
Utrecht University

Bachelor Thesis
Artificial Intelligence

7.5 ECTS

Towards automated
communication training:

Fine-tuning deep contextualized embeddings

Author:
Reinier Bekkenutte
(6218318)

Supervisor:
Dr. Denis Paperno

Second reader:
Dr. Frans Adriaans

June 2020

Abstract

TrainTool is a web-app where trainees can train their communication skills.
This training is done by recording the trainee’s response to a video and
evaluate that recording on a certain criterion. Automating the evaluation
of these responses would make the system more efficient. To effectively
run an automated communication training system, a classifier to evalu-
ate criterion-user-input-pairs is necessary. As deep neural networks en-
abled text classification to reach new heights, this research aims to test
if Google’s pre-trained neural model BERT can be fine-tuned to effectively
classify the criterion-transcription-pairs. This novel task is called criterion-
transcription-evaluation. Since this task is inherently different than tasks
in previous studies, this task is a novel application of text classification.
A multilingual BERT model as well as a pre-trained Dutch BERT model
called BERTje were fine-tuned for this task. Results show that both mod-
els outperformed the baselines. Next to that, BERTje has a slightly better
performance than the multilingual BERT. A larger dataset and more com-
puting power is needed to further fine-tune the model and gather results
that are more representative of the possibilities of this classifier.

1

Table of Contents

1 Introduction 3

2 Related Work 6

3 Specifying the Problem 9
3.1 The Task . 9
3.2 The Data . 9

4 Previous Implementations 12
4.1 The Baselines . 12

4.1.1 BoW Logistic Regression 12
4.1.2 BoW Naive Bayes . 13
4.1.3 BoW Sequential Model 13

4.2 Smart Sentence Matching . 13

5 BERT-based Model 14
5.1 Google’s BERT . 14
5.2 Preprocessing . 15
5.3 Architecture of the neural network 15
5.4 (Hyper)parameters of the model 16

6 Results 17

7 Analysis and interpretation of the results 19

8 Conclusion 21

9 Appendices 23
9.1 Code of the implementation 23

2

1 Introduction

In automated answer grading, an answer to a certain question is evaluated
immediately by a classifier in the background. In this research, the extent to
which text classification can get transferred to an automated answer grading
problem is examined. The classification of text plays a prominent role in
Natural Language Processing. Whether it is the classification of sentiment
or the spam detector in an email-inbox, countless applications can be found
for this NLP task. In the scope of answer grading, text classification could
be beneficial. Since the auto-evaluation of answers would be of value for the
automation and digitalization of education. While applying a new task to
text classification, this research will contribute to the discussion surrounding
short answer grading. As is it will build on existing literature and methods
for text classification and will broaden its possibilities.

A company in Utrecht, called Faculty of Skills, has developed a (web-)app
called TrainTool. This app gives users the opportunity to train their skills
regarding communication and is currently being used by all kinds of com-
panies, universities and other institutions. The trainings are based on the
following concept: Firstly, a trainee sees instructions, including certain cri-
teria on which he or she will be evaluated. Secondly, a video is shown, for
example a colleague asking something. Finally, the trainee has to record a
response, keeping the given criteria in mind when reacting. This concept
aims at mimicking the situation that is described, so the trainee can feel as
if the conversation is really happening.
These responses are evaluated in two ways. On the one hand, the criteria
each get marked with either a pass or a fail. On the other hand, more general
feedback is given, where the trainee learns what he or she did right or wrong
and in what way they could improve their communication. Currently, both
of these parts of feedback are being given by a human coach, hired by Fac-
ulty of Skills or by the institution that is running the program on TrainTool.

The aim of this research is to investigate the way in which the grading of
each criterion could be automated, consequently, the task is called criterion-
transcription-evaluation. The automation of this feedback would be both
beneficial for the company, as they need less manual labor to grade the in-
puts, as well as for the trainees, as they get instant feedback after recording
their answers. I did this by fine-tuning an existing neural model such that
it was able to classify a criterion-user input pair, similar to how a human
coach would do. In other words, the application of known methods for deal-

3

ing with text-pair classifiers to this novel application of text classification
was tested. To capture the essence of this research, the following research
question had been chosen:

Can this novel application of criterion-transcription-evaluation be consid-
ered as a text classification task and can known methods for dealing with
text-pair classification be used to solve this problem?

Next to that, two sub-questions, each focusing on a smaller scope within the
problem at hand, have been formulated:

� What will the effect of training the classifier on the entire dataset be
when comparing it to only training it on data corresponding to a single
appraisal question?

This question is relevant because each appraisal question has a different
domain in which it operates. The extent in which the classifier is able
to generalize over the data is measured by this question. This is tested
by choosing three different datasets with different levels of complexity and
compare the results after training the classifier on each dataset.

� Is Dutch represented well enough in existing pre-trained models such
that the classifier is able to outperform the baselines?

Considering that the available dataset is in Dutch, this could be an obsta-
cle for the construction of this classifier. In comparison with, for example,
English, where there are a lot more resources avaiable. This research will
show, how well existing Dutch pre-trained models will perform.

Relevance for Artificial Intelligence

Text classification is an important type of task in Natural Language Pro-
cessing. The introduction of neural networks and deep learning techniques
broadened the possibilities of this part of NLP. This enabled computers to
handle massive amounts of data and enabled them to learn about language
with significantly less human labor needed. This research will add some-
thing of value to the discussion about text classification and to this field
of AI. This value comes from the fact that this is a new application, as it
differs from simple answer grading, or answer-reference answers comparison,
which is very prevalent in the literature. Unlike those applications, trainees

4

are not answering a question, but will have to keep certain criteria in mind,
that will be used for evaluation in combination with their transcribed spo-
ken input. The following example shows how trainees process the criterion
and give their input:

Note that this example is translated from Dutch

� Criterion: I show that I am aware of the situation of the client.

� User input classified as positive: Hi Guido! Good of you to call. If I
am not mistaken you want to know if the cost for the dermatologist is
covered, is that right?

It is clear that the user input is not directly related to the criterion. How-
ever, there is a higher level of semantic overlap, which the classifier will have
to learn. The fact that spoken language is being classified, also gives rise
to the novelty of this task, since that changes the form and meaning of the
text that has to be classified. This is different from ‘normal’ short answer
grading while in that case written data is classified, which results in different
grammar, word order and use of words. Next to that, the data for this new
application is transcripted, which is not the case in short answer grading.
This makes it a very interesting case, while setting the fundamentals for
constructing such a classifier enables this classifier to be applied to similar
problems like the one at hand. Next to the fact that it is a novel application,
it also fits well as a continuation of the research done in this field, as the
analysis of related work is an important part of this research.

Structure

In the next section, the findings in related research in NLP, specifically in
the scope of short answer grading, are described. In section three, I go into
more detail about the specifications of the problem, the data and about the
formulation of the desired classifier in technical terms. Section four is used
to explore what implementations of the classifier have been tried previously
by the company. After that, in chapter five, I formulate the implementation
that I will test. In section six, the results are described. Section seven, con-
sists of an analysis and interpretation of the results. Finally, in section eight,
I will conclude with regard to my research questions, discuss its limitations
and present my recommendations for future research.

5

2 Related Work

A part of NLP research closely related to this project, is Short Answer Grad-
ing. The biggest difference between these systems and the one at hand, is
that the data consists of question-answer-pairs, whereas in the case of this
research, the data is made up of criterion-transcription-pairs. This differ-
ence is important to note, as it changes the way in which the combination
of the two parts of the input get processed and evaluated.

Most of the SAG-systems that will be addressed in this section have the
following aspects that are necessary per classification:

� A question which the students must answer;

� one or more reference answers;

� the answer the student has put in;

� the grade, often binary, but in some cases scalar.

The majority of these systems are built on the idea of comparing the given
answer to the reference answers, so these classifiers can be seen as reference-
input-pair classifiers. A typical example [1] of the problem such a SAG must
deal with, goes as follows:

� Question: You used several methods to separate and identify the sub-
stances in mock rocks. How did you separate the salt from the water?

� Ref. Answer: The water was evaporated, leaving the salt.

� Student -1 Response: By letting it sit in a dish for a day. – Classifi-
cation: (Incorrect)

� Student-2 Response: Let the water evaporate and the salt is left be-
hind. – Classification: (Correct)

There have been a number of approaches towards this problem. A study
that tried to implement an automated Short Answer Grader has been per-
formed at the University of Texas by Mohler and Rada [2]. Since this is
a study done before the breakthrough of neural networks, they went for a
different approach. Mohler et al. experimented with multiple measures of
semantic similarity between student’s short answers on a Computer Science
assignment and the related correct answer. In the study they compared

6

different measures of similarity, but also the difference in knowledge-based
measures and corpus-based measures. Although I went for a different ap-
proach in this research, the approach of Mohler et al. has similarities with
the implementation currently in use by Faculty of Skills (see section 4).

A study where neural networks were used was conducted by Riordan et
al. who were inspired by the success neural models were showing on the task
of automated essay scoring [3]. However, they also noted some important
differences between essay- and short answer grading, such as the length of
the inputs, as well as the aspects the input has to be graded on. In the
scope of essays, grammar and the organization of text is important, while
for short answers, the focus is almost entirely on the content. The latter is
also the case in my research, especially since it is spoken text that has to be
classified, which means that grammar and organization have an even lesser
role to play. Rioardan et al. found that, consistent with findings concerning
neural models for other text classification tasks, using bi-directional LSTMS
and making use of attention layers produced the best results. Next to that,
this study found that certain word embeddings performed better than oth-
ers and confirmed the belief that word embeddings are able to yield a good
representation of the input for neural models.

Wang et al. proposed a version of a short answer grader that used both
implicit and explicit representations of language[4]. They did this by con-
structing a neural model driven by knowledge-based features of the short
texts concerning syntax and semantics. Their reasoning behind this ’hy-
brid’ form came from the idea that using implicit and explicit representa-
tions separately would not yield good results. Firstly, because short texts
do not contain enough information to enable standard NLP approaches to
gather their explicit contents. Secondly, implicit representations tend to be
harder to grasp for smaller inputs. Their Knowledge Powered Convolutional
Neural Network yielded better accuracy than state-of-the-art methods on a
number of tasks, proving that combining both representations is an inter-
esting approach to classifying short texts.

Similarly to Mohler et al., Patil and Agrawal aimed at computing the
semantic similarity between a number of reference answers and the student’s
answer [1]. Unlike the former study, they did make use of neural networks
to compute this similarity. The embeddings of the reference answers, the
student’s input and two correct responses from other students go through a
number of layers, most importantly a bi-directional LSTM (which enables
the model to include information about the context of a word or an entire
sentence). Later in the model, all the modeled sentences come together in
a fully connected layer and finally, the output of that layer goes as input

7

in a logistic regression layer, that outputs the probability of the student’s
answer being correct. An important finding in this study is that using cor-
rectly classified students’ responses that are correct as input, really helped
the model in understanding what are important features for a good answer.
This is also the goal of the reference answer, however those are often stated
in general terms, not representative of how a student would say it. Having
actual student input as reference seems to be of significant positive effect on
the performance of the model.

The studies mentioned above differ on a number of aspects with the research
in this paper:

� The size of the available dataset is very small, so that means that it is
hard for the classifier overall to achieve good generalization over the
data, but it also means that a pre-trained model is needed in order to
obtain embeddings that can capture the contents of the text in a good
way.

� The data for my research consists of transcriptions of spoken language,
which differs from written language in vocabulary, grammar and also
context. The latter point refers to the fact that all the transcriptions
used in this research are recorded responses to a certain video the user
has seen. This means that that video influences the user’s answer.

� All the above studies are focussed on question answering, while the
task in this research is not answering a question, but rather reacting
in a way that is in line with a given criterion.

It can be concluded that criterion-transcription-evaluation is a novel task,
as it differs on the points above with short answer grading. This means that
other methods than the ones in previous studies have to be used.

8

3 Specifying the Problem

In this section I will elaborate on what the task consists of, both for a user
of the platform as well as for the classifier that I am constructing. Next to
that, the dataset that has been made available to me will be specified and
an explanation will be given of the way in which the data is split between
the train-, validation- and test sets.

3.1 The Task

As stated in the introduction, TrainTool is a webapp that lets its users
improve their level of communication. This is done by letting trainees (as
the users are called) record their response to a video the application shows
them. Before they respond, they see a number of criteria or ’appraisal ques-
tions’, as they are called in the data, which they have to keep in mind when
responding. Afterwards, the trainees will be evaluated on whether or not
they met those criteria. This research aims at automating that evaluation,
specifically by fine-tuning and expanding a pre-trained model that is proven
to give state-of-the-art results on other NLP tasks. This means that the
classifier will have to take a criterion-user-input-pair as input and put out a
value that indicates whether or not the related criterion is met.

3.2 The Data

For this research, I had access to two datasets from two different companies
that have ran programs in TrainTool in the past. Every datapoint consists,
most importantly, of the following data:

� An appraisal question, which is the criterion trainees have to meet in
their recorded response;

� a transcription of the trainee’s response, which is the transcribed audio
of the recorded response;

� the label that was given to the criterion-transcription-pair by a human
coach. This is considered as the ground truth for the classifier.

For clarity, I will give an example of an appraisal question with two cor-
responding transcriptions, evaluated as correct and incorrect, respectively.
The example will also be translated. Note that the original Dutch transcrip-
tions are altered for privacy reasons.

9

� Appraisal question (original): Ik vat het verhaal van de klant of de
klantvraag samen.

� Appraisal question (translation): I give a summary of the client’s ques-
tion or issue.

� Correctly evaluated transcription (original): Dat kan ik zeker voor u
nakijken als ik het goed begrijp is wat je wil weten wat er wel en
niet vergoed wordt mijn vraag is alleen nu welke behandelingen wilt u
graag ondergaan

� Correctly evaluated transcription (translation): I could certainly check
that for you if I understand correctly you want to know whether or
not you are covered my question now is what treatments would you
like to undergo

� Incorrectly evaluated transcription (original): Goeiemiddag meneer
vlissingen goed dat u belt we gaan dit even voor u uitzoeken

� Incorrectly evaluated transcription (translation): Good afternoon mis-
ter Vlissigen good of you to call we will check this for you

Next to the data noted above, each datapoint has metadata that is not used
in this research. The original data consisted of videos of trainees. These
videos were transcribed by an automated system and were not changed for
the purpose of this research. These transcriptions are present in the dataset.
It is important to note that the transcriptions were not done manually and
contain mistakes, which could have effect on the performance of the model.
However, it is also a good test for the classifier, since it would also have
to deal with imperfect transcriptions should it be used as an autograder in
TrainTool.
The two datasets I had access to came from a number of programs run by
two different companies in TrainTool, each with different appraisal questions.
For privacy reasons, the names of the companies are not stated, but they
both operate in a different domain of work, which is beneficial for the level
of representation the results show.

� The dataset from company 1 consisted of 12 appraisal questions, each
with 50 responses.

� The dataset from company 2 consisted of 24 appraisal questions, each
with a number of responses varying between 40 and 55.

10

The combination of the two datasets resulted in a dataset with 36 different
appraisal questions and a total number of 2309 datapoints. However, some
datapoints needed to be removed because the transcription was missing. I
decided to experiment with this classifier on the following three setups:

� Train, validate and test on the entire dataset.

� Train, validate and test only on the data from company 1.

� Train, validate and test only on data from a single appraisal question.

These three setups would give a good insight as to what extent the classifier
would be able to generalize over the data. For splitting the data in train-,
validation- and test-sets, a 60%-20%-20% ratio was used. The split for the
entire dataset and the data from company 1 was done by randomly selecting
appraisal questions for validation and appraisal questions for testing, until
the numbers were close to the ratio stated above. The rest of the data was
left for testing. The choice to split the data bu appraisal questions was made
to prevent overfitting on the appraisal questions, making the results more
representative.

The dataset corresponding to the third setup stated above, came from ap-
praisal question 87909, which was the appraisal question with the highest
number of datapoints. To split this data in train-, validation- and test-sets,
both the positively graded datapoints and the negatively graded datapoints
were distributed following the same ratio as the two other datasets. This
was done to make sure the negative and the positive datapoints were evenly
distributed over the three sets. The following table shows the exact number
of datapoints for every dataset, after the datapoints with missing transcrip-
tions were removed:

Train Val. Test Total
Entire dataset 1313 471 482 2266
Company 1 dataset 1015 371 315 1701
87909 only dataset 60 24 29 113

Table 1: Overview of the number of datapoints in the datasets used in this
research.

11

4 Previous Implementations

Before this research, employees at Faculty of Skills had already tried a
number of implementations to automate the criterion-transcription-pairs.
Among those implementations were two machine learning techniques, one
simple, sequential neural network and one technique that involves calculat-
ing the semantic similarity between the user-input to a number of model
sentences that are manually put in for every appraisal question. In this sec-
tion I will elaborate on these previously implemented classifiers, making a
distinction between the latter and the rest. This was done to emphasize that
for the first three implementations, no manual labor or analysis of the data
was needed, while for the fourth the model sentences need to be constructed.

4.1 The Baselines

The three methods previously implemented that require no manual labor
beforehand will be used as baselines for the new implementation that will
be introduced in the next section. These methods are the following:

� Bag of Words Logistic Regression

� Bag of Words Naive Bayes

� Bag of Words Sequential Model

It is important to note that all three implementations above take only the
transcriptions as input, unlike the proposed implementation in this paper
that uses criterion-transcription-pairs. Next to that, all three convert the
input transcription to a Bag of Words vector, which simply makes a vocab-
ulary of the entire input and counts the occurrences of each word, for each
transcription. Word order and any higher level linguistic features are not
modeled. Also note that the Logistic Regression and Naive Bayes methods
do not make use of the validation dataset. In the Results section, the per-
formance of these baseline methods is compared with the performance of
the newly proposed implementation.

4.1.1 BoW Logistic Regression

For this implementation, the LogisticRegression linear model included in the
SKLearn Python package was used. To calculate the accuracy, the number of
correctly classified datapoints is divided by the total number of datapoints.

12

4.1.2 BoW Naive Bayes

This classifier was constructed using the MultinomialNB classifier included
in the SKLearn Python package. To calculate the accuracy, the number of
correctly classified datapoints is divided by the total number of datapoints.

4.1.3 BoW Sequential Model

This neural model consists of two fully connected neural network layers. The
first layer consists of ten nodes, with the ReLU activation function. That
output gets sent to the second layer, which consists of one node with the
Sigmoid activation function. During training, the Adam optimizer was used,
the binary cross-entropy loss function was minimized and the accuracy was
the ratio of the number of correctly classified transcriptions and the total
number of transcriptions. The model was trained for 20 epochs, as the model
did not improve when training for a larger amount of epochs.

4.2 Smart Sentence Matching

Since the above implementations only use Bag of Words as an input, the
structure and semantic properties of the input gets lost. To combat this,
a non-machine learning technique was proposed, which was called Smart
Sentence Matching. This is also the implementation that is currently used
in TrainTool. Using Facebook’s multilingual LASER library, Smart Sen-
tence Matching utilizes the distance between parts on the input and pre-
constructed ’model sentences’ in the semantic space. This implementation
yielded better results than the implementations mentioned above, but did
require manual labor. For this reason I decided not to use this implementa-
tion as a baseline.

13

5 BERT-based Model

In this section I will dive deeper into the model that I constructed and
explain the choices I made regarding the (hyper)parameters.

Considering the earlier implementations of dealing with the criterion-
transcription-evaluation task, I concluded that a Bag of Words represen-
tation of the input was not able to sufficiently grasp the semantics of the
transcriptions. The input needs to be represented in a more sophisticated
way than just counting the occurence of words, which is why Bag of Words is
not a suitable representation of the transcriptions. Previous studies showed
that the use of neural models yields state-of-the-art results on short answer
grading, however for this research there was not much data available. This
data sparsity meant that training a model on the task end-to-end is not
realistic. Using a pre-trained model would help overcome this problem, as
it already has a reasonable representation of multiple levels of the language
used.

5.1 Google’s BERT

One pre-trained language representation model that was introduced recently,
is Google’s BERT, or Bi-directional Encoder Representation of Transformers
[5]. The creators of BERT stated that: ’the pre-trained BERT model can
be fine-tuned with just one additional output layer to create state-of-the-art
models for a wide range of tasks, such as question answering and language
inference, without substantial taskspecific architecture modifications’. I used
the multi-lingual version of BERT, which included support for Dutch, as a
starting point of my neural network. This meant that I would have a set basis
for my neural network and only needed to fine-tune the (hyper)parameters.
Next to the multilingual version of BERT, De Vries et al. developed a BERT
model that was only trained on Dutch corpora, called BERTje [6]. While the
Dutch part of the multilingual vesion of BERT was trained on just Dutch
Wikipedia, BERTje was trained on several, high quality Dutch corpora with
different domains. I decided to use both the multilingual BERT and BERTje
and compare the results, as that would give me insight into whether or not
the more specific training would yield better results.

The idea of the BERT models is that it is pre-trained by the authors and
afterwards fine-tuned for a specific downstream task. The BERT models are
pre-trained with two specific tasks:

14

� Masked Language Modelling, which means that part of the input to-
kens for training get masked in order for the model to predict those
tokens. This approach to training results in a deep bidirectional rep-
resentation of the language of the input tokens.

� Next Sentence Prediction, which means that the model is pre-trained
on a binarized next sentence prediction task. This way, the model can
be trained to understand sentence relationships, which is an important
feature for a number of tasks the BERT model can be used for. In this
research, understanding of a sentence relationship is important, since
the input is a pair of sentences.

5.2 Preprocessing

In order for the BERT models to be able to handle the criterion-transcription-
pairs and to start fine-tuning the model, some preprocessing was needed.
Both the criterion and the transcription had to be tokenized by the tokenizer
included with the respective BERT model. Before that, some tags needed
to be added in front, in between and at the end of a criterion-transcription-
pair, as both items were concatenated. The tokenizing resulted in an array of
ID’s corresponding to each token that was present in the vocabulary, named
input ids. In the process of tokenizing and adding those tags, the longest
input sequence was found, which was saved as the max seq len. All concate-
nated pairs were padded until their length was equal to the max seq len.
Finally, a segment ids array had to be constructed, which for every token
in the tokenized string indicated whether it was part of the transcription
or the appraisal question. In the end, for every criterion-transcription-pair,
the input ids and segment ids were the input to the neural network.

5.3 Architecture of the neural network

The basis of the neural network used for this task, was one of the BERT
models, multilingual BERT or BERTje. Both models consisted of 12 layers
and a hidden representation size of 768 [6] [5]. These models could be loaded
into my Keras model with the bert-for-tf2 package, using their respective
configuration files, where the pre-trained parameters are stored.
As described in the subsection above, every criterion-transcription-pair starts
with a tag. The final hidden vector of this starting tag, corresponds to the
aggregate representation of the entire input-pair. For this reason, a Lambda
layer was added after the BERT layer in my model. This simply takes the
entire BERT-output as input, and returns the hidden vector that contains

15

the aggregate representation. As stated above, this hidden vector contains
768 nodes.

Even though Devlin et al. stated that only adding a classification layer
after the BERT model would be sufficient, I opted to add four fully con-
nected Dense layers. Through comparing the performance of the model on
the validation set, I found that adding these extra layers yielded better re-
sults, which could be due to the fact that this enabled the model to grasp
higher level features of the representation as put out by the BERT model.
All four layers used Rectified Linear Unit as their activation function and
had regularizers to apply penalties on their respective outputs, because this
yielded the best results. Finally, a classification layer with two nodes was
added, since the classification is binary. The activation function for this final
layer was Softmax. Note that a Dropout layer was added between every pair
of layers. This was done to combat overfitting during training.

The loss function that had to be minimized during training was the
Sparse Categorical Cross-Entropy function. For accuracy, the Sparse Cate-
gorical Accuracy was used. Finally, Adam was used as the optimizer.

5.4 (Hyper)parameters of the model

After testing a large number of configurations, the following parameters
yielded the best results on the validation dataset:

� Dropout: 0.2, equal for every Dropout layer in the network

� Regularization rate: 0.0001, equal for every fully connected Dense
layer in the network

� Learning rate: 0.00001

� Batch size: 3, this was the maximum batch size that the available
GPU was able to handle

� Number of epochs: 10. Note that the weights of the epoch with the
best performance was saved.

16

6 Results

In the previous section, I explained the architecture and parameters of the
proposed model. In this section I will compare the performance of the
model I implemented with the performance of the simple machine learning
implementations that are used as a baseline. Next to that the performance
of the model will be evaluated on both the Multi-Lingual BERT version as
well as the pre-trained Dutch BERT version called BERTje. I will do the
comparisons in the three setups described in section 3. By comparing the
models on these three different levels of complexity, I will be able to see
whether or not the classifier is able to generalize over the entire dataset, or
that it performs better on datasets where the data is more alike.

To be able to handle the random factors of the model, the performance
is measured by taking the average training, validation and testing accuracy
of running the model five times for ten epochs. Of those ten epochs, the one
with the highest validation accuracy is saved and evaluated on the test set.
I chose to do this because the accuracy of the model sometimes deteriorated
on later epochs, which could be tied to overfitting on the training data.
Taking the average also accounts for outliers in performance and makes sure
the results show a clearer view on the actual capabilities of the classifier.

The following table shows the sparse categorical accuracy of the respective
models for the training, validation and test sets of the entire dataset. The
way the data is divided between training, validation and testing is discussed
in section 3. The bold percentages are the highest values in each column.

17

My implementation Train Val. Test

Multilingual BERT 84.44 % 71.68 % 67.51 %
BERTje 93.70 % 73.34 % 68.31 %

Baseline Train Val. Test

BoW Logistic Regression 86.06% 68.37 % 63.70 %
BoW Naive Bayes 78.06% 69.43 % 61.62 %
BoW Sequential model 85.90% 70.50 % 64.90 %

Table 2: Sparse Categorical Accuracy of the entire dataset (appraisal ques-
tions and user inputs from both companies combined)

The following table shows the sparse categorical accuracy of the respec-
tive models for the training, validation and test sets of the dataset which
only contains appraisal questions and corresponding user inputs from the
single-company dataset. The bold percentages are the highest values in
each column.

My implementation Train Val. Test

Multilingual BERT 82.62% 67.82% 64.05%
BERTje 87.45% 69.54% 67.11%

Baseline

BoW Logistic Regression 85,91% 59.57% 59.47%
BoW Naive Bayes 79.41% 63.61% 54.15%
BoW Sequential model 86.00% 64.70% 56.80%

Table 3: Sparse Categorical Accuracy of the dataset from Company 1

The following table shows the sparse categorical accuracy of the respective
models for the training, validation and test sets of the data from only ap-
praisal question 87909. The bold percentages are the highest values in each
column.

18

My implementation Train Val. Test

Multilingual BERT 86.67% 75.00% 58.62%
BERTje 86.67% 75.00% 58.62%

Baseline

BoW Logistic Regression 100% 70.83% 58.62%
BoW Naive Bayes 96.66% 75.00% 58.62%
BoW Sequential model 95.00% 75.00% 58.62%

Table 4: Sparse Categorical Accuracy of the data from appraisal question
87909

7 Analysis and interpretation of the results

As table 1 reports, it immediately becomes clear that the implementation
I brought forward in this paper outperforms the baselines on each of the
training, validation and test sets, albeit the gain in accuracy is marginal.
Next to that, the Dutch pre-trained version of the BERT model (BERTje)
performs better than the Multilingual BERT version, even though the dif-
ference between them is small. It is also important to note that the training
accuracy of the Multilingual version of BERT is significantly lower compared
to BERTje, which means that BERTje is able to gather a better represen-
tation of the data.

The results on single-company dataset (table 2), show similar results
as described above, the new implementation outperforms the baseline and
BERTje outperforms the multilingual version of BERT. However, the differ-
ence in accuracy of both the BERT implementations versus the baseline is
larger than when the models are trained on the entire dataset. Furthermore,
the performance on only the single-company dataset overall, is lower than
when the models are trained on the entire dataset. This could be due to the
fact that, even though all the data is from the same company, there could
still be a difference between the appraisal questions. This shows that, taking
only data from one company does not guarantee that the inputs are more
similar, which would make it easier for the model to understand the way in
which the data should be evaluated.

Investigating the numbers in the third column, it is apparent that the
newly introduced model as well as the baselines, give almost identical re-

19

sults. Not surprisingly, the accuracy percentages in the test are equal to
the percentage of datapoints in the test set that are evaluated positively.
In other words, all the implementations converge to a model where every
datapoint is classified positively. One possible explanation for this outcome
is the low number of training data. Since only data from one appraisal ques-
tion could be used, there was not much data available for models to train
on. The fact that the BERT implementations as well as the baseline give
the same results, suggests that training a separate classifier per question is
not a promising approach.

When looking at the bigger picture, it becomes clear that the implemen-
tation with the BERT models performs best on the entire dataset, which
is not unexpected, when looking at the number of datapoints. Neural net-
works tend to work better when there is more data to train on. My findings
support that statement, as performance lowered when the available data to
train on decreased. It also becomes apparent that the Dutch pre-trained
version of the BERT model (BERTje) performs better than the multilingual
version of BERT. This happened in both the entire dataset as well as the
dataset containing data from only one of the two companies. This is what is
to be expected, as BERTje is trained on more Dutch corpora than multilin-
gual BERT. The latter is only trained the Dutch version of Wikipedia [6].
Since this is spoken language, a model only trained on Wikipedia is likely
to get worse results. However, the difference is not as big as I had expected.
This could be due to the fact that, since the transcriptions are not entirely
accurate, a lot of words are still misunderstood by BERTje.

20

8 Conclusion

It can be concluded that, when the model is trained, validated and tested
on the entire dataset available, it outperforms the baselines set out for this
research. The model even performs at its best when trained on the largest
dataset, even though the appraisal questions differ significantly. Thus can
be concluded that the model is indeed able to handle a large number of
different appraisal questions and is able to capture those differences. It can
also be concluded that, when the model is trained on just one appraisal
question, the performance drops significantly.

Next to the above point, it is evident that the model was able to handle
Dutch text. The results show that BERTje outperfomed the multilingual
version of BERT, due to the fact that BERTje was trained on more Dutch
corpora. This made the fact that the data was in Dutch less of an obstacle
than I had expected beforehand. I was worried that Dutch would not be
represented sufficiently in existing pre-trained models, but this turned out
not to be the case. However. there are English versions of BERT that are
at least twice the size of the BERT models used in this research and have
been trained on a larger number of corpora. If this was the case for BERTje
or any other Dutch model, it could allow for further performance gains.

After the findings in this research, the conclusion can be drawn that
this novel task of criterion-transcription-evaluation can be considered as a
text-classification task. Since BERT models have been fine-tuned in order
to construct this classifier, a known method for text-classification was used
to solve this classification problem. The findings in this research also add
to the list of tasks that BERT models can be fine-tuned for.

After the conclusions above, it is important to note that the generalizability
of this research is limited by the small amount of data available for this
research. More data would yield better results, as the model can be trained
on more criterion-transcription-pairs and have a better understanding what
makes a good transcription. This is also a trend that can be seen in the
results, as the largest dataset has the highest results.

Moreover, the imperfections in a number of transcriptions makes it hard
for the model to effectively grasp the meaning of those transcriptions. This
could have a negative effect on the results. To test this, the transcriptions
could manually be corrected. However, this means that this model could
not be used in the actual application, because there would be no possibility
to alter the transcriptions in that case. Another possibility would be to
either investigate better ways to gather the transcriptions, or by letting

21

users check their own transcriptions, which both have their own advantages
and disadvantages.

Another limitation to this research was the limited amount of computing
power that was available. Training the model took a significant amount of
time and if more computing power was available, more testing could have
been done. Next to more testing, larger architectures could have been tested
and a larger batch size could have been used.

Finally, it is important to note that, unlike most text-classification tasks,
the task uses transcriptions of spoken language. This means that results
could be even better, if there was a model available that was pre-trained
on corpora that consist of spoken language. As the BERT model is ever-
evolving, chances are that such a model will become available in the future.

22

9 Appendices

9.1 Code of the implementation

See the attached .py files for the code of the baselines as well as the newly
proposed implementation.

References

[1] Pranjal Patil and Ashwin Agrawal. Auto grader for short answer ques-
tions. 2018.

[2] Michael Mohler and Rada Mihalcea. Text-to-text semantic similarity for
automatic short answer grading. pages 567–575, 2009.

[3] Brian Riordan, Andrea Horbach, Aoife Cahill, Torsten Zesch, and
Chungmin Lee. Investigating neural architectures for short answer scor-
ing. pages 159–168, 2017.

[4] Jin Wang, Zhongyuan Wang, Dawei Zhang, and Jun Yan. Combining
knowledge with deep convolutional neural networks for short text clas-
sification. 350, 2017.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805, 2018.

[6] Wietse de Vries, Andreas van Cranenburgh, Arianna Bisazza, Tommaso
Caselli, Gertjan van Noord, and Malvina Nissim. Bertje: A Dutch Bert
model. arXiv preprint arXiv:1912.09582, 2019.

23

	Introduction
	Related Work
	Specifying the Problem
	The Task
	The Data

	Previous Implementations
	The Baselines
	BoW Logistic Regression
	BoW Naive Bayes
	BoW Sequential Model

	Smart Sentence Matching

	BERT-based Model
	Google's BERT
	Preprocessing
	Architecture of the neural network
	(Hyper)parameters of the model

	Results
	Analysis and interpretation of the results
	Conclusion
	Appendices
	Code of the implementation

