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Abstract

Much of recent research in string theory has revolved around the complexity of the landscape of
inequivalent vacua which may describe the world we observe. In this work, we review the emergence
of this landscape from the perspective of flux compactifications of F-theory and discuss its statistical
description in terms of the index density of supersymmetric flux vacua following the many works of
Douglas et al. We then proceed to analyze the behaviour of the index density near singular loci in
the complex structure moduli space using asymptotic Hodge theory. In all single parameter limits,
we obtain a universal asymptotic behaviour of the index density which is integrable, providing
evidence for the finiteness of string theory flux vacua. We are also able to extend our analysis to
some multi-parameter limits and point the reader to possible methods to describe the full set of
limits.
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Introduction

Although the modern formulation of string theory has been around since 1974, it was not until
the first superstring revolution, which began in 1984, that it was realized as a realistic description
of elementary particles and their interactions. Indeed, using the newly discovered Green-Schwarz
mechanism, Candelas, Horowitz, Strominger and Witten obtained a four-dimensional theory with
N = 1 supersymmetry and a realistic gauge group by compactifying the heterotic string on a Calabi-
Yau threefold [6]. However, the restrictions of supersymmetry and a realistic particle content were
very stringent. For example, such compactifications must have a vanishing cosmological constant,
a phenomenologically unacceptable feature.

The situation changed dramatically, however, after the second superstring revolution around 1994.
In particular, the existence and necessity of D-branes, discovered by Polchinksi in 1995 [44], provided
countless new structures to the theory and greatly evolved its cosmological aspects. The D-branes
provide a natural source for the electric and magnetic Ramond-Ramond fields whose dynamics are
closely related to the cosmological constant. Additionally, numerous brane constructions have been
utilized to produce models of inflation and descriptions of black holes. Over the course of a few years,
it was realized that the number of different low-energy theories that string theory can produce is
huge. In 2003, this vast network of possible string vacua was coined the string landscape by Susskind
[47]. During this time, a new method of analysing the string landscape and its implications was
pioneered by Douglas. Rather than searching for specific compactifications which produce exactly
the vacuum that describes the physics we see, emphasis was instead placed on the general statistical
properties of the landscape. Essentially, this resulted in the search for a ‘vacuum selection principle’,
a set of rules which we expect a ‘natural string vacuum’ to obey.

In a similar endeavour to improve our understanding of the landscape, Vafa instigated the swampland
program in 2005 [49]. It consists of a number of conjectures that make very general statements about
properties of string vacua, which are then conjectured to hold for any theory of quantum gravity.
Somewhat jokingly, whenever some effective field theory does not obey such a conjecture, it are said
to lie in the swampland. Over the years, the search for examples and proofs of these conjectures,
as well as the link between them has provided us with various insights regarding the structure of
the landscape. Additionally, their study has required the development and understanding of some
remarkable mathematical constructions and properties that arise in string compactifications.

Our main motivation is the application of a particular instance of such a beautiful mathematical
framework to generalize a known result for the distribution of supersymmetric flux vacua in certain
asymptotic regions. In other words, we aim to investigate the statistical nature of the landscape
following the work of Douglas and others by using modern techniques that are applied in tests of the
swampland conjectures, most notably the distance conjecture and the de Sitter conjecture [28, 29].
More precisely, we will add to the work of Eguchi and Tachikawa, who investigated the behaviour
of this distribution in 2005 [22]. It was found that, in the context of Type IIB compactification on
Calabi-Yau threefolds, the distribution has a universal form in certain limits. In this work, we will

1



INTRODUCTION 2

generalize their results and show that this form persists in the context of F-theory compactification
on Calabi-Yau fourfolds and for more general limits. This then serves as further evidence for the
finiteness of string theory vacua.

Outline of the Thesis

In chapter 1 we start with a general description of the compactification of superstring theories and
how this leads to effective four-dimensional physics. Most notably, we describe how different choices
of curling up the unwanted dimensions of string theory can be parametrized by a so-called moduli
space. We illustrate the various concepts involved using toroidal compactifications, before turning to
the general situation of Calabi-Yau fourfolds. Next, we introduce F-theory as the twelve-dimensional
rephrasing of Type IIB string theory and discuss its description in terms of the eleven-dimensional
supergravity action of M-theory. Finally, we perform a quantitative analysis of the compactification
of M-theory on a Calabi-Yau fourfold to illustrate the emergence of moduli, the fields parametrizing
the shape and size of the internal dimensions. This also leads to the issue of moduli stabilization
and is the prime motivation for considering flux compactification.

In chapter 2 we describe the emergence of the string landscape as a result of flux compactification of
F-theory on a Calabi-Yau fourfold, which leads to a four-dimensional theory of N = 1 supergravity.
The vast freedom of possible shapes for the curled up dimensions and values of field strengths, each
with their own energy, leads to a large number of different vacua in the resulting four-dimensional
theory. Analysing the structure of this landscape from a more statistical point of view is the main
content of this chapter. We do this by reproducing the result of Ashok and Douglas, who in 2004
derived an explicit expression for the distribution of supersymmetric flux vacua, the AD-density.
We review their derivation along with the assumptions and estimations that are made, and discuss
its interpretation and implication. In particular, we return to the question of whether the number
of supersymmetric flux vacua in at all finite. In other words, we investigate the size of the string
landscape and explore the range of predictability of string theory.

Subsequently, in chapter 3 we perform the analysis of the distribution of supersymmetric flux vacua
in asymptotic regions of the moduli space. Here we call upon the intricate mathematical structures
that arise in these limits, as such our discussion is mostly of mathematical and algebraic nature.
However, we also highlight the relation between our methods and those used to study the various
Swampland conjectures, one of the thriving topics in current string theory research. We spend quite
some words on introducing the necessary mathematical concepts and constructions, most notably
the mixed Hodge structure that arises and its description in terms of the Deligne splitting. Of
central importance is the nilpotent orbit theorem, which was already proven in 1973 by Schmid.
With the relevant tools in hand, we then return to the AD-density and reproduce and generalize
the results of Eguchi and Tachikawa in all single-parameter limits.

Finally, in chapter 4 we make an attempt to generalize our results further to multi-moduli limits. To
this end we deepen our understanding of the asymptotic regions of the moduli space by introducing
the SL(2)-orbit theorem, derived by Cattani, Kaplan and Schmid in 1986.1 In contrast to the
results of chapter 3, we are only able to obtain the form of the AD-density in a particular set of
multi-parameter limits. We end with a discussion on potential improvements of our methods and
the challenges one faces in doing so. Additionally, we relate our findings with those found in the
mathematics literature, in particular with regards to the finiteness of flux vacua.

1Note that it took around thirteen years to understand the intricacies of extending the results of Schmid to
multi-parameter limits!



INTRODUCTION 3

The Three Questions

To ease the reading experience we have formulated three questions which we aim to answer or at
least address in this work. They are as follows:

Q1: How can the complex structure moduli be stabilized?

Q2: How are the F-theory flux vacua distributed over the moduli space?

Q3: Is the AD-density integrable near a given singular locus in the complex structure
moduli space?

Questions Q1 and Q2 are answered in chapter 2 and constitute the main physical result of this
thesis. Subsequently, question Q3 is answered in chapter 3 for single-parameter limits and partially
in chapter 4 for multi-moduli limits. This comprises this works’ core mathematical content. We
also summarize our results in a similar set of three answers in the conclusion for quick reference.



Chapter 1

Type IIB/F-Theory Compactification

Even outside of the academic world of physics people are aware of this mysterious 26, 12, 11,
or 10-dimensional theory that is called string theory. Although I had heard of the fact before,
I could nevertheless barely contain my excitement when deriving the critical dimension D = 26
of bosonic string theory. After settling down, however, one quickly returns to the reality that
our world is 4-dimensional, unfortunately. The goal of this chapter is to bridge the gap between
the higher-dimensional string theories and ordinary 4-dimensional physics through a process called
compactification. We will describe some specific aspects in the context of Type IIB string theory,
or its more geometrical formulation F-theory, but the tools and main messages remain applicable to
the other string theories as well. In a nutshell, the fact that string theories live in higher dimensions
acts as a double-edged sword. On the one hand, there is a lot of freedom to construct nearly
anything by using the numerous fields that are present in the theory, as well as D-branes and the
various dualities between the different theories. On the other hand, we may have a bit too much
freedom in our choices. This raises the question of which choice should be regarded as ‘correct’ or
‘natural’. We will discuss this in more depth in chapter 2, when we cover statistical properties of
the string landscape.

We start by introducing the concept of compactification in section 1.1. By considering the simplest
example of a circle compactification, we see the emergence of lower dimensional fields and, in
particular, moduli which parametrize the internal geometry. To go beyond this particular example,
we first quickly review the content of Type IIB supergravity, the low-energy limit of Type IIB string
theory, in section 1.2. From there we describe the more general Calabi-Yau compactification scheme
in section 1.3 and use the torus as an important example. Here we obtain a ‘moduli space’ which
parametrizes all the different kinds of tori one could use as compact dimensions. This leads us
to the moduli space of general Calabi-Yau manifolds and its properties, most notably the natural
metric it possesses. Ultimately, we are interested in compactifications of Calabi-Yau fourfolds, which
leads us to F-theory. Its description as a geometrization of Type IIB and its definition in terms
of M-theory will be discussed in section 1.4. Finally, we end this chapter with a computation of
the compactification of the Ricci scalar in M-theory. We see that, as for the circle, one obtains a
number of massless scalar fields parametrizing the shape of the internal manifold. This brings us
to the issue of moduli stabilization, which will be solved in chapter 2.

4



CHAPTER 1. TYPE IIB/F-THEORY COMPACTIFICATION 5

1.1 Compactifying String Theory

There are five superstring theories, which are only consistent in exactly ten space-time dimensions.
In this section, we will be concerned with the general features they all poses to motivate the
idea of compactification and the resulting issue of moduli stabilization. First, we note that in each
superstring theory, there are numerous dynamical fields which arise as excitations of the open/closed
string of the superstring theory in question. We will be interested in the low-energy approximation,
meaning that we only consider the massless modes of the superstring. A universally present field is
a metric g on the ten dimensional target spaceM10. The dynamics of g are governed by an action,
which is generally of the Einstein-Hilbert form

S =

∫
M10

R ? 1 + · · · , (1.1)

where ? denotes the Hodge star on M10 and the dots contain kinetic terms for whatever fields are
additionally present. Although the major part of this work revolves around F-theory, it suffices for
now to keep the discussion general.

Of course, the aim of superstring theory is to describe the physics that we observe around us.
However, the observable world is certainly not 10-dimensional, but rather 4-dimensional. To bridge
this gap, we introduce the concept of Kaluza-Klein compactification. 1. Our discussion is based on
[3, Chapter 14]. The idea is to consider the full dc-dimensional space Mdc as a product manifold

Mdc =M1,d−1 ×XD, d+D = dc, (1.2)

where XD is a compact manifold, called the internal manifold, andM1,d−1 is some lower dimensional
Lorentzian manifold. Additionally, the metric decomposes as

ds2
dc = ds2

d + ds2
D, (1.3)

where the metric on Md is usually taken to be maximally symmetric (i.e. dS, Minkowski or AdS).
Compactness of XD allows us to speak of its size and demand it to be small enough such that no
particle detector has ever noticed its presence. However, as we will see, the theory observed in Md

certainly does depend on the nature of XD.

Compactifying on a Circle and the Emergence of Moduli

Before delving into the details of the general construction, let us first discuss the simplest compact-
ification there is. We consider a free massless scalar field theory onM1,4 =M1,3×S1, whereM1,3

is 3+1 dimensional Minkowski space-time and S1 is the one-dimensional circle of radius R. The
action is given by

S =

∫
d5x
√
−g gMN∂Mφ∂

Nφ, M,N = 0, . . . , 4 (1.4)

where
gMNdx

MdxN = ηµνdx
µdxν +R2dθ2, µ, ν = 0, . . . , 3 (1.5)

with η the Minkowski metric on M1,3. The equation of motion for φ is that of a massless scalar
field:

�φ = 0 =⇒ ∂µ∂
µφ+R−2∂2

θφ = 0, (1.6)

1Note that Kaluza-Klein compactification is not the only way to make sense out of the higher dimensional theories.
An alternative is provided by brane-world scenarios, where the visible Universe is considered to be a 3-brane, embedded
in a higher-dimensional space, see e.g. [2, Chapter 10]
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S1

M1,3

R

Figure 1.1: Compactification on the circle S1, where M1,3 is represented as a line. The radius R
of the circle is taken to be small so that the masses of the KK-modes lie above the energy scale we
can currently scope.

On the circle, we can perform a Fourier expansion of φ as follows:

φ(x, θ) =
∞∑

n=−∞
φn(x)einθ, (1.7)

Inserting this into the equation of motion yields(
∂µ∂

µ − n2

R2

)
φn = 0. (1.8)

In other words, we see that a single massless scalar φ in five dimensions gives rise to an infinite tower
of scalars φn in four dimensions, whose masses are given by n/R. As promised, the properties of
the internal manifold (here, the radius R) determine the resulting physics in the external manifold,
namely the masses of the induced fields. In particular, in the limit R → 0 all fields except for the
massless field φ0 can be regarded as so massive that they are not relevant for low-energy physics.
Besides the emergence of a tower of scalar fields, a perhaps more mysterious quantity is the radius
R of the internal circle. Is this a quantity we can measure? And is there some mechanism which
would determine its value? These questions become even more intricate once one realizes that,
in principle, R could additionally depend on the external coordinates xµ. This gives rise to yet
another scalar field R(x) from the point of view of the external manifold and is our first example of
a modulus. It is expected to be massless, since there is a priori no restriction on the values it can
take (besides being positive).

More generally, compactification on XD will result in numerous moduli fields in the lower dimen-
sional theory, which intuitively parametrize the ‘shape’ and ‘size’ of XD at each point in spacetime.
See figure 1.2 for an example of two different shapes of the torus. Importantly, in this simple com-
pactification scheme the moduli will always turn out to be massless. This is a major issue, since
no massless scalar particles have been detected so far, and since they have no mass this cannot
be due to the energy scales at which we are currently restricted to probe nature. This is know as
the problem of moduli stabilization. How to solve this issue will be the topic of chapter 2. In this
chapter, we will develop the necessary tools to understand how this problem arises quantitatively.
This will require a good understanding of the dynamics of these moduli fields. However, before
giving a more quantitative description of the moduli in the general compactification setting, we
should first discuss the specific superstring theory we will consider, as well as the kinds of spaces
XD that we will encounter in this context.
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Figure 1.2: Two tori with a different shape. In relation to section 1.1, the torus on the left has
complex structure modulus τ > 1, whereas the torus on the right has τ ≈ 1.

1.2 A Review of Type IIB

For a large portion of this work we will consider F-theory, which for our purposes is a 12-dimensional
geometrization of type IIB string theory. In this section we first give a short review of the latter.
How type IIB is related to F-theory will be discussed in section 1.4. Type IIB string theory is one of
the five possible superstring theories. It is a 10-dimensional chiral theory containing both open and
closed strings, although we will mostly be concerned with the closed string sector. For the closed
string, the massless bosonic modes in the NS-NS sector are given by

• A scalar field φ, called the dilaton, which is related to the string coupling constant as gs = eφ.

• A symmetric traceless (0,2) tensor g, which is interpreted as the metric on the target space
where the superstring is embedded.

• A two-form B2.

Moreover, the massless bosonic modes in the R-R sector are

• p-forms Cp, for p = 0, 2, 4.

We denote the corresponding field strengths by

Fp = dCp−1, H3 = dB2. (1.9)

It is convenient to combine the fields in the following way

τ = C0 + ie−φ, G3 = F3 − τH3, F̃5 = F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3. (1.10)

The equations of motion for these fields can be obtained by studying the corresponding β-functions,
whose vanishing ensures that the Weyl symmetry of the superstring is not anomalous at the quantum
level. In this manner one obtains the effective action for type IIB, given by

SIIB =
2π

l8s

∫
R ? 1− 1

2

dτ ∧ ?dτ̄
(Im τ)2

+
G3 ∧ ?Ḡ3

Im τ
+

1

2
F̃5 ∧ ?F̃5 + C4 ∧H3 ∧ F3, (1.11)

which has to be supplemented with the additional constraint ?F̃5 = F̃5. Here ls denotes the string
length. Crucially, the action is manifestly invariant under the action of SL(2,Z)2 given by(

a b
c d

)
∈ SL(2,Z) : τ 7→ aτ + b

cτ + d
,

(
F
H

)
7→
(
a b
c d

)(
F
H

)
, (1.12)

which is known as S-duality. In section 1.3.2 we will see that this transformation behaviour is shared
by the complex structure modulus of the torus, which is the prime inspiration for introducing F-
theory in section 1.4.

2At the classical level the action enjoys the full SL(2,R) symmetry, but this is broken at the semi-classical level
due to the presence of D7 branes.
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1.3 Calabi-Yau Moduli Spaces

Let us now return to the general picture of string compactifications. Naturally, there are some
restrictions on XD in order to produce desired properties of the four dimensional physics after
compactification. The main restriction is due to the fact we require N = 1 supersymmetry in the
lower-dimensional theory. Even though supersymmetry has not been observed in nature (yet), there
are numerous motivations for considering supersymmetric field theories. These include the coupling
constant unification, the fine-tuning of the Higgs mass and the fact that some supersymmetric
particles are dark matter candidates.

Within the string theory context, there are several ways to obtain N = 1 supersymmetry in four
dimensions, these include [13, p. 9]

• Heterotic or type I superstring theory on a Calabi-Yau threefold.

• Type II superstring theory on a three-dimensional Calabi-Yau orientifold.

• F-theory on a Calabi-Yau fourfold.

For our purposes, this last one is of relevance. Hence we will be particularly interested in the
properties of Calabi-Yau fourfolds. However, due to the general appearance of Calabi-Yau manifolds
in string compactifications, we will discuss them in more generality.

1.3.1 Calabi-Yau Manifolds

By a (complex) D-dimensional Calabi-Yau manifold we mean a complex manifold YD together with
a Ricci-flat, Hermitian metric g and a closed Kähler form J , which is given in terms of the metric
as

J =
i

2
gab̄ dy

a ∧ dȳb̄, a, b = 1, . . . , D, (1.13)

where ya, ȳb̄ denote complex coordinates on YD. A Calabi-Yau manifold is in particular a Kähler
manifold, which implies that the metric can locally be expressed in terms of a Kähler potential as

gab̄ = ∂a∂̄b̄K. (1.14)

For a more detailed account of Kähler manifolds, as well as some basic definitions of differential
geometry and our conventions, we refer the reader to appendix A. Of utmost importance throughout
this work are the de Rham cohomology groups Hp,q(YD). Let hp,q := dim Hp,q(YD) be the Hodge
numbers. Then for Calabi-Yau D-folds these satisfy the following properties

(a) : hp,q = hq,p (1.15)

(b) : hp,q = hD−p,D−q (1.16)

(c) : hp,0 = 0, 1 ≤ p < D, hD,0 = 1. (1.17)

The Hodge numbers can be conveniently organized in a Hodge diamond, which for a Calabi-Yau
fourfold is given by:
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1
0 0

0 h1,1 0
0 h2,1 h2,1 0

1 h3,1 h2,2 h3,1 1
0 h2,1 h2,1 0

0 h1,1 0
0 0

1

Then the first two relations of the Hodge numbers simply state that the diamond is symmetric in
the horizontal and vertical axes. The final relation implies that H4,0(Y4) and H0,4(Y4) are both
one-dimensional. It is customary to denote their generators by Ω and Ω̄, respectively. Finally, we
mention that the four resulting Hodge numbers h1,1, h2,1, h3,1, h2,2 are not all independent. Indeed,
using the index theorems one shows that [26, p. 21]

h2,1 = 22 + 2h1,1 + 2h3,1 − 1

2
h2,2, (1.18)

hence we are left with h1,1, h3,1 and h2,2. We will see that h1,1 counts the number of Kähler moduli
and h3,1 the number of complex structure moduli, which we introduce in subsections 1.3.4 and
1.3.5, respectively. These are precisely the fields which parametrize the ‘size’ and ‘shape’ of Y4, as
mentioned before. One readily sees that H4(Y4), or more generally HD(YD), stands out as the most
interesting cohomology group. This will remain true throughout this work. More specifically, in
chapter 2 we will encounter ‘fluxes’ which are elements of H4(Y4) (in F-theory compactifications)
and in chapters 3 and 4 much of our interest lies in the degeneration of HD(YD) near singular points
in the complex structure moduli space of YD.

Having stated the main properties of Calabi-Yau manifolds, our next step is to generalize the notion
of moduli fields. To gain some intuition in the matter and moreover give an important example of
a Calabi-Yau manifold, we next discuss the torus.

1.3.2 Example: The Torus

The torus T is the easiest example of a Calabi-Yau manifold, in fact it is the unique 1-dimensional
one. Though our main goal here is to exemplify the concept of a complex structure modulus, this
example will also be crucial in the F-theory description of Type IIB in section 1.4 and is referred
to in the later chapters as well. Our discussion is based on [3, Chapter 6]. A convenient description
of the torus is as a quotient of C by a lattice:

T := C/(Z + τZ), Im τ > 0, (1.19)

where we identify
z ∼ z + n+mτ, z ∈ C, m, n ∈ Z. (1.20)

We see that different tori are parametrized by the Teichmüller parameter τ ∈ H, where H denotes
the (strictly) upper-half plane. However, there are still some non-trivial transformations we can
perform on τ which result in equivalent tori. They are generated by the Dehn twists:

α : τ 7→ τ + 1, β : τ 7→ τ

τ + 1
. (1.21)
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Re

Im

τ1

τ2

T

Figure 1.3: A geometrical interpretation of the complex structure modulus τ = τ1
τ2

and the quotient
construction in (1.19). We see that τ measures the ratio between the two sides of the parallelogram
that makes up the torus. In particular, for Im τ much greater than 1, one obtains a thin torus as
shown in figure 1.2.

These are global diffeomorphisms which are not connected to the identity. Indeed, one sees that the
transformations α, β correspond to twists of the torus along the two canonical cycles over an angle
of 2π. These transformations generate the group SL(2,Z), which acts on H by(

a b
c d

)
· τ =

aτ + b

cτ + d
, a, b, c, d ∈ Z, ad− bc = 1. (1.22)

Moreover, given a matrix A ∈ SL(2,Z), we see that A and −A generate the same transformation.
In other words, the modular group PSL(2,Z) := SL(2,Z)/Z2 preserves the complex structure of a
torus. Therefore, we define the complex structure moduli space Mcs of the complex 1-torus as

Mcs := H/PSL(2,Z). (1.23)

ThenMcs precisely parametrizes those values of τ which yield tori with different complex structures.
From a more geometrical point of view, as depicted in figure 1.3, it describes different shapes of
the torus. For example, for large values of Im τ , the torus will be very thin. This interpretation
will be expanded upon in subsection 1.3.3, where the same will remain true for general Calabi-Yau
manifolds.

For clarity and later reference, the fundamental domain F in H for the action of the modular group
is

F = {−1

2
≤ Re τ ≤ 0, |τ |2 ≥ 1} ∪ {0 < Re τ <

1

2
, |τ |2 > 1}, (1.24)

see also figure 1.4. We also note that the action (1.22) is identical to the action of S-duality under
which the Type IIB supergravity action (1.11) is invariant. In section 1.4 we will discuss how this
gives rise to a geometrical interpretation of the parameter τ in F-theory.

As a concluding remark regarding the complex structure moduli space of the torus, we note that
the action of the modular group is alternatively generated by the following maps:

T : τ 7→ τ + 1, S : τ 7→ −1

τ
, (1.25)
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Re τ

Im τ

−2 −1 0 1 2

F FTFT−1

FS

Figure 1.4: The fundamental domain F for the action of the modular group on the complex
upper-half plane. This region described the values of τ which yield tori of different shapes, i.e.
having different complex structures. The regions FT and FS denote the image of F under the
action of the maps T and S, respectively.

since TST = β : τ 7→ τ
τ+1 . Crucially, the modular group does not act freely on H. Indeed, we can

identify at least two fixed points:

τ1 = i : S(τ1) = τ1

τ2 = e2iπ/3 : ST (τ2) = τ2.

As such the complex structure moduli space is not a smooth manifold, instead it is a so-called
orbifold, which has singularities at precisely the fixed points. In chapters 3 and 4 we will devote
much attention to the behaviour of moduli spaces near such singular points.

1.3.3 The Lichnerowicz Equation

Let us now turn to the discussion of the moduli spaces of a general Calabi-Yau fourfold Y4. From
the examples of the circle and torus, we have the intuition that the moduli should parametrize
the ‘size’ and ‘shape’ of Y4. Building further upon this picture, we note that the structure that
defines the size and shape of a manifold is exactly that of a metric. Indeed, recall that for a path
γ connecting two points on a manifold M with metric g, its length is given simply by

length of γ =

∫
γ
ds, ds2 = gµνdx

µdxν , (1.26)

see also figure 1.5. In other words, we expect that deformations of the metric on Y4 can be written in
terms of the moduli. However, not all deformations should be allowed, since the resulting manifold
must still be Calabi-Yau, i.e. have a Ricci flat metric. More precisely, given a Ricci flat background
metric g and a perturbation g 7→ g + δg, we require that
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γ

M

Figure 1.5: A path γ on a manifold M connecting two points. Its length can be computed in
terms of the metric using equation 1.26.

1. R(g + δg) = 0.

2. The transformation g 7→ g + δg is not generated by a change of coordinates, since from the
physical point of view one cannot distinguish between the resulting spaces.

One can show that these two conditions on δg are encapsulated by the Lichnerowicz equation [3, 25]

∇C∇CδgAB + 2R C D
A B δgCD = 0, (1.27)

where the indices can be both holomorphic and anti-holomorphic. Due to the index properties of
the Riemann tensor on Calabi-Yau manifolds, we can make the following decomposition:

δg = δgabdy
adyb + δgab̄dy

adȳb̄ + c.c. (1.28)

where c.c. stands for the complex conjugate of the terms before it. Then δgab̄ and δgab will satisfy
(1.27) separately. Due to the different index structure of δgab̄ and δgab, these two perturbations
will have different effects on the manifold. They will be described by the Kähler moduli and the
complex structure moduli, respectively.

1.3.4 The Kähler Moduli Space

Let us first consider deformations of the form δgab̄, these will correspond to deformations of the
Kähler class of Y4, which is readily seen from (A.7). The space of deformations of the Kähler class
is called the Kähler moduli space, denoted by Mkähler. Since δgab̄ can be regarded as a (1,1)-form,
one sees that (1.27) is equivalent to having (∆gab̄) = 0, i.e. δgab̄ is harmonic. To obtain a suitable
parametrization ofMK , let {ωI}, I = 1, . . . , h1,1(Y4), be an integral cohomology basis for H1,1(Y4).
Then we can expand the Kähler form J on Y4 as

J = vIωI . (1.29)

The coefficients vI will then serve as the complex coordinates on Mkähler, making it into a com-
plex manifold. They are called the Kähler moduli. The precise connection between the metric
deformations δgab̄ and the Kähler moduli vI is then given by:

iδgab̄ = (ωI)ab̄δv
I . (1.30)
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Intuitively, the Kähler moduli parametrize the volume of Y4 and the volume of its cycles. Indeed,
note that the Kähler form can be used to construct a volume form, which then gives the volume
Kkähler of Y4 by:

Kkähler =
1

4!

∫
Y4

J ∧ J ∧ J ∧ J. (1.31)

Moreover, it turns out that the Kähler moduli spaceMkähler can be equipped with a Kähler metric
given by:

GIJ(v) = −1

2
∂I∂J logKkähler. (1.32)

In particular, we see that the Kähler potential for this metric GIJ is determined solely by the volume
Kkähler. Again, this indicates that Mkähler is naturally associated with the volume of Y4.

1.3.5 The Complex Structure Moduli Space

Next, we consider the deformations of the form δgab. First, we note that since δgab does not have
mixed indices, the deformed metric is no longer Hermitian. However, it can be made into a Hermitian
metric by a change of coordinates which is not holomorphic (since any holomorphic change of
coordinates cannot affect the index structure of the metric). In other words, the deformations δgab
can be interpreted as deformations of the complex structure of the Calabi-Yau manifold. The space
of all such deformations is called the complex structure moduli space, and is denoted by Mcs. It
will turn out that these deformations are in one-to-one correspondence with harmonic (3,1) forms.
Indeed, let {χi}, i = 1, . . . h3,1(Y4), be a complex cohomology basis of H3,1(Y4). We define

(
b̄ı̄
) b̄

a
=

i

||Ω||2
(χ̄ı̄)ac̄d̄ē Ωc̄d̄ēb̄, ||Ω||2 =

1

4!
ΩabcdΩabcd. (1.33)

Then the complex structure deformations δgab are related to changes in the complex structure
moduli δz̄ ı̄ by

δgab =
(
b̄ı̄
)
ab
δz̄ ı̄. (1.34)

Moreover, under this correspondence one can show that (1.27) is equivalent to χ̄Ā being a harmonic
(3,1)-form. Similar to the Kähler moduli space Mkähler, the complex structure moduli space Mcs

can also be equipped with a Kähler metric, defined by:

gi̄ = ∂i∂̄̄Kcs(z, z̄), (1.35)

where the complex structure Kähler potential Kcs is given by:

e−Kcs =

∫
Y4

Ω ∧ Ω̄. (1.36)

For the remainder of this work, we will mostly focus on the complex structure moduli, but occasion-
ally the importance of the Kähler moduli will be discussed as well. Having discussed Calabi-Yau
manifolds and their moduli spaces in detail, our next step will be to formulate the setting of F-theory
in which we will work.
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1.4 F-Theory via M-Theory

As we have mentioned in the previous sections, we would like to describe the Type IIB effective action
in a more geometric way, by interpreting the parameter τ as the complex structure modulus of a
torus. This is what is done in F-theory. In principle, the idea is to construct a 12-dimensional theory
of supergravity which, when compactified on a torus, reduces precisely to Type IIB supergravity.
Unfortunately, no 12-dimensional theories of supergravity exist. As such, we make a slight detour
via the unique 11-dimensional supergravity theory known as M-theory. Its effective action is given
by

Ŝ(11) =

∫
M1,10

1

2
R̂ ? 1− 1

4
F̂4 ∧ ?F̂4 −

1

12
Ĉ3 ∧ F̂4 ∧ F̂4, (1.37)

where M1,10 is a general 11-dimensional Riemannian manifold with Lorentzian metric. Moreover
R̂ denotes the Ricci scalar associated to this metric, Ĉ3 is a 3-form and F̂4 = dĈ3 denotes its field
strength. We now give a rough overview of how one can relate M-theory to Type IIB following
[2, 51]. The main point is to compactify M-theory on M1,9 × T, where we write the torus as

T = S1
A × S1

B, (1.38)

where the circles have coordinates x and y, respectively. It is a fact that compactifying M-theory
on a circle with radius RA yields Type IIA in the limit RA → 0. Hence, interpreting S1

A as this
circle, we obtain Type IIA on M1,8 × S1

B in this limit. More quantitatively, the relation between
the M-theory and Type IIA metric is given by

ds2
M = L2e4χ/3(dx+ C1)2 + e−2χ/3ds2

IIA, (1.39)

where C1 is the RR 1-form of Type IIA, χ is the Type IIA dilaton and L sets a length scale for the
M-theory circle. Next, we recall that Type IIA on a circle S1

B with radius RB is T-dual to Type
IIB on a circle S̃1

B with radius R̃B = l2s/RB. Hence we obtain Type IIB on M1,8 × S̃1
B. Finally

then, by taking the decompactification limit R̃B → ∞, i.e. RB → 0, we recover Type IIB on
M1,9. To be more precise, one can explicitly show that after performing the various dualities and
compactifications, the complex structure modulus τ of T is equal to

τ = C0 + ie−φ (1.40)

where we have put C0 := (C1)y, i.e. the y-component of C1 and φ is the Type IIB dilaton. In
particular, we can indeed obtain the axio-dilaton field τ present in Type IIB from M-theory via
these various dualities. It remains to construct the forms C2, C4 and B2. These can all be obtained
from the original M-theory 3-form Ĉ3 by setting

Ĉ3 = C ′3 +B2 ∧ Ldx+ C2 ∧ Ldy +B1 ∧ Ldx ∧ Ldy (1.41)

and putting C
(y)
4 = C ′3 ∧ dy. Then B1 gives rise to the off-diagonal components of the Type IIB

metric, i.e. giy = (B1)i, restoring full generality for the metric. In summary, we find the following
duality:

M-Theory on M1,8 × T 2
Vol(T 2)→0 ⇐⇒ Type IIB on M1,9 (1.42)

The theory obtained on the LHS, by taking the volume of the torus to zero, is called F-theory.

Strictly speaking, in our current setting the parameter τ is a constant, hence not really a field.
However, one can consider a more general setup where the complex structure of the torus is allowed
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to vary over M1,8, which corresponds to an elliptic fibration. To ensure N = 1 supersymmetry
in four dimensions, this elliptic fibration is chosen to be a Calabi-Yau fourfold, i.e. we compactify
M-theory on M1,2 × Y4, where Y4 → B3 is a fibre bundle with T as fibres and base space B3. By a
similar procedure as outlined above, this is then dual to Type IIB onM1,3×B3. The upshot of this
whole discussion is that instead of considering Type IIB compactified on a Calabi-Yau threefold,
we will instead choose to consider M-theory on a Calabi-Yau fourfold. On the one hand this is
advantageous, since the M-theory action is easier to work with. On the other hand, Calabi-Yau
fourfolds are more complicated than threefolds. Indeed, our goal in the coming chapters is to
generalize known results for threefolds to fourfolds within this setting.

Comparing with Maxwell and Harmonic Forms

Having discussed the need for M-theory, let us spend some words on the 11d action and make
a comparison with the more familiar action for Maxwell theory. Recall that Maxwell theory is
described by the following action:

SMaxwell =

∫
M1,3

−1

4
F2 ∧ ?F2 −

1

2
A1 ∧ ?J1, (1.43)

where A1 is a 1-form which denotes the electromagnetic potential, F2 = dA1 is the associated
field strength, and J1 is a 1-form describing the electromagnetic sources. Let us first consider the
equations of motion for both the 11d supergravity and Maxwell actions, which are obtained by
varying them with respect to Ĉ3 and A1, respectively. This yields the following equations:

11D SUGRA : −d ? F̂4 = ?Ĵ3, Ĵ3 :=
1

2
? (F4 ∧ F4)

Maxwell : − d ? F2 = ?J1.

As expected, the equations are very similar. Let us consider the situation where there are no fluxes,
i.e. we set Ĵ3 = 0. In chapter 2 we will relax this condition by considering flux compactifications. By
analogy with Maxwell theory, this means that we are neglecting all sources, essentially considering
the theory in a vacuum. The equation of motion for Ĉ3 simply becomes

d ? dĈ3 = 0. (1.44)

Recalling the definition of the Laplacian, we have

−∆Ĉ3 = d ? d ? Ĉ3 + ?d ? dĈ3 = d ? d ? Ĉ3, (1.45)

where the second term vanishes by the equations of motion. Moreover, note that both actions enjoy
a gauge symmetry given by

11D SUGRA : Ĉ3 → Ĉ3 + dΛ̂2

Maxwell : A1 → A1 + dΛ,

for any 2-form Λ̂2 or scalar Λ. In particular, since the combination

? d ? Ĉ3 (1.46)

is a 2-form in 11 dimensions, we see that we can fix our gauge such that this term vanishes. In our
analogy with Maxwell theory, this corresponds precisely to the Lorentz gauge. It follows that

∆Ĉ3 = 0,
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As expected, the 3-form Ĉ3 obeys the Laplace equation, i.e. it is a harmonic form.3 Moreover, since

∆ ◦ d = −d ? d ? d = d ◦∆, (1.47)

it follows that F̂4 = dĈ3 is also a harmonic form.

1.5 Compactification of the Ricci Scalar

In this last section, we will use our knowledge of Calabi-Yau moduli spaces to derive the dynamics
of the complex structure moduli by performing the compactification of the Ricci scalar. We follow
the discussion in Appendix D of [33]. Consider the 11-dimensional manifold M1,10 as a product
manifold:

M1,10 =M1,2 × Y4, (1.48)

where Y4 is a Calabi-Yau fourfold and M1,2 is a general Minkowskian manifold. The metric can
then be decomposed as

gMNdx
MdxN = gµν(x)dxµdxν + hab̄dy

adȳb̄ + z̄ ı̄(x)(b̄ı̄)abdy
adyb. (1.49)

Here {ya, ȳā}4a=1 denote the coordinates on Y4 and {xµ}2µ=0 denote the coordinates onM1,2. More-
over hab̄ denotes a constant background metric on Y4 and deviations from it are parametrized exactly
by the complex structure moduli z. For the purpose of this derivation, we neglect the Kähler mod-
uli, since their inclusion does not affect the resulting dynamics of the complex structure moduli.
We are interested in the dimensional reduction of the Ricci scalar using this ansatz for the metric,
whose computation is delegated to appendix B. There the following result is obtained (see equation
B.9)

R11 = R3 +
1

2
(bi · b̄̄)∂µzi∂µz̄ ̄. (1.50)

Here the contraction bi · b̄̄ is defined using the background metric hab̄, see appendix B for the exact
relation. For convenience, we define

Qi̄ :=
1

2

∫
Y4

(bi · b̄̄). (1.51)

Then we obtain the following result for the compactification of the Ricci scalar action:∫
M1,10

d11x
√
−g11 R11 =

∫
M1,2

d3x
√
−g3

(
KR3 +Qi̄∂µz

i∂µz̄ ̄
)
, (1.52)

where K denotes the volume of Y4. At this point, we already see that R11 splits into the three-
dimensional Ricci scalar R3 plus an additional kinetic term for the moduli fields. To bring the
action into the canonical Einstein-Hilbert form we perform a Weyl transformation, under which

gµν → Ω−2gµν (1.53)

and additionally, in d space-time dimensions [33, p. 70]∫
dxd
√
−g Ωd−2R→

∫
dxd
√
−g (R+ (d− 1)(d− 2)∂µ log Ω ∂µ log Ω) . (1.54)

3We refer the reader to appendix A for the exact definition of harmonic forms and the Hodge decomposition
theorem, which we will use in the next chapter.
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and finally √
−g3∂

µ → Ω−1√−g3∂
µ. (1.55)

In particular, since d = 3, we take Ω = K and obtain∫
M1,10

R̂ ? 1 =

∫
M1,2

(
R ? 1 + 2d logK ∧ ?d logK +K−1Qi̄ dz

i ∧ ?dz̄ ̄
)
. (1.56)

Finally, we note that one can relate Qi̄ to the natural metric gi̄ on the complex structure moduli
spaces as follows [5, 39]

Qi̄ = −2Kgi̄. (1.57)

Hence the final result for the compactification of the Ricci scalar can be written as∫
M1,10

1

2
R̂ ? 1 =

∫
M1,2

1

2
R ? 1− gi̄ dzi ∧ dz̄ ̄ + · · · (1.58)

where we have only included the resulting terms depending on the complex structure moduli, since
those are the ones we are interested in. We have succeeded in obtaining the dynamics of these moduli
in the lower dimensions, and crucially we see that they are massless, since the above construction
cannot give rise to a scalar potential. As alluded to in section 1.1, this poses a problem for creating
realistic string theory compactifications, since no massless scalar fields are currently observed. Note
also that generically one will obtain numerous such fields, with the exact number given by h3,1

which can easily be of order 100. We therefore pose the following question

Q1: How can the complex structure moduli be stabilized?

Providing an answer will be the topic of the next chapter, but we will see that the proposed solution
gives rise to many more interesting questions.



Chapter 2

Distributions of Flux Vacua

In chapter 1 we encountered the issue of moduli stabilization. We have seen that the compactification
of the Ricci scalar to lower dimensions yields a number of massless scalar fields whose presence is
not supported by physical observation. This is a general feature of all string compactifications, not
just Type IIB/M/F-theory. However, propagation of other fields in the internal dimensions, known
as fluxes, may give a potential and thereby yield a mass term for the complex structure moduli.
These fluxes are governed by the field strength F4 and can be thought of as higher-dimensional
analogues of the electromagnetic fields of Maxwell theory. They are illustrated in figure 2.1 for a
torus background. For a typical Calabi-Yau fourfold compactification, one can have as many as 10 to
104 different flux components. In the specific setting of flux compactification of F-theory on a Calabi-
Yau fourfold mthe resulting theory is known to be a 4-dimensional theory of N = 1 supergravity.
Such theories are elegantly described in terms of a Kähler potential and a superpotential, the latter
of which is easily related to the flux. However, the many different choices of fluxes give rise to a
rich landscape of possible string vacua, whose explicit construction is in general very complicated.
As such our main concern in this chapter lies with more statistical properties of such vacua and, in
particular, whether they are finite in number.

In section 2.1 we start by discussing the basics of flux compactification, its necessity due to the
tadpole constraint and the effect fluxes have on the underlying geometry through warping. We
quickly see that the inclusion of fluxes naturally leads to a potential for the complex structure
moduli. Then in section 2.2 we introduce the standard setup of N = 1 supergravity in which the

Figure 2.1: Different flux lines running around in the internal dimensions, here illustrated for
the torus. Calabi-Yau fourfolds are expected to have numerous different components which can be
turned on, depending on the sources which are present.

18
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resulting theory is well described and the vacuum structure is given in terms of a superpotential.
We then turn our attention to the statistical properties of such vacua in section 2.3 by deriving
the Ashok-Douglas density and ultimately the index of supersymmetric vacua. The derivation can
be seen as computing particular expectation values in Gaussian ensembles of superpotentials using
constrained two-point functions. The predictions of the Ashok-Douglas density are compared with
exact results for rigid compactifications on Y4 = X3 × T and we spend some time discussing the
details and assumptions that enter the derivation of the Ashok-Douglas density in section 2.4. Most
notably we discuss the quantization of fluxes and the stabilization of the Kähler moduli through
non-perturbative contributions to the superpotential. Finally, given a concrete expression for the
Ashok-Douglas density, we question whether it is integrable over the moduli space, essentially asking
whether the number of string vacua is finite. In section 2.5 we set the stage to answer this question
by a suitable rewriting but leave the remainder of the discussion to chapters 3 and 4.

2.1 Flux Compactification

The Tadpole Constraint, Fluxes and Warped Geometries

In this section we review the basics of flux compactification, the essential properties of fluxes and
how their inclusion generates a potential for the complex structure moduli. First, we recall the
11-dimensional supergravity action 1

S =

∫
M11

1

2
R ? 1− 1

4
F4 ∧ ?F4 −

1

12
C3 ∧ F4 ∧ F4, F4 = dC3. (2.1)

In chapter 1 we have derived the compactification of the Ricci scalar and saw that it resulted in
a kinetic term for the complex structure moduli fields. There we essentially ignored the dynamics
of C3, effectively setting F4 to zero. However, due higher order corrections to the 11-dimensional
supergravity action we are actually forced to consider non-zero values of F4. This can be seen as
follows. One of the higher derivative correction terms is given by [13]

δS =

∫
C3 ∧ I8(R), (2.2)

where I8 is a polynomial of degree 4 in the curvature tensor. One way to obtain this result is to
consider a one-loop scattering diagram in Type IIA involving four gravitons and the Kalb-Ramond
field and lifting this to M-theory[2]. Including this correction, the equation of motion for C3 in the
possible presence of M2-branes2 is given by

d ? F4 =
1

2
F4 ∧ F4 − I8(R) +

∑
i

δM2i , (2.3)

where the sum runs over all positions of the M2 branes. Integrating both sides and noting that the
LHS is a total derivative yields the tadpole constraint

NM2 +
1

2

∫
Y4

F4 ∧ F4 =
χ(Y4)

4!
, (2.4)

where χ denotes the Euler characteristic of Y4 and NM2 denotes the number of M2 branes. Cru-
cially, the tadpole constraint generically enforces a non-zero value of F4 on the internal manifold.

1We now drop the hats in the notation of the 11-dimensional fields.
2Recall that M2 branes are charged under the C3 field.
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+

−

Figure 2.2: A 2-sphere together with a positive charge and a negative charge is depicted. Since the
2-sphere is compact the field lines emitted at the positive charge must end at the negative charge,
they cannot run off to infinity.

Essentially, this constraint arises from the fact that the internal manifold is compact. Indeed, on a
compact manifold the flux lines of e.g. an electric field cannot run off to infinity, see e.g. figure 2.2.
As a result, the total charge on a compact manifold must vanish, or there must be some M2 branes
on which the field lines can end. 3

By a flux we will henceforth mean a non-zero choice of F4 on the internal manifold, and emphasize
the fact that it only has internal components by denoting it by G4 instead. In section 1.4 we
showed that F4 is a harmonic form when imposing the vacuum equations of motion. Decomposing
the Laplace operator as

∆ = ∆M1,3 + ∆Y4 , (2.6)

we see that G4 is a harmonic form on Y4, i.e. ∆Y4G4 = 0. Using the properties of Y4 the Hodge
decomposition theorem4 implies that we may uniquely associate G4 with a cohomology class in
H4(Y4). Although the inclusion of a non-zero G4 takes us outside of the vacuum, it nevertheless
suffices to consider only the cohomology class of G4, since for any 4-cycle γ the value of the integral∫

γ
G4 (2.7)

only depends on the cohomology class [G4] by Stokes’ theorem. In the following we will abuse the
notation somewhat by using the same notation, putting G4 ∈ H4(Y4). One of the implications of
including an internal flux is that the underlying geometry becomes warped. Indeed, because there is

3Following the discussion in [2, p. 484], this is made more precise by rephrasing the tadpole constraint in Type IIB
language, where it takes the form

ND3 +

∫
X3

H3 ∧ F3 =
χ(Y4)

4!
, (2.5)

where X3 is the base of the elliptically fibred Y4. In this setting the RHS can be interpreted as minus the D3-brane
charge, which is induced by the curvature of possibly present D7-branes. As a result, the tadpole constraint can be
interpreted as the vanishing of the total D3-brane charge when including all sources.

4Again, we refer the reader to Appendix A for details on the Hodge decomposition theorem
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a non-trivial coupling between the internal metric and G4 the resulting geometry is often no longer
Ricci-flat. Rather, one finds a metric of the form

ds2 = e2A(y)gµνdx
µdxν + e−2A(y)gab̄dy

adȳb̄, (2.8)

where gab̄ is Ricci-flat. In other words, the internal geometry is conformally Calabi-Yau [31].5 Here
A is called the warp factor, and compactifications of this kind are known as warped compactifications.
Throughout this thesis we will assume that the warping does not influence our results significantly
and we will comment on this where appropriate.

Besides being constrained by the tadpole constraint, flux are additionally quantized due to Dirac
quantization. More precisely, in terms of an integral basis γα of H4(Y4,C), the flux quanta

Nα :=

∫
γα

G4 (2.9)

are integers6. We will denote by N the vector of flux quanta, which has b4 = dim H4(Y4) compo-
nents.

Constructing a Potential

In analogy with Maxwell theory, a choice of G4 corresponds to a (generalized) electromagnetic
field which is present in the internal manifold only. Its kinetics are partly governed by the metric
(present in the Hodge star), which in turn depends on the complex structure moduli. Performing the
integration over the internal manifold in (2.1) therefore yields a potential for the complex structure
moduli of the form

V (z) =
1

V3
b

(∫
Y4

G4 ∧ ?G4 −
χ(Y4)

12

)
(2.11)

which is quadratic in the fluxes [29, p. 5]. Here Vb denotes the volume of the base B3 of the elliptic
fibration Y4. Note that the second term arises from the higher-derivative term in the action. By
considering the extrema of this potential we will be able to stabilize the moduli. In other words,
we have the following answer to the question posed at the end of chapter 1:

A1: The complex structure moduli zi can be stabilized by extremizing the flux-induced
scalar potential V (z), i.e. by setting

∂V

∂zi
= 0. (2.12)

Of course this answer is incomplete, as we have not specified solutions to this equation yet. This
is further complicated by the fact that the scalar potential can take very different forms, since (in
general) there are many flux components that can be turned on. The goal of this chapter is to
address this issue from a more statistical point of view, by asking the question

5This is the case for Type IIB and F-theory compactifications. More subtle complications arise when considering
e.g. flux compactifications of the heterotic string, which requires a non-Kähler background. [2, p.458]

6Up to the shift of a half-integer. More precisely, in [52] it was shown that

G4 −
λ

2
∈ H4(Y4,Z), (2.10)

where λ = p1(Y4)/2 with p1(Y4) the first Pontryagin class of Y4.
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Figure 2.3: (Left) Two different minima z1 and z2 for two different flux induced scalar potentials.
(Right) Schematic positions of the minima z1 and z2 in the complex structure moduli space.

Q2: How are the F-theory vacua, i.e. the minima of V (z), distributed over the moduli
space?

See figure 2.3 for a graphical depiction of this question. Additionally, one might also wonder about
the role of the Kähler moduli in this story and whether the total number of flux vacua is even finite.
We will provide a small discussion regarding the Kähler moduli and other details in section 2.4.
The question of finiteness will be formulated and addressed in chapters 3 and 4 and its answer will
be the main result of this entire work.

2.2 N = 1 Supergravity Formulation

All of the questions that we posed in the previous section are more easily tackled within the frame-
work of N = 1 supergravity. It has been shown in e.g. [27] that flux compactification of F -theory on
a Calabi-Yau fourfold yields a 4-dimensional theory of N = 1 supergravity. The h3,1(Y4) complex
structure moduli zi form the bosonic scalar fields of a chiral multiplet. Let us recall the main data
that comprises an N = 1 theory of supergravity. For a detailed account of supergravity theories,
one may consult [23]. It consists of a triple (C, L,W ), where

• C is a Kähler manifold, called the configuration space, with Kähler potential K and metric
determined by gi̄ = ∂i∂̄̄K.

• L → C is a holomorphic line bundle, whose first Chern class is given in terms of the Kähler
form ω = ∂∂̄K of C as c1(L) = − 1

π [ω].

• W is a holomorphic section of L, called the superpotential.

The superpotential induces a scalar potential V which is given by7

V = eK
(
gi̄DiWDjW − 3|W |2

)
, (2.13)

where
DiW = ∂iW + (∂iK)W, (2.14)

7Here we have set the Planck mass Mpl = 1.
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denotes the Kähler-Weyl covariant derivative. It accounts for the fact that the theory is invariant
under the following Kähler-Weyl transformation

K(z, z̄) 7→ K(z, z̄) + F (z) + F̄ (z̄), (2.15)

for any holomorphic function F (z). Indeed, one readily sees that the metric gi̄ is invariant under
this transformation. Moreover, one can explicitly compute that

[Di, D̄̄] = 2i∂i∂̄̄K, (2.16)

which implies that c1(L) = − 1
π [ω], where ω = ∂∂̄K is the Kähler form.

In the setting of F-theory flux compactification, the configuration space C is given by the complex
structure moduli spaceM =Mcs of the Calabi-Yau fourfold Y4, with the Kähler potential given by
K = Kcs. We emphasize that in the following we ignore the Kähler moduli completely, and discuss
the effects of their inclusion in 2.4.2. By analysing the N = 1 supersymmetry conditions in four
dimensions, it was shown in [32] that the superpotential W arising from a non-zero internal flux G4

is explicitly given by

W =

∫
Y4

G4 ∧ Ω. (2.17)

Intuitively, this is indeed a holomorphic section of a line bundle L, since Ω depends holomorphically
on the complex structure moduli z and H4,0(Y4) is one dimensional. Using 2.17 and the fact that

e−K =

∫
Y4

Ω ∧ Ω̄. (2.18)

it follows that W transforms under Kähler-Weyl transformations as

W (z) 7→ e−F (z)W (z), (2.19)

which in particular implies that V is invariant. To find the vacuum solutions of V in terms of W ,
we note that

∂iV = eK
(
DiDjW − 2δijW

)
DjW. (2.20)

In particular, the equation ∂iV = 0 can be solved by

DiW (z) = 0. (2.21)

Incidentally, this condition results in a supersymmetric vacuum, which we will elucidate shortly.
Note that there may be other solutions to ∂iV = 0, which will generically break supersymmetry.
Although these can be studied, see for example [15], analytical results are very rare and hence we
restrict ourselves to the supersymmetric solutions.

Supersymmetric Vacua

Let us give a few comments on what we mean by supersymmetric vacua, and clear up a possible
confusion which may arise. As with any symmetry, a solution which is supersymmetric is such that
it is invariant under supersymmetry transformations. In four-dimensional N = 1 supergravity this
imposes a condition on the supersymmetry variation of the gravitino field ψi which is of the form
[9, p. 16]

〈δψi〉 =
[
eG/2gi̄∂̄G

]
ε

!
= 0, (2.22)
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where ε parametrizes the supersymmetry transformation and G is the Kähler covariant combination

G = K + log |W |2. (2.23)

In particular, the supersymmetry condition 〈δψi〉 = 0 boils down to

SUSY : ∂iG = 0, or DiW = 0 (2.24)

exactly as stated before. Another way to investigate the supersymmetry properties of a given so-
lution is by looking at the physical gravitino mass. Indeed, in a supersymmetric configuration
particles in the same supermultiplet have the same mass. As such the gravitino, being the super-
partner of the graviton, must be massless in order to preserve supersymmetry. In the Lagrangian
of four-dimensional N = 1 supergravity there appears a potential mass term for the gravitino with
the Kähler-invariant mass parameter |m3/2|2 given by

|m3/2|2 = eK |W |2. (2.25)

In particular, to ensure supersymmetry one might be tempted to additionally impose the condition
W = 0. However, this is only true in a Minkowski background, as is further explained by considering
the value of the scalar potential when DiW = 0, which is

V = −3eK |W |2. (2.26)

Hence for space-times with vanishing cosmological constant, we are also forced to set W = 0. The
situation changes, however, when considering an AdS background. There it is known that m3/2

does not describe the physical gravitino mass. The appropriate interpretation is provided in [17].
Upon further inspection, demanding that the supersymmetry variation of the gravitino vanishes
results in a delicate balance between the curvature of the background and the gravitino mass, in
such a way that

Λ = −3|m3/2|2, (2.27)

whilst the physical gravitino mass remains zero, preserving supersymmetry. Here Λ denotes the
cosmological constant. We refer the reader to [12, section 2] for more details. The upshot of this
discussion is that a supersymmetric vacuum is determined by DiW = 0, without additional condi-
tions imposed on W . As such we allow for both Minkowski (W = 0) and AdS (W 6= 0) vacua.

Some Notation

To close this section, we introduce some more convenient notation. Of utmost importance is the
period vector Π whose components are defined by

Πα :=

∫
γα

Ω, (2.28)

where we recall that γα is a basis of H4(Y4). Although it will not be apparent in this chapter, the
period vector will be crucial when investigating certain limits in the moduli space as described in
chapters 3 and 4. We also introduce the intersection form η as

ηαβ :=

∫
Y4

γα ∧ γβ, (2.29)

which is symmetric for fourfolds. Then the Kähler potential can be written as follows

e−K =

∫
Y4

Ω ∧ Ω̄ = Π†ηΠ. (2.30)
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Moreover, the superpotential is given by

W (z) = NT ·Π(z), (2.31)

where we stress that the z-dependence resides within the period vector. Finally the tadpole con-
straint takes the form

NT ηN = L∗ − 2NM2, L∗ =
χ(Y4)

12
. (2.32)

2.3 The Ashok-Douglas Density

Investigating the possible flux vacua arising from flux compactification is essential for string phe-
nomenology. Indeed, quantities such as the cosmological constant and Yukawa couplings are ex-
pressed in terms of the complex structure moduli. As a result, the choice of vacuum induces, for
instance, a particular value for the cosmological constant which may then be tested against reality.
Unfortunately, to check what kind of vacua occur by going through all Calabi-Yau fourfolds individ-
ually is not feasible. Indeed, only in a handful of cases are we able to obtain an explicit expression
for the periods by solving the Picard-Fuchs equations. As such, Ashok and Douglas instigated a
more statistical approach to studying flux vacua. In particular, they derived the general formula [1]

det(R+ ω) (2.33)

for the density of supersymmetric flux vacua on the moduli space, expressed in terms of the curvature
R and Kähler two form ω. In this section, we will reproduce their result in detail following the
original work as presented in [1, 14]. We then check the predictions it makes for the flux vacua of
rigid compactification on Y4 = T×X3. In the next section we comment on the range of validity of
the result, the assumptions that are made and the interpretation. Finally, while our current setup
involves F-theory compactifications on a Calabi-Yau fourfold, one can perform the exact same
calculation for e.g. Type IIB on a Calabi-Yau orientifold. More precisely, the statements below
depend only on the N = 1 supergravity data, together with a whole set of flux quanta leading to
an ensemble of superpotentials (as opposed to a single choice).

2.3.1 Counting Flux Vacua

We recall that a flux is characterized by a choice of N satisfying the tadpole constraint. By allowing
for any number of M2 branes, the tadpole constraint can be interpreted as a bound

NT ηN ≤ L∗, (2.34)

where L∗ is determined by the topological properties of the internal manifold. For each choice of
N, we denote

L := NT ηN. (2.35)

Let Nvac(L ≤ L∗) denote the total number of flux vacua8 satisfying (2.34). Then one can implement
the tadpole constraint using the Heaviside θ-function as follows

Nvac(L ≤ L∗) =
∑
vac

θ(L− L∗)

=
1

2πi

∑
vac

∫
C

dα

α
eα(L∗−L)

=
1

2πi

∫
C

dα

α
eαL∗N(α)

8From here on out, whenever we say flux vacua we mean only the supersymmetric ones satisfying DiW = 0.
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where the second equality follows from the residue theorem and the contour C runs over the imag-
inary axis, passing zero from the right. Here

N(α) =
∑
vac

e−αNT ηN, (2.36)

is the weighted sum of all flux vacua, which are characterized by DiW = 0. We can incorporate
this constraint as follows. Recall that for a function f of one variable, the number of zeroes of f
can be written as

#{x|f(x) = 0} =

∫
dx δ(f(x))|f ′(x)|, (2.37)

here the factor |f ′(x)| is required to cancel the same factor which arises from the change of variables
f(x) 7→ x. In our setting we count the zeroes of DiW , weighted by exp(−αNT ηN). Hence the
proper generalization of this formula yields

N(α) =

∫
Mcs

d2z

∫
dN e−αNT ηNδ(DiW )|detD2W |, (2.38)

where we approximated the sum over flux by an integral. Approximating the discrete sum over
fluxes by an integral over the whole moduli space is quite non-trivial and we will comment on its
validity in section 2.4.1. For now, we simply continue with this assumption. We have also defined

D2W :=

(
DiDjW DiD̄̄W

D̄ı̄DjW D̄ı̄D̄̄W

)
, (2.39)

which can be interpreted as the fermionic mass matrix [14, p. 4]. By rescaling
√
αN 7→ N we see

that N(α) scales as α−b/2, where use the short-hand b := b4 to denote the dimension of the flux
vector N. This gives

Nvac(L ≤ L∗) =
N(α = 1)

2πi

∫
dα

α
α−b/2eαL∗ . (2.40)

Expanding the exponential as a power series, we again use the residue theorem to see that only the
term (αL∗)

b/2 yields a contribution, i.e. 9

Nvac(L ≤ L∗) =
L
b/2
∗

(b/2)!
N(α = 1). (2.41)

Finally, we note that N(α = 1) can be written as follows:

N(α = 1) =

∫
Mcs

d2z

∫
dµ[W ]δ(DiW )|detD2W | (2.42)

where

dµ[W ] =

∫
dN δ

(
W −NT ·Π

)
e−NT ηN, (2.43)

carries the interpretation of the distribution function of a Gaussian ensemble of superpotentials,
weighted by the intersection form η. In the following section we will investigate this ensemble in
detail. As a final remark, we note that Nvac behaves exponentially as a function of L∗, with exponent
given in terms of the number of flux components that can be turned on. Hence in the limit of large
L∗, we expect the prefactor to dominate over N(α = 1), if it is finite.

9Note that b is defined as the real dimension of the complex vector space H4(Y4), in particular b is even.
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2.3.2 Distributions of Flux Vacua

In the previous subsection we have argued that the total number of flux vacua can be expressed in
terms of a Gaussian ensemble of superpotentials as in equation (2.43). The next step is to evaluate
(2.42) explicitly. One complication is the the presence of the |detD2W | term. To simplify the
problem, we will instead consider the supersymmetric index defined by

Ivac(L ≤ L∗) =
L
b/2
∗

(b/2)!
I(α = 1). (2.44)

where

I(α = 1) =

∫
Mcs

d2z

∫
dµ[W ]δ(DiW ) detD2W, dµ[W ] =

∫
d2N δ

(
W −NT ·Π

)
e−N†ηN,

(2.45)
where for generality and convenience we allow N to take complex values10. The difference between
Nvac and Ivac is that the latter does not contain the absolute values signs around detD2W . As such
Ivac will only give a lower bound on the total number of flux vacua, as it counts each vacuum with
a sign. In section 2.4 we will comment in more detail on the relation between the two. The upshot
is that the main features of Nvac are already described by Ivac. Moreover, in this section we will be
able to compute an explicit formula for Ivac. We denote an expectation value of a quantity X in
this ensemble by

〈X〉 =
1

Z0

∫
dµ[W ]X, Z0 =

πb

det η
(2.47)

In particular, the supersymmetric index density dµ[z] we are interested in can be written as

dµ[z] = Z0〈δ(DiW ) detD2W 〉. (2.48)

The Two-Point Function and a Simpler Version of dµ

The first important quantity we should consider is the two-point function, defined by

G(z1, z̄2) := 〈W (z1)W (z̄2)〉. (2.49)

Since we are working in a Gaussian ensemble, it is possible to derive an explicit expression for the
two-point function as follows

G(z1, z̄2) =
1

Z0

∫
d2N δ

(
W −NT ·Π

)
e−N†ηNW (z1)W (z̄2)

= Πα(z1)Πβ(z̄2)× 1

Z0

∫
d2N NαN̄βe−N†ηN

= Πα(z1)Πβ(z̄2)(η−1)αβ̄

= eκK(z1,z̄2),

where κ = −1 and K(z1, z̄2) is precisely the Kähler potential on the moduli space, reinterpreted
as a function of z1 and z̄2. Here in the second line we performed the integral over W and W

10To be explicit, the measure d2N is a shorthand for

d2N = Πb
α=1dN

αdN̄α. (2.46)
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using the δ-function. The remaining integral in the third line is standard and yields a factor of
Z0(η−1)αβ giving the above result. We keep κ general for now since it will aid us in computations
by grouping terms in powers of κ. At the end we will set κ = −1. Crucially, we see that G(z1, z̄2)
is completely determined by the Kähler potential K. Furthermore, by Wicks theorem we know
that most expectation values can be reduced to an expression involving only G(z1, z̄2), which is
now completely determined by the geometry of Mcs. As a result, we expect the final answer to be
elegantly expressed in terms of geometrical quantities.

As a first step towards computing dµ[z], let us first consider the simpler quantity 〈detD2W 〉, but
we let W depend on z1 and W on z̄2. Later we will consider the limit z1 = z2. We start by using
a trick familiar from field theory calculations. Let {θi, θ̄ı̄} and {ψi, ψ̄ı̄}, be two sets of Grassmann
variables, collectively denoted by θ and ψ. Then we can express the determinant of the matrix
D2W as follows:

detD2W (z1, z̄2) =

∫
d2θd2ψ exp

[
−θTD2W (z1, z̄2)ψ

]
(2.50)

or

detD2W (z1, z̄2) =

∫
d2θd2ψ exp

[
−θiψjDiDjW (z1)− θ̄ı̄ψjD̄ı̄DjW (z1) + c.c.

]
, (2.51)

where c.c. denotes the complex conjugate of the terms before it, which depends only on z̄2. We can
now evaluate the expectation value in the Gaussian ensemble as follows:

〈detD2W 〉 =
1

Z0

∫
d2Nd2θd2ψ exp

[
−N †ηN − θiψjNT ·DiDjΠ(z1)− θ̄ı̄ψjNT · D̄ı̄DjΠ(z1) + c.c.

]
︸ ︷︷ ︸

(∗)

,

(2.52)
where we have already performed the integral over W using the delta-function. The next step is to
complete the square in the exponential factor, which is achieved by the following expression

(∗) = −
(
N + θiψ̄̄η−1DiD̄̄Π̄(z̄2) + θ̄ı̄ψ̄̄η−1D̄ı̄D̄̄Π̄(z̄2)

)T
η(

N̄ + θ̄k̄ψlη−1D̄k̄DlΠ(z1) + θkψlη−1DkDlΠ(z1)
)

+ (∗∗)

where (∗∗) denotes the four quadratic terms in Π. An example of such a term is

θiψ̄̄θ̄k̄ψl(DiD̄̄Π
†(z̄2))η−1(D̄k̄DdΠ(z1)) = θiψ̄̄θ̄k̄ψlD1iD̄1̄̄D̄2̄k̄D2lG(z1, z̄2), (2.53)

where the equality follows directly from the definition of G(z1, z̄2). One easily sees that all terms in
(∗∗) are expressed in terms of covariant derivatives of G(z1, z̄2), hence we introduce the following
notation

F̃AB···|MN ···(z1, z̄2) := e−κK(z1,z̄2)D1AD1B · · ·D2MD2N · · ·G(z1, z̄2), (2.54)

where the indices can be both holomorphic and anti-holomorphic. Then the four quadratic terms
are given by

(∗∗) = eκK(z1,z̄2)
[
θiψ̄̄θ̄k̄ψlF̃i̄|k̄l + θiψ̄̄θkψlF̃i̄|kl + θ̄ı̄ψ̄̄θ̄k̄ψlF̃ı̄̄|k̄l + θ̄ı̄ψ̄̄θkψlF̃ı̄̄|kl

]
(2.55)

Having completed the square, we shift the N integrand in (2.52) and perform the (now trivial)
integration over N, which yields a factor Z0. We are then left with an integration of the terms in
(**) over the Grassmann variables as

〈detD2W 〉 =

∫
d2θd2ψ exp

[
eκK(z1,z̄2)

(
θiψ̄̄θ̄k̄ψlF̃i̄|k̄l + θiψ̄̄θkψlF̃i̄|kl + θ̄ı̄ψ̄̄θ̄k̄ψlF̃ı̄̄|k̄l + θ̄ı̄ψ̄̄θkψlF̃ı̄̄|kl

)]
.

(2.56)
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Imposing DiW = 0 and onto the Real dµ

We now turn to the real supersymmetric index, which imposes the additional constraint DiW =
0. As a result, instead of using the two-point function G(z1, z̄2), we should instead consider the
constrained two-point function defined by

Gz0(z1, z̄2) := 〈W (z1)W (z̄2)〉DiW (z0)=D̄W (z̄0)=0. (2.57)

Let us compute this quantity. First, we note that we can express the constraint DiW (z) = 0 in
terms of a δ-function as follows:

Gz0(z1, z̄2) =
1

Z

∫
dµ[W ] δn(DiW (z0))δn(D̄W (z̄0))W (z1)W (z̄2)

=
1

Z

∫
d2N δ(W −NT ·Π)e−NT ηN̄δn(DiW (z0))δn(D̄W (z̄0))W (z1)W (z̄2),

where instead of Z0 we must now normalize by the constrained partition function given by

Z =

∫
dµ[W ]δn(DiW )δn(D̄W ) (2.58)

Next, we use a trick. Recall the following integral expression for the δ-function:

δ(x) ∼
∫
dλ eixλ. (2.59)

In our setting, we introduce pairs of Lagrange multipliers {λi, λ̄ı̄}, collectively denoted by λ and
write 11

δn(DiW (z0))δn(D̄W (z̄0)) ∼
∫
d2λ eiλ

iDiW (z0)+iλ̄̄D̄̄W (z̄0). (2.60)

Performing the integration over the remaining δ-function sets W = NT ·Π, hence we obtain

Gz(z1, z̄2) =
1

Z0

∫
d2N d2λ exp

[
−NT ηN̄ + iλiNT ·DiΠ(z0) + iλ̄̄D̄̄Π̄

T (z̄0) · N̄
]
NT ·Π(z1)N̄T ·Π(z̄2).

(2.61)
As before, we simplify the term in brackets by completing the square:

−NT ηN̄ + iλiNT ·DiΠ(z0) + iλ̄̄D̄̄Π̄
T (z̄0) · N̄ = −

(
N− iλ̄̄η−1D̄̄Π̄(z̄0)

)T
η
(
N̄− iλiη−1DiΠ(z0)

)
− λiλ̄̄D̄̄Π̄

T (z̄0)η−1DiΠ(z0).

Note that this last term can be expressed in terms of the original two-point function:

D̄̄Π̄
T (z̄0)η−1DiΠ(z0) = D̄̄DiG(z0, z̄0) (2.62)

We then shift the integrand
N 7→ N + iλ̄̄η−1D̄̄Π̄(z̄0). (2.63)

In particular, we have

NT ·Π(z1) 7→ NT ·Π(z1) + iλ̄̄D̄̄Π̄(z̄0)T η−1 ·Π(z1) = NT ·Π(z1) + iλ̄̄D̄0̄̄G(z1, z̄0), (2.64)

11Since the overall normalization of the integral expression of the δ-functions will drop out, we will ignore it here
for notational convenience.
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Inserting the above results into our expression for Gz0(z1, z̄2), we obtain

Gz0(z1, z̄2) =
1

Z

∫
d2N d2λ exp

[
−NT ηN̄− λiλ̄̄DiD̄̄G(z0, z0)

]
×
(
NT ·Π(z1) + iλ̄̄D̄0̄̄G(z1, z̄0)

)
×
(
N̄T · Π̄(z2) + iλiD0iG(z0, z̄2)

)
Noting that only terms even in N contribute and using the results above, this simplifies to:

Gz0(z1, z̄2) = G(z1, z̄2)− D̄0̄̄G(z1, z̄0)D0iG(z, z̄2)
1

Z

∫
d2λ λiλ̄̄e−λ

iλ̄̄DiD̄̄G(z0,z0)

∫
d2N e−N†ηN.

(2.65)
Again, the integral over d2λ is standard and yields a factor (DiD̄̄G(z, z̄))−1 and Z. The final result
for the constrained two-point function is

Gz0(z1, z̄2) = G(z1, z̄2)− D̄0̄̄G(z1, z̄0)(DiD̄̄G(z0, z̄0))−1D0iG(z0, z̄2) (2.66)

Finally then, the supersymmetric index can be written as follows:

dµ[z0] =
Z0

Z

∫
d2θd2ψ exp

(
eκK(z0,z̄0)

[
θiψ̄̄θ̄k̄ψlFi̄|k̄l + θiψ̄̄θkψlFi̄|kl + θ̄ı̄ψ̄̄θ̄k̄ψlFı̄̄|k̄l + θ̄ı̄ψ̄̄θkψlFı̄̄|kl

])
,

(2.67)
where now

FAB···|MN ··· := e−κK(z0,z̄0)D1AD1B · · ·D2MD2N · · ·Gz0(z1, z̄2)
∣∣∣
z0=z1=z2

(2.68)

is expressed in terms of the constrained two-point function. The computation of these quantities is
performed in the appendix D, here we state the results:

Fi̄|k̄l = κ2gi̄gk̄l, Fı̄̄|kl = −κRı̄k̄l + κ2 (gı̄kg̄l + gı̄lg̄k) , Fi̄|kl = Fı̄̄|k̄l = 0. (2.69)

Additionally, using the exact same procedure as done above for computing Gz0(z1, z̄2), one can find
the following expression for Z

Z = πnκnenκK det g, (2.70)

which is again elaborated upon in the appendix D. Inserting these results into dµ[z0] and using the
anti-commutativity of the Grassmann variables, we obtain

dµ[z0] =
Z0

Z

∫
d2θd2ψ exp

(
eκK(z0,z̄0)

[
θ̄ı̄ψ̄̄θkψl(−κRı̄k̄l + κ2gı̄kg̄l)

])
, (2.71)

Let {eiα, ē
̄

β̄
} be an orthonormal frame w.r.t. the metric g. Then we perform a change of variables

θi 7→ eiαθ
α, d2θ 7→ det g d2θ, (2.72)

such that

dµ[z0] = Z0π
−nκ−ne−nK(z0,z̄0)

∫
d2θd2ψ exp

(
eκK(z0,z̄0)

[
θ̄ᾱψ̄̄θγψl(−κRı̄k̄lēı̄ᾱekγ + κ2δᾱγg̄l)

])
= Z0π

−n
∫
d2θd2ψ exp

(
θ̄ᾱψ̄̄θγψl(−Rı̄k̄lēı̄ᾱekγ + κδᾱγg̄l)

)
=
πb−n

det η
det(−R+ κω · 1),
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where 1 denotes the unit matrix in End(TMcs) and we recall that R and ω denote the curvature
and Kähler two-form on Mcs, respectively. Here a comment on the interpretation of the above
formula is in order. Recall that the curvature two-form R is a map

R : TMcs × TMcs → End(TMcs), (2.73)

where End(TMcs) is the space of endomorphisms of the tangent bundle of Mcs. For Kähler mani-
folds, it is given in terms of the metric g by

Rli̄k = −∂̄̄
(
glm̄∂igkm̄

)
, (2.74)

where i, ̄ denote the two-form indices, and l, k the matrix indices of R. On the other hand, ω is
simply a two-form on Mcs, which explains why it should be multiplied with a unit matrix. Hence
the determinant is understood to act on the matrix indices of R + ω · 1. Moreover, we recall that
ω is precisely the curvature of the line bundle L of which W is a section. Therefore R + ω is the
curvature of the vector bundle TMcs ⊗ L of which DiW is a section. In fact, using the complex
structure of Mcs one can show that [13, p. 104]

π−n det (R+ ω · 1) = e(∇), (2.75)

where e(∇) is the Euler class of TMcs⊗L. Though we will not use this specific identity, it highlights
the fact that the distribution is determined by general geometrical properties of Mcs.

The Final Result

Finally, we return to the the supersymmetric index. Inserting the above result for the index density,
setting κ = −1 and returning to real variables yields:

Ivac(L ≤ L∗) =
1√

det η

(πL∗)
b/2

(b/2)!
π−n

∫
Mcs

det(−R− ω · 1) (2.76)

Having obtained the final result, let us make some remarks regarding its interpretation

1. The factor (πL∗)
b/2/(b/2)! can be interpreted as the volume of a b/2 dimensional sphere of

radius
√
L∗ in flux space.

2. In regions where the curvature is negligible, one sees that det(R+ ω · 1) is simply the volume
form on Mcs. In this case, we have

Isusy vac(L ≤ L∗) ∼ Vol
(
Bb/2(

√
L∗)
)
×Vol(Mcs) (2.77)

Very roughly, we can interpret this by saying that the supersymmetric index is given by
multiplying the number of fluxes within the sphere Bb/2(

√
L∗), set by the tadpole constraint

and the number of cycles on Y4, with the size of the moduli space (this latter part is sensible
because the flux vacua are generally believed to lie at isolated points, see [18, p. 28].

3. Finally, the factor det(R+ω · 1) is not very surprising, on mathematical grounds. Indeed, we
have already mentioned that R+ ω · 1 is precisely the curvature of TMcs ×L, of which DiW
is a section. Since we are imposing the constraint DiW = 0, a natural top form to integrate
overMcs is the highest Chern class of TMcs ×L, which is precisely det(R+ ω · 1). In fact, if
Mcs were smooth this would be precisely the statement of the Chern-Gauss-Bonnet theorem.
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However, sinceMcs is not smooth, it is interesting that a similar result is still obtained. This
is likely due to the fact that we consider an ensemble of superpotentials, i.e. by averaging
over all superpotentials the possible singular behaviour is smeared out and we obtain a result
similar to the Chern-Gauss-Bonnet theorem.

Returning to our original question posed in section 2.2, we have obtained the following answer

A2: The distribution of supersymmetric vacua (counted with signs) over the complex
structure moduli space is given by the Ashok-Douglas density

dµ = det(R+ ω · 1). (2.78)

Note that we slightly abuse the notation here by not including the constant pre-factor πb−n/ det η.
Investigating the above expression for the AD-density will be the main focus of the rest of the work,
as we will also discuss in section 2.4.3. First, let us turn to a concrete example/application of the
above results.

2.3.3 Example: The Torus

In section 1.3.2 we discussed the complex structure moduli space of the torus in detail. Morally,
we can think of this example as appearing in a rigid compactification of the form Y4 = X3 × T,
where all the moduli of X3 are fixed and we only need to consider the torus. Within this setting
we will contrast the abstract derivation of the Ashok-Douglas density above with a very concrete
description of possible flux vacua on a torus. We will see that the result agree.

The Exact Result

For this derivation we closely follow the discussion in [1] First, we note that any point z ∈ T can
be written as

z = ξ1 + τξ2, ξ1, ξ2 ∈ [0, 1]. (2.79)

In particular, the holomorpic (1,0) form is given by

Ω = dz = dξ1 + τdξ2, (2.80)

and the Kähler potential is

K(τ, τ̄) = − log

[
i

∫
T

Ω ∧ Ω̄

]
= − log [i(τ̄ − τ)] , (2.81)

which satisfies

∂τK =
1

τ̄ − τ
, ∂̄τ̄K = − 1

τ̄ − τ
(2.82)

Next, we expand Ω in terms of the canonical cocycles dξi. In terms of this basis, the period vector
Π is simply given by

Π =

(
1
τ

)
. (2.83)

As a result, the superpotential becomes

W (τ) = A+Bτ, N =

(
A
B

)
, (2.84)
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for two integer complex numbers A = a1 + ia2, B = b1 + ib2. The intersection form η in the chosen
basis is given by

η =

(
0 −1
1 0

)
. (2.85)

Although the Euler character of the torus vanishes, we can still implement the tadpole condition
by hand by setting 12

1

2
N†ηN = Im(AB̄) = L. (2.86)

The condition for a supersymmetric vacuum DτW = 0 then becomes

DτW = 0 ⇐⇒ τ̄ = −A
B
. (2.87)

At this point we should recall the SL(2,Z) invariance of the superpotential. Indeed, we can make
two transformations

τ 7→ τ + C, τ 7→ Dτ, (2.88)

for suitable choices of C,D such that a2 = 0 and 0 ≤ b1 < a1. In particular, the tadpole constraint
becomes

a1b2 = L. (2.89)

As a result, a choice of flux is specified by

1. An integer a1 dividing L, which then determines b2 via the tadpole condition.

2. An integer b1 such that 0 ≤ b1 < a1, hence taking |a1| possible values.

Moreover, the cases a1 > 0 and a1 < 0 are identical, hence the total number of flux vacua for a
given L is

Nvac(L) = 2
∑
k|L

k =: 2σ(L), (2.90)

where σ(L) is the divisor function satisfying the asymptotic behaviour [34, p. 266]∑
L≤L∗

σ(L) =
π2

12
L2
∗ +O(L∗ logL∗). (2.91)

In particular, the total number of flux vacua with L ≤ L∗ is given by

Nvac(L ≤ L∗) =
π2

6
L2
∗ +O(L∗ logL∗). (2.92)

Comparing with the Ashok-Douglas Index

We now compare this with the result from section 2.3.2. Using the expression for the Kähler
potential, we have

gτ τ̄ = ∂τ ∂̄τ̄K = − 1

(τ − τ̄)2
, (2.93)

which implies that

ω = − i
2

dτ ∧ dτ̄
(τ − τ̄)2

, R = −2ω (2.94)

12For convenience we have redefined L 7→ 2L in the tadpole constraint, note that this will also affect the formula
for the index density 2.76.
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Figure 2.4: Solutions to DτW = 0 for the torus, with L∗ = 150. Figure taken from [14, p. 38].

Inserting these results into (2.76), we obtain

Ivac(L ≤ L∗) =
(2πL∗)

2

2!
π−1

∫
F

i

2

dτ ∧ dτ̄
(τ − τ̄)2

= 2πL2
∗

∫
F

d2τ

(τ − τ̄)2

=
π2

6
L2
∗,

where we have used the fact that ∫
F

d2τ

(τ − τ̄)2
=

π

12
(2.95)

for the fundamental domain of the torus [1, p. 15]. We see that the index predicted by the Ashok-
Douglas density coincides with (2.92).

To close this section, we point the reader to figure 2.4, where the exact solutions to DτW = 0, i.e.
the possible flux vacua, are plotted. The actual distribution shows a much richer behaviour than
predicted by the Ashok-Douglas density. Nevertheless, the two agree on the total number of flux
vacua when L∗ is large. Especially interesting is the structure of the distribution around integer
points τ = ni. At the centre of these points there is a large degeneracy, e.g. at τ = 2i there are 240
flux vacua, whereas in a small neighbourhood around them no vacua are present. This behaviour
comes from the underlying discreteness of the fluxes, which we have so far neglected. In the next
section we will discuss this in detail.
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2.4 Discussion and Interpretation

In this section we discuss some of the assumptions we have made in the derivation of the index
density, most notably ignoring the quantization of fluxes and the Kähler moduli, as well the inter-
pretation one should give to index density and the predictions for numbers of vacua it provides.

2.4.1 Quantization of Fluxes

In the derivation of 2.38 we have ignored the fact that fluxes are quantized, by approximating the
sum over fluxes by an integral. This can only be valid in certain regimes, which we discuss now,
following [1, 14].

First, the sum in N (α) runs over all supersymmetric flux vacua, unconstrained by the tadpole
condition, i.e. satisfying DiW = 0. This condition is scale-invariant, i.e. invariant under

√
L∗N 7→

N. In particular, for a function f depending on N, we expect that∑
N∈Zb

f(N) =
∑

N∈(Z/
√
L∗)b

f

(
N√
L∗

)
, (2.96)

see also [1, p. 24]. Therefore, for large
√
L∗ we expect that the integral provides the leading behaviour

to the discrete sum, since the spacing between consecutive values of N becomes small. By large we
mean large compared to the number of fluxes b Indeed, suppose L∗ ∼ b, then many cycles will have
either zero or one flux, hence the discreteness cannot be ignored. 13 In the more extreme case of
L∗ � b, we can readily see that the approximation breaks down, since then the expression in 2.76
essentially predicts no vacua at all, due to the b! factor (in regions where the curvature is negligible).

A Geometrical Picture

We can make the above statements a bit more precise by considering the geometry of the flux space as
a subset of Rb. Denote by S the subspace of Rb containing the vacua satisfying NT ·DiΠ = DiW = 0.
Then by scale invariance λS = S, so S can be viewed as a cone. Denote by S∗ ⊆ S the subspace
containing vacua which additionally satisfy the tadpole constraint. This acts as a positive definite14

constraint on S, so S∗ is roughly the part of S having radius
√
L∗. Having described S∗, the question

now is whether its volume V is a good approximation to the number of lattice points N∗ it contains.
The leading correction is given by the surface area A of S∗, i.e.

N∗ = L
b/2
∗

(
V + L

−1/2
∗ A+O(L−ε)

)
, ε > 0, (2.97)

see also [14, p. 37]. In particular, for V to be a good approximation, we need two conditions:

L
b/2
∗ V � 1, V � L

−1/2
∗ A. (2.98)

In geometrical terms, these conditions amount to saying that the cone should be well-aligned with
the lattice, and that the width of the cone should be larger than the spacing between the lattice
points, which scales inversely with

√
L∗ as discussed above. This is also exemplified in figure 2.5

13Here we call upon the intuition that the tadpole constraint (hence L∗) gives an upper bound on the number of
flux lines that can run through the compact space Y4, which is determined by its topology through the Euler character
χ.

14This is a little tricky, since η is an indefinite form. However, in [1], page 21, it is claimed that one can make a
subtle argument that NT ηN > 0, so this statement makes sense.
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S

S ′

Figure 2.5: Two examples of cones S and S′ in a b = 2 dimensional flux space. Even though the
opening angles of the cones are identical, the amount of lattice points contained in S and S′ within
a circle of radius L∗ = 4 differs (three versus one, respectively) due to the different alignments with
the lattice.

for a two-dimensional flux space. We see that indeed for small L∗ the cone S′ contains significantly
fewer lattice points that S due to its misalignment with the lattice. Moreover, within the circle of
radius

√
L∗ = 4 the width of S′ is less than the spacing between the lattice points. Hence in this

example neither of the conditions in (2.98) are satisfied.

It is now argued in [14] that by taking a sphere of radius r in moduli space, one can show that

A

V
∼
√
b

r
. (2.99)

In other words, the second condition can be phrased in terms of the number of fluxes b as

L∗ �
b

r2
(2.100)

This is in agreement with our earlier discussion and additionally makes the region in moduli space
under consideration explicit. We end this subsection by referring the reader to [21, Thm. 1.8],
where an estimate for the error produced by passing from a sum to an integral in 2.38 is shown to

be O(L
−1/2
∗ ), in accordance with 2.97.
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2.4.2 The Kähler Moduli

In our derivation of the index density we have essentially ignored the presence of the Kähler moduli,
in particular the fact that their presence changes the Kähler potential and therefore the expression
for the scalar potential and its vacuum structure. The goal of this subsection is to argue that
the inclusion of the Kähler moduli does not affect our analysis, provided that one introduces non-
perturbative corrections to the superpotential which depend on the Kähler moduli. Moreover, as
discussed in [1, 14, 18], these non-perturbative effects can be used to stabilize the Kähler moduli.

Tree-level Kähler Moduli and No-Scale Structure

For simplicity we consider a single Kähler modulus ρ, which can be interpreted as an overall (com-
plexified) volume factor. Dimensional reduction to four dimensions produces a Kähler potential for
ρ given by [24]

K(ρ, ρ̄) = −3 log [−i(ρ− ρ̄)] . (2.101)

Let us first discuss the effect of this additional Kähler potential in the absence of non-perturbative
effects. Since (for now) W is independent of ρ, we see that

DρW = (∂ρK)W. (2.102)

In particular, we have

gρρ̄|DρW |2 = −(ρ− ρ̄)2

3

∣∣∣∣ 3W

(ρ− ρ̄)

∣∣∣∣2 = 3|W |2. (2.103)

As a result, the scalar potential simplifies to

V = eK
(
gab̄DaWDbW − 3|W |2

)
= eKgi̄DiWDjW, (2.104)

where the indices a, b̄ run over the complex structure moduli plus ρ, whereas the indices i, ̄ only
run over the complex structure moduli. Crucially, the final expression is manifestly positive semi-
definite and is of no-scale structure [11]. This means that the vacuum structure is independent of
the volume modulus ρ. Moreover, the condition of a supersymmetric vacuum DiW = 0 implies
V = 0, hence the only possible vacua are Minkowski. This poses two issues: First, there seems
to be no mechanism to stabilize the volume modulus, since it does not appear in the potential.
Second, for reasons outlined in [18, p. 13], Minkowski vacua are much harder to study, since the
condition DρW = 0 additionally imposes W = 0, and it is in fact advantageous to include AdS
vacua as well. Both these problems can be addressed by considering non-perturbative corrections
to the superpotential W .

Non-Perturbative Corrections to W

Recall that in section 2.1 we stated that the superpotential W0 is given by 15

W0 =

∫
Y4

G4 ∧ Ω, (2.105)

which manifestly only depends on the complex structure moduli, i.e. it does not depend on the
Kähler moduli. Due to the nonrenormalization theorem for superpotentials, the expression for W
is valid to all orders in perturbation theory [2, p. 474]. However, in [36] it is argued that for the

15We now change notation from W to W0 to emphasize that the complete superpotential W is given by W0 plus
some correction δW , as we introduce shortly.
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volume modulus ρ there do exist non-perturbative corrections to the superpotential which are of
the form

δW = Aeiaρ, (2.106)

and can be induced due to e.g. D3-brane instantons and gluino condensation. Here A and a are
determined by the precise details of these constructions. For simplicity we take a,A to be real. The
complete superpotential is then given by

W = W0 + δW, (2.107)

where W0 is the complex structure moduli dependent superpotential. Crucially, ∂ρW 6= 0 hence
the scalar potential no longer has a no-scale structure. In particular, at a supersymmetric vacuum
DaW = 0 one finds

V = −3eK |W |2, (2.108)

which for W 6= 0 results in a negative cosmological constant Λ = −3eK |W |2, hence AdS vacua are
possible. In short, we see that the inclusion of the Kähler moduli together with non-perturbative
corrections to the superpotential results in a very similar situation as simply ignoring the Kähler
moduli altogether. This justifies the fact that we only impose DiW = 0 in our derivation of the
index density.

To see how the volume modulus can be stabilized, one computes

DρW = 0 ⇐⇒ W = −2

3
aAeiaρIm ρ, (2.109)

where W is evaluated at the minimum. For small negative W0 this has a self-consistent solution
Im ρ → ∞, i.e. the large volume limit. It is self-consistent in the sense that in this limit the
correction δW is exponentially suppressed. Moreover, the scalar potential is given by

V = −3eK |W |2 = −a
2A2

6

e−2aIm ρ

Im ρ
(2.110)

The construction described above was first realized in the KKLT scenario [36], where additionally
a number of anti-D3 branes was added to the setup so that the resulting vacuum energy is in fact
small and positive. This was one of the first string theoretical constructions which yielded a dS
vacuum with a phenomenologically acceptable cosmological constant.

2.4.3 Interpretation of the Index Density

Estimating the Number of Flux Vacua

As mentioned before, we have chosen to compute the index of supersymmetric vacua as opposed
to the actual number, because of computational complexity. Of course, since the index counts the
number of supersymmetric vacua with signs, this will merely provide a lower bound on the total
number of supersymmetric vacua. In [14, p. 9], the author claims that typically the actual index is
equal to the index density times a bounded function greater than one. This is explicitly verified in
the one-dimensional moduli space, in the conifold and large complex structure limit, see equations
(3.83) and (3.84) of [14, p. 26]. Additionally, in [14] an interesting relation is mentioned between
the index and stabilization of Kähler moduli is mentioned. It is stated that the difference between
the index and the actual number of vacua in fact measures the number of Kähler stabilized vacua.
For our purposes, the conclusion here is that if the index of supersymmetric vacua is finite, then
the actual number of such vacua is also expected to be finite.
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Continuing on with the assumption that the index density gives a good approximation to the actual
number of flux vacua, let us plug in some typical numbers. Considering a simplified model of
Y4 = X3×T, for some Calabi-Yau threefold X3, we have typical numbers of b = 600 and L∗ = 2000,
see e.g. [13, p. 106], leading to the infamous result

Ivac ≈ 10500 ×
∫

det(R+ ω · 1). (2.111)

In other words, a huge number of flux vacua is predicted. Perhaps it is good to emphasize that this
is an estimate for a single choice of Calabi-Yau background. In general there are still many choices
of topologically different Calabi-Yau’s. This shows the vast complexity of these higher dimensional
spaces. In fact, more exotic F-theory compactifications can lead to even bigger numbers. 16 In [10]
the size of the geometrical factor

∫
det(R + ω · 1) was additionally estimated in a certain class of

type IIB compactifications to not necessarily be of order one. However, in the limit of large fluxes
its contribution is still sub-leading in comparison to the pre-factor.

The String Landscape

Let us end this section with some more informal remarks on the interpretation of the index density.
Regardless of the precise number of vacua that are produced in string theory compactifications,
it is now clear that they are numerous. In 2003 this plethora of vacua was described by Leonard
Susskind as a string landscape [47]. One of the hopes of string theory is to construct a vacuum which
has precisely the desired properties to describe our observed physical world. For instance, it should
contain a copy of the Standard Model and allow for a positive cosmological constant. However, with
these results the search for such a vacuum seems hopeless. Indeed, checking whether a given vacuum
has the desired properties is already a huge task, let alone doing it for 10500 vacua! In fact, it was
shown in [16] that obtaining a specific vacuum with, for example, a given cosmological constant is
typically NP hard in the context of computational complexity. As such, even if our Universe was
described by some particular vacuum of string theory, we might never be able to explicitly find it.
As such, one should interpret these results as a change in perspective with regards to model building
in string theory. Indeed, in [18] it is discussed how one should rather be interested in the statistical
properties of these vacua. Essentially, by analysing some general features of vacua one might be
lead to a natural ‘selection principle’ which prefers certain vacua over others. Let us shortly touch
on this by discussing possible extensions of our derivation of the supersymmetric index density.

Alternative Distributions and Black Hole Attractor Points

As a first extension, one can study the distribution of cosmological constants by additionally im-
posing −3|W |2 < Λ∗ for some bound Λ∗. One of the results of [14, p. 24] is that for |Λ∗| �M4

pl the
distribution is uniform

dN [Λ∗] ∼ dΛ∗. (2.112)

By integrating this relation one finds that the cosmological constant can be as small as M4
pl/Nvac.

Since we have found that the number of flux vacua is typically very large, this may serve as a
reason for the smallness of the observed cosmological constant. This possible explanation of the
cosmological constant problem is in fact very similar in spirit to the one proposed in [4]. One can
also study the distribution of supersymmetry breaking scales and whether high or low scales are
favoured in particular kinds of compactifications, see e.g. [15, 19].

16Interestingly, in [48] an elliptic fourfold has been constructed containing O(10272,000) flux vacua, which surpasses
the total number of flux vacua in the sum of all other F-theory geometries by a factor O(103000).
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Lastly, we point the interested reader to [14, p. 28], where it is shown that the methods we have
used to compute the distribution of flux vacua can also be used to count black hole solutions in the
type IIB setting on a Calabi-Yau threefold Y3. The relevant parameter here is the entropy S of the
black hole, which is given by

S = π|Z|2, Z =

∫
Y3

Q ∧ Ω, (2.113)

here Q ∈ H3(Y3,Z) denotes the charge of a black hole. Note the resemblance between the central
charge Z and the superpotential W . Importantly, in the above formula for S, the central charge
is evaluated at a critical point given by DiZ = 0, again in analogy with the superpotential. Such
critical points are also referred to as attractor points. Note that S now plays the role of the tadpole
constraint. Indeed, from here one can ask about the distribution of black holes with an entropy
S ≤ S∗ for some S∗ and obtain results in the same way as we did for the distribution of supersym-
metric flux vacua.

Finiteness?

A pressing question is whether the contribution from the geometrical factor det(R+ ω · 1) is at all
finite. In other words, do we expect the number of flux vacua to be finite? Clearly this has to do
with the tadpole constraint ∫

Y4

G4 ∧G4 ≤ L∗. (2.114)

Indeed, a priori the LHS is not necessarily positive, hence there may be infinite choices of fluxes
satisfying the constraint. In [1, p. 21] an argument is made why this is not the case, except at
certain limits in the moduli space, which we now adapt to the F-theory setting. As is readily seen
from the definition of the superpotential

W =

∫
Y4

G4 ∧ Ω (2.115)

and the properties of Di, the supersymmetry condition DiW = 0 implies that

G1,3
4 = 0, (2.116)

where Gp,q4 denotes the (p, q)-part of G4 in the Hodge decomposition of H4(Y4). Additionally, it is
argued in [32] that the (2,2) part of G4 is primitive. Following the discussion in [32, Appendix I],
the result is that G4 is self-dual, i.e.

G4 = ?G4, (2.117)

which implies that ∫
Y4

G4 ∧G4 =

∫
Y4

G4 ∧ ?G4 ≥ 0, (2.118)

where equality holds only when G4 = 0. From here one can show that all vacua except for a finite
number must lie in a neighbourhood of a so-called D-limit [1]. This is defined as a point in Mcs

where the matrix DiΠα is reduced in rank. An example of such a limit is the Large Complex
Structure (LCS) limit, where

Π ∼


τ3

τ2

τ
1

 , as Im τ →∞ (2.119)
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In particular, we see that

DτΠ ∼


3τ2

2τ
1
0

 , as Im τ →∞ (2.120)

which indeed lowers in rank at the limit.

In short, we are left to show that even in such limits the index of supersymmetric vacua is still finite.
We will do this by obtaining an asymptotic expression for the index density near such singularities
and show that it is integrable. This will be the main topic of chapters 3 and 4. To close this chapter,
we will rewrite the expression for the index density into a more suitable form.

2.5 Rewriting the Index Density

We recall the expression for the index density

dµ = det(R+ ω · 1). (2.121)

where

ω =
i

2
gi̄dz

i ∧ dz̄ ̄, Rli =
i

2
Rli̄kdz

i ∧ dz̄ ̄. (2.122)

The main simplification of dµ comes from the fact that the Riemann tensor of the Weil-Petersson
metric of a Calabi-Yau D-fold takes the form [40]

Ri̄kl̄ = gi̄gkl̄ + gil̄gk̄ − eKFi̄kl̄, (2.123)

where
Fi̄kl̄ :=

(
∇i∇kΩ,∇j∇lΩ

)
, (2.124)

plays the role of the Yukawa couplings for fourfolds17. Here we have made two slight changes in
notation. First, the bilinear form (·, ·) replaces the role of the intersection form η, i.e.

v, w ∈ H4(Y4) : (v, w) :=

∫
Y4

v ∧ w. (2.126)

Moreover, we denote the Kähler-Weyl covariant derivative by ∇i for easier comparison with the
literature we reference in the following chapters. As a shorthand, let us introduce M := R + ω · 1,
which is a matrix of two-forms.

The rewriting of dµ proceeds in three steps. First, we recall that the determinant of a matrix can
be written in terms of the Levi-Civita tensor as follows

detM = εk1···knεl̄1···l̄nMk1 l̄1
∧ · · · ∧Mkn l̄n . (2.127)

Secondly, we note that for a top-form α such as detM , one has

αi1 ̄1···in ̄ndz
i1 ∧ dz ̄1 · · · dzin ∧ dz̄ ̄n ∼ √gεi1···inε̄1···̄nαi1 ̄1···in ̄ndnz, (2.128)

17The name comes from the three-fold setting, where special geometry implies that

Fi̄kl̄ = eKFikmg
mn̄Fjln, (2.125)

where the Fijk are historically called the ‘Yukawa couplings’ (due to their appearance in the compactification of the
heterotic string).
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where
√
g dnz =

√
g dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n is the volume form on Mcs and ∼ means ‘up to

factors of n!’. Combining the above two results yields the following expression for the index density

dµ ∼ √g dnz εi1···inε̄1···̄nεk1···knεl̄1···l̄nMi1 ̄1k1 l̄1
· · ·Min ̄nkn l̄n . (2.129)

The third step consists of writing the two pairs of epsilon tensors in terms of anti-symmetrized
metrics by using the fact that

εµ1···µpα1···αn−pεµ1···µpβ1···βn−p ∼ δ
[α1

β1
· · · δαn−p]

βn−p
. (2.130)

From this point onwards, we will not explicitly denote the indices in order to not clutter the notation.
Schematically, using the above expression for p = 0 we can write

ε

n︷︸︸︷
· · · ε

n︷︸︸︷
· · · ∼

n︷ ︸︸ ︷
g[·· · · · g··] . (2.131)

Hence we have

dµ ∼ √g dnz
2n︷ ︸︸ ︷

g·· · · · g··
n︷ ︸︸ ︷

M···· · · ·M···· (2.132)

Finally, we note that M consists of terms containing gg terms and eKF . Choosing, say, m factors of
eKF in the product of all the M ’s and letting the remaining factors of g cancel with the preceding
factors of g−1 yields

dµ ∼ √g dnz
n∑

m=0

Im (2.133)

where

Im = emK
2m︷ ︸︸ ︷

g·· · · · g··
m︷ ︸︸ ︷

F···· · · ·F···· (2.134)

The main advantage of this rewriting of the index density is that its dependence on the holomorphic
4-form Ω is very explicit since the Kähler potential K, the metric g and the generalized Yukawa
couplings Fi̄kl̄ are all directly expressed in terms of it. In the next chapter we will investigate the
behaviour of the index density using this formula, together with some remarkable properties of Ω
near specific points in the moduli space.

A Sidenote on Warping

As we have stated before, the inclusion of fluxes has an effect on the internal geometry which is
described by the warp factor A. More precisely, the metric g becomes conformally Calabi-Yau,
meaning that

g = eAg̃, (2.135)

with g̃ a Ricci flat metric. In particular, using the fact that the Riemann tensor of g̃ obeys equation
(2.123), one finds a similar equation for the Riemann tensor of g of the form

e−ARi̄kl̄ = g̃i̄g̃kl̄ + g̃il̄g̃k̄ − eK F̃i̄kl̄ − g̃il̄∂̄̄∂kA. (2.136)

Where F̃ is obtained from g̃. As such we have a correction term

gil̄∂̄̄∂kA. (2.137)

Quite frankly, we are unsure how to deal with this. One might hope that the warp factor varies
slowly such that we can ignore this contribution, but this is entirely unclear near singular regions
in the moduli space. Nevertheless, we will not consider the effects of warping in the remainder of
this work.



Chapter 3

Hodge Structures at Singular Points

Much of our discussion so far has revolved around properties of the complex structure moduli
space. Indeed, we started with the issue of moduli stabilization and how this can be addressed
by introducing fluxes in the internal space. Upon compactification on a Calabi-Yau fourfold Y4,
these fluxes induced a superpotential for the complex structure moduli, which were part of the
chiral multiplet of an N = 1 supergravity theory with target spaceMcs. From there we derived an
expression for the index of supersymmetric flux vacua using the properties of the Weil-Petersson
metric. It is given by the following expression

index density ∼ √g dmz
m∑
k=0

Ik, (3.1)

where
Ik = ekKg.. · · · g..F.... · · ·F...., (3.2)

with 2k factors of g−1 and k factors of F . Crucially, all quantities appearing in the index density
can be expressed in terms of the holomorphic 4-form Ω on Y4 as1

e−K =
(
Ω, Ω̄

)
, e−Kgi̄ = −(∇iΩ,∇jΩ), Fi̄kl̄ =

(
∇i∇kΩ,∇j∇lΩ

)
. (3.4)

A priori, it is not clear whether the index density is integrable over the moduli space. Indeed, at
singular points where the curvature diverges, this may not be the case. In this chapter, we will
further develop the mathematical structure of the moduli space to address this question by studying
the behaviour of Ω near various singular points. More precisely, the relevant object to study is the
cohomology group H4(Y4) and its Hodge decomposition.

In section 3.1 we will first discuss the singular structure of the moduli space and introduce the
concept of a monodromy transformation. It will turn out that the moduli space is such that much
of the behaviour of Ω near singular points is encoded in its transformation under monodromy
transformations. This is encapsulated by the nilpotent orbit theorem and is described in section 3.2.
In section 3.3 we apply the nilpotent orbit theorem to gain insight into the various singularities that
can occur and describe the degeneration of H4(Y4) using the Deligne splitting. In section 3.5 we use
this structure to estimate the leading behaviour of Ω near one-parameter singularities and thereby

1Recall that we introduced the Weil-Petersson metric as

gi̄ = ∂i∂̄̄K, (3.3)

which is in fact equal to −eK(DiΩ, DjΩ). Here we prefer the second expression to highlight the similarity between
K, gi̄ and Fi̄kl̄.

43
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obtain concrete expressions for the index density, whose integrability can be tested. Finally, in
section 3.6 we provide a discussion of the results and give an outlook on more general singularities,
which will be the topic of chapter 4.

3.1 Singular Loci and Monodromy

As we have already seen in the example of the complex structure moduli space of the torus, Mcs

is generally not a smooth manifold and admits singularities. It is a fact that these singular points
form a singular locus ∆ which can be resolved to ∆ = ∪∆k, where locally each ∆k is given by
the vanishing of one of the moduli, i.e. zj = 0 [35, 50]. It will suffice to think of each ∆k as a
codimension one hypersurface in Mcs. Of course, one can also consider the vanishing of multiple
coordinates zi1 , . . . , zik , which will be described by the intersection

∆i1...ik := ∆i1 ∩ . . . ∩∆ik . (3.5)

Lastly, we denote by

∆◦i1...ik := ∆i1...ik −
⋃

j 6=i1,...,ik

∆i1...ikj (3.6)

the points on the divisor ∆i1...ik which do not lie on any higher intersection locus. See figure 3.1 for
a depiction of two intersecting divisors in a local patch. One can consider a slightly different picture,
which we will adopt in the coming sections, where instead one uses the coordinates tj = 1

2πi log zj .
In these coordinates the singularities are given by Im t → ∞, which brings us to the ‘boundary’
of Mcs. We have already seen this in the example of the torus, where in the limit Im τ → ∞
its volume tends to infinity. Topologically, one can view the resulting space as a pinched torus.
Generally, one can interpret these singular loci as values for the complex structure moduli which
result in a singular Y4. Having described the singularities under consideration more precisely, we
can now state the final question we will address in this work

Q3: Is the AD-density dµ integrable near a given singular locus ∆ in the complex
structure moduli space?

In this chapter we will answer this question with a definite ‘yes’ in the case of a single divisor
∆ = ∆k. The more general case is discussed in chapter 4, where the same answer is obtained for
particular kinds of singular loci.

3.1.1 The Swampland Distance Conjecture

Our interest in the singular points of the moduli space stems from the question of whether the
index density is integrable around such regions. However, these singular points are important for
many other reasons as well, in particular with regards to the Swampland program and cosmological
implications. We will now discuss these reasons in relation to the Swampland Distance Conjecture
(SDC), though we must mention that we cannot do it justice in this work. For a review of the
recent developments we refer the reader to [45], on which we draw heavily here.

Recall that the complex structure moduli are scalar fields, which we now more generally denote by
φ. Let P and Q be two points in the moduli space, and denote by ∆φ the distance between them,
as measured by the Weil-Petersson metric. Note that the points P and Q each describe a particular
effective field theory (EFT), since they correspond to different expectation values of the scalar fields
(and therefore e.g. a different cosmological constant). The SDC now asserts that as ∆φ → ∞ an
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z1 = 0

z2 = 0

∆1

∆2

∆12

T1

Figure 3.1: A local patch in Mcs containing two intersecting divisors ∆1 and ∆2. In red, a
monodromy transformation T1 around ∆1 is depicted.

infinite tower of states becomes light, more precisely the mass scales m(P ) and m(Q) at P and Q
are related by

m(P ) . m(Q)e−λ∆φ, (3.7)

for some yet undetermined parameter λ depending on P and Q. Points for which ∆φ→∞ for any
path from P to Q are said to lie at infinite distance. Such points necessarily lie at a singular locus
we described earlier. Crucially, the limit ∆φ → ∞ signals a breakdown of the EFT at P , since it
is impossible to give a quantum field theoretic description of infinitely many scalar fields that are
weakly coupled to gravity. In other words, one requires the full theory of quantum gravity to work
in this regime. We have in fact already seen an example of the SDC in action, namely the infinite
tower of KK-modes that arose from compactifying a scalar field theory on a circle in section 1.1.
Recall that we obtained an infinite tower of states with masses

mn =
n

R
(3.8)

which become massless in the limit R → ∞. With a bit more work one can show that this limit
is indeed exponential in the field distance. The SDC also has severe implications for models of
cosmological inflation. Indeed, in an EFT valid below some finite cut-off scale M∗, it restricts the
possible variations in the fields by

λ∆φ . log

(
Mpl

M∗

)
. (3.9)

In short, the singular points in the moduli space may provide us with new insights into quantum
gravity constraints and allowed UV-completions of effective field theories. Note that there may also
be singular points which are at finite distance. At such points massless fields do arise, for instance
from D3-branes wrapping vanishing three-cycles. This happens, for example, in the conifold. How-
ever, there will only be a finite number of them and it is possible to adjust the EFT accordingly.
For our purposes it is important to consider both types, since also for finite distance singularities
it is known that the Ricci curvature can diverge, hence the integrability of the index density is a
priori not guaranteed.
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3.1.2 Monodromy and the Torus Revisited

Before discussing the intricacies of singular loci in general complex structure moduli spaces, let
us first return to the familiar example of the torus. We will gain two important insights from
this example. First, we will see that at a singular locus, the Hodge structure H1(T) (or generally
HD(YD)) breaks down. Secondly, the introduction of a monodromy transformation will allow us to
write the period vector in a very particular form, which generalizes naturally to a general Calabi-Yau
YD.

Using the same notation as introduced in section 2.3.3, the induced metric on T is given by:

ds2 = dzdz̄ = dξ2
1 + |τ |2dξ2

2 + 2Reτ dξ1dξ2, (3.10)

or

gij =

(
1 Re τ

Re τ |τ |2
)
. (3.11)

In particular, we have √
g = Imτ (3.12)

and hence the volume of the torus is given by

Vol T =

∫
T
ds =

∫ 1

0
dξ1

∫ 1

0
dξ2
√
g = Im τ. (3.13)

We see that the large volume limit is exactly given by Im τ → ∞, corresponding to a singularity.
Next consider the (1,0)-form Ω on T, which is simply given by:

Ω = dz = dξ1 + τdξ2, Ω̄ = dz̄ = dξ1 + τ̄ dξ2. (3.14)

In particular, we see that

Ω− Im τ
∂Ω

∂τ
= Ω̄. (3.15)

As expected from Kodaira’s formula, we are able to express Ω̄ in terms of Ω and its derivative with
respect to τ . However, we also see that in the limit Im τ →∞, this relation breaks down. In fact,
this is our first indication that at a singular locus the Hodge structure of HD(YD) breaks down.
We will discuss this in detail in the next section. Before that, we turn to our second important
observation regarding the period vector. In terms of the canonical basis, the period vector Π is
simply given by

Π =

(
1
τ

)
. (3.16)

We can introduce the coordinate ω such that

ω = e2πiτ , (3.17)

then the singularity we are considering is at ω = 0. We then perform a monodromy transformation,
essentially encircling the singularity, by mapping

ω → e2πiω, (3.18)

which corresponds precisely to τ → τ+1. Using the explicit form of Π, we see that it also transform
as follows

Π→ TΠ, T =

(
1 0
1 1

)
, (3.19)
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where T is also called the monodromy matrix. Note that (T − id)1+1 = 0, so T is quasi-unipotent,
a property which it will retain in the general setting. Correspondingly, we can define a nilpotent
monodromy matrix N associated to this singularity is given by

N =

(
0 0
1 0

)
, (3.20)

satisfying N2 = 0. Finally then, upon introducing the constant vector

a0 :=

(
1
0

)
, (3.21)

we see that Π can be exactly written as follows:

Π = eτNa0. (3.22)

In summary, we have found that the period vector can be expressed in terms of a nilpotent matrix
N and a constant (i.e. τ -independent) vector a0 in a very particular way, referred to as a nilpotent
orbit. As we will discuss in the next section, the result (3.22) is in fact very general and describes
(up to corrections) the asymptotic behaviour of the period vector of any Calabi-Yau D-fold.

3.2 The Nilpotent Orbit Theorem

Our discussion in the following three sections closely follows the works [28, 30]. For a more math-
ematically oriented review we refer the reader to [7]. For generality, we consider a D-dimensional
Calabi-Yau manifold YD. For some examples we will restrict to the fourfold setting, as this is our
main case of interest with regards to the distribution of flux vacua. We also refer the reader to
Appendix C for an overview of the various definitions regarding (mixed) Hodge structures.

Polarized Hodge Structures, Filtrations and Monodromy

The Hodge decomposition2

HD =
⊕

p+q=D

Hp,q, Hp,q = Hq,p (3.23)

defines a pure Hodge structure of weight D on the vector space HD. Moreover, it is polarized with
respect to the inner product S defined by

α, β ∈ HD : S(α, β) :=

∫
YD

α ∧ β. (3.24)

That is, S satisfies the following properties w.r.t. the Hodge structure:

1. S(Hp,q, Hr,s) = 0, (p, q) 6= (r, s).

2. ip−qS(v, v̄) > 0, v ∈ Hp,q, v 6= 0.

For example, our particular case of interest H4 enjoys the following decomposition

H4 = H4,0 ⊕H3,1 ⊕H2,2 ⊕H1,3 ⊕H0,4 (3.25)

2We will henceforth write HD := HD(YD) and Hp,q := Hp,q(YD).
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and the Kähler potential can be written as

e−K = S(Ω, Ω̄) (3.26)

From a physical perspective, it is very natural that H4 is relevant to our discussion. Indeed, the
three main ingredients that comprise the index density are all related to the above decomposition:

1. Complex structure moduli zi, i = 1, . . . ,dimH3,1

2. Fluxes G4 ∈ H4,0 ⊕H2,2

3. Ω ∈ H4,0.

It is important to realize that the Hodge decomposition of HD depends on the complex structure
of YD, since it describes the (p, q)-decomposition of a differential form into holomorphic and anti-
holomorphic parts. This is captured more clearly by introducing the Hodge filtration

FD ⊂ FD−1 ⊂ · · · ⊂ F 1 ⊂ F 0 = HD, (3.27)

where
F p :=

⊕
q≥p

Hp,D−q, 0 ≤ p ≤ D. (3.28)

The crucial result is that the F p vary holomorphically over the moduli space. As stated before, we
see that e.g. for Calabi-Yau fourfolds, F 4 is spanned by Ω, F 3 is spanned by Ω and ∇iΩ, etc...
Indeed, the decomposition of HD can be recovered from Ω and its derivatives w.r.t. the complex
structure moduli.3 Combining this result with the earlier observation that H4 contains essentially
all quantities we have encountered so far, we see that Ω is the relevant object to study. We now
discuss this in detail.

Recall the description of Ω in terms of the period vector Π with respect to a basis γI of HD

Ω = Παγα, α = 1. . . . , bD. (3.29)

The essential information on how the period vector behaves near a singular locus ∆j is obtained
by its transformation under monodromy transformations, i.e. encircling the locus by mapping
zj 7→ zje2πi. The period vector then transform as

Π(· · · , zj , · · · ) 7→ T−1
j Π(· · · , zje2πi, · · · ), (3.30)

for some monodromy matrices Tj . They satisfy the following two properties [46]

1. Quasi-unipotency: ∀j, ∃mj , nj ∈ N : (T
mj
j − Id)nj+1 = 0.

2. Commutation: ∀i, j : [Ti, Tj ] = 0.

By performing a coordinate rescaling zj → (zj)mj , it is easily seen that Tj can be assumed to be
unipotent, i.e. we can set mj = 1. Indeed, we will see that all of the important information is
contained in the unipotent part of Tj . In particular, for general mj we define

Nj :=
1

mj
log T

mj
j . (3.31)

3There is a caveat here when considering D > 3. In particular, for our case of interest, namely the fourfold, it is
known that only the primitive part of H2,2 can be recovered. Recall that in section 2.4.3 we mentioned that G4 is
exactly of type (2,2) and is primitive, so this does not pose an issue for us.
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Then Nj is nilpotent:

N
nj+1
j = 0. (3.32)

The Nilpotent Orbit Theorem

For convenience, we denote

tj :=
1

2πi
log zj . (3.33)

such that zj → 0 corresponds to Im tj → ∞. Using these various monodromy matrices, the
nilpotent orbit theorem of Schmid will provide us with a general expression for the period vector
which greatly resembles (3.22). The result holds within a patch E of the moduli space around the
singular locus ∆. Let nE denote the number of intersecting discriminant divisors ∆i given by zi = 0.
We furthermore denote by ζ all the coordinates which are not taken to zero. The nilpotent orbit
theorem now states that near the point P on ∆◦i1···inE

, the period vector is given by [46]

Π(t, ζ) = exp

 nE∑
j=1

tjNj

a0(ζ) +O
(
e2πit

)
(3.34)

where a0 is a holomorphic function of ζ and the O
(
e2πit

)
terms are exponentially suppressed in the

limit Im tj → ∞. We note that this result is not that surprising. Indeed, a loop is described by
t→ t+ 1, which by the above formula implies (up to terms of order e2πit)

Π→ eNΠ = T (u)Π, (3.35)

where T (u) denotes the unipotent part of the monodromy matrix T . But this is precisely the defining
property of T ! Hence the nilpotent orbit theorem encapsulated the fact that the behaviour of the
period vector near a singular point is (up to the vector a0) completely determined by the (nilpotent)
monodromy around the divisor on which this singular point lies.

Taking a step back, we have seen that Ω and its derivatives, and therefore Π and its derivatives,
completely determine the Hodge filtration at non-singular points. Moreover, the nilpotent orbit
theorem precisely determines how the construction fails. In fact, this data is encapsulated by the
nilpotent monodromy matrices Nj and the holomorphic vector a0. The goal is now to use this data
to construct a finer splitting of the space HD which is valid on a given singular locus. Since the
construction is rather involved, we first present a sketch of the procedure:

1. At a given singular locus ∆◦i1...ik one defines a new filtration F p∞(∆◦i1...ik) in terms of the old
filtration F p and the nilpotent monodromy matrices associated with ∆◦i1...ik . However, this

filtration will no longer constitute a Hodge filtration for the space HD.

2. To recover the full space HD, one constructs another filtration Wl, called the monodromy
weight filtration, which depends only on the nilpotent monodromy matrices Nj . One can then
combine the data (F∞, N,W ) into a limiting mixed Hodge structure (LMHS).

3. While the LMHS contains the right information, it will not be very easy to work with. There-
fore we combine the F∞ and W filtrations in a more natural way via the Deligne splitting Ip,q,
which gives a finer splitting of HD in the following sense:

HD =
⊕

0≤p,q≤D
Ip,q. (3.36)

Recall that for a standard Hodge decomposition we would restrict the sum to p+ q = D.
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4. Finally, the Ip,q spaces still contain some redundant information, in the sense they are partly
generated by the Nj ’s. This gives rise to the primitive spaces P p,q which satisfy

Ip,q =
⊕
i≥0

N iP p+i,q+i, N =
k∑
j=1

Nj . (3.37)

Crucially, the primitive spaces are again polarized, but now with respect to the inner product
S(·, Np+q−D·). Moreover, they can be combined into horizontal primitive spaces as

Pl :=
⊕
p+q=l

P p,q, (3.38)

in terms of which HD is given by

HD =
D⊕
l=0

l⊕
a=0

NaPD+l. (3.39)

In short, the above procedure can be summarized as follows: Let F p be the Hodge filtration of HD

polarized by S, away from a singular locus. When moving to a singular locus ∆◦i1...ik , characterized

by nilpotent monodromy matrices Ni1 , . . . , Nik , one obtains a finer splitting of HD in terms of the
primitive spaces, where the P p,q form a Hodge structure of weight l on Pl, which is polarized w.r.t.
S(·, N l·).

3.3 The Deligne Splitting

Constructing the Limiting Mixed Hodge Structure

First, we recall that Π and its derivatives generate F away from the singular loci. The nilpotent
orbit theorem gives a precise handle on the divergent behaviour as we approach a singular locus.
Consider the singular locus ∆◦i1...ik , then we define

F p(∆◦i1...ik) := lim
Im ti1 ,...,Im tik→∞

exp

− k∑
j=1

tjNj

F p. (3.40)

For ease of notation, we will write F p∆ := F p(∆◦i1...ik), but one should keep in mind that the resulting
filtration depends on the chosen singular locus. Importantly, one can show that F p∆ is well-defined at
the singular locus. However, it no longer constitutes a Hodge filtration, i.e. one cannot (in general)
recover the full space HD from just the F p∆. Intuitively, this happens because we have removed the
nilpotent matrices Nj from the nilpotent orbit approximation in (3.40). As such, we will need a
second ingredient which combines the Nj with the F∆ in an appropriate way. This ingredient is the
monodromy weight filtration

W−1 := 0 ⊂W0 ⊂W1 ⊂ · · · ⊂W2D−1 ⊂W2D = HD, (3.41)

where the spaces Wl are defined in terms of the nilpotent monodromy matrices Nj by

Wl =
⊕

k≥1,k≥l−D+1

ker Nk ∩ im Nk−l+D−1, N := Ni1 + · · ·+Nik . (3.42)

One can show that this is the unique filtration satisfying the following two properties:
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1. NWi ⊂Wi−2

2. N j : GrD+j → GrD−j is an isomorphism, where

Gri := Wi/Wi−1 (3.43)

are the graded spaces.

The important result is that in this way the data (HD(YD),Wj , F
p
∆) defines a mixed Hodge structure,

which means that the graded spaces Gri admit a pure Hodge structure of weight i given by

Gri =
⊕
p+q=i

Hp,qi , Hp,qi = Fpi ∩ F
q
i , (3.44)

where
Fpi := (F p ∩Wi)/(F

p ∩Wi−1). (3.45)

In this manner, we obtain a whole set of Hodge structures of various weights, with N acting as a
morphism between them by NHp,q ⊂ Hp−1,q−1.

The Deligne Splitting as an Alternative

While the above construction is certainly a motivation for introducing the monodromy weight
filtration, the resulting spaces are difficult to work with. Indeed, the graded spaces are defined
as quotients and it will be hard to identify the properties of Ω at the singular locus from these
decompositions. As such, inspired to use the Wl spaces, we introduce the Deligne splitting Ip,q by

Ip,q := F p∆ ∩Wp+q ∩

F̄ q∆ ∩Wp+q +
∑
j≥1

F̄ q−j∆ ∩Wp+q−j−1

 , (3.46)

which is the unique splitting satisfying

F p∆ =
⊕
s

⊕
r≥s

Ir,s, Wl =
⊕
p+q≤l

Ip,q (3.47)

and
Ip,q = Iq,p mod

⊕
r<q,s<p

Ir,s. (3.48)

The first two properties in(3.47) tell us how to recover the spaces F p and Wl from the Ip,q’s. To
interpret the final property in (3.48), we note that we can recover the graded spaces Gri from the
Deligne splitting as well by

Gri =
⊕
p+q=i

Ip,q, (3.49)

in complete analogy to (3.44). In other words, up to the ‘mod’ factor, the Ip,q define a Hodge
structure on the graded spaces as well. Importantly, we have traded the difficulty of working with
the quotients Gri with the fact that the Ip,q spaces satisfy (3.48) instead of the simpler Ip,q = Iq,p.4

In figure 3.2 we have depicted the relations between the various spaces we have introduced in an
example of a Deligne diamond. Similarly to the Hodge diamonds, the various vertices correspond
to the Ip,q spaces, and a dot denotes a non-empty space.

4If the Deligne splitting does satisfy Ip,q = Iq,p it is called R-split. In chapter 4 we will see that by choosing an
appropriate basis, we can always make the splitting R-split.
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H4,0

H3,1

H2,2

H1,3

H0,4

Gr0

Gr1

Gr2

Gr3

Gr4

Gr5

Gr6

Gr7

Gr8

W1

W2

W3

F 3
∆

F 2
∆

I0,1I1,0

I1,1

I2,1 I1,2

I3,1 I2,2 I1,3

I3,2 I2,3

I3,3

N

Figure 3.2: An example of a type IV Hodge-Deligne diamond which illustrates the properties of
the Deligne splitting with respect to the Hodge decomposition Hp,q, the filtration F p, the graded
spaces Gri and the weight filtration Wl. The action of N is indicated by the red arrow, from which
its action on the various spaces mentioned is easily obtained. The colours match those used in
equations (3.47), (3.49) and (3.50).

Continuing on, we note that the action of N is given by

NIp,q ⊂ Ip−1,q−1 (3.50)

This implies that the Ip,q’s still contain some redundancy, in the sense that part of Ip,q can be
obtained from Ip+1,q+1 by the action of N . It makes sense, therefore, to define the primitive spaces
P p,q by

P p,q := Ip,q ∩ ker Np+q−D+1, (3.51)

such that
Ip,q =

⊕
i≥0

N iP p+i,q+i. (3.52)

Indeed, we see that the Ip,q’s can be recovered completely from the P p,q’s and the action of N .
Finally, we can consider the analogue of (3.49) by defining the horizontal primitive spaces

Pl :=
⊕
p+q=l

P p,q. (3.53)
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The crucial result is now that the primitive spaces P p,q form a Hodge structure of weight l on each
Pl, which is moreover polarized w.r.t. Sl(·, ·) := S(·, N l·), i.e.

1. Sl(P
p,q, P r,s) = 0, r + s = D + l = p+ q, (p, q) 6= (r, s).

2. ip−qSl(v, v̄) > 0, v ∈ P p,q, v 6= 0, p+ q = D + l.

It will be these polarization properties which will allow us to estimate the behaviour of the index
density near the singularities. We will discuss this in the next section. We end this section by
noting that HD can be recovered from the horizontal primitive spaces and the action of N by

HD =

D⊕
l=0

l⊕
a=0

NaPD+l. (3.54)

3.4 Properties of a0

Recall that the nilpotent orbit theorem characterizes the behaviour of the period vector in terms of
the nilpotent monodromy matrices Nj and the vector a0. In the previous section, we have mostly
used the monodromy matrices in order to infer some detailed structures at the singular locus. Now
we turn to the properties of a0 which can be derived from the above construction. First, since
a0 ∈ FD∆ , we have

a0 ∈ ID,0 ⊕ ID,1 ⊕ · · · ⊕ ID,D. (3.55)

By construction of the Deligne splitting, we have the following relation between the Hodge numbers
and the dimensions of the Ip,q

hp,D−p =
D∑
q=0

ip,q, ip,q = dim Ip,q. (3.56)

Crucially, for Calabi-Yau D-folds, we have hD,0 = 1, hence only one of the spaces in (3.55) can be
non-trivial. Now let d be an integer such that

Nda0 6= 0, Nd+1a0 = 0. (3.57)

Essentially, d determines the higher power of of ti’s that can appear in the nilpotent orbit expansion
and it will play a central role in characterizing the behaviour of the Kähler potential. By the first
property in (3.57) and the fact that NIp,q ⊂ Ip−1,q−1, we see that

a0 ∈ ID,d ⊕ · · · ⊕ ID,D. (3.58)

On the other hand, since ID,i = PD,i for i ≥ 0, we can use the polarization property (2) of PD,d+i,
which states that

0 < iD−(d+i)Sd+i(a0, ā0) = iD−(d+i)S(a0, N
d+iā0). (3.59)

But the RHS vanishes for i > 0 by the second property in (3.57). We therefore conclude the
following:

d highest such that Nda0 6= 0 =⇒ d highest such that S(a0, N
dā0) 6= 0 (3.60)

and moreover
iD−dS(a0, N

dā0) > 0. (3.61)
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(a) Type I (b) Type II (c) Type III

(d) Type IV (e) Type V

Figure 3.3: The five types of Deligne diamonds associated to the Deligne splitting of H4(Y4) at a
singular locus, determined by the conditions Nda0 6= 0 and Nd+1a0 = 0, for d = 0, . . . , 4.

Returning to a more graphical interpretation, we note that the integer d classifies different Deligne
diamonds which can occur. Indeed, the integer d labels the row at which a0 lies, and together with
the symmetries of the Deligne diamonds (which are the same as those of the Hodge diamonds) this
gives rise to D − 1 different types. In figure 3.3 we illustrate the five types labelled by Roman
numerals I through V for Calabi-Yau fourfolds.

3.5 Scaling of the Index Density for Single-Moduli Limits

In this section we will use the established mechanisms of the Deligne splitting and its various
properties to discern the scaling of the index density near a given singular locus. We will discuss
the one-parameter degeneration in complete generality. Multi-moduli limits will require some more
machinery to which we delegate the next chapter. For ease of reference, we collect the relevant
formulae for the derivation here.

First, recall the expression for the index density

dµ[t] ∼ √g dmt
m∑
k=0

Ik, Ik = ekK
2k︷ ︸︸ ︷

g·· · · · g··
k︷ ︸︸ ︷

F···· · · ·F···· (3.62)

As stressed earlier, all the quantities in dµ can be expressed in terms of the period vector Π as
follows

e−K = (Π, Π̄) =: ||Π||2, gi̄ = ∂i∂̄̄K, Fi̄kl̄ = (∇i∇kΠ,∇j∇lΠ), (3.63)
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where ∇i denotes the Kähler-Weil covariant derivative. Near a singular locus defined by Im t→∞,
with associated nilpotent monodromy N , the period vector is given by

Π = etNa0︸ ︷︷ ︸
Πnil

+O(e2πit). (3.64)

There are two cases to distinguish, namely

1. Na0 6= 0,

2. Na0 = 0.

We will discuss these two cases in separate subsections. The case Na0 = 0 is considerably more
complex, as it requires the inclusion of correction terms to restore the t-dependence of Π. As
mentioned in [30], these two cases correspond precisely to singularities which are at infinite or finite
distance in the moduli space, respectively. Additionally, we recall the integer d satisfying

Nda0 6= 0, Nd+1a0 = 0, (3.65)

which labels the D + 1 different types of singularities. In other words, we consider the cases d > 0
and d = 0 separately. First, we make some remarks that are applicable to both cases. The overall
strategy in each case will be very similar and can be summarized as follows:

1. The correct form of the period vector for the specific case at hand is determined. This provides
us with the Kähler potential via e−K = ||Π||2.

2. From the Kähler potential the metric components and the covariant derivatives of Π are
computed.

3. Finally, it is determined which of the Fi̄kl̄ components provide the dominant contribution
and their expressions are determined. From here the scaling of the index density follows
immediately.

Since we are only interested in the leading order functional behaviour of the index density, we will
not be careful with numerical factors but will restore them whenever necessary (this will be relevant
in the case Na0 = 0). Hence throughout the derivation we will make use of the symbol ∼, which
means ‘neglecting sub-leading terms and overall pre-factors’.

Before delving into the specific computations, we make one final remark regarding the computation
of Fi̄kl̄, or, more precisely, the double covariant derivative ∇i∇kΠ. Here one must be careful, since
the result must transform properly under both Kähler-Weil and general coordinate transformations.
In other words, one must include the Levi-Civita connection as well, resulting in

∇i∇kΠ = ∇Ki ∇Kk Π− Γmik∇KmΠ, (3.66)

where by ∇Ki we mean just the Kähler-Weil connection. One checks that this indeed has the right
transformation behaviour. Moreover, we will see that in all cases we may approximate ∇Ki ∼ ∂i,
since ∂iK will give sub-leading contributions. In other words, we will generally find that

∇i∇kΠ ∼ ∂i∂kΠ− Γµik∂µΠ. (3.67)
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3.5.1 Na0 6= 0

In this case we may approximate the period vector by the nilpotent orbit, i.e. we have

Π ∼ Πnil = etNa0, (3.68)

neglecting exponentially suppressed terms. Since the bilinear form (·, ·) is invariant under mon-
odromy transformations, one sees that it has the following symmetry property with respect to the
nilpotent monodromy matrix

(N ·, ·) = −(·, N ·). (3.69)

As a result, we can rewrite the expression for the Kähler potential as follows

e−K = (Π, Π̄) ∼
(
e2i(Im t)Na0, ā0

)
∼ p(Im t, ζ), (3.70)

where p is a polynomial in Im t of order d > 0. It follows that

−K ∼ log
[
f(ζ, ζ̄)(Im t)d + g(ζ, ζ̄)(Im t)d

′
]
, (3.71)

for some functions f, g depending on the other coordinates, and 0 ≤ d′ < d. We then rewrite K
into a more convenient form as

K ∼ log

[
f(Im t)d

(
1 +

g

f
(Im t)d

′−d
)]
∼ d log Im t+ log

[
1 +

G(ζ, ζ̄)

(Im t)x

]
+ F (ζ, ζ̄) (3.72)

where F = log f , G = g/f and x = d− d′ > 0. Using the approximation log(1 + ε) ≈ ε, we arrive at

K ∼ d log Im t+
G(ζ, ζ̄)

(Im t)x
+ F (ζ, ζ̄) (3.73)

Here we once again stress that we are considering the case d > 0. Moreover, it is also clear from
the expression of K that the precise value of d = 1, . . . , D + 1 will not be relevant as it appears
as simply a prefactor. We will indeed find that this is the case. By writing K in the above form,
one sees that the different metric components gi̄ arise from the three terms separately. Indeed, in
terms of the scaling w.r.t. Im t we have

gtt̄ ∼ (Im t)−2, gtζ̄ ∼ (Im t)−1−x, gζζ̄ ∼ 1. (3.74)

To leading order, the components of the inverse metric are given by

gtt̄ ∼ (Im t)2, gtζ̄ ∼ (Im t)1−x, gζζ̄ ∼ 1 (3.75)

One also easily computes √
g ∼ (Im t)−2, eK ∼ (Im t)−d (3.76)

Next, we note that
∇tΠ = ∂tΠ + (∂tK)Π ∼ NΠ + (Im t)−1Π. (3.77)

In particular, in the limit Im t → ∞, we may approximate ∇t ∼ ∂t. Including the Levi-Civita
connection in the double covariant derivative, as discussed in the introduction, then leads to

∇2
tΠ ∼ ∂2

t Π− Γmtt∂mΠ. (3.78)
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One can explicitly compute the Christoffel symbols for m = t, ζ to find

Γttt ∼ (Im t)−1, Γζtt ∼ (Im t)−2−x. (3.79)

In particular, both are again suppressed by at least a factor (Im t)−1, in other words we may further
approximate

∇2
tΠ ∼ ∂2

t Π ∼ N2Π. (3.80)

In short, each application of ∇t on Π simply brings down a factor of N , and the same holds for
∇̄t̄ acting on Π̄. We now evaluate Fi̄kl̄. Suppose p (p̄) of the indices are chosen to be t (t̄), so
p, p̄ = 0, 1, 2. One readily sees that

Fi̄kl̄ ∼
(
NpΠ, N p̄Π̄

)
∼
(
e2i(Im t) NNpa0, N

p̄ā0

)
∼

d∑
q=0

(Im t)q
(
a0, N

p+p̄+qā0

)
, (3.81)

where in the second and third line we again used (3.69). We now recall our result of (3.60), which
states that the maximal value of q for which the summand is non-zero is given by

p+ p̄+ q = d. (3.82)

This implies that the leading behaviour of Fi̄kl̄ is given by

Fi̄kl̄ ∼ (Im t)d−(p+p̄), (3.83)

where we recall that p+ p̄ is the total number of indices that are chosen to be t or t̄. In particular,
we have

eKFi̄kl̄ ∼ (Im t)−(p+p̄). (3.84)

On the other hand, each choice of index t or t̄ yields (at worst) a factor of Im t from the inverse
metrics, as can be seen from (3.75). Somewhat curiously, we see that all these factors cancel in Ik,
for each k separately. The leading behaviour of the index density is therefore simply proportional
to the canonical volume form

dµ ∼ dmt √g. (3.85)

Concentrating on the part of the measure depending on t, t̄, we find

dµ[t] ∼ dt ∧ dt̄
(Im t)2

. (3.86)

This is the main result of our calculation.

For the interested reader, we add an additional comment regarding the proportionality factor that
is suppressed in the expression above. The result is that each factor of gi̄gkl̄eKFi̄kl̄ comes with a

pre-factor given by 5

d−(p+p̄) × d!

(d− (p+ p̄))!
=

p+p̄−1∏
n=0

(
1− n

d

)
, (3.87)

where we remind the reader that p and p̄ denote the number of t and t̄ indices that are contracted,
respectively. From the second expression we see that these factors are at most of order one. Also,
if p + p̄ 6= 4, there may also be factors of gζζ̄ involved. The upshot if this discussion is that the
prefactor of the index density can be expressed in terms of d and gζζ̄ , although not much can be
said about the exact result. We mention this because this will be quite different in the next case.

5I thank Erin van der Kamp for bringing my attention to the second expression.
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3.5.2 Na0 = 0

Since the derivation in this case is considerably more intricate than in the previous, we first give a
short overview of the additional steps that are made throughout this subsection:

1. First, we perform a set of Kähler-Weil transformations to bring the Kähler potential in a more
manageable form.

2. Second, we proceed to compute the metric components and the covariant derivatives of Π. In
contrast to the Na0 6= 0 case, we will see that the contribution from the Levi-Civita connection
is essential.

3. Finally, again in contrast to the previous case, we will argue that the leading component of
Fi̄kl̄ is given by Ftt̄tt̄ and employ the symmetry properties of the index density to argue that
it may only occur once.

For the moment we switch to the coordinate z = e2πit. Let q > 0 be the smallest integer such that
aq 6= 0. The period vector is then of the form

Π = a0 + zqΠq +O(zq+1), Πq = e
log z
2πi

Naq. (3.88)

Note that are indeed forced to consider higher-order correction terms to Π. To compute the Kähler
potential, we first note that

e−K = ||Π||2 ∼ ||a0||2 + |z|2q ||Πq||2 + inner products of the form (ai, ā0) plus c.c, (3.89)

where c.c. stands for complex conjugate. Note that for a given i, the inner product (ai, ā0) comes
with a factor zi. As such, these terms may influence the leading order behaviour of the Kähler
potential when i ≤ 2q. Our first step is to show that we can set (ai, ā0) = 0 for q ≤ i ≤ 2q by a
finite sequence of Kähler-Weil transformations6

K(z, z̄) 7→ K(z, z̄)− f(z)− f̄(z̄), (3.90)

where f is any holomorphic function. Since e−K = (Π, Π̄), the period vector transforms as

Π 7→ efΠ. (3.91)

We then choose

f = fq = −zq (aq, ā0)

(a0, ā0)
. (3.92)

Using the fact that ef = 1 + f + · · · , we see that Π transforms as

Π 7→ Π + fΠ +O(z2q)Π = a0 + zqetN
(

aq −
(aq, ā0)

(a0, ā0)
a0

)
+O(zq+1). (3.93)

In other words, under this transformation

aq 7→ aq −
(aq, ā0)

(a0, ā0)
a0, (3.94)

which implies that (aq, ā0) 7→ 0. Note that due to the higher order f -terms in ef , some of the
higher-order aq+j , j > 0, may also shift. We can now iterate the above process q times (using the

6The argument below is due to Damian van de Heisteeg.



CHAPTER 3. HODGE STRUCTURES AT SINGULAR POINTS 59

shifted aq+j when needed) by setting f = fq+1, f = fq+2, etc... until we have obtained (ai, ā0) = 0
for all q ≤ i ≤ 2q, as desired. Using this result, we have

e−K ∼ ||a0||2 + |z|2q ||Πq||2 (3.95)

with corrections being suppressed by at least a factor z. Let p be the largest integer such that
Npaq 6= 0. Note that if p = 0, then aq must be proportional to a0, in which case the transformation
(3.94) sets aq to zero. As such we may assume that p > 0. For the rest of the derivation we switch
back to the coordinate t = 1

2πi log z. Then the Kähler potential is of the form7

K ∼ 1 + (Im t)pe2πiq(t−t̄). (3.97)

The metric components are given by

gtt̄ ∼ (Im t)pe2πiq(t−t̄), gtζ̄ ∼ (Im t)pe2πiq(t−t̄), gζζ̄ ∼ 1. (3.98)

and we also note that
√
g ∼ gtt̄. Moreover, the inverse components are given by

gtt̄ ∼ g−1
tt̄
, gtζ̄ ∼ 1, gζζ̄ ∼ 1. (3.99)

Finally, we turn to the computation of

Ftt̄tt̄ = (∇t∇tΠ,∇t∇tΠ) = ||∇2
tΠ||2. (3.100)

First, we note that
∂tK ∼ rpe−2qr, r := 2π Im t (3.101)

is at least of order O(e−2qr). On the other hand, ∂tΠ is of order O(e−qr), which is therefore the
leading term in the limit r → ∞. As a result, we may again approximate ∇t = ∂t when acting on
the scalar Π. Taking the Levi-Civita connection into account, we again find that

∇2
tΠ ∼ ∂2

t Π− Γµtt∂µΠ. (3.102)

For Kähler geometry, we have
Γµtt = gµν∂tgtν . (3.103)

Using the fact that gtζ ∼ 1 one readily sees that the contribution from µ = t, ν = t̄ is leading. In
other words, we have

∇2
tΠ ∼ ∂2

t Π− Γttt∂tΠ. (3.104)

Let us now compute the various quantities in the above expression. Crucially, we will include all
factors to obtain precise expressions, because later on a delicate cancellation will take place.8 First,
we have

∂tΠ = (2πiq +N)e2πiqtΠq, (3.105)

∂2
t Π = (2πiq +N)(2πiq +N)e2πiqtΠq. (3.106)

7A perhaps even easier way to come to the same result is to expand e−K to see that

K ∼ ||a0||2 + |z|2q ||Πq||2 +
[
inner products of the form (ai, ā0) +O(|z|2qz)

]
+ c.c. (3.96)

Then since the terms involving (ai, ā0) come with a factor of zi and are therefore holomorphic, they can be removed
directly by a single Kähler-Weil transformation.

8The attentive reader might worry about the potential prefactor in gtt̄ arising from ||Naq||2, however this factor
will drop out of the expression for Γttt.
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Continuing on, we have

Γttt = ∂t log(gtt̄) =
p

2i
(Im t)−1 + 2πiq (3.107)

It follows that
Γttt∂tΠ =

[
2πiq +

p

2i
(Im t)−1

]
(2πiq +N)e2πiqtΠq (3.108)

We see that in the expression for ∇2
tΠ, the two terms highlighted in red will cancel. This implies

that
∇2
tΠ ∼

[
N − p

2i
(Im t)−1

]
(2πiq +N)e2πiqtΠq. (3.109)

Noting that NΠq ∼ t−1Πq, we see that the leading behaviour is given by (we now drop unimportant
prefactors again)

∇2
tΠ ∼ pq(Im t)−1 e2πiqtΠq. (3.110)

Here we remind the reader that p, q > 0. This then implies that

Ftt̄tt̄ = ||∇2
tΠ||2 ∼ (Im t)−2 e2πiq(t−t̄)||Πq||2 ∼ (Im t)−2gtt̄. (3.111)

One can perform similar calculations to obtain the other components of Fi̄kl̄. Since the details are
not as intricate as the case of Ftt̄tt̄ we do not give the exact calculation here, but merely state the
results:

gtt̄gtt̄Ftt̄tt̄ ∼ r−2−pe2qr (3.112)[
gtt̄gζζ̄ + gtζ̄gt̄ζ

]
Ftt̄ζζ̄ ∼ 1 + rpe−2qr (3.113)

gtζ̄gtζ̄Ftζ̄tζ̄ ∼ rpe−2qr (3.114)

gζζ̄gζζ̄Fζζ̄ζζ̄ ∼ 1. (3.115)

We see that the dominant term is provided by Ftt̄tt̄, which is exponentially large. At first glance,
we would therefore expect the index density to be exponentially large when m > 1. However, we
have neglected one aspect of the derivation of the index density. Indeed, in the result (3.62) we
have suppressed an additional anti-symmetrization that should be performed. This comes from the
original expression det(R + ω), which contains both a determinant and also the wedging of two-
forms, as discussed in section (2.5). Let us illustrate the consequences of this for a two-dimensional
moduli space. For m = 2 the term I2 containing two copies of Fi̄kl̄ is given by

e−2KI2 = δ
[i1
j1
δ
i2]
j2
δ

[k1

l1
δ
k2]
l2
gj1 ̄1gj2 ̄2gl1 l̄1gl2 l̄2Fi1 ̄1k1 l̄1

Fi2 ̄2k2 l̄2
. (3.116)

Note that this expression is anti-symmetrized w.r.t. i1 ↔ i2 and k1 ↔ k2. We will now argue that
the leading order behaviour is given by

I2 ∼ gtt̄gtt̄Ftt̄tt̄
[
gζ̄ζgζ̄ζFζζ̄ζζ̄

]
, (3.117)

To this end, we recall that Ftt̄tt̄ is the dominant component of Fi̄kl̄. Without loss of generality, let
us therefore assume that i1 = k1 = t and ̄1 = l̄1 = t̄. We make two observations. First, we note
that the antisymmetry of i1 ↔ i2 and k1 ↔ k2 implies that i2 = k2 = ζ. Secondly, using the fact
that

δ
[i1
j1
δ
i2]
j2

= δi1[j1δ
i2
j2] (3.118)
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we see that the expression gj1 ̄1gj2 ̄2 must be anti-symmetric under j1 ↔ j2. This implies that the
only term contributing in the contraction is the one where ̄1 is different from ̄2. A similar result
holds for the terms containing l1, l2. Hence we conclude ̄2 = l̄2 = ζ̄. We are then left with

I2 ∼ δt[j1δ
ζ
j2]δ

t
[l1
δζl2]g

j1 t̄gj2ζ̄gl1 t̄gl2ζ̄Ftt̄tt̄Fζζ̄ζζ̄ (3.119)

There are three ways to perform the contraction of the indices, namely

gtt̄gζζ̄gtt̄gζζ̄ , or gtt̄gζζ̄gζt̄gtζ̄ , or gζt̄gtζ̄gζt̄gtζ̄ . (3.120)

However, we can again use the anti-symmetry under j1 ↔ j2 and l1 ↔ l2 to conclude that the
second and third option cannot occur.9 Alternatively, one can also argue that the first option is in
fact the leading behaviour when considering the particular forms of the inverse metric. Hence we
find

I2 ∼ gtt̄gtt̄Ftt̄tt̄
[
gζ̄ζgζ̄ζFζζ̄ζζ̄

]
∼ gtt̄gtt̄Ftt̄tt̄ (3.121)

as promised. In the case of general m, the above analysis can be summarized as follows. The factor
Im containing m copies of F can be written as

Im = δ
[i1
j1
· · · δim]

jm
δ

[k1

l1
· · · δkm]

lm
gj1 ̄1 · · · gjm ̄mgl1 l̄1 · · · glm l̄mFi1 ̄1k1 l̄1

· · ·Fim ̄mkm l̄m . (3.122)

Moreover, the anti-symmetry argument comes down to the following statement: the indices α1, . . . , αm
appearing in the F ’s must all be different, for each fixed α ∈ {i, j, k, l}. As a result, the index density
becomes

dµ ∼ dt ∧ dt̄ √ggtt̄gtt̄Ftt̄tt̄ [F···· · · ·F····g·· · · · g··] (3.123)

with the term in brackets generically being of order 1. Most importantly, the F ’s appearing in
brackets cannot have t or t̄ indices. Using the expression for Ftt̄tt̄ we obtained earlier, we finally
arrive at

dµ ∼ √ggtt̄gtt̄Ftt̄tt̄ dt ∧ dt̄ ∼ gtt̄Ftt̄tt̄ dt ∧ dt̄ ∼
dt ∧ dt̄
(Im t)2

, (3.124)

which is exactly the same result as we found in the case Na0 6= 0.

Again, for the interested reader we note that one can perform this analysis a bit more carefully by
fully keeping track of the pre-factors that arise in the index density. Here the (surprising) result is
that it is simply given by −4p2 together with factors of gζζ̄ and Fζζ̄ζζ̄ about which we do not know
much, i.e. to leading order

dµ ∼ p2 × dt ∧ dt̄
(t− t̄)2

. (3.125)

Here we remind the reader that p is the largest integer such that Npaq 6= 0, akin to the integer d
for a0. Note that the pre-factor does not depend on q. It would be interesting to investigate this in
more detail to understand the qualitative different with the Na0 6= 0, but this is beyond the scope
of this work.

9Here it seems that we are using the fact that we only consider m = 2. However for general m it is still true that
gtζ̄1 = gtζ̄2 so this argument generalizes.
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3.6 Discussion

In this section we will make a couple of observations regarding the results we have derived in
the preceding section. We consider the integrability of the index density, its relation to the exact
expression for the torus obtained in section 2.3.3 and discuss some aspects of a dual description in
terms of a Yang-Mills theory.

Our first observation is that the index density is integrable around Im t → ∞. This is most easily
seen by first returning to the coordinate z = e2πit, in terms of which the index density is given by

dµ ∼ dz ∧ dz̄
|z|2 log2 |z|

. (3.126)

Passing to a radial coordinate r = |z| with 0 < r < R, one readily sees that∫ R

0

dr

r log2 r
∼ 1

log(1/R)
, (3.127)

which is a finite result. Here we stress that this only gives an indication of the index of flux vacua
near such a singularity, but as we discussed in chapter 2 this is precisely where the intricacies
regarding finiteness lie. In short, we have obtained a definite answer to Q3, namely:

A3: The AD-density is integrable near any singular loci where a single coordinate
Im t in the complex structure moduli space becomes large. More precisely, it takes the
universal form

dµ ∼ dt ∧ dt̄
(Im t)2

. (3.128)

In fact, this answer agrees with the result obtained in [14, p. 17], where a similar computation was
performed for the conifold limit. Additionally, the result (3.126) also agrees with the findings of
Eguchi and Tachikawa [22], where more general limits were considered in the threefold setting. The
upshot is that we have reproduced the results known in the literature for Calabi-Yau threefolds,
and generalized them to Calabi-Yau D-folds, for any one-parameter limit. However, let us spend
a few words on how the results of Eguchi and Tachikawa can be obtained as specific cases of our
calculations.

First, when D = 3, the conifold is a particular singularity (Type I, or Na0 = 0) which is character-
ized by a period vector and monodromy of the form

Π =

(
m

2πiz log z
z

)
+ · · · , N =

(
0 m
0 0

)
(3.129)

in the limit where z → 0. Here the dots denote analytic functions of z. Note that this is readily
written in the form of the nilpotent orbit theorem as

Π = a0 + ze
log z
2πi

Na1, a1 =

(
0
1

)
. (3.130)

In other words, this is simply the case q = 1 in our derivation for the Na0 case.

Secondly, again when D = 3, for a one-dimensional moduli space the asymptotic behaviour of the
period vector in the large complex structure limit is given by

Π =
(
1 t t2 t3

)T
(3.131)
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which corresponds to the case Na0 6= 0, specifically d = 3. As we discussed in chapter 2, this is
an example of a D-limit, where a priori the integrability of the index density is not guaranteed.
Happily, the upshot of our calculation is that it is integrable, at least for one-parameter limits. To
make any statements about the large complex structure limits of arbitrary moduli spaces, we need
to understand multi-moduli limits, which we discuss in the next chapter.

A second observation is that the result (3.128) is (to leading order and up to a numerical factor)
precisely the index density that was obtained in the simple example of flux compactification on the
torus, see section 2.3.3. In the case Na0 6= 0 this is to be expected, since the metric components
obtained in (3.74) agree with the exact metric on the moduli space of the torus. However, it is
somewhat unexpected that the same holds in the case Na0 = 0, since there the metric components
are certainly different from that of the torus.

Gauge/Gravity Duality of the Conifold

Lastly, we propose an interesting connection with the results of Klebanov and Strassler in [38].
Here a dual description of the gravitational theory of the (complex) three-dimensional conifold is
provided in terms of an N = 1 supersymmetric Yang-Mills theory. Let us provide some details of
this result. For Type IIB string theory on a conifold, a standard result is that the Kähler potential
and the superpotential induced by F3, H3 fluxes is given by

W = −Lτz +M
z

2πi
log z, L = − log

[
−i|z|2 log2 |z|

]
, (3.132)

where z is the complex structure modulus parametrizing the size of the vanishing cycle and M,−L
denote the flux quanta of F3, H3. In particular, assuming |z| � 1 and additionally L/gs � C0, one
can solve DzW = 0 to obtain a vacuum given by

|z| = e−2πL/Mgs . (3.133)

Now the result of [38] is that the conifold has a dual description given by a certain N = 1 super-
symmetric SU(N +M)× SU(N) gauge theory, where N = LM . The string coupling constant gs is
related to the ’t Hooft coupling constant of this gauge theory by

Mgs = λ = g2
YMN. (3.134)

In particular, the limit where L/gs is large corresponds precisely to the large N limit in the dual
theory (at fixed λ). The relation to our results regarding the index density arises by observing that

|z| = e−b/g
2
YM , b =

2π

M
, (3.135)

which implies that

dµ ∼ d|z|
|z| log2 |z|

∼ dg2
YM. (3.136)

Interestingly, the index density is uniform when expressed in terms of g2
YM, which one may interpret

as an indication that the dual theory provides a more natural description of the conifold. The
interesting fact is that we have obtained exactly the same form of the index density for general one-
parameter limits in the moduli space of a Calabi-Yau D-fold, as opposed to the specific case of the
three-dimensional conifold. This suggests the existence of a dual description of these general limits
as well, in the same spirit as above. However, it is beyond the scope of this work to investigate such
a duality in detail. It is expected to be challenging, since the exact relation between the singularity
of the moduli space and that of the internal Calabi-Yau can be complicated. As such it is not clear
at all whether the Calabi-Yau singularity allows for a similar D3-brane construction.



Chapter 4

On to Multi-Moduli Limits

In chapter 3 we have provided the general framework used to describe the degeneration of the Hodge
structure of HD at singular loci. Of utmost importance are the nilpotent orbit approximation of the
period vector and the properties of the Deligne splitting, most notably the polarization conditions.
Using these we were able to obtain the scaling of the index density near singular loci consisting
of a single divisor ∆◦1, i.e. where a single parameter is sent to the limit Im t → ∞. The goal
of this chapter is to provide more insight into the structure of general singular loci, consisting of
higher intersections of divisors ∆◦1···k. One of the intricacies that arises when considering multiple-
parameter limits is the fact that the results are path-dependent. This is illustrated in figure 4.1,
where the complex structure moduli space is depicted in the ti-coordinates, such that the singular
loci correspond to the boundary of the moduli space. To be certain that the number of flux vacua
is finite, we must check that there are no paths to the boundary that pick up an infinite number of
vacua.

Figure 4.1: A depiction of the complex structure moduli space in the ti-coordinates, where the
singular loci are seen as the boundary of the space. Three different paths are shown, each passing
along some set of flux vacua. The question of interest is whether there exists a path which picks up
infinitely many vacua when approaching the boundary.

Clearly, this greatly complicates the question compared to the single-parameter limits. As such, our
results rely heavily on the usage of some involved mathematical structures, which is encompassed
by the SL(2)-orbit theorem. We discuss its implications in section 4.1. In section 4.2 we turn to
the subject of singularity enhancement to gain more insight into the structure of the singular loci
∆◦1···k and in particular their associated Deligne diamonds. Additionally, we motivate and state the
growth theorem, which will ultimately provide us with the proper generalization of the scaling of

64
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the index density, as we discuss in section 4.3. Note that we will only be able to provide results
in a particular case, as will become apparent. Finally, in section 4.4 we relate our results to those
found in the mathematics literature and comment on the intricacies that arise when dealing with
the most general case and how one might attempt to overcome them.

4.1 The SL(2)-Orbit Theorem

Recall that near the intersection of nP divisors ∆i the nilpotent orbit theorem provides an approx-
imation of the period vector by

Π = exp

[
nP∑
i=1

tiNi

]
a0. (4.1)

In chapter 3 we were able to compute the Kähler potential given by

e−K = ||Π||2, (4.2)

but only did so in the case of a single divisor, i.e. nP = 1. When turning to the intersection of
multiple intersections, a number of complications arise. Most notably, the results highly depend on
the specific path taken towards ∆◦1···nP , i.e. which parameters grow the quickest. This is dealt with
by introducing a specific growth sector

R1···nP :=

{
y1

y2
> λ, . . . ,

ynP−1

ynP
> λ, ynP > λ, xi < δ

}
, tj = xj + iyj (4.3)

We stress that our results will hold within this particular sector, as will become apparent when we
introduce the SL(2)-orbit. A second complication that arises is the question of how to deal with
the various matrices Ni. In the one-modulus case, the matrix N had the simple interpretation as a
lowering operator, since

NIp,q ⊆ Ip−1,q−1. (4.4)

However, in the multi-modulus case, this property only holds for N = N(nP ), since this is the
matrix used to construct the monodromy weight filtration, and in turn the Deligne splitting. As
such, it is unclear what exactly the individual matrices Ni do. This is an issue, since whenever we
perform a derivative of Π with respect to ti, we will bring down a factor of Ni acting on a0. To
have any hope of estimating the scaling of the index density, which ultimately is expressed in terms
of various derivatives of Π, we need to deal with this issue. As is often the case, a slight change
of perspective will provide us with the answer. The idea is as follows: by ‘rotating’ the mixed
Hodge structure F∆ (i.e. performing a change of basis) we will be able to replace the data (a0, Ni)
with some (ã0, N

−
i ), where the matrices N−i are part of sl(2)-triples whose action on the Deligne

splitting and ã0 is more easily understood. Let us discuss this in some detail. We again follow the
discussion in [28] and refer the reader to [8], specifically Theorem 4.20, for the mathematical details.

Uncovering the sl(2)-algebras

When we first introduced the Deligne splitting in section 3.3, one of its defining properties was

Ip,q = Iq,p mod
⊕

r<q,s<p

Ir,s. (4.5)

We described the complicated ‘mod’ factor as an alternative to working with the quotient spaces
Gri. We call a splitting Ip,q R-split if it satisfies

Ip,q = Iq,p. (4.6)



CHAPTER 4. ON TO MULTI-MODULI LIMITS 66

Figure 4.2: The property 4.5 is exemplified for a Type III singularity. We have highlighted the
spaces I3,2 and I3,2 = I2,3 mod

(
I1,1 ⊕ I0,2 ⊕ I1,2

)
, where the latter is obtained by reflecting I3,2 in

the vertical axis and modding out the lower spaces.

Of course, the mixed Hodge structure (F,W ) does not necessarily induce an R-split Deligne splitting.
However, one of the main results of the SL(2)-orbit theorem is that we can always make an R-split
Deligne splitting Ĩp,q by performing a rotation of the original mixed Hodge structure:

F̃ := eζe−iδF, (4.7)

for two matrices ζ and δ. We note that ζ can be expressed in terms of δ as described in [28, App. B].
Here δ can be decomposed as

δ =
∑
p,q>0

δ−p,−q, (4.8)

where each δ−p,−q acts on Ĩr,s as
δ−p,−q(Ĩ

r,s) ⊆ Ĩr−p,s−q. (4.9)

To gain some insight into this, we refer the reader to figure 4.2, where the property 4.5 is illustrated.
We see that Ip,q = Iq,p up to elements lying in the ‘lower spaces’. On the other hand, the action of
δ precisely rearranges these elements in such a way that the resulting Ĩp,q is R-split. We will refer
to (F̃ ,W ) as the SL(2)-splitting of (F,W ), for reasons we now describe.

The first advantage of working in the SL(2)-splitting is that one can construct a set of commuting
sl(2)-triples which act nicely on the Ĩp,q spaces. We fix an ordering (N1, . . . , NnE ) of the nilpotent
monodromy matrices. The result is that we obtain matrices Yi, N

±
i satisfying the sl(2)-algebra

[Yi, N
±
i ] = ±2N±i , [N+

i , N
−
i ] = Yi (4.10)

which are moreover pairwise commuting. The action of these matrices on the SL(2)-splitting is
given by

Y(k)Ĩ
p,q(∆◦1···k) = (p+ q −D)Ĩp,q(∆◦1···k) (4.11)

and
N±k Ĩ

p,q(∆◦1···k) ⊂ Ĩp±1,q±1(∆◦1···k). (4.12)

In other words, for a given v ∈ Ĩp,q(∆◦1···k), we see that Y(k) records where v lies in the Deligne dia-

mond of ∆◦1···k. Moreover, the operators N±k act as raising/lowering operators, sending v up/down
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two rows in ∆◦1···k respectively. This is precisely what we set out to achieve at the start of this section.

The Nilpotent Orbit vs. The SL(2)-Orbit

The second advantage of working in the SL(2)-splitting is that there is an alternative way to express
the asymptotic behaviour of the period vector, via the so-called SL(2)-orbit ΠSL(2). It is related
the the nilpotent orbit as follows

Πnil = exp

− nE∑
j=1

tjNj

a0(ζ) = exp

− nE∑
j=1

xjNj

 ·M(y) ·ΠSL(2), tj = xj + iyj (4.13)

where

ΠSL(2) = exp

−i nE∑
j=1

yjN−j

 ã
(nE)
0 (4.14)

and M(y) is a y-dependent matrix which has a power-series expansion in terms of non-positive
powers of y1/y2, . . . , ynP /ynP−1 which is convergent precisely in the growth sector R1···nP . The
upshot of this is as follows: within a chosen growth sector, the SL(2)-orbit approximates the period
vector up to polynomially suppressed terms. Compare this with the nilpotent orbit approximation
which is valid up to exponentially suppressed terms. Apart from this, the SL(2)-orbit is very similar

to the nilpotent orbit, expect it replaces Nj with N−j and a0 with ã
(nE)
0 .

To see the usefulness of the SL(2)-orbit, let us give a slightly heuristic argument for computing
||Π||2 in this approximation, i.e. we set

||Π||2 ∼ ||ΠSL(2)||2 ∼

exp

−2i

nE∑
j=1

yjN−j

 ã
(nE)
0 , ã

(nE)
0

 . (4.15)

By expanding the exponential, we see that each factor of yj in ||Π||2 comes with a factor of N−j

acting on ã
(nE)
0 . If we want to find the leading contribution to ||Π||2, within the growth sector

R1···nP , we therefore want to maximize the number of N−1 ’s first, then the number of N−2 ’s, etc...
To find these numbers, we introduce integers di such that

(N−(i))
di ã

(nE)
0 6= 0, (N−(i))

di+1ã
(nE)
0 = 0. (4.16)

Recall from the discussion in chapter 3 that the integers di label the singularity type of ∆◦(i). We
then make the following set of observations. First, d1 is the largest integer such that

(N−1 )d1 ã
(nE)
0 6= 0. (4.17)

Second, d2 is the largest integer such that

(N−1 +N−2 )d2 ã
(nE)
0 6= 0. (4.18)

Expanding the LHS we see that d2 is also the largest integer such that

(N−1 )d1(N−2 )d2−d1 ã
(nE)
0 6= 0. (4.19)

Doing this once more, we see that d3 is the largest integer such that

(N−1 )d1(N−2 )d2−d1(N−3 )(d3−d1)−(d2−d1)ã
(nE)
0 6= 0, (4.20)
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or
(N−1 )d1(N−2 )d2−d1(N−3 )d3−d2 ã

(nE)
0 6= 0. (4.21)

Generally, we find that the di are the highest integers such that

(N−1 )d1(N−2 )d2−d1 · · · (N−nP )dnP−dnP−1 ã
(nE)
0 6= 0. (4.22)

In conclusion, we find that

||Π||2 ∼ yd1
1 y

d2−d1
2 · · · ydnP−dnP−1

nP . (4.23)

We remark that this is a polynomial of order dnP , as expected (by definition of dnP ) since we are
considering an intersection of nP divisors. Moreover, this computation has shed some light on how
the singularity structure of ∆◦(nP ) is related to the singularity structures of the lower divisors ∆◦(i),

with 1 ≤ i ≤ nP . As far as determining the scaling of the index density, the result (4.23) is already
a good starting point. However, to gain more insight into this setting and better understand the
multi-parameter degenerations, we will spend some more words on the above relation by discussing
the process of singularity enhancement. We will also see that the result (4.23) is in fact a specific
case of the growth theorem.

4.2 Singularity Enhancements and the Growth Theorem

4.2.1 Singularity Enhancements

Let us consider a locus ∆◦1 with a given singularity type Type(∆◦1), specified by the integer d(1) =
0, . . . , D. One might imagine moving along ∆◦1 until reaching an intersection ∆◦12. At this inter-
section a second coordinate Im t2 is sent to infinity and we say that the singularity is enhanced
to Type(∆◦12). Tremendous work has been done in [28, 53] to classify the allowed enhancements
for Calabi-Yau threefolds and fourfolds. One of the more intuitive results is that an enhancement
can only ‘worsen’ the singularity, i.e. d1 ≤ d2. In this section we will give some details of such
enhancements and in particular focus on its effect on the Deligne diamonds. For simplicity we will
stick to an enhancement of the form

Type(∆◦1)→ Type(∆◦12), (4.24)

since the main features will naturally generalize to higher divisors. Recall that upon reaching the
locus ∆◦1, the pure Hodge structure of HD breaks down and we instead require the Deligne splitting
to capture the full space (here we illustrate it for fourfolds):

(H4,0, H3,1, H2,2, H1,3, H0,4)→

I4,4

I4,3 I3,4

I4,2 I3,3 I4,2

I4,1 I3,2 I2,3 I1,4

I4,0 I3,1 I2,2 I1,3 I0,4

I3,0 I2,1 I1,2 I0,3

I2,0 I1,1 I0,2

I1,0 I0,1

I0,0

(4.25)

or more schematically
HD 7→ [Ip,q]D(∆◦1), 0 ≤ p, q ≤ D. (4.26)
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II
P 5(∆◦1)

∆◦1 → ∆◦12

IV

[Ip,q]5(∆◦12)

Figure 4.3: A Type II → Type IV enhancement is shown at the level of the Deligne diamonds.
For convenience only depict the upper half of the diamond. On the LHS we have highlighted
the horizontal primitive space P 5(∆◦1) which upon enhancement attains a mixed Hodge structure
described by the Deligne diamond [Ip,q]5(∆◦12). Note that we have only displayed the inner part of
the latter diamond, since the outer ring only consists of empty vector spaces.

To understand what happens once we move to ∆◦12, we recall that from the Deligne splitting we
constructed the primitive spaces P p,q which form a pure Hodge structure of weight p + q = l for
each P l. The idea of the enhancement is that upon reaching ∆◦12, all of P l spaces split into an even
finer Deligne splitting in exactly the same way HD did upon reaching ∆◦1:

P l(∆◦1)→ [Ip,q]l(∆◦12), 0 ≤ p, q ≤ l. (4.27)

Pictorially, the primitive part of each horizontal row of the Deligne diamond Ip,q(∆◦1) forms its own
Deligne diamond [Ip,q]l(∆◦12), as is exemplified in figure 4.3 for a II→ IV enhancement. On the
other hand, we could have also analysed the singularity structure of ∆◦12 directly by the procedure
outlined in section 3.3, leading to yet another Deligne splitting Ip,q(∆◦12). Whether a particular
singularity enhancement is allowed is then translated into the question of whether the diamond of
Ip,q(∆◦12) can be obtained by summing up the various diamonds of [Ip,q]l(∆◦12), for 0 ≤ l ≤ 2D,
in a particular manner. The details of this procedure are described in [28, 53] for threefolds and
fourfolds, respectively. However, for our purposes it will suffice to understand what happens with

ã
(nE)
0 under an enhancement.

4.2.2 The Growth Theorem

In section 3.2 we introduced a bilinear form on HD given by

S(v, w) =

∫
YD

v ∧ w, (4.28)

and used the notation ||v||2 = S(v, v̄). This resembles the Hodge norm, defined by

||v||2? :=

∫
YD

v ∧ ?v, (4.29)

where ? is the Hodge star on YD. The relation between the two is made precise by introducing the
Weil operator C, which acts as

v ∈ Hp,q : Cv = ip−qv. (4.30)
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Indeed, we can express the Hodge norm in terms of the inner product S and the Weil operator C
as

||v||2? = S(Cv, v̄). (4.31)

Most importantly, since Ω ∈ HD,0, we see that the two norms coincide (up to a factor):

||Ω||2 = iD||Ω||2?. (4.32)

In fact, since ∇iΩ ∈ HD−1,1 etcetera, this remains true when acting on Ω with the covariant
derivative ∇i. When we investigated the scaling of the index density in 3.5, we often expressed
our results in terms of the || · || norm1 of Π or various covariant derivatives thereof. Since for such
expressions the norm agrees with the Hodge norm, it may instead be fruitful to investigate the
latter in more detail. To this end, we summarize the results of the growth theorem of [7].

We consider the intersection of nP divisors ∆1, . . . ,∆nP located at yi =∞. Let us moreover choose
an ordering

chosen ordering : N1, . . . , NnP , (4.33)

which corresponds to the growth sector R1···nP . Essentially, one can view this as first moving along
∆◦1 to its intersection ∆◦12 with ∆◦2, then onto its intersection ∆◦123 with ∆◦3, etcetera. Then consider
a D-form v whose position within the Deligne diamonds of each ∆◦1···j is specified by

v ∈Wl1(N(1)) ∩ · · · ∩WlnP
(N(nP )), (4.34)

where each lj is the lowest integer such that v ∈ Wlj (N(j)) (recall that Wj ⊆ Wj+1). Pictorially,
each lj labels the highest row in the Deligne diamond of ∆◦1···j where v has a non-zero part. The
growth theorem now states that the leading growth of the Hodge norm of v is given by

||v||2? ∼ (y1)l1−D(y2)l2−l1 · · · (ynP )lnP−lnP−1 (4.35)

Note the resemblance with (4.23). In fact, we can make the similarity precise by deducing the

position of ã
(nE)
0 within the various Deligne diamonds.

Application to ã
(nE)
0 and a Visualization

In analogy to the one-modulus case, where the integer d satisfying

Nda0 6= 0, Nd+1a0 = 0 (4.36)

labelled the position of a0 to be in ID,d, see section 3.3, in the multi-moduli case the position of

ã
(nE)
0 is labelled by the integers di introduced in section 4.1

ã
(nE)
0 ∈Wd1+D(N−(1)) ∩ · · · ∩WdnP +D(N−(nP )). (4.37)

Indeed, implies that ã
(nE)
0 ∈ ĨD,di(∆◦1···i) for 1 ≤ i ≤ nP . Put differently, we have

Y(i)ã
(nE)
0 = diã

(nE)
0 , (4.38)

1Note that stricly speaking || · || is not a norm, since it is not positive-definite. For simplicity we will nevertheless
refer to it as a norm.
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II

III

IV

V

Figure 4.4: The various positions of ã
(nE)
0 across enhancements II→ III, IV, V are shown. On the

RHS the action of N−2 is shown in red. Note that the number of times N−2 can act non-trivially

on ã
(nE)
0 is precisely given by one, two and three for the cases III, IV and V, respectively. This

corresponds to the integers d2 − d1.

hence we will also refer to these as the sl(2)-eigenvalues of ã
(nE)
0 . It is shown in [7] that W (N−(i)) =

W (Ni), hence we may use the growth theorem to find the growth of the Hodge norm of ã
(nE)
0 , which

immediately results in

||ã(nE)
0 ||2? ∼ (y1)d1(y2)d2−d1 · · · (ynP )dnP−dnP−1 , (4.39)

which is precisely the result we obtained in (4.23). To understand this result from a more graph-
ical point of view, let us make a connection between (4.39) and the singularity enhancements we

described earlier. We refer the reader to figure 4.4, where the degeneration of P 5, containing ã
(nE)
0 ,

to a mixed Hodge structure described by the blue Deligne diamonds is depicted. By tracking the

position of ã
(nE)
0 , we see that these are Type II → III, IV, V enhancements. The important obser-

vation here is that N−2 acts as a lowering operator in these latter diamonds. Moreover, depending

on the final type, N−2 can act once, twice or thrice on ã
(nE)
0 before reaching a trivial space. This

number corresponds precisely to the difference d2 − d1 for each enhancement, which is the factor

appearing in (4.39). In other words, the growth theorem tells us that ||ã(nE)
0 ||2 contains a power of

yi+1 given by the number of times N−i+1 can act on ã
(nE)
0 within the mixed Hodge structure of the

primitive horizontal space of ∆◦1···i containing ã
(nE)
0 .
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Πnil vs. ΠSL(2)

Having obtained the scaling of ã
(nE)
0 , its connection with the scaling of Π needs some further

clarification. The final goal of this section is to show that the growth of Π and ã
(nE)
0 agree, and in

doing so we will re-derive the result of the growth theorem, yielding further insight. We recall the
relation

Πnil = M(y) ·ΠSL(2), (4.40)

where we have set each xi to zero since we are interested in the y-dependence. Here M(y) can be
written as [8, Thm. 4.20(vii)-(viii)]

M(y) =
1∏

r=n

gr

(
y1

yr+1
, . . . ,

yr

yr+1

)
, (4.41)

where each gr(y
1, . . . , yr) is a matrix-valued function which has a power series expansion with

constant term one in terms of non-positive powers of y1/y2, y2/y3, . . . , yr in the growth sector
R1···r.

Inspired by [7, Thm. 4.8] we consider the matrix

e(y) =

(
y1

y2

) 1
2
Y(1)

· · ·
(
yn−1

yn

) 1
2
Y(n−1)

(yn)
1
2
Y(n) . (4.42)

Our first goal is to evaluate e(y)Πnil using (4.40). We proceed in two steps. First, [8, Thm. 4.20(ix)]
implies that the matrix-valued function

egr(y
1, . . . , yr) = e(y) · gr(y1, . . . , yr) · e(y)−1 (4.43)

has a power series expansion with constant term one in terms of non-positive powers of (y1/y2)1/2, . . . , (yr)1/2

in the growth sector R1···r. Using this relation for each gr in M(y), we have

e(y) ·Πnil = eM(y) · e(y) ·ΠSL(2), (4.44)

where eM(y) is defined in the same way as M(y) with each gr replaced by egr. To compute the

action of e(y) on the SL(2)-orbit, we recall the sl(2)-eigenvalues of ã
(nE)
0 defined by

Y(i)ã
(nE)
0 = diã

(nE)
0 . (4.45)

Since ΠSL(2) contains factors of N−i acting on ã
(nE)
0 , we need to understand how they affect its

sl(2)-eigenvalues. To this end, let v be some D-form with

v ∈Wl1(N−(1)) ∩ · · · ∩WlnP
(N−(np)). (4.46)

For given integers k, i we want to evaluate

Y(k)N
−
i v, Y(k) = Y1 + · · ·+ Yk. (4.47)

There are two cases. If k < i, then Y(k) commutes with N−i , hence the action of N−i does not change
the eigenvalue under Y(k). On the other hand, if k ≥ i, we use the sl(2) algebra to see that

Y(k)N
−
i v = YiN

−
i v + (Y1 + · · ·+ Ŷi + · · ·+ Yk)N

−
i v, note: hat means ‘omit’

= N−i Yiv − 2N−i v +N−i (Y1 + · · ·+ Ŷi + · · ·+ Yk)v

= N−i (Y(k) − 2)v

= (lk − 2)N−i v.
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In other words, the action of N−i lowers all eigenvalues li, . . . , lnP by two, i.e.

N−i v ∈Wl1(N−(1)) ∩ · · · ∩Wli−1
(N−(i−1)) ∩Wli−2(N−(i)) · · · ∩WlnP−2(N−(np)). (4.48)

Returning to the specific case of ã
(nE)
0 , one readily sees that

e(y) · (yjN−j )kã
(nE)
0 =

(
y1

y2

) 1
2
d1

· · ·
(
yn−1

yn

) 1
2
dn−1

(yn)
1
2
dn(N−j )kã

(nE)
0 = ||ã(nE)

0 ||2? · (N−j )kã0. (4.49)

Essentially, the factor of yj appearing in (yjN−j )k cancels precisely against the one in e(y) after
evaluating the action of Y(j). The latter expression is just the result of the growth theorem. We see
that e(y) acts nicely on ΠSL(2) by bringing out all the y-dependence, resulting in

e(y) ·Πnil = eM(y) · e(y) · exp

−i nE∑
j=1

yjN−j

 ã
(nE)
0 = ||ã(nE)

0 ||2? · eM(y) · e−iN
−
(n) ã

(nE)
0 . (4.50)

Finally, let us compute ||Πnil||2 by employing a trick. We insert unity as e−1(y)e(y) and use the
properties of the bilinear form (·, ·) to move e−1(y) to the other side as follows2

||Πnil||2 =
(
Πnil, e

−1(y) · e(y) · Π̄nil

)
=
(
e(y) ·Πnil, e(y) · Π̄nil

)
= ||e(y) ·Πnil||2. (4.51)

The final expression above is now easily computed using our result for e(y) ·Πnil, where the leading
y-dependence has been extracted:

||e(y) ·Πnil||2 = ||ã(nE)
0 ||2? · ||eM(y) · e−iN

−
(n) ã

(nE)
0 ||2. (4.52)

Neglecting the sub-leading terms in eM(y), we arrive at

e−K ∼ ||Πnil||2 ∼ ||ã
(nE)
0 ||2? (4.53)

In other words, the leading growths of the nilpotent orbit and ã0 agree. Looking at (4.40) and
expanding M(y) one may be tempted to believe that this result is trivial. However, in the form
of (4.40) it is not clear that M(y) cannot increase the sl(2)-eigenvalues of ãnE0 (note that M(y)
is matrix-valued), leading to a different growth. The result of the above calculation is that this
situation cannot occur. Finally, we stress that the first relation in (4.53) holds up to exponentially
suppressed corrections, whereas the second relation holds up to polynomially suppressed corrections.

4.3 The Scaling of the Index Density for Multi-Moduli Limits

In this section we will use a similar strategy as in 3.5 to obtain the scaling of the index density in the
multi-moduli case. A crucial difference is that we will make use of the SL(2)-orbit approximation
as we did in the previous section, where we explicitly found that

e−K ∼ (y1)d1(y2)d2−d1 · · · (ynP )dnP−dnP−1 . (4.54)

We now compute the metric components and the covariant derivatives in a similar manner as in
chapter 3. starting from this expression. Note that di ≤ di+1 is always true for the growth sector in

2More precisely, e(y) is an isometry of the bilinear form (·, ·), see [29, App. B].
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question. However, here we will make the stronger assumption that di < di+1, so that the leading
order behaviour of K depends on all coordinates yi. Indeed, under this assumption we may write

K ∼
nP∑
i=1

log yi. (4.55)

Moreover, since the SL(2)-orbit has no xj dependence, we need only consider the derivatives of K
with respect to yj . In particular, the metric components gīı := gti t̄i are given by

gīı ∼ (yi)−2, gīı ∼ g−1
īı (4.56)

and moreover √
g ∼ (y1)−2 · · · (ynP )−2. (4.57)

Since the Kähler potential does not contain cross-terms in different yi’s, to leading order, the metric
components gi̄ with i 6= j will be suppressed w.r.t. gīı. Next, we note that

∂iΠnil = ∂i(M(y) ·ΠSL(2)) ∼M(y) · ∂iΠSL(2) ∼M(y) ·N−i ΠSL(2). (4.58)

Here we have used the fact that ∂iM(y) has no constant term and therefore constitutes a sub-leading
contribution. In particular, it follows that

∇iΠnil = ∂iΠnil + (∂iK)Πnil ∼M(y) ·
[
N−i ΠSL(2) + y−1

i ΠSL(2)

]
. (4.59)

In the limit yi → ∞, we may again approximate ∇i = ∂i when acting on the scalar Πnil. When
taking two covariant derivatives, we must again include the Levi-Civita connection, which gives

∇i∇jΠnil ∼ ∂i∂jΠnil − Γµij∂µΠnil. (4.60)

One can then explicitly check that the Levi-Civita term is of order (yi)−1 when i = j and vanishes
otherwise. In particular, this means we may approximate

∇i∇jΠnil ∼ ∂i∂jΠnil ∼M(y) ·N−i N
−
j ΠSL(2). (4.61)

Finally, we turn to the evaluation of

Fi̄kl̄ = (∇i∇kΠnil,∇j∇lΠnil). (4.62)

First, since the metric components gi̄ for i 6= j are sub-leading, we expect the leading behaviour to
be governed by Fīıj̄, which we can alternatively write as3

Fīıj̄ = ||∇i∇jΠnil||2 ∼ ||M(y) ·N−i N
−
j ΠSL(2)||2. (4.64)

The growth of the last term can now be obtained by repeating the trick we used to compute ||Πnil||2,
i.e. inserting unity as e(y)e(y)−1, resulting in

||M(y) ·N−i N
−
j ΠSL(2)||2 ∼ ||eM(y) · e(y)N−i N

−
j ΠSL(2)||2

∼

[(
y1

y2

)d1

· · ·
(
yn−1

yn

)dn−1

(yn)dn

]
y−2
i y−2

j ||
eM(y) ·N−i N

−
j e
−iN−

(n) ã0||2

∼ ||ãnE0 ||
2
? · y−2

i y−2
j ,

3Note that because we set ∇i ∼ ∂i, the tensor Fi̄kl̄ is symmetric under exchange of i ↔ k and ̄ ↔ l̄. Moreover,
using the properties of the bilinear form (·, ·), we also have

Fi̄i̄ = (∇2
iΠnil, ∇̄2

̄ Π̄nil) ∼ ((N−i )2Πnil, (N
−
j )2Π̄nil) = ||N−i N

−
j Π||2, (4.63)

which is the same as Fiı̄j̄. With this all relevant cases have been considered
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where in the last line we have inserted the growth of ã
(nE)
0 and neglected subleading order terms in

eM(y). Note that the presence of N−i and N−j lowers the scaling of yi and yj by two by the same
reasoning we used before.

An alternative way to derive this result would be to use the growth theorem directly. Indeed, in
the previous section we argued that

||Πnil||2 ∼ ||M(y) ·ΠSL(2)||2 ∼ ||ã0||2. (4.65)

In a similar fashion, we could have immediately used the general result that each application of N−j
lowers the growth by a factor y−2

j , i.e.

||N−i v||
2 ∼ ||v||2 · (yi)−2, (4.66)

to find
||M(y) ·N−i N

−
j ΠSL(2)||2 ∼ ||ã0||2 · y−2

i y−2
j . (4.67)

However, this again neglects some non-trivial behaviour that M(y) might cause. The upshot of the
more detailed calculation is that M(y) does not induce any additional leading behaviour terms.

Finally then, the index density is given by

dµ ∼ dmt √g
m∑
k=0

Ik, (4.68)

where
Ik ∼

(
eKgīıgj̄Fīıj̄

)k ∼ 1. (4.69)

In exactly the same manner as happened in the one-modulus case, we are only left with the volume
form

dµ ∼ dmt √g ∼
nP∧
i=1

dti ∧ dt̄ı̄

(Im ti)2
. (4.70)

4.4 Discussion

From equation 4.70 we see that the result we obtained in chapter 3 generalize naturally to multi-
parameter limits in the case where di < di+1, resulting in

dµ ∼
nP∧
i=1

dti ∧ dt̄ı̄

(Im ti)2
=

nP∧
i=1

dzi ∧ dz̄ ı̄

|zi|2 log2 |zi|
. (4.71)

In section 3.6 we commented on the validity of the results by comparison to the works by Denef
in [14] and Eguchi and Tachikawa in [22]. To confirm the validity of the multi-moduli result, we
compare our findings to the mathematics literature, specifically [40, 42]. Corollary 6.1 of [40] implies
that for a general moduli space of a Calabi-Yau manifold, one has∫

M
cα1 ∧ · · · ∧ cαr ∧ ωα0 ≤ 2m−α0

∫
M
ωmH ,

r∑
j=0

rj = m = dimM, (4.72)

where cαi denotes the αi-th Chern class with respect to the Weil-Petersson metric. Moreover, ωH
denotes the Kähler form of the so-called Hodge metric. Its precise definition is rather involved and
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explained in e.g. [42]. The important fact is that ωH is always bounded by the Kähler form ωP of
the Poincaré metric, i.e.

ωH ≤ CωP (4.73)

for some constant C, where

ωP =

k∑
i=1

dzi ∧ dz̄ ı̄

|zi|2 log2 |zi|
+

m∑
i=k+1

dzi ∧ dz̄ ı̄. (4.74)

The upshot of this corollary is that the intergral over the index density det(R+ω) can be bounded
by an integral over the Hodge volume c.f. (4.72), which is in turn bounded by an integral over m
wedges of the Poincare Kähler form. It follows that the index of supersymmetric vacua is finite, see
also [40, Thm. 6.6]. Crucially, this is a statement involving the entire moduli space and allows for
general singularities, which is a stronger result than we have obtained. Indeed, from our findings
we can only conclude (in certain cases) that near a singularity the index density is integrable. It
may a priori still occur that the volume of Mcs is in fact infinite, leading to an infinite index. In
light of the above corollary this is of course not possible, as was also shown earlier in [41] and was
also proven by more physical means in [20].

Finally, let us comment on how our results give a slightly different insight than those in the math-
ematics literature. Note that wedging ωP m times yields (to leading order) our result for the index
density dµ expressed in the z-coordinates. Therefore, our findings sharpen the behaviour of the
index density by showing that it is not only bounded by Poincaré form, but is fact well approx-
imated by the Poincaré form near all singular loci we have considered. As we discussed in some
detail in section 3.6, the fact that the index density takes this particular form may be related to an
underlying gauge/gravity duality in which its dependence on e.g. the coupling constant is naturally
expressed. We believe that the universality of the index density may be a hint at some deeper
underlying structure, and our computation of its asymptotic behaviour may serve as a first step in
this direction.

Polarizable Cubes and More General Limits

Let us once more stress that our results hold for very particular multi-parameter limits, those which
are obtained from an enhancement chain which strictly increases, i.e. is of the form

Type II→ Type III→ Type IV→ · · · (4.75)

The reason we restrict ourselves to these limits is because of the leading-order behaviour of the
Kähler potential, given by

e−K ∼ (y1)d1(y2)d2−d1 · · · (ynP )dnP−dnP−1 . (4.76)

In particular, when e.g. d2 = d1, meaning that the type does not change in the enhancement chain,
the dependence on the y2-coordinate is lost. To properly address this, one must include sub-leading
contributions to the Kähler potential whose form is not yet well understood. However, there are
still some ways to make progress in this direction, which we will shortly discuss.

One downside of the enhancement chain picture is that is rather restrictive, in the following sense.
If one starts with a Type II singularity by taking y1 to be large, and then enhances this to a Type III
by taking y2 to be large, one can only make statements about the results in a given growth sector,
e.g. where y1 grows quicker than y2. Moreover, we have no way of knowing whether an expression
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of the form y1(y2)2 could appear in (Π, Π̄). Instead, one can consider so-called polarizable cubes.
These are triples of the form

〈II | IV | III〉, (4.77)

which indicate that a Type II and a Type III singularity intersect to form a Type IV singularity.
Since now both starting singularities are specified, we have much more control over what kind of
polynomial expressions in y1 and y2 can occur in (Π, Π̄). For the specific example above, the
polarization conditions imply that

(a0, (N1 +N2)3ā0) 6= 0, (a0, N1ā0) 6= 0, (a0, N
2
2 ā0) 6= 0. (4.78)

Combining these three equations, one readily finds that the only cubic term that can occur in (Π, Π̄)
is given by y1(y2)2, whereas (y1)2y2 cannot occur. Still, there are cases where this construction is
not conclusive, for example for the triple

〈II | III | III〉. (4.79)

Following the same reasoning, one finds that the quadratic term is (y1)2 is not allowed, however
one cannot exclude for instance the term y1y2. Nevertheless, it is clear that considering polarizable
cubes instead of enhancement chains gives us more control of the kinds of expressions that can
appear. One might imagine classifying all possible polarizable cubes and checking for each of
them what the behaviour of (Π, Π̄) and subsequently apply the analysis of the index density. In
general, this is an extremely difficult task and lies beyond the scope of this work. Indeed, checking
whether a given cube is polarizable, meaning that the polarization conditions of the different mixed
Hodge structures involved must translate properly into each other, is challenging. For Calabi-Yau
threefolds, a complete classification of 2-moduli cubes has been obtained in [37], however a general
classification for n-moduli cubes has yet to be found.



Conclusion

Throughout this work, we have touched on a number of areas that are relevant in string compacti-
fications. This includes the more physical discussion regarding the statistics of flux vacua, as well
as the mathematical story about asymptotic Hodge structures and how they can be used to tackle
a variety of problems. We have also provided additional comments regarding the assumptions that
are made in the constructions we have considered. In this last section, we will return back to the
precise questions we have started out with and provide some steps that can be taken from here.

The Three Answers

Following the structure we started in the introduction, let us summarize the answers we have found
for the three questions that were posed there. In chapter 1 we performed the dimensional reduction
of the eleven-dimensional Ricci scalar and saw the emergence of massless complex structure moduli,
scalar fields parametrizing the shape internal geometry. The fact that they are massless constitutes
the issue of moduli stabilization (Q1), and its solution is given by:

A1: The complex structure moduli zi can be stabilized by extremizing the flux-induced
scalar potential V (z), i.e. by setting

∂V

∂zi
= 0. (4.80)

Explicitly, the set of supersymmetric solutions is found by solving

DiW = 0, W =

∫
Y4

G4 ∧ Ω. (4.81)

In words, non-zero G4 fluxes in the internal geometry (which were in fact necessitated by the tadpole
constraint) contribute an energy to a particular shape of the underlying Calabi-Yau. Minimizing this
energy with respect to the moduli then yielded a (typically large) set of string vacua. The analysis of
the distribution of such vacua (Q2) was the main content of chapter 2, where we explicitly re-derived
the answer that was already given by Ashok and Douglas:

A2: The distribution of supersymmetric vacua (counted with signs) of Type IIB/F-
theory compactifications over the complex structure moduli space is given by the Ashok-
Douglas density

dµ = det(R+ ω · 1). (4.82)

We moreover discussed some of the intricacies that arise in this derivation, most notably the quan-
tization of fluxes and the stabilization of the Kähler moduli. Here we found that neglecting the
quantization is reasonable in the regime where L∗ � b. Moreover, the Kähler moduli can be sta-
bilized separately by the inclusion of non-perturbative corrections to the superpotential, exactly as

78



CONCLUSION 79

in the KKLT construction. Besides obtaining the AD-density, we additionally gave an estimate (or,
more precisely, a lower bound) on the total number of flux vacua, which was found to be huge (10500

in typical cases, but F-theory easily surpasses this). This raised the question of whether the total
number of flux vacua is at all finite, or, more precisely, whether the AD-density is integrable near
regions where the curvature diverges (Q3). We devoted the remainder of the text, chapters 3 and
4, to obtain the following answer:

A3: The AD-density is integrable near any singular loci where a single coordinate
Im t in the complex structure moduli space becomes large. More precisely, it takes the
universal form

dµ ∼ dt ∧ dt̄
(Im t)2

. (4.83)

Moreover, when multiple coordinates become large, this result generalizes in the natural
way when the singularity types in the corresponding enhancement chain strictly increase.

First, we emphasize that the above holds for the complex structure moduli space of any Calabi-
Yau D-fold. However, the main relevance is for the case D = 4 since this applies to the F-theory
context and also the case D = 3 since this confirms the earlier results by Eguchi and Tachikawa.
The other cases are of less physical interest, since they do not arise in string compactifications,
but it is nevertheless interesting that the same result holds in such generality. To arrive at A3, we
made use of some remarkable properties of the boundary of the complex structure moduli space.
Indeed, the nilpotent orbit theorem was crucial in determining the asymptotic form of the period
vector in which the AD-density was expressed. Equally crucial are the polarization properties of
the mixed Hodge structure at the boundary, which restricted the powers of Im t that could appear
in the final expression. Subsequently, to investigate the multi-parameter limits, the usage of the
SL(2)-orbit theorem was essential. In particular, the emerging sl(2)-triplets and their action on
the SL(2)-orbit allowed for controlled computations which untangle the various large coordinates,
essentially diagonalizing the structure at the boundary. Here we emphasize the fact that we were
not able to provide a result in the most general case of arbitrary multi-parameter limits. We actively
avoided the case where correction terms to the Kähler potential are relevant. A full understanding
will require a thorough treatment of singularity enhancements and the possible corrections to the
growth theorem. Adding to this, we discussed a slightly different perspective through the usage of
polarizable cubes, although significant work needs to be done to understand their classification in
detail for both the threefold and fourfold.

Further Questions

As usual, whenever one provides an answer to a question, a number of new questions emerges.
Perhaps the most pressing question is why the AD-density appears to take such a universal form in
these asymptotic limits. Much like how a U(1) symmetry protects the masslessness of the photon,
one might imagine some symmetry which emerges at the boundary of the moduli space which
dictates this particular form. We have made one proposal how this could arise from a generalized
version of the gauge/gravity duality that appears for the conifold, but stress that this is merely
speculation at best. However, as these singular loci are currently an active testing ground for the
various swampland conjectures, we believe that an investigation of such a duality may yield fruitful
insights and add to the holographic nature of the picture.

Another question that arises is whether one can perform a similar calculation for other distributions,
such as those for the cosmological constant or the supersymmetry breaking scale. We believe this
will be difficult, since very few explicit expressions for such distributions exist. However, one might
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imagine starting the derivation of such distributions already at the boundary. There one could follow
a similar construction as in [29] to decompose the fluxes in a manner adapted to the SL(2)-splitting.
In this way the distribution of Λ = −3|W |2 may be more conveniently expressed.

Finally, we once more stress that our results ignore the back-reaction of fluxes on the internal
geometry, which makes it conformally Calabi-Yau. For such spaces the concept of a moduli space is
already quite different and it is unclear whether the results of e.g. the nilpotent orbit theorem still
hold. It would be interesting to investigate the effect this has and whether the asymptotic Hodge
structure persists.
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Appendix A

Kähler Manifolds

In this section we will list some basic properties of Kähler manifolds and their associated cohomology
groups. We follow the notation and discussion in [43]. In the following, let M be a complex manifold
of complex dimension m.

Definition A.1. A triple (M, g, J) is called a Kähler manifold if the following conditions are
satisfied:

1. g is a Riemannian metric, i.e. a bilinear, non-degenerate and symmetric map

g : TM × TM → C∞(M) (A.1)

which additionally satisfies

g(IX, IY ) = g(X,Y ), ∀X,Y ∈ X(M), (A.2)

where I denotes the almost complex structure of M . We say that g is a Hermitian metric on
M .

2. J is the Kähler form of g, i.e. a bilinear map

J : TM × TM → C∞(M), (A.3)

which is compatible with g in the following sense:

J(X,Y ) = g(IX, Y ), ∀X,Y ∈ X(M), (A.4)

and which is moreover closed, i.e.
dJ = 0. (A.5)

In this case, one sometimes calls g a Kähler metric.

To be more explicit, let us consider these objects g and J in a local coordinate system {yi, ȳi},
i = 1, . . . ,m. A general Riemannian metric g is then of the form:

g = gab̄dy
a ⊗ dȳb + gābdȳ

ā ⊗ dyb. (A.6)

Moreover, the Kähler form J can be written in terms of g as follows:

J =
i

2
gab̄dy

a ∧ dȳb̄. (A.7)
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When the Kähler form is closed, this poses a remarkable simplification, namely that the metric can
locally be expressed by a single scalar function as:

gab̄ = ∂a∂̄b̄K, or J =
i

2
∂∂̄K, (A.8)

where K is also called the Kähler potential.

Definition A.2. An (r, s)-form ω is called harmonic if it satisfies the Laplace equation:

∆ω = 0, (A.9)

where Laplacian is defined by

∆ : Ω(r,s)(M)→ Ω(r,s)(M), ∆ = (d+ d†)2 = dd† + d†d, d† = − ? d?, (A.10)

where ? denotes the Hodge star. Here Ωr,s(M) denotes the space of all (r, s)-forms on M .

Note that one can also define the following Laplacian operators:

∆∂ = (∂ + ∂†)2, ∆∂̄ = (∂̄ + ∂̄†)2. (A.11)

However, for a Kähler manifold one can show that

∆ = 2∆∂ = 2∆∂̄ . (A.12)

Therefore the harmonic forms associated with these operators are the same.

Definition A.3. The (r, s)-th ∂̄-cohomology group Hr,s

∂̄
(M) is defined by

Hr,s

∂̄
(M) := Zr,s

∂̄
(M)/Br,s

∂̄
(M), (A.13)

where

Zr,s
∂̄

(M) = {ω ∈ Ωr,s(M) : ∂̄ω = 0},
Br,s

∂̄
(M) = {ω ∈ Ωr,s(M) : ∃α ∈ Ωr,s−1(M), ω = ∂̄α}.

Throughout the thesis we use the shorter notation Hr,s

∂̄
(M) = Hr,s(M) or simply Hr,s.

We now state an important theorem which allows us to relate these cohomology groups to harmonic
forms.

Theorem A.4 (Hodge’s Decomposition Theorem). Any (r, s)-form ω can be written in the following
form:

ω = ∂̄α+ ∂̄†β + γ, (A.14)

for some (r, s− 1)-form α, (r, s+ 1)-form β and harmonic form (r, s) form γ.

An important consequence of the above theorem is the following

Corollary A.5. Any cohomology class [ω] in Hr,s

∂̄
(M) has a unique harmonic representative.

In other words, given a cohomology class we can uniquely represent it as a harmonic form, and vice
versa. This is relevant in the context of string compactifications, where harmonic forms correspond
to the internal massless degrees of freedom of the string.



Appendix B

Compactification of the Ricci Scalar

We perform the dimensional reduction of the Ricci scalar using the following ansatz for the metric

gMNdx
MdxN = gµν(x)dxµdxν + hab̄dy

adȳb̄ + z̄ ı̄(x)(b̄ı̄)abdy
adyb. (B.1)

as introduced in 1.5.
Computing the Christoffel Symbols

First, we need to compute the Christoffel symbols:

ΓPMN =
1

2
gPQ (∂MgNQ + ∂NgMQ − ∂QgMN ) . (B.2)

To first order in the moduli, the components of the inverse metric on Y4 are given by

gab̄ = hab̄, gab = −zi(bi)ab.

We raise the indices using the background metric h, which is valid up to first order:

(bi)
ab = (bi)āb̄h

aāhbb̄ (B.3)

Apart from the Christoffel symbols with purely Greek indices, the non-zero Christoffel symbols are
given by

Γµab = −1

2
gµν∂νgab = −1

2
(b̄ı̄)ab∂

µz̄ ı̄

Γbµa =
1

2
gbc̄∂µgac̄

= −1

2
zi(bi)

bc(b̄̄)ac∂µz̄
̄

= −1

2
(bi · b̄̄)bazi∂µz̄ ̄

Γbµā =
1

2
gbc̄∂µgāc̄

=
1

2
hjc̄(bi)āc̄∂µz

i

=
1

2
(bi)

j
ā∂µz

i
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On to the Ricci Scalar

The Riemann tensor is given in terms of the Christoffel symbols as

RPMNQ = ∂MΓPNQ + ΓPMLΓLNQ − (M ↔ N). (B.4)

Moreover, we have the following decomposition for the 11-dimensional Ricci scalar:

R11 = R3 + gµνRaµaν + gab
(
Rµaµb +Rcacb +Rc̄ac̄b

)
+ gab̄

(
Rµ

aµb̄
+Rcacb̄ +Rc̄ac̄b̄

)
+ c.c (B.5)

where again c.c. stands for the complex conjugate of all terms before it, except for R3.

We now make the following important remark. We are only interested in the kinetic terms for the
resulting fields, hence we work up to second order in the moduli. This implies that the contribution
from the Γ2 terms will be very simple. In particular, since the remaining indices will be contracted
with the metric, and gab is proportional to the moduli z, the only relevant products will be

ΓµāMΓMνb = Γµāc̄Γ
k̄
νb = −1

4
(bi · b̄̄)āb∂µzi∂ν z̄ ̄

Γc̄aMΓMāb̄ = Γc̄aµΓµ
āb̄

= −1

4
(b̄ı̄)

c̄
a(bj)āb̄∂µz̄

ı̄∂µzj

ΓaµMΓMbν = Γaµc̄Γ
c̄
bν =

1

4
(bi · b̄̄)ab∂µzi∂ν z̄ ̄.

Finally we note that none of the quantities depend on the Calabi-Yau coordinates ya, hence the ∂Γ
terms are often zero. Now let us compute each term in the Ricci decomposition, starting from the
easier ones:

gab
(
Rcacb +Rc̄ac̄b

)
= O(3)

gab̄Rcacb̄ = 0

gab̄Rc̄ac̄b̄ = hab̄Γc̄aMΓMc̄b̄ = −1

4
hab̄(b̄ı̄)

c̄
a(bj)c̄b̄∂µz̄

ı̄∂µzj = −1

4
(b̄ı̄ · bj)∂µz̄ ı̄∂µzj

The final three terms are slightly more involved, because some will contains terms involving ∇µV µ,
for some space-time vector V µ. Indeed, we have:

gabRµaµb = −gab
(
∂µΓµab + ΓννµΓµab

)
= −1

2
zi(bi · b̄̄)∇µ∂µz̄ ̄

gab̄Rµ
aµb̄

= −gab̄
(
∂µΓµ

ab̄
+ ΓννµΓµ

ab̄

)
+ hab̄

(
ΓµacΓ

c
µb̄ + Γµac̄Γ

c̄
µb̄

)
= −1

4
hab̄(b̄ı̄ · bj)ab̄∂µz̄ ı̄∂µzj

= −1

4
(bi · b̄̄)∂µzi∂µz̄ ̄

gµνRaµaν = gµν
(
∂µΓaaν − ΓaaλΓλµν + ΓaµMΓMaν

)
= −1

2
gµν(bi · b̄̄)aazi∇µ∂ν z̄ ̄ +

1

4
gµν(bi · b̄̄)aa∂µzi∂ν z̄ ̄

= −1

2
(bi · b̄̄)zi∇µ∂µz̄ ̄ +

1

4
(bi · b̄̄)∂µzi∂ν z̄ ̄
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We can deal with the covariant derivatives as follows. Note that all these expressions appear under
an integral over M1,10, which contains a factor

√
−g3. Since the covariant derivatives only have

space-time indices, the standard rule for partial integration is adjusted:

√
−g11∇µV µ ∼ −∇µ

(√
−g3
√
g8

)
V µ = −

√
−g3V

µ∂µ
√
g8, (B.6)

where ∼ means ‘up to a total space-time derivative’ and the second equality follows from the fact
that

√
g8 is a space-time scalar. Moreover, one readily calculates

∂µ
√
g8 =

1

2

√
g8

(
gab∂µgab + gab̄∂µgab̄

)
+ c.c., (B.7)

which gives

∂µ
√
g8 =

1

2

√
g8

(
gab∂µgab + gāb̄∂µgāb̄

)
= O(2) (B.8)

In other words, we may freely change each zi∇µ∂µz̄ ̄ to −∂µzi∂µz̄ ̄ which results in

gabRµaµb ∼
1

2
(bi · b̄̄)∂µzi∂µz̄ ̄

gab̄Rµ
aµb̄
∼ −1

4
(bi · b̄̄)∂µzi∂µz̄ ̄

gµνRaµaν ∼
1

2
(bi · b̄̄)∂µzi∂µz̄ ̄ +

1

4
(bi · b̄̄)∂µzi∂µz̄ ̄

=
1

4
(bi · b̄̄)∂µzi∂µz̄ ̄

Combining all these contributions, we obtain the following result for the dimensional reduction of
the Ricci scalar

R11 = R3 +
1

2
(bi · b̄̄)∂µzi∂µz̄ ̄ (B.9)



Appendix C

Hodge Structures

In this section we give an overview of the various Hodge structures that appear in chapters 3 and 4.
The aim is to provide a clear and concise list of the important definitions, whereas the motivation
and interpretation are left to the main text.

In the following we denote by V a finite-dimensional vector space. Moreover, we denote by VC =
V ⊗ C the complexification of V .

Definition C.1. A pair (V,Hp,q) is called a pure Hodge structure of weight w if the following
conditions are satisfied:

1. Hp,q ⊆ VC is a complex subspace, for all p, q ∈ Z satisfying p+ q = w.

2. Hq,p = Hp,q.

3. VC can be decomposed in terms of the subspaces Hp,q as

VC =
⊕

p+q=w

Hp,q. (C.1)

An immediate example of a pure Hodge structure which is of relevance for is given by the cohomology
groups of a compact Kähler manifold M . Indeed, for n = 0, . . . ,dimM , we have the following
decomposition:

Hn(M) =
⊕
p+q=n

Hp,q(M). (C.2)

There is an alternative, but equivalent description of a Hodge structure, via a Hodge filtration.

Definition C.2. A Hodge filtration F p of weight n of VC is a collection of complex subspaces
F p ⊆ VC satisfying the following conditions:

1. The spaces F p provide a finite decreasing filtration of VC. That is, we have the following
sequence

0 = Fw+1 ⊆ Fn ⊆ · · · ⊆ F1 ⊆ F0 = VC. (C.3)

2. For all p, q ∈ Z satisfying p+ q = n+ 1, we have

F p ∩ F q = 0, F p ⊕ F q = VC. (C.4)
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Explicitly, the relation between a pure Hodge structure and a Hodge filtration is given by

Hp,q = F p ∩ F q, F p =
⊕
i≥p

H i,w−i. (C.5)

In the following, let S(·, ·) be a bilinear form on VC.

Definition C.3. A triple (V,Hp,q, S) is called a polarized pure Hodge structure if (V,Hp,q) is
a pure Hodge structure which has the following additional properties with respect to S:

1. S(Hp,q, Hr,s) = 0, (p, q) 6= (r, s).

2. ip−qS(v, v̄) > 0, v ∈ Hp,q, v 6= 0.

We say that Hp,q is polarized with respect to the bilinear form S.

Next, we introduce the main ingredient for the construction of a mixed Hodge structure. Let N be
a nilpotent matrix.

Definition C.4. The monodromy weight filtration Wj of weight w of VC is a collection of
complex subspaces Wj ⊆ VC satisfying the following conditions:

1. The spaces Wj form a finite increasing filtration of VC. That is, we have the following sequence

0 = W−1 ⊆W0 ⊆ · · · ⊆W2w = VC. (C.6)

2. NWi ⊆Wi−2.

3. N j : GrD+j → GrD−j is an isomorphism, where

Gri := Wi/Wi−1 (C.7)

are the graded spaces.

To emphasize the dependence on N , we will often denote the monodromy weight filtration by
Wj(N). Additionally, when VC admits a Hodge filtration F p, we require the following compatibility
condition:

NF p ⊆ F p−1. (C.8)

The main motivation for the monodromy weight filtration is provided in section 3.3, where it
combines with the Hodge structure in an intricate way into a mixed Hodge structure.

Definition C.5. A triple (V,Wj(N), F p) is called a mixed Hodge structure if the graded spaces
Grj each admit a pure Hodge structure of weight j given by

Grj =
⊕
p+q=j

Hp,qj , Hp,qj = Fpj ∩ F
q
j (C.9)

where the induced Hodge filtration Fpj of Grj is defined as

Fpj = (F p ∩WC
j )/(F p ∩WC

j−1), WC
j = Wj ⊗ C. (C.10)

Note that the operator N acts as

NGrj ⊆ Grj−2, NHp,q ⊆ Hp−1,q−1. (C.11)

In other words, it allows us to move down to the lower weight pure Hodge structure.

This concludes our overview of the various Hodge structures that are mentioned throughout the
text. In section 3.3 we already give the full details of how to package the information contained
in the mixed Hodge structure more elegantly in terms of the Deligne splitting, hence we will not
repeat that discussion here.
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Calculations of FAB···|MN ···

We first introduce a shorthand notation for the two-point function

G12̄ := G(z1, z̄2) = eκK12̄ , K12̄ := K(z1, z̄2) (D.1)

and the constrained two-point function

G0
12̄ := Gz0(z1, z̄2) = G12̄ − D̄0̄ı̄G10̄

(
D̄0̄̄iD0jG00̄

)−1
D0jG02̄. (D.2)

Finally, we recall the definition

FAB···|MN ··· = G−1
12̄

(D1AD1B · · · )(D2MD2N · · · )G0
12̄

∣∣∣
z0=z1=z2

. (D.3)

D.1 One Derivative

First, we have

D1kG12̄

∣∣∣
z0=z1

= D1kG12̄ − (D1kD̄0̄iG10̄)
(
D̄0̄iD0jG00̄

)−1
D0jG02̄

∣∣∣
z0=z1

= DkG02̄ − (D0kD̄0̄ı̄G00̄)
(
D̄0̄ı̄D0jG00̄

)−1
D0jG02̄

= D0kG02̄ − δ
j
kD0jG02̄

= 0.

A similar expression holds for D2G12̄, hence we conclude the following:

D1G12̄

∣∣∣
z0=z1

= D2G12̄

∣∣∣
z̄0=z̄2

= 0 (D.4)

D.2 Two Derivatives

Since we now have to consider the repeated application of the Kähler-Weil covariant derivative, we
should include the Levi-Civita connection as well, i.e.

DiDjf = DK
i D

K
j f − ΓkijDkf, (D.5)
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where byDK
i we mean just the Kähler-Weil covariant derivative, without the Levi-Civita connection.

However, from the calculation in section D.1 we see that the single derivative term vanishes. Hence
we do not need to include the Levi-Civita connection. We then simply compute:

G00̄Fi|̄ = D1iD̄2̄̄G12̄

∣∣∣
z0=z1=z2

= D1i · κ∂̄2̄̄ (K12̄ −K22̄)G12̄

∣∣∣
z0=z1=z2

= κ∂1i∂̄2̄̄K12̄

∣∣∣
z0=z1=z2

= κ(∂i∂̄̄K)G00̄

= κgi̄G00̄.

Hence our main result for two derivatives is

Fi|̄ = κgi̄ (D.6)

Moreover, using this result we may simplify the expression for G0
12̄

as:

G0
12̄ = G12̄ − κ−1gı̄j(D̄0̄ı̄G10̄)G−1

00̄
(D0jG02̄), (D.7)

which we will heavily use in the next section. Finally, using the two-derivative result, we note the
following result for the partition function used in chapter 2

Z = πn det(DiD̄̄G(z0, z̄0)) = πn det (κgi̄G(z0, z̄0)) = κnenκK(z0,z̄0) det g (D.8)

D.3 Three Derivatives

As argued in [1], since there is no geometrical quantity associated with three (anti)-holomorphic
indices, we can immediately conclude that the triple derivative terms will vanish.

D.4 Four Derivatives

As we have seen in the text, we are interested in the following four expressions:

Fij|k̄l̄, Fi̄|kl̄, Fi̄|k̄l̄, Fı̄j|kl. (D.9)

We will dedicate a subsection to each of these terms. We also introduce another shorthand such
that

G0
12̄ = G12̄ − gm̄nHm̄n, (D.10)

where

Hm̄n = κ−1(D̄0̄m̄G10̄)G−1
00̄

(D0nG02̄) = κ∂̄0̄m̄(K10̄ −K00̄)G−1
00̄
∂0n(K02̄ −K00̄). (D.11)

Note that there cannot be terms of order κ4 or higher.
Finally, we introduce yet another shorthand

∆0m̄ := κ∂̄0̄m̄ (K10̄ −K00̄) , ∆n0 := κ∂0n (K02̄ −K00̄) , ∆1i := κ∂1i(K12̄−K11̄), ∆2̄̄ := κ∂̄2̄̄(K12̄−K22̄).
(D.12)
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This is helpful for the following two reasons. First, the covariant derivative acting on G12̄ is easily
expressed in terms of these quantities:

D1iG12̄ = ∆1iG12̄, D̄1̄ı̄G12̄ = −κ∂̄1̄ı̄K11̄ (D.13)

and similarly for the others. Secondly, in the limit z1 = z2, both ∆1i and ∆2̄̄ vanish. In particular,
the only non-zero terms will be those where a ∂̄2̄̄ acts on ∆1i and vice-versa. This observation will
greatly simplify our calculations. In particular, note that

∂̄2̄̄∆1i

∣∣∣
z0=z1=z2

= κ∂̄2̄̄∂1iK12̄

∣∣∣
z0=z1=z2

= κ∂̄̄∂iK = κgi̄. (D.14)

Finally, let us note that, similarly to the discussion for the double derivative case, we should
in principle include the Levi-Civita connection as well. However, this will add terms which are
proportional to triple derivative terms, which vanish according to our discussion in the previous
section. Hence we do not need to include the Levi-Civita connection in our calculations.

D.4.1 Fi̄|kl̄

G00̄Fi̄|kl̄(G12̄) = D2iD̄2̄̄D1kD̄1̄l̄G12̄

∣∣∣
z0=z1=z2

= −κD2iD̄2̄̄D1k(∂̄1̄l̄K11̄)G12̄

∣∣∣
z0=z1=z2

= −κD2iD̄2̄̄

[
∆1k∂̄1̄l̄K11̄ + ∂1k∂̄1̄l̄K11̄

]
G12̄

∣∣∣
z0=z1=z2

= −κD2i

[
(∂̄2̄̄∆1k)∂̄1̄l̄K11̄)−∆2̄̄∂1k∂̄1̄l̄K11̄

]
G12̄

∣∣∣
z0=z1=z2

= −κ
[
−κ∂2iK22̄(∂̄2̄̄∆1k)∂̄1̄l̄K11̄)− (∂2i∆2̄̄∂1k∂̄1̄l̄K11̄

]
G12̄

∣∣∣
z0=z1=z2

=
[
κ3∂iKg̄k∂̄l̄K + κ2gi̄gkl̄

]
G00̄.

Hence we find
Fi̄|cl̄(G12̄) = κ2gi̄gkl̄ + κ3g̄k∂iK∂̄l̄K. (D.15)

Next, we consider the contributions due to Hm̄n. We have

Fi̄|kl̄(Hm̄n) = κ−1D2iD̄2̄̄D1kD̄1̄l̄

(
∆

(10̄)

0̄m̄
G10̄ ·∆

(02̄)
0n G02̄

) ∣∣∣
z0=z1=z2

= κ−1
[
D2iD̄2̄̄∆

(02̄)
0n G02̄

]
·
[
D1kD̄1̄l̄∆

(10̄)
0m̄ G10̄

] ∣∣∣
z0=z1=z2

= −
[
D2i(∂̄2̄̄∆

(02̄)
0n )G02̄

]
·
[
D1k(∂̄1̄l̄K11̄∆

(10̄)

0̄m̄
)G10̄

] ∣∣∣
z0=z1=z2

= κ
[
∂2iK22̄(∂̄2̄̄∆

(02̄)
0n )G02̄

]
·
[
∂1kK11̄∂̄1̄l̄∆

(10̄)

0̄m̄
G10̄

] ∣∣∣
z0=z1=z2

= κ3g̄ngkm̄∂iK∂̄l̄K

Contracting with gm̄n yields:

gm̄nFi̄|kl̄(Hm̄n) = κ3g̄k∂iK∂̄l̄K. (D.16)

Crucially, we see that this cancels the κ3 contribution from G12̄. Therefore the final result is

Fi̄|kl̄ = κ2gi̄gkl̄ (D.17)
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D.4.2 Fij|k̄l̄

Again, we first consider the contribution from G12̄, this is given by

G00̄Fij|k̄l̄(G12̄) = D1iD1jD̄2̄k̄D̄2̄l̄G12̄

∣∣∣
z0=z1=z2

= D1iD1jD̄2̄k̄∆2̄l̄G12̄

∣∣∣
z0=z1=z2

= D1iD1j

[
∆2̄k̄∆2̄l̄ + ∂̄2̄k̄∆2̄l̄

]
G12̄

∣∣∣
z0=z1=z2

= D1i

[
∆1j ∂̄2̄k̄∆2̄l̄ + ∂1j(∆2̄k̄∆2̄l̄) + ∂1j ∂̄2̄k̄∆2̄l̄

]
G12̄

∣∣∣
z0=z1=z2

=
[
∂1i∂1j(∆2̄k̄∆2̄l̄) + ∂1i∂1j ∂̄2̄k̄∆2̄l̄

]
G12̄

∣∣∣
z0=z1=z2

=
[
κ2(gik̄gjl̄ + gil̄gjk̄) + κ∂i∂j ∂̄k̄∂̄l̄K

]
G00̄.

Hence the complete contribution from G12̄ is given by

Fij|k̄l̄(G12̄) = κ∂i∂j ∂̄k̄∂̄l̄K + κ2(gik̄gjl̄ + gjk̄gil̄) (D.18)

Next, we consider the contributions due to Hm̄n. We have

G2
00̄Fij|k̄l̄(Hm̄n) = κ−1D1iD1jD̄2̄k̄D̄2̄l̄

(
∆

(10̄)

0̄m̄
G10̄ ·∆

(02̄)
0n G02̄

) ∣∣∣
z0=z1=z2

= κ−1
[
D1iD1j∆

(10̄)

0̄m̄
G10̄

]
·
[
D̄2̄k̄D̄2̄l̄∆

(02̄)
0n G02̄

] ∣∣∣
z0=z1=z2

= κ−1
[
(∂1i∂1j∆

(10̄)

0̄m̄
)G10̄

]
·
[
(∂̄2̄k̄∂̄2̄l̄∆

(02̄)
0n )G02̄

] ∣∣∣
z0=z1=z2

= κ(∂i∂j ∂̄m̄K)(∂̄k̄∂̄l̄∂nK)G2
00̄.

Hence we find

Fij|k̄l̄ = κ
(
∂i∂j ∂̄k̄∂̄l̄K − (∂i∂j ∂̄m̄K)gm̄n(∂̄k̄∂̄l̄∂nK)

)
+ κ2(gik̄gjl̄ + gjk̄gil̄). (D.19)

Lastly, we show that the linear term in κ is given by the Riemann tensor. Indeed, we have

∂i∂j ∂̄k̄∂̄l̄K − (∂i∂j ∂̄m̄K)gm̄n(∂̄k̄∂̄l̄∂nK) = ∂̄k̄∂igjl̄ − gm̄n(∂̄k̄gnl̄)(∂igjm̄)

= gnl̄∂̄k̄
(
gm̄n∂igjm̄

)
= −gnl̄Rnik̄j
= −Rik̄jl̄,

hence we conclude that
Fij|k̄l̄ = −κRik̄jl̄ + κ2(gik̄gjl̄ + gjk̄gil̄) (D.20)



Appendix E

List of Index Conventions

In the table below we collect the prominent types of indices in this work, what they denote, and
the values that they take. We denote anti-holomorphic indices with a bar, e.g. ā.

Indices Used for Runs from 1 to ...

M,N,P,Q Tensor indices on the total manifold Mdc dc
µ, ν, ρ, σ Tensor indices on space-time M1,d−1 d
a, b, c, d Tensor indices on YD D
I, J,K,L Tensor indices on MK h1,1(Y4)

i, j, k, l, (m,n) Tensor indices on Mcs and divisors of Mcs: ∆◦i1···inP
h3,1(Y4) or dimMcs generally

Monodromy matrices Nj and sl(2)-algebra {Yi, N±i } number of divisors
Monodromy weight filtration: Wj and Gri 2× number of divisors
Horizontal primitive spaces: Pl 2D

α, β Components of Π and N b4(Y4)
p, q, r, s Hodge structures: Hp,q, F p, Ip,q and P p,q D

93



Bibliography

[1] Ashok, S. K., and Douglas, M. R. Counting Flux Vacua. Journal of High Energy Physics
2004, 01 (Jan 2004), 060–060. URL http://dx.doi.org/10.1088/1126-6708/2004/01/060.

[2] Becker, K., Becker, M., and Schwarz, J. H. String theory and M-theory: A Modern
Introduction. Cambridge University Press, 2006.
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