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Abstract

The Curry-Howard isomorphism relates systems of formal logic to models of
computation. It broadly states that proofs correspond to programs and formulae
to types. For a long time it was believed the correspondence merely applied
to intuitionistic logic. This changed when the axioms of classical logic were
found to correspond to control operators. The correspondence is an important
theoretical result connecting logic and computer science, but also has practical
implications in e.g. program verification.

This thesis will discuss the isomorphism with respect to both intuitionistic
and classical logic. First, a language for the intuitionistic part of the correspon-
dence will be constructed and assigned meaning by an operational semantics.
These constructs will be used for exploring various aspects of the isomorphism,
such as continuations and the relation between normalization and reduction.
Subsequently, the language will be extended for a correspondence with classical
logic by adding a control operator based on Peirce’s law. The computational
effects of this operator will be analysed and compared with other possible con-
trol operators, which arise from different classical axioms —i.e. a generalised
version of Peirce’s law, double negation elimination and the law of excluded mid-
dle. The correspondence will be shown to relate double negation embeddings of
classical logic into intuitionistic logic to CPS translations. Finally, the complete
language and semantics will be proven to have the properties of determinism,
progress, preservation and termination.
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Chapter 1

Introduction

The Curry-Howard isomorphism states the correspondence between proof sys-
tems of formal logic and models of computation. In general, it states that proofs
correspond to programs and that the proven formulae correspond to the types
of the obtained programs [13]. Additionally, the isomorphism relates certain
problems from both formalisms, such as provability to type inhabitation and
proof normalization to program evaluation.

For many years, it was believed the correspondence only applied to intuition-
istic logic. This changed, however, in 1990, when Griffin related classical proofs
to typed programs by using control operators [14]. His paper initiated research
into many aspects of classical logic and the corresponding programming with
control operators. One notable result is the correspondence between double
negation translation and continuation-passing-style transformation [14, 23].

The results from the Curry-Howard isomorphism are, first of all, of great theoret-
ical interest. The conclusion that the systems of formal logic and computation
are in some sense equivalent, is fundamentally remarkable. Also for artificial
intelligence, this is an important theoretical insight, since the scientific areas
of logic and computer science have been intertwined with its development from
the start. For example, the most influential programming language in the early
days of artificial intelligence, Lisp [26], is based on Church’s λ-calculus.

More practically, the Curry-Howard isomorphism has contributed to the
development of proof assistants, such as Coq and Agda. Proof assistants have
many useful applications, one of which is the verification of system designs and
proving the correctness of programs [12].

The extension of the correspondence into classical logic adds control oper-
ators to the system of computation, which allows for programming with con-
tinuations. While these should be used with caution, they can be very useful.
One recent example is the use of —a more general class of— continuations for
implementing deep learning [28].
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5

The objective of this thesis is to present a clear overview of the Curry-Howard
isomorphism, for both intuitionistic and classical logic. Rather than presenting
new results, we will study the isomorphism in a coherent way, by construct-
ing a simple language and using that language as a base for analysing various
principles. Throughout this thesis, we will discuss questions such as ‘What is
the dynamic aspect of logical proofs?’, ‘What is a computationally interesting
definition of classical logic?’ and ‘What is the computational content of classical
logic?’.

This thesis will be structured as follows.
Chapter 2 will start with introducing intuitionistic propositional logic, the

simply-typed λ-calculus and the correspondence between both systems. Sub-
sequently, the language which we will have constructed in this study, will be
implemented and assigned meaning by an operational semantics. We will con-
clude the chapter by examining the correspondence between proof and type
checking, formula and type inference, provability and type inhabitation, and
normalization and reduction.

Chapter 3 starts by discussing classical logic, the λC-calculus and the exten-
sion of the Curry-Howard isomorphism into classical logic. Then, we will extend
our language with a notion of control. Again, we will discuss the implementa-
tion and assign meaning in terms of an operational semantics. Furthermore,
we will present the correspondence between double negation translation and
continuation-passing style transformation.

Chapter 4 will deal with the meta-theoretic properties of the language and
operational semantics discussed in chapters 1 and 2. We will prove the properties
of determinism, progress, preservation and termination.

Chapter 5 will conclude our study. We will provide an overview of the main
observations and give suggestions for further research.

An implementation of the presented language and operational semantics can be
found at https://github.com/JasmijnvH/BSc-Thesis.git.

https://github.com/JasmijnvH/BSc-Thesis.git


Chapter 2

Intuitionistic Logic

When we think about logic, we often think in terms of truth. We reason about
statements as if every proposition is either true or false. This principle, known
as the law of excluded middle, is what is rejected in intuitionistic logic. Instead
of reasoning about a statement based on its truth value, we are now interested
in the proof or construction of that statement.

At the time the Curry-Howard isomorphism was first introduced, it only
considered proofs in intuitionistic logic. Curry established a correspondence be-
tween combinators of combinatory logic and axioms of intuitionistic logic [7],
while Howard elaborated on the correspondence between natural deduction and
λ-calculus [16]. In this chapter we will discuss the correspondence by introducing
the principles of intuitionistic propositional logic, the simply typed λ-calculus
and their correspondence. We will continue by providing a computational in-
terpretation and elaborating on the operational semantics.

2.1 The Curry-Howard isomorphism

In this section, we will shortly review the language of intuitionistic propositional
logic and the simply typed λ-calculus. Subsequently, we will specify the corre-
spondence between those systems. Most of the following notation is taken from
Chapter 2 from Sørensen and Urzyczyn [27].

2.1.1 Intuitionistic propositional logic

To define the language of intuitionistic propositional logic, we assume an infinite
set PV of propositional variables and inductively define the set of formulas Φ
as

Φ ::= > | ⊥ | PV | (Φ→ Φ) | (Φ ∧ Φ) | (Φ ∨ Φ)

Here, > and⊥ denote two constants interpreted as ‘true’ and ‘false’, respectively.
Or rather, since in intuitionistic logic we reason in terms of proofs, > is the
proposition that has exactly one canonical proof, whereas ⊥ is the proposition

6



2.1. The Curry-Howard isomorphism 7

Γ, ϕ ` ϕ Ax

Γ ` > >I
Γ ` ⊥
Γ ` ϕ ⊥E

Γ, ϕ ` ψ
Γ ` ϕ→ ψ

→ I
Γ ` ϕ→ ψ Γ ` ϕ

Γ ` ψ → E

Γ ` ϕ Γ ` ψ
Γ ` ϕ ∧ ψ ∧I

Γ ` ϕ ∧ ψ
Γ ` ϕ ∧E

Γ ` ϕ ∧ ψ
Γ ` ψ ∧E

Γ ` ϕ
Γ ` ϕ ∨ ψ ∨I

Γ ` ψ
Γ ` ϕ ∨ ψ ∨I

Γ ` ϕ ∨ ψ Γ, ϕ ` ρ Γ, ψ ` ρ
Γ ` ρ ∨E

Figure 2.1: Intuitionistic propositional logic

that can never be proved. We have three binary operators: implication ‘→’,
where we read ϕ → ψ as ϕ implies ψ; conjunction ‘∧’, where ϕ ∧ ψ denotes ϕ
and ψ; and disjunction ‘∨’, where ϕ∨ψ means ϕ or ψ. Following convention, we
often use the abbreviation ¬φ for the negation φ→ ⊥ and omit the outermost
parentheses.

We now define the proof system, by specifying the axiom schemes and rules
for each connective. We let uppercase Greek letters Γ,∆, etc. stand for a finite
subset of Φ, which is called a context. The notation Γ,∆ is short for Γ∪∆ and
we write Γ, ϕ instead of Γ, {ϕ}. The rules that define the relation Γ ` ϕ are
presented in Figure 2.1. Given this system, a formal proof of Γ ` ϕ is a finite
tree in which the root is labelled Γ ` ϕ; each internal node has label Γ′ ` ϕ′; all
leaves are labelled by axioms; and the label of each parent node is derived by
applying one of the rules on the labels of the children. If ` ϕ, i.e. {} ` ϕ, then
ϕ is called a theorem. Intuitively, Γ ` ϕ means that from the set of assumptions
Γ we can conclude ϕ.

2.1.2 Simply typed λ-calculus

In the 1930s, Alonzo Church introduced a formal model of computation, called
the λ-calculus [5]. His work was based on the development of combinatory logic
by Schönfinkel and Curry [4]. A few years later, the λ-calculus was revised and
types were added, thus introducing the simply typed λ-calculus. There are two
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different approaches to the typing, one introduced by Church [6], and the other
by Curry. In Curry-style systems, abstractions have no domain. They are not
annotated with types and can therefore be assigned meaning regardless of the
typing. In Church-style systems, on the contrary, abstractions do have domains.
Consequently, each term in a system à la Church has a unique type. We will
study the system as introduced by Church.

We assume an infinite set U of type variables and define the set Π of simple
types by the following grammar.

Π ::= U | (Π→ Π)

Note that there is only one type constructor,→, which creates function types. In
order to give a full correspondence with intuitionistic propositional logic we will
need additional constructors. These will be introduced in the next subsection;
for now we will continue with the definitions as proposed by Church.

Let V be an infinite set of variables. We inductively define the set ΛΠ of
simply typed terms.

ΛΠ ::= V | (λx:Π ΛΠ) | (ΛΠ ΛΠ)

The typing of these terms happens in accordance with the following rules. We
read Γ `M : σ as ‘M has type σ in Γ’.

Γ, x : σ ` x : σ

Γ, x : σ `M : τ

Γ ` λx:σ . M : σ → τ
Γ `M : σ → τ Γ ` N : σ

Γ `M N : τ

A term M ∈ ΛΠ is called typable if there exist Γ and σ such that Γ `M : σ.
The simply typed λ-calculus is a model of computation. It can be seen as a

simple programming language in which the terms are programs. The typing of
the programs expresses certain properties and helps avoid programming errors.
In the coming sections we will extend this programming language and discuss
its logical interpretation.

2.1.3 The Curry-Howard isomorphism

The Curry-Howard isomorphism states that for any derivation in intuitionistic
logic there exists a corresponding typable λ-term à la Church, and the other
way around. However, since the simply typed λ-calculus as defined above only
contains the function type constructor, the correspondence would so far merely
apply to the implicational fragment of intuitionistic logic, i.e. the subsystem
in which we solely define the connective → and its rules (→ I and → E). To
extend the correspondence to the whole system of intuitionistic logic, we need
to extend the simply typed λ-calculus. First, we add type constructors for the
constants > and ⊥ and for product and sum types.

Π ::= > | ⊥ | U | (Π→ Π) | (Π ∧Π) | (Π ∨Π)
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Γ, x : ϕ ` x : ϕ
Ax

Γ ` taut : > >I
Γ `M : ⊥

Γ ` abortϕ M : ϕ
⊥E

Γ, x : ϕ `M : ψ

Γ ` λx:ϕ . M : ϕ→ ψ
→ I

Γ `M : ϕ→ ψ Γ ` N : ϕ

Γ `M N : ψ
→ E

Γ `M : ϕ Γ ` N : ψ

Γ ` 〈M,N〉 : ϕ ∧ ψ ∧I
Γ `M : ϕ ∧ ψ
Γ ` fst M : ϕ

∧E
Γ `M : ϕ ∧ ψ
Γ ` snd M : ψ

∧E

Γ `M : ϕ

Γ ` inlϕ∨ψ M : ϕ ∨ ψ
∨I

Γ `M : ψ

Γ ` inrϕ∨ψ M : ϕ ∨ ψ
∨I

Γ ` L : ϕ ∨ ψ Γ, x : ϕ `M : ρ Γ, y : ψ ` N : ρ

Γ ` vcase(L;x.M ; y.N) : ρ
∨E

Figure 2.2: Typed terms

Secondly, we expand the language ΛΠ.

ΛΠ ::= V | taut | abortϕΛΠ | (λx:Π ΛΠ) | (ΛΠ ΛΠ)

| 〈ΛΠ,ΛΠ〉 | fst ΛΠ | snd ΛΠ

| inlϕ∨ψ ΛΠ | inrϕ∨ψ ΛΠ | vcase(ΛΠ;V.ΛΠ;V.ΛΠ)

This expansion allows us to define the Curry-Howard isomorphism. If we let
PV equal U , then Φ equals Π. We specify the correspondence as in [27].

Theorem 2.1. (Curry-Howard isomorphism)

i. If Γ `M : ϕ then |Γ| ` ϕ, where |Γ| = {σ ∈ Π | (x : σ) ∈ Γ, for some x}.

ii. If Γ ` ϕ then there exists M ∈ ΛΠ such that ∆ `M : ϕ, where ∆ = {(xϕ :
ϕ) | ϕ ∈ Γ}.

Thus, we can combine the systems of intuitionistic logic and simply typed λ-
calculus, yielding the rules presented in Figure 2.2. We will discuss some intu-
itive interpretations of this correspondence.

An abort-expression is the term that corresponds to the ⊥E-rule, also ex
falso quodlibet.

The →-introduction rule corresponds to a logical abstraction. The →-
elimination rule is the application of two constructions.



2.1. The Curry-Howard isomorphism 10

A pair 〈M,N〉 corresponds to a product type ϕ∧ψ. The fst M and snd M
are the first and second projection of a product type, respectively. In logical
terms, we can say the ∧-introduction rule transforms two constructions M and
N of formulae ϕ and ψ into a construction 〈M,N〉 of a formula ϕ∧ψ. The two ∧-
elimination rules use a construction M of a formula ϕ∧ψ to build constructions
for the formulae ϕ and ψ.

The inlϕ∨ψ M and inrϕ∨ψ M are the left and right injections into a sum
type. Thus, taking a construction M and transforming it into a construction of
a disjunction. The ∨-elimination rule is a case-expression; it evaluates whether
L is of the form inlϕ∨ψ L′, in which case it returns M with the substitution of
L′ for x; or if L is of the form inrϕ∨ψ L′, in which case it returns N with the
substitution of L′ for y. Computationally, this is interesting, since it resembles
pattern matching, which is often used in programming. In logic, the rule corre-
sponds to having a construction L of a formula ϕ∨ψ and two constructions M
and N of the same formula ρ, one of which relies on the assumption ϕ and the
other on ψ. We then create a construction of the formula ρ.

In general, we can conclude that if we regard the type as a proposition, we
can interpret the term as a representation of its proof tree. This is the core of
the Curry-Howard isomorphism.

2.1.4 β-reduction

The simply typed λ-calculus comes with a natural notion of term —or pro-
gram— evaluation: β-reduction. This presents the following reduction-rules.

(λx:ϕ . M) N →β M [N/x]

fst 〈M,N〉 →β M

snd 〈M,N〉 →β N

vcase(inlϕ∨ψ L;x.M ; y.N)→β M [L/x]

vcase(inrϕ∨ψ L;x.M ; y.N)→β N [L/y]

Here M [N/x] is the capture-avoiding substitution of N for x in M . To explain
its effect, we need the notions of free-variables and α-equivalence.

Free-variables are variables that are not bound by an operator. Any variable
that is not free is called a bound-variable. In our expressions we encounter the
binding of variables in λ- and vcase-terms. An expression with no free-variables
is called closed. We define the free-variables FV recursively.

FV (x) = {x}
FV (taut) = ∅
FV (abortϕ M) = FV (M)

FV (λx:ϕ . M) = FV (M) \ {x}
FV (M N) = FV (M) ∪ FV (N)

FV (〈M,N〉) = FV (M) ∪ FV (N)
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FV (fst M) = FV (M)

FV (snd M) = FV (M)

FV (inlϕ∨ψ M) = FV (M)

FV (inrϕ∨ψ M) = FV (M)

FV (vcase(L;x.M ; y.N)) = FV (L) ∪ (FV (M) \ {x}) ∪ (FV (N) \ {y})

α-equivalence defines a form of equivalence between two expressions. It
states that the naming of the bound variables does not influence the evaluation,
i.e. two terms are α-equivalent if the only difference is the names of the bound
variables. For example, λx:ϕ . x and λy:ϕ . y are α-equivalent, whereas λx:ϕ . y
and λx:ϕ . z are not. The principle of α-equivalence can be used in α-renaming.
This is the process in which the bound variable of an expression is renamed, in
order to create an α-equivalent expression. It is desirable to use a fresh variable
for each new λ-term.

Now capture-avoiding substitution ensures that no previously free variable
gets bound —captured— as a result of the substitution. If, however, such a
capturing impends, α-renaming is used and the substitution is performed on
the α-equivalent expression.

The process of β-reducing a term —and hence evaluating a program— cor-
responds to normalizing a proof. In subsection 2.5.4 we will elaborate on this
correspondence.

2.2 Type checking and inference

The previous section established the correspondence between proofs and pro-
grams. This result enables us to implement a simply typed λ-calculus and use
the programs it produces to reason about intuitionistic proofs. We will im-
plement our simply typed λ-calculus in an existing programming language, a
meta- or hostlanguage. We chose to use Haskell. In this section we will describe
the syntax and type checking and inference. The next section will concern the
operational semantics.

2.2.1 Data types

To implement the simply typed λ-calculus we need two kinds of data types; one
to represent the simple types (Π), and one to construct simply typed terms, or
expressions (ΛΠ).

We store the simple types in a data type Type.

data Type = TVar String

| Unit

| Error

| Func Type Type

| Product Type Type

| Sum Type Type
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deriving (Eq)

The constructor TVar allows us to define any type variable, mirroring our infinte
set of variables U . The parameterless constructors Unit and Error denote our
basic types > and ⊥, respectively. The final three constructors implement the
binary operations for building function, product and sum types.

Next, we define the data type Expr for representing —possibly ill-typed—
terms.

data Expr = Var String

| Taut

| Abort Expr Type

| Lam String Type Expr

| App Expr Expr

| Pair Expr Expr

| Fst Expr

| Snd Expr

| Inl Expr Type

| Inr Expr Type

| VCase Expr String Expr String Expr

deriving (Eq)

An expression could be any variable from the infinite set V , which is repre-
sented by the constructor Var. The constant > only has an introduction rule,
implemented by the parameterless constructor Taut. The constructor Abort

simulates the result of the ⊥E-rule. Since the ‘ex falso sequitur quodlibet ’-rule
allows this expression to be of any type, we need to explicitly provide the type
we want to infer. This is done by the parameter of data type Type.

Lam and App are the constructors for the → I- and → E-rule, respectively.
Following Church’s convention for λ-terms, we need to annotate our variable in
Lam (contained in the String-parameter) with a type (provided in the Type-
parameter).

The constructor Pair simulates the result of the ∧I-rule; Fst and Snd pro-
vide the first and second projection, obeying the ∧E-rules.

Inl and Inr construct the injections, following the ∨I-rules. Note again
that we need to provide the desired result type. Finally, VCase implements
term obtained by the ∨E-rule.

2.2.2 Type checking and type inference

The defined data structures allow us to build terms. However, since no re-
strictions on typing have been provided, we are still able to build poorly typed
terms. For example, we should allow the projection constructors Fst and Snd

to merely take expressions of a product type as an argument. To guarantee
only well-typed expressions are used for computation, we need to distinguish
the correctly typed terms from the incorrect ones. This is where we will use
type checking and type inference.
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Assuming we have a function inferType which given an expression infers
its type, type checking is quite simple. We implement the function checkType

by providing it an expression and the expected type, and testing whether the
inferred type is equal to the provided type.

However, the implementation of this assumed function inferType is less
obvious. A complicating factor are the variables and their bindings in Lam and
VCase. We need to manage the correct typing within their scope. So, while
recursively traversing our expressions, we have to maintain a context of variable
typings. This will be achieved by introducing an additional function inferTypeS

which handles this context by using the State-monad. As the result type, we
want Type; the type of our state will be a MultiMap String Type, which will
store the type(s) of our variables. Now, our function inferType will initiate
the recursive inference in inferTypeS with the empty context and subsequently
extract the result.

The function inferTypeS will provide a case-by-case type inference, resulting
in a state containing the current result and context. It is defined by pattern
matching on all possible expressions.

In the first case, the pattern match is on Var x. To infer the type of a
variable x, we need to retrieve the assigned type from the current context. If
the variable is not contained in this context, it means it has not been declared
—that is, at least not in the current scope. We should not be able to assign a
type to such a variable, so the function will throw an error.

If the expression is a Taut, we should simply return its type Unit.
An expression of the form Abort t a requires us to check whether its given

expression t is of type Error. Otherwise, it would not be permitted to apply
the ‘ex falso sequitur quodlibet’ -rule and derive any type. If it is, we infer the
provided type a; if it is not, we generate an error. Note that we indeed need
the decoration of Abort with the type information a to be able to perform type
inference, as mentioned before.

If a Lam x a t expression is encountered, the variable x is added to the
context with its type a. Subsequently, the enclosed expression t is evaluated.
When this inference is done, we have evaluated everything within the scope
of the current λ-term. The variable, therefore, should be removed from the
context. The type we return in the end is the function type consisting of type
a and the inferred expression type.

For App t1 t2, we first infer the type of both expressions t1 and t2. The
type of t1 is supposed to be a function type ϕ→ ψ; the type of t2 then has to
be ϕ. This will result in the inference of the type ψ.

To infer the type of Pair t1 t2, we simply infer the types of t1 and t2 and
combine those in a product type.

Inferring the type of Fst t and Snd t, requires the type inference of t. This
is supposed to result in a product type; otherwise an error will be thrown. The
result will either be the first or second type of the product, respectively.

In the case of the injections, Inl t a and Inr t a, we first have to ensure
the intended result type a is a sum type. If it is, we infer the type of the
expression t. We proceed by comparing this to the right or left disjunct of our
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type a and returning a if it is a match. Note again that the type annotations
are necessary to perform the type inference of the entire expression.

The last pattern match is for VCase t x1 s1 x2 s2. First, we will have to
infer the type of t, which should be a sum type. The variable x1 and the left
disjunct of this type are added to the context and the type of s1 is inferred.
When this is done, x1 is deleted from the context. We now insert x2 with the
right disjunct and infer the type of s2. Lastly, we compare both results and if
they are equal, we return this type.

This concludes the definition of inferTypeS and thus of inferType. Both
type checking and type inference can now be used to confirm that an expression
is well-typed before proceeding with the computation.

2.3 Operational Semantics

With the syntax of our implementation discussed, we now arrive at its semantics.
We define the operational semantics, in which programs are assigned meaning
based on the computational steps of their execution. These steps will culminate
in returning the value of the program.

The two main approaches to operational semantics are big-step semantics
and small-step semantics. Big-step semantics associate a term with its final
value. Therefore, it is often simpler to define, but it fails to describe the pro-
cess of evaluation. Small-step semantics, on the other hand, provide a more
dynamic interpretation by giving an inductive definition. Both approaches will
be implemented. However, our main focus will be on the small-step semantics.

Because we will be considering an impure language when studying classi-
cal logic in the next chapter, we cannot work with full βη- or β-reduction.
Namely, these strategies are non-deterministic, which would, undesirably, lead
to non-deterministic programs. We therefore have to decide upon a different,
deterministic evaluation strategy. Mainly, this comes down to choosing between
call-by-value or call-by-name evaluation. In the case of call-by-value evaluation,
we only replace identifiers by values; in call-by-name evaluation, we replace
identifiers only by unevaluated terms [19]. We will concern ourselves with call-
by-value evaluation. Furthermore, if there are multiple expressions to evaluate,
we always start by evaluating the leftmost expression.

2.3.1 Values

In order to derive the value of a program, we first need to specify this notion.
Values are terms which require no further evaluation. They are formally defined
by the grammar

V ::= taut | x | λx:ϕ . M | 〈V, V 〉 | inlϕ∨ψ V | inrϕ∨ψ V
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2.3.2 Stacks

The small-step semantics should, at any point in the computation, indicate
the next step. Hence, we somehow need to keep track of the current point of
evaluation. For this purpose, we use a stack. While evaluating a specific part of
an expression, we store the remaining part, which is yet to be evaluated, on the
stack. Thus, the stack will contain expressions with one missing part —the part
currently being evaluated. This missing piece of the expression will be denoted
by a special variable , called a hole. To explicitly distinguish expressions from
the ‘incomplete’ expressions on the stack, we will introduce the set F of frames.
A frame simply is an expression with exactly one occurrence of a hole. A stack
thus is a list of frames.

F := abortϕ | N | M
| 〈 , N〉 | 〈M, 〉 | fst | snd

| inlϕ∨ψ | inrϕ∨ψ | vcase( ;x.M ; y.N)

A stack at a certain point in evaluation is also called a continuation, for it
marks the position to continue the evaluation of the expression. We will use the
words ‘stack’ and ‘continuation’ interchangeably. We denote continuations by
the variables k, l, k′, etc.

For the considered expressions, a computation would be completed once
the stack is empty. However, to ease the correspondence with logic, we work
with ‘named’ empty stacks. That is, we represent empty stacks by continuation
variables such as halt. A computation is done once this variable is on top of
the stack. The initial stack contains only halt.

To reason about well-typed computations later on, we first need to introduce
a typing system for stacks. This requires a specification of the relation `. The
relation ` as encountered before could be interpreted as follows: a statement of
the form Γ `M : ϕ means that from a context Γ we can derive term M of type
ϕ. We could denote the same relation by `true, i.e. Γ `true M : ϕ means that
from context Γ we can derive a program M as a proof establishing the truth of
ϕ.

We have seen that continuations hold the computational steps which are yet
to be performed. Therefore, a continuation always expects a value of a certain
type ϕ to fill the hole. However, it will not return anything. This implies that
we can regard a stack which takes a value of type ϕ, as a proof of the falsehood
of ϕ. To axiomatize this notion, we introduce the relation `false. A statement
Γ `false k : ϕ now means that from context Γ we can derive a continuation k
which takes a value of type ϕ and thus is a proof establishing the falsehood of
ϕ.

Moreover, before presenting the axioms and rules that define these relations,
we need to specify the definition of a context. We introduced a relation that
could prove that ϕ is false, so we need a way to propagate this in our proofs.
This is done by splitting a context into two parts: Γtrue; Γfalse. The former set
contains assumptions for which we assume to have a witness of their truth, while
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Γtrue; Γfalse,halt : ϕ `false halt : ϕ
Ax1

Γ `false k : ϕ

Γ `false abortϕ :: k : ⊥
⊥I

Γ `true N : ϕ Γ `false k : ψ

Γ `false N :: k : ϕ→ ψ
→ E

Γ `true M : ϕ→ ψ Γ `false k : ψ

Γ `false M :: k : ϕ
→ E

Γ `true N : ψ Γ `false k : ϕ ∧ ψ
Γ `false 〈 , N〉 :: k : ϕ

∧E
Γ `true M : ϕ Γ `false k : ϕ ∧ ψ

Γ `false 〈M, 〉 :: k : ψ
∧E

Γ `false k : ϕ

Γ `false fst :: k : ϕ ∧ ψ
∧I

Γ `false k : ψ

Γ `false snd :: k : ϕ ∧ ψ
∧I

Γ `false k : ϕ ∨ ψ
Γ `false inlϕ∨ψ :: k : ϕ

∨E
Γ `false k : ϕ ∨ ψ

Γ `false inrϕ∨ψ :: k : ψ
∨E

Γ, x : ϕ `true M : ρ Γ, y : ψ `true N : ρ Γ `false k : ρ

Γ `false vcase( ;x.M ; y.N) :: k : ϕ ∨ ψ
∨I

Figure 2.3: Well-typed stacks

the latter set contains assumptions for which we assume to have a witness of
their falsehood. In particular, we assume halt : ϕ ∈ Γfalse. We now write Γ to
denote Γtrue; Γfalse.

The axioms and rules of `true are easily obtained by assuming the new
definition of Γ and replacing all occurrences of ` in Figure 2.2 with `true. The
rules for `false are presented in Figure 2.3. The notation f :: k means we place
frame f on top of our existing stack k.

For example in the left → E-rule, if we have a proven expression N of type
ϕ and a stack k expecting an expression of type ψ, we can build a new stack
N :: k. This expects the first argument of an application to fill the hole, which

has to be of function type ϕ→ ψ.
We could also approach these rules logically. Take, for example, the leftmost

∧E-rule. Our assumptions are that ψ and the negation of ϕ ∧ ψ are provable.
This implies that the negation of ϕ has to provable as well.

1Here we use the name halt for a continuation variable to be suggestive. We emphasise it
is merely a name however.
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Note that while this definition of continuations allows type checking on
stacks, it does not allow type inference. For instance, the type ψ in the left
∧I-rule is not derivable without additional information. Similar problems arise
in the other ∧I- and ∨I-rules. However, stacks are tools which get constructed
in the operational semantics and which the programmer does not typically write.
All continuations we will encounter, are well-typed. In section 4.4 we prove that
we are indeed justified in assuming this.

2.3.3 Throw

Before continuing with the operational semantics, we introduce a new construc-
tor which we add to ΛΠ. The previous subsection provided a way to prove the
negation of formulae. This implies that we could now encounter a situation
in which Γ `true M : ϕ and Γ `false k : ϕ. This clearly is contradictory. We
introduce a constructor throw to deal with these contradictions. Let S be a
stack.

ΛΠ := ... | throw S ΛΠ

We add the following rule to the proof system.2

Γ `false k : ϕ Γ `true M : ϕ

Γ `true throw k M : ⊥

In the next chapter we will see that throw has an interesting computational
interpretation in classical logic.3 Note, however, that adding throw to intu-
itionistic logic does not yield classical logic. We can construct a translation ( )t

from Γ `false k : ϕ to Γ `true λ :ϕ . kt : ¬ϕ. This translation is defined by
haltt = halt , for all stack variables, and (f :: k)t = kt[f/ ]. This means
that whenever Γ `false k : ϕ is provable, Γ `true λ :ϕ . kt : ¬ϕ is also provable.
Therefore, this rule does not change the notion of truth in intuitionistic logic.

2.3.4 Small-step semantics

We now have the tools needed to describe the small-step semantics. A config-
uration is a pair (M,k) consisting of an expression M and a stack k. Given a
configuration, the small-step semantics define which computational step should
be performed. The evaluation of an expression M starts with the configuration
(M,halt), where halt is a stack variable. Subsequently, we keep applying the
rules, until no further rule applies. If we then have obtained a configuration

2Note that we could also add

Γ `false k : ϕ Γ `true M : ϕ

Γ `false contradiction M :: k : ⊥

which would prove the falsehood of ⊥. This however does not contribute anything, since we
already know by definition that ⊥ is false.

3Because of this interpretation some authors opt to handle throw not as an expression,
but as a new object: a jump [2, 20]. To keep our presentation as simple as possible, we have
chosen to consider throw as an expression.
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(N, k′), the expression N is the result of the computation. In subsection 4.3 we
will prove that in that case N will always be a value and k′ = halt.

We discuss the various rules of the small-step semantics. We use the symbol
; to indicate one computational step; the capture-avoiding substitution of v
for x in M is denoted as M [v/x].

We start with abort. If we encounter an expression abort M , we want to
evaluate M .

abortϕ M, k ; M, abortϕ :: k

M is embedded in the abort-expression and should therefore be of type ⊥. So,
if the context is empty, M will contain an expression throw k′ M ′. Such an
expression installs k′ as the new stack and proceeds by evaluating M ′. Note
that the throw-expression does not use the expression on top of the stack. The
stack could therefore be any continuation.

throw k′ M ′, k ; M ′, k′

Secondly, we could start with an application. If we have an expression M N ,
we first want to evaluate M .

M N, k ; M, N :: k

Since M is used in an application, we should be able to reduce it to a lambda-
term. This is a value, so we are done evaluating M . We now place this value in
the hole on the stack and continue by evaluating N .

λx.M ′, N :: k ; N, λx.M ′ :: k

We reduce N to a value v and reinsert it in the frame. In the same step we
perform the application, which finally results in the substitution.

v, λx.M ′ :: k ; M ′[v/x], k

The third set of rules starts with a pair 〈M,N〉. Again, we first want to
evaluate M , so we have the rule

〈M,N〉, k ; M, 〈 , N〉 :: k

M is reduced to some value v, after which we should reduce N .

v, 〈 , N〉 :: k ; N, 〈v, 〉 :: k

This results in a value w, which we insert in the pair. This constructs the final
value 〈v, w〉 which is directly returned.

w, 〈v, 〉 :: k ; 〈v, w〉, k

If we start with a fst or snd term, we only have one expression.

fst M, k ; M, fst :: k

snd M, k ; M, snd :: k
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This expression is reduced to a value, which is supposed to be a pair. Subse-
quently, the intended projection is returned.

〈v, w〉, fst :: k ; v, k

〈v, w〉, snd :: k ; w, k

Starting with an inl or inr results in the evaluation of the accompanying
expression.

inlϕ∨ψ M, k ; M, inlϕ∨ψ :: k

inrϕ∨ψ M, k ; M, inrϕ∨ψ :: k

The reduced value is inserted in the hole. This will result in the final value.

v, inlϕ∨ψ :: k ; inlϕ∨ψ v, k

v, inrϕ∨ψ :: k ; inrϕ∨ψ v, k

The final set of rules is obtained by starting with a vcase. We begin by
evaluating the expression L.

vcase(L;x.M ; y.N), k ; L, vcase( ;x.M ; y.N) :: k

Given the typing restrictions, L should either evaluate to an inl- or an inr-
expression. Depending on this outcome, the correct term M or N should be
invoked, by substituting the variable accordingly.

inlϕ∨ψ v, vcase( ;x.M ; y.N) :: k ; M [v/x], k

inrϕ∨ψ v, vcase( ;x.M ; y.N) :: k ; N [v/y], k

Having seen all rules of the small-step semantics, we would like to remark
two features. First, note that all rules except the throw-rule, only modify the
stack by popping and pushing frames. For these rules, a stack therefore really
is a stack in the traditional sense. Once we add the throw-rule —and in the
next chapter the classical control operators— we are able to modify the stack by
arbitrarily reading from and writing to it. A stack then no longer is a traditional
stack and it might be better to refer to them purely as continuations.

Secondly, these small-step semantics rules give rise to an interesting, more
philosophical interpretation of reduction. Evaluating an expression seems to
resemble a Socratic dialogue between the expression and the stack. The initial
stack variable halt can be seen as an opponent who tries to refute the expres-
sion. A stack at a certain point of computation forms a rebuttal to the current
expression. This dialogue will eventually reveal the ‘essence’ of an expression,
which will be the result of the computation. This approach to evaluating an
expression is formalised in dialogical logic, or game semantics [17].
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2.3.5 Big-step semantics

The big-step semantics can now easily be defined by iterating the small-step
function. We denote this by ;∗ and give the following definition. A configu-
ration is called terminal if it is a configuration (v,halt) for some value v and
stack variable halt.

(M,k) ;∗ (M ′, k′) := (M ′, k′) is terminal and (M,k) = (M ′, k′)

or there exists an (M ′′, k′′) such that (M,k) ; (M ′′, k′′)

and (M ′′, k′′) ;∗ (M ′, k′).

The initial stack only contains halt.

2.4 Syntactic sugar

With the language we have defined so far, we can write simple functional pro-
grams. We introduce some syntactic sugar which will simplify the examples we
present.

We introduce Boolean values and operators. We define the type bool as
follows.

bool = > ∨>

Now,

true = inrbool taut

false = inlbool taut

We can mimic if-then-else-statements using a vcase-expression. Since we have
defined true as a right-injection, we want the accompanying expression to be
on the right in the vcase-expression. The variables x and y are fresh variables.

ifthenelse L N M = vcase(L;x.M ; y.N)

It is now possible to simulate the Boolean operators.

not p = ifthenelse p

false

true

and p q = ifthenelse p

(ifthenelse q true false)

(ifthenelse q false false)

or p q = ifthenelse p

(ifthenelse q true true)

(ifthenelse q true false)
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xor p q = ifthenelse p

(ifthenelse q false true)

(ifthenelse q true false)

Notice that this is not the most efficient implementation of the Boolean oper-
ators. The and and or functions perform an unnecessary evaluation of q after
p has been evaluated to false or true, respectively. However, these additional
computations will allow us to construct more interesting examples. In most
literature, examples using integers are presented. While we could have chosen
to pursue this approach, our definition of the logical operators ensures that we
can mimic these examples using Boolean values instead. Also, this means that
all our programming examples have an additional logical reading. Not only do
we have the entire program as a proof by the Curry-Howard isomorphism, we
also have a more literal reading of the logical operators.

2.5 Corresponding problems

Besides indicating structural similarities, the Curry-Howard isomorphism also
relates various problems from λ-calculus and intuitionistic logic. These corre-
spondences are the subject of this section.

2.5.1 Type checking vs. Proof checking

In subsection 2.2.2 we discussed type checking and its practical uses for our
implementation, but one could wonder about the logical meaning of this proce-
dure. As a brief reminder, in type checking we provide a term and a type and
we test whether the given program indeed has the provided type. Hence, we
verify a statement Γ ` M : ϕ. Following the Curry-Howard isomorphism, this
corresponds to giving some construction and a formula, and testing whether the
construction constitutes evidence for the formula. We thus check whether an
expected formula is truly proved by the hypothesized proof. This is the process
of proof checking. This correspondence is exploited in proof assistants such as
Coq and Agda.

2.5.2 Type inference vs. Formula inference

In type inference we solve a problem of the form Γ ` M : ?. That is, for
some term M we would like to construct its type. In logic this corresponds to
providing a construction and inferring the formula it proves.

2.5.3 Type inhabitation vs. Provability

Type inhabitation is a problem we have not yet previously discussed. The
problem we would like to solve is Γ ` ? : ϕ, i.e. given a type ϕ, is it possible
construct a program of said type? In programming, this question is closely
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related to program synthesis. While for type inhabitation we merely ask if
there exists a program of a certain type, in program synthesis we try to construct
such a program. Also in logic, type inhabitation has an interesting counterpart.
Namely, if we have some formula ϕ, is it possible to construct a proof of ϕ?
The type inhabitation problem thus corresponds to the problem of provability
in logic.

A special instance of this problem is Γ ` ? : ⊥. This is the question whether
a system is consistent. By definition, 6` ⊥, so there does not exist a closed term
of type ⊥.

2.5.4 Reduction vs. Normalization

In the previous section, we have seen the operational semantics of our simply
typed λ-calculus. Running a program reduces a term to a value by consecutively
applying the rules of the small-step semantics. The terms that are reduced all
have a destructor —an instance of an elimination-rule— immediately followed
by the accompanying constructor —an instance of the introduction rule. A
term of this form is called a reducible expression, or simply a redex [27]. For
example, following the rules of the operational semantics, the redex (λx:ϕ →
ϕ . x) (λy:ϕ . y) reduces to the value λy:ϕ . y. Viewing the term we reduce as a
construction, we thus simplify the proof tree by removing what is called a detour :
an elimination-rule immediately followed by the corresponding introduction-
rule. This is the procedure of normalizing a proof. The value obtained by
the reduction represents the normal proof of the formula. In the example, we
normalize the proof tree

Γ, x : ϕ→ ϕ ` x : ϕ→ ϕ
Ax

Γ ` λx:ϕ→ ϕ . x : (ϕ→ ϕ)→ (ϕ→ ϕ)
→ I

Γ, y : ϕ ` y : ϕ
Ax

Γ ` λy:ϕ . y : ϕ→ ϕ
→ I

Γ ` (λx:ϕ→ ϕ . x) (λy:ϕ . y) : ϕ→ ϕ
→ E

to

Γ, y : ϕ ` y : ϕ
Ax

Γ ` λy:ϕ . y : ϕ→ ϕ
→ I

Our system uses a call-by-value evaluation strategy. This entails that we do
not evaluate beyond a value. For example, in a term λx:ϕ . M , the expression
M is not evaluated, even though it might be reducible. This indicates that the
normalization we obtain is also of a weaker form, since an ultimate proof tree
might still contain a redex, which lies embedded in a value.

The correspondence between reduction and normalization is especially in-
teresting since it seems to provide a dynamic interpretation of logical proofs.
Although most people see computational programs as dynamic entities which we
can ‘run’, proofs are often considered to be rather static. However, the Curry-
Howard isomorphism, and in particular the correspondence between reduction
and normalization, shows that logical proof theory does, in fact, have a dynamic
aspect.



Chapter 3

Classical Logic

In the previous chapter we established the correspondence between proofs of
intuitionistic logic and the simply typed λ-calculus. It was long believed the
Curry-Howard isomorphism would not hold for classical logic. However, Griffin
changed this by presenting a correspondence between classical logic and a λ-
calculus extended with control operators [14].

In this chapter, we will discuss the correspondence and adjust our imple-
mentation to include control operators. Again, we will elaborate on the op-
erational semantics. We will present some examples and conclude the chap-
ter by discussing the correspondence between double negation translation and
continuation-passing style transformation.

3.1 The Curry-Howard isomorphism

In this section we will discuss classical propositional logic. Subsequently, we will
introduce the λC-calculus, which was the first calculus shown to be correspond-
ing to classical logic.

3.1.1 Classical propositional logic

Classical logic can be obtained from intuitionistic logic by adding one of a num-
ber of (more or less) equivalent axioms. The ones that are most often discussed,
and will be considered here, are the law of excluded middle, double negation
elimination and Peirce’s law.

The law of excluded middle (LEM) states that every proposition is either
true or false, which was rejected in intuitionistic logic. LEM is formalised as
ϕ∨¬ϕ. This law excludes the third option we had in intuitionistic logic, namely
when neither a proposition nor its negation could be proved. Therefore, this
law is also referred to as tertium non datur : “no third [possibility] is given”.

Double negation elimination (DNE) is formalised as ¬¬ϕ→ ϕ. In intuition-
istic logic it is possible to prove the reverse, ϕ→ ¬¬ϕ, but DNE is not provable.

23
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This becomes evident when we think about the intuitive interpretation of in-
tuitionistic logic: ¬¬ϕ can be interpreted as stating that there is no proof for
¬ϕ. This, however, does not imply that there is a proof for ϕ. Adding DNE to
intuitionistic logic, and thus obtaining classical logic, results in a ‘symmetrical’
interpretation of truth: if some statement is not false, it has to be true.

A third possible axiom is Peirce’s law (PL). This law is defined as (¬ϕ →
ϕ) → ϕ. We interpret PL as follows: if from the assumption that some propo-
sition is false, we can conclude that it is true, then it must be the case that the
proposition is true.

For reasons to become apparent later on, we will define classical logic as
intuitionistic logic extended with Peirce’s law. We still have our set of formulas
Φ. The proof system for classical logic is defined by expanding Figure 2.1 with
the rule

Γ,¬ϕ ` ϕ
Γ ` ϕ PL

Since we now have a system with both Peirce’s law and Ex Falso Quodlibet,
we have obtained classical logic [1]. We show that we can derive the other
classical axioms with the following proofs.

First, we show PL and EFQ imply DNE.

¬¬ϕ ` ¬¬ϕ Ax ¬ϕ ` ¬ϕ Ax

¬¬ϕ,¬ϕ ` ⊥ → E

¬¬ϕ,¬ϕ ` ϕ EFQ

¬¬ϕ ` ϕ PL

` ¬¬ϕ→ ϕ
→ I

Secondly, PL implies LEM.

ϕ ` ϕ Ax

ϕ ` ϕ ∨ ¬ϕ ∨I ¬(ϕ ∨ ¬ϕ) ` ¬(ϕ ∨ ¬ϕ)
Ax

ϕ,¬(ϕ ∨ ¬ϕ) ` ⊥ → E

¬(ϕ ∨ ¬ϕ) ` ¬ϕ → I

¬(ϕ ∨ ¬ϕ) ` ϕ ∨ ¬ϕ ∨I

` ϕ ∨ ¬ϕ PL

Considering these proofs, we can infer that DNE is a stronger axiom than PL
and LEM, since it requires the use of EFQ. Hence, a language with DNE as an
inference rule does not need an inference rule for EFQ. Languages with rules
such as PL and LEM, on the other hand, do. Our language already contained
a rule for EFQ, which is why we chose to add PL instead of DNE.

A third law —which we have not yet introduced, but will turn out to be
useful— is a generalised version of Peirce’s law (PL+); ((ϕ → ψ) → ϕ) → ϕ.
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PL+ is implied by PL and EFQ.

(ϕ→ ψ)→ ϕ ` (ϕ→ ψ)→ ϕ
Ax

¬ϕ ` ¬ϕ Ax
ϕ ` ϕ Ax

¬ϕ,ϕ ` ⊥ → E

¬ϕ,ϕ ` ψ EFQ

¬ϕ ` ϕ→ ψ
→ I

(ϕ→ ψ)→ ϕ,¬ϕ ` ϕ → E

(ϕ→ ψ)→ ϕ ` ϕ PL

` ((ϕ→ ψ)→ ϕ)→ ϕ
→ I

The use of EFQ in this proof seems to suggest that PL+ is as strong as
DNE, though this is not true. It is possible to derive EFQ from DNE, while
we cannot do so from PL+. It therefore seems counterintuitive that we need
EFQ in the proof for PL+. This realisation has led Ariola, Herbelin and Sabry
[2] to introducing a new judgement ⊥⊥, which could be interpreted as a weaker
version of ⊥. A similar effort is made in [20] by introducing a judgement #.
These approaches have interesting implications. However, we will not elaborate
on them in this thesis.

3.1.2 λC-calculus

Functional programming languages have long been equipped with functions
to control their evaluation, such as call/cc. That is, programs with these
functions are able to manipulate their own (call)stack. Felleisen, Friedman,
Kohlbecker and Duba [11] proposed a formal integration of control into an un-
typed λ-calculus. They defined evaluation contexts E by the following grammar,
where N is an expression and V a value. The notation is taken from [14].

E := [ ] | EN | V E

Here [ ] represents a hole. We write E[M ] to denote the result of placing M in
the hole of E. Note that these contexts are roughly equivalent to our stacks.
We would write E[M ] as a configuration (M,E[ ]).

The grammar of the λ-calculus was expanded by adding two expressions:
A(M) and C(M). An expression A(M) aborts the program and returns M .

E[A(M)] 7→A M

An expression C(M) also leaves the current control context, but takes an ab-
straction of the continuation and applies it to M . This provides M the control
over the rest of the evaluation.

E[C(M)] 7→C M λz.A(E[z])

This extended calculus, called the λC-calculus, now supports the formalisa-
tion of control functions like call/cc.

call/cc M = C(λk.k (M k))
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3.1.3 The Curry-Howard isomorphism

The motivation for introducing the λC-calculus was purely computational. It
was assumed the new expressions had no corresponding interpretation in logic.
However, Griffin [14] proved otherwise. By typing the expressions, he showed
that Cϕ(M) corresponds to the double negation elimination rule and Aϕ(M) to
EFQ.

Just as DNE is a strong law which implies EFQ, a language with C(M) does
not require A(M). If we let d be a dummy variable bound in M , we obtain

A(M) = C(λd.M)

Notice that in our previously defined language ΛΠ we already have an expression
mirroring Aϕ(M), namely abortϕ M . We therefore opt, as mentioned, to
expand our language with an expression which represents Peirce’s law, instead
of double negation elimination. Together with abort we then obtain classical
logic. We introduce the term letcc αϕ.M , where α is a continuation variable.
We expand ΛΠ

ΛΠ := ... | letcc αΠ. ΛΠ

and add the following rule to the updated proof system of Figure 2.2

Γtrue; Γfalse, α : ϕ `true M : ϕ

Γ `true letcc αϕ. M : ϕ
PL

We read an expression letcc αϕ.M as “let the current continuation be α in M”.

3.2 Type checking and inference

We extend our implementation with a notion of control. This enables us to
write programs for classical proofs.

3.2.1 Data type and type inference

We merely have to add an expression which simulates letcc.

data Type = ...

| LetCC String Type Expr

For the type inference of an expression LetCC alpha phi m, we insert vari-
able alpha into the environment with type phi→ Error and subsequently infer
the type of m. If this type equals phi, we return that type; otherwise, an error
should occur.

3.3 Operational Semantics

We have briefly mentioned the most important computational change that oc-
curs when we move from intuitionistic to classical logic: non-local control flow.
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In this section we will formalise the operational semantics of our implementa-
tion.

3.3.1 Small-step semantics

Peirce’s law tells us that if we derive an expression M of type ϕ with an as-
sumption α of type ϕ in Γfalse, then we can derive letcc αϕ . M of type ϕ. In
the previous chapter we have seen that this assumption α can be interpreted as
a continuation. So, when we encounter an expression letcc αϕ . M , we want to
bind the current continuation to α in M and continue the evaluation of M . The
continuation remains unchanged. This is captured in the following rule which
we add to the small-step semantics.

letcc αϕ . M, k ; M [k/α], k

Here, M [k/α] is the capture-avoiding substitution of a continuation k for a
continuation variable α. This especially concerns the throw-statements. Any
statement of the form throw α N will now become throw k N . We already
had the small-step for throw, namely

throw k M, k′ ; M, k

When invoked, this will install k as the new continuation and thus change
the evaluation of the program. In the language without letcc, we could only
manually create stacks to pass as an argument to throw. Now, letcc provides a
way of saving particular continuations and using them later on in the evaluation.

We illustrate these rules with an example. Consider the following program.

or false (letcc αbool. (or true (throw k false)))

We will show that this expression evaluates to false. We expand the use of
syntactic sugar into the small-step-semantics rules. The steps 3 ; and 6 ;

correspond to the letcc- and throw-rules above, respectively.

or false (letcc αbool. (or true (throw α false))), [halt]
1 ; false, [or (letcc αbool. (or true (throw α false))), halt]
2 ; (letcc αbool. (or true (throw α false))), [or false , halt]
3 ; or true (throw [or false , halt] false), [or false , halt]
4 ; true, [or (throw [or false , halt] false), or false , halt]
5 ; throw [or false , halt] false, [or true , or false ,halt]
6 ; false, [or false , halt]
7 ; false, [halt]

We see that in 3 ;, which is the evaluation of the letcc-statement, the current
continuation is retrieved and stored in the position of the variable α. In 6 ;, this
context is reinstalled to replace the current continuation. The or true -frame
is thus ignored and has no influence on the final result.
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3.3.2 Stacks

The addition of letcc does not introduce a new type of stack, though we do
now see the use of halt. We use the variable halt to represent the initial —or
top— continuation of the program. This assumption ensures that we are able
to construct stacks without making our logic inconsistent. Without halt this
would not be possible, since we cannot derive a closed expression of type ⊥ [20].

Furthermore, as briefly mentioned before, the name ‘stack’ does not truly
apply any longer. A letcc-expression saves an entire continuation without mod-
ifying it, whereas throw changes the continuation completely. These operations
go beyond the pop- and push-functions of a traditional stack.

3.3.3 Big-step semantics

In intuitionistic logic, the big-step semantics could be used to retrieve the final
value of a program, without considering all steps in between. This approach,
however, no longer works for classical logic. The presence of the control operator
letcc together with throw-expressions entails the possibility of ‘jumping out’
of an evaluation context. This prevents us from directly axiomatizing the big
step reduction. However, we can still define the big-step semantics in terms of
the small-step semantics, as we did before.

3.3.4 Other axioms

We have seen that adding letcc to our calculus suffices to obtain classical logic.
However, we now discuss the computational equivalents of the other classical
axioms and their operational semantics here. Using the proof trees from section
3.1.1, these functions can be defined in terms of letcc.

The generalised version of Peirce’s law mirrors the function call/cc. We
derive its definition as follows.

callcc xϕ→ψ. M = letcc αϕ . M [λy:ϕ . abortψ (throw α y)/x]

The following typing rule for callcc is derivable.

Γtrue, x : ϕ→ ψ; Γfalse `true M : ϕ

Γtrue; Γfalse `true callcc xϕ→ψ. M : ϕ

We see that callcc retrieves the current continuation and uses this to construct
a function-like abstraction [10]. This representation gets bound to the variable
x in M . The following small-step semantics rule for callcc is implied.

callcc xϕ→ψ. M, k ; M [λy:ϕ . abortψ (throw k y)/x], k

If this substituted function thereafter gets applied to a value of type ϕ, the stored
continuation k is reinstated. For example, consider the following expression,
where M is some term of type ψ → bool.

and true (callcc xbool→ψ. M (x false))
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This expression will store the current continuation of type bool in a function-like
abstraction of type bool → ψ. Subsequently, it will perform the computations
in M , before reinserting the context saved in x and throwing it the value false.
The final value of this program is false.

Secondly, we could implement DNE using the following sugar.

∆αϕ. M = letcc αϕ . abortϕ M

This construct gets the typing rule

Γtrue; Γfalse, α : ϕ `true M : ⊥
Γtrue; Γfalse `true ∆αϕ. M : ϕ

The operational semantics of ∆ is quite similar to that of letcc. The difference
occurs after we have bound the current continuation to the continuation vari-
able α; in ∆ we now abandon the current context using an abort-expression,
whereas in letcc this context is preserved. This process could be captured in
the following small-step semantics rule.

∆αϕ. M, k ; M [k/α], abortϕ :: k

We will see an example which uses the ∆-construct in the following section.
Finally, we define LEM.

lemϕ = letcc αϕ∨¬ϕ . inrϕ∨¬ϕ (λx:ϕ . throw α (inlϕ∨¬ϕ x))

The construct takes no arguments, so we obtain the typing rule

Γ `true lemϕ : ϕ ∨ ¬ϕ

and we get the following small-step semantics rule.

lemϕ, k ; inrϕ∨¬ϕ (λx:ϕ . throw k (inlϕ∨¬ϕ x)), k

Computationally, we see that lem provides an expression of type ϕ ∨ ¬ϕ. The
construct lem first invokes inrϕ∨¬ϕ (λx:ϕ . throw k (inlϕ∨¬ϕ x)). If the con-
tinuation is of such a form that (λx:ϕ . throw k (inlϕ∨¬ϕ x)) will be evaluated,
then we return to the continuation k with inlϕ∨¬ϕ x where x is supplied by
the continuation. So, as [20] notes, the program ‘time travels’ between different
moments in the evaluation. In [15], Harper argues that this construct nicely
shows the dialogue between a program and its continuation, as discussed in this
thesis before. By invoking the inr, the program assumes ¬ϕ. If the subsequent
expression is evaluated, it means the continuation has refuted the program by
claiming that ϕ. The program then behaves as if it ‘changes its mind’ and travels
back to the original continuation, now inserting the inl and thus claiming that
ϕ. Although this provides an interesting interpretation for the lem-construct,
its practical use in programming is not immediately clear and remains to be
investigated.
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3.4 Examples

In programming, continuations are used to implement all kinds of control mech-
anisms, such as exceptions and co-routines. We will present an example program
with exceptions.

We can implement the exception-function catch using continuations [18].

catch αϕ M = ∆αϕ. (throw α M)

With catch we can now write programs that are able to throw and handle
exceptions. Take for example the situation in which we would like to non-lazily
evaluate a list of Boolean values. This example resembles the often used example
of integer multiplication [18, 20]. We are going to write a sugar-function andS

in which the argument is a list of terms.
A first attempt at the function andS, which checks whether all expressions

in some list evaluate to true, simply constructs an and-expression.

andS :: [Expr] -> Expr

andS [ ] = true

andS (x : xs) = and x (andS xs)

While evaluation of this function results in the correct value, it is highly in-
efficient. Once we encounter a value false, we do not need to evaluate the
rest, since we know the entire expression will result in the value false. We use
exceptions to break out of the evaluation in such a situation.

andS :: [Expr] -> Expr

andS xs = catch αbool (andS’ xs α)

andS’ [ ] k = true

andS’ (y : ys) k | y == true = andS’ ys k

| y == false = throw k false

The use of continuations with the throw- and catch-expression in this function
provide a way to raise an exception and immediately return a result. This makes
the program more efficient.

3.5 Double negation translation vs. CPS

The Curry-Howard isomorphism provides an additional correspondence between
classical logic and functional programming. It relates double negation transla-
tions to continuation-passing style transformations.

Double negation translation has long been used to embed classical logic into
intuitionistic logic. The goal of this approach is to translate a classical formula ϕ
which is not provable in intuitionistic logic, into a classically equivalent formula
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ϕ′ which is provable in intuitionistic logic. Over the years several translations
have been proposed. For propositional logic, the first formulation is Glivenko’s
Theorem, which states that a propositional formula ϕ is classically provable if
and only if ¬¬ϕ is provable intuitionistically [22].

In 1991, Murthy established the correspondence between double negation
translations and continuation-passing style transformations [23]. Continuation-
passing style (CPS) is a way to explicitly propagate continuations in a language
with no specific control operators. It uses an extra argument, namely a function
representing the continuation. The exact transformation strongly depends on
the chosen evaluation strategy and double negation translation and hence there
exist many different CPS transformations.

We present a transformation for our call-by-value language —based on [8, 9,
21]. First, we define a double negation translation on our types as follows.

(>)∗ = >
(⊥)∗ = ⊥
(p)∗ = p for p a type variable

(ϕ→ ψ)∗ = ϕ∗ → ¬¬ψ∗

(ϕ ∧ ψ)∗ = ϕ∗ ∧ ψ∗

(ϕ ∨ ψ)∗ = ϕ∗ ∨ ψ∗

We now want a translation for our configurations. We denote the CPS transform
of an expression M as M . If Γ `true M : ϕ, then Γ∗ `true M : ¬¬ϕ∗, where Γ∗

is defined by transforming all elements of Γ. The translations for expressions
M are presented in Figure 3.1.

Using CPS, we can transform configurations into expressions. A well-typed
configuration (M,k) can be transformed into the expression M k◦, where k◦ is
the function representation of a stack given by

k◦ = λ .k•

halt• = halt

(f :: k′)• = (k′)•[f/ ]

By inspection of the construction of stacks, it can be seen that k◦ will always be
of the form λ .halt F . The type of will be the translated type of the expression
which should have been inserted in the original stack: if k is of type ϕ, will be
of type ϕ∗. The type of the stack variable halt applied to F will be of type ⊥.
Hence, if k is of type ϕ, k◦ is of type ¬ϕ∗. The type of the final expression M k◦

will thus be ⊥. This reflects the original purpose of stacks; proving falsehood.
For example, say we would like to translate the configuration

(letcc α> . ((λx:⊥ . taut) (throw α taut)), [〈taut, 〉,halt])

To be able to distinguish between the taut-expressions, we annotate them as
follows.

(letcc α> . ((λx:⊥ . taut1) (throw α taut2)), [〈taut, 〉,halt])
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x = λk.k x

taut = λk.k taut

abort M = λk.M (λd.d)

λx.M = λk.k(λx.λk′.M k′)

M N = λk.M (λf.N (λv.(f v) k))

〈M,N〉 = λk.M (λv.N (λw.k 〈v, w〉))
fst M = λk.M (λv.k (fst v))

snd M = λk.M (λv.k (snd v))

inl M = λk.M (λv.k (inl v))

inr M = λk.M (λv.k (inr v))

vcase(L;x.M ; y.N) = λk.L(λv.vcase(v;x.M k; y.N k))

throw l M = λk.M l

letcc α.M = λk.(λα.M) k k

Figure 3.1: CPS transformation

First, we compute letcc α> . ((λx:⊥ . taut1) (throw α taut2)).1

letcc α> . ((λx:⊥ . taut1) (throw α taut2))

= λk.(λα.((λx:⊥ . taut1) (throw α taut2))) k k

= λk.(λα.(λk′.(λx:⊥ . taut1) (λf.(throw α taut2) (λv.(f v) k′)))) k k

= λk.(λα.(λk′.(λk′′.k′′ (λx.λk′′′.taut1 k
′′′)) (λf.(throw α taut2) (λv.(f v) k′)))) k k

= λk.(λα.(λk′.(λk′′.k′′ (λx.λk′′′.k′′′ taut1)) (λf.(throw α taut2) (λv.(f v) k′)))) k k

= λk.(λα.(λk′.((λf.(throw α taut2) (λv.(f v) k′)) (λx.λk′′′.k′′′ taut1)))) k k

= λk.(λα.(λk′.((throw α taut2) (λv.((λx.λk′′′.k′′′ taut1) v) k′)))) k k

= λk.(λα.(λk′.((throw α taut2) (λv.k′ taut1)))) k k

= λk.(λα.(λk′.((λk′′.taut2 α) (λv.k′ taut1)))) k k

= λk.(λα.(λk′.taut2 α)) k k

= λk.(λα.(λk′.α taut2)) k k

= λk.k taut2

1Note that this example also demonstrates that our translation is call-by-value; a call-by-
name evaluation and translation would have installed taut1 instead of taut2.
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Secondly, we get [〈taut, 〉,halt]◦ = λ .halt 〈taut, 〉. So, for the transforma-
tion of our entire configuration we obtain the following.

(λk.k taut2) (λ .halt 〈taut, 〉)
= (λ .halt 〈taut, 〉) taut2

= halt 〈taut, taut2〉



Chapter 4

Meta-theory

In the previous chapters we have constructed the language ΛΠ together with
the typing rules and operational semantics. This now forms a full system of
propositional classical logic. In this section we will prove that the operational
semantics hava the meta-theoretic properties of determinism, progress, preser-
vation and termination. It directly follows that these properties also hold for
the intuitionistic subsystem presented in the first chapter.

4.1 Well-typed configurations

Before we can prove the meta-theoretic properties, we first need a notion of
well-typed configurations. We have seen that a configuration is the combination
of an expression and a stack at a certain point of evaluation. We say that a
configuration consisting of an expression M and a stack k, is well-typed if there
exist Γtrue,Γfalse, ϕ and ψ, such that the following two statements hold.

Γtrue; Γfalse,halt : ϕ `true M : ψ

Γtrue; Γfalse,halt : ϕ `false k : ψ

We will also write this as Γtrue; Γfalse,halt : ϕ `conf (M,k) : ψ.
For every computation of Γ `M : ϕ we get the initial well-typed configura-

tion
Γtrue; Γfalse,halt : ϕ `conf (M,halt) : ϕ

We call a configuration (M,k) terminal if M is a value and k is halt —i.e. a
continuation variable.

4.2 Determinism

The first property of our system we would like to prove, is the property of
determinism. Determinism is important as it tells us that our programs can be
trusted to always yield the same result, if we choose to rerun them.

34
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Theorem 4.1 (Determinism). For any well-typed configuration, at most one
small-step transition rule applies.

Proof. This follows from an inspection of our small-step semantics, which has
been defined as a function.

4.3 Progress

The property of progress says that each well-typed configuration either marks
the end of the computation, or matches one of the small-step semantics rules.
Hence, it tells us that a well-typed configuration never ‘gets stuck’. This is one
of the uses of a type system.

Theorem 4.2 (Progress). Every well-typed configuration (M, k) is either ter-
minal or there is some small-step rule (M,k) ; (M ′, k′) that applies to it.

Proof. We prove this by induction on the typing derivation of our configurations.

Case. We first consider the abort-expression. Such an expression could have
any type ϕ. This places no restriction on the frame on top of the stack, as long
as the type of the stack is also ϕ. Different top-frames have no influence on the
step to be performed.

abortϕ M : ϕ, k : ϕ. We apply the small-step semantics rule and yield
the configuration (M, abortϕ :: k).

Case. We now consider the configurations with an expression of the form λx:ϕ . M :
ϕ→ ψ. This expression thus is a value. By inspecting the typing rules of stacks
in Figure 2.3 we can infer which frames can be on top of the stack in a well-typed
configuration. For example, the type ϕ→ ψ could never match the type σ ∨ τ .
We therefore know the top-frame cannot be a vcase. Similary, we should not
encounter an abort, fst or snd-frame. This leads us to the following well-typed
configurations. For each configuration we show that there either is a small-step
semantics rule to perform or that the computation is done.

λx:ϕ . M : ϕ→ ψ, halt : ϕ→ ψ. This is a terminal configuration.

λx:ϕ . M : ϕ→ ψ, N :: k : ϕ→ ψ. We now have a value and an application-
frame on top of our stack. We find a small-step semantics rule that yields
the configuration (N, λx:ϕ . M :: k).

λx:ϕ . M : ϕ→ ψ, (λy:ϕ→ ψ . N) :: k : ϕ→ ψ. We again have a value
and an application-frame. We now apply the corresponding rule and ob-
tain the configuration (N [λx:ϕ . M/y], k).

λx:ϕ . M : ϕ→ ψ, 〈 , N〉 :: k : ϕ→ ψ. With this configuration, we find
the small-step rule that inserts the value into the frame. We obtain the
configuration (N, 〈λx:ϕ . M, 〉 :: k).
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λx:ϕ . M : ϕ→ ψ, 〈v, 〉 :: k : ϕ→ ψ. This configuration matches the small-
step rule which returns a pair of values. We transform the configuration
into (〈v, λx:ϕ . M〉, k).

λx:ϕ . M : ϕ→ ψ, inlϕ→ψ∨ρ :: k : ϕ→ ψ. The value is now inserted as
the left injection. We find a small-step semantics rule that yields the
configuration (inlϕ→ψ∨ρ (λx:ϕ . M), k).

λx:ϕ . M : ϕ→ ψ, inrρ∨ϕ→ψ :: k : ϕ→ ψ. We construct the right in-

jection using a rule and find the configuration (inrρ∨ϕ→ψ (λx:ϕ . M), k).

Case. We continue with the configurations in which the expression is an appli-
cation M N . We find that an expression M N could be of any type. Hence,
the top of the stack could consist of any frame that matches the type. We can
introduce one case, which deals with any stack.

M N : ϕ, k : ϕ. We apply the small-step rule and obtain the new config-
uration (M, N :: k).

Case. If we encounter a pair 〈M,N〉, this pair either is a value or not (yet).
Either way, we should have a stack of type ϕ ∧ ψ. In case our pair is not yet a
value, the exact frame on top of the stack is not important, since we first have
to evaluate the expressions inside the pair. If the pair already is a value, on
the contrary, we observe the frame on top of the stack to determine the right
operational step. The type of the pair is a product type. The top-frame could
therefore never be an abort, N , or vcase-frame. This leaves us with the
following well-typed configurations.

〈M,N〉 : ϕ ∧ ψ, k : ϕ ∧ ψ. Our pair 〈M,N〉 is not a value and consists of
expressions which have not been evaluated yet. We apply the small-step
semantics rule and obtain the configuration (M, 〈 , N〉 :: k).

〈v, w〉 : ϕ ∧ ψ, halt : ϕ ∧ ψ. This is a terminal configuration.

〈v, w〉 : ϕ ∧ ψ, (λx:ϕ ∧ ψ . M) :: k : ϕ ∧ ψ. We insert the value into the
application frame. This yield the configuration (M [〈v, w〉/x], k).

〈v, w〉 : ϕ ∧ ψ, 〈 , N〉 :: k : ϕ ∧ ψ. We insert the value into the pair and
get (N, 〈〈v, w〉, 〉 :: k).

〈v, w〉 : ϕ ∧ ψ, 〈u, 〉 :: k : ϕ ∧ ψ. As in the last case, we obtain a new pair
in our configuration (〈u, 〈v, w〉〉, k).

〈v, w〉 : ϕ ∧ ψ, inlϕ∧ψ∨ρ :: k : ϕ ∧ ψ. Using the value we construct a left

injection. The resulting configuration is (inlϕ∧ψ∨ρ 〈v, w〉, k).

〈v, w〉 : ϕ ∧ ψ, inrρ∨ϕ∧ψ :: k : ϕ ∧ ψ. We can do the same thing for the

right injection and yield (inrρ∨ϕ∧ψ 〈v, w〉, k).
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〈v, w〉 : ϕ ∧ ψ, fst :: k : ϕ ∧ ψ. We simply take the first projection and
obtain the configuration (v, k).

〈v, w〉 : ϕ ∧ ψ, snd :: k : ϕ ∧ ψ. The second projection similarly leads to
the configuration (w, k).

Case. Configurations with a projection are never a value. Hence, the frame on
top of the stack does not influence which rule to perform. If the type of the
stack matches the type of the expression we get the following cases.

fst M : ϕ, k : ϕ. This yields the configuration (M, fst :: k).

snd M : ϕ, k : ϕ. Similarly, we obtain the configuration (M, snd :: k).

Case. Injections can be values. Hence, we need to distinguish the cases in which
they are, from the cases in which they are not. If it is not yet a value, we first
need to evaluate the embedded expression. To do this, the exact frame on top of
the stack does not matter. On the other hand, if we do have a value, we handle
the cases according to the top-frame. The type of such a value always is a sum-
type. Stacks with an abort, N , fst, or snd-frame therefore do not construct
well-typed configurations. We only demonstrate the cases for inl-expressions;
handling the inr-expressions happens analogous.

inlϕ∨ψ M : ϕ ∨ ψ, k : ϕ ∨ ψ. We perform the small-step semantics rule

and construct the configuration (M, inlϕ∨ψ :: k).

inlϕ∨ψ v : ϕ ∨ ψ, halt : ϕ ∨ ψ. This configuration marks the end of com-
putation.

inlϕ∨ψ v : ϕ ∨ ψ, (λx:ϕ ∨ ψ . M) :: k : ϕ ∨ ψ. We insert the value and

obtain a new configuration (M [inlϕ∨ψ v/x], k).

inlϕ∨ψ v : ϕ ∨ ψ, 〈 , N〉 :: k : ϕ ∨ ψ. We apply the small-step semantics

rule and get (N, 〈inlϕ∨ψ v, 〉 :: k).

inlϕ∨ψ v : ϕ ∨ ψ, 〈w, 〉 :: k : ϕ ∨ ψ. We insert the value and get the con-

figuration (〈w, inlϕ∨ψ v〉, k).

inlϕ∨ψ v : ϕ ∨ ψ, inl(ϕ∨ψ)∨ρ :: k : ϕ ∨ ψ. Inserting the value now yields

the configuration (inl(ϕ∨ψ)∨ρ (inlϕ∨ψ v), k).

inlϕ∨ψ v : ϕ ∨ ψ, inrρ∨(ϕ∨ψ) :: k : ϕ ∨ ψ. Analogous to the previous case

we obtain (inrρ∨(ϕ∨ψ) (inlϕ∨ψ v), k).

inlϕ∨ψ v : ϕ ∨ ψ, vcase( ;x.M ; y.N) :: k : ϕ ∨ ψ. This is a pattern match
on the value. Following the small-step semantics rule, we generate the
configuration (M [v/x], k).
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Case. If we have a vcase-expression, we first need to evaluate the embedded
expression. So, the frame on top of a well-typed stack does not influence the
course of evaluation. We therefore have one case of well-typed configuration.

vcase(L;x.M ; y.N) : ϕ, k : ϕ. We simply follow the small-step semantics
rule and obtain (L, vcase( ;x.M ; y.N) :: k).

Case. For the throw-expressions we need a stack of type ⊥. Thus, our top-
frame cannot be a N , fst, snd or vcase-expression. However, the exact frame
on top of the stack is not of great importance, since it has no effect on the
computational step.

throw k M : ⊥, k′ : ⊥. This yields the new configuration (M, k).

Case. For letcc a well-typed configuration consists of a stack which matches
the determined type in the letcc expression. We therefore have one case for all
configurations.

letcc αϕ . M : ϕ, k : ϕ. The small-step rule now generates the configura-
tion (M [k/α], k).

All cases now show that for every well-typed configuration there exists a small-
step rule to perform. It is thus shown that the operational semantics satisfy the
property of progress.

4.4 Preservation

We would like to prove that all small-step semantics rules preserve the well-
typing of a configuration —i.e. if we have a well-typed configuration, the con-
figuration after performing one of the small-step rules will still be well-typed.

Lemma 4.3 (Substitution Lemma Expressions). If Γtrue, x : ψ; Γfalse `true M :
ϕ and Γtrue; Γfalse `true v : ψ, then Γtrue; Γfalse `true M [v/x] : ϕ.

Proof. By induction on the derivation of Γtrue, x : ψ; Γfalse `true M : ϕ.

Lemma 4.4 (Substitution Lemma Stacks). If Γtrue; Γfalse, α : ψ `true M : ϕ
and Γtrue; Γfalse `false k : ψ, then Γtrue; Γfalse `true M [k/α] : ϕ.

Proof. By induction on the derivation of Γtrue; Γfalse, α : ψ `true M : ϕ.

Theorem 4.5 (Preservation). If Γ `conf (M,k) : ϕ and (M,k) ; (M ′, k′),
then Γ `conf (M ′, k′) : ψ, for some type ψ.

Proof. We prove this by case distinction on our small-step rules and induction
on the typing derivation of our configurations.
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Case (abortϕ M, k ; M, abortϕ :: k). We assume we start with a
well-typed configuration.

Γtrue; Γfalse,halt : ρ `true abortϕ M : ϕ

Γtrue; Γfalse,halt : ρ `false k : ϕ

We derive Γ `true M : ⊥. After executing the operational step, we thus get

Γtrue; Γfalse,halt : ρ `true M : ⊥

Using the typing rules for stacks we see

Γ `false k : ϕ

Γ `false abortϕ :: k : ⊥
⊥I

This yields
Γtrue; Γfalse,halt : ρ `false abortϕ :: k : ⊥

We have thus obtained the new well-typed configuration (M, abortϕ :: k), as
desired.

Case (M N, k ; M, N :: k). Assume the first part is a well-typed
configuration. We thus have the configuration (M N, k) as follows.

Γtrue; Γfalse,halt : ρ `true M N : ϕ

Γtrue; Γfalse,halt : ρ `false k : ϕ

From this we infer Γ `true M : ψ → ϕ for some ψ and Γ `true N : ψ. We now
perform the small-step rule and show that the obtained configuration is still
well-typed. From our assumption we immediately get

Γtrue; Γfalse,halt : ρ `true M : ψ → ϕ

For our stack we follow the typing rules and acquire

Γ `true N : ψ Γ `false k : ϕ

Γ `false N :: k : ψ → ϕ
→ E

So
Γtrue; Γfalse,halt : ρ `false N :: k : ψ → ϕ

This leaves us with the new well-typed configuration (M, N :: k).

Case (λx:ϕ . M, N :: k ; N, (λx:ϕ . M) :: k). Assume we start with
the well-typed configuration produced by

Γtrue; Γfalse,halt : ρ `true λx:ϕ . M : ϕ→ ψ

Γtrue; Γfalse,halt : ρ `false N :: k : ϕ→ ψ
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We can infer Γ `true N : ϕ and Γ `false k : ψ. We execute the operational step
and instantly see

Γtrue; Γfalse,halt : ρ `true N : ϕ

For the new stack we infer the type from the typing rule

Γ `true λx:ϕ . M : ϕ→ ψ Γ `false k : ψ

Γ `false λx:ϕ . M :: k : ϕ
→ E

We thus get

Γtrue; Γfalse,halt : ρ `false (λx:ϕ . M) :: k : ϕ

This concludes the well-typed configuration (N, (λx:ϕ . M) :: k).

Case (v, (λx:ϕ . M) :: k ; M [v/x], k). By assumption, we have the
well-typed configuration

Γtrue; Γfalse,halt : ρ `true v : ϕ

Γtrue; Γfalse,halt : ρ `false (λx:ϕ . M) :: k : ϕ

We can deduce we have Γ `true λx:ϕ . M : ϕ → ψ en Γ `false k : ψ. This leads
us to the following stack after the small-step rule has been performed.

Γtrue; Γfalse,halt : ρ `false k : ψ

Since the value v is of type ϕ and we have proved the preservation under sub-
stitution, we infer

Γtrue; Γfalse,halt : ρ `true M [v/x] : ψ

This yields the well-typed configuration (M [v/x], k) as desired.

Case (〈M,N〉, k ; M, 〈 , N〉 :: k). We assume the well-typed configura-
tion

Γtrue; Γfalse,halt : ρ `true 〈M,N〉 : ϕ ∧ ψ
Γtrue; Γfalse,halt : ρ `false k : ϕ ∧ ψ

From this we infer Γ `true M : ϕ and Γ `true N : ψ. After performing the
operational step we thus get

Γtrue; Γfalse,halt : ρ `true M : ϕ

Working with the typing rules for stacks we attain

Γ `true N : ψ Γ `false k : ϕ ∧ ψ
Γ `false 〈 , N〉 :: k : ϕ

∧E

So, as desired, we find

Γtrue; Γfalse,halt : ρ `false 〈 , N〉 :: k : ϕ

which concludes the well-typed configuration (M, 〈 , N〉 :: k).
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Case (v, 〈 , N〉 :: k ; N, 〈v, 〉 :: k). Assuming the starting configuration
is well-typed yields

Γtrue; Γfalse,halt : ρ `true v : ϕ

Γtrue; Γfalse,halt : ρ `false 〈 , N〉 :: k : ϕ

We derive Γ `true N : ψ for some type ψ, and Γ `false k : ϕ ∧ ψ. Then, upon
performing the operational step, we immediately obtain

Γtrue; Γfalse,halt : ρ `true N : ψ

From the typing rules for stacks it follows that

Γ `true v : ϕ Γ `false k : ϕ ∧ ψ
Γ `false 〈v, 〉 :: k : ψ

∧E

This leads to
Γtrue; Γfalse,halt : ρ `false 〈v, 〉 :: k : ψ

which forms the second part of our new well-typed configuration (N, 〈v, 〉 :: k).

Case (w, 〈v, 〉 :: k ; 〈v, w〉, k). We assume we start with the well-typed
configuration

Γtrue; Γfalse,halt : ρ `true w : ψ

Γtrue; Γfalse,halt : ρ `false 〈v, 〉 :: k : ψ

We infer Γ `true v : ϕ for some ϕ, and Γ `false k : ϕ ∧ ψ. When the small-step
rule is executed, the following typing rule is used.

Γ ` v : ϕ Γ ` w : ψ

Γ ` 〈v, w〉 : ϕ ∧ ψ ∧I

This yields the, again well-typed, configuration

Γtrue; Γfalse,halt : ρ `true 〈v, w〉 : ϕ ∧ ψ
Γtrue; Γfalse,halt : ρ `false k : ϕ ∧ ψ

This is what we wanted to show.

Case (fst M, k ; M, fst :: k). By assumption, we start with the well-
typed configuration

Γtrue; Γfalse,halt : ρ `true fst M : ϕ

Γtrue; Γfalse,halt : ρ `false k : ϕ

From the first statement we infer Γ `true M : ϕ ∧ ψ for some type ψ. After we
have taken the operational step, this directly results in

Γtrue; Γfalse,halt : ρ `true M : ϕ ∧ ψ
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For the stack, we use the typing rule

Γ `false k : ϕ

Γ `false fst :: k : ϕ ∧ ψ
∧I

Hence, we find
Γtrue; Γfalse,halt : ρ `false fst k : ϕ ∧ ψ

We now have a new well-typed configuration (M, fst :: k).

Case (snd M, k ; M, snd :: k). This proof is analogous to the previous
case.

Case (〈v, w〉, fst :: k ; v, k). We assume the well-typed configuration

Γtrue; Γfalse,halt : ρ `true 〈v, w〉 : ϕ ∧ ψ
Γtrue; Γfalse,halt : ρ `false fst :: k : ϕ ∧ ψ

From these statements we infer Γ `true v : ϕ and Γ `true w : ψ and Γ `false k :
ϕ. After performing the operational step, we immediately find the well-typed
configuration

Γtrue; Γfalse,halt : ρ `true v : ϕ

Γtrue; Γfalse,halt : ρ `false k : ϕ

as wanted.

Case (〈v, w〉, snd :: k ; w, k). This proof is analogous to the previous
case.

Case (inlϕ∨ψ M, k ; M, inlϕ∨ψ :: k). Assuming we start with a well-
typed configuration, we find

Γtrue; Γfalse,halt : ρ `true inlϕ∨ψ M : ϕ ∨ ψ
Γtrue; Γfalse,halt : ρ `false k : ϕ ∨ ψ

We infer Γ `true M : ϕ. For the configuration after applying the small-step rule
we thus get

Γtrue; Γfalse,halt : ρ `true M : ϕ

From the typing rules for stacks, we derive

Γ `false k : ϕ ∨ ψ
Γ `false inlϕ∨ψ :: k : ϕ

∨E

This yields
Γtrue; Γfalse,halt : ρ `false inlϕ∨ψ :: k : ϕ

We have thus again obtained a well-typed configuration.
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Case (inrϕ∨ψ M, k ; M, inrϕ∨ψ :: k). This proof is analogous to the
previous case.

Case (v, inlϕ∨ψ :: k ; inlϕ∨ψ v, k). The well-typed configuration we
assume, is

Γtrue; Γfalse,halt : ρ `true v : ϕ

Γtrue; Γfalse,halt : ρ `false inlϕ∨ψ :: k : ϕ

We derive Γ `false k : ϕ ∨ ψ. This allows us to immediately infer the following,
after performing operational step.

Γtrue; Γfalse,halt : ρ `false k : ϕ ∨ ψ

Using the typing rules for expressions, we see

Γ `true v : ϕ

Γ `true inlϕ∨ψ v : ϕ ∨ ψ
∨I

We now get
Γtrue; Γfalse,halt : ρ `true inlϕ∨ψ v : ϕ ∨ ψ

This completes the well-typed configuration (inlϕ∨ψ v, k).

Case (vcase(L;x.M ; y.N), k ; L, vcase( ;x.M ; y.N) :: k). By assump-
tion, we obtain the well-typed configuration

Γtrue; Γfalse,halt : ρ `true vcase(L;x.M ; y.N) : ϕ

Γtrue; Γfalse,halt : ρ `false k : ϕ

From the first statement we derive, for some type ψ and χ, that Γ `true L : ψ∨χ
and Γ, x : ψ `true M : ϕ and Γ, y : χ `true N : ϕ. We perform the small-step
rule and see

Γtrue; Γfalse,halt : ρ `true L : ψ ∨ χ

Regarding the stack, we apply the typing rule

Γ, x : ψ `true M : ϕ Γ, y : χ `true N : ϕ Γ `false k : ϕ

Γ `false vcase( ;x.M ; y.N) :: k : ψ ∨ χ
∨I

We thus find

Γtrue; Γfalse,halt : ρ `false vcase( ;x.M ; y.N) :: k : ψ ∨ χ

We now again have a well-typed configuration (L, vcase( ;x.M ; y.N) :: k).

Case (inlϕ∨ψ v, vcase( ;x.M ; y.N) :: k ; M [v/x], k). We assume we
start with the well-typed configuration

Γtrue; Γfalse,halt : ρ `true inlϕ∨ψ v : ϕ ∨ ψ
Γtrue; Γfalse,halt : ρ `false vcase( ;x.M ; y.N) :: k : ϕ ∨ ψ
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From the first statement we infer Γ `true v : ϕ. From the second, we derive
Γ `false k : χ, for some type χ, and Γ, x : ϕ `true M : χ and Γ, y : ψ `true N : χ.
Performing the operational step, thus immediately yields

Γtrue; Γfalse,halt : ρ `false k : χ

And by the substitution lemma, we find

Γtrue; Γfalse,halt : ρ `true M [v/x] : χ

This gives us a new well-typed configuration as desired.

Case (inrϕ∨ψ v, vcase( ;x.M ; y.N) :: k ; N [v/y], k). This proof is anal-
ogous to the previous case.

Case (throw k′ M, k ; M, k′). By assumption, we have the well-typed
configuration

Γtrue; Γfalse,halt : ρ `true throw k′ M : ⊥
Γtrue; Γfalse,halt : ρ `false k : ⊥

This yields Γ `true M : ϕ and Γ `false k′ : ϕ, for some type ϕ. We now instantly
obtain the new configuration

Γtrue; Γfalse,halt : ρ `true M : ϕ

Γtrue; Γfalse,halt : ρ `false k′ : ϕ

This again is well-typed.

Case (letcc αϕ . M, k ; M [k/α], k). We assume the well-typed configu-
ration

Γtrue; Γfalse,halt : ρ `true letcc αϕ . M : ϕ

Γtrue; Γfalse,halt : ρ `false k : ϕ

From this we derive Γtrue; Γfalse, α : ϕ,halt : ρ `true M : ϕ. We apply the
small-step semantics rule. From the substitution lemma we obtain

Γtrue; Γfalse,halt : ρ `true M [k/α] : ϕ

The stack remains unchanged, so we find a new well-typed configuration.

4.5 Termination

We would now like to prove the property of termination. It states that every
well-typed configuration terminates after a finite amount of reduction steps.
Having this property ensures that there do not exist well-typed programs that
run forever.
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Unlike the previous proofs, we cannot prove termination by induction over
the structure of our programs. We need a stronger induction hypothesis, which
we obtain from logical relations [25]. The definitions of these predicates and the
proof of the Fundamental Theorem are based on [3].

Definition 4.1 (Reduction Relation). Suppose we are given a configuration
(M,k). We write (M,k) ; (M ′, k′) to indicate that (M,k) reduces to (M ′, k′)
in a single step of the small-step semantics. We define ;∗ as:

(M,k) ;∗ (M ′, k′) := (M ′, k′) is terminal and (M,k) = (M ′, k′)

or there exists an (M ′′, k′′) such that (M,k) ; (M ′′, k′′)

and (M ′′, k′′) ;∗ (M ′, k′).

That is, (M,k) ;∗ (M ′, k′) says that (M,k) reduces to (M ′, k′) in a finite
number of small-step transitions.

Definition 4.2 (Logical Predicate). We introduce a predicate Rϕ on well-typed
values . ; halt : ρ `true v : ϕ. We define Rϕ by induction on the type ϕ.

Rvar(v) = true

R>(v) = true

R⊥(v) = false

Rϕ→ψ(v) = for all w : ϕ such that Rϕ(w), we have Pψ(v w)

Rϕ∧ψ(v) = Rϕ(fst v) and Rψ(snd v)

Rϕ∨ψ(v) = v is inlϕ∨ψ u and Rϕ(u), or

v is inrϕ∨ψ u and Rψ(u)

We define a predicate Pϕ on well-typed expressions . ; halt : ρ `true M : ϕ.

Pϕ(M) = for all k : ϕ such that Qϕ(k), we have Nρ(M,k)

We define a predicate Qϕ on well-typed continuations . ; halt : ρ `false k : ϕ.

Qϕ(k) = for all v : ϕ such that Rϕ(v), we have Nρ(v, k)

Finally, we define Nρ on well-typed configurations . ; halt : ρ `conf (M,k) : ϕ.

Nρ(M,k) = there exists a v : ρ such that (M,k) ;∗ (v,halt)

Lemma 4.6 (Termination is preserved by reduction). Suppose that

. ; halt : ρ `conf (M,k) : ϕ

and (M,k) ; (M ′, k′) where (M ′, k′) is a configuration of some type ψ. Then
Nρ(M,k) if and only if Nρ(M ′, k′).
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Proof. We first consider the direction in whichNρ(M,k) impliesNρ(M ′, k′). We
assume Nρ(M,k). By definition of Nρ, this means that (M,k) ;∗ (v,halt) for
some value v. In addition we know (M,k) ; (M ′, k′). Because of the property
of determinism, which has already been proved, we infer that this has to be the
first step of the reduction. We thus have (M,k) ; (M ′, k′) ;∗ (v,halt). We
now see (M ′, k′) ;∗ (v,halt), so Nρ(M ′, k′).

We now consider the other direction. We assume Nρ(M ′, k′). By definition
of Nρ, this means that (M ′, k′) ;∗ (v,halt) for some value v. However, we also
have (M,k) ; (M ′, k′), which implies (M,k) ;∗ (v,halt). This proves that
Nρ(M,k).

Lemma 4.7 (Fundamental Lemma). Suppose that

. ;halt : ρ `true vi : ϕi , 1 ≤ i ≤ n

. ;halt : ρ `false kj : ψj , 1 ≤ j ≤ m

and

Rϕ1(v1), ..., Rϕn(vn)

Qψ1(k1), ..., Qψm(km)

Now suppose

x1 : ϕ1, ..., xn : ϕn;α1 : ψ1, ..., αm : ψm,halt : ρ `true M : χ

Then, for all . ;halt : ρ `false l : χ with Qχ(l), it follows that

Nρ(M [v1/x1, ..., vn/xn, k1/α1, ..., km/αm], l)

Proof. We prove this by induction on the typing derivation of

x1 : ϕ1, ..., xn : ϕn;α1 : ψ1, ..., αm : ψm,halt : ρ `true M : χ

We will abbreviate the substitution [v1/x1, ..., vn/xn, k1/α1, ..., km/αm] as [...].
Also, to enhance readability, we will often use Lemma 4.6 implicitly.

Case (Ax). Suppose

x1 : ϕ1, ..., xn : ϕn;α1 : ψ1, ..., αm : ψm,halt : ρ `true y : χ

By assumption, y has to be one of the variables xi and so χ = ϕi. Then,
y[...] = vi with Rϕi

(vi). Now for all continuations l : ϕi with Qϕi
(l), we find by

definition of Q that Nρ(vi, l). Hence, Nρ(y[...], l).

Case (>I). Suppose

x1 : ϕ1, ..., xn : ϕn;α1 : ψ1, ..., αm : ψm,halt : ρ `true taut : >

We know taut[...] = taut. By definition, we have R>(taut). Now for all
continuations l : > with Q>(l), we find by definition of Q that Nρ(taut, l), as
desired.
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Case (⊥E). Suppose we have

x1 : ϕ1, ..., xn : ϕn;α1 : ψ1, ..., αm : ψm,halt : ρ `true abortχ M : χ

We deduce

x1 : ϕ1, ..., xn : ϕn;α1 : ψ1, ..., αm : ψm,halt : ρ `true M : ⊥

We want to show that for all continuations l : χ with Qχ(l), we get

Nρ((abortχ M)[...], l)

First, note that (abortχ M)[...] = abortχ M [...]. Moreover, we have the re-
duction (abortχ M [...], l) ; (M [...],abortχ :: l). Now, by the induction
hypothesis, we find Nρ(M [...],abortχ :: l) provided that abortχ :: l is well-
typed and satisfies Q⊥(abortχ :: l). The former is clear from the typing of
continuations. For the latter, we have to show that for all values v : ⊥ with
R⊥(v), we get Nρ(v,abortχ :: l). However, by definition of R⊥, there do not
exist such values. Therefore, Q⊥(abortχ :: l) vacuously holds.

Case (→ I). Suppose

x1 : ϕ1, ..., xn : ϕn;α1 : ψ1, ..., αm : ψm,halt : ρ `true λy:χ′ . M : χ′ → χ

We derive

x1 : ϕ1, ..., xn : ϕn, y : χ′;α1 : ψ1, ..., αm : ψm,halt : ρ `true M : χ

We want to prove that for all continuations l : χ′ → χ with Qχ′→χ(l), we get

Nρ((λy:χ′ . M)[...], l)

We first remark that (λy:χ′ . M)[...] = λy:χ′ . M [...]. Now, using the definition of
Q, the desired Nρ(λy:χ′ . M [...], l) follows if we prove that Rχ′→χ(λy:χ′ . M [...]).
Let us assume w : χ′ with Rχ′(w). We will show Pχ((λy:χ′ . M [...]) w). To do so,
we assume we have a context l′ : χ withQχ(l′) and showNρ((λy:χ′ . M [...]) w, l′).
By our semantics, (λy:χ′ . M [...]) w, l′) ;∗ (M [...][w/y], l′). From the in-
duction hypothesis, it follows that Nρ(M [...][w/y], l′), and so we also have
Nρ((λy:χ′ . M)[...], l) as desired.

Case (→ E). Suppose

x1 : ϕ1, ..., xn : ϕn;α1 : ψ1, ..., αm : ψm,halt : ρ `true M N : χ

We then derive for some type χ′

x1 : ϕ1, ..., xn : ϕn;α1 : ψ1, ..., αm : ψm,halt : ρ `true M : χ′ → χ

x1 : ϕ1, ..., xn : ϕn;α1 : ψ1, ..., αm : ψm,halt : ρ `true N : χ′
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We would now like to prove that for all continuations l : χ with Qχ(l), we have

Nρ((M N)[...], l)

First, note (M N)[...] = M [...] N [...]. We also have (M [...] N [...], l) ;

(M [...], N [...] :: l). Now Nρ(M [...], N [...] :: l) follows from the induction hy-
pothesis provided that N [...] :: l is a well-typed configuration withQχ′→χ( N [...] ::
l). The former is obvious. To show the latter, consider some w : χ′ → χ
with Rχ′→χ(w). We now have to show Nρ(w, N [...] :: l). We know that
(w, N [...] :: l) ; (N [...], w :: l). We get Nρ(N [...], w :: l) by the induction
hypothesis if we show that w :: l is well-typed such that Qχ′(w :: l). Again,
the former is obvious. To show the latter, now assume a u : χ′ with Rχ′(u).
We show Nρ(u,w :: l). Since (u,w :: l) ; (w u, l), we should show that
Nρ(w u, l). But this follows from the definitions of R and P by our assumptions
Rχ′→χ(w), Rχ′(u) and Qχ(l).

Case (∧I). Suppose

x1 : ϕ1, ..., xn : ϕn;α1 : ψ1, ..., αm : ψm,halt : ρ `true 〈M,N〉 : χ ∧ χ′

We derive

x1 : ϕ1, ..., xn : ϕn;α1 : ψ1, ..., αm : ψm,halt : ρ `true M : χ

x1 : ϕ1, ..., xn : ϕn;α1 : ψ1, ..., αm : ψm,halt : ρ `true N : χ′

We will show that for all continuations l : χ ∧ χ′ with Qχ∧χ′(l), we have

Nρ(〈M,N〉[...], l)

We have 〈M,N〉[...] = 〈M [...], N [...]〉 and (〈M [...], N [...]〉, l) ; (M [...], 〈 , N [...]〉 ::
l). From the induction hypothesis it follows that Nρ(M [...], 〈 , N [...]〉 :: l) if
〈 , N [...]〉 :: l is a well-typed continuation with Qχ(〈 , N [...]〉 :: l). The well-
typing is clear, so we show that Qχ(〈 , N [...]〉 :: l). Consider a w : χ with Rχ(w).
We then want to show that Nρ(w, 〈 , N [...]〉 :: l). Now, (w, 〈 , N [...]〉 :: l) ;

(N [...], 〈w, 〉 :: l). From the induction hypothesis it follows thatNρ(N [...], 〈w, 〉 ::
l) if 〈w, 〉 :: l is a well-typed configuration with Qχ′(〈w, 〉 :: l). The for-
mer is clear. To prove the latter, assume a u : χ′ with Rχ′(u). We have to
show Nρ(u, 〈w, 〉 :: l). We know (u, 〈w, 〉 :: l) ; (〈w, u〉, l). From the def-
inition of Rχ∧χ′ and the assumptions that Rχ(w) and Rχ′(u), it follows that
Rχ∧χ′(〈w, u〉). Now, from the definition of Q and the assumption Qχ∧χ′(l) we
conclude Nρ(〈w, u〉, l).
Case (∧E). We will consider the fst-case. The snd-case is analogous.
Suppose

x1 : ϕ1, ..., xn : ϕn;α1 : ψ1, ..., αm : ψm,halt : ρ `true fst M : χ

We derive for some type χ′

x1 : ϕ1, ..., xn : ϕn;α1 : ψ1, ..., αm : ψm,halt : ρ `true M : χ ∧ χ′
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We will prove that for all continuations l : χ with Qχ(l), we have

Nρ((fst M)[...], l)

We know (fst M)[...] = fst M [...] and (fst M [...], l) ; (M [...], fst :: l). If
fst :: l is a well-typed stack with Qχ∧χ′(fst :: l), then Nρ(M [...], fst :: l)
from the induction hypothesis. It is obvious that fst :: l is well-typed, so we
show Qχ∧χ′(fst :: l). Assume we have w : χ ∧ χ′ with Rχ∧χ′(w). We have to
show that Nρ(w, fst :: l). It is known that (w, fst :: l) ; (fst w, l). From
the definition of R and our assumption w it follows that Rχ(fst w). Then, from
the definition of Qχ(l), we conclude Nρ(fst w, l).
Case (∨I). We will consider the inl-case. The inr-case is analogous.
Suppose

x1 : ϕ1, ..., xn : ϕn;α1 : ψ1, ..., αm : ψm,halt : ρ `true inlχ∨χ
′
M : χ ∨ χ′

We derive

x1 : ϕ1, ..., xn : ϕn;α1 : ψ1, ..., αm : ψm,halt : ρ `true M : χ

We have to show that for all continuations l : χ ∨ χ′ with Qχ∨χ′(l), we have

Nρ((inlχ∨χ
′
M)[...], l)

We know (inlχ∨χ
′
M)[...] = inlχ∨χ

′
M [...] and (inlχ∨χ

′
M [...], l) ; (M [...], inlχ∨χ

′
::

l). By the induction hypothesis, Nρ(M [...], inlχ∨χ
′

:: l) holds, provided that

inlχ∨χ
′

:: l is a well-typed continuation with Qχ(inlχ∨χ
′

:: l). Since the
former is clear, we will now show the latter. Consider some w : χ with Rχ(w).

We will show that Nρ(w, inlχ∨χ
′

:: l). To do so, notice that (w, inlχ∨χ
′

::

l) ; (inlχ∨χ
′
w, l). Now, by definition of R, we see Rχ∨χ′(inlχ∨χ

′
w). From

Qχ∨χ′(l) it now follows that Nρ(inlχ∨χ
′
w, l).

Case (∨E). Suppose

x1 : ϕ1, ..., xn : ϕn;α1 : ψ1, ..., αm : ψm,halt : ρ `true vcase(L;x.M ; y.N) : σ

We derive

x1 : ϕ1, ..., xn : ϕn;α1 : ψ1, ..., αm : ψm,halt : ρ `true L : χ ∨ χ′

x1 : ϕ1, ..., xn : ϕn, x : χ;α1 : ψ1, ..., αm : ψm,halt : ρ `true M : σ

x1 : ϕ1, ..., xn : ϕn, y : χ′;α1 : ψ1, ..., αm : ψm,halt : ρ `true N : σ

We will prove that for all continuations l : σ with Qσ(l), we have

Nρ((vcase(L;x.M ; y.N))[...], l)

We see (vcase(L;x.M ; y.N))[...] = vcase(L[...];x.M [...]; y.N [...]) and
(vcase(L[...];x.M [...]; y.N [...]), l) ; (L[...],vcase( ;x.M [...]; y.N [...]) :: l). We
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will show that vcase( ;x.M [...]; y.N [...]) :: l is well-typed and satisfies
Qχ∨χ′(vcase( ;x.M [...]; y.N [...]) :: l). From the induction hypothesis it then
follows that Nρ(L[...],vcase( ;x.M [...]; y.N [...]) :: l). Again, the well-typing is
clear. To prove Qχ∨χ′(vcase( ;x.M [...]; y.N [...]) :: l), assume some w : χ ∨ χ′
with Rχ∨χ′(w). We will have to show Nρ(w,vcase( ;x.M [...]; y.N [...]) :: l). We
know that (w,vcase( ;x.M [...]; y.N [...]) :: l) ; (vcase(w;x.M [...]; y.N [...]), l).

From Rχ∨χ′(w) we derive two cases. If w is inlχ∨χ
′
u with Rχ(u), then

(vcase(w;x.M [...]; y.N [...]), l) ; (M [...][u/x], l). From the induction hypothe-
sis and the fact that Qσ(l), it then follows that Nρ(M [...][u/x], l). If, on the

other hand, w is inrχ∨χ
′
u with Rχ′(u), then (vcase(w;x.M [...]; y.N [...]), l) ;

(N [...][u/y], l). Again from the induction hypothesis and Qσ(l), it follows that
Nρ(N [...][u/y], l).

Case (throw). Suppose

x1 : ϕ1, ..., xn : ϕn;α1 : ψ1, ..., αm : ψm,halt : ρ `true throw k M : ⊥

We derive for some type χ

x1 : ϕ1, ..., xn : ϕn;α1 : ψ1, ..., αm : ψm,halt : ρ `true M : χ

x1 : ϕ1, ..., xn : ϕn;α1 : ψ1, ..., αm : ψm,halt : ρ `false k : χ

We want to prove that for all continuations l : ⊥ with Q⊥(l), we have

Nρ((throw k M)[...], l)

We can write (throw k M)[...] as throw k[...] M [...]. We know that k has to
be a continuation variable, so k[...] = ki with χ = ψi and Qψi

(ki). Moreover we
know (throw ki M [...], l) ; (M [...], ki). Now, by the induction hypothesis we
have Nρ(M [...], l′) for all l′ : ψi with Qψi(l

′). Hence, Nρ(M [...], k[...]).

Case (letcc). Suppose

x1 : ϕ1, ..., xn : ϕn;α1 : ψ1, ..., αm : ψm,halt : ρ `true letcc βχ . M : χ

From this, it follows that

x1 : ϕ1, ..., xn : ϕn;α1 : ψ1, ..., αm : ψm, β : χ,halt : ρ `true M : χ

We prove that for all continuations l : χ with Qχ(l), we get

Nρ((letcc βχ . M)[...], l)

From the induction hypothesis it follows that for all l′ : χ with Qχ(l′) and
l′′ : χ with Qχ(l′′), we obtain Nρ(M [...][l′/β], l′′). So in particular, we get
Nρ(M [...][l′/β], l′). Also, for our configuration, we have (letcc βχ . M)[...] =
letcc βχ . M [...] and (letcc βχ . M [...], l) ; (M [...][l/β], l). Now, notice that
we can let l equal l′, which gives us the desired result.

Corollary 4.8. For every well-typed initial configuration (M,halt) of type ϕ the
statement Nϕ(M,halt) holds. Hence, every well-typed configuration terminates.



Chapter 5

Discussion

In this thesis we have studied the Curry-Howard isomorphism with respect to
both intuitionistic and classical logic. We have presented a typed language and
provided an operational semantics with the proven properties of determinism,
progress, preservation and termination.

The main observations of the Curry-Howard correspondence are presented
in Figure 5.1. We will review the most interesting conclusions here.

First of all, we have seen that the correspondence gives us a dynamic in-
terpretation for logical proofs. The ‘running’ of a program —or more formally,
the process of reducing a term— has been shown to correspond to normalizing
a proof. This has substantiated a way of thinking about proofs as dynamic
entities, as opposed to merely static objects.

Secondly, the expansion of the isomorphism into classical logic has resulted
in a correspondence between classical axioms and control operators. We have
seen that each axiom results in a different control operator. We have opted to
define classical logic by adding Peirce’s law to intuitionistic logic. This axiom
was selected because of its clear computational interpretation, which the law of
excluded middle (yet) lacks. Furthermore, Peirce’s law does not imply ex falso
quodlibet. Choosing double negation elimination, which does imply EFQ, as our
classical axiom and obtaining the corresponding control operator, would have
made the abort-expression superfluous. With Peirce’s law this is not the case.

Classical proofs have the computational effect of changing the evaluation of
a program; it adds non-local control flow. While continuations should be han-
dled with caution, they can be used for constructing often wanted features such
as exception handling.

The observations discussed in this thesis have all been made before. However, by
presenting a simple language and consistently using that language to discuss var-
ious principles, we hope to contribute to the understanding of the Curry-Howard
isomorphism with respect to intuitionistic and classical logic. We believe the
insights the correspondence provides, are interesting and worth studying, both
from a logical and from a computational point of view.

51



52

Logic Computation
Formulae Types
Proofs Programs
Implication Function type
Conjunction Product type
Disjunction Sum type
Classical axiom Control operator
Proof checking Type checking
Formula inference Type inference
Provability Type inhabitation
Normalization Reduction
Normal proof Value
Double negation translation CPS transformation

Figure 5.1: Summary Curry-Howard isomorphism

Further research

While we have attempted to create an overview that is as comprehensive as
possible, many more interesting aspects remain to be discussed. We mention
some topics here which would be interesting to include in a more elaborate
examination.

Firstly, there exist other classical axioms that might have an interesting
computational interpretation. We have examined the three most commonly
used axioms, but there are many others, such as the stronger law of excluded
middle —ϕ∨ϕ→ ψ— and the classical deMorgan law —¬(ϕ∧ψ)→ (¬ϕ∨¬ψ).

Secondly, we have briefly mentioned other research that has introduced a
notion of judgements and a corresponding typing to better deal with classical
logic [2, 20]. To keep our presentation as uniform as possible, we have chosen not
to adjust our language and typing accordingly. However, changing the language
as proposed might provide a more intuitive reading of the computational content
of classical logic.

The discussed λC-calculus was the first model of computation which was
shown to correspond to classical logic. However, clearer calculi have been in-
troduced since, such as the λµ-calculus [24] and variations of the λC- and λµ-
calculus in [2]. An examination of those calculi and a correspondence with our
constructed language would be interesting to include.

The presented language can be interpreted as a very simple programming
language. It does not, however, contain more elaborate data-types or primitive
recursion. Such constructs could be incorporated, following [18].

Finally, this thesis only deals with propositional logic. However, the isomor-
phism can be extended into higher-order logic and provide interesting compu-
tational interpretations [27].
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