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1 Introduction

Even since before the dawn of computers people have been trying to have machines play
human games. While the most famous example would be chess, computer researchers
have also been diligently at work on creating AI for card games in the past thirty years.
In my research, I’ll be building an AI to play the card game Spades. In this paper, we’ll
first discuss my main research question, some background information on Spades, and
AI for card games. We’ll then continue with selecting a fitting approach, its place in the
field of AI, followed by the methods used. After that, we’ll interpret the results, discuss
them, and close off with a general conclusion to the questions discussed next.

My main research question will be whether or not a neural network can be trained
to play Spades at a human level. I’ll also be looking into the sort of architecture that
can be used for such an AI, but that will be discussed in the methods section (2).

1.1 The game of Spades

Spades is a 1930s card game from the Whist family of trick-taking card games, also
including games like Bridge and Hearths. It is most often played with four players (for
our purposes not in teams), who start a round by getting dealt thirteen cards each, after
which they bid on how many tricks they think they’ll be able to take. If you make your
bid, you get points out of it. Like with other trick-taking games, a trick is taken by
playing the highest card of the colour played by the first player in the trick. Unlike its
familial games however, spades always trump. Hence the game’s name. A more detailed
set of rules is provided in Appendix A.

1.2 Card game AIs

Over the last thirty years many card game playing AIs have emerged, using techniques
such as planning algorithms, Bayesian learning, Monte Carlo tree search (MCTS), and
neural networks.
The most played card game in the world is the trick-taking game of Bridge. It’s not
surprising then that most card-game AIs have something to do with Bridge. In 1998
AI planning took the Bridge community by storm as it won the world championship in
computer Bridge (Smith, Nau, & Throop, 1998), emulating the human way of planning
rather than relying on tree search. Since then tree search has made a resurgence, with
MCTS now being the most reliable way of getting high level play (Russell & Norvig,
2016; Whitehouse, Powley, & Cowling, 2011). We also find MCTS in Poker (Rubin &
Watson, 2011), and here we also find a different technique, using Bayesian networks
(Heiberg, 2013), and while this latter AI played a good game, it wasn’t quite up to
par with human players. Finally the most AI-like way – in my opinion, because this
one’s really learning – of tackling this problem is with neural networks. However, such a
thing hasn’t yet been done outside of the double-dummy Bridge problem (Mossakowski
& Mańdziuk, 2004; Dharmalingam & Amalraj, 2013), which is a dumbed down version
of Bridge with perfect information.
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1.3 Selecting an AI for Spades

Of course all methods discussed have merit in creating an AI for Spades. To find a
method that can hold it’s own against human players however, we’ll need to look at
AIs that are able to grapple with the nuances of an entire round of Spades from start
to finish. Bayesian networks may be able to give us that, but runs into a problem of
complexity. In the Poker paper, the game is therefore abstracted to make the Bayesian
network more manageable. Poker is the perfect game for this, as any combination of
cards already has a decided category to fall into (the different Poker outcomes). This
isn’t the case for Spades however, and while abstraction isn’t strictly necessary, it would
be too complex to not use abstraction: thirteen random cards in the starting hand, any
combination of thirteen card in the each opponent’s hand, and up to four cards on the
table. A Bayesian network would consist of a directed graph with nodes for all these
cards, and arcs connecting them; most importantly, for every node a set of probability
distributions would need to be specified whose size is exponential in the number of
parents of the node.

MCTS has proven itself time and time again for a variety of card games, however it
falls apart for Spades due to the way the game is set up. The game only evaluates moves
at the end of a round, when the tricks are evaluated. This doesn’t necessarily have to
be a problem, if we just try and maximize the tricks taken overall. However, this would
require us assigning some arbitrary value to taking a trick, which would be tricky, and
still does nothing to address the size of the search tree, which is massive: 52! ' 8.06e67
nodes.

Neural networks luckily don’t run into the same problems as Bayesian networks or
MCTS. Where they do struggle however, is in the field of training data. Where Bayesian
networks don’t really train, and MCTS uses simulation, a neural network is often trained
using supervised learning. This however is impossible, as that would require us modelling
example data for games to test the neural network against (and if we manage that, we
wouldn’t need an AI to play it for us because we’d already know how to play the game
in the best possible way). Instead we’ll have to look into unsupervised learning. A great
example for a game that manages this with success is checkers (Chellapilla & Fogel,
1999). Here, a neural network is initialized with a set structure and random weight
values. A couple of different neural networks then go head to head, and their success
in winning the game determines their fitness, which is then used by a evolutionary
algorithm, to evolve the weights.
This is also the method I’ll be using for the Spades AI.

1.4 The place in the AI field

As discussed before, game-playing AI are nothing new. The goal of these approaches
has always either been to beat humans (and other AI) as thoroughly as possible, or to
emulate human play. And whilst neither neural networks, evolutionary programming,
nor card games, should be seen as the cutting edge of AI, I feel that I’ve struck a unique
balance between the three. Using the combination for a card game hasn’t really been
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done as far as I’m aware, and even the checkers AI was operating on perfect information.
This is an important difference, because this means the AI (or a human player) has access
to more information to make choices with. In a card game however, you can’t know what
cards your opponents have, which requires you to make some informed decisions about
the risks you might run into playing certain cards.

2 Methods

2.1 Preliminaries

Before we get into the details of the experiment, we first take a look at the techniques
used in finer detail.

2.1.1 Artificial Neural Networks

The main idea of a neural network is to emulate the human brain, by creating a network
of (neural) nodes feeding information from an input to an output. Each node may have
an activation function, which transforms its input, and a weight associated with each of
its outputs. The neural networks are generally divided into layers, each of which take
the output of the previous layer as input, and in turn then output to the next layer. A
neural network consists of three different kinds of layers, a single input layer, a single
output layer, and any number of hidden layers in between them. And whilst the size
of the input and output layers is generally set by the problem one’s trying to solve,
the size and number of hidden layers can vary. However, the number of hidden layers
is generally limited to one or two, as any continuous mathematical functions can be
mapped by a neural network with one hidden layer, and almost any arbitrary decision
can be mapped by network with two hidden layers (Heathon, 2008). The number of
nodes in a hidden layer is also a contentious issue, and differs from problem to problem.
If you have too many, you’ll find many nodes will not be useful and just slow down your
network. If you have too few, the neural network might have a hard time finding an
effective configuration.

This configuration is found by training a neural network. This is generally done
supervised, meaning that the output data of a neural network on some set input data is
tested against output data that’s known to be right. I’ll be using unsupervised learning
however, because we have no correct output data to test against playing a game of cards.
To do this we’ll use the next method: evolutionary programming.

For our experiment we’ll be using one of the most simple set-ups for neural networks,
a feed-forward neural network. In this set-up, all the information flows in one direction,
layer per layer. We’ll also be using two hidden layers, because of the reason discussed
before. Our set-up will also be fully connected, meaning that each node of some layer
l is connected to each node of layer l + 1. Finally, we’ll also be using a tanh activation
function on all our hidden layer and output layer nodes. This way we can ensure our
result falls comfortably between −1 and 1.
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2.1.2 Evolutionary Programming

Evolutionary programming is one of the four main evolutionary algorithms, who mimic
evolutionary processes to iterative select and create better and better systems (like neural
networks) for solving a problem. In evolutionary programming, the structure of such a
system is already set, and only numeric variables are changed. In our case this means
that the structure of the neural network is already determined, but we’ll be changing
up the weights of the outgoing connections of each node. To be more specific, the
evolutionary processes mimicked are reproduction and mutation.

Reproduction is the algorithm creating a new configuration out of two (or more)
older configurations. In this case we do this by recombination, where we fill a list of
weights by choosing the weight of some index randomly from either ‘parent’. This way
we create a neural network that has hopefully inherited some of the better features from
both parents.

Finally, mutation is changing a random number of weights with random values. This
way we ensure we insert fresh ‘insight’ into the gene-pool, and we won’t get stuck with
clones of just the best performing neural network from the first generation. Setting a
value for mutation high at the beginning ensures high exploration of possibilities. Then
slowly decreasing it over time can assure that the best choices stick around for longer.

2.2 Simplification

Now, before we start with the neural networks, we first need to make a couple of sim-
plifications to the main rule set of Spades. These simplifications concern the bidding
phase, namely that we’ll ignore the phase (and bidding) entirely. If we want an AI that
can play Spades as good as possible, we don’t need to do bidding. To win the game, you
need to be able to make the most bids as possible. This means that for each individual
round we can just focus on making as many tricks as possible. If desired, one can always
make an AI afterwards – that predicts the number of tricks made, using the player’s
hand as input – to do the bidding. I’ve also decided against having the neural networks
learn the rules, instead we’ll just select the highest scoring card that is in compliance
with the rules. This is mainly because it’d mean the AIs would first need to learn the
rules before they can really start getting better. This is extremely costly, but more
importantly might also ingrain certain patterns into a neural network that make it hard
for it to change up it’s play-style, because it might need to go through a rule-breaking
phase before finding a new strategy that’s also compliant with the rules. We instead
entrust the evolutionary part of the training to pre-select AIs that prefer playing by the
rules, as they – intuitively – will be better at playing cards that are able to take a trick.
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2.3 Architectures

The neural networks that’ll train up for Spades will fall in one of two architectures. Both
networks will have two hidden layers, but will have different input and output vectors.
The first architecture uses the entire deck as its input vector. This architecture is named
‘card-based’, as for each of the 52 cards three input nodes exists, and one output node.
During the game, each of these 52 cards will be in one of three locations: in the hand of
the (AI) player, on the table, in the hand of an opponent, or it’s already been played.
Each card will get a categorical input representing its position in the game. This is
encoded using one-hot encoding, where one of three input nodes is set to one (and the
other two to zero) to represent the position being either in the hand of the player, on
the table, or played previously. All three of them are set to zero if the card has yet
to appear. The output vector is a vector of 52 nodes with a value between −1 and 1
representing each card. The card represented by the node with the highest value will
be played, provided that it’s in accordance to the rules. If it’d break the rules, we just
continue to the next highest valued card.

The second neural network has its input vector divided into three sections, and is
named ‘hand-based’. The first part will represent the hand of the AI player, which is
at most thirteen cards. This part is 65 nodes long, because each card is represented by
five nodes. The first node of each card represents the card’s rank, and it’s value is just a
number with one for a card with rank two and thirteen for an ace. The next four nodes
are a one-hot encoding of the card’s suit. With each node representing one suit (in our
case in the order of: clubs, hearths, spades, diamonds). Whenever a card is played from
the hand it is replaced by a zero value in this vector. The following fifteen nodes (=
three cards) represent the other players’ plays. At most three players have gone before
you in a single trick, so hence fifteen nodes. Finally we leave a space of 240 nodes (= 48
cards) to be filled up with the cards that have been played in previous tricks. The last
trick of a round will never make it here, because after it’s played the round ends.
The output vector consists of thirteen nodes, representing the thirteen cards in the
hand of the player (in the order they were in at the start of the round). Again, the
card represented by the node with the highest value (between −1 and 1) gets played,
provided that it’s in accordance to the rules.

For both designs we use a rule of thumb for deciding the amount of nodes in the
hidden layers, to be precise:

2

3
(|input|) + |output|

This means we take two thirds of the of the lengths of the input vector and add the
length of the output vector (Heathon, 2008). This results in 156 and 266 nodes for the
card-based and hand-based architectures respectively.

Finally, an example of a diagram of both neural networks can be found in figures 1
and 2.
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Figure 1: Card-based neural network

Figure 2: Hand-based neural network
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2.4 Evolutionary Programming

To train up our neural networks we use evolutionary programming (Fogel & Fogel, 1995;
Eiben, Smith, et al., 2003), where we use evolutionary processes to evolve the weights
between nodes in the neural network. To start off we generate a generation of neural
networks (in one of the two architectures discussed earlier), initialized with random
weights for each connection. We then make the members of this generation go head
to head in a couple games of Spades. (We did fifteen games of four rounds each, for
randomly generated groups of four). We then look at the performance of each member
over all these games, and determine their ‘fitness.’

I decided on two ways of determining the fitness of a member. The first ‘simple
fitness’ method, just looks at the amount of tricks made. Each trick made counts as one
point to it’s total fitness.
The second ‘advanced fitness’ method, looks at the card the member used for making
each trick it made. Cards that are higher ranked have lower scores, because they are
beaten by fewer cards, and thus have an easier time making tricks. (The probabilities
and a complete score table can be found in Appendix B). Throughout training, only
one of the two fitness measures is used, thus separating our results into two categories:
using simple fitness and using advanced fitness.

Next, we use this fitness information to create a new generation. This is done by
reproduction through recombination. Since all networks of an architecture are the same
in shape, we can safely recombine the weights of two well-performing ‘parents’ into a
new ‘child’ network. The top 50% of a generation are selected for parenthood of the
next generation. These parents each recombine with another (randomly chosen) parent
of this group, and thus create one child per parent. The next generation is then made
up of all these parents, and their children. The generation stays of the same size, only
now containing 50% new members, and 50% members from older generations. This also
means that well performing members may stick around for multiple following generations.

A second step in the evolution process is mutation. After a new generation is created
by parent selection and recombination, there’s a chance m for each member of the
generation it will mutate. Mutating a member of a generation means that for each
weight of that member’s network there’s a m/2 chance to be replaced by a random value
between −1 and 1 (at which all weights are clamped). We do this to make sure not too
many changes are made, without fixing the mutation parameter in this stage. Since we
rely on mutation to get new networks (and strategies), this factor m starts of at 80%
and then decreases to 20% (Castillo et al., 2003). This way we trade in exploration for
exploitation over time.
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2.5 Other details

With two architectures and two fitness functions, we have ourselves four categories to
test. To make sure we see enough of each of these categories both were tested for 200
generations. However, we also keep track of the neural network with the highest fitness
so far, and if we find a new one, we search for 200 more rounds from it’s conception.
This way we make sure every strain of neural network – but also it’s descendants – has
a chance to succeed. Furthermore, to put our networks to the test somewhat decently,
each generation is tested on fifteen games of four rounds each. Each game is played in a
different group of four randomly selected members of the generation. Also, we generate
four starting hands per game, to be used by all groups and then cycle these hands around
during the four rounds, so every network gets a fair shot.

3 Results

Before we can discuss the results in Table 1, we must first talk about how to interpret
them. We can compare our neural networks to a hypothetical arbitrary player that would
play a random card on each trick. Provided it plays only against other arbitrary players,
we can expect it’d take 25% of tricks in the long run. This means that as the number
of rounds approaches infinity, the average number of tricks taken per round approaches
25% or 3.25. We call this the average tricks per round, or ATpR for short. It should
also be noted that true arbitrary play is impossible due to the rules limiting the cards
eligible for play, but this doesn’t influence the average number of tricks per rounds as
the number of rounds approaches infinity.

Simple Fitness Advanced Fitness
Generation Tricks ATpR Generation Tricks ATpR Fitness

Card-based 18 234 3.9 94 224 3.73 13339
Hand-based 140 231 3.85 62 226 3.77 13487

Table 1: Neural network results with the highest fitness

In Table 1 we see the best performing neural networks (by their fitness). It shows
their fitness function, their architecture, the generation they were conceived in, the
number of tricks they took, and their ATpR. The advanced fitness group also shows the
actual fitness value (which for the simple fitness is equal to the number of tricks taken).
It’s also important to note that the advanced fitness value of an arbitrary player would
be 12090 over the 780 tricks1.

We see that the best performing network was the card-based network using the
simple fitness function, but we can also see that it’s performance isn’t that spectacular
in comparison to the other three networks. In fact, there doesn’t seem any pattern as

1This is calculated by taking the average fitness of each card assuming the arbitrary player will lead
25% of tricks (= 62), and multiplying this by 25% of the total of 780 tricks: 62 · 0.25 · 780 = 12090
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to a better performing architecture or fitness function, and if there were, the differences
would be too small to make any meaningful statement on it.

So let’s compare this (card-based simple fitness) network with an arbitrary player
then. First we need to make an extra assumption concerning the chance to take a trick.
We already made this assumption for the arbitrary player described earlier, but we say
it is 25%. This is only true if the four players are of equal skill and as the number of
rounds played approaches infinity. We’ll go into the caveats of this assumption later on.

We can now create a normal distribution, with µ = 3.25 and σ = 1.5612, details on
which can be found in Appendix C. Now, we’d want to know at what probability our
arbitrary player would generate a result of 3.9 (our best ATpR) or better. We can do
this with the cumulative distribution function Φ on our generated normal distribution
(which would be the same as a Z-test). We find that Φ(3.9) ≈ 0.661, so there’s a
1−Φ(3.9) ≈ 0.339 chance an arbitrary player would play at least this well. This means
we can’t decisively say using statistics whether or not our neural network is performing
better than an arbitrary player, at least not with a confidence interval bigger than 33.9%.

There are a couple caveats to this conclusion however, starting with the one way laid
out when describing an arbitrary player. In truth, no arbitrary player exists, because
the rules forbid any player from just playing any card at random. There will always
be structure to any amount random play. And while it’s true that players with equal
skill will trend to a trick-taking rate of 25% per round, this will only happen after many
games (as the number of rounds approaches infinity).
Which brings us straight onto our second caveat: we didn’t play an infinite amount of
rounds. In fact, our neural networks only got sixty rounds to prove themselves, which
means their performance might either be higher or lower than their real average would
be. Which finally, is also the cause of our third caveat: even an arbitrary player won’t
make 25% of tricks in a round, because their chances of taking a trick are influenced by
the cards they got handed. In fact, looking at Table 2 and 3 in Appendix B, we see that
there exists a large variance of trick-taking chances between cards. This also skews the
results on scale of only sixty rounds (which – again – would average out to 25% as the
number of rounds approach infinity).
These three caveats taken together mean that we have to take the results with a grain
of salt. While doing a finer calculation would get to complicated for the scope of this
thesis, it’s good to be aware of this.

9



4 General Discussion

In our results, we discuss how our best neural network only plays better than a random
player about two thirds of the time, under a couple caveats. There’s however one more
caveat worth discussing here, which is an inherit caveat due to the game’s rules. Namely
that every trick needs to be taken. This means that if you have some bad cards, but
you’re opponents cards are worse, you might still take a trick with those bad cards. In
the land of the blind, the one-eyed man is king. In a real game (with bidding) this can
lead to a lot of frustration and some interesting strategies, like letting a trick you bid
on go to have someone else – who didn’t bid on it – pick it up instead (and end up with
more tricks than they bid on). However, for the purposes of our neural networks this
becomes a limiting factor in how well we can assess the skill of our networks. Because
the networks also play with a randomly generated hand, they’ll be forced to give some
tricks away just because they don’t have the cards to take them. This means that neural
networks have a harder time distinguishing themselves, and might cause difficulty for
the evolutionary algorithm to separate the good from the lucky neural networks.

What is much harder expressed in numbers, is how the AI stands up to human play.
It does reasonably well at it’s goal, maximizing the number of tricks, but does so in an a
seemingly inhuman way. However, there does seem to be some nuance to the play of the
neural networks, mainly in what tricks they take. The neural networks seem to prefer
taking unlikely tricks, or save their high cards for later, something you wouldn’t expect
a human to do, because it can put tricks – that otherwise have a high chance of being
taken – at risk2. This might be an effect of training, or this might indicate incapability,
as again it’s hard to distinguishing the networks’ trained behaviour from that of pure
luck.

In a real game much more of the final score hinges on whether a player can make their
bid or not, which of course is completely absent from this simulation. This is important
to note, because this also rewards players for bidding on and making zero tricks, and
creates variety in more aggressive and more conservative strategies. Because we train
our neural networks on winning as many tricks as possible, we’re actually only training
it on the most aggressive strategy possible. If this weren’t the case, an AI that can take
3.9 tricks against three other players of equal skill, is actually a very strong player. In
the long run this means the AI will outrun the other players in score. However if it
only takes two tricks for every three tricks of each other player, it will only score 20%
or 2.6 tricks per round, which means it’ll lose in the long run. This is unfortunately
what seems to be going on, which also shows that the networks are perhaps only on a
beginner level of Spades in their performance.

Perhaps changing the architectures around more, or finding a way to include the
bidding phase will lead to more interesting results. A possible change to the architecture
could be including the likelihoods of winning with each card in the input vector, or
creating a direct connection between the cards in the input vector to the last layer,

2This is because cards played earlier have a lower chance of being trumped, because all players
generally have three or four cards of each colour.
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in the hopes of creating a more solid link between the cards and the output. Whilst
better ways of creating an AI for card games are known, we shouldn’t count out the
neural network just yet, nor should we discount evolutionary systems. There’s still lots
to experiment with.

5 Conclusion

To our main question – whether or not an evolved neural network is suitable for creating
a Spades AI – we might just simply answer no. The results certainly point in that
direction, however there’s a caveat to these findings. After all we were working with
a slight simplification, and there are many more ways to apply neural networks and
evolutionary programming. We’ve tried two architectures that seemed obvious, but did
not produce spectacular results. This however does not mean that no neural network
might ever be able to play Spades at a high level.

Between the two architectures we didn’t find much difference in performance. Which
is probably because we provided both with the same information, just in different ways.
A real difference might appear when providing a neural network with different informa-
tion. There wasn’t a noticeable difference between fitness functions either, other than
the slight difference in play style (where those with advanced fitness would prefer making
more difficult tricks, in line with the fitness function).

All in all, it seems like the lack of neural network AI in card games isn’t wholly
unfounded, but there’s also room for more research, mainly on other configurations of
neural networks. I personally have learned a lot on implementing a neural network, and
evolutionary programming, which I did without the help of any libraries. Furthermore,
this project really made me think about how to represent a domain – in this case the
game of Spades – for a neural network. Not to mention it was great fun to (albeit in
text-form) see the neural networks go head to head. It has been a worthwhile endeavour.
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A Spades Rules

Spades is played typically with four players (Rigal, 2011). While it’s sometimes played
in two teams of two players each, this rule set will assume no such teams. Furthermore,
this rule guide will also assume no designated dealer is chosen, and all players deal in
turn. Its played with a typical 52 card deck. A game is played in a multiple of four
rounds, each existing of thirteen tricks.

Round Preparation and Bidding

To get started, the dealer shuffles the deck, and deals each player thirteen cards. Looking
at their own cards, each player (in order, starting with the player left of the dealer) makes
a bid. A bid is the amount of tricks a players is aiming to win.

Tricks

The player to start the first trick of a round, is again the player left to the dealer. The
player is allowed to play any card of their hand. Then the other players, in clockwise
fashion, all play a card of their hands. If available, all following players need to play a
card of the same suit. If they have no card of the same suit, they may play any card of
another suit. The trick is won by the player who played the highest card in the suit of
the first card. However – as the game’s namesake eludes to, spades are used as trump
cards. Therefore, if a player runs out of the suit that’s being called for, they can play a
spade to take the trick. If spades have been played by multiple players, the player of the
highest spade wins the trick. Of course, if the original suit played is spades, everyone
with spades in their hand still needs to follow, and no trumping is possible.

Points and Winning

At the end of a round (thirteen tricks), every player counts their taken tricks. Spades
doesn’t really have a set scoring system, but players only earn points if they have taken
the exact amount of tricks they bid on.

• If the bid is made exactly:

10 points for making the bid

5 points for every trick taken

• If the bid is not made exactly:

-5 points for every trick taken over or under the bidding amount

The winner of Spades is the player with the most points at the end.
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B Advanced fitness card scoring table

Below we find Table 2 and Table 3 with for each card their chance of winning a trick
and their associated fitness score. Fitness scores are divided into whether the player in
question played the first card of the trick (was ‘leading’) or not (was ‘following’). You’ll
find that, because it’s easier to make a trick when leading, scores for leading cards are
lower. The first table, Table 2, gives us the values for each clubs, hearths, or diamonds
card (all three of which are equal), whereas the second table, Table 3, gives us the values
for each spades card.

Card Win chance Fitness score
Rank Leading Following Average Leading Following

A 74.51% 23.53% 49.02% 25 76
K 70.59% 21.57% 46.08% 29 78
Q 66.67% 19.61% 43.14% 33 80
J 62.75% 17.65% 40.20% 37 82
10 58.82% 15.69% 37.25% 41 84
9 54.90% 13.73% 34.31% 45 86
8 50.98% 11.76% 31.37% 49 88
7 47.06% 9.80% 28.43% 53 90
6 43.14% 7.84% 25.49% 57 92
5 39.22% 5.88% 22.55% 61 94
4 35.29% 3.92% 19.61% 65 96
3 31.37% 1.96% 16.67% 69 98
2 27.45% 0.00% 13.73% 73 100

Table 2: Chance of winning a trick and associated fitness for each club, hearth, or
diamond

Card Win chance Fitness score
Rank Leading Following Average Leading Following

A 100.00% 100.00% 100.00% 0 0
K 98.04% 98.04% 98.04% 2 2
Q 96.08% 96.08% 96.08% 4 4
J 94.12% 94.12% 94.12% 6 6
10 92.16% 92.16% 92.16% 8 8
9 90.20% 90.20% 90.20% 10 10
8 88.24% 88.24% 88.24% 12 12
7 86.27% 86.27% 86.27% 14 14
6 84.31% 84.31% 84.31% 16 16
5 82.35% 82.35% 82.35% 18 18
4 80.39% 80.39% 80.39% 20 20
3 78.43% 78.43% 78.43% 22 22
2 76.47% 76.47% 76.47% 24 24

Table 3: Chance of winning a trick and associated fitness for each spade
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C Normal Distribution

To get the normal distribution associated with trick taking we need to find the mean
µ and the standard deviation σ. From our assumption that each player (of equal skill)
takes 25% of tricks per round as the number of rounds approaches infinity, we may
conclude that the mean tricks per round is µ = 0.25 · 13 = 3.25.

To calculate the standard deviation we can use an expected values table, which we
find in Table 4. Note that the chance to take any x tricks in a round is calculated as:

P (x) =

(
13

x

)
· 0.25x · 0.75(13−x)

Looking in Table 4, we find our mean µ from summing up the expected values (P (x) ·x).
This helps as a sanity check, because this returns the µ = 3.25 that we already expected.
We find our standard deviation σ by taking the square root of the variance σ2, which
is calculated by summing up the square of the difference between the value x and the
mean and multiplying it with P (x). We get σ =

√
2.4375 ' 1.5612.

x P (x) P (x) · x (x− µ)2 · P (x)

0 0.0234 0 0.2509
1 0.1029 0.1029 0.5212
2 0.2059 0.4118 0.3217
3 0.2517 0.7550 0.0157
4 0.2097 0.8388 0.1180
5 0.1258 0.6291 0.3853
6 0.0559 0.3355 0.4229
7 0.0186 0.1305 0.2621
8 4.6602e−3 0.0373 0.1051
9 8.6300e−4 7.7670e−3 0.0285
10 1.1507e−4 1.1507e−3 5.2427e−3
11 1.0461e−5 1.1507e−4 6.2829e−4
12 5.8115e−7 6.9737e−6 4.4494e−5
13 1.4901e−8 1.9372e−7 1.4165e−6

Totals (µ and σ2) 3.25 2.4375

Table 4: Expected values table
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