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Abstract 
We are only aware of relevant visual information, as most available visual information never 
enters our awareness. The visual working memory (VWM) may play a part in selecting 
relevant visual information for awareness.  
To investigate the effect of VWM on our visual awareness, we have designed an experiment 
to test the influence of the content of VWM on awareness using motion-induced blindness 
(MIB). Information more likely to enter awareness is prone to disappear from awareness in 
MIB. As information matching the content of the VWM is more likely to enter awareness, our 
experiment is designed to investigate whether stimuli matching the content of the VWM are 
also more likely to disappear in MIB. 
We have also made two models to predict the effect of the content of VWM on stimulus 
disappearance in MIB. One of these models is based on the effect of the content of VWM on 
breaking-continuous flash suppression (bCFS), whereas the other is based on the predicted 
effect of attention on the disappearance of stimuli in MIB. Using these models, we have 
created possible distributions of the outcomes of the experiment we designed. Based on 
these distributions we have also simulated trials for the experiment.  
Both our models predict an increase in stimulus disappearance for stimuli matching the 
content of the VWM. The model based on attention assumes that the increase in stimulus 
disappearance for stimuli matching the content of the VWM greatly diminishes as the 
contrast between the stimulus and the background increases, whereas the model based on 
bCFS expects no such interaction between contrast and the content of the VWM. 

 
 
Introduction 
Visual awareness, the visual information we are conscious of, has limited capacity and can 
only represent a small part of the visual information available to us (Dennett, 1993). The fact 
that most information does not enter our awareness means that there must be a selection 
mechanism to allows only the relevant visual information to enter awareness. A possible part 
of this selection mechanism could be the visual working memory (VWM). The VWM is used 
to actively retain relevant information for imminent goal-directed behaviour. Using the 
breaking-continuous flash suppression (bCFS) paradigm, it was shown that information 
matching the content of the VWM is generally prioritized for visual awareness (Gayet, 
Paffen, & Van der Stigchel, 2013). This suggests that VWM plays a role in selecting which 
visual information enters awareness. 
 
Instead of using bCFS, we will be investigating the interaction between VWM and awareness 
using the motion-induced blindness (MIB) paradigm. MIB is a phenomenon of visual 
disappearance in which a global moving pattern is superimposed on high-contrast stationary 
or slowly moving stimuli (generally referred to as ‘targets’). In MIB, the targets are perceived 
to both disappear and reappear alternately for periods of several seconds (see Fig. 1). 
Stimuli that are constantly on the retina and are salient seem to disappear from awareness 
in MIB, which makes this a very relevant phenomenon for research on the topic of 
awareness. 
 



 

 
Fig. 1. An example of a snapshot of a motion-induced blindness trial. In an actual trial, the white 
pattern would be rotating clockwise. The red dots here are the targets and the white dot with a black 
centre in the middle indicates where the fixation point is. While the white pattern rotates during a MIB 
trial, the red dots would appear to disappear and reappear to an observer fixating on the dot in the 
middle of the screen. 
 
Background on motion-induced blindness 
MIB generally occurs when presented with small patterns of slowly moving or stationary 
stimuli (these stimuli are also called ‘targets’), with a global moving pattern (also called a 
‘mask’) superimposed on it. The proportion of time in which the target is perceived to be 
invisible is typically used to measure the strength of MIB, but average disappearance period, 
initial fading time and frequency of disappearances are also used (Bonneh & Donner).  
 
The targets will rarely or never disappear from awareness when fixated upon, but targets as 
close as 1 degree off fixation can already disappear from awareness and will do so more 
often when further away from the fixation point (Bonneh & Donner, 2011).  
Objects that appear to form a group disappear together, but when close together, targets 
that seem to belong to different objects tend to alternately disappear (Bonneh, Cooperman & 
Sagi, 2001).  
Although both slowly moving and stationary targets disappear, static targets seem to 
disappear more often (Bonneh & Donner, 2011).  
Many types of masks (such as the white pattern in Figure 1) can induce the disappearance 
of targets, but masks that use coherent motion are usually most effective (Bonneh & Donner, 
2011). As long as the target is surrounded by the mask, the target can even have an empty 
zone between it and the mask of a few degrees and still disappear (Bonneh et al., 2001).  
 
It is important to note that the more contrast there is in luminance between the background 
and the target, the more the target is perceived to disappear (Bonneh et al., 2001; Bonneh & 
Donner, 2011). Increased luminance contrast between a stimulus and the background also 
increases the salience of that stimulus (Nothdurft, 2000). Since targets with increased 
luminance contrast, meaning they are more salient, are perceived to disappear more in MIB 



than less salient targets, MIB can be used to investigate the effect VWM has on the salience 
of targets. Salient stimuli are generally more likely to enter awareness than non-salient 
stimuli (Yantis, 2005), so by using MIB to investigate the effect of the VWM on salience we 
will gain insight into the effect of the VWM on awareness. 
 
The underlying cause of the MIB phenomenon is still debated. One hypothesis is that MIB is 
caused by retinal stabilization. Images that are stabilized on the retina disappear in a similar 
way to how targets are observed to disappear in MIB (Ditchburn & Ginsborg, 1952). This 
perceived disappearance of stabilized images is thought to occur via adaptation, where 
retinal adaptation would cause fading and consequent disappearance of an image. 
Adaptation could also be the cause for the subjective disappearance of targets in MIB, 
resulting from image stabilization caused by a spontaneous reduction in microsaccades 
induced by the mask. This adaptation would result in fading of the target.  
However, it has been found that the moving mask does not affect the microsaccades in MIB 
(Bonneh, Donner, Sagi, Fried, Cooperman, Heeger & Arieli 2010). While there was a 
reduction in microsaccades prior to the disappearance of a target and an increase in 
microsaccades prior to its reappearance, MIB persisted despite the presence of 
microsaccades (Bonneh et al. 2010). This means that, while microsaccades certainly play a 
role, MIB is likely not caused by retinal stabilization. 
 
Another hypothesis is that MIB reflects spontaneous attention shifts, which dynamics are 
induced by the moving mask (Bonneh et al., 2001). This hypothesis is supported by fMRI 
responses measured in the dorsal and ventral extrastriate cortex during MIB (Donner, Sagi, 
Bonneh & Heeger, 2008). These fMRI responses showed that awareness of a target is 
linked to the strength of its representation in the ventral visual cortex, and that the 
spontaneous suppression of the target representation in MIB was heavily influenced by the 
mask representation in the dorsal visual cortex.  
The mean time that a target is perceived to be invisible can be increased by withdrawing 
attention from the target and mask with a demanding task at the fixation point, but focusing 
attention on the target also increases the time of disappearance and the probability of 
disappearance (Schölvinck & Rees, 2009). Although it is still unclear whether MIB is actually 
caused by spontaneous attention shift, attention at least has a major influence on MIB. 
 
 
 
Research question and hypothesis 
As stated earlier, targets with increased luminance contrast with the background, so more 
salient targets, are perceived to disappear from awareness more than less salient targets in 
MIB (Bonneh et al., 2001; Bonneh & Donner, 2011). Since increased salience leads to an 
increased likelihood of entering awareness (Yantis, 2005), it is possible that targets that are 
more likely to enter awareness are also more likely to disappear from awareness in MIB.  
 
If a colour is held in the visual working memory (VWM), a stimulus matching this colour 
enters visual awareness more quickly than stimuli whose colour does not match the colour 
held in the VWM (Gayet et al., 2013). While this has been tested in the bCFS paradigm, we 
may gain deeper insights into the role of VWM in awareness by using different paradigms 



such as MIB. As such, the present study attempts to answer the question of whether targets 
matching the content of the VWM are more likely to disappear from awareness in MIB than 
targets not matching the content of the VWM. 
As targets with an increased likelihood of entering visual awareness are also more likely to 
disappear from awareness is MIB (Bonneh et al., 2001; Bonneh & Donner, 2011; Yantis, 
2005), and stimuli matching the content of the VWM are more likely to enter visual 
awareness (Gayet et al., 2013), we expect targets matching the content of the VWM to 
disappear from awareness more than targets not matching the content of the VWM. The 
results of this experiment could further illuminate the relation between VWM and visual 
awareness. 
 
Due to current circumstances regarding COVID-19, it is impossible to safely conduct an 
experiment to test our hypothesis. I have added an experimental design section explaining 
the experiment, and my research will focus on simulating the behaviour of participants in the 
experiment. I will create models for the effect we expect content matching with VWM to 
have, and make predictions for the distribution of data that might result from our experiment 
as explained in the experimental design section. By making predictions and models for the 
effect we expect content matching of MIB targets with VWM to have, we will gain a deeper 
understanding of the interaction between awareness and the VWM. Using models, we can 
generalize our knowledge of the effect of VWM and apply this knowledge to different 
experiments and circumstances as well. Having models before our experiment produces 
results also ensures that we are truly blind to any already produced results and are thus free 
from bias. Once our experiment does produce results, we can assess the validity of the 
models and in doing so understand the ways in which the content of the VWM affects 
awareness (or at least understand the ways in which it does not affect awareness, in case 
neither of the models is correct) 
 
Relevance to artificial intelligence 
Only a small part of the available visual information enters our awareness, which means 
there is a selection mechanism by which we filter out all irrelevant information. Such a filter 
makes our processing of visual information very efficient. If we aim to make an AI system 
that processes visual information, it would be best if such a system processed visual 
information efficiently. Since we humans have an efficient selection mechanism, figuring out 
how this mechanism functions in humans could prove invaluable to the creation of an AI that 
efficiently processes visual information.  
 
If we wish to make an AI that is conscious, which is a common goal in AI research, it would 
also be good to ask ourselves what such an AI should be conscious of. If we fail to 
implement a selection mechanism for its visual awareness, its consciousness would be filled 
with irrelevant visual information. We can figure out ways to implement cognitive functions, 
such as the selection mechanism, into systems using human cognition as a model. By 
understanding the role VWM plays in the selection of relevant visual information, we will be 
able to better implement visual selection mechanisms in AI. 
 
 



Method 
 
Design of the experiment 
We plan to include 20 observers, between 18 and 25 years old, both male and female, with 
normal or corrected-to-normal vision. The observers will each have to go through 5 practice 
trials and 60 experimental trials. In a trial, the observer will be shown a colour (a variant of 
either red, green or blue (Fig. 2; see appendix A for an overview of these colours) for 1 
second and will then, after a short interval (1s), be shown a different colour for 1 second. 
After another short interval (1s) the observer will be shown either a ‘1’ or a ‘2’ as a postcue 
to indicate which of these two colours is to be remembered (see Fig. 2). The other colour will 
be referred to as the discarded stimulus. By having the observer remember a certain colour 
we are ensuring that they keep this colour in their VWM.  
 
Next, the observer will have to watch a rotating pattern with three stationary dots (targets) for 
10 seconds. There are three different conditions in this experiment: One in which the colour 
of the remembered stimulus is used for the targets, one in which the colour of the discarded 
stimulus is used for the targets and one in which an unrelated colour is used for the targets.  
The observer will be asked to fixate on the middle of the pattern for the duration of the trial. 
While watching this pattern, the observer has three buttons that have to be used to indicate 
the visual disappearance of one (or more) of the dots. After watching the pattern for 10 
seconds, the observers will be presented with two different hues of the same colour (red, 
green or blue) as the one they were told to remember. The observer will then have to choose 
which of these two corresponds to the colour they were told to remember by pressing one of 
two buttons. After choosing a colour, the next trial can be started by pressing the spacebar. 
 
The experiment will measure the accumulated percentage that one or more target(s) is 
perceived as invisible by the observer. It will be measured for each of the different conditions 
(memorized, unrelated, discarded) and the effect of each condition will then be compared. 



 
 
Fig. 2. Shown here is an example trial. First a screen with “Ready?” will be shown (1). After pressing 
the spacebar, a screen with a random variant of 5 different hues of green, red or blue will be shown 
for one second (2). After an interval of one second, a random variant of 5 different hues of a different 
colour category as the previous colour (again from either red, blue or green) will be shown for one 
second (3). After another interval of one second, a number (either 1 or 2) will be shown to indicate 
which of the previously shown colours has to be remembered (4). After another 1 second interval, the 
observer will have to watch a rotating pattern with 3 stationary targets for 10 seconds (5). These 
targets could be either the discarded, the memorized or an unrelated colour. After a last 1-second 
interval, the observer will be shown 2 hues of the colour they had to memorize, and by using the 
arrow keys indicate which of the 2 is the correct colour (6). The observer will then be asked to press 
space again to start a new trial (7). 

 
 
 
 



Predicting the outcome of the experiment 
Since a stimulus matching the content of the VWM enters visual awareness faster than a 
stimulus not matching the content of the VWM (Gayet et al., 2013), and it is possible that 
such targets are also more likely to disappear in MIB (Bonneh et al., 2001; Bonneh & 
Donner, 2011; Yantis, 2005), we can make predictions on the outcomes of our experiment 
by using models based on the effect of having a stimulus match the content of VWM in 
related visual phenomena. For this purpose, we have constructed two such models for the 
effect of VWM on MIB.  
 
One of the models will be a complex model, which assumes that the effect of having a target 
match the content of the VWM will differ based on the contrast between a target and the 
background. The expectation that the effect of the content of the VWM differs on contrast is 
based on the effect of attention on related visual phenomena, which differs based on the 
contrast between attended stimulus and background (Reynolds & Heeger, 2009).  
The other model will be a simple model, which assumes that the effect of having a target 
match the content of the VWM will be the same across different levels of contrast between a 
target and the background. This model is based on the effect of the content of VWM found in 
bCFS (Gayet et al., 2013).  
We will then use these different models to simulate possible results from the experiment as 
described in the section on the design of the experiment. The data for the condition in which 
the targets do not match the content of the VWM is taken from Bonneh et al. (2001), so our 
models and predictions will be based on their findings. Naturally, the accuracy of the 
predictions will largely depend on how similar the experimental setups are. The most 
important part of these models and predictions is understanding by which mechanism 
content-matching with the VWM operates, and in what ways it could be similar to attention. 
Comparing these models to actual results gathered in the experiment as laid out in the 
experimental design section will prove useful in understanding the relation between 
awareness and the VWM. 
 
The simple model for the expected percentages of invisibility in MIB 
The first model is a simple model in which we assume that there is no specific interaction 
between contrast and matching the VWM content. Perceived disappearance percentage 
generally increases as contrast increases (Bonneh et al., 2001), and this model does not 
expect any changes in the rate of this increase due to the effects of VWM. We only predict, 
in this model, the same increase in disappearance percentage across all contrast levels due 
to the effects of VWM. 
To calculate the effect we expect the VWM to have on MIB, we looked at the effect that 
matching the VWM content has on a related visual phenomenon. Gayet, Paffen, & Van der 
Stigchel (2013) found that, in a breaking-continuous flash suppression experiment, stimuli 
matching the content of VWM break through about 14% faster than similar stimuli not 
matching the VWM content. From this simple assumption of a 14% increase in effectiveness 
when having a stimulus match the content of the VWM, we have constructed a model in 
which the total accumulated invisibility percentage is 14% higher for targets that match the 
content of the VWM than targets that do not match the content of the VWM. Since the 
accumulated invisibility percentage changes based on the contrast, we have plotted this 
simple model over contrast, as seen in Figure 3. The exact model is simply: 



 
Effect VWM on MIB over contrast = Invisibility% without VWM for specific contrast * 1.14 
 
In this case, we are only multiplying the percentage of invisibility of one or more targets by 
1.14, since we assume for this model that there are no other interactions between contrast 
and content-matching with the VWM in MIB. 
 

 
Fig. 3. The different models of the effect of content-matching with the VWM. The accumulated 
percentage of invisibility time for one or more targets is shown the y-axis, and on the x-axis, the target 
luminance contrast is shown on a logarithmic scale. The blue line indicates the results as found in 
Bonneh et al. (2001) for the effect of contrast on MIB. The green line indicates the simple model using 
a flat 14% increase in invisibility percentage. The red line indicates the complex model as described 
earlier, using an attentional model by Herrmann et al. (2010) based on a model by Reynolds & 
Heeger (2009)  
 
The complex model for the expected percentages of invisibility in MIB 
The second model is more complex. Since content-matching with the VWM has an influence 
on the allocation of attention (Downing, 2000), I will assume that the effect of having a target 
match the content of the VWM is similar to the effect of drawing attention to a target for this 
model. We will be able to better understand the effect of VWM on MIB if we can understand 
the effect of attention on MIB and related visual phenomena. After having a solid grasp on 
the similarities and differences between the effects of attention and the VWM, we can use 
our knowledge of the effect of attention on our MIB experiment to predict the effect that 
having the target match the content of the VWM will have.  
 
In the breaking-continuous flash suppression task, on which content-matching has a 
significant effect (Gayet et al., 2013), there has also been research on visual input signalling 
threat (Gayet, Paffen, Belopolsky, Theeuwes & Van der Stigchel, 2016), which is visual input 
that draws attention (Armony & Dolan 2002). We can compare the effects of VWM and 



visual input signalling threat in breaking-continuous flash suppression, and then use an 
attentional model to predict the effect of VWM on MIB and make our own model. The effect 
of threat signalling input in Gayet et al. (2016) was 1498 ms /1822 ms = 0.822, meaning that 
the stimulus broke through 17.8% faster when a stimulus signalled threat compared to a 
stimulus that did not signal threat.  
The effect of content-matching in VWM measured in Gayet et al. (2013), conducted in a 
fairly similar way in which we will test the effect, was an increase in response time of about 
14%. This means that a stimulus matching the content of the VWM broke through about 14% 
faster than a stimulus that did not match the content of the VWM  
 
 
The effects of VWM and attention are very close in their actual values (14% vs 17.8% 
increase in breakthrough time) and indeed a study directly comparing the effects of salience 
(salient stimuli being stimuli that draw attention) and VWM on the breaking-continuous flash 
suppression task (Ding, Paffen, Naber & Van der Stigchel, 2019) found that there is no 
significant difference in breakthrough time between a non-salient stimulus congruent with the 
memory task and a salient-stimulus incongruent with the memory task. The effects of 
content-matching and attention can, therefore, be considered equal, and we will consider 
them equal for the purpose of generating the complex model. Keep in mind, the ‘degree’ in 
which a stimulus is salient can differ and this could influence the relation between attention 
and content-matching, but for this general model, we will assume the relation as stated 
above. 
 
To understand the effect that attention has for different contrast levels, we can look at a 
normalized model of attention. Herrmann, Montaser-Kouhsari, Carrasco & Heeger (2010) 
made four such attentional models, predicting the effect of attention on expected responses 
for varying levels of contrast. The four different models by Herrmann et al. (2010) are models 
for different types of attention (endogenous or exogenous attention) and different attentional 
field and stimulus sizes (a small attention field with a large stimulus or a large attention field 
with a small stimulus). Endogenous attention is when attention is voluntarily directed towards 
a stimulus, and exogenous attention is when attention is automatically drawn towards a 
stimulus. As there is no voluntary decision of the observer to direct their attention to the 
stimuli, since keeping visual information in the VWM will automatically increase the likelihood 
of related stimuli to enter awareness, we will assume the type of attention to be exogenous 
in our MIB experiment.  In the motion-induced blindness experiment, we are dealing with a 
large attention field and a small stimulus. The target stimuli are small dots while the attention 
field is most of the screen in our experimental setup. So to make the complex model, we will 
be using the attentional model for exogenous attention for small stimuli in a large attention 
field.  
 
The attentional model for exogenous attention and a small stimulus in a large attention field 
from Herrmann et al. (2010) was based on a normalized model of attention for neural 
responses by Reynolds & Heeger 2009. The model made by Reynolds & Heeger (2009) is 
αc/(c+σ/γ), where α is the response gain, c is stimulus contrast, σ is contrast gain and γ is 
peak gain. To model the effects of VWM in MIB, we fit the model by Reynolds & Heeger 
(2009) on the data from Herrmann et al. (2010) to determine the correct constants to use for 



an attention experiment. We scaled the contrast gain and peak gain constants up to the MIB 
contrast graph. The resulting model is as follows: 
 
Effect VWM on MIB over contrast = Maximum Invisibility% without VWM * Contrast / 
(Contrast + (14.154295 / Invisibility% without VWM for specific contrast)). 
 
In this model 14.154295 is a constant. The model also fits well on the data for the model by 
Herrmann et al. (2001). The graph resulting from applying the complex model to the data by 
Bonneh et al (2001) can be seen in Figure 3. 

 
 
Results 
 
Expected responses for our experiment based on the models for expected 
invisibility percentage 
In the experiment, we will be measuring the mean invisibility percentage for one or more 
targets and comparing the different conditions. Since we have made models for the condition 
where the content of the VWM matches the target colour, we can make predictions on the 
outcome of the experiment. 
 
The disappearing of targets in MIB seems to follow a gamma distribution (Bonneh & Donner, 
2011), similarly to other multistable perception phenomena, such as binocular rivalry (Blake 
& Logothetis, 2002). The gamma distribution generally uses two parameters, the shape 
parameter and the scale parameter. For the shape parameter, we simply need the upper 
possible limit of our experiment. Since our experiment ranges from 0 to 10 seconds, the 
shape of our distribution is has a value of 10. As we want to measure the percentage of trials 
corresponding to certain accumulated invisibility times, we can use the percentages of 
invisibility from Figure 3 for the scale parameter of the gamma distribution. Since the 
invisibility percentage differs based on contrast, I have made multiple graphs (Fig. 4) 
corresponding to the different contrasts measured in Bonneh et al. (2001).  



 
 
Fig. 4. We have made several predictions on the outcome of the experiment. The total time one or 
more targets will be perceived as invisible is displayed on the x-axis and the percentage of trials 
corresponding to the total time invisible is displayed on the y-axis. We have taken different values for 
the expected percentage of disappearance corresponding to different contrasts, as displayed in 
Figure 3, and constructed the expected responses for these contrasts based on the gamma 
distribution.  
 
 
Using the gamma distribution, we can simulate data that may result from our experiment for 
possible observers (Fig. 5). We built 100 simulations for each condition for each contrast, 
totalling 1200 simulations. The simulated trials were based on the gamma distributions for 
their corresponding models and contrast values as laid out in Figure 4. For the ‘No content 
matching’ condition, we did not discriminate between ‘discarded’ and ‘unrelated’ conditions 
as explained in the method section, as based on the data by Gayet et al (2013) we do not 
expect a significant difference in results between these 2 conditions.  The mean of the 
simulated trials for each condition is shown in Figure 5. The code for these simulations, as 
well as the code for the models and predictions, can be found in appendix B. 
 
 



 
Fig. 5. Here is the average total time invisible for one or more targets for every different memorized 
condition in each of the different contrast conditions. The time invisible is shown on the x-axis and the 
contrast between the target and the background is shown on the y-axis. The three different conditions 
here are the unmemorized condition, the complex condition and the simple condition. The 
unmemorized condition here displays the results for both the discarded and the unrelated conditions 
as discussed in the method section since we expect these to not differ significantly. The simple model 
here shows simulated results we could expect for the memorized condition if the simple model is 
correct, and the complex model here shows the simulated results for the memorized condition if the 
complex model is correct.  
 
Analysis of self-made data 
To get an indication of whether my predictions could be accurate, I have conducted the 
experiment on myself several times and analysed the data. Since it is still unclear whether 
the colours used for the different conditions (mentioned in the experimental design section) 
are sensible, and we currently have no way of measuring the contrast and luminance of 
different colours, for the purposes of this analysis we have disregarded the different VWM 
conditions and only looked at the MIB part of the experiment. See appendix C for the code 
used for this analysis (made in programming language R). As seen in Figure 6, the 
distribution of trial results is somewhat reminiscent of the results predicted in Figure 4. Due 
to the small sample size of this experiment, these results are only used as an indication of 
the validity of the predicted results and have not been tested for significance. We have also 
plotted the mean invisibility percentages for each observer in Figure 7. 
 
 
 
 
 
 
 



 
Fig. 6. I have conducted the experiment on myself several times, and the results of the 50 total trials 
are displayed here. The total time invisible for one or more targets is shown on the x-axis. The 
frequency of the total time invisible for one or more targets over 50 total trials is displayed on the 
y-axis. The mean for all 50 trials is 28.42 and the standard deviation is 17.8601. 
 
 

 
Fig. 7. A graph displaying the mean accumulated invisibility percentage for one or more targets for 5 
different observers. In this case, due to circumstances, I performed the experiment on myself 5 times 
so keep that in mind. The observer number is displayed on the x-axis, and the mean accumulated 
invisibility percentage for each of the observers is shown on the y-axis. The error bars represent the 
standard error of the mean. 
 



Effect of priming on MIB 
We have also investigated whether there is a priming effect in the MIB experiment. Priming 
is a phenomenon where a change happens in the ability to produce or identify an item as a 
result of a specific prior encounter with the item (Schacter & Buckner, 1998). Identifying an 
object happens faster when the object has been seen very recently, and studies show that 
priming makes a stimulus more salient (Theeuwes & Van der Burg (2013). Since more 
salient targets disappear more than less salient targets in MIB, we can expect priming to 
have an effect on our MIB experiment. To test the effect priming has on MIB, we compared 
the different invisibility times for the different ‘positions’ the colour used for the target in MIB 
can have in the memory condition prior to the postcue (see the experimental design section). 
This means there are three different conditions: The colour used for the target in MIB can be 
on the first position before the postcue, the second position before the postcue and finally 
the colour used as target in MIB can be an unrelated colour to the ones shown before the 
postcue. we used data from 50 trials, and all data was gathered by performing the 
experiment on myself (this data is the same as the data used in the previous section).We 
split these 50 trials into the three conditions (first position, second position and unrelated 
colour) and calculated the mean accumulated invisibility percentage for each condition (Fig. 
8). A two-tailed t-test showed a significant effect of priming for the MIB target colour being 
used in the second position, t(33) = 4.33, p < 0.001. No such priming effect was found for the 
MIB target colour being used in the first position. It should be noted that these results are 
only from me performing the experiment on myself, so once circumstances change and we 
can once again run experiments it might be worthwhile to check for priming effects in MIB. If 
there is a priming effect for MIB, we should equally distribute the MIB target colour positions 
across the different VWM conditions. 
 

 
Fig. 8. A graph displaying the effects of priming in MIB. The mean accumulated invisibility percentage 
is displayed on the y-axis, and the different possible conditions for the colour of the target in MIB are 
shown on the x-axis. The error bars represent the 95% confidence interval.  A two-tailed t-test 
indicates a significant priming effect for having the colour used for the targets in MIB be on the second 
position in the VWM task, t(33) = 4.33, p < 0.001. Due to circumstances, there was only one 
participant (me) who performed 50 trials. To be sure of these results there would need to be more 
research conducted on this topic. 



Discussion 
 
If information matches the content of the VWM, its access to awareness is prioritized (Gayet 
et al., 2013). We have investigated two possible ways in which the increased access to 
awareness given to information by having it match the content of the VWM could interact 
with the MIB phenomenon. In an attempt to further illuminate the interaction between the 
VWM and visual awareness, we have made models based on the two possible ways in 
which content matching of the VWM could interact with MIB. One of the models assumed 
content-matching had a similar interaction with MIB as attention would have, and the other 
assumed a flat increase in the mean invisibility time of one or more targets across all 
contrast levels. Since salient targets spend more time on average being invisible (Bonneh et 
al., 2001), understanding the effect of VWM on MIB gives us insight into the ways VWM 
affects awareness because salient stimuli enter our awareness faster (Yantis, 2005). 
 
The simple model, as expected, predicts an increase in perceived invisibility percentage 
across all levels of contrast. The increase in perceived invisibility percentage is about 14%, 
and it remains a constant increase regardless of contrast. The complex model predicts an 
increase in perceived invisibility percentage which diminishes as contrast increases. For the 
lower contrasts, it assumes that matching a target to the content of the VWM will greatly 
increase its perceived invisibility time over a target that does not match the content of the 
VWM. For higher contrasts, however, it expects a negligible difference between the 
perceived invisibility time of targets that match the content of the VWM and targets that do 
not match the content of the VWM. 
 
Since the experiment has not been performed yet, it is still difficult to say if one of these 
models will be correct. If the results of the experiments match the predictions made by the 
models, we will have gained a greater understanding of the mechanisms behind the 
interaction of VWM and visual awareness. There could be a different way in which content 
matching with the VWM interacts with awareness, which we have not modelled. We will then 
still have gained knowledge on the effects of content-matching with the VWM, if only in the 
sense that we would know my models to be false. 
 
It might be worthwhile to run the experiment with different contrast values between the 
targets and the background. If the mechanisms behind content matching with the VWM and 
attention are similar, as we assumed in the complex model, the effect of content matching 
with the VWM will differ across contrast values so by running the experiment for varying 
levels of contrast we can see if the effect of content matching with the VWM indeed varies 
across different levels of contrast. If the results then follow a pattern similar to the predictions 
based on the complex model, we can assume the mechanisms behind content matching 
with the VWM to be similar to the mechanisms behind attention. 
 
If the effect of having a target match the content of the VWM stays the same across contrast 
levels, similar to how the simple model predicts it to behave, we can assume content 
matching to affect awareness in a different way than attention does. It will still confirm that 
having stimuli match the content of the VWM increases the likelihood of such stimuli entering 



awareness since targets more likely to enter awareness disappear from awareness more 
often in MIB (Bonneh et al., 2001; Bonneh & Donner, 2011; Yantis, 2005). 
 
The experiment might show that having a target match the content of the VWM does not 
increase the time it is perceived to be invisible, and it might even reduce the time a target is 
perceived to be invisible. If a target matching the content of the VWM does not show a 
significant increase in perceived invisibility time over targets not matching the content of the 
VWM, this could mean that having a stimulus match the content of the VWM does not affect 
visual awareness. Since content matching has been shown to increase the priority of 
information for conscious access (Gayet et al., 2013), a result in which there seems to be no 
effect of content matching on MIB would raise a lot of questions that would need to be 
answered by more follow up research. 
 
As explained in the results section, there seems to be a significant effect of priming on MIB. 
Since we use the mean accumulated invisibility percentage, we can counteract the effect of 
priming by equally distributing the different colour positions over the different memory 
conditions. Since the experiment only had one participant it would be wise to also test for 
priming in follow up research. 
 
It should also be kept in mind that the predictions as made in the results section (Fig. 2 & 3) 
are based on the data found by Bonneh et al. (2001) for the effect of contrast on MIB. If the 
data for targets not matching the content of the VWM yielded from our experiment differs 
from the data found by Bonneh et al (2001), the predictions as made in the results section 
will naturally also differ from the data our experiment will yield on targets matching the 
content of the VWM. However, we can verify the validity of the models by applying them to 
the data for targets not matching the content of the VWM and comparing the resulting data 
to the actual results for targets matching the content of the VWM yielded by our experiment. 

 
 
Conclusion 
 
We expect stimuli that match the content of the VWM to disappear more in MIB than stimuli 
that do not match the content of the VWM. We have made two models to predict the 
outcomes of a MIB experiment with memory conditions and designed an experiment to 
investigate the validity of these models. Results of such an experiment will greatly improve 
our knowledge on the effect of the VWM on awareness, and depending on the results of the 
suggested follow up experiment we will also have gained insight on how to model the effects 
of VWM in general. Understanding the role VWM plays in the selection of relevant visual 
information will be extremely relevant for the creation of AI systems that process visual data. 
For further research, I suggest conducting the MIB experiment with the VWM conditions as 
designed in the method section once the current situation allows for safe conduction of 
experiments.  
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Appendix A - Colours for the experiment 

 
These are the different variants of green, red and blue that could be used in the 
suggested experiment as described in the design of the experiment. These colours 
were used in the experiment, as programmed by Zoril Olah, which I conducted on 
myself for the analysis of self-made data and the priming effect. 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix B - Code for the Models, Predictions and Simulations in R 
### The code below in R was used in the making of the two models, 
### the predictions using gamma distributions and the models and 
### the simulations based on the predictions 
 
 
options(show.error.locations = TRUE)  
rm(list = ls())  
graphics.off()  
 
setwd ("C:/Users/RDPot/Onedrive/Documenten/KI/Scriptie/r") 
 
library(ggplot2)  
 
# Model for the contrast and the effects of content-matching 
amplitudecontrast <- c(8,20,40,80) 
contrasttable <- data.frame(amplitudecontrast = amplitudecontrast) 
contrasttable $invispercent <- c(18.9,27.4,32.2,35) 
contrasttable $simplemodel <- contrasttable$invispercent * 1.14 
contrasttable $complexmodelv3 <- 35 * amplitudecontrast / (amplitudecontrast + 
(14.154295/contrasttable$invispercent)) 
 
# recreation of attentional model by Hermann et al. 2010 
xpoints <-c(0,10,20,30,40,60,80) 
Hermannmodel <- data.frame(xpoints = xpoints) 
Hermannmodel $redline <- c(0,0.347,1.161,1.798,2.155,2.466,2.585) 
Hermannmodel $blackline <- c(0,0.218,0.855,1.492,1.953,2.425,2.6) 
Hermannmodel $heegermodel2 <- 2.6 * xpoints / (xpoints + (14.154295/Hermannmodel $blackline)) 
 
# values for the three conditions, can be taken from the 'contrasttable' values and are used in several formulas 
below 
# instructions: To see values for different contrasts, simply change the number behind contrastvalue <- X 
# 1 = 8% contrast, 2= 20%, 3 = 40%, 4=80% 
# to verify, just check the contrasttable 
 
contrastvalue <- 4 
unma = contrasttable$invispercent[contrastvalue] / 100 
simp = contrasttable$simplemodel[contrastvalue] /100 
compl = contrasttable$complexmodelv3[contrastvalue] /100  
 
## Prediction table 
xmib <-seq(0,10,0.01) 
MibTable <- data.frame(xmib=xmib) 
# Scale is the % disappearance 
MibTable $gammaunmatch <- (dgamma(x=xmib, shape=10, scale=unma) * 100) 
MibTable $gammacomplex <- (dgamma(x=xmib, shape=10, scale=compl) * 100) 
MibTable $gammasimple <- (dgamma(x=xmib, shape=10, scale=simp) * 100) 
 
### randomtables for the simulations 
MibTable $gammaunmatchrandom <-rgamma(n=xmib,shape=10,scale=unma) 
MibTable $gammasimplerandom <-rgamma(n=xmib,shape=10,scale=simp) 
MibTable $gammacomplexrandom <-rgamma(n=xmib,shape=10,scale=compl) 
 
## table for the columns of randomly generated participants 



 
unmatchavg <- c() 
for (x in c(1:5)) { 
  simuls = mean(sample(MibTable$gammaunmatchrandom, 40)) 
  unmatchavg[x] <- simuls 
} 
simpavg <- c() 
for (x in c(1:5)) { 
  simuls = mean(sample(MibTable$gammasimplerandom, 20)) 
  simpavg[x] <- simuls 
} 
complavg <- c() 
for (x in c(1:5)) { 
  simuls = mean(sample(MibTable$gammacomplexrandom, 20)) 
  complavg[x] <- simuls 
} 
 
participant <- rep(c(1:5),3) 
simulations <- c(unmatchavg,simpavg,complavg) 
condition <- c(rep("Unmemorized",5),rep("Simple",5),rep("Complex",5)) 
simgraph <- data.frame(participant,simulations,condition) 
 
### table for randomly made participants, not devided in groups of 5 this time but for different contrastvalues. 
 
unma8 = contrasttable$invispercent[1] / 100 
simp8 = contrasttable$simplemodel[1] /100 
compl8 = contrasttable$complexmodelv3[1] /100  
unma20 = contrasttable$invispercent[2] / 100 
simp20 = contrasttable$simplemodel[2] /100 
compl20 = contrasttable$complexmodelv3[2] /100  
unma40 = contrasttable$invispercent[3] / 100 
simp40= contrasttable$simplemodel[3] /100 
compl40 = contrasttable$complexmodelv3[3] /100  
unma80 = contrasttable$invispercent[4] / 100 
simp80 = contrasttable$simplemodel[4] /100 
compl80 = contrasttable$complexmodelv3[4] /100 
 
Mixtable <- data.frame(xmib=xmib) 
Mixtable $gunma8  <-rgamma(n=xmib,shape=10,scale=unma8) 
Mixtable $gimp8   <-rgamma(n=xmib,shape=10,scale=simp8) 
Mixtable $gompl8  <-rgamma(n=xmib,shape=10,scale=compl8) 
Mixtable $gunma20 <-rgamma(n=xmib,shape=10,scale=unma20) 
Mixtable $gimp20  <-rgamma(n=xmib,shape=10,scale=simp20) 
Mixtable $gompl20 <-rgamma(n=xmib,shape=10,scale=compl20) 
Mixtable $gunma40 <-rgamma(n=xmib,shape=10,scale=unma40) 
Mixtable $gimp40  <-rgamma(n=xmib,shape=10,scale=simp40) 
Mixtable $gompl40 <-rgamma(n=xmib,shape=10,scale=compl40) 
Mixtable $gunma80 <-rgamma(n=xmib,shape=10,scale=unma80) 
Mixtable $gimp80  <-rgamma(n=xmib,shape=10,scale=simp80) 
Mixtable $gompl80 <-rgamma(n=xmib,shape=10,scale=compl80) 
 
samplors <- c(mean(sample(Mixtable$gunma8, 100)), 
              mean(sample(Mixtable$gimp8, 100)), 
              mean(sample(Mixtable$gompl8, 100)), 



              mean(sample(Mixtable$gunma20, 100)), 
              mean(sample(Mixtable$gimp20, 100)), 
              mean(sample(Mixtable$gompl20, 100)), 
              mean(sample(Mixtable$gunma40, 100)), 
              mean(sample(Mixtable$gimp40, 100)), 
              mean(sample(Mixtable$gompl40, 100)), 
              mean(sample(Mixtable$gunma80, 100)), 
              mean(sample(Mixtable$gimp80, 100)), 
              mean(sample(Mixtable$gompl80, 100))) 
condition2 <- c(rep(c("Unmatched","Simple Model","Complex Model"),4)) 
contrast <- c(rep("8%",3),rep("20%",3),rep("40%",3),rep("80%",3)) 
bigprime <- data.frame(samplors, condition2, contrast) 
 
### Graphs 
 
 
## Expected MIB result graph 
 
Mibbasic <- ggplot(MibTable, aes(x=xmib, y=gammaunmatch, colour= "No Content-Matching")) + 
  geom_line(colour= "blue") + xlab("Time Invisible(seconds)") + ylab("percentage of trials") +  
  ggtitle("Expected responses for 80% amplitude (target contrast)") + ylim(0,70) 
print(Mibbasic) 
 
Mibv2 <- Mibbasic +geom_line(data=MibTable, aes(x=xmib, y=gammasimple, colour="Simple Model"),colour= 
"green") 
print(Mibv2) 
 
Mibv3 <- Mibv2 +geom_line(data=MibTable, aes(x=xmib, y=gammacomplex, colour="Complex Model"), colour= 
"red") 
print(Mibv3) 
 
 
## Contrast compared with attention Models graph 
 
conplot <- ggplot(contrasttable, aes(x=amplitudecontrast, y=invispercent, log= "x",colour= "Bonneh et al. 2001")) 
+ 
  geom_line(colour= "blue") + scale_x_log10(name="Amplitude(%)",limits=c(8,100)) + 
  geom_line(aes(x=amplitudecontrast, y=simplemodel, colour="Simple Model"),colour = "green") + 
  geom_line(aes(x=amplitudecontrast, y=complexmodelv3, colour="Complex Model"),colour = "red") + 
  ylab("Invisibility Percentage") + ggtitle("Content-matching Models") + 
  ylim(10,45) 
 print(conplot) 
 
 #  Below is the same code as above, but with a normal scale instead of a logarithmic one. remove the comment 
signs '#' to run it 
 #conplot <- ggplot(contrasttable, aes(x=amplitudecontrast, y=invispercent, colour= "Bonneh et al. 2001")) + 
  # geom_line(colour= "blue") +  
  # geom_line(aes(x=amplitudecontrast, y=simplemodel, colour="Simple Model"),colour = "green") + 
  # geom_line(aes(x=amplitudecontrast, y=complexmodelv3, colour="Complex Model"),colour = "red")+ 
#   xlab("Amplitude(%)") + ylab("Invisibility Percentage") + ggtitle("Content-matching Models") + 
 #  ylim(10,45) +xlim(0,100) 
# print(conplot) 
  
## Columns 



 
# For these graphs I took the generated data from the simulations and multiplied it by 10 to get a percentage, 
# I generated total time out of 10 seconds so by multiplying by 10 we get the percentage 
 
# this graph displays 5 different participant simulations for 1 contrast value 
simres <- ggplot(simgraph, aes(participant,simulations*10)) + geom_bar(stat = "identity", aes(fill = condition), 
position = "dodge") + 
  ylab("Mean Accumulated Invisibility Percentage") + xlab("Observer") + ggtitle("Mean Accumulated Invisibility 
Percentage For One Or More Targets Per Observer For Different Levels Of Amplitude In Contrast") 
print(simres) 
 
#this graph displays only the averages for the conditions of 1 simulated participant 
simres2 <- ggplot(bigprime, aes(contrast, samplors*10)) + geom_bar(stat = "identity", aes(fill = condition2), 
position = "dodge") + 
  ylab("Mean Accumulated Invisibility Percentage") + xlab("Amplitude (%)") + ggtitle("Mean Accumulated 
Invisibility Percentage For One Or More Targets For Different Levels Of Amplitude In Contrast") 
print(simres2) 
 
## Hermann et al. attentional model in a graph 
# used for visual verification of the model 
herplot <- ggplot(Hermannmodel, aes(x= xpoints, y=redline, colour= "attentional influence")) + 
  geom_line() + xlab("Amplitude%") + ylab("Perormance") + ggtitle("Attentional model") + 
  ylim(-1,4) +xlim(0,100) 
print(herplot) 
 
herplotv2 <- herplot +geom_line(data=Hermannmodel, aes(x=xpoints, y=blackline, colour="No attentional 
influence")) 
print(herplotv2) 
 
 
herplotv3 <- herplotv2 +geom_line(data=Hermannmodel, aes(x=xpoints, y=heegermodel2, colour="No attentional 
influence")) 
print(herplotv3) 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 



Appendix C - Code for the Analysis of Data and Priming Effect in R 
### The code below in R is intended as a script to analyse data from actual participants. 
### Sadly due to circumstances the different memory conditions have not been included,  
### but it does analyse data from the MIB part of the experiment. Comments are indicated by #. 
 
options(show.error.locations = TRUE)  
rm(list = ls())  
graphics.off()  
 
### Set working directory to the place where the data is saved, that way you can load the data into this script 
setwd ("C:/Users/RDPot/Onedrive/Documenten/KI/Scriptie/testdata") 
 
#libraries used for the analysis, these packages are required to execute the code. 
library(ggplot2) 
library(R.matlab) 
 
 
 
## below is the function 'SummarySE', which is used for calculating confidence interval, standard error and  
## standard deviation 
###### SummarySE function taken from http://www.cookbook-r.com/Manipulating_data/Summarizing_data/ 
###### 
summarySE <- function(data=NULL, measurevar, groupvars=NULL, na.rm=FALSE, 
                      conf.interval=.95, .drop=TRUE) { 
  library(plyr) 
 
  length2 <- function (x, na.rm=FALSE) { 
    if (na.rm) sum(!is.na(x)) 
    else       length(x) 
  } 
  datac <- ddply(data, groupvars, .drop=.drop, 
                 .fun = function(xx, col) { 
                   c(N    = length2(xx[[col]], na.rm=na.rm), 
                     mean = mean   (xx[[col]], na.rm=na.rm), 
                     sd   = sd     (xx[[col]], na.rm=na.rm) 
                   ) 
                 }, 
                 measurevar 
  ) 
  datac <- rename(datac, c("mean" = measurevar)) 
  datac$se <- datac$sd / sqrt(datac$N)  # Calculate standard error of the mean 
  ciMult <- qt(conf.interval/2 + .5, datac$N-1) 
  datac$ci <- datac$se * ciMult 
  return(datac) 
} 
##### End of SummarySE function ##### 
 
 
 
### Section 1: Data 
## To load in a participant's datafile, simply place the data in the working directory  
## and add its path behind readMat 
 
# These are the responses to the experiment 



 
responsesettings1 <- readMat("C:/Users/RDPot/OneDrive/Documenten/KI/Scriptie/testdata//test01-results.mat") 
responses1 <- responsesettings1$exp.responses 
responsesettings2 <- readMat("C:/Users/RDPot/OneDrive/Documenten/KI/Scriptie/testdata//test02-results.mat") 
responses2 <- responsesettings2$exp.responses 
responsesettings3 <- readMat("C:/Users/RDPot/OneDrive/Documenten/KI/Scriptie/testdata//test03-results.mat") 
responses3 <- responsesettings3$exp.responses 
responsesettings4 <- readMat("C:/Users/RDPot/OneDrive/Documenten/KI/Scriptie/testdata//test04-results.mat") 
responses4 <- responsesettings4$exp.responses 
responsesettings5 <- readMat("C:/Users/RDPot/OneDrive/Documenten/KI/Scriptie/testdata//test05-results.mat") 
responses5 <- responsesettings5$exp.responses 
 
#Below is the table for checking for the effect of priming 
 
matched1 <- c() 
matched2 <- c() 
unrelated <- c() 
settings1 <- responsesettings1$exp.conditions 
settings2 <- responsesettings2$exp.conditions 
settings3 <- responsesettings3$exp.conditions 
settings4 <- responsesettings4$exp.conditions 
settings5 <- responsesettings5$exp.conditions 
tablecounter1 <- 1 
tablecounter2 <- 1 
tablecounter3 <- 1 
#the part of the table for the first observant 
for (x in c(1:10)) { 
  if (settings1[3,x] == settings1[1,x]) { 
    matched1[tablecounter1] = responses1[7,x] 
    tablecounter1 <- tablecounter1 + 1 
  } 
  else if (settings1[3,x] == settings1[2,x]) { 
    matched2[tablecounter2] = responses1[7,x] 
    tablecounter2 <- tablecounter2 + 1 
  } 
  else { 
    unrelated[tablecounter3] = responses1[7,x] 
    tablecounter3 <- tablecounter3 + 1 
  } 
} 
#the part of the table for the second observant 
for (x in c(1:10)) { 
  if (settings2[3,x] == settings2[1,x]) { 
    matched1[tablecounter1] = responses2[7,x] 
    tablecounter1 <- tablecounter1 + 1 
  } 
  else if (settings2[3,x] == settings2[2,x]) { 
    matched2[tablecounter2] = responses2[7,x] 
    tablecounter2 <- tablecounter2 + 1 
  } 
  else { 
    unrelated[tablecounter3] = responses2[7,x] 
    tablecounter3 <- tablecounter3 + 1 
  } 



} 
#the part of the table for the third observant 
for (x in c(1:10)) { 
  if (settings3[3,x] == settings3[1,x]) { 
    matched1[tablecounter1] = responses3[7,x] 
    tablecounter1 <- tablecounter1 + 1 
  } 
  else if (settings3[3,x] == settings3[2,x]) { 
    matched2[tablecounter2] = responses3[7,x] 
    tablecounter2 <- tablecounter2 + 1 
  } 
  else { 
    unrelated[tablecounter3] = responses3[7,x] 
    tablecounter3 <- tablecounter3 + 1 
  } 
} 
#the part of the table for the fourth observant 
for (x in c(1:10)) { 
  if (settings4[3,x] == settings4[1,x]) { 
    matched1[tablecounter1] = responses4[7,x] 
    tablecounter1 <- tablecounter1 + 1 
  } 
  else if (settings4[3,x] == settings4[2,x]) { 
    matched2[tablecounter2] = responses4[7,x] 
    tablecounter2 <- tablecounter2 + 1 
  } 
  else { 
    unrelated[tablecounter3] = responses4[7,x] 
    tablecounter3 <- tablecounter3 + 1 
  } 
} 
#the part of the table for the fifth observant 
for (x in c(1:10)) { 
  if (settings5[3,x] == settings5[1,x]) { 
    matched1[tablecounter1] = responses5[7,x] 
    tablecounter1 <- tablecounter1 + 1 
  } 
  else if (settings5[3,x] == settings5[2,x]) { 
    matched2[tablecounter2] = responses5[7,x] 
    tablecounter2 <- tablecounter2 + 1 
  } 
  else { 
    unrelated[tablecounter3] = responses5[7,x] 
    tablecounter3 <- tablecounter3 + 1 
  } 
} 
# the mean invisibility time for all conditions 
meanmatched1 <- mean(matched1) 
meanmatched2 <- mean(matched2) 
meanunrelated <- mean(unrelated) 
# now we make a data frame for the priming effect results, so we can make a graph out of it. 
 
colorder <- c('First Position','Second Positiion','Unrelated Colour') 
resultsprime <- c(meanmatched1,meanmatched2,meanunrelated) 



primingtable <- data.frame(colorder,resultsprime) 
 
posiSE <- c(rep('1',length(matched1)),rep('2',length(matched2)),rep('3',length(unrelated))) 
posisoSE <- c(matched1,matched2,unrelated) 
primingSE <- data.frame(posiSE,posisoSE) 
primese <- summarySE(primingSE,measurevar = "posisoSE", groupvars = "posiSE") 
 
## We tested the data on 10 trials per participant, if there are more trials in an experiment simply 
## change the numbers from 1:X and scale the invispercents accordingly 
 
invispercents <- NA 
invispercents[1:10] <- responses1[7,1:10] 
invispercents[11:20] <- responses2[7,1:10] 
invispercents[21:30] <- responses3[7,1:10] 
invispercents[31:40] <- responses4[7,1:10] 
invispercents[41:50] <- responses5[7,1:10] 
meaninvispercents <- c(mean(responses1[7,1:10]),mean(responses2[7,1:10]), mean(responses3[7,1:10]), 
mean(responses4[7,1:10]), mean(responses5[7,1:10]))  
 
participantSE <- c(rep('1',10),rep('2',10),rep('3',10),rep('4',10),rep('5',10)) 
invispercentsSE <- data.frame(participantSE,invispercents) 
invisSE <- summarySE(invispercentsSE, measurevar="invispercents", groupvars = "participantSE") 
 
 
 
 
### Section 2: Graphs 
 
## A histogram representing the actual results of all the trials 
hist((invispercents/10),main="Histogram of Trial Results",xlab = "Total time invisible (s)",col="grey",xlim = c(0,10)) 
 
## A graph of the results for each participant, due to circumstances I am all 5 participants myself, 
## but for purposes of this specific graph I assumed these were 5 different participants 
participant <-c(1:5) 
results <- data.frame(meaninvispercents,participant) 
resultgraph <- ggplot(results, aes(participant,meaninvispercents)) + geom_bar(stat = "identity") + 
  ylab("Mean Accumulated Invisibility Percentage") + xlab("Participant") + ggtitle("Mean Accumulated Invisibility 
Percentage For One or More Targets Per Participant") + 
  geom_errorbar(aes(ymin=meaninvispercents-invisSE$se,ymax=meaninvispercents+invisSE$se) , width=.1) 
print(resultgraph) 
 
# The graph for the effect of priming 
priminggraph <- ggplot(primingtable, aes(colorder,resultsprime)) + geom_bar(stat = "identity", position = "dodge") 
+ 
  ylab("Mean Accumulated Invisibility Percentage") + xlab("Position of the Colour") + ggtitle("Effect of Priming in 
MIB") + 
  geom_errorbar(aes(ymin=resultsprime-primese$ci,ymax=resultsprime+primese$ci, width = .1)) 
print(priminggraph) 
 
 
 


