
UTRECHT UNIVERSITY

BACHELOR THESIS
BSC ARTIFICIAL INTELLIGENCE

Modeling normative behavior and enforcement in a
multi-agent system based on Dutch Public Transport

Author:
Rick MANK

Student Number:
5715660

Supervisor:
Dr. Natasha ALECHINA

Second reader:
Dr. Rick NOUWEN

A 7.5 ECTS Thesis submitted in fulfillment of the requirements
for the degree of Bachelor of Science

in

Artificial Intelligence

at the

Faculty of Humanities

June 25, 2020

https://www.uu.nl/
http://www.cs.uu.nl/staff/alechina.html
https://www.uu.nl/staff/RWFNouwen
https://www.uu.nl/bachelors/kunstmatige-intelligentie
https://www.uu.nl/en/organisation/faculty-of-humanities

i

Abstract
Rick MANK

Modeling normative behavior and enforcement in a multi-agent
system based on Dutch Public Transport

We live in a normative culture in which people make decisions every day to either
follow or break rules and norms. An interesting example of choosing behavior can
be found in the public transport system, which as it is a semi-closed system lends it-
self to being modeled. This human behavior can be modeled to predict and influence
the way in which agents and people alike make desirable decisions.

This thesis will answer the question ’how can enforcement strategies for public
transport be optimized by making use of learning agents’. To answer this question I
first had to research different decision-making strategies such as decision theory and
reinforcement learning. With this I gained a better understanding of the normative
culture of choosing agents, with which this thesis aims to predict norm abiding and
norm breaking behavior in a stochastically modeled environment.

ii

Contents

1 Introduction 1
1.1 Introduction to norms . 1
1.2 Introduction to the problem . 2
1.3 Aim and relevance . 2
1.4 Structure of this paper . 3

2 Approaches to the problem 4
2.1 Theoretical background on norms . 4
2.2 Decision Theory . 5
2.3 Reinforcement Learning . 7

2.3.1 Q-learning . 8

3 Algorithm Implementation and Results 11
3.1 One-dimensional array-based RL with fixed enforcement 11
3.2 One-dimensional array-based RL with stochastic enforcement 13

4 Discussion 15

Bibliography 17

A Python Q-learning Implementation 19

1

Chapter 1

Introduction

1.1 Introduction to norms

We live in a society where many of our actions are regulated by rules and norms. Im-
posing norms works in such a way that individual agents are provided certain obli-
gations and prohibitions, which can be monitored by a normative organization.1, 2

If an agent fails an obligation or commits a prohibited action, the organization will
impose a sanction on the agent. Human behavior is interesting when norms are
involved as humans are norm-autonomous, which means they are able to make de-
cisions about compliance in regards to norms.14 Different individuals behave dif-
ferently depending on what norm is involved and depending on their values and
needs.

Suppose an individual agent aims to obtain a maximal reward. This could occasion-
ally result in a conflict in the agent: risking a sanction by violating a norm or losing
out on a potential higher reward by complying. In certain real-life scenarios, such as
public transport, managing to defy a norm undetected yields a higher reward than
complying to said norm. In real life many different factors contribute to decision
making, such as morality, predicted rewards, risk assessment and risk aversion. Be-
cause of the abstract nature and variance in morality across a population this is hard
to model, therefore this paper will strictly focus on rewards and punishments. As
it is the agent’s goal to obtain a maximal reward, in a normative society where the
highest reward can be obtained by defying norms I suspect the agents to attempt
to defy the norm without being sactioned. On a similar note, the priority of the
normative organization will be to catch and punish agents that defy the norm.

Norms lay out conditions that obligate or prohibit certain behavior. For example, in
traffic it is prohibited to run a red light. In other words, a person is obligated to stop
for a red light. Agents that violate this norm must pay a fine if they have been caught
running a red light, while agents that comply keep their money in their pockets but
must wait until the light goes green. The agent has to decide whether the risk of
getting caught (not taking into account the danger of running a red light) is worth
the reward of not having to wait. The agent must assess how it values the various
relevant factors in the situation, like time, money and safety. An agent that is able to
reason this way with respect to norms is called a norm-aware agent.1

If we assume the agent has perfect information about the sanction size and monitor-
ing frequency, it will simply have to use basic math to calculate whether the reward
is higher when complying to the norm or not. Similarly, if the normative organi-
zation has perfect information about the moments of norm violation, they would
succeed in catching every violating agent. In the real world both scenarios are not
the case. It is unrealistic that every violation of a norm goes detected by a normative

Chapter 1. Introduction 2

organization. In other words: it is reasonable to assume the probability of detecting
a norm violation, the enforcement intensity, is less than one.10, 11 Monitoring is often
done by random sample tests, because it would be impossible to supervise every
instant due to limited resources.11 The agents having perfect information is unreal-
istic as well. The enforcement intensity is often unknown, precisely to make sure the
monitoring can’t be evaded.11

In a normative situation, we can view both parties as learning agents. The normative
organization could theoretically learn what the best moments would be for employ-
ing enforcement, based on trends in the moments or frequency of norm violation
by agents. Similarly, the agents could form a policy to determine whether to com-
ply to the norm or not. In this thesis, I will investigate two methods for an agent
to determine their behavior: based on decision theory and based on Reinforcement
Learning (RL). The first method will be covered purely theoretically, while I will
apply Reinforcement Learning to a programmed simulation.

1.2 Introduction to the problem

The problem I will apply the aforementioned techniques to is public transport. In
2006, around 3.5% of public transport users in The Netherlands traveled without
having paid for a valid ticket.4 This not only poses a problem for financial rea-
sons, but a problem for safety reasons as well. A research conducted in 2014 on
violence towards Dutch train personnel showed that almost 70 percent of the cases
were caused by someone who used transport without paying.6

Making use of public transport is a normative situation, with passengers as agents
and ticket inspectors as the enforcing party. To travel by public transport, a traveler
must be in possession of a valid ticket, or must be checked in with their public trans-
port card. This is the only obligation present in this normative situation. Travelers
pay a small sum of money to be allowed to travel, and if they defy the norm they
risk a fine of a much higher sum. The amount of both prices is readily available
information for travelers, so it is safe to assume the traveling agents have perfect
knowledge of the rewards.

Not every environment of a normative situation can be perfectly monitored.2, 11 The
cost for monitoring the ideal norms could be too high, or simply impossible. As
mentioned in 1.1, the enforcement intensity in public transport lies below 1. No
train or bus has a ticket inspector present at all times, there are simply not enough
resources available to achieve that. The normative organization employs ticket in-
spectors at random, to catch and fine people that have not paid for their travel. In
the remainder of this thesis I will refer to this problem as the public transport problem.

1.3 Aim and relevance

The aim of this project is to continue on the work done by Li et al.10 This thesis
will be built on the paper of Li et al. and adopt a similar approach. I hope to gain
understanding of different strategies that agents and enforcing parties can develop
in a normative situation. Ultimately the goal is to let the traveling agent learn from
the normative organization via reinforcement learning algorithms. This could give
insight in a potential optimization of enforcement strategies for fields such as public
transport. In other words, I hope to answer the following research question: “How

Chapter 1. Introduction 3

can enforcement strategies for public transport be optimized by making use of learn-
ing agents?”

This thesis is relevant in the field of Artificial Intelligence in multiple ways. Model-
ing human behavior and creating rational agents are both fundamental approaches
to AI according to Russell and Norvig.12 Moreover, even though programs cannot
really make decisions the way humans do, but rather act according to the decision-
making rules embedded by the programmer, decision theory is an integral subject
within AI. Human reasoning needs to be analysed to be able to model decision pro-
cesses for computer programs.13.

Finally, Reinforcement Learning plays a big role in agent decision-making. In the last
twenty years it has risen as a method for creating self-learning programs, which are
useful for simulating all sorts of real life scenarios and processes. By using rewards
and punishments without specifying exactly how a task should be done, the agent
learns a policy to base decisions on.7

In this thesis I combine these three elements and apply them to a problem with
societal relevance. The results of this research could provide insight in enforcement
strategies that can be used by public transport organizations.

1.4 Structure of this paper

In the next chapter (Chapter 2) of this thesis I will give a formal definition of norms,
after which I will shed light on the decision-making techniques I mentioned above.
Decision theory will be covered theoretically and applied to the public transport
problem in section 2.2. The results of this analysis are used to check whether an
optimal policy can be learned through reinforcement learning. In section 2.3 I will
give background information about RL and the RL-method used: Q-learning. In
Chapter 3 the process of implementing the RL algorithms is described, as well as the
results that occur. Those results will be discussed in Chapter 4, where I will reflect
on the results and the research question posed in the introduction.

4

Chapter 2

Approaches to the problem
2.1 Theoretical background on norms

This section provides some background information on norms. To be able to pro-
gram the behavior of a traveling agent, their behavior must first be denoted in a
sufficiently abstract way. For this purpose I decided to adhere to the formal defini-
tion for norms used by Li et al., as it is an intuitive representation of the elements
needed to describe a norm. (see Definition 2.1.1).10

Definition 2.1.1 (Norms).
A norm is a tuple 〈δ, G, φ, ψ, ρ〉 where:

• δ ∈ {obligation, prohibition} is the deontic modality;

• G is a set of agent roles to which the norm applies;

• φ is the activation condition, which induces a set of states Sφ such that
Sφ = {s | s ∈ S ∧ s � φ};

• ψ is the normative condition, which induces a set of states Sψ such that Sψ =
{s | s ∈ Sφ ∧ s � ψ};

• ρ: S → R is a function that specifies the penalty for violating the norm in a
given state (ρ(s) returns the penalty to be paid in s).

The definition works as follows: a norm n = 〈δ, G, φ, ψ, ρ〉 activates in a state where
the activation condition holds (s ∈ Sφ) for an agent a if the role of the agent (role(a))
is a role to which the norm applies (role(a) ∈ G). In this case the norm to check in be-
fore traveling with public transport applies only to the role Traveler: G = {Traveler}.
The norm is obeyed if the normative condition ψ holds in s (in the case of obligations)
or does not hold in s (in the case of prohibitions). Otherwise the norm is violated in
s, and the agent must pay a penalty ρ(s) in s. In the public transport problem there
exists an obligation for the traveler, namely to check in. The normative condition ψ
holds when the traveler obeys the norm, so the normative condition ψ = “the traveler
has checked in”.

Whether the activation condition φ holds in a state or not is determined by the nor-
mative organization. In states where it does hold, the normative organization is
responsible for determining whether the norm is obeyed or violated. In situations
where the norm is violated, the normative organization imposes the appropriate
penalty. The set of violated norms can be defined as follows, in Definition 2.1.2,
where N-

s is a set of norms:

Chapter 2. Approaches to the problem 5

Definition 2.1.2 (Violated Norms).
N-

s = {〈δ, G, φ, ψ, ρ〉 ∈ N | δ = prohibition∧ s � ψ} ∪
{〈δ, G, φ, ψ, ρ〉 ∈ N | δ = obligation∧ s 6� ψ}

This entails that a norm n = 〈δ, G, φ, ψ, ρ〉 ∈ N can be violated in two possible ways:
if the norm is of a prohibitive nature (δ = prohibition) and the action prohibited by
the norm is performed nonetheless (s � ψ), and if the norm is of obligative nature (δ
= obligation) and the action obliged by the norm is not performed (s 6� ψ).10

2.2 Decision Theory

In this section I will regard the traveling agent in the public transport problem as a
decision-theoretic agent. By applying the normative approach described in section
1.1, I can reason about a fundamental principle of decision theory, which is maxi-
mizing expected utility.12

If the agent is to determine the maximal expected utility for its actions, a utility
function U(s) is needed, which assigns numerical values to states based on their
desirability. The traveling agent does not yet know what state (monitored or non-
monitored) it will end up in after making the decision to comply to the norm or
not. This means probabilities need to be taken in account. The probability of the
outcome s′, given evidence observations e and given that action a is executed, is de-
scribed in Definition 2.2.1, where Result(a) is a variable that stands for the outcome
of executing action a.12

Definition 2.2.1 (Outcome Probability).
P(Result(a) = s′ | a, e)

One action could lead to multiple different outcomes, so we need to calculate the
average utility value of each outcome and multiply it with the probability of that
outcome occurring. This gives us the expected utility of an action given the evidence,
EU(a|e) as shown in Definition 2.2.2:

Definition 2.2.2 (Expected Utility).
EU(a|e) = ∑

s′
P(Result(a) = s′ | a, e)U(s′)

I want the agent to act rational, and choose the action with the maximum expected
utility (MEU) from its set of possible actions, as defined in Definition 2.2.3:

Definition 2.2.3 (Set of possible Actions).
a∗ = arg max EU(a | e)

The traveling agent in the public transport problem receives negative rewards in the
form of ticket fees and fines. I assume traveling by public transport yields a large
positive utility for a traveler, as the traveler wants to end up in a certain destination.

Chapter 2. Approaches to the problem 6

Because of this I set the maximal utility to 100, from which potential fees and fines
are subtracted. The utility of 100 is only received when the traveler does not check
in and the normative organization does not enforce the norm. For the costs of ticket
fees and fines I used proportions similar to real-life costs. The utility values I use for
calculating the MEU are shown in Table 2.1.

Checked In Not Checked In
Monitoring 95 50
Not Monitoring 95 100

TABLE 2.1: This table shows the rewards an agent receives in different
situations in the public transport problem.

The decision problem can now be represented visually in a decision tree13 (see Figure
2.1). The root node is a box, which signifies a choice is to be made at that moment in
the decision process. At this point our traveler makes the decision whether to check
in or not. The first child node then is a circle, which means a probabilistic event
takes place there. The normative organization monitors whether the agent entails
the normative condition ψ (see Definition 2.1.1) with probability p. In other words,
p is the enforcement intensity. Lastly, each terminal node shows the utility scores for
the traveling agent in each scenario.

95

Checked in

100

1-pNo monitoring

50

p
Monitoring

Not checked in

FIGURE 2.1: A decision tree for the traveling agent.

These utility scores allow the expected utility to be calculated for each action given
the evidence: EU(Checking in | e) = 95 and EU(Not checking in | e) = 50p +
100(1 − p) = −50(p–2). It is expected that the agent complies to the norm and
checks in when the enforcement intensity is high. When the enforcement intensity
is low however, not checking in should have a higher expected utility. This means
there must be a value for the enforcement intensity where the agent changes his pref-
erence. By plotting the expected utility functions against the enforcement intensity,
it is shown that with these parameters this critical value is 0.1 (see Figure 2.2).

Chapter 2. Approaches to the problem 7

FIGURE 2.2: plot showing both expected utility functions plotted
against the enforcement intensity.

2.3 Reinforcement Learning

As shown in Section 2.1, a traveling agent will gain a higher expected utility from
checking in as opposed to not checking in, when the probability of monitoring is
0.1 or higher with the reward parameters from table 2.1. However, it is unrealistic
for someone that uses public transport in real life to know in advance the probability
for enforcement. As mentioned in Section 1.1, the enforcement intensity is often kept
unknown so that agents cannot easily evade the enforcement.

It is not unrealistic for someone who travels by public transport often to become
aware of possible patterns in enforcement, after a certain amount of time. This is
where reinforcement learning becomes applicable to the problem. As stated by Kael-
bling et al.: ”reinforcement learning is the problem faced by an agent that must learn behav-
ior through trial-and-error interactions with a dynamic environment.”7 The agent receives
information about the environment through perception and is able to influence the
environment through actions. The interaction between agent and environment hap-
pens in steps, in each step the agent receives a certain input about its current state
of the environment. Then the agent chooses an action, which in turn yields a certain
numerical reward for the agent. The agent should aim to choose actions that tend to
maximize the total reward, which it can learn over time via trial and error.

To formalize the structure of RL, I formulate it as a Markov Decision Process10 (MDP)
(see 2.3.1). This is possible because the problem is a sequential decision problem
with a Markovian transition model. The probability of transitioning from state s to
s′ does not depend on earlier states the agent has been in, it solely depends on state
s itself.12

Definition 2.3.1 (Markov Decision Process).
An MDP is a tuple 〈S, A, P(s | s, a), R〉, where:

• S is a set of possible states. For all states in discrete time steps, st ∈ S.

Chapter 2. Approaches to the problem 8

• A is a set of possible actions, where for all actions a possible in a given state,
a ∈ A.

• P(s′ | s, a) is the probability of moving from state s to s′ when executing
action a, such that ∑ s′P(s′ | s, a) = 1 and P(s′ | s, a) ≥ 0.

• R is the reward function, mapping from states to reward values. R : S→ R.

• γ is the discount factor, 0 ≤ γ ≤ 1. The discount factor determines the
importance of future rewards.

To aim for the maximal reward, the agent should develop a policy π, that maps from
states to actions. Via this policy the agent knows what action to take in every state
of the environment. To learn this policy, assigned to every state is a numeric value
that indicates the expected reward received were the agent to follow that state. An
optimal value function V has to be learned to assign these values to states, which is
defined in Definition 2.3.2.

Definition 2.3.2 (Optimal Value Function).
V∗(s) = R(s) + max

a∈A
γ ∑

s′∈S
P(s′ | s, a)V∗(s′)

From this function V, the function for finding the optimal policy can be derived, as
shown in Definition 2.3.3. The optimal policy π∗ is defined as the best action a such
that the expected total reward is maximized in state s.

Definition 2.3.3 (Optimal Policy).
π∗(s) = argmax

a∈A
∑

s′∈S
P(s′ | s, a)V∗(s′)

I will apply the RL method Q-learning on the public transport problem, where
the formulas described in this section will be used. In the next subsection I will give
a background on the method, and then present the implementation in Chapter 3.
The goal is to allow the traveling agent to learn a policy for checking in based on
fixed and stochastic enforcement patterns.

2.3.1 Q-learning

Q-learning is a commonly used method for reinforcement learning.9, 10 It is a method
that learns utilities bound to actions, rather than just learning utilities. To describe
the value for performing action a in state s, I use the notation Q(s, a). Definition 2.3.4
shows the relation between Q-values and utility.

Definition 2.3.4 (Utility).
U(s) = maxa Q(s, a)

The idea for Q-learning is to assign a Q-value to each action that can be chosen in a
state, for every state. After choosing an action a in state s, the agent ends up in state
s′ and receives a reward R. Based on the reward, the Q-value Q(s, a) gets updated

Chapter 2. Approaches to the problem 9

via the function described in Definition 2.3.5 with learning factor α and discount
factor γ to account for temporal difference.

Definition 2.3.5 (Updating the Q-value).
Q(s, a)← Q(s, a) + α(R(s) + γ maxa Q(s′, a′)−Q(s, a))

A well-known problem in RL is finding a balance between exploration and exploita-
tion.10, 12 If the agent always chooses an action according to its learned policy, in
other words exploiting the policy, the agent might stay at a local optimum in re-
gards to the policy. Too much focus on exploitation might prevent the agent from
finding possible better actions. To counter this, exploration is essential. This means
the agent randomly picks an action without taking the policy in account. It is ob-
vious to see that too much focus on exploration would not work either, as in that
case the agent would not use any information it has learned. Like Li et al. I use an
epsilon-greedy approach to balance exploration versus exploitation.9, 10 This means
the agent chooses an action based on its learned policy most of the time, but it
chooses a random action (exploration) with probability ε, which is set to 0.1.

Algorithm 1 shows pseudocode for the algorithm used in the RL experiments. Each
episode the agent loops over the seven states representing a week, where each day
has a corresponding state s.The epsilon-greedy strategy then decides whether the
agent chooses a random action, or an action based on the policy. The reward based
on the chosen action is then given by the reward function. (see Algorithm 2) The
optimal next state is retrieved, which is always the next day as that is the only state
the agent can go to. The only exception is when the agent is on day seven, then the
episode is finished. The last step is updating the value function, which is done using
the function shown in Definition 2.3.5.

Algorithm 1 Pseudocode Q-learning

1: procedure TRAIN

2: for each episode ∈maxEpisodes do
3: for each day ∈ week do
4: s← GetState()
5: if isExplorations(s) then
6: a← random a ∈ A
7: else
8: a← π(s)
9: r ← getReward(s, a)

10: s∗ ← getOptimalState(s)
11: V(s)← V(s) + α · [r + γ ·V(s∗)−V(s)]
12: s← nextState()

Chapter 2. Approaches to the problem 10

Algorithm 2 getReward(s, a)

1: procedure GETREWARD

2: if a = CheckIn then
3: r ← costReductionForCheckingIn
4: else
5: if normEnforced(s) then
6: r ← penaltyForNotCheckingIn
7: else
8: r ← R(s)
9: return r

11

Chapter 3

Algorithm Implementation and
Results

In this chapter I will use the theory and formulas described in Chapter 2 to program
a traveling agent in a public transport scenario, using the programming language
Python. I modified a Q-learning algorithm found online for another RL problem,
the Cliff-Walking problem5, to make it applicable to my public transport problem
(see Appendix A for the code). In the first experiment, the agent will learn a policy
based on fixed enforcement patterns. This will be covered in section 3.1. In section
3.2 I will describe the experiment with stochastic enforcement, from which the agent
is to learn a policy as well.

3.1 One-dimensional array-based RL with fixed enforcement

The public transport problem is similar to the Parking World scenario researched
by Li et al.10 To illustrate variable norm enforcement, Li et al. used reinforcement
learning on an agent in a 5x5 grid of cells. The cells represented spots where the
agent could travel to with their car. One of the cells is a legal parking cell, and
one is an illegal parking cell. The reward for parking on the legal parking cell is
positive, whereas the reward for parking on the illegal cell depends on the normative
organization. When the norm is enforced, the agent receives a large negative reward,
but when the norm is not enforced it receives a large positive reward. This means
the probability distribution for a positive and negative reward in the illegal parking
spot depends on the enforcement intensity. This enforcement intensity is not known
to the agent initially, but the idea is for the agent to learn it. It is expected that a
rational choosing agent refrains from choosing an action that is likely to lead to a
penalty. On the other hand, if the probability of getting caught parking illegally
is low, the agent will likely aim for the highest reward by parking illegally more
often. As discussed in Section 2.1, this means there exists a critical value for the
enforcement intensity where the probability of getting caught parking illegally is too
high for parking illegally to be a viable strategy to get a maximal reward. Figure 3.1
shows the average utility for both parking strategies plotted against the enforcement
intensity from the experiments of Li et al.10

Chapter 3. Algorithm Implementation and Results 12

FIGURE 3.1: Learned utilities for differing enforcement intensity (Li
et al. (2015)).10

As can be seen, the critical value for enforcement intensity seems to be around 0.15,
when using the parameters Li et al. used. The graph shows the expected behavior.
Where Li et al. used a 5x5 grid of cells to simulate possible parking cells, the pub-
lic transport model can be much simpler. It does not need to be grounded in two
dimensions, it can be a one-dimensional array instead. To represent a week, I use
an array of length 7 and the agent starts on the first day: (0,0). Every step the agent
makes a decision to check in that day or to travel without paying, and then receives a
reward based on their action and based on the normative organization. The Q-value
for the relevant state and action is updated, and the agent then moves one ‘cell’ to
the right. I use the same rewards here as in section 1.2 (see Table 2.1).

Prior to a run of the experiment, an enforcement map is generated which is an ar-
ray of length 7 as well, consisting of 0s and 1s. This map determines at what days
monitoring is present (represented by a 1 in the map), or not (represented by a 0 in
the map). This allows the model to retrieve the correct rewards. The enforcement
intensity can be increased or decreased per run, causing the number of days with
monitoring to increase or decrease respectively. For example, an enforcement inten-
sity of 0.5 means that each spot in the enforcement map has 50% chance of being a
0, and 50% chance of being a 1. In other words, each day has 50% of having enforce-
ment being employed. In this part of the experiment I keep the enforcement fixed
for every episode to see whether the agent is able to learn a policy. An example of
an enforcement map with an enforcement intensity of 0.5 could be [0, 1, 1, 0, 1, 0,
0], which stays the same for every week (episode). This causes the traveling agent
to receive a fine on Tuesdays, Wednesdays and Fridays, were the agent to defy the
norm on those days.

It is expected that the agent is able to learn the pattern, and I am aware this is an
unrealistic strategy of enforcement. However, it could give insight in behavior with
respect to enforcement intensity nonetheless. Also, this model is easily expanded
on with more complex, more realistic enforcement strategies as will be discussed
further in Section 3.2.

Chapter 3. Algorithm Implementation and Results 13

I varied the enforcement intensity from 0.0 to 1.0 with a step size of 0.1. The agent
was run ten times with 100.000 episodes per run, and after each run the average util-
ity (Q-values) for checking in and not checking in were calculated. Then the average
utilities were calculated over the ten runs for each value of enforcement intensity.
The results of Q-learning on the public transport problem with fixed enforcement
are shown in Figure 3.2.

FIGURE 3.2: Results from Q-learning with fixed enforcement

As can be seen in Figure 3.2, the critical value for enforcement intensity is 0.13. After
that point the average utility for not checking in drops below the average utility for
checking in, and decreases at a faster rate.

3.2 One-dimensional array-based RL with stochastic enforce-
ment

In Section 3.1 the agent learned a policy that caused it to prefer not checking in when
the enforcement intensity is below 0.13. As the enforcement intensity increases, the
agent becomes less likely to defy the norm. The enforcement map that determines
which days of the week are monitored was fixed during all episodes of one run. As
I stated in Section 3.1, most real life enforcement strategies will not be fixed, as those
would be too easy to bypass. In this section I will apply the Q-learning algorithm on
the public transport model with a stochastic enforcement strategy.

In this experiment, the enforcement map will not be constant for each episode. The
enforcement intensity still influences the number of days where enforcement will
take place, but the pattern will change every week. For example: an enforcement
intensity of 0.1 can cause the enforcement map to be [1, 0, 0, 0, 0, 0, 0]. The next week
still has an enforcement intensity of 0.1, but the enforcement map is generated anew.
There is a less obvious pattern to enforcement in this experiment, but the traveling
agent should still learn a policy based on its rewards.

The set up of this experiment is the same as in 3.1. Once again I varied the enforce-
ment intensity from 0.0 to 1.0 with a step size of 0.1. The agent was run ten times
with 100.000 episodes per run, and after each run the average utility (Q-values) for

Chapter 3. Algorithm Implementation and Results 14

checking in and not checking in were calculated. Then the average utilities were
calculated over the ten runs for each value of enforcement intensity. The results of
Q-learning on the public transport problem with stochastic enforcement are shown
in Figure 3.3. The critical enforcement intensity value is shown to be 0.05 for stochas-
tic enforcement.

FIGURE 3.3: Results from Q-learning with stochastic enforcement

15

Chapter 4

Discussion

In this Chapter I will discuss the results of my experiments, as well as shortcomings
of the project. Additionally, I will propose options for potential further research, and
present the conclusion of this thesis.

Q-learning with fixed enforcement
When comparing the results from Q-learning with fixed enforcement (see Figure
3.2) with the results from Li et al. (see Figure 3.1), it can be seen that both graphs
portray similar behavior. A clear point for the critical value of enforcement intensity
is visible, which shows the agent managed to learn a policy which causes it to defy
the public transport norm at low enforcement intensity. That preference quickly
decreases after the value for enforcement intensity reaches the critical point of 0.13.
The agent has learned it yields a higher reward if it complies to the norm from there
on. The average utility for checking in decreases as well, which means increases in
the enforcement intensity still have an effect on the average utility of checking in.
The result is significant nonetheless, as the average utility for checking in is higher
than the average utility for not checking in when the enforcement intensity is 0.13
or higher. The prefered policy is the action with the highest average utility relative
to the other actions in the action space, regardless of increases or decreases in said
utility.

Q-learning with stochastic enforcement
The results from Q-learning with stochastic enforcement (see Figure 3.3) show a sim-
ilar graph, where the agent (albeit slightly) prefers to not check in when there is no
(or very little) enforcement. When the enforcement intensity is 0.05 or higher, the
prefered policy switches to checking in, which reaches a constant value for average
utility. The average utility for not checking in decreases as the enforcement intensity
increases, similar to the experiment with fixed enforcement. The average utility for
checking in stays constant shortly after the critical value for enforcement intensity is
reached. Further research need to be conducted to explain why further increases of
the enforcement intensity have no effect on the average utility for checking in when
enforcement is stochastic, while it does have effect when enforcement is fixed.

General discussion and future research
The original idea for this thesis was to use reinforcement learning on both parties
in the public transport problem. The traveling agent could learn policies based on
the enforcement strategies of the normative organization, while the normative or-
ganization could learn policies for employing enforcement based on behavior of the
traveling agent. This was suggested as future research by Li et al.10. I wanted to build
up to that by giving sufficient background information and theory, and starting with
just a learning traveler as regards the programming section. During the process it
became clear that the learning normative organization fell out of the scope of this

Chapter 4. Discussion 16

Bachelor’s thesis. I think it would be a very interesting subject for future research,
which could give more insight in effective enforcement strategies. This could poten-
tially be coupled with Game Theory, a topic I considered including in this thesis as
well. The public transport problem consists of two parties picking strategies based
on the opponent’s action and a reward table, so Game Theory could provide use-
ful insight on resulting strategies and possible equilibria. I investigated a variant of
Game Theory called Stackelberg Security Games which I initially planned to cover
in this thesis, but unfortunately it did not fit in the scope of this thesis to include a
sufficient analysis.

A potential flaw in this project could be the decision to use Q-learning on the public
transport problem. It is the RL algorithm I am most experienced and confident with,
and it is commonly used for RL. Additionally, it was used by Li et al. from whom I
have drawn inspiration for this project. However, the one-dimensional model could
not be exploited optimally by Q-learning, as there is always a maximum of one state
to travel to from any state. The maximal expected value for s′ is not relevant when
deciding on an action in state s when the agent ends up in the same state regardless
of the action chosen. I considered implementing a different RL algorithm in addition
to Q-learning, which was a Policy Gradient algorithm used for the Cartpole prob-
lem.8 In the Cartpole problem the agent must learn to balance a vertical pole on a
cart by pushing the cart left or right. The idea of Policy Gradient is to initialize a cer-
tain policy at the start, which will be updated iteratively based on improvement in
expected payoff for the agent. The algorithm does this by using a set of parameters
θ and a value function. The parameters θ are initialized randomly and are updated
iteratively to maximize this value function, which is often just the total sum of re-
wards.3 As the agent in the Cartpole problem works with a binary action space like
in my public transport problem, I thought the algorithm could be translated for and
applied to my model. After implementing the Policy Gradient algorithm it did not
seem as though the agent was able to learn based on the rewards. Even after setting
the reward for defying the norm undetected a thousand times higher than the re-
ward for complying, the agent’s policy still converged to always checking in often.
This could be because the Cartpole problem worked with a very simple reward sys-
tem (a reward of +1 for every step in which the pole is kept upright) whereas mine
is more complex with two different high rewards and one lower reward. Delving
deeper into the Policy Gradient fell out of the scope of this project, which is why
I decided to focus strictly on Q-learning. It is an interesting idea for future work
to implement different methods of reinforcement learning on the public transport
problem nonetheless.

Conclusion
This thesis shows it is possible to discover policies of agents in a simulation based
on the normative situation that is public transport. In turn, this allows normative
organizations to adapt their strategy of enforcement, to catch as many norm defyers
with the limited resources they have available to them. This answers my research
question: “How can enforcement strategies for public transport be optimized by
making use of learning agents?” The results of this thesis could be used by norma-
tive organizations for insight in behavior of agents in normative situations, while
the approach I used can be built on to conduct further, more complex research on
behavior in normative situations.

17

Bibliography

[1] N. Alechina, M. Dastani, and B. Logan. Programming norm-aware agents. In
Proceedings of the 11th International Conference on Autonomous Agents and Multia-
gent Systems-Volume 2, pages 1057–1064, 2012.

[2] N. Alechina, M. Dastani, and B. Logan. Norm approximation for imperfect
monitors. 2014.

[3] B. Banerjee and J. Peng. Adaptive policy gradient in multiagent learning. In
Proceedings of the second international joint conference on Autonomous agents and
multiagent systems, pages 686–692, 2003.

[4] M. B.V. Monitor zwartrijden stads- en streekvervoer - resultaten meting 2006 -
eindrapport, 9 2006.

[5] Z. Cankara. Q-learning algorithm for the cliff walking problem. https:

//github.com/zeynepCankara/Cliff-Walking-Solution/. Accessed: 11-05-
2020.

[6] Geweld tegen ns-personeel vooral door zwartri-
jders. https://beveiligingnieuws.nl/nieuws/geweld/

geweld-ns-personeel-vooral-zwartrijders/. Accessed: 11-06-2020.

[7] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A
survey. Journal of artificial intelligence research, 4:237–285, 1996.

[8] J. Klaise. Reinforcement learning with policy gradients in pure python.
https://www.janisklaise.com/post/rl-policy-gradients/. Accessed: 01-
06-2020.

[9] J. Li. Development of intelligent agents for playing angry birds game. May
2014.

[10] J. Li, F. Meneguzzi, M. Fagundes, and B. Logan. Reinforcement learning of
normative monitoring intensities. In International Workshop on Coordination, Or-
ganizations, Institutions, and Norms in Agent Systems, pages 209–223. Springer,
2015.

[11] F. Meneguzzi, B. Logan, and M. Silva Fagundes. Norm monitoring with asym-
metric information. In Proceedings of the 2014 international conference on Au-
tonomous agents and multi-agent systems, pages 1523–1524. International Foun-
dation for Autonomous Agents and Multiagent Systems, 2014.

[12] P. Norvig and S. Russel. Artificial Intelligence: A Modern Approach. Prentice Hall,
2009.

[13] J.-C. Pomerol. Artificial intelligence and human decision making. European
Journal of Operational Research, 99(1):3–25, 1997.

https://github.com/zeynepCankara/Cliff-Walking-Solution/
https://github.com/zeynepCankara/Cliff-Walking-Solution/
https://beveiligingnieuws.nl/nieuws/geweld/geweld-ns-personeel-vooral-zwartrijders/
https://beveiligingnieuws.nl/nieuws/geweld/geweld-ns-personeel-vooral-zwartrijders/
https://www.janisklaise.com/post/rl-policy-gradients/

BIBLIOGRAPHY 18

[14] M. Silva Fagundes et al. Sequential decision making in normative environ-
ments. 2012.

19

Appendix A

Python Q-learning Implementation

−*− c o d i n g : u t f−8 −*−
”””
C r e a t e d on Mon May 11 1 2 : 0 0 : 1 8 2020
Based on a Q−l e a r n i n g a l g o r i t h m used by Zeynep Cankara f o r t h e C l i f f −Walking prob l em : h t t p s : / / g i t h u b . com / zeynepCankara / C l i f f −Walking−S o l u t i o n

@author : R i ck Mank
”””

import numpy as np
import m a t p l o t l i b . pyplot as p l t

def c r e a t e Q t a b l e (rows = 1 , c o l s = 7) :

i n i t i a l i z e t a b l e wi th Q−v a l u e s f o r b o t h a c t i o n s
q t a b l e = np . zeros ((2 , rows * c o l s))
return q t a b l e

def e p s i l o n g r e e d y p o l i c y (s t a t e , q t ab l e , eps i lon = 0 . 1) :

c h o o s e a random i n t from an uni form d i s t r i b u t i o n [0 . 0 , 1 . 0)
d e c i d e e x p l o r e e x p l o i t = np . random . random ()

compare random i n t with e p s i l o n t o d e c i d e whe the r t o e x p l o r e o r t o e x p l o i t
i f (d e c i d e e x p l o r e e x p l o i t < eps i lon) :

a c t i o n = np . random . choice (2) # e x p l o r a t i o n (NOT−CHECK−IN = 0 , CHECK−IN = 1)
e lse :

a c t i o n = np . argmax (q t a b l e [: , s t a t e]) # e x p l o i t a t i o n : c h o o s e t h e a c t i o n with l a r g e s t Q−v a l u e (s t a t e v a l u e)

return a c t i o n

def g e t s t a t e (agent , q t a b l e) :

g e t p o s i t i o n o f t h e a g e n t
(posX , posY) = agent

o b t a i n t h e s t a t e v a l u e
s t a t e = 7 * posX + posY

g e t maximum s t a t e v a l u e from t h e t a b l e
s t a t e a c t i o n = q t a b l e [: , i n t (s t a t e)]
maximum state value = np . amax (s t a t e a c t i o n) # r e t u r n t h e s t a t e v a l u e f o r t h e h i g h e s t v a l u e d a c t i o n

return s t a t e , maximum state value

def enforcement (e n f i n t e n s i t y) :

l o o p o v e r numpy array , p l a c i n g 1 s when random i n t i s l o w e r than t h e e n f o r c e m e n t i n t e n s i t y
enf map = np . zeros (7)
for day in range (0 , len (enf map)) :

e n f o r c e o r n o t = np . random . random ()

Appendix A. Python Q-learning Implementation 20

enf map [day] = 0

i f e n f o r c e o r n o t < e n f i n t e n s i t y :
enf map [day] = 1

r e t u r n a r r a y o f 0 s and 1s , where a 0 means no e n f o r c e m e n t on t h a t day , and a 1 means e n f o r c e m e n t
return enf map

def stoch enforcement (e n f i n t e n s i t y) :

c r e a t e s e n f o r c e m e n t map t o use f o r s t o c h a s t i c e n f o r c e m e n t , which c h a n g e s f o r e v e r y e p i s o d e
stoch map = []
for i in range (7) :

choice = np . random . choice ([0 , 1] , p=[1− e n f i n t e n s i t y , e n f i n t e n s i t y])
stoch map . append (choice)

return stoch map

def get reward (s t a t e , ac t ion , enf map) :

g e t reward b a s e d on a c t i o n chosen , and v a l u e o f t h e day (s t a t e) in t h e e n f o r c e m e n t map
i f a c t i o n == 0 :

i f enf map [s t a t e] == 1 :
reward = 50

e lse :
reward = 100

i f a c t i o n == 1 :
reward = 95

return reward

def move right (agent) :

i n c r e a s e Y c o o r d i n a t e by 1 t o s i g n i f y t h e nex t day
l i s t i f i e d = l i s t (agent)
i f (l i s t i f i e d [1] < 6) :

l i s t i f i e d [1] += 1
agent = tuple (l i s t i f i e d)

return agent

def checked in (agent , ac t ion , env) :

change c u r r e n t v a l u e in env i ronment t o 1 i f t h e a g e n t d e c i d e d t o c h e c k in
(posY , posX) = agent
env [posY] [posX] = 0
i f a c t i o n == 1 :

env [posY] [posX] = 1
return env

def update qTable (q t ab l e , s t a t e , ac t ion , reward , n e x t s t a t e v a l u e , gamma discount = 0 . 9 , alpha = 0 . 5) :

u pd a t e t h e q t a b l e b a s e d on o b s e r v e d r ewards and maximum next s t a t e v a l u e v i a
#Q(S , A) <− Q(S , A) + [a l p h a * (reward + (gamma * maxValue (Q(S ’ , A ’))) −

Q(S , A)
update q value = q t a b l e [act ion , s t a t e] + alpha * (reward + (gamma discount * n e x t s t a t e v a l u e) − q t a b l e [act ion , s t a t e])
q t a b l e [act ion , s t a t e] = update q value

return q t a b l e

def qlearning (counter , e n f i n t , num episodes = 100000 , gamma discount = 0 . 9 , alpha = 0 . 5 , eps i lon = 0 . 1) :

a r r a y s f o r c a l c u l a t i n g means
tenmeanzero = []
tenmeanone = []
for i in range (1 0) :

q t a b l e = c r e a t e Q t a b l e ()

Appendix A. Python Q-learning Implementation 21

meanvalues zero = []
meanvalues one = []
agent = (0 , 0) # s t a r t i n g from l e f t
enf map = enforcement (e n f i n t) #un−comment f o r f i x e d e n f o r c e m e n t

s t a r t i t e r a t i n g through t h e e p i s o d e s
for episode in range (0 , num episodes) :

enf map = s t o c h e n f o r c e m e n t (e n f i n t) #un−comment f o r s t o c h a s t i c e n f o r c e m e n t
env = np . zeros ((1 , 7))
agent = (0 , 0) # s t a r t i n g from l e f t
step cum = 0
while (step cum < 7) :

g e t t h e s t a t e from a g e n t ’ s p o s i t i o n
s t a t e , = g e t s t a t e (agent , q t a b l e)
c h o o s e a c t i o n us ing e p s i l o n−g r e e d y p o l i c y
a c t i o n = e p s i l o n g r e e d y p o l i c y (s t a t e , q t a b l e)
k e e p t r a c k when a g e n t c h e c k s in
env = checked in (agent , ac t ion , env)

o b s e r v e nex t s t a t e v a l u e
n e x t s t a t e , max next s ta te va lue = g e t s t a t e (agent , q t a b l e)
o b s e r v e reward
reward = get reward (n e x t s t a t e , ac t ion , enf map)

u pd a t e q t a b l e
q t a b l e = update qTable (q t ab l e , s t a t e , ac t ion , reward , max next s ta te va lue , gamma discount , alpha)
#move t o nex t day
agent = move right (agent)
u pd a t e t h e s t a t e
s t a t e = n e x t s t a t e
step cum += 1

meanvalues zero . append (np . mean(q t a b l e [0]))
meanvalues one . append (np . mean(q t a b l e [1]))

t o k e e p t r a c k dur ing run
i f (episode > 9 9 9 9 8) :

print (” Episode ” , i + 10* counter)
tenmeanzero . append (np . mean(meanvalues zero))
tenmeanone . append (np . mean(meanvalues one))

r e t u r n a v e r a g e Q−v a l u e s f o r b o t h a c t i o n s
return np . mean(tenmeanzero) , np . mean(tenmeanone)

e n f a r r a y = []
meanzero array = []
meanone array = []
for i in range (1 1) :

e n f a r r a y . append (i /10)
meanzero , meanone = qlearning (i , i /10)
meanzero array . append (meanzero)
meanone array . append (meanone)

print (meanzero array , meanone array)
p l t . p l o t (enf array , meanzero array , l a b e l = ”Not checking in ”)
p l t . p l o t (enf array , meanone array , l a b e l = ”Checking in ”)
p l t . x l a b e l (’ Enforcement i n t e n s i t y ’)
p l t . y l a b e l (’ Average u t i l i t y ’)
p l t . x t i c k s ([0 . 0 , 0 . 1 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1 . 0])
p l t . legend ()
p l t . show ()

	Introduction
	Introduction to norms
	Introduction to the problem
	Aim and relevance
	Structure of this paper

	Approaches to the problem
	Theoretical background on norms
	Decision Theory
	Reinforcement Learning
	Q-learning

	Algorithm Implementation and Results
	One-dimensional array-based RL with fixed enforcement
	One-dimensional array-based RL with stochastic enforcement

	Discussion
	Bibliography
	Python Q-learning Implementation

