch also reduced to around 3 seconds. The
expected time to train and evaluate these models therefore reduced to less than a
week, which was more within the time-scope of this thesis.

4.3 Final Results
After 5 days all models were trained and evaluated. The accuracy of each model
was saved in a text file, named by the parameter values and features used to create
that model separated by an underscore. All models were then grouped in a list
sorted by their accuracy in descending order. Each parameter was analysed by
grouping all models by their value for that parameter. Then the total amount of
models made with that value for the parameter and amount of models in the top
10% of all models (around 700 models were created, top 10% therefore accounted
for 70 models) were counted. With these counts the percentage of models with
that value in the top 10% of models were calculated. This gave a distribution of
each parameter value for the top 30% best performing models. All distributions
can be found in Table 4.5.

Using the percentages, a best performing value for each parameter can be de-
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Values No. models
created

No. models
in top 10%

%. models
in top 10%

Neuron
Count

128 267 37 0.139
256 250 18 0.072
512 218 15 0.069

Dropout
10% 316 27 0.085
25% 232 28 0.121
50% 187 15 0.080

Pooling
none 242 0 0
max 259 43 0.166
average 234 27 0.115

Epochs
10 255 0 0
50 244 20 0.082
100 236 50 0.212

Batch
size

10 249 2 0.008
50 245 27 0.110
100 241 41 0.170

Feature
Combo

CQT +
Tempogram 202 37 0.183

CQT +
MFCC 201 0 0

CQT + MFCC +
Tempogram 200 18 0.090

Table 4.5: Analysis of all CNN models created with different parameter values
and feature combinations. Best performing value of each parameter had been put
in bold.

rived. This does not immediately mean that the best performing models has these
values for each parameter, however further analysis showed that the model with
these parameter values and feature combination as input, indeed was among the
top 3 best performing models.

4.3.1 Best performing models
Parameter values and input features combination

Following the analysis of the parameter values, the best performing CNN and
LSTM models could be defined. These models both have a neuron count of 128
in the first layer, a dropout of 25%, max pooling, a batch size and epoch count
of 100, ReLu activation function and Adam optimizer. As input features the
Constant-Q Transform in combination with the Tempogram was chosen. Using
the best performing values for each parameter together with all features as input
only improved the accuracy with < 1%, while increasing evaluation time. The
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Dataset Measure CNN LSTM
Beat Classification
Accuracy

Training data 0.9456 0.8265
Test data 0.80 0.77

0.5F 3F 0.5F 3F
All songs
custom ground truth

Untrimmed 0.6849 0.8545 0.4526 0.6141
Trimmed 0.5627 0.7935 0.3003 0.5065

All songs
SALAMI ground truth

Untrimmed 0.1451 0.3397 0.1474 0.3487
Trimmed 0.0374 0.1960 0.0581 0.2296

SALAMI song-id 1200
custom ground truth

Untrimmed 0.6087 0.9565 0.3846 0.6923
Trimmed 0.5261 0.9474 0.2727 0.6364

SALAMI song-id 1200
SALAMI ground truth

Untrimmed 0.55 0.69 0.38 0.56
Trimmed 0.48 0.64 0.29 0.50

Table 4.6: An overview of the final CNN and LSTM model evaluated on multiple
datasets. The training- and testset accuracy is evaluated using Keras. The F-
measures on SALAMI 1200 (custom and original ground truth) as well as the
F-measures on the full SALAMI dataset (custom and original ground truth) are
calculated using the MSAF. In all cases the same CNN or LSTM model was used,
these are the ones trained on the custom ground truth (9 unique output labels).

best LSTM model has only one B-LSTM layer, since adding more layers did not
improve its accuracy but instead added more time to the training and evaluation
time of the model.

Evaluation of best models on different datasets

Each best model was then trained on the full dataset, with 80% of the dataset as
training data and the remaining 20% as test data. The accuracy on the training and
test data were 94.56% and 80% for the CNN model and 82.65% and 77% for the
LSTM model respectively (Table 4.6 first row). These models were then saved
as .h5 file. This file format is used by Keras to save models with their trained
weights. This way inference can be easily applied on another machine, since the
model only needs to be loaded instead of fully trained3.

To gain further insight on the accuracy values of each model, I have also con-
structed a confusion matrix of the CNN and LSTM models evaluated on the full
testset (Figure 4.2). We can see that the most occurring labels, such as intro, verse,
solo and chorus, are also the labels that get the most amount of misclassifications.
However, the amount of misclassifications for a label is relatively low compared
to the amount of true positives of that same label. Although the LSTM model does
have more misclassifications, these are on the same labels as the CNN model.

Since the end goal was to segment a song into chorus, verse, etc. instead of
predicting a single beat, a few arbitrary songs were taken from the dataset. Then

3It can also be used to further train the network on other or more data on another machine and
than re-saved as .h5 file, however this is less common in practice.
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(a) Confusion matrix of best CNN model
on full test dataset (custom ground truth).

(b) Confusion matrix of best LSTM model
on full test dataset (custom ground truth).

Figure 4.2: Confusion matrices of best CNN and LSTM model on the full test
dataset of shuffled samples (20% of the full dataset) using custom ground truth.

the amount of segments and the amount of different labels were examined. Based
on this SALAMI song-id 1200 was taken as test song for the final models. To
perform the test the label of each beat of the song was sequentially inferred with
each model. As expected there were some beats that had another label than the
labels of a number of beats around it. This is due to the less than 100% accuracy
of the models on the dataset (which is to be desired, since they would be overfitted
otherwise).

Label Filtering Function

To still be able to use the start of a sequence of new labels as start of a segment I
introduce a simple filtering function, based on the predictions on SALAMI 1200.
This functions works by iterating over all the predicted labels of the beats. When
a label different to the label of the beat before it is detected, the next 4 beats are
scanned. If the label of the previous beat is detected in the labels of the next 4
beats, that label is taken as filtered label, otherwise the predicted label is taken
as filtered label. This function thus requires each segment to be at least 5 beats
in length, which is quite common in the custom ground truth due to the label
grouping mentioned in section 3.1. In the SALAMI dataset this is less common,
but I will elaborate on this in chapter 5.

Another filtering function was tried as well. This function worked in a similar
was as the filtering function described above, however instead of checking if the
label of the previous beat occurs in the labels of the next 4 beats, the most oc-
curring label of the next 5 beats was taken as filtered label. The problem of this
function was that if there were 3 falsely classified beats among the next 5 beats,
this was taken as filtered label, thus causing a short, falsely classified, segment to
occur in the filtered predictions. This function also required segments of at least
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6 beats, 1 beat (about 0.5 seconds) longer than the other filtering function, which
can be quite impactful.

The ground truth, predicted and filtered output of the CNN model on the first
and last 15 beats of SALAMI 1200 can be found in Table 4.7, the same output of
the LSTM model on the first and last 15 beats of SALAMI 1200 can be found in
Table 4.8.

Final Evaluation on SALAMI and custom Ground Truth

Using the filtering function I described earlier, a JSON Annotated Music Specifi-
cation (JAMS) file [38] could be created for each song in the dataset, based on the
predictions by the CNN and LSTM model. A JAMS file for each custom ground
truth was created as well. The Music Structure Analysis Framework (MSAF) [62]
was then used to evaluate the filtered segments of the CNN and LSTM models on
both the SALAMI and custom ground truths.

The MSAF returns quite an extensive evaluation report. To enhance overview,
only the (mean) F-measures from the reports are shown. Four different F-measures
are returned with each report. An F-measure of an evaluation of the segment
boundary location with a 0.5 second and 3 seconds time tolerance to the ground
truth, both trimmed and untrimmed. MSAF automatically adds a segment bound-
ary at the start and end of a song, if the untrimmed F-measure is calculated, these
segment boundaries are included in the calculation. If a trimmed F-measure is cal-
culated, these segment boundaries are excluded from the calculation, often lower-
ing the F-measure, since only the segment boundaries produced by the models are
now taken into account.

All F-measures can be found in Table 4.6, the full ground truth, predicted and
filtered labels of SALAMI 1200 of the CNN here (link), and the same data of the
LSTM here (link).

All (Python) code to create the feature vectors as well as the models can be
found here (link).
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Beat Beat Start Time True Label Predicted Label Filtered Label
0 1.253877551020408 no_function no_function no_function
1 1.764716553287982 no_function no_function no_function
2 2.321995464852609 no_function no_function no_function
3 2.832834467120181 no_function no_function no_function
4 3.390113378684807 no_function no_function no_function
5 3.900952380952381 intro intro intro
6 4.458231292517007 intro intro intro
7 4.96907029478458 intro intro intro
8 5.479909297052155 intro intro intro
9 6.03718820861678 intro intro intro
10 6.548027210884354 intro intro intro
11 7.058866213151927 intro intro intro
12 7.569705215419501 intro verse intro
13 8.080544217687075 intro intro intro
14 8.591383219954649 intro solo intro
15 9.102222222222222 intro intro intro
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
453 238.3760544217687 solo solo solo
454 238.8868934240363 solo solo solo
455 239.3977324263039 solo no_function solo
456 239.9085714285714 solo solo solo
457 240.419410430839 solo solo solo
458 240.9302494331066 solo solo solo
459 241.4410884353742 solo solo solo
460 241.9519274376417 solo solo solo
461 242.4627664399093 solo solo solo
462 242.9271655328798 solo chorus solo
463 243.3915646258504 solo chorus solo
464 243.8559637188209 solo solo solo
465 244.3668027210885 solo solo solo
466 244.8776417233560 solo solo solo
467 245.3884807256236 solo solo solo
468 245.8528798185941 solo no_function solo

Table 4.7: First and last 50 beats of SALAMI 1200 true, predicted and filtered
labels produced by best CNN model.
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Beat Beat Start Time True Label Predicted Label Filtered Label
0 1.25387755102041 no_function no_function no_function
1 1.764716553287982 no_function no_function no_function
2 2.321995464852608 no_function no_function no_function
3 2.832834467120181 no_function no_function no_function
4 3.390113378684807 no_function no_function no_function
5 3.900952380952381 intro no_function no_function
6 4.458231292517007 intro intro intro
7 4.96907029478458 intro intro intro
8 5.479909297052155 intro intro intro
9 6.03718820861678 intro intro intro
10 6.548027210884354 intro intro intro
11 7.058866213151927 intro intro intro
12 7.569705215419501 intro intro intro
13 8.080544217687075 intro intro intro
14 8.591383219954649 intro intro intro
15 9.102222222222222 intro intro intro
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
453 238.3760544217687 solo solo solo
454 238.8868934240363 solo solo solo
455 239.3977324263039 solo solo solo
456 239.9085714285714 solo solo solo
457 240.419410430839 solo solo solo
458 240.9302494331066 solo solo solo
459 241.4410884353742 solo solo solo
460 241.9519274376417 solo chorus solo
461 242.4627664399093 solo solo solo
462 242.9271655328798 solo solo solo
463 243.3915646258504 solo solo solo
464 243.8559637188209 solo solo solo
465 244.3668027210885 solo solo solo
466 244.8776417233560 solo verse solo
467 245.3884807256236 solo solo solo
468 245.8528798185941 solo chorus solo

Table 4.8: First and last 15 beats of SALAMI 1200 true, predicted and filtered
labels produced by best LSTM model.
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Chapter 5

Discussion

The focus of this chapter is to interpret the results reported in the previous chapter.
After this interpretation a discussion of the results is held. The different architec-
tures are compared to each other as well will the SbA approach be compared to
the DSA approach to MSA. These comparisons aim to provide an answer to the
research questions.

5.1 Results Evaluation
Beat Classification Accuracy

Looking at the absolute performance of the best CNN and LSTM model on classi-
fying a beat, one may conclude that the convolutional model performs better than
the long short-term memory model. However, when looking at the accuracy of
both models on the training and test data, the CNN model drops relatively more in
accuracy (15.4% for the CNN, 6.8% for the LSTM). This may be an indication of
the CNN model being overfit on the training data, therefore reducing its capabili-
ties of classifying beats that the model has not ‘seen’ before. The possible overfit
is unlikely to be a result of too little data since the LSTM did not seem to overfit
on the data. The relatively small drop in accuracy for the LSTM model going
from the training data to the test data may also indicate that the LSTM managed
to capture the overall patterns that define the label of a certain beat, although less
accurate for this particular set of beats.

As discussed in the results, the confusion matrices of both models evaluated on
the full testset (Figure 4.2) do not show any big differences between both models.
Although the most occurring labels do have the most amount of misclassifications,
this is relative to the amount of occurrences of these labels. Chorus and verse seem
to be the most difficult labels to distinguish from one another, with the LSTM
model having the most difficulties out of the two models. This difficulty also
seems to account for the 3% lower accuracy of LSTM model on the test data
compared to the CNN model.
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5.1.1 Segment Boundary Detection Accuracy
When looking at the results of the JAMS files with the filtered labels evaluated by
the MSAF, we need to take them with a grain of salt. There are a few reasons for
this.

Custom ground truth

Although the models have been trained and evaluated on the custom ground truth,
MSAF only evaluates the accuracy of locating the segment boundary locations of
each model. The accuracy is therefore not only subject to the pure performance
of a model to classify a beat, but also to the performance of the filtering function.
Since efforts have been primarily focused on the first, the latter received way less
to none effort. As described in chapter 4, the filtering function was based on the
predictions made on SALAMI 1200, and the function was therefore optimized
to generate filtered labels, and thus segment boundaries that would make sense,
for this specific song. We see that this is indeed the case, since the trimmed
and untrimmed F-measures, with 3 seconds tolerance, on SALAMI 1200 (custom
ground truth) far exceeds the trimmed and untrimmed 3 second F-measure on the
full dataset (custom ground truth).

It is, however, interesting that the trimmed and untrimmed 0.5 second F-
measure on SALAMI 1200 (custom ground truth) is lower than the same F-measure
on the full dataset (custom ground truth) for both the CNN and LSTM model. We
see that both the trimmed and untrimmed F-measures severely drop going from
a 3 second tolerance to a 0.5 second tolerance (25% to 45%). This applies to
both the CNN and LSTM model. Considering that this drop in F-measure is less
present on the full dataset, this may indicate that the filtering function is better
than expected, or that the other songs generally have stronger segment boundaries
therefore enabling the models to detect the exact position more precisely. Further
research is needed to show this.

SALAMI ground truth

The JAMS files produced by the models were also evaluated on the original
SALAMI ground truth. When looking at the F-measures of the models on
SALAMI 1200, we see that the CNN model outperforms the LSTM model. How-
ever, if we look at the F-measures of the CNN model and LSTM model on the full
dataset (SALAMI ground truth), we see that the differences are gone. If any, they
are in the advantage of the LSTM.

5.1.2 Custom ground truth vs SALAMI ground truth
As discussed earlier, all F-measures on both SALAMI 1200 and the full dataset
drop massively when taking the original SALAMI annotations as ground truth.
This has a few reasons.
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Unique Label Count

The most important reason is the amount of unique labels occurring in the
SALAMI ground truth compared to the custom ground truth. As discussed in the
section 3.1 and showed in Table 3.1, the amount of unique labels were reduced
from 26 to 9. Initial support for this is given in section 3.1, I will discuss more
reasons below.

If all 26 unique labels were kept, it may have occurred that some labels were
only present in the test data, therefore removing the possibility of the models
to learn the patterns corresponding to those labels. Additionally, it would’ve al-
most tripled the amount of neurons in the output layer of both models. Generally,
adding more outputs to a model lowers its accuracy, especially when each output
has very similar input (transition and interlude, pre-verse and verse). Further-
more, it would’ve also almost tripled the size of the ground truth output matrix
and increased the amount of weights, greatly slowing down the training and eval-
uation speed of all models.

As a result, the custom ground truth contains less segment boundaries than the
original SALAMI ground truth, thus lowering the accuracy of the model. This is
supported by the Normalized Entropy Scores Precision (So) values of the CNN
and LSTM models being 0.479 and 0.474 respectively, whilst the Normalized
Entropy Scores Recall (Su) values are 0.602 and 0.614 respectively [54]1. As a
side effect, more labels also meant that some segments were less than 4 or 5 beats,
and would therefore not be detected by the filtering function. It is thus of relatively
high priority to, in follow-up research, improve this filtering function or introduce
a new filtering function.

Annotator Inconsistency

The amount of unique labels, and the low occurrence of some of them, may be
due to the different annotators that have created the SALAMI ground truth. As
mentioned in the introduction, the experience of music differs per person and is
i.a. subject to emotion. This means that some annotator may classify one seg-
ment as instrumental, while another annotator classifies the same segment as solo,
thereby increasing the amount of unique labels, without there being any musical
difference. A consequence of this is that some annotator, judging instrumental and
solo as being different segments, may place more segment boundaries in a piece
of music compared to an annotator who judges instrumental and solo as equal.

Recurring Segments

Another reason that the CNN and LSTM models may under-segment compared
to the SALAMI ground truth, is that a human annotator would place a boundary
between two repeated choruses. The models proposed in this thesis would classify
most of the beats in these repeated choruses as chorus, and the filtering function

1If the So value is lower than the Su value, the model is under-segmenting the data.
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will therefore see this as one long chorus segment, thereby reducing the amount
of segments and thus segment boundaries.

This is not only a problem within the SbA approach, models implementing
the DSA approach, without using a repetition-based technique, will face the same
problem. This is therefore an important factor to take into future research; how
often a repetition of similarly labeled segments occur in music, which methods for
MSA can detect this and which technique(s) can be used to enable SbA approach
models to cope with this problem.

5.2 Model Comparison
As is the main research question of this thesis, I want to research the feasibility of
machine learning for the segmentation by annotation approach to music structure
analysis.

5.2.1 CNN versus LSTM
To find an answer to this question I have first explored which deep learning ar-
chitecture, implementing the SbA approach, produces the best results. I have pro-
posed two deep learning architectures, one using convolutional layers, one using
long short-term memory units. I have tried multiple hyperparameters to produce,
for each architecture, a best model.

As the results showed, the convolutional architecture produced the best results
overall, however the long short-term memory architecture showed some interest-
ing patterns that could mean that with future research, this architecture can be-
come equal to, or even surpass, the CNN architecture in terms of performance.
For this thesis however, I will take the convolutional architecture as best imple-
mentation of the segmentation by annotation approach to music structure analysis.

5.2.2 SbA versus DSA
To place the feasibility of machine learning within all approaches of music struc-
ture analysis, I have done research to the the other general approach to MSA,
the distance-based segmentation by annotation approach respectively and to the
current state-of-the-art of music structure analysis. Kuiper [43] describes a suc-
cessful attempt at improving the current best implementation of the DSA approach
to MSA, using feature fusion. His best performing model produces an 0.5 second
F-measure of 0.327. Compared to Grill and Schlüter [30], who report a 0.5 sec-
ond F-measure of 0.508 on a similar but slightly different subset of the SALAMI
dataset, this is quite a lot lower. Kuiper [43] does however show that the DSA ap-
proach has still room for improvement. The smaller and slightly different subset
of the SALAMI dataset used can cause the gap to seem bigger than it may be.
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Advantages and Disadvantages

One big advantage of the segmentation by annotation approach, and therefore
the models I introduced, is that both annotation and segmentation is performed
within one model. The DSA approach first detects the segment boundaries with
one model, and then requires another model to label the data. In previous work,
a clustering method was used to group similar segments. Each cluster was then
given a capital letter based on the order of occurrence of the segments in the song.

This, however, is still behind the SbA approach, since in the SbA approach the
actual segment function is assigned to each segment. Future research has to prove
whether each capital letter, assigned via a certain method, always correspond to
a segment function. Otherwise, a more complex model is required to assign a
function to each segment. If a machine learning model is used, one could argue
that using one machine learning model to both annotate and segment a song is
more efficient and effective.

An advantage of using DSA over SbA is that a DSA approach model has a
higher chance to be applicable on multiple music genres. Although further re-
search has to prove this, the DSA approach detects changes or repeating patterns
in music, and uses a quite versatile distance metric for clustering. Since these mu-
sical properties are not per definition genre specific, a DSA approach model will
be more capable of finding the segment boundaries, while a new SbA model must
be created for each specific genre. If the segments need to be labeled, using SbA
may then be more effective again, since a specific labeling model then needs to be
created anyways.

Conclusion

As explained earlier, due to i.a. the different labels and therefore ground truths
used, comparing the results of the proposed models to the currently reported re-
sults in this research field is quite difficult. However the results of the convo-
lutional architecture on both the SALAMI 1200 song with the SALAMI ground
truth and full dataset with custom ground truth, show that a convolutional archi-
tecture implementation of the SbA approach has similar performance as the best
DSA approach implementation and current state-of-the-art for MSA. Especially
regarding the early development stage of the proposed architectures.

For me, this indicates that there is enough reason to put more effort into ex-
ploring the segmentation by annotation approach to music structure analysis and
an implementation of that approach using machine learning in particular. I will
discuss these efforts and the advantages as well as the disadvantages of this ap-
proach in the next chapter.
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Chapter 6

Future Research

From the results I reported and the discussion thereof, I will propose future re-
search that can be performed to firstly improve the architectures I proposed, and
secondly advance the current state-of-the-art of music structure analysis, with the
insights gained in this research. I will also discuss the consequences of these
insights gained and the proposed future research in the context of artificial intelli-
gence.

6.1 Model improvements
As mentioned in chapter 5, the CNN model performed better than the LSTM
model. I also mentioned that despite this preliminary difference between the ar-
chitectures, both prove to be quite powerful already. In this next section I will
propose some future research that can be performed to improve both architectures.

6.1.1 Hyperparameters and Layout
One of the most important aspects of a neural network are its hyperparameters and
layout. Although there are many possible values for the hyperparameters I listed,
near infinite amount of possible layouts are possible; more or less hidden layers
can be added, the amount of neurons per layer can be differed or a bias can be
added to each layer.

For this thesis I have tried to create an as simple layout for each architec-
ture, without letting the layout in itself be the bottleneck for each architecture. To
achieve this I have tried to create a layout per architecture that kind of resembles
a funnel structure. I then let the values of each hyperparameter define the actual
performance of each architecture. One small sign that may indicate that the layout
was of decent size is the better performance of models with less neurons in the
first layer.
Although more time is always beneficial when trying to find an optimal combina-
tion of hyperparameter values I, in my opinion, think that a sufficient amount of
values were tested for the scope of this thesis. This research has given, among two
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working models, at least a glimpse of the true performance of an optimal layout
for each architecture as well as enough reason to put effort into finding such a
layout.

As future research I propose more sophisticated modifications to both pro-
posed architectures, like adding biases, trying more activation functions or testing
different optimizers. It may also be beneficial to create more relevant layouts for
each architecture; this may include adding or removing hidden layers, bagging
models, trying more neuron counts, or even changing some neurons into other
types of neurons.

6.1.2 Input Features
Another interesting part of future research will be to find better input features,
or, at least, modify the existing features. I suggest this future research based on
the final input used by both final models: the CQT and Tempogram. Considering
the fact that these features were the top two features regarding their feature vector
length, may indicate that both models are benefitted more by more data describing
a beat, then for example compact features that may express more information per
scalar.

One way to test this could be by using a Mel Spectrogram as input (as done in
for example [29, 70]), since each feature vector has a considerable greater length
than the discretized Mel-Frequency Cepstral Coefficients, which have a feature
vector length of (only) 20. Not only extending the feature vector length can im-
prove the performance, also extending the time context can improve results. Grill
and Schluter [29] show that using a longer time context for their self-similarity lag
matrix improved performance. Using features with shorter feature vector lengths
may then again be used in combination with a longer time context. This will espe-
cially be of great benefit for a convolutional as well as a long short-term memory
network because of their great performance on big images and longer sequence
context respectively. A combination of a long and short time context features
combined can also improve results [30].

Another addition to the time context of the features, could be to include the
location of the beat that has to be classified in the song. This has to be some
measure in proportion to the total length of a song, since in some songs the, for
example, intro may be very long (Xanadu by Rush). This also applies to songs
which are relatively long in general (2112 by Rush). It, however, has to be seen
how much impact the addition of one scalar has to a quite big input size, but it
may function as a bias for the input.

6.1.3 Architecture Specific Research
Although the long short-term memory architecture performed worse than the con-
volutional architecture, I expect that with more effort, aimed more at LSTM spe-
cific properties may greatly increase its performance. The input features described
may be used in a similar way for both the CNN and LSTM architectures, they both
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still work in a very different way. It may therefore be of more benefit for a LSTM
architecture to use only the features of the previous and current beat while trying
to classify the current beat (similar to how a LSTM is used in word prediction), or
to use smaller features while increasing the time context.

In a similar way the convolutional architecture may make leaps in performance
if more specific CNN properties are considered. This may include the kernel or
pooling size of the (hidden) convolutional and pooling layers respectively. How-
ever, since these kernel sizes are partly dependant on the size of the inputs and
thus feature vectors used, those have to be reconsidered as well.

It will also be interesting to test whether using features with a similar length
will have any impact. Using features with equal feature vector length will en-
able the CNN to make use of its 3-dimensional layers, originally meant for, for
example, RGB- or CMYK-images.

6.1.4 Changing the Output
One big difference between the proposed models and other models in MSA are the
amount of outputs. This is in line with the SbA approach to MSA they implement,
however it makes for difficult comparison to other approaches to MSA as does it
limit the applicability of these models on other music genres with more, less or
other segment functions. Although the latter was never the aim of the models
when creating them, having the possibility of applying these models onto other
music genres without having to modify them is quite useful. One way to solve
this is to create a specific, modified, version of the proposed models for each
music genre.

The problem of creating a model for multiple music genres at once possibly
is a reason why previous work focused on only finding the segment boundaries in
piece of music [31]. As discussed earlier, once the segment boundaries are found,
another model can then be trained, for each music genre specifically or for all
music genres in general, to classify each segment. The architectures I introduced
and the insights gained from creating them, can then be used to either improve
the boundary detection models, or to create a classification model for many music
genres, or the Western Popular Music genre in particular.

It would’ve been interesting to extend the amount of outputs for the archi-
tectures I propose to the amount of unique labels occurring in the original data,
however I have explained the reason for having a lower output count in subsec-
tion 5.1.2. It was therefore unfeasible to perform this analysis in this thesis. I
will propose solutions to the underlying reasons that cause this ‘problem’ in sec-
tion 6.2.1.

6.1.5 Real-time MSA
One further interesting application of segmentation by annotation models are real
time applications. In the context of this thesis this means that the models will run
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whilst music is playing, and show the predicted segment function of the segment
that is currently being played. This may be interesting for, for example, radio DJs
to mix songs at the right moment. To accomplish this, the architectures must be
made completely independent of the next beats. This means that a new filtering
function needs to be created (something I already recommend as relatively high
priority follow-up research), and all inputs need to be constructed from the feature
vectors of past beats.

6.2 Future Research MSA
Although this thesis focused primarily on the segmentation by annotation ap-
proach to music structure analysis, the insights gained may be used beyond this
approach. Insights about the inputs, the models and the outputs are obtained. In
the next subsections I will explain these insights and discuss their consequences
for music structure analysis in general.

6.2.1 Data Improvements
One of the most important parts of any model driven research is the data that is
used. Although in some cases lots of good quality data is provided, one often has
to do with data they can find publicly available. Especially within the field of mu-
sic analysis, this is a quite common problem. This is primarily due to copyright,
which prevents someone of listing lots of songs for free. To not enter any grey
areas regarding copyright, I explicitly used copyright free, annotated data.

Audio Quality

One major problem of these copyright free audio files used is that these primarily
consisted of recordings of live concerts. This meant that the recording quality
was not that great overall; audio was not normalized over one song (let alone all
songs), crowd sounds were present throughout the duration of the songs, etc.

It has to be seen if this kind of data actually improves models by giving it a
bigger challenge, or worsens a model by requiring these models to also make a
distinction between actual music and crowd sounds.

One way of solving this problem is already in development at for example
Spotify, a music streaming service. They provide an API which can be used to
obtain processed audio data. This audio data can not be used to listen to music,
but does still contain the auditive features of the song. Creating annotations based
on this data means that all music from Spotify may be used, which are millions of
songs, together with more metadata that is provided by Spotify (such as the artist,
genre or time signature).
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Label Quality

This thesis and Kuiper [43] show the inconsistency between multiple annotations
made by different annotators on the same piece of music, and therefore the inher-
ent subjectivity of music structure annotation. This means that if only the annota-
tions of one annotator are taken as ground truth, the models will be overfitted or
tuned to the annotation level of that specific annotator.

Using the annotations of all annotators while creating or adjusting a model
may therefore benefit overall accuracy, but may also decrease the accuracy of a
model on the annotations of one annotator. This means that a new evaluation
method needs to be created to evaluate a model that sort of acts as a new annotator,
who may be on an annotation level between the other annotators.

One way to solve this would be to use the hierarchical structure of music to our
advantage. Grill and Schlüter [30] show that using multiple levels of annotations,
and therefore using multiple outputs per beat or time step, increased the accuracy
of one of these outputs. This further shows that music is inherently hierarchical,
and therefore using another level of this hierarchical property will improve the
results of models working on another hierarchical level.

Instead of producing the labels for one specific annotation level, a hierarchi-
cal tree can be constructed, each branch denoting the boundary of a segment on a
certain hierarchical level. However, this will also further complicate model eval-
uation in some aspects, since each branch does not have to be on the same hierar-
chical level [77, 2].

Another approach to this problem would be to remove the inconsistency be-
tween annotators by jointly determining the annotation of a piece of music, this
may be one or multiple annotation levels. Once a commonly accepted ground truth
is established, evaluating new or already existing models will be a lot easier. Also
comparing the performance of multiple models will be made easier. Although this
method has a lot of benefits, it has also quite some downsides. Firstly, it will be
quite challenging to jointly create such a consistent labeling. Secondly, subjectiv-
ity is a very important part of music experience and therefore removing this part
will not always be of benefit in the long term.

6.2.2 Interpretable, Comprehensible and Opaque
The comparison between the SbA and DSA approach to music structure analysis
can not only be seen as a comparison between two approaches to music structure
analysis, but also the comparison between a machine learning and more symbolic
approach to music structure analysis, especially when taking the current state-of-
the-art in consideration. From this comparison more differences, advantages and
disadvantages of each approach can be derived.

An important advantage of a more symbolic approach is its interpretability.
This means that each step in the process of music structure detection can be un-
derstood, explained and reproduced. In contrast to a convolutional neural network
which is at best comprehensible. Comprehensible means that the results of each
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step can be understood, but an underlying technique can not be derived. A way of
doing this could be to look at the output of each convolutional layer to see which
patterns are extracted in each layer [69]. Reproducing the output, without using
the weights learned by the network, will be very difficult.

A LSTM model is even worse in this aspect by being opaque. This implies
that one has no understanding of the model except for the learned weights and
its inputs and outputs. Comprehending what the role of each neuron is, is near
impossible, creating a symbolic method that imitates the behavior is even less
possible.

Not being able to explain the underlying method of a machine learning model
can limit the amount of insights gained from a model that is capable of, for exam-
ple, determining the hierarchical structure of all annotations of a piece of music.
A more explainable model could therefore be more preferred, even if that means
lower absolute accuracy. This is not only a problem within music structure analy-
sis or music information retrieval but in the general field of Artificial Intelligence
[19], and is therefore an important factor to take into account when brute forcing
machine learning on certain problems within this field.

More hybrid models, combining both machine learning and interpretable sym-
bolic aspects, can therefore be the key to good MSA models, explainable AI and
true world apperception of intelligent systems.

∼
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Appendix A

Definitions

Definition 1.1.1 (Musical Structure). The Musical Structure of a piece of music
is a series of segments (1.1.2) that describes the high-level structure of a piece of
music.

Definition 1.1.2 (Segment). A Segment is one consecutive piece of audio in a
piece of music that has one segment function (1.1.3), with a start- and an end-
boundary.

Definition 1.1.3 (Segment Function). Following the definitions as they can be
found in Benward and Saker [5], Part B: The Structural Elements of Music, a
Segment Function is the function of a segment, this is either:

• Chorus
• Verse
• Bridge
• Interlude / Transition
• Intro
• Outro
• Solo
• (Silence)
• (Background Noise)

Definition 1.3.1 (Segmentation by Annotation). Segmentation by Annotation
in the context of music structure analysis means first dividing a song into many
small pieces (e.g. pieces of 10ms or every beat). Thereafter a segment function is
assigned to each small piece using some kind of classification method (e.g. statis-
tics, support vector machine, deep learning). Sequences of similarly annotated
small pieces are then combined into segments, resulting in the musical structure
of the song.

Definition 1.3.2 (Distance-based Segmentation and Annotation). Distance-based
Segmentation and Annotation in the context of music structure analysis means
first finding segment boundaries using some kind of distance metric. Subsequently
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APPENDIX A. DEFINITIONS

these segments are grouped into groups that are similar to each other in their struc-
tural role in the piece of music, using some kind of grouping method (e.g. nearest
neighbors, support vector machines), resulting in each segment getting a capital
letter denoting their function. Then, each capital letter is converted into a segment
function, this can be either done using some kind of statistics, pattern matching or
machine learning method.
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Appendix B

Research Questions

Research Question 1 (Main RQ). What is the feasibility of a machine learning
implementation of the Segmentation by Annotation approach to Music Structure
Analysis in Western Popular Music?

Research Question 2 (Sub-RQ 1). Which deep learning architecture, implement-
ing the Segmentation by Annotation approach to Music Structure Analysis, yields
the best relative results?

Research Question 3 (Sub-RQ 2). How does the performance of the best per-
forming deep learning architecture, implementing the Segmentation by Annota-
tion approach to Music Structure Analysis, compare to the performance of imple-
mentations of the Distance-based Segmentation and Annotation approach, and a
state-of-the-art implementation in particular?
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Appendix C

Dataset

Below is a listing of all songs used in these thesis. The songs were extracted from
the Internet Archives subset of the SALAMI database [75]. The IDs correspond
to the SONG_ID indexer of the SALAMI database. These are 277 tracks in total.

956, 958, 960, 962, 964, 968, 970, 972, 974, 976,

978, 980, 982, 984, 986, 988, 990, 992, 994, 996,

998, 1000, 1004, 1006, 1008, 1012, 1014, 1016, 1018, 1020,

1022, 1024, 1026, 1028, 1032, 1034, 1036, 1038, 1042, 1044,

1046, 1048, 1050, 1054, 1056, 1058, 1060, 1062, 1064, 1066,

1068, 1070, 1072, 1074, 1076, 1078, 1080, 1082, 1084, 1086,

1088, 1090, 1092, 1094, 1096, 1098, 1100, 1102, 1104, 1106,

1108, 1110, 1112, 1114, 1116, 1118, 1120, 1122, 1124, 1128,

1130, 1132, 1134, 1136, 1138, 1142, 1144, 1146, 1148, 1150,

1152, 1154, 1156, 1158, 1160, 1162, 1164, 1166, 1168, 1170,

1172, 1174, 1176, 1180, 1182, 1184, 1186, 1188, 1190, 1192,

1194, 1196, 1198, 1200, 1202, 1204, 1206, 1208, 1210, 1212,

1214, 1216, 1218, 1220, 1222, 1224, 1226, 1228, 1230, 1232,

1234, 1236, 1238, 1240, 1242, 1244, 1246, 1248, 1250, 1254,

1256, 1258, 1260, 1262, 1264, 1266, 1268, 1270, 1272, 1274,

1276, 1278, 1280, 1282, 1284, 1286, 1288, 1290, 1292, 1294,

1296, 1298, 1300, 1302, 1304, 1306, 1308, 1310, 1312, 1314,

1316, 1318, 1322, 1324, 1326, 1328, 1330, 1332, 1334, 1336,

1338, 1340, 1342, 1346, 1348, 1350, 1352, 1354, 1356, 1358,

1360, 1362, 1364, 1366, 1368, 1370, 1372, 1374, 1376, 1378,

1380, 1382, 1384, 1386, 1387, 1388, 1390, 1391, 1392, 1394,

1395, 1396, 1399, 1400, 1402, 1403, 1404, 1406, 1407, 1408,

1412, 1414, 1415, 1416, 1418, 1419, 1420, 1422, 1423, 1424,

1427, 1428, 1431, 1432, 1434, 1435, 1436, 1438, 1439, 1442,

1443, 1444, 1446, 1447, 1448, 1450, 1451, 1452, 1454, 1455,

1456, 1458, 1459, 1460, 1462, 1464, 1467, 1468, 1470, 1472,

1474, 1475, 1476, 1478, 1479, 1482, 1483, 1484, 1487, 1488,

1490, 1491, 1492, 1494, 1495, 1496, 1498
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