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Abstract

The task of finding operator bases for effective theories can be assisted by using
the Hilbert series, which counts the number of independent operators at a given
effective order. In this thesis we will introduce the Hilbert series for the Standard
Model Effective Field Theory (SMEFT) and some extensions. We present an effi-
cient algorithm for determining the Hilbert series of an effective theory and provide
a companion code called Eco (Efficient Counting of Operators) in Form. The im-
plementation can be used to efficiently establish the number of operators at effective
orders as high as 20 (or more). While the implementation focusses on SMEFT, we
allow for a flexible user input of the light degrees of freedom. We discuss how the
Hilbert series technique can be extended to the counting of CP-invariant operators
by relating the outer automorphisms of the Lorentz group and the gauge groups to
C and P, respectively. In particular, we show how the outer automorphisms can
be classified using the symmetries of the Dynkin diagrams, and how they give rise
to an abstract definition of a folding of these diagrams, which can be used in the
computation of the Hilbert series.
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1 Introduction

Interesting phenomena have been found at different scales of distance, time and length, that differ by many orders of
magnitude. Fortunately most of the time we can describe these phenomena without having to understand everything,
which is precisely why physics has been so successful. For example, an engineer is able to design a bridge without
knowledge of the Standard Model (SM) of particle physics. The design relies on Newtonian mechanics, which work
perfectly well at the scale the engineer is working, i.e. the entire dynamics of the elementary particles are irrelevant,
and are not needed to build a reliable bridge on which we can safely cross a river. It is important to note here
that the short distance physics still has effects, but these are captured in the parameters that are undetermined by
Newtonian physics. This example explains the intuitive idea behind an effective theory: calculate without knowing
the exact theory.

The Standard Model (SM) of particle physics has been successfully tested to great precision, and it is the best theory
we have at the moment to describe the short distance properties of nature. Nevertheless, it is commonly accepted
that the SM is only applicable up to energies not exceeding a certain scale Λ and consequently merely constitutes
an effective theory. Because we are not able to probe these energy scales yet with the current particle colliders,
we would like a way to capture the imprints of ‘new’ physics emerging at these energy scales. That is, we want to
extend the SM and add the high energy effects perturbatively. This is known as Standard Model Effective Theory.
As we are used to describing the fundamental particles using quantum field theories, the effective theory comes
in the form of an effective field theory (EFT). EFTs describe the dynamics of the low-energy degrees of freedom
(known as the ‘light’ fields) and the effects of high-energy degrees of freedom (the ‘heavy’ fields) are included in
the form of new effective, higher dimensional, operators. Essentially, these operators and their couplings describe
the effective interactions among the light fields mediated by heavy virtual particles. EFTs are most effective when
working at energy scales low enough that the heavy particles cannot be produced.

Although the ideas of EFT are simple and maybe even obvious, it is clear that higher dimensional operators will
lead to new complications such as non-renormalizable theories. Therefore, implementing them in a mathematically
consistent way in an interacting quantum field theory is not so obvious. In this master’s thesis we will dive into the
set of higher dimensional operators of EFTs and the ultimate goal is to find a recipe to write down a basis, i.e. a
minimal set of operators. Roughly, we can state the main research question as

Can we find a general method to construct bases of higher-dimensional operators for effective field theories at any
given effective order?

This thesis is organized as follows: we start in Sec. 2 by presenting all the preliminaries of EFTs needed for the
rest of this thesis. We carefully explain the concept of the operator basis of the EFT, and in particular how some
operators can be related to other operators by integration by parts and through equations of motion relations. This
will leads us to the precise statement of the main problem addressed by this thesis at the end of this section.

In Sec. 3, we start by explaining how invariant operators can be constructed for the EFT Lagrangian, after which
we work out some of the dimension 6 operators of the Standard Model Effective Field Theory (SMEFT). We will
encounter how to deal with integration by parts, equations of motion and Fierz identities to find the minimal set of
independent operators. At the end of this section, we summarize the results which are useful for the next section.

In Sec. 4 we introduce the Hilbert series which counts the number of independent operators of a given form. First
we will derive the integral formulation of the Hilbert series for operators without derivatives by making use of
character orthogonality of irreducible representations. We then discuss that the Lorentz group representations need
to be extended to representations of the conformal group in order to include derivatives. We derive a form for the
Hilbert series accounting for relations from integration by parts, and subsequently deal with equations of motion
by modifying the conformal characters. At the end of this section, we construct the Hilbert series for an EFT with
gravity.

With the general form of the Hilbert series derived in the previous section, we first show how the enumeration of
operators can be extracted from the Hilbert series at a specific mass dimension. We then discuss one of the main
results of this thesis: Eco (Efficient Counting of Operators), our implementation of the Hilbert series in Form.
After a discussion of the structure of the algorithm, we provide instructions on how the code can be used, and how
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it can be applied to different EFTs. We conclude this section by applying our program explicitly to the SMEFT
and GRSMEFT up to mass dimension 20, and we reproduce the known results for two-Higgs SMEFT.

In Sec. 6 we discuss the methods we have developed to extend the Hilbert series method for EFTs that are invariant
under charge conjugation and parity. We begin with the abstract definition of outer automorphisms of Lie groups
and their algebras and show how they can be induced from the symmetries of the Dynkin diagrams. We show
explicitly how the outer automorphisms for SO(3, 1) and SU(3) are in a one-to-one correspondence with the more
familiar parity and charge conjugation transformations, respectively. Furthermore, we will show that the Hilbert
series now becomes the average of the Hilbert series as derived in Sec. 4, and a part with modified characters. These
modified characters, called the twining characters, can be obtained by folding the Dynkin diagrams of SO(3, 1) and
SU(3), the only two non-trivial diagrams involved. At the end of this section, we set up the Hilbert series to
enumerate CP-invariant operators for the SMEFT and discuss the results up to mass dimension 8.

We conclude in Sec. 7 and give some suggestions for further research.
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2 Effective Field Theory

In this section we give a small introduction to effective field theories (EFTs). As it is such a broad topic, we will
limit our discussion, to get a general idea of the importance of EFTs and how they are used in practice. We will
focus on the elements that will be important for the rest of this thesis. For a much more general and comprehensive
overview of EFTs, see e.g. Refs. [1–4].

We will start in Sec. 2.1 by giving some arguments why effective theories are so important for physicists, and in
particular what role EFTs play in particle physics. We will introduce the fundamental rules for building an EFT
Lagrangian in Sec. 2.2. Just like most other introductions to EFTs, we will finish that section by discussing the
classical example of Fermi’s theory of the weak interactions. In Sec. 2.4, we derive one of the key concepts on which
the rest of this master thesis is built: we prove that the basis of operators for the EFT Lagrangian is redundant by
using integration by parts and the equations of motion. We wrap up in Sec. 2.5

2.1 Why Effective Theory?

If we would know the full theory of everything, we can always compute anything in the full theory. However, if we
consider more and more fundamental theories, observables become much harder to compute. E.g. computing the
hydrogen energy levels in QFT is much harder then in quantum mechanics. Most of the time we can help ourself by
using effective theories to make calculations a lot easier. To see to what this schematically boils down to, assume
we work with a set of parameters of which some are very large and others are very small compared to the physical
quantities (with the same dimension) we are interested in. We can simplify our theory a lot by setting the small
parameters equal to zero and letting the large parameters go to infinity. The finite effects that still come from
these parameters would be included as small perturbations, which form the effective theory. In this perturbative
expansion, we only keep the terms that are relevant up to the required order of accuracy. It is clear that this
procedure makes calculations easier, as one is forced to concentrate on the important physics at that scale.

Effective theories in particle physics have proven to be very successful in the last 50 years. For example, QED
can be seen as an effective theory of the weak interactions. Results have been obtained much easier with effective
theories, because they deal with only one scale at a time. Furthermore, effective theories can be used as probes
to identify new physics [5]. In particle physics we work with QFTs, and therefore it is natural that the effective
theory will become an effective field theory (EFT). The EFT might have different symmetries, fields (e.g. as in
chiral perturbation theory), and calculations will certainly look different than in the original theory, but keeping
higher-order terms in the effective expansion, we will be able to correct it to arbitrary precision by including more
and more terms. The important parameter in particle physics is distance scale. Expanding the theory in the limit in
which higher order terms are small gives us the EFT. However, identifying the correct dynamical degrees of freedom
and taking the right perturbations into account can still be a difficult task. We want the simplest framework that
captures the essential physics, but in a manner that can be corrected to arbitrary precision. Therefore, the rest of
this section is dedicated by explaining this properly.

2.2 The EFT Lagrangian

Just like for any other QFT, the fundamental equation for the EFT is the Lagrangian density. Essentially, we
reduce the recipe to construct an EFT Lagrangian to just three ingredients. First of all, we need to determine the
relevant degrees of freedom, and thus the field content of the EFT Lagrangian. This is simple in cases where it is
obvious what the light particles are: retain the light particles and throw out the heavy ones. However, in many
other cases, it can become trickier such as in chiral perturbation theory (χPT) [6, 7].

Second, before we can write down the EFT Lagrangian, we need to determine the symmetries of the theory. This
will help us when identifying the allowed interaction terms. To be more precise, symmetries constrain the allowed
form of the effective operators for the EFT. In some cases they can also be a guide to get the relevant degrees of
freedom, like in χPT.

Third, we need to identify the expansion parameters of the theory and what the leading order description of the
EFT is. We will see in a moment that this is closely related to power counting and the mass dimension of the
operators, but first we discuss the two approaches to EFTs: top-down and bottom-up.
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Operator Mass dimension Mass dimension (d = 4)

Lagrangian density L(x) d 4

Integral measure ddx −d −4

Scalar φ 1
2 (d− 2) 1

Fermion ψ 1
2 (d− 1) 3

2

Field Strength Fµν 2 2

Derivative Dµ 1 1

Table 1: Mass dimension for various fields and operators in both d and 4 spacetime dimensions.

2.2.1 Top-Down Construction

Assume that a complete fundamental theory is understood, but we find it useful to have a simpler description at
low energies p� Λ, where Λ is the energy scale of the UV-theory. In that case, we remove the heavier particles and
match onto a low energy EFT. This process is often referred to as ‘integrating out’ the heavy particles. In order to
still capture the effects of the heavy particles, we need to add new (higher dimensional) operators and low energy
constants to the EFT Lagrangian. Therefore, the Lagrangian Lhigh of the UV-theory is matched onto an infinite
sum over these higher dimensional operators:

Lhigh → Leff =
∑
n

ηnL(n), (2.1)

for some small parameter η � 1. It is often convenient to think of η, as being dependent on the energy scales p
and Λ, i.e. by explicitly writing η = p

Λ . It means that it is possible to group operators together which capture the
effects at order ηn. The desired precision tells us at what n to stop. The two theories Lhigh and Leff agree in the
IR-limit, but differ in the UV-limit. At the scale where they overlap, we can match the coefficients of the low energy
theory Leff to the known coefficients from Lhigh. That is, we pick a physical process σ that only has IR-degrees of
freedom as external states, and compute σ in the full theory and in the EFT, at a matching scale µ ∼ Λ. We then
compute the couplings in the EFT at this matching scale by setting σeff = σfull. By using renormalization group
equations, we can evolve the coefficients of the EFT at matching scale µ ∼ Λ down to the lower scale µ ∼ p. For a
more complete overview of matching, we encourage the reader to have a look at Refs. [1–4].

2.2.2 Bottom-Up Construction

In the bottom up approach of EFTs, the underlying UV-theory is taken to be unknown1. In this case, one assumes
that the UV-theory exists and that we can write down an EFT in which the heavy degrees of freedom are integrated
out. Therefore, one constructs

Leff =
∑
n

ηnL(n). (2.2)

By writing down the most general set of possible operators consistent with all the symmetries we are imposing, we
capture the effects of unknown massive degrees of freedom. Unlike in the previous case, the couplings are unknown
and cannot be matched with the UV-theory. However, we can fit them to experiment, turning the bottom up
approach of EFTs into a valuable probe in the search for new physics out of experimental reach. Again, the desired
precision tells us at which n to stop. This means that we need to know how we can group the operators at every
order ηn = ( pΛ )n, and this will be the topic of the next section where we will see that it is closely related to the
operator dimension.

2.2.3 Power Counting

The traditional definition of a renormalizable theory is that to all orders in perturbation theory, it is possible to
absorb the UV-divergences from loop integrals into a finite number of parameters. In this picture, the Lagrangian
density L is heavily constraint. That is, in d spacetime dimensions, the Lagrangian density has mass dimension

[L(x)] = d, (2.3)

1It can also be the case that the matching is too difficult to carry out, e.g. due to non-perturbative effects.
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and as we learned in our field theory class, renormalizable interactions have coefficients with mass dimension ≥ 0.
So for d = 4, the only invariant operators we can construct out of the fields of Table 1 are2

δ = 0 : 1,

δ = 1 : φ,

δ = 2 : φ2,

δ = 3 : φ3, ψ̄ψ,

δ = 4 : φ4, φψ̄ψ, DµφD
µφ, iψ̄ /Dψ, FµνF

µν , (2.4)

where we have denoted the mass dimension of a certain operator by δ. As mentioned earlier, in EFTs we get higher
dimensional operators, which are not renormalizable according to this traditional definition. However, for EFTs we
can extend renormalizability by allowing the theory to be renormalizable order by order in its expansion parameters.
This definition allows for an infinite number of parameters, but if limited to only a finite number at any given order.
We will have more to say about this in a moment. Note that this means that when L(0) is renormalizable in the
traditional sense, we do not know directly about the higher energy scale Λ from just looking at L(0) only.

Lets put the above statements into more perspective by looking at scalar field theory including at least a φ6 term:

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λ

4!
φ4 − c6

6!
φ6 + ... (2.5)

As we are interested in the physics at long distance (small momenta p� Λ), we rescale our coordinates xµ = Sx′µ

by some large constant S, and we redefine our field as

φ(x) = S(2−d)/2φ′(x′), (2.6)

to canonically normalize the kinetic term. By doing so, the Lagrangian becomes

L′ =
1

2
∂µφ

′∂µφ′ − 1

2
m2S2φ′2 − λ

4!
S4−dφ′4 − c6

6!
S6−2dφ′6 + ... (2.7)

Set for the moment d = 4, and take the limit S → ∞. We notice that the m2 term becomes more and more
dominant, the λ term is unchanged, and the c6 term contributes less. One calls such terms relevant, marginal
and irrelevant respectively. This is obviously related to mass dimension of the operators and we see that relevant
operators have mass dimension δ < d, marginal operators have δ = d and for irrelevant operators we get δ > d.
From this discussion it is clear that for finite, but large S, the dimensions of the operators tells us their importance.
Therefore, the mass term becomes more important in this limit and the λ term stays equally important. Because
the c6 term becomes less important we expect that it is suppressed by a heavy energy scale. As large S means
small momenta p� Λ, we conclude that c6 ∼ Λ−2. In general, the coupling of an operator of mass dimension δ > d
scales as Λd−δ. Before we can make a general conclusion, we need to have a look at the divergences coming from
this theory. Using dimensional regularization (d = 4− 2ε) we compute the following two diagrams

k

k + p

∼ λ2

∫
ddk

(k2 −m2)((k + p)2 −m2)
∼ λ2

∫
ddk

k4
∼ λ2

ε
,

k

k + p

∼ λc6
∫

ddk

(k2 −m2)((k + p)2 −m2)
∼ λ

Λ2

1

ε
. (2.8)

2Note that operators such as D2φ vanish upon integration over d4x, or are related by integration by parts. If one is not convinced yet
that these are all operators up to mass dimension 4, we will prove this in later sections when we have a general method for constructing
the operator bases of EFTs.
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To renormalize these divergences comming from 1
ε , we need a counter term proportional to λφ4 and c6φ

6. As these
terms are already present in the EFT lagrangian, we can renormalize our theory. However, we get

k

k + p

∼ c26
∫

ddk

(k2 −m2)((k + p)2 −m2)
∼ 1

Λ4

1

ε
, (2.9)

for which we need a φ8 counter term. If we truncate Eq. (2.5), then there is no such φ8 term and the theory is
therefore not renormalizable from the traditional point of view. However, because the diagram scales as Λ−4, we
see that we only need to add this operator if we work up to order Λ−4, and this is what we mean when calling an
EFT renormalizable order by order in 1

Λ .

We can follow the same steps for other fields like complex scalers, fermions, and gauge fields. Accordingly, we can
conclude that the EFT Lagrangian has an expansion in powers of the operator dimension:

Leff = L(0) +
∑
δ>d

1

Λδ−d

∑
i

c
(δ)
i O

(δ)
i , (2.10)

where the inner sum runs over all possible operators O(δ)
i of mass dimension δ (obeying the symmetries of the

theory). The dimensionless couplings c
(δ)
i are known as the Wilson-coefficients and are generically taken to be of

order 1. For d = 4, this boils down to

Leff = L(δ≤4) +
1

Λ

∑
i

c
(5)
i O

(5)
i +

1

Λ2

∑
i

c
(6)
i O

(6)
i +O

( 1

Λ3

)
. (2.11)

Therefore, we see that in a first order EFT, we add all possible operators, obeying the symmetries, at mass
dimension 5. For higher order corrections, we also add all operators at mass dimension 6, 7, and so on. In general,
for corrections up to ( pΛ )n, we will need operators up to dimension d+n. This will obviously lead to many operators,
but we will see in the Sec. 2.4 that the operator basis can be redundant, i.e. different operators yields identical
S-matrix elements.

2.3 Fermi’s Theory of the Weak Interactions

The classical example of almost every introduction to EFTs is Fermi’s theory of the weak interactions, due to its
historical significance. Fermi’s theory provides a description of β-decay,

n→ p+ e− + ν̄e, (2.12)

proposed by Enrico Fermi in 1934 [8]. Nowadays, we know that the full (UV) theory is the SM, and that the
decay is mediated by a W -boson (see Fig. 1a), but at the time Fermi wrote down his theory, this particle was not
discovered yet. We will first discuss the full theory, after which we will match this onto the EFT (valid at momenta
small compared to the mass MW of the W -boson). In the SM, the W -boson interacts with the quarks and leptons
via the following terms:

−g√
2
ηµνW

µVij(ūiγ
νPLdj) +

−g√
2
ηµνW

µ(ν̄lγ
νPLl), (2.13)

where ui = u, c, t are up-type quarks and dj = d, s, b are down type quarks, g√
2

is the coupling constant, and Vij is

the CKM mixing matrix. Therefore, the tree level amplitude for β-decay is given by (see Fig. 1a)

A =

(
−ig√

2

)2

Vdu(ūγµPLd)(ēγνPLνe)
−iηµν

p2 −M2
W

(2.14)

For small momentum p�MW , we can expand the propagator, such that the amplitude is approximately given by

A =

(
−ig√

2

)2

Vdu(ūγµPLd)(ēγνPLνe)
iηµν
M2
W

(
1 +

p2

M2
W

+
p4

M4
W

+ ...

)
≈ −ig

2

2M2
W

Vdu(ūγµPLd)(ēγµPLνe)

[
1 +O

(
p2

M2
W

)]
. (2.15)
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d d
u u
d u

ν̄e

e−

W

n p

(a) Tree-level diagram for β-decay.

d d
u u
d u

ν̄e

e−

n p

(b) Effective vertex of β-decay.

Figure 1: Fermi’s theory of the weak interactions.

Therefore, the EFT expansion parameter is p2

M2
W

. Effectively, the vertex is now represented by Fig. 1b, with

corresponding effective Lagrangian

L = − g2

2M2
W

Vdu(ūγµPLd)(ēγµPLνe) =
−4GF√

2
Vdu(ūγµPLd)(ēγµPLνe), (2.16)

where we wrote the coupling constant in terms of Fermi’s constant

GF√
2
≡ g2

8M2
W

. (2.17)

The EFT Lagrangian Eq. (2.16) is part of the low energy limit of the SM. The EFT no longer has the dynamical
W -boson, and although the heavy particle is integrated out, its effect has now been included via the dimension six
four-fermion operator of the EFT Lagrangian.

2.4 Operator Redundancies

Although we terminate the sum in the EFT Lagrangian at some point, it still leaves a large number of terms to
be considered. The operator basis can be reduced as operators can be related by integration by parts (IBP) and
through the equations of motion (EOM).

1. IBP: Two operators are equivalent if they are related by a total derivative. That is, we have the equivalence
relation

Oa ∼ Ob if Oa = Ob + dOc (2.18)

where we have used that ∫
d4x dO = 0 (2.19)

Relations like this are called integration by parts (IBP) relations.

2. EOM: Operators related by the classical EOM lead to the same physical effect. We have the following
equivalence relation

Oa ∼ Ob if Oa = Ob +Oc
δSeff

δφ
(2.20)

We may choose such a set to minimize the number of higher dimensional terms in which derivatives are
inserted.

We are used to the fact that operators can be related by integration by parts, however that they are also related
through the classical EOM is far from trivial and we will prove this in the following.

2.4.1 Field Redefinitions

We can get experimentally observable quantities by computing S-matrix elements. The S-matrix depends on
particle states, the physical spectrum of the theory. However, in QFT we work with fields (in particular we
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compute correlation functions), and these quantum fields and particles are not the same. The Lehmann-Symanzik-
Zimmermann (LSZ) reduction formula can be used to relate the two. Before we give the LSZ reduction formula,
recall that the momentum Green’s functions for a scalar field φ(x) are defined by

G(q1, ..., qm; p1, ..., pn) =

m∏
i=1

∫
d4yi e

iqi·yi
n∏
j=1

∫
d4xj e

−ipj ·xj 〈0|T{φ(y1)...φ(ym)φ(x1)...φ(xn)}|0〉. (2.21)

where pi are the incoming momenta and qi the outgoing. The φ propagator D(p) is a special case of Eq. (2.21):

D(p) =

∫
d4x eip·x〈0|T{φ(x)φ(0)}|0〉. (2.22)

As long as
〈p|φ(x)|0〉 6= 0, (2.23)

the field φ(x) can produce a single particle state |p〉 from the vacuum, with invariant mass m. In that case, the
propagator D(p) has a pole at p2 = −m2

D(p) =
iZ

p2 +m2
+ ... (2.24)

where the ... denote non-pole terms, and Z is the normalization factor. We can now compute the S-matrix from
the Green’s function by picking out the poles for each particle [9]:

lim
q2
i→−m2

lim
p2
j→−m2

m∏
i=1

(q2
i +m2)

n∏
j=1

(p2
j +m2)G(q1, ..., qm; p1, ..., pn) =

m∏
i=1

(
i
√
Z
) n∏
j=1

(
i
√
Z
)
〈f |i〉, (2.25)

where |i〉 = |p1, ..., pn〉in and |f〉|q1, ..., qm〉out are some initial and final particle states, respectively. This is the
LSZ reduction formula for a scalar field, and the only complication for fermions and gauge fields is that one has to
contract with spinors and polarization vectors.

We will now show that field redefinitions do not change the S-matrix, i.e. do not change observable quantities. In
order to do so, we turn to the path integral formulation of quantum field theory. From the functional integral

Z[J ] =

∫
Dφ ei

∫
L[φ]+Jφ, (2.26)

we can compute the correlation functions as follows:

〈0|T{φ(x1)...φ(xn)}|0〉 =
1

Z[J ]

δ

iδJ(x1)
...

δ

iδJ(xn)
Z[J ]

∣∣∣∣
J=0

. (2.27)

Consider the field redefinition
φ(x) = F [φ′(x)] = φ′ + ..., (2.28)

where the dots can involve integer powers of φ and a finite number of derivatives. Under this field redefinition, the
Lagrangian is also redefined by

L[φ] = L[F [φ′(x)]] ≡ L′[φ′] (2.29)

From the redefined field φ′ and Lagrangian L′, we can compute correlation functions using the redefined functional
integral

Z ′[J ] =

∫
Dφ′ei

∫
L′[φ′]+Jφ′ =

∫
Dφei

∫
L′[φ]+Jφ, (2.30)

where in the last step, we could drop the prime since φ′ is a dummy variable in the path integral. On the other
hand, we can also compute the change of the original functional integral under the change of variables Eq. (2.28),

Z[J ] =

∫
Dφ′

∣∣∣ δF
δφ′

∣∣∣ei ∫ L′[φ′]+JF [φ′] =

∫
Dφei

∫
L′[φ]+JF [φ], (2.31)

where we dropped the primes again on φ′, and used that the Jacobian
∣∣ δF
δφ′

∣∣ is unity in the absence of an anomaly

[10] (we compute the Jacobian explicitly in Sec. 2.4.2). From Eqs. (2.30) and (2.31) we see that we have two ways
to compute correlation functions. Both use the redefined Lagrangian L′[φ], but in the former the field φ is used
and in the latter F [φ]. As discussed in Eq. (2.23), the S-matrix does not care about the choice of field, as long as

〈p|φ(x)|0〉 6= 0, and 〈p|F [φ(x)]|0〉 6= 0 (2.32)

holds. Therefore, we can conclude that both the Lagrangian L[φ] and L′[φ] can be used to compute the same
observable quantities.
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2.4.2 A Special Case: Equations of Motion

Above, we showed that field redefinitions do not change observable quantities. We will now show that a special
case of field redefinitions can be used to remove operators which are related through EOM-relations from the EFT
Lagrangian. We will show this for a real scalar field following Refs. [1, 11, 12] . For a proof for the other fields, see
in particular [12]. To be more precise what we mean by removing operator redundancies by EOM, lets work out an
example before we go over the formal proof.

Suppose we have the following EFT Lagrangian

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − 1

4!
λφ4 +

c1
Λ2
φ3∂2φ+

c2
Λ2
φ6 +O

(
1

Λ4

)
, (2.33)

for a real scalar field φ. In the fourth term φ3∂2φ, we recognise (a part of) the equation of motion ∂2φ = ..., and the
idea now is that we can remove operators like this performing a suitable field redefinition. Remember that ∂2φ in
the EOM arises from the kinetic term in Eq. (2.33), so we can use this term to remove the fourth term. Therefore,
it is not hard to see that the following field redefinition will do the job:

φ→ φ+
c1
Λ2
φ3. (2.34)

Maintaining the EFT power counting, we get for the kinetic term

1

2
∂µφ∂

µφ→ 1

2
∂µφ∂

µφ+ ∂µ

( c1
Λ2
φ3
)
∂µφ+O

( 1

Λ4

)
=

1

2
∂µφ∂

µφ− c1
Λ2
φ3∂2φ+O

(
1

Λ4

)
, (2.35)

where we have dropped the total derivative in the second line. Indeed, the term we want to eliminate drops outs
and we get for the redefined EFT Lagrangian

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 −

[
1

4!
λ+

c1
Λ2
m2

]
φ4 +

[
c2
Λ2
− c1λ

3!Λ2

]
φ6 +O

(
1

Λ4

)
(2.36)

The two Lagrangians Eqs. (2.33) and (2.36) give the same S-matrix, but the latter is easier to do computations
with as we have eliminated a term. Note that we redefined the coefficients of the φ4 and φ6 terms, but this is not
a problem as we fit the parameters to experiment.

With this example in mind, we can go back to the general proof. Like before, we write the EFT Lagrangian as

Leff =

∞∑
n=0

ηnL(n) (2.37)

From now on, we work up to order η = Λ−1, but it is straightforward to show that what follows generalizes to
arbitrary order in ηn. In general, we want to remove operators of the form

ηθ[ϕl] = ηF [ϕl]E[X], (2.38)

where F [ϕl] is an arbitrary function of any of the fields appearing in the theory, denoted by ϕl, and their derivatives.
Here E[X] is the term that is proportional to the EOM, which reduces to

E[X] =


E[φ] = D2φ for scalars,

E[ψ] = /Dψ for fermions,

E[F ] = DµF aµν for field strength tensors,

(2.39)

with a some group index. Note that in general F [ϕl] can carry Lorentz, spinor and other group indices. We want
to show that an operator of this form does not give a contribution to the S-matrix, and therefore does not alter
experimental observables. For convenience, we write the functional integral as

Z[Ji] =

∫ ∏
l

Dϕl exp

[
i

∫
L(0) + L(1) +

∑
i

Jiϕi +O(η2)

]
=

∫ ∏
l

Dϕl exp

[
i

∫
L(0) + η

(
L(1) − θ[ϕl]

)
+ ηθ[ϕl] +

∑
i

Jiϕi +O(η2)

]
, (2.40)
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to make it clear that we want to remove θ from the EFT Lagrangian. For now we restrict to a real scalar field, but
in the end we point out the differences for complex scalar fields, fermions and field strength tensors. In Sec. 2.4.1,
we showed that we have the freedom to make a change of variables. Exploiting this fact, we can make the following
change of variables

φ→ φ+ ηF [ϕl]. (2.41)

With this, the Lagrangian transforms in a similar way as in Eqs. (2.35) and (2.36):

L(0) + ηL(1) =
1

2
DµφD

µφ− 1

2
m2φ2 + ...+ ηL(1)

→ L(0) +Dµ

(
ηF [ϕl]

)
Dµφ+ η(−m2F [ϕl] + ...) + ηL(1) +O(η2)

= L(0) − ηF [ϕl]D
2φ+ η

(
−m2φF [ϕl] + ...+ ηL(1)

)
+O(η2)

= L
′(0) − ηθ[ϕl] + ηL

′(1) +O(η2), (2.42)

where we neglected the total derivative again. Note that the field redefinition of Eq. (2.41) induces other terms,
captured by the dots. However, we are not bothered by this as the EFT Lagrangian consists of all possible operators,
so it boils down to a redefinition of the coefficients in L(0) and L(1). We can compute the Jacobian using ghost
fields ∣∣∣∣ δφ(x)

δφ′(y)

∣∣∣∣ = det

[
δ(x− y) + η

δF [φ′(x)]

δφ′(y)

]
=

∫
DcDc̄ exp

[
i

∫
c̄
(

1 + η
δF

δφ

)
c

]
(2.43)

Here we should recall that the EFT is valid only up to energies of order Λ = 1
η . By rescaling the ghost field, c→ c√

η ,

the ghost Lagrangian becomes

LGhost = ηc̄c+ c̄
δF

δφ
c. (2.44)

So even if the ghost field propagates, their mass is of the order of the cutoff scale, meaning that just like the other
massive degrees of freedom, we can integrate this out. This leads again only to a shift of the coefficients of the EFT
Lagrangian. Therefore, we conclude that one can set the Jacobian equal to unity. As a final remark on this, note
that the linear term in Eq. (2.41) is necessary for this argument to hold. Inserting Eqs. (2.42) and (2.43) in the
functional integral of Eq. (2.40) we get

Z[Ji] =

∫ ∏
l

Dϕl

∣∣∣∣ δφδφ′
∣∣∣∣ exp

[
i

∫
L
′(0) − ηθ[ϕl] + η

(
L
′(1) − θ[ϕl]

)
+ ηθ[ϕl] +

∑
i

Jiϕi + ηJφF [ϕl] +O(η2)

]
=

∫ ∏
l

Dϕl exp

[
i

∫
L
′(0) + η

(
L
′(1) − θ[ϕl]

)
+
∑
i

Jiϕi + ηJφF [ϕl] +O(η2)

]
. (2.45)

After differentiating Z[Ji] multiple times with respect to Jφ, an arbitrary correlation function becomes

〈0|T{(φ(x1) + ηF (x1))...(φ(xn) + ηF (xn))}|0〉. (2.46)

In order to obtain the S-matrix, the LSZ reduction formula, given in Eq. (2.25), tells us that we must multiply the
Green’s functions (in momentum space), by (p2 +m2) for each external leg carrying momentum p and then set p2

to −m. So, the only part that survives is

〈0|T{φ(x1)...φ(xn)}|0〉, (2.47)

because it has a pole that goes like (p2 +m2)−1 and any insertion of F (xn) is eliminated as it corresponds to terms
with fewer than n poles. Therefore, Eq. (2.45) gives the same S-matrix as the generating functional

Z ′[Ji] =

∫ ∏
l

Dϕl exp

[
i

∫
L
′(0) + η

(
L
′(1) − θ[ϕl]

)
+
∑
i

Jiϕi +O(η2)

]
, (2.48)

and we conclude that we have removed the operator θ (Eq. (2.38)) for a real scalar field from the EFT Lagrangian.
The preceding derivation can also be done for complex scalars, fermions, and field strength tensors. In that case,
we can replace the change of variables from Eq. (2.41) by

φ† → φ† + ηF [ϕl] for complex scalars,

ψ̄ → ψ̄ + ηF [ϕl] for fermions,

Aaµ → Aaµ + ηF [ϕl]
a
µ for field strength tensors.

(2.49)

and in the last case, we use the gauge fixing procedure to take care of the Faddeev-Popov ghost term in the Jacobian
[12].
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2.5 The Main Problem

Let’s repeat the research question of this master’s thesis:

Can we find a general method to construct bases of higher dimensional operators for effective field theories at any
given order?

With everything that we have seen in this section, we can place this research question into more context. In order
to use EFTs, we now know that a very important step is to write down the EFT Lagrangian. We saw that the EFT
Lagrangian becomes an expansion in all possible operators of higher mass dimension, that are compatible with the
symmetries of the EFT. Finding all these operators can be difficult, especially because the operator bases can be
redundant by IBP-relations and through EOM. Mistakes are easily made and a general method would be therefore
very helpful. Not only is this of phenomenological utility, but application of this general method to certain models
might lead to new interesting theoretical questions and developments. In our route to finding this general method,
our focus in this thesis is mainly on the bottom up approach of EFTs, but many of the techniques we will discuss
can be used for the top down approach as well.
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3 Standard Model Effective Field Theory

The Standard Model (SM) of particle physics is the theory describing the electromagnetic, weak and strong interac-
tions, and it includes all known elementary particles. In Table 2, the field content of the SM is summarized together
with the representation under the Lorentz group and the SM gauge group SU(3)×SU(2)L×U(1). We stick to the
same conventions outlined in Sec. 2 of [13]. An overview of all notations in this thesis, including these, can be found
in App. A. The renormalizable SM Lagrangian for one fermion generation before spontaneous symmetry breaking
is given by

L(δ≤4)
SM = −1

4
BµνB

µν − 1

4
W I
µνW

Iµν − 1

4
GAµνG

Aµν + (Dµϕ)†(Dµϕ) +m2ϕ†ϕ− 1

2
λ(ϕ†ϕ)2

+ i
(
l̄ /Dl + ē /De+ q̄ /Dq + ū /Du+ d̄ /Dd

)
−
(
l̄Γeeϕ+ q̄Γuuϕ̃+ q̄Γddϕ+ h.c.

)
, (3.1)

where Γe,u,d are the Yukawa couplings. For the sign convention of the covariant derivative Dµ, see Eq. (A.9).
Although the SM has been successfully tested to great precision, it is commonly accepted that it should in fact
be an effective theory of some yet unknown UV-theory with energy scale Λ� mt,mW , the masses of the heaviest
degrees of freedom of the SM. Assuming that there is no unknown particle at the scale of the SM, we can take the field
content of the SM as our light degrees of freedom to construct an EFT, called the Standard Model Effective Field
Theory (SMEFT). From our discussion in Sec. 2.2, we know that the SMEFT Lagrangian becomes an expansion in
powers of the operator dimension:

Leff = L(δ≤4)
SM +

1

Λ

∑
i

c
(5)
i O

(5)
i +

1

Λ2

∑
i

c
(6)
i O

(6)
i +O

( 1

Λ3

)
. (3.2)

In this section, we will explore the operator basis of the Standard Model Effective Field Theory (SMEFT). The
original analysis of the operator basis at dimension 6 was by Buchmuller and Wyler [14] in 1986. Although the
presence of several EOM-vanishing combinations was already pointed out in the literature, it took up to 2010 before
an updated list was published by Grzadkowski et al. [13]. Attempts were made to classify the operators at dimension
7 [15] and 8 [16] as well. However, due to the somewhat complicated structure of the field content of the SM and
the fact that operators can be related by EOM-relations and IBP, mistakes are easily made. It became clear that
a general method was needed and this will be the topic of Sec. 4.

In this section, we will repeat part of the analysis done by Grzadkowski et al. [13] for the operator basis at dimension
5 and 6. As will become clear, writing down operators by hand is a difficult and tedious task in which mistakes are
easily made. However, we can learn a lot that will be very convenient for finding the general method later on, such
as taking tensor products of the representations of the fields. We explain how we can construct invariant operators
for the EFT Lagrangian in Sec. 3.1, after which we apply these techniques in Secs. 3.2 and 3.3 to construct some of
the operators for the SMEFT at mass dimension 6. We discuss briefly how the other operators can be constructed
in Sec. 3.4. We conclude in Sec. 3.5.

Operator class Field Lorentz SU(3) SU(2)L U(1) Mass dimension

ϕ Higgs ϕ (0, 0) 1 2 1
2 1

X

B boson Bµν (1, 0)⊕ (0, 1) 1 1 0 2

W boson W I
µν (1, 0)⊕ (0, 1) 1 3 0 2

Gluon GAµν (1, 0)⊕ (0, 1) 8 1 0 2

ψ

Leptons (×3 generations)
l ( 1

2 , 0) 1 2 − 1
2

3
2

e (0, 1
2 ) 1 1 −1 3

2

Quarks (×3 generations)

q ( 1
2 , 0) 3 2 1

6
3
2

u (0, 1
2 ) 3 1 2

3
3
2

d (0, 1
2 ) 3 1 − 1

3
3
2

Table 2: Field content of the SM together with the representation under the gauge group SU(3)× SU(2)L ×U(1).
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3.1 Invariants

The symmetry groups of the SM are the Lorentz group3 and the gauge group SU(3) × SU(2)L × U(1), and it is
reasonable to assume that also the SMEFT obeys these symmetries. In order to impose these symmetries at the
level of the (EFT) Lagrangian, we can only add invariant operators. To be more precise, the operators of the
Lagrangian should transform as trivial representations under the symmetry groups. For the symmetry groups at
hand, these are

Lorentz SU(3) SU(2)L U(1)

(0, 0) 1 1 0

where we denoted the SU(3) and SU(2) representations by their dimension. In general if we denote the represen-
tation by its dimension, we will do this in bold. As summarized in Table 2, the building blocks for the operators
do not transform trivially, and it is our task to find out how we can make combinations of the fields that will do.
In order to do so, we can turn to representation theory.

As we can only add scalar quantities to the Lagrangian, we need to contract all the indices of the fields. From a
more mathematically point of view, this is the same as writing down a tensor to which we feed the fields. Therefore,
constructing tensor product representations will do the job. In general, these tensor products transform as reducible
representations. If we are able to project out the trivial representation, we get an operator (although it may be
redundant through IBP and using the EOM-relations). To show this with an example, lets assume that we have

two spin- 1
2 representations of SU(2) and denote by φ and φ̃ the corresponding fields. Every physics student should

be familiar with the following tensor product
1

2
⊗ 1

2
= 0⊕ 1, (3.3)

in which the tensor products decomposes into the irreducible representations of spin-0 and spin-1. We know that
the spin-0 component is the anti-symmetric combination of φ and φ̃, and thus the invariant operator is given by:

φ1φ̃2 − φ2φ̃1 = εijφ
iφ̃j , (3.4)

because applying a group element U ∈ SU(2) on this operator yields

εijφ
iφ̃j → εijU

i
mφ

mU jnφ̃
n = det (U)εmnφ

mφ̃n. (3.5)

Using that det (U) = 1 for a group element of SU(2), we conclude that this operator indeed is invariant.

In general we can find operators by computing the tensor products for all representations of the fields of Table 2.
Counting the number of trivial representations in the tensor product decomposition will help us in finding all
independent operators. For SU(2) we have the general rule that the tensor product of spin-j and spin-k decomposes
as

j ⊗ k =
⊕

|j−k|≤`≤j+k

`. (3.6)

The following tensor products for SU(3) will be useful:

3⊗ 3̄ = 1⊕ 8, 8⊗ 8 = 1⊕ 8⊕ 8⊕ 10⊕ 10⊕ 27, 8⊗ 8⊗ 8 = 1⊕ 1⊕ [...] (3.7)

For the tensor products of the Lorentz representations we use Eq. (C.11). Note that an operator is invariant under
U(1) if the total hypercharge vanishes. When computing tensor product decompositions, we will often denote by
[...] all non-trivial representations. Lets put these ideas into practice to construct some of the operators of the
SMEFT at dimension 6.

3To be more precise: the part of the Lorentz group that is connected to the identity (see App. C). We will have much more to say
about this in later sections.
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3.2 Bosonic operator classification

The operators for dimension 6 are presented in Tables 3 and 4 at the end of this section. For now we are only inter-
ested in the first two columns. In this subsection, we construct the purely bosonic operators of classes ϕ6,D2ϕ4, X3,
and X2ϕ2 shown in Table 3. With our explanations one should be able to construct the other operators as well
using [13]. Before we get started, note that from ϕ and ϕ† we can construct a singlet (spin-0) and triplet (spin-1)
representation of SU(2) (see Eq. (3.3)):

ϕ†ϕ, and ϕ†τ Iϕ (3.8)

respectively. To show this, let U ∈ SU(2), then ϕ†ϕ → ϕ†U†Uϕ = ϕ†ϕ where we used that U†U = 1. Similar,
we get ϕ†τ Iϕ → ϕ†U†τ IUϕ. This transforms as a triplet, because the Pauli matrices transform in the adjoint
representation (the triplet representation of SU(2) is equivalent to the adjoint representation). Furthermore, we
can form one singlet out of two SU(2) triplets using δIJ . Similarly, for two SU(3) octets we can use δAB to project
out the trivial representation.

ϕ6 and D2ϕ4

As the Higgs field already transforms trivially under the Lorentz group and SU(3), we do not have to worry about
these groups. For the total hypercharge to vanish, we must have an equal number of Higgs fields and its complex
conjugate. For the SU(2) structure, we have to compute the tensor product of 6 spin- 1

2 representations, which we
write for convenience as

[0⊕ 1]⊗ [0⊕ 1]⊗ [0⊕ 1] = [0⊗ 0⊗ 0]⊕ [0⊗ 1⊗ 1]⊕ [1⊗ 0⊗ 1]⊕ [1⊗ 1⊗ 0]⊕ [1⊗ 1⊗ 1]⊕ [...]

= 0⊕ 0⊕ 0⊕ 0⊕ 0⊕ [...], (3.9)

where we used Eq. (3.3). Although we get 5 times the trivial representation, it will turn out that these are not
all independent. Using Eqs. (3.8) and (3.9) it is clear that one operator follows from 3 singlets, so (ϕ†ϕ)3 is an
invariant operator. Three times an operator is constructed out of one singlet and two triplets. However, they are
all the same, because

(ϕ†ϕ)(ϕ†τ Iϕ)(ϕ†τ Iϕ) = (ϕ†τ Iϕ)(ϕ†ϕ)(ϕ†τ Iϕ) = (ϕ†τ Iϕ)(ϕ†τ Iϕ)(ϕ†ϕ). (3.10)

Furthermore, we can use the relation4

τ Ijkτ
I
mn = 2δjnδmk − δjkδmn (3.11)

to show that

(ϕ†ϕ)(ϕ†τ Iϕ)(ϕ†τ Iϕ) = (ϕ†ϕ)ϕ†jϕkϕ
†
mϕn(2δjnδmk − δjkδmn)

= 2(ϕ†ϕ)ϕ†jϕkϕ
†
kϕj − (ϕ†ϕ)ϕ†jϕjϕ

†
mϕm

= 2(ϕ†ϕ)3 − (ϕ†ϕ)3. (3.12)

So this is not an independent operator. We can construct one more operator out of 3 triplets:

εIJK(ϕ†τ Iϕ)(ϕ†τJϕ)(ϕ†τKϕ), (3.13)

but this operator vanishes because the triplets are identical. Therefore, (ϕ†ϕ)3 is the only pure Higgs operator at
mass dimension 6.

We need at least two derivatives Dµ in order to get a trivial Lorentz representation:(1

2
,

1

2

)
⊗
(1

2
,

1

2

)
= (0, 0)⊕ (1, 0)⊕ (0, 1)⊕ (1, 1). (3.14)

The Lorentz singlet is obtained by contraction of the indices. This means that the derivatives should act on two
different fields, as we can use EOM-relations to remove operator with an insertion of D2ϕ or D2ϕ†. Again, we do
not have to worry about the SU(3) structure and we must have an equal number of Higgs fields and its complex
conjugate for the total hypercharge to vanish. This leaves us with the following SU(2) structure

[0⊕ 1]⊗ [0⊕ 1] = 0⊕ [1⊗ 1]⊕ 1⊕ 1 = 0⊕ 0⊕ [...], (3.15)

4It is not hard to show this relation using the explicit form of the Pauli matrices (see Eq. (A.2))
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so there should be two operators of this form. The derivatives can act on two conjugated or unconjugated fields

[(Dµϕ)†ϕ][(Dµϕ)†ϕ], [ϕ†Dµϕ][ϕ†Dµϕ], (3.16)

but we can use IBP and induce the EOM to show that these should be equivalent to

[(Dµϕ)†ϕ][ϕ†(Dµϕ)] = (ϕ†Dµϕ)∗(ϕ†Dµϕ), and [ϕ†ϕ][(Dµϕ)†(Dµϕ)] (3.17)

We can also relate the second one to the standard basis of Table 3, because

(ϕ†ϕ)�(ϕ†ϕ) = (ϕ†ϕ)Dµ[(Dµϕ)†ϕ+ ϕ†(Dµϕ)] = 2[ϕ†ϕ][(Dµϕ)†(Dµϕ)] + (ϕ†ϕ)[(D2ϕ)†ϕ+ ϕ†(D2ϕ)], (3.18)

and we can drop the terms containing D2ϕ and D2ϕ† through EOM relations. From Eq. (3.15) we see that we
could also form a singlet out of two triplets, however we can use Eq. (3.11) again to show that we can relate such
operators to the ones of above.

X3

Lets start with the Lorentz structure:

(1, 0)⊗ (1, 0)⊗ (1, 0) = [(0, 0)⊕ (1, 0)⊕ (2, 0)]⊗ (1, 0) = (0, 0)⊕ [...] (3.19)

Likewise for the tensor product of three times (0, 1) we find also one trivial representation. Therefore, we should be
able to write two independent operators with 3 field strength tensors. We need three different fields for non-vanishing
contraction of the Lorentz indices:

Xν
µY

ρ
ν Z

µ
ρ , X̃ν

µY
ρ
ν Z

µ
ρ . (3.20)

Otherwise the anti-symmetry of the indices forces the operator to be zero. Instead of writing the εµνρσ explicitely,

we use the dual tensor X̃µν . Because of the SU(2) and SU(3) structure of W and G, we cannot have an operator
of the form BWG. We can form a gauge singlet out of two SU(2) triplets or SU(3) octets. However, they both
vanish:

B ν
µ W

Iρ
ν W̃ Iµ

ρ = 0 and B ν
µ G

Aρ
ν G̃Aµρ = 0, (3.21)

because XνρX̃
ρ
µ is symmetric in the indices µ and ν, while Xµν is anti-symmetric in these indices. Therefore, the

only other option is to construct gauge singlets out of three triplets or octets. We can do this using the structure
constants εIJK and fABC :

εIJKW Iν
µ W Jρ

ν WKµ
ρ , εIJKW̃ Iν

µ W Jρ
ν WKµ

ρ , fABCGAνµ GBρν GCµρ , fABCG̃Aνµ GBρν GCµρ . (3.22)

X2ϕ2

We can form a SU(2) singlet or triplet out of the two Higgs fields, and they must be of the form of Eq. (3.8) again
because of the hypercharge constraints. We can form two Lorentz invariants out of the field strengths because

[(1, 0)⊕ (0, 1)]⊗ [(1, 0)⊕ (0, 1)] = (0, 0)⊕ (0, 0)⊕ [...], (3.23)

and they are given by XµνY
µν and X̃µνY

µν (X and Y can be the same in this case). Therefore, using δIJ and
δAB to project out the trivial representations of SU(2) and SU(3) respectively, we can form with ϕ†ϕ the following
operators:

ϕ†ϕBµνB
µν , ϕ†ϕ B̃µνB

µν , ϕ†ϕW I
µνW

Iµν , ϕ†ϕW̃ I
µνW

Iµν , ϕ†ϕGAµνG
Aµν , ϕ†ϕ G̃AµνG

Aµν . (3.24)

If we use ϕ†τ Iϕ, we can combine this with the SU(2) triplet W I
µν to get

ϕ†τ IϕW I
µνB

µν , and ϕ†τ IϕW̃ I
µνB

µν . (3.25)

In principle, three SU(2) triplets can combine to spin an overall singlet, but

εIJKϕ†τ IϕW J
µνW

Kµν , and εIJKϕ†τ IϕW̃ J
µνW

Kµν (3.26)

both vanish.
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3.3 Fermionic operator classification

In this subsection we will derive some of the four-fermion operators of Table 4. Because the fermions are chiral
spinors, we can order these operators according to their chiral structure. In particular, we will discuss the (L̄L)(L̄L),
(R̄R)(R̄R), and (L̄L)(R̄R) classes.

(L̄L)(L̄L)
Imposing hypercharge constrains, we see that we can only allow for the combinations (l̄l)2, (q̄q)2, and l̄lq̄q. Because
L̄ transforms as a right-handed spinor representation we get(1

2
, 0
)
⊗
(

0,
1

2

)
=
(1

2
,

1

2

)
. (3.27)

For the SU(2) structure we can use the result for four Higgs fields of Eq. (3.15). However, q now also has SU(3)
structure. Because q̄ transforms in the anti-fundamental representation, we can make use Eq. (3.7). Therefore, we
can construct the two-fermion currents

(l̄γµl), (q̄γµq), (l̄γµτ
I l), (q̄γµτ

Iq), (q̄γµT
Aq), and (q̄γµT

Aτ Iq). (3.28)

Two of such currents can combine to a Lorentz singlet by contracting the Lorentz index (see Eq. (3.14)). Using
what we have seen earlier to get gauge invariants out of two SU(2) triplets or SU(3) octets, we get the following
operators

(l̄γµl)(l̄γ
µl), (q̄γµq)(q̄γ

µq), (q̄γµτ
Iq)(q̄γµτ Iq), (l̄γµl)(q̄γ

µq), (l̄γµτ
I l)(q̄γµτ Iq), (3.29)

(q̄γµT
Aq)(q̄γµT

Aq) and (q̄γµT
Aτ Iq)(q̄γµT

Aτ Iq) (3.30)

However, these last two operators are not independent and we can relate them to the other operators. Using the
following relation for the generators of SU(3)

TAαβT
A
γδ =

1

2
δαδδβγ −

1

6
δαβδγδ, (3.31)

we can write

(q̄γµT
Aq)(q̄γµT

Aq) = (q̄αjγµqβj)(q̄γkγµqδk)
(1

2
δαδδβγ −

1

6
δαβδγδ

)
=

1

2
(q̄αjγµqβj)(q̄βkγµqαk)− 1

6
(q̄γµq)(q̄γ

µq) (3.32)

In order to rewrite the first part, we can use the following Fierz identity (see App. C.3)

(ψ̄Lγ
µψL)(χ̄LγµχL) = (ψ̄Lγ

µχL)(χ̄LγµψL). (3.33)

With this, we get
(q̄αjγµqβj)(q̄βkγµqαk) = (q̄αjγµqαk)(q̄βmγµqβn)δjnδkm. (3.34)

Rewriting Eq. (3.11) as δjnδmk = 1
2δjkδmn + 1

2τ
I
jkτ

I
mn, we obtain

(q̄αjγµqβj)(q̄βkγµqαk) = (q̄αjγµqαk)(q̄βmγµqβn)
1

2

(
δjkδmn + τ Ijkτ

I
mn

)
=

1

2
(q̄γµq)(q̄γ

µq) +
1

2
(q̄γµτ

Iq)(q̄γµτ Iq) (3.35)

So, we see finally how the operator is a linear combinations of the other operators of Eq. (3.29):

(q̄γµT
Aq)(q̄γµT

Aq) =
1

4
(q̄γµτ

Iq)(q̄γµτ Iq)− 1

12
(q̄γµq)(q̄γ

µq). (3.36)

With a similar calculation we obtain

(q̄γµT
Aτ Iq)(q̄γµT

Aτ Iq) =
3

4
(q̄γµq)(q̄γ

µq)− 5

12
(q̄γµτ

Iq)(q̄γµτ Iq), (3.37)

thereby completing our derivation of all independent operators of class (L̄L)(L̄L).
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(R̄R)(R̄R)
Again, hypercharge constraints force us to look only at operators with ūu, d̄d, and ēe. As R̄ transforms as a left
handed spinor, and we do not have to worry about SU(2) structure, we can construct the following two-fermion
currents

(ūγµu), (d̄γµd), (ēγµe), (ūγµT
Au), and (d̄γµT

Ad). (3.38)

With these currents, we can construct the following operators

(ūγµu)(ūγµu), (d̄γµd)(d̄γµd), (ēγµe)(ēγ
µe), (ūγµu)(d̄γµd), (ūγµu)(ēγµe), (d̄γµd)(ēγµe),

(ūγµT
Au)(d̄γµTAd), (d̄γµT

Ad)(d̄γµTAd), and (ūγµT
Au)(ūγµTAu). (3.39)

However, we can use Eqs. (3.31) and (3.33) to show that the last two operators can be written as a linear combination
of the others:

(ūγµT
Au)(ūγµTAu) = (ūαγµuβ)(ūγγ

µuδ)
(1

2
δαδδβγ −

1

6
δαβδγδ

)
=

1

2
(ūαγµuβ)(ūβγ

µuα)− 1

6
(ūγµu)(ūγµu)

=
1

2
(ūαγµuα)(ūβγ

µuβ)− 1

6
(ūγµu)(ūγµu)

=
1

3
(ūγµu)(ūγµu), (3.40)

and similarly

(d̄γµT
Ad)(d̄γµTAd) =

1

3
(d̄γµd)(d̄γµd). (3.41)

(L̄L)(R̄R)
For this class, we simply pick one current out of Eq. (3.28) and one out of Eq. (3.38). Contracting the Lorentz
indices gives the following operator

(l̄γµl)(ūγ
µu), (l̄γµl)(d̄γ

µd), (l̄γµl)(ēγ
µe), (q̄γµq)(ūγ

µu), (q̄γµq)(d̄γ
µd), (q̄γµq)(ēγ

µe)

(q̄γµT
Aq)(ūγµTAu), and (q̄γµT

Aq)(d̄γµTAd). (3.42)

One might suspect that the last two operators can be related to the others as well, but this is not the case as the
two octets in these operators include different fields.

3.4 Remaining classes

For the pure bosonic operators, one would expect to see terms of the form ϕ2D4, X2D2, XD2ϕ2. However, these
classes are absent in Table 3 and this follows because we can use IBP and EOM relations to remove such operators.
For example, we can use IBP to move all derivatives Dµ on one Higgs field:

ϕ†DµDνDρDσϕ. (3.43)

We can construct invariants using the epsilon tensor εµνρσ, but this leads to an appearance of [Dµ, Dν ] ∼ Xµν

which reduces to the Xϕ4 class. The other way is to contract with two metrics ηδληαβ , which gives5 D2ϕ and can
therefore be removed through EOM relations. With similar arguments one can show that X2D2, XD2ϕ2 can be
removed from the SMEFT operator basis.

We did not construct all four-fermion operators of Table 4. For the remaining operators one should start by looking
at the constraints by hypercharge to reduce the possible terms a lot. With what we did above, a straightforward
calculation will give the other terms.

There are also mixed terms with fermions and bosons as the building blocks for the operator. Those of the form
ψ2Xϕ and ψ2ϕ3 will be straightforward to check. For those with a derivative one should expect the following classes

ψ2ϕ2D, ψ2XD, ψ2D3 and ψ2ϕD2. (3.44)

5And possible also a term with one or two Xµν ’s by interchanging the derivatives, which is in one of the X2ϕ2 or XD2ϕ2 classes.
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However only the class ψ2ϕ2D appears in Table 3, as all other operators can be related by IBP en EOM relations.
To get a flavour of what it boils down to, lets look at an operator of the form ψ2D3. The three covariant derivatives
are contracted with a current ψ̄γµψ such as in Eqs. (3.28) and (3.38). We can use IBP to move all operators on ψ
to get

ψ̄DµD
µγνD

νψ = ψ̄D2 /Dψ, (3.45)

which is proportional to an EOM operator and we can therefore remove this operator from the EFT Lagrangian.

3.5 Summary

In the previous subsections we discussed how one can construct some of the operators for the basis at mass dimension
6 of the SMEFT. We saw that not only relations by IBP and EOM make the derivation difficult, but also the Fierz
identities of Eqs. (3.11), (3.31) and (3.33) make it hard to find out if some operators can be related. It is clear
that this will become harder at higher mass dimensions. Of great help for now was that we could count the number
of operators of a given form by working out the tensor products. However, it still happened quite often that we
overcounted, with the overcounting of 4 for ϕ6 being an extreme case. The counting will obviously not become
easier at higher mass dimension6. So a method that can do the counting for us will already be of much help, as
knowing the number of operators of a given form has proven to be an excellent start for constructing operators.
Furthermore, a general counting method can be of great use for exploring the operator bases of other EFTs as well.

6Try to work out the tensor product of 12 times the 8 representation of SU(3).
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ϕ6 and ϕ4D2 H+ H− 1
2 (H+ +H−) CP-inv.

Qϕ (ϕ†ϕ)3 (ϕ†ϕ)3 ϕ6 ϕ6 X

Qϕ� (ϕ†ϕ)�(ϕ†ϕ)
2D2(ϕ†ϕ)2 2D2ϕ4 2D2ϕ4

X

QϕD
(
ϕ†Dµϕ

)? (
ϕ†Dµϕ

)
X

X3

QG fABCGAνµ GBρν GCµρ 2G3 0 G3
X

QG̃ fABCG̃Aνµ GBρν GCµρ -

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ 2W 3 0 W 3

X

Q
W̃

εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ -

X2ϕ2

QϕG ϕ†ϕGAµνG
Aµν

2ϕ†ϕG2 0 ϕ2G2
X

QϕG̃ ϕ†ϕ G̃AµνG
Aµν -

QϕW ϕ†ϕW I
µνW

Iµν

2ϕ†ϕW 2 0 ϕ2W 2
X

Q
ϕW̃

ϕ†ϕW̃ I
µνW

Iµν -

QϕB ϕ†ϕBµνB
µν

2ϕ†ϕB2 0 ϕ2B2
X

QϕB̃ ϕ†ϕ B̃µνB
µν -

QϕWB ϕ†τ IϕW I
µνB

µν

2ϕ†ϕWB 0 ϕ2WB
X

Q
ϕW̃B

ϕ†τ IϕW̃ I
µνB

µν -

ψ2Xϕ

QeW (l̄pσ
µνer)τ

IϕW I
µν+ h.c. l†eϕW + le†ϕ†W 0 leϕW X

QeB (l̄pσ
µνer)ϕBµν+ h.c. l†eϕB + le†ϕB 0 leϕB X

QuG (q̄pσ
µνTAur)ϕ̃G

A
µν+ h.c. q†uϕ†G+ qu†ϕG 0 quϕG X

QuW (q̄pσ
µνur)τ

I ϕ̃W I
µν+ h.c. q†uϕ†W + qu†ϕW 0 quϕW X

QuB (q̄pσ
µνur)ϕ̃ Bµν+ h.c. q†uϕ†B + qu†ϕB 0 quϕB X

QdG (q̄pσ
µνTAdr)ϕG

A
µν+ h.c. q†dϕG+ qd†ϕ†G 0 qdϕG X

QdW (q̄pσ
µνdr)τ

IϕW I
µν+ h.c. q†dϕW + qd†ϕ†W 0 qdϕW X

QdB (q̄pσ
µνdr)ϕBµν+ h.c. q†dϕB + qd†ϕ†B 0 qdϕB X

ψ2ϕ3

Qeϕ (ϕ†ϕ)(l̄perϕ)+ h.c. ϕ†ϕ2l†e+ ϕ(ϕ†)2le† 0 ϕ3le X

Quϕ (ϕ†ϕ)(q̄purϕ̃)+ h.c. (ϕ†)2ϕq†u+ ϕ2ϕ†qu† 0 ϕ3qu X

Qdϕ (ϕ†ϕ)(q̄pdrϕ)+ h.c. ϕ†ϕ2q†d+ ϕ(ϕ†)2qd† 0 ϕ3qd X

ψ2ϕ2D

Q
(1)
ϕl (ϕ†i

↔
Dµ ϕ)(l̄pγ

µlr)
2Dϕ†ϕl†l 2Dϕ2l2 2Dϕ2l2

X

Q
(3)
ϕl (ϕ†i

↔
D I
µ ϕ)(l̄pτ

Iγµlr) X

Q
(1)
ϕq (ϕ†i

↔
Dµ ϕ)(q̄pγ

µqr)
2Dϕ†ϕq†q 2Dϕ2q2 2Dϕ2q2

X

Q
(3)
ϕq (ϕ†i

↔
D I
µ ϕ)(q̄pτ

Iγµqr) X

Qϕe (ϕ†i
↔
Dµ ϕ)(ēpγ

µer) Dϕ†ϕe†e Dϕ2e2 Dϕ2e2 X

Qϕu (ϕ†i
↔
Dµ ϕ)(ūpγ

µur) Dϕ†ϕu†u Dϕ2u2 Dϕ2u2 X

Qϕd (ϕ†i
↔
Dµ ϕ)(d̄pγ

µdr) Dϕ†ϕd†d Dϕ2d2 Dϕ2d2 X

Qϕud i(ϕ̃†Dµϕ)(ūpγ
µdr)+ h.c. Dϕ2u†d+D(ϕ†)2ud† 0 Dϕ2ud X

Table 3: All dimension-six operators which are not four-fermionic. First two columns are taken from Ref. [13]. In
the third column, the results for the Hilbert series method are shown (see Secs. 4 and 5). Column 4, 5 and 6 show
the results of the Hilbert series when enumerating CP invariant operators (see Sec. 6).
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(L̄L)(L̄L) H+ H− 1
2 (H+ +H−) CP-inv.

Qll (l̄pγµlr)(l̄sγ
µlt) l̄2l2 l4 l4 X

Q
(1)
qq (q̄pγµqr)(q̄sγ

µqt)
2q̄2q2 2q4 2q4

X

Q
(3)
qq (q̄pγµτ

Iqr)(q̄sγ
µτ Iqt) X

Q
(1)
lq (l̄pγµlr)(q̄sγ

µqt)
2q̄ql̄l 2q2l2 2q2l2

X

Q
(3)
lq (l̄pγµτ

I lr)(q̄sγ
µτ Iqt) X

(R̄R)(R̄R)

Qee (ēpγµer)(ēsγ
µet) ē2e2 e4 e4 X

Quu (ūpγµur)(ūsγ
µut) ū2u2 u4 u4 X

Qdd (d̄pγµdr)(d̄sγ
µdt) d̄2d2 d4 d4 X

Qeu (ēpγµer)(ūsγ
µut) ēeūu e2u2 e2u2 X

Qed (ēpγµer)(d̄sγ
µdt) ēed̄d e2d2 e2d2 X

Q
(1)
ud (ūpγµur)(d̄sγ

µdt)
2ūud̄d 2u2d2 2u2d2

X

Q
(8)
ud (ūpγµT

Aur)(d̄sγ
µTAdt) X

(L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγ
µet) l̄lēe l2e2 l2e2 X

Qlu (l̄pγµlr)(ūsγ
µut) l̄lūu l2u2 l2u2 X

Qld (l̄pγµlr)(d̄sγ
µdt) l̄ld̄d l2d2 l2d2 X

Qqe (q̄pγµqr)(ēsγ
µet) q̄qēe q2e2 q2e2 X

Q
(1)
qu (q̄pγµqr)(ūsγ

µut)
2q̄qūu 2q2u2 2q2u2

X

Q
(8)
qu (q̄pγµT

Aqr)(ūsγ
µTAut) X

Q
(1)
qd (q̄pγµqr)(d̄sγ

µdt)
2q̄qd̄d 2q2d2 2q2d2

X

Q
(8)
qd (q̄pγµT

Aqr)(d̄sγ
µTAdt) X

(L̄R)(R̄L) and (L̄R)(L̄R)

Qledq (l̄jper)(d̄sq
j
t )+ h.c. l̄ed̄q + lēdq̄ 0 ledq X

Q
(1)
quqd (q̄jpur)εjk(q̄ksdt)+ h.c.

2q̄2ud+ 2q2ūd̄ 0 2q2ud
X

Q
(8)
quqd (q̄jpT

Aur)εjk(q̄ksT
Adt)+ h.c. X

Q
(1)
lequ (l̄jper)εjk(q̄ksu+ h.c.

2l̄eq̄u+ 2lēqū 0 2lequ
X

Q
(3)
lequ (l̄jpσµνer)εjk(q̄ksσ

µνut)+ h.c. X

B-violating

Qduq εαβγεjk
[
(dαp )TCuβr

] [
(qγjs )TClkt

]
+ h.c. duql + d̄ūq̄l̄ 0 duql X

Qqqu εαβγεjk
[
(qαjp )TCqβkr

] [
(uγs )TCet

]
+ h.c. q2ue+ q̄2ūē 0 q2ue X

Qqqq εαβγεjnεkm
[
(qαjp )TCqβkr

] [
(qγms )TClnt

]
+ h.c. q3l + q̄3 l̄ 0 q3l X

Qduu εαβγ
[
(dαp )TCuβr

] [
(uγs )TCet

]
+ h.c. u2de+ ū2d̄ē 0 u2de X

Total: 63 84 30 57 57

Table 4: All dimension-six four-fermion operators. First two columns are taken from [13]. In the third column,
the results for the Hilbert series method are shown (see Secs. 4 and 5). Column 4, 5 and 6 show the results of the
Hilbert series when enumerating CP invariant operators (see Sec. 6).
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4 Hilbert Series

From the previous section, it became clear that constructing the minimal operator basis for the SMEFT is cum-
bersome, and this problem will also occur for other EFTs. A general method that can do the counting of operators
of a given form can be therefore very helpful. To be more precise: in general the building blocks for the EFT
Lagrangian are a set of N fields φi transforming in a representation of some symmetry group G, and the (covariant)
derivative. We are interested in the number ck,n1,...,nN of invariant operators one can construct from ni fields φi
and k derivatives. Therefore, we define the Hilbert series (HS) as [17]

H(D, {φi}) =

∞∑
k=0

∞∑
n1=0

...

∞∑
nN=0

ck,n1,...,nNDkφ
n1
1 ...φnNN . (4.1)

Here φi and D are simply used to count the number of occurrences of the field and the derivative in the operator
and should not be confused with the fields itself. The direct computation of the HS is the topic of this section. We
follow the approach of [18, 19], but restrict our discussion to EFTs in four space-time dimensions. The methods
and results covered in this section are summarized in [20].

We start by deriving the HS for operators without derivatives in Sec. 4.1. In order to include derivatives we need
to extend the Lorentz representations to representations of the conformal group, which we discuss in Sec. 4.2. In
Sec. 4.3 we derive the HS accounting for relations from integration by parts (IBP). We subsequently deal with
equations of motion (EOM) in Sec. 4.4. We conclude this section by constructing the HS for an EFT with gravity
in Sec. 4.5.

4.1 Hilbert Series for operators without derivatives

We start with the construction of the HS for operators without derivatives. This means we do not need to think about
EOM and IBP redundancies yet. For simplicity, consider just a single field φ transforming under the representation
R of some symmetry group G. The HS therefore takes the following form:

H(0, φ) =

∞∑
n=0

c0,nφ
n (4.2)

As became clear from the previous section, an operator made out of n fields φ transforms under the tensor product

R⊗ ...⊗R︸ ︷︷ ︸
n-times

. (4.3)

Furthermore, we decomposed such tensor products into the irreducible components by hand, and we tried to compute
the coefficients c0,n by counting the number of trivial representations. Although this procedure turned out to give
an overcounting from time to time, lets stick with this naive way of computing c0,n in the hope we learn enough to
correct for the overcounting later. We can generalize this counting procedure up to any order by using characters,
the trace of the representation matrices. Although characters do not tell us much about the group structure, they
encode some valuable information about the representations. This is best shown with the following properties of
characters [21]:

χR1⊗R2
= χR1

·χR2
and χR1⊕R2

= χR1
+ χR2

, (4.4)

where R1,2 are representations of G with characters χR1
and χR2

respectively. Furthermore, if R1 and R2 are
irreducible, then they obey the following character orthogonality:∫

G

dµ χ∗Ri(g))χR2
(g) = δR1,R2

, (4.5)

where dµ is the Haar measure on G. See App. B for some formulas for the characters and Haar measures of simple,
semi-simple Lie groups. With these properties, we can simply express the character for the tensor representation
of Eq. (4.3) as χR⊗...⊗R = (χR)n. Using Eq. (4.4), the character decomposes into a sum of the characters of the
irreducible components of Eq. (4.3). Exploiting the orthogonality of characters, we can project out the number of
trivial representations

c0,n =

∫
G

dµ 1·
(
χR(g)

)n
, (4.6)
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where we used that the trivial representation has character equal to 17. Inserting this into Eq. (4.2), we get

H(0, φ) =

∫
G

dµ

∞∑
n=0

φn
(
χR(g)

)n
=

∫
G

dµ
1

1− φχR(g)
. (4.7)

However, this is not what we want in the context of EFTs, because if we have n copies of the field φ, we can
always (anti-)commute these n identical copies of the field in the case of bosons (fermions). Therefore, we are only
interested in the HS where φn transforms in the symmetric (anti-symmetric) tensor product symn(R) (∧n(R)), and
this corrects for the overcounting of operators in Eq. (4.7). By projecting out the trivial represenation again, the
HS for bosonic operators takes the following form

H(0, φ) =

∫
G

dµ 1·
∞∑
n=0

φnχsymn(R)(g) =

∫
G

dµ exp

[ ∞∑
n=1

φn

n
χR(gn)

]
≡
∫
G

dµ PE
[
φχR(g)

]
, (4.8)

where we made use of the plethystic exponential. For a derivation of this exponential, see App. B.1.1. For Fermionic
operators we get a slightly different form

H(0, φ) =

∫
G

dµ 1·
∞∑
n=0

φnχ∧n(R)(g) =

∫
G

dµ exp

[
−
∞∑
n=1

(−φ)n

n
χR(gn)

]
≡
∫
G

dµ PEF
[
φχR(g)

]
, (4.9)

where the Pletystic exponential for anti-symmetric tensor products was used (see App. B.1.2).

For N bosonic fields φi we need to deal with tensor products of the form

symn1(R1)⊗ ...⊗ symnN (RN ), (4.10)

which has character equal to
χsymn1 (R1)...χsymnN (RN ). (4.11)

The HS for multiple bosonic fields therefore becomes

H(0, {φi}) =

∫
G

dµ

∞∑
n1=0

...

∞∑
nN=0

φn1
1 ...φnNN χsymn1 (R1)...χsymnN (RN )

=

∫
G

dµ

∞∑
n1=0

φn1
1 χsymn1 (R1)...

∞∑
nN=0

φnNN χsymnN (RN )

=

∫
G

dµ

N∏
i=1

PE
[
φiχRi(g)

]
, (4.12)

and we get the fermionic case by replacing PE with PEF. This generalizes to EFTs with both fermions and bosons:

H(0, {φi}) =

∫
G

dµ

N∏
i=1

{
PE
[
φiχRi(g)

]
φi is boson,

PEF
[
φiχRi(g)

]
φi is fermion.

(4.13)

As a final remark, note that we have projected out the number of trivial representations. However, we can project
out every representation R′ we like by multiplying above integrands by χ∗R(g).

4.2 Conformal Representations

The construction of the HS for operators without derivatives was relatively easy as the only redundancy in operators
was due to the bosonic or fermionic nature of the fields. When we include the (covariant) derivative, it gets harder as
operator redundancies arise from IBP and EOM relations. Henning et al. [19] pointed out that these difficulties can
be tackled by working with representations of the conformal group SO(d, 2), and they were the first to compute the
HS for operators that cannot be related by IBP and EOM relations. However, their construction is in d space-time

7We can project out any irreducible representation R̃ of G by replacing 1 with χ∗
R̃

(g).
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dimension and can therefore become hard to grasp. In this section we try to strip off the abstractness and focus on
EFTs in 4 space-time dimensions.

Luckily we do not need to know everything about representations of the conformal group in order to work with
them. This is mainly due to the fact that the Lorentz group SO(3, 1) is a subgroup of the conformal group SO(4, 2).
In fact, we can construct the conformal representations out of the representations of the Lorentz group and we will
rely on this result in this section. This is very useful as we expect that most physicists are more familiar with
representations of the Lorentz group than of the conformal group. In App. D we show this connection explicitly
by constructing the algebra of so(4, 2) by extending the algebra of the Lorentz group. We encourage the interested
reader to have a look.

Lets start by considering a single field φ` which transforms under a representation ` = (`1, `2) of the Lorentz group.
Of course, φ` can transform under some other symmetry group G as well, but we will focus on the Lorentz group
due to its interplay with derivatives. As discussed in App. D.3, we can extend this to a representation (∆, `) of
SO(4, 2), where ∆ is an extra label that is needed because the rank8 of so(4, 2) is 3. As ∆ is the eigenvalue of the
dilaton operator, we can physically associate this with the scaling dimension of φ`. The conformal representation
R∆,` now acts on objects like 

φ`
Dµ1φ`

Dµ1
Dµ2

φ`
Dµ1

Dµ2
Dµ3

φ`
...

 , (4.14)

and the highest weight φ` is called the primary operator. The (covariant) derivative acts as a lowering operator, so
IBP identities can be taken into account by projecting out the highest weight state of R∆,`.

From our discussion of the previous section it is clear that we need the character of the conformal representation.
Commutators of derivatives yield field strength (and Weyl) tensors when including gauge groups (gravity), so we
may treat multiple derivatives as if they are transforming under symn( 1

2 ,
1
2 ) under the Lorentz group. Therefore,

the derivation of the character in App. D.4 still holds and we get

χ∆,`(q, x) = q∆χ`(x)

∞∑
n=0

qnχsymn( 1
2 ,

1
2 )(x) ≡ q∆χ`(x1, x2)P (q, x). (4.15)

Here χ`(x) is the Lorentz character of `, x = (x1, x2) parametrizes the Lorentz group, and q denotes the scaling
dimension9. Furthermore, we defined the momentum generating function

P (q, x) ≡
∞∑
n=0

qnχsymn( 1
2 ,

1
2 )(x) = PE

[
qχ( 1

2 ,
1
2 )(x)

]
, (4.16)

which we can write as a plethystic exponential. It is important to note here that in χ∆,`(q, x) we can relate q
directly with the counting of (covariant) derivatives by dividing out the scaling dimension of φ`. The characters are
orthogonal when we define the measure of SO(4, 2) as follows (see App. D.4)∫

dµSO(4,2) χ
∗
∆,`χ∆′,`′ =

∫
dµL

∮
dq

2πiq

1

|P (q, x)|2
χ∗∆,`χ∆′,`′ = δ`,`′δ∆,∆′ , (4.17)

where dµL is the measure of the Lorentz group.

8To be precise, the Cartan algebra now consist of J3
L,R the two SU(2) Cartan matrices from the Lorentz group, and the dilaton

operator D.
9Characters are class functions, meaning they are conjugation invariant. Therefore, we can compute the conformal characters in

terms of the U(1)-variables q = eiθD, x1 = eiθLJ
3
L and x2 = eiθRJ

3
R
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4.3 Integration by Parts

Now that we have constructed (the orthonormal) characters for conformal representations, we can construct the
HS for the operators with derivatives. First, we write down the generating function Z[φ, q, x] for a bosonic field φ
with spin ` and scaling dimension ∆:

Z[φ, q, x] = 1 + φχ∆,`(q, x) + φ2χsym2(∆,`)(q, x) + ... = 1 +

∞∑
n=1

φnχsymn(∆,`)(q, x) = PE [φχ∆,`(q, x)] . (4.18)

We can decompose the tensor products into the direct sum of irreducible representations R∆′,`′ :

χsymn(∆,`)(q, x) =
∑
∆′,`′

b
(n)
∆′,`′χ∆′,`′(q, x), (4.19)

with b
(n)
(∆′,`′) the multiplicities of the (symmetric) tensor product decomposition. Inserting this in Eq. (4.18) and

swapping the two sums, we get

Z[φ, q, x] = 1 +
∑
∆′,`′

∞∑
n=1

φnb
(n)
∆′,`′χ∆′,`′(q, x) = 1 +

∑
∆′,`′

c∆′,`′(φ)χ∆′,`′(q, x), (4.20)

were we defined c∆′,`′(φ) =
∑∞
n=1 φ

nb
(n)
∆′,`′ . As explained before, we are not only interested to project out a particular

representation, but we want are interested in the highest weights to take IBP identities into account. Furthermore,
in order for these highest weights to be proper operators for the EFT Lagrangian, we need them to be Lorentz
invariant. Therefore, we are only interested in projecting out the coefficients c∆′,(0,0)(φ), which give precisely the
number of invariant operators of dimension ∆′, weighted by the number of fields φ. As the derivatives in such an
operator are the only other objects carrying mass dimension we can count the number of derivatives D from this
mass dimension and the number of fields. Therefore, we can write the HS as

H(D, φ) = 1 +
∑
∆′

c∆′,(0,0)

( φ

D∆

)
D∆′ = 1 +

∞∑
n=0

c(∆+n),(0,0)

( φ

D∆

)
D∆+n. (4.21)

Looking at Eq. (4.20), we see that we can compute the coefficients by exploiting the orthogonality of the characters:

c∆′,(0,0)

( φ

D∆

)
=

∫
dµSO(4,2) χ

∗
∆′,(0,0)

(
Z
[ φ

D∆
, q, x

]
− 1
)

=

∫
dµL

∮
dq

2πiq

1

|P (q, x)|2
q−∆′P ∗(q, x)

(
PE
[ φ

D∆
χ∆,`(q, x)

]
− 1
)
, (4.22)

where we used that q ∈ U(1). Plugging this back into the HS gives

H(D, φ) = 1 +

∫
dµL

∮
dq

2πiq

∞∑
n=0

(
D
q

)∆+n
1

P (q, x)

(
PE
[ φ

D∆
χ∆,`(q, x)

]
− 1
)

= 1 +

∫
dµL

∮
dq

2πi

(
D
q

)∆
1

q −D
1

P (q, x)

(
PE
[ φ

D∆
χ∆,`(q, x)

]
− 1
)

(4.23)

where we used the geometric series to compute the sum over n. Before we perform the integral over q, we have to
distinguish between two cases. First of all, if ∆ > 1 the integral picks up the residue at the single pole q = D. If
∆ = 1, we also get a contribution from the pole q = 0 ( 1

P and PE are regular in q = 0), however this contribution
vanishes as χ1,`(0, x) = 0, and PE[0] = 1. Therefore, the only contribution is from q = D and we obtain

H(D, φ) = 1 +

∫
dµL

1

P (D, x)

(
PE
[ φ

D∆
χ∆,`(D, x)

]
− 1
)
. (4.24)

A straightforward calculations leads to the HS for N fields φi with conformal representation R∆i,`i , which are
now also transforming under some representation Ri of a gauge symmetry group G. The generating function of
Eq. (4.18) becomes

Z[{φi}, q, x, g] =

N∏
i=1

{
PE
[
φiχ∆i,`i(q, x)χRi(g)

]
φi is boson,

PEF
[
φiχ∆i,`i(q, x)χRi(g)

]
φi is fermion,

(4.25)
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with g ∈ G. We can follow the same steps that led from Eq. (4.18) to Eq. (4.24), but now we also need to integrate
over G to project out gauge singlets. We therefore obtain:

H(D, {φi}) = 1 +

∫
G

dµ

∫
dµL

1

P (D, x)

(
Z
[{ φi
D∆i

}
,D, x, g

]
− 1
)

(4.26)

with dµ the Haar measure of G.

As a final remark, note that 1
P accounts for the IBP relations. Looking back at Eq. (4.21) we see that from c∆′,(0,0)

we can only extract the number of derivatives and fields that make up the highest weight. Accounting for all
descendants in the conformal representation can be done by multiplying with the momentum generating function
P (D, x). The integral over the Lorentz group will project out the invariant operators. Looking at Eqs. (4.24) and
(4.26), we see that in this case the 1

P drops out. This means that we have a method to compute both the HS for
operators related by IBP and for operators which are not redundant by IBP relations.

4.4 Equations of Motion

EOM redundancies can be removed by modifying the characters for the conformal representation in the previous
section. As discussed in [19], the proper way of doing this is to look at so-called short representations. We provide
some background reading on short representations in App. D.2, where we show that it is permitted to remove the
EOM redundancies from the conformal representations as long as we choose our scaling dimension ∆ right.

4.4.1 Scalar Field

We start with the EOM for a Lorentz scalar φ (∆ = 1, ` = (0, 0)). Redundancies through EOM allows us to drop
operators with an insertion of D2φ. The contracted indices correspond to taking a trace, which we therefore need
to remove from Eq. (4.14). For example, we can split the row with two derivatives in Eq. (4.14) into the trace and
a traceless part

Dµ1
Dµ2

φ = (Dµ1
Dµ2
− 1

4ηµ1µ2
D2)φ︸ ︷︷ ︸

Traceless

+ 1
4 ηµ1µ2

D2φ︸ ︷︷ ︸
Trace

, (4.27)

we only want the first term on the right-hand side. We can generalize this to a row with n derivatives by contracting
two indices and leaving all other indices symmetric. It is hard to write this generalization as explicit as we did in
Eq. (4.27), but in terms of characters under the Lorentz group this boils down to the following:

χsymn( 1
2 ,

1
2 )(x) = χ̃n(x) + χsymn−1( 1

2 ,
1
2 )(x)·1, (4.28)

with 1 the trivial character of D2φ and χ̃ the character of the traceless part that we seek10. Implementing this
modified Lorentz character changes the character of the conformal representation to

χ̃[1,(0,0)](q, x) =

∞∑
n=0

q1+nχ̃n(x) = q

( ∞∑
n=0

qnχsymn( 1
2 ,

1
2 )(x)−

∞∑
n=2

qnχsymn−2( 1
2 ,

1
2 )(x)

)

= q
(
1− q2

) ∞∑
n=0

qnχsymn( 1
2 ,

1
2 )(x) = q

(
1− q2

)
P (q, x). (4.29)

4.4.2 Chiral Fermionic Field

We can apply this reasoning to a left handed fermionic field ψL with spin ` = ( 1
2 , 0) under the Lorentz Group and

scaling dimension ∆ = 3
2 . The EOM for this fermionic field allows us to remove operators with an insertion of

/DψL = γµDµψL. It follows from the tensor product of the representation ( 1
2 ,

1
2 ) for the derivative combined with

that of ψL: (1

2
,

1

2

)
⊗
(1

2
, 0
)

=
(

0,
1

2

)
⊕
(

1,
1

2

)
(4.30)

that /DψL transforms as (0, 1
2 ) under the Lorentz group. Therefore, the character of a line with n derivatives in

Eq. (4.14) can be decomposed as follows:

χsymn( 1
2 ,

1
2 )(x)χ( 1

2 ,0)(x) = χ̃(x) + χsymn−1( 1
2 ,

1
2 )(x)χ(0, 12 )(x). (4.31)

10This corresonds with case 2. of the short representations as discussed in App. D.2
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where χ̃ is again the character we need in order to remove the operators related through EOM11. With this we get
the modified conformal character

χ̃[ 3
2 ,(

1
2 ,0)](q, x1, x2) = q

3
2

( ∞∑
n=0

qnχsymn( 1
2 ,

1
2 )χ( 1

2 ,0) −
∞∑
n=1

qnχsymn−1( 1
2 ,

1
2 )χ(0, 12 )

)
= q

3
2

(
χ( 1

2 ,0)(x)− qχ(0, 12 )(x)
)
P (q, x). (4.32)

One gets the (conformal) character for right handed fermions by interchanging χ( 1
2 ,0) and χ(0, 12 ) in the above lines.

4.4.3 Gauge Fields

A gauge fields Fµν transforms as ` = (1, 0) ⊕ (0, 1) under the Lorentz group and the scaling dimension is equal to

∆ = 2. It is easiest to work with the chiral components FµνL = Fµν + F̃µν and FµνR = Fµν − F̃µν , which transform

as (1, 0) and (0, 1), respectively. Here F̃µν is the dual field strength tensor. A derivative acting on a (1, 0) then
decomposes as (1

2
,

1

2

)
⊗ (1, 0) =

(1

2
,

1

2

)
⊗
(3

2
,

1

2

)
. (4.33)

and we identify the first term on the RHS with the EOM DµF
µν = Jν . However, removing this from Eq. (4.14) is

too much as the current is conserved12: DµJ
µ = 0. This corresponds to the trace again as can also be seen from(1

2
,

1

2

)
⊗
(1

2
,

1

2

)
= (0, 0)⊕ (1, 1)⊕ (1, 0)⊕ (0, 1). (4.34)

So, the Lorentz character of a line with n derivatives in Eq. (4.14) becomes

χsymn( 1
2 ,

1
2 )(x)χ(1,0)(x) = χ̃(x) +

(
χsymn−1( 1

2 ,
1
2 )(x)χ( 1

2 ,
1
2 )(x)− χsymn−2( 1

2 ,
1
2 )(x)·1

)
, (4.35)

and χ̃ is again what we seek. The modified character for the conformal representation is therefore given by

χ̃[2,(1,0)](q, x) = q2
(
χ(1,0)(x)

∞∑
n=0

qnχsymn(x)− χ( 1
2 ,

1
2 )(x)

∞∑
n=1

qnχsymn−1(x) +

∞∑
n=2

qnχsymn−2(x)
)

= q2
(
χ(1,0) − qχ( 1

2 ,
1
2 ) + q2

)
P (q, x). (4.36)

A similar derivation holds for the (0, 1) component FµνR of the field strength. Combining these, we find that the
character of the conformal representation for the field strength after removing EOM is given by

χ̃[2,(1,0)⊕(0,1)](q, x) = q2
(
χ(1,0)⊕(0,1)(x)− 2qχ( 1

2 ,
1
2 )(x) + 2q2

)
P (q, x). (4.37)

4.5 Gravity

We have seen how we construct the HS for the field content of the SMEFT. We will now discuss how to include
gravity, providing a brief summary of the approach in Ref. [22]. Quantizing the action of general relativity (GR)

S = − 1

16πG

∫
d4x
√
−gR (4.38)

yields a non-renormalizable theory. This can of course be used as an effective theory, for which we must include
operators of higher mass dimension in the Riemann tensor Rµνρσ, whose reducible representation under the Lorentz
group is (2, 0)⊕ (0, 2)⊕ (1, 1)⊕ (0, 0). To see which EOM redundancies we need to remove, we look at the Einstein
equations

Rµν −
1

2
gµνR = 8πGTµν , (4.39)

with Rµν and R the Ricci tensor and scalar, respectively. In vacuum the energy momentum tensor Tµν is zero and
the Einstein equations reduce to Rµν = 0. As explained in Ref. [22], we can perform field redefinitions in the metric

11See case 3 of the short representations in App. D.2
12If the states we remove in Eq. (4.14) build a short representation themselves, we should remove only the short representation. See

also case 3 of App. D.2
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tensor to remove any occurrence of the Ricci scalar and tensor from the operator basis. Therefore, the building
block in the EFT of gravity is the Weyl tensor Cµνρσ, which is the Riemann tensor sans its Ricci tensor/scalar
traces. The representation of Rµν under the Lorentz group is (1, 1) ⊕ (0, 0), meaning that the Weyl tensor has
to transform as (2, 0) ⊕ (0, 2). Besides satisfying the Einstein equations, we have to take the contracted Bianchi
identity

∇µCµνρσ = ∇[ρRσ]ν +
1

6
gν[ρ∇σ]R (4.40)

into account, which can be regarded as an additonal equation of motion. To see which expressions we must subtract
in the character for Cµνρσ, we again work with the self-dual and anti-self-dual of the Weyl tensor, which yields
the irreducible subspaces (2, 0) and (0, 2). As in the gauge field case, commutators of derivatives yield building
blocks that are already included, and the Bianchi identity implies that ∇2Cµνρσ is not an independent quantity, so
we again consider symmetrized and traceless products of derivatives. The tensor product of a derivative acting on
(2, 0) decomposes as (1

2
,

1

2

)
⊗ (2, 0) =

(5

2
,

1

2

)
⊕
(3

2
,

1

2

)
(4.41)

and we identify ( 3
2 ,

1
2 ) with the contracted Bianchi identity. Similar to the gauge field case, subtracting the full

( 3
2 ,

1
2 ) removes too much, as ∇µ∇νCµνρσ ≡ 0 by anti-symmetry. This vanishing object is an anti-symmetric rank-2

tensor, and so transforms as (1, 0). The corresponding conformal representation is fixed by ∆ = 3, and ` = (2, 0)13,
and the character of the conformal representation is given by

χ̃[3,(2,0)] = q3
(
χ(2,0) − qχ( 3

2 ,
1
2 ) + q2χ(1,0)

)
P (q, x), (4.42)

and we find a similar expression for the (0, 2) component. Combining these results yields the EOM-removed
character for the conformal representation of the Weyl tensor as

χ̃[3,(2,0)⊕(0,2)] = q3
(
χ(2,0)⊕(0,2)(x)− qχ( 3

2 ,
1
2 )⊕( 1

2 ,
3
2 )(x) + q2χ(1,0)⊕(0,1)(x)

)
P (q, x). (4.43)

13In order to satisfy the unitary bound in Eq. (D.17) to get the corresponding short conformal representation, the Weyl tensor should
have scaling dimension ∆ = 3. Formally, the Weyl tensor can therefore not be identified with the conformal representation as it has
mass dimension 2. However, the aim is to enumerate operators and we can therefore assign a conformal scaling dimension of ∆ = 3,
but when we expand the Hilbert series around the mass dimension of the operators, we can choose a grading scheme in which the Weyl
tensor has mass dimension 2.
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5 Hilbert Series in Practice

In the previous section we discussed how the HS can be computed by integrating over the generating function for
the characters of the symmetric and anti-symmetric tensor products. In this section we will break this infinite
series down and extract the information from the HS that will be useful in practice. We start in Sec. 5.1 with the
application of the HS to the SMEFT, i.e. we show how the enumeration of operators can be extracted from the HS
at a given mass dimension. In Sec. 5.2 we explain that it is straightforward to implement the HS in a computer
code that is able to work with algebraic expressions. We then arrive at one of the main results of this thesis: Eco
(Efficient Counting of Operators), which is our implementation of the HS in Form. We will discuss the structure
of the algorithm, plus some of the methods that are key to turning it into an efficient implementation in Sec. 5.3.
In Sec. 5.4 we provide instructions on how the code can be used, and how it can be applied to different EFTs. The
possibility to add local and/or global U(1) symmetries is discussed in Sec. 5.4.1. In Sec. 5.5 we illustrate the use of
our program by applying it to SMEFT, SMEFT for a Higgs-doublet model, and GRSMEFT, reproducing known
results and obtaining new ones at higher dimensions. Most of the methods and results covered in this section closely
follow the content of Ref. [20].

5.1 Hilbert Series for SMEFT

In order to apply the HS technique to the SMEFT, we recall Eq. (4.26), the integral form of the HS derived in
the previous section. The field content of the SM was summarized in Table 2. Because the SM describes both the
fundamental particles and their anti-particles, we need to add the anti-particles as independent building blocks to
the HS. Therefore, the HS becomes a function of the following variables (for one fermion generation):

HSM (D, {φa}) = H(D, ϕ, ϕ†, B,W,G, l, l†, e, e†, q, q†, u, u†, d, d†). (5.1)

For a field φa, we can write the character that enters the argument of the plethystic exponentials as

χa(D, x1, x2, x, y, z1, z2) = χ̃[∆a,`a](D, x1, x2)χU(1)
a (x)χSU(2)

a (y)χSU(3)
a (z1, z2), (5.2)

where we use the SU(2) variables x1, x2 to parametrize the Lorentz group, x for U(1), y for SU(2), and z1, z2 for
SU(3). The different characters for the conformal representations and the representations of the gauge groups are
given in Tables 5 and 18 respectively. For example the character of q† is given by

χq† = χ̃[ 3
2 ,(0,

1
2 )](D, x1, x2)χ

U(1)

− 1
6

(x)χ
SU(2)
2 (y)χ

SU(3)

3̄
(z1, z2)

= D 3
2

(
x2 +

1

x2
−D

(
x1 +

1

x1

))
P (D, x1, x2) x−

1
6

(
y +

1

y

)(
z2 +

z1

z2
+

1

z1

)
, (5.3)

and the plethystic exponential becomes

PEF
[ q†
D 3

2

χq†
]

= exp
[
−
∞∑
n=1

1

n

(−q†)n

D 3
2n

χ̃[ 3
2 ,(0,

1
2 )](Dn, xn1 , xn2 )χ

U(1)

− 1
6

(xn)χ
SU(2)
2 (yn)χ

SU(3)

3̄
(zn1 , z

n
2 )
]
. (5.4)

The integral measure appearing in the HS (Eq. (4.26)) becomes∫
dµL

∫
dµgauge =

∫
dµL

∫
dµU(1)

∫
dµSU(2)

∫
dµSU(3) , (5.5)

where the Haar measures of the Lorentz and gauge groups are given in Table 18.

To obtain the counting of the SMEFT operators at a given mass dimension n, we rescale the fields and the derivative
according to their mass dimension:

D → εD
φa → εδaφa, (5.6)

with δa the mass dimension of field φa. Note that the mass dimension δa of the fields is the same as the scaling
dimension ∆a appearing in the conformal representations, except for gravity, which we will discuss in a moment.
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Representation Character Form procedure

[1, (0, 0)] D
(
1−D2

)
P (D, x1, x2) addScalar()

[ 3
2 , (

1
2 , 0)] D 3

2

(
χ( 1

2 ,0)(x1, x2)−Dχ(0, 12 )(x1, x2)
)
P (D, x1, x2) addLHFermion()

[ 3
2 , (0,

1
2 )] D 3

2

(
χ(0, 12 )(x1, x2)−Dχ( 1

2 ,0)(x1, x2)
)
P (D, x1, x2) addRHFermion()

[ 3
2 , (

1
2 , 0)⊕ (0, 1

2 )] D 3
2

(
χ( 1

2 ,0)⊕(0, 12 )(x1, x2)−Dχ( 1
2 ,0)⊕(0, 12 )(x1, x2)

)
P (D, x1, x2) addDiracFermion()

[2, (1, 0)⊕ (0, 1)] D2
(
χ(1,0)⊕(0,1)(x1, x2)− 2Dχ( 1

2 ,
1
2 )(x1, x2) + 2D2

)
P (D, x1, x2) addFieldStrength()

[3, (2, 0)⊕ (0, 2)]
D3
(
χ(2,0)⊕(0,2)(x1, x2)−Dχ( 3

2 ,
1
2 )⊕( 1

2 ,
3
2 )(x1, x2)

+D2χ(1,0)⊕(0,1)(x1, x2)
)
P (D, x1, x2)

addGravity()

Table 5: Some conformal representation and their characters. For the explicit form of the Lorentz characters
χ`(x1, x2) see Table 18. The momentum generating function P (D, x) is given in Eq. (4.16). In the last column the
corresponding name of the Form procedure is given.

With this rescaling, we can expand the plethystic exponentials around ε and retain the coefficient in front of εn.
For example, for mass dimension 5 we get

HSM

∣∣∣
O(ε5)

=
1

(2πi)6

∮
dx1

x1
(1− x2

1)

∮
dx2

x2
(1− x2

2)

∮
dx

x

∮
dy

y
(1− y2)

∮
dz2

z2

∮
dz2

z2
(1− z1z2)

(
1− z2

1

z2

)(
1− z2

2

z1

)
ε5
[
ϕ2l2

(1 + y2 + y4)(x2
1 + y4x2

1 + y2(1 + x2
1)2)

y2x2
1

+ (ϕ†)2(l†)2 (1 + y2 + y4)(x2
2 + y4x2

2 + y2(1 + x2
2)2)

y2x2
2

+ ...

]
= ϕ2l2 + (ϕ†)2(l†)2, (5.7)

where the +... denote terms that do not contribute to the HS at mass dimension 5, i.e. these terms become zero
after the integrals are performed. Furthermore, we have set ε = 1 in the last line. Although the expansion of the
plethystic exponentials is a bit cumbersome due to the large amount of terms, performing the integrals is relatively
easy because it boils down to picking the residues at 0 in all variables x1, x2, x, y, z1, z2. We know that the only
dimension 5 operator of the SMEFT is given by [13]

εjkεmnϕ
jϕm(lkp)TClnr . (5.8)

However, the HS in Eq. (5.7), tells us now that there are two operators, one of the form ϕ2l2 and the other the
form (ϕ†)2(l†)2. It is clear that we can relate the former to the dimension 5 operator of Eq. (5.8). The second
operator is implicit there, as it corresponds to the Hermitian conjugate that is also added to the dimension 5
SMEFT Lagrangian. Therefore, the HS counts all operators including the Hermitian conjugates, which is not a
strange result, as we have started with the conjugate particles as separate building blocks for the HS. The results
for the HS at mass dimension 6 are given in the third column of Tables 3 and 414. We find 84 operators instead of
the more familiar 59, but this is due to the fact that we enumerated the baryon violating, and hermitian conjugate
operators, as well.

5.1.1 GRSMEFT

In Sec. 4.5 we explained how we can describe general relativity using an EFT. The relevant degree of freedom in
the EFT is the Weyl tensor, and assuming that it transforms trivially under the SM gauge group we can extend the
SMEFT to include gravity, called GRSMEFT. It is important to mention here that the conformal scaling dimension
of the Weyl tensor is ∆ = 3. However, the Weyl tensor has mass dimension δ = 2 and we should therefore be careful
when we rescale the fields according to their mass dimension.

14This column is called H+ for now, a notation that will become clear in Sec. 6
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5.2 Implementation

From the discussion in Sec. 5.1, we see that enumerating the operators in a minimal basis at a desired mass dimension
is straightforward by using the HS. It amounts to inserting the explicit form of the characters for all the different
fields, expanding the plethystic exponentials to that mass dimension, and integrating over the Lorentz group and
the gauge groups. In principle, integrating can be a hard problem, but from the form of the characters and the Haar
measure in Table 18 we see that this amounts to the simple task of taking residues. Therefore, it is straightforward
to implement the HS into computer code, as taking residues can be easily done with a programming language that
is able to handle algebraic expression. However, if this is implemented without any refinement, it results in an
inefficient algorithm that generates a huge number of terms, many of which will be zero in the end. Henning et al.
[23] were the first to give an implementation for SMEFT, and their Mathematica code takes around 7 minutes to
count the minimal basis of mass dimension 6. Going to dimension 8 already takes more than two hours, and the
runtime quickly diverges. Their code can be optimized such that dimension 15 can be done in about two hours,
but after that the limits of Mathematica are quickly reached, i.e. pushing the implementation to order 16 or 17 (or
looking at extensions of the SMEFT) will produce intermediate expressions that become too large for Mathematica
to process efficiently, and it even crashes.

Therefore, we should turn to programming languages better suited for calculations of this type. One of these
languages is Form [24, 25], which is aimed at performing large symbolic calculations in theoretical physics very
efficiently. We have implemented the HS into Form, and the code, called ECO (Efficient Counting of Operators),
can be found in Ref. [20]. In the next section, we discuss the algorithm and the Form features that will be useful
for implementing an efficient algorithm.

5.3 Structure of the algorithm

The trick to getting an efficient implementation is keeping the number of terms in the expansion as small as possible,
and figuring out terms that will be zero before carrying out the whole expansion. To illustrate how to keep the
number of terms small, we discuss the example of the Hilbert series for multiple left-handed fermions ψi (∆ = 3

2 and
` = ( 1

2 , 0)), all charged differently under some gauge group G. Denote by χi(g) the character of the representation
of ψi under G, then the HS becomes

H(εD, {ε 3
2ψi}) = 1 +

∫
dµG

∫
dµL

1

P (D, x)

(∏
i

PEF
[ ε 3

2ψi

(εD)
3
2

χ̃[ 3
2 ,(

1
2 ,0)](εD, x)χi(g)

]
− 1
)

= 1 +

∫
dµG

∫
dµL

1

P (D, x)

(
exp

[
−
∞∑
n=1

1

n

(−1)n

D 3
2n

χ̃[ 3
2 ,(

1
2 ,0)]((εD)n, xn)

∑
i

ψni χi(g
n)
]
− 1
)
, (5.9)

where we rescaled the labels in terms of the mass dimension according to Eq. (5.6). Because the only dependence
on the mass dimension in the argument of the plethystic exponential is in χ 3

2 ,(
1
2 ,0)(εD, x), we see that

∑
i ψ

n
i χi(g

n)
can be treated as one element during the expansion in mass dimension, and the only important feature that we
have to keep track of is the power n.

To efficiently expand the plethystic exponential, which involves many terms, we make great use of the Brackets+

and id, once features of Form. With the Brackets+ statement we can order the expression with all terms of
equal mass dimension in a single bracket. The id, once statement tries to match terms one by one with another
expression, giving Form the possibility to sort the whole expression after each insertion i.e. combining same terms.
The interested reader can have a look at the comments in the code to see how we used these Form statements
for an efficient expansion. Furthermore, we can postpone inserting the explicit form of χ( 1

2 ,0) and χ(0, 12 ) until

after the expansion in mass dimension (once again, we only have to keep track of the power of the variables of
these characters), when we integrate over the Lorentz group, thus reducing the number of terms in intermediate
expressions.

From the character, which is the product of the Lorentz characters with the character of the gauge group (see
Eq. (5.2)), we note that after the expansion we can first perform the integral over the Lorentz group and still treat∑
i ψ

n
i χi(g

n) just as one term. The integral over the Lorentz group will set many terms equal to zero, so it is
not until we perform the integral over the gauge group, that we have to expand the sum

∑
i ψ

n
i χi(g

n). Of course,
when the gauge group is the product of other groups, the character is a product of characters meaning we can
use this trick again; only inserting explicit expressions for these characters when we perform the integral over the
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Procedure Description

add‘Field’(‘symbol’,‘SU3’,‘SU2’,‘Q’) Adds the field with its symbol (symbol needs to be declared first
in Form) to the Hilbert series. For an efficient algorithm to
only count the operators replace symbol by 1, that is use #call

add‘Field’(1,‘SU3’,‘SU2’,‘Q’). See Table 5 for an overview
of the different fields that can be used.

HilbertSeries(‘symbol’) Computes the HS at mass dimension massDim with symbol the
symbol for the derivative (symbol needs to be declared first in
Form). Needs to be called after all particles are added with
add‘Field’

counting Counts the number of operators in the output of HilbertSeries.
Needs to be called after HilbertSeries.

Table 6: Overview of all procedures

corresponding group. Inserting the characters of the gauge groups can again be done efficiently by making use of
id, once.

Therefore, the algorithm has to perform one expansion for the plethystic exponential of a scalar field, fermion,
field strength or gravity tensor, and for every field type a commuting function15 is used that can be replaced later
by the field content (i.e. the symbol to count the occurrence of a field and its character under the gauge group).
Furthermore, to account for IBP relations, we have to expand the prefactor 1

P (D,x) . From Eq. (4.16), we see that

this is a plethystic exponential itself,
1

P (D, x)
= PE[−Dχ( 1

2 ,
1
2 )(x)], (5.10)

and in order to expand this we can follow the recipe of subsequent substitutions, as described above.
For the Standard Model gauge group SU(3)× SU(2)× U(1), our implementation takes on the following form:

• Read in which fields are present, and store their representation under the symmetry groups.

• Expand just one plethystic exponential for every type of field (scalar, fermion, field strength or gravity), and
multiply these to get the Hilbert series.

• Insert expressions for Lorentz characters, and perform the integral over the Lorentz group (from residues).

• Insert expressions for the gauge group characters and perform the integral, one at a time. First for SU(2),
then U(1), and finally SU(3).

Another trick we employ is to express characters in terms of other characters. For example, 2 ⊗ 2 = 3 ⊕ 1, so
χ3 = χ2

2 − 1. This results in a faster algorithm as we can now use the power of Form to combine terms, and
only need to substitute fewer characters. For SU(2), and similarly the Lorentz group, we therefore only require the
character for spin 1

2 .

5.4 How to use ECO

The user can specify the input in the file main.frm, and execute Eco by calling form main or tform -wn main,
where n denotes the number of cores. The structure of this file is as follows: the first part contains settings, such
as the desired mass dimension, after which the different fields of the model are specified. The final part of the file
performs the calculation described above, giving the Hilbert Series as the output. A summary of all procedures and
their action can be found in Table 6. All the declarations the program needs and the procedures that can be used
to add fields are in the files declare.h, addField.h, and HilbertSeries.h, respectively. These files are included
as header files in the main file.

We start by discussing the settings, of which the most important one is the desired mass dimension, which is
specified using the variable massDim. One can choose whether or not EOM and IBP relations should be used to

15If all objects in a power are commuting, Form makes use of binomial expansions, making the expansion a lot faster.
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reduce the basis by setting EOM and IBP to 1 or 0, respectively. As an additional feature (useful e.g. in SMEFT),
the number of Fermion generations can be defined with numFermGen (by default this is 1). For example, if we want
to generate a basis at mass dimension 6, subtract both EOM and IBP relations and with one fermion generation,
the Settings section in the main file includes

#define massDim "6"

#define EOM "1"

#define IBP "1"

#define numFermGen "1"
...

Next we specify the fields by calling the procedure

#call add‘Field’(‘symbol’,‘SU3’,‘SU2’,‘Q’)

for every field separately. Here ‘Field’ refers to the transformation under the Lorentz group, e.g. scalars or left-
handed fermions, and a complete list of all supported particles is given in Table 5. The argument Symbol of this
procedure encodes the symbol used to denote the field, which needs to be declared before calling the procedure.16

The next three parameters are the representations under SU(3)× SU(2)× U(1). For SU(3) and SU(2) the input
of the representation is equal to the dimension of the representation. For the representation under SU(3) the
possibilities are the singlet (1), 3 (3), 3̄ (3B) and 8 (8) representations, and for SU(2) one can choose between the
singlet (1), doublet (2) and triplet (3) representations. The charge under U(1) needs to be an integer Q, which we
achieve by rescaling the fractional SM charges with a factor of 6 (similarly we rescaled the mass dimensions in our
internal code such that they are integers). Charges for additional U(1) symmetries can be added at the end of the
string (not shown), as discussed in Sec. 5.4.1.

An example in which the Higgs field and the left-handed quark doublet of the SM are added looks as follows

...

Symbol h,hd,q,qd;

#call addScalar(h,1,2,3)

#call addScalar(hd,1,2,-3)

#call addLHFermion(q,3,2,1)

#call addRHFermion(qd,3B,2,-1)
...

Note that the conjugate particles need to be added as independent building blocks.

When all fields are declared, the HS is computed by calling the HilbertSeries procedure, which takes the symbol
used for momentum as its argument. To count operators one can set this argument to 1, and when set to 0
only operators without derivatives are produced. This procedure carries out the calculation discussed before and
therefore takes up the bulk of the run time. The output of this procedure is a Local expression Hilbert that
gives the basis as a polynomial of the symbols of the fields declared above and the user-specified symbol for the
derivative. For the above example this yields

...

Symbol p;

#call HilbertSeries(p)

Print;

.sort

Hilbert = 2*h^2*hd^2*p^2 + 2*q^2*qd^2 + 2*h*hd*q*qd*p + h^3*hd^3;

#call counting

16All protected symbols can be found in the declare.h file, the most important of which are x,y,y1,y2,z1,z2.
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Number of operators at mass dimension 6 is 7.

.end

0.03 sec out of 0.03 sec

where we also display the result of the Form program in blue. The number of operators can be counted and
printed by calling the counting procedure. This procedure only prints the total number of operators that are in
the expression Hilbert, without overwriting it. The output of Eco tells us that there should be two operators of
the form h2(h†)2p2, and we relate this to the operators that we explicitly constructed in Sec. 3, i.e. (ϕ†ϕ)�(ϕ†ϕ)
and (ϕ†Dµϕ)∗(ϕ†Dµϕ). Likewise

2*q^2*qd^2↔

{
(q̄pγµqr)(q̄sγ

µqt)

(q̄pγµτ
Iqr)(q̄sγ

µτ Iqt)
2*h*hd*q*qd*p↔

{
(ϕ†i

↔
Dµ ϕ)(q̄pγ

µqr)

(ϕ†i
↔
D I
µ ϕ)(q̄pτ

Iγµqr)
h^3*hd^3↔ (ϕ†ϕ)3 (5.11)

5.4.1 Additional U(1) symmetries and generations

In addition to the gauge groups of the SM, we have included the possibility to add one (or more) U(1) symmetry
group(s). Such a U(1) can be either an extra gauge symmetry, e.g. for a Z ′ model, or a global symmetry such as
baryon number. From the point of view of enumerating operators, the only difference between a gauge and global
symmetry is that in the former case one needs to include the corresponding field strength in the list of particles. The
charges under these additional U(1) symmetries can be added as extra arguments when listing particles. E.g. for
baryon number,

...

#call addLHFermion(q,3,2,1,1)

#call addRHFermion(qd,3B,2,-1,-1)
...

If for a field no charge corresponding to an additional U(1) is provided, we assume that it has charge 0. We remind
the reader that these charges must be integers, which is why we multiplied baryon number by a factor of 3.

To get general dependence on the number of fermion generations, we can declare a symbol for this (at the beginning
of the main file)

Symbol Nf;

#define numFermGen "Nf"
...

#call HilbertSeries(p)

Print;

.sort

Hilbert = 2*h^2*hd^2*p^2 + h^3*hd^3 + Nf^2*q^2*qd^2 + 2*Nf^2*h*hd*Q*Qd*p + Nf^4*q^2*qd^2;

To organize this expression in powers of Nf one can use the Brackets command. Details on its use and other tips
can be found in the Eco package.

5.5 Results

With Eco it is now straightforward to reproduce known results for (extensions of) the SMEFT. The results for
SMEFT up to mass dimension 15 were already given in [23] and with the Form code we extended this up to
dimension 20 in a reasonably short amount of time, see Table 7. In Fig. 2 the number of operators is shown for one
and three fermion generations. Although there is some offset in the growth of the odd and even mass dimensions,
it is clear that the number of operators follows exponential growth at least to this order.

As an illustration of including an additional U(1) symmetry, we counted how many of the operators in the SMEFT
conserve baryon minus lepton number (B−L). The results are denoted in parentheses after the number of SMEFT
operators in Table 7. None of the operators of odd dimension do, while all of the operators of even dimension
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do up to and including dimension 8 (10) for three (one) generations of fermions. An example of an operator of
dimension 10 that violates B − L for two or more generations is h4l21l

2
2. This operator must vanish for l1 = l2 due

to the antisymmetry of fermion fields. We reproduced the results of Ref. [22] for the GRSMEFT at dimension 8
and extended it also to dimension 20, see Table 7. We did not plot the growth for these numbers as the differences
are not visible compared to the results for the SMEFT shown in Fig. 2.

We have accomplished an enormous speed up with the Form code. For example, computing the HS for the
dimension 15 operators in the SMEFT can be obtained in a minute on a single CPU core (in a laptop with a 2.6
GHz Intel Core i7 processor). Even the enumeration for dimension 20 can be done within one hour. Calculating
the HS for the GRSMEFT is about a factor two slower than for the SMEFT, while obtaining the B−L conserving
operators is about 10% faster.

The Hilbert series approach was also applied to the Two Higgs Doublet Model (2HDM) in Ref. [26]. In this extension
of the SM, an identical second Higgs doublet is added. We reproduced the 228 operators found in [26] at mass
dimension 6. As most of the operators in the SM have a coupling to the Higgs field, it is not surprising that we find
a sizeable number of additional operators for the 2HDM. This has of course implications for the run time of the
program. At mass dimension 15 we find a number of 22020182 (16181746764) operators with one (three) fermion
generation(s) respectively. Producing the full operator basis results in a run time which is a factor 2 slower compared
to the SMEFT. When counting the total number of operators only, more terms can of course be combined, giving
a run time which is just a few percent slower.

Because we allow for flexible user input in Eco and due to its speed, new problems and questions can be encountered,
e.g. running Eco with some fields of the SMEFT turned off gives the possibility to see which fields and gauge group
representations drive the exponential growth we observed in Fig. 2. Furthermore, new fields are easily added to the
SMEFT and can therefore be valuable in the building of new models. And Eco can even help in constructing the
contraction of the indices explicitly for the operators, despite the fact that the HS do not encode any information
about this. As an example of this, we can run Eco for the quark doublet (and its conjugate) for dimension 6, but
do not charge the fields under SU(3) and SU(2) yet, i.e. we first run Eco with

...

#call addLHFermion(q,1,1,1)

#call addRHFermion(qd,1,1,-1)

#call HilbertSeries(p)

Print;

.sort

Hilbert = q^2*qd^2;

We find just one operator, which we expect to be explicitly written as (q̄γµq)(q̄γ
µq). But what happens when we

change the SU(2) representation to the actual doublet? In that case we also get just one independent operator
because

#call addLHFermion(q,1,2,1)

#call addRHFermion(qd,1,2,-1)
...

Hilbert = q^2*qd^2;

Although we would expect an operator of the form (q̄pγµτ
Iqr)(q̄sγ

µτ Iqt), we can relate this to (q̄γµq)(q̄γ
µq)17 by

using the Fierz relation of SU(2), i.e. Eq. (3.11). Finally, we also turn on the correct SU(3) representation, which
gives

#call addLHFermion(q,3,2,1)

#call addRHFermion(qd,3B,2,-1)
...

Hilbert = 2q^2*qd^2;

17Note that now there are also SU(2) indices contracted which we did not write down explicitly.
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SMEFT GRSMEFT
Dim. One generation Three generations One generation Three generations

5 2 (0) 12 (0) 2 12
6 84 (84) 3045 (3045) 94 3055
7 30 (0) 1542 (0) 30 1542
8 993 (993) 44807 (44807) 1096 45816
9 560 (0) 90456 (0) 580 91284
10 15456 (15456) 2092441 (2091965) 17797 2160964
11 11962 (0) 3472266 (0) 12936 3567228
12 261485 (261421) 75577476 (75497816) 314650 79514441
13 257378 (0) 175373592 (0) 291702 182542620
14 4614554 (4612082) 2795173575 (2788483269) 5812440 2995340275
15 5474170 (0) 7557369962 (0) 6518462 8023911776
16 83106786 (83018832) 104832630678 (104309538256) 109518595 114544709924
17 114382724 (0) 320370940524 (0) 143038374 346787656718
18 1509048322 (1506287470) 3877200543051 (3844527891431) 2077921838 4318404186688
19 2343463290 (0) 13044941495798 (0) 3073825028 14409316160246
20 27410087742(27331077766) 141535779949640(139703579253606) 3939163204 160724199619554

Table 7: Number of operators in the SMEFT and GRSMEFT of a given dimension with 1 or 3 generations. For
the SMEFT, we also counted the operators that conserve baryon minus lepton number, and the results are given
in parentheses.

The reason that we now find an extra operator is because we cannot use the Fierz identity for SU(2), as we must also
contract the SU(3) colour indices, so (q̄γµq)(q̄γ

µq) and(q̄pγµτ
Iqr)(q̄sγ

µτ Iqt) are independent operators. However,
the HS tells us that operators of the form (q̄γµT

Aq)(q̄γµT
Aq) and (q̄γµT

Aτ Iq)(q̄γµT
Aτ Iq) are not independent

and we expect that we can relate them by using the SU(3) Fierz identity (see Eq. (3.31)), which was what we did
explicitly in Sec. 3.3.
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Figure 2: Growth of the number of operators in the SMEFT up to mass dimension 20. Note the logarithmic scale
on the vertical axis. The points joined by the lower line are for one fermion generation and the upper line denotes
the number of operators for three generations.
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6 Discrete Symmetries

In this section we will discuss two discrete symmetries that are particularly relevant for the SM, viz. charge
conjugation and parity. In order to include parity and charge conjugation in the Hilbert series, we need to have an
idea at which level these symmetries act. If we look back at the previous sections we see that we demanded that the
EFT is invariant under SO(3, 1)o, the proper orthochronous Lorentz subgroup. As this is the part of the Lorentz
group that is connected to the identity, the representations can be directly identified from the representations of
the Lie algebra so(3, 1) (see App. C). However, in order to include parity as a proper symmetry of the SMEFT,
we need to extend our symmetry group to the component O(3, 1)o of the Lorentz group that includes the parity
operator which also means that the fields should transform under representations of O(3, 1)o. We can segment the
‘new’ symmetry group into two components

O(3, 1)o = {O+, O−}, with O+ ≡ SO(3, 1)o, and O− ≡ O(3, 1)o \ SO(3, 1)o = SO(3, 1)oP, (6.1)

where in the last equality we used that we can write every element g− ∈ O− as g− = g+P for some g+ ∈ SO(3, 1)o.
One of the key features in the computation of the Hilbert series was that we could enumerate operators by using the
characters of those representations. Because we would like that the representations of O(3, 1)o reduce to the ‘old’
representations on SO(3, 1)o, we demand that the new characters χ(g) coincide with the characters of the SO(3, 1)o
representations if g = g+. This means that the task we are facing is building the representations for O(3, 1)o by
extending the representations of SO(3, 1)o and computing the characters for elements g−.

In this section we show that this problem can be solved at the level of representation theory by understanding
the concept of outer automorphisms of Lie groups and Lie algebras. Furthermore, the general methods that we
will come across can also be applied to treat charge conjugation at the level of the Hilbert series. We start by
defining outer automorphisms for Lie groups and their algebras in Sec. 6.1. We derive that this leads to classifying
all automorphisms on the Dynkin diagrams, after which we will reverse the discussion in Sec. 6.2 and see how the
symmetries of Dynkin diagrams lead to all outer automorphisms. These outer automorphisms then yield a way to
define representations of O(3, 1)o out of the representations of SO(3, 1)o. Additionally, we will find out that we
can define a folded Lie algebra, called the orbit Lie algebra. This in turn gives an easy way to compute the so
called twining character. It will turn out that this twining character will effectively be the object that describes
the character for elements g−. We apply this approach to the example of parity in Sec. 6.3 and see how everything
comes together by computing the Hilbert series with parity as a symmetry. We then apply the same methods in
Sec. 6.4 to the representations of SU(3) in order to describe charge conjugation. Finally, we will combine everything
to set up the Hilbert series for CP-invariant operators in Sec. 6.5, and we will discuss some results in Sec. 6.5.1.

6.1 Outer automorphism

In order to define the outer automorphisms, we first need to define inner automorphisms. Note that both can be
defined for finite and continuous groups, but in this section we limit our discussion to the case of continuous Lie
groups G and their Lie algebras g, as they are most relevant for us.

Automorphism: An automorphism of G is a bijective group homomorphism a : G→ G, which means that every
automorphism is both invertible, and conserves the group multiplication law, i.e.

a(gh) = a(g)a(h), ∀g, h ∈ G. (6.2)

Likewise for the Lie algebra g, we can define an automorphism as the linear mapping a : g→ g that conserves the
structure of the Lie algebra, i.e.

a([x, y]) = [a(x), a(y)], ∀x, y ∈ g. (6.3)

We will denote the group of automorphisms of Lie groups and Lie algebras by Aut(G) and Aut(g) respectively.

Inner automorphism: For each group element g ∈ G, the adjoint map

Adg(h) = ghg−1 (6.4)

defines an automorphism of G. Similarly for the Lie algebra, the map

ax(y) = eadx(y) = exye−x, with adx : y 7→ [x, y] (6.5)
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forms an automorphism ∀x ∈ g (note that adx itself is an automorphism). Notice that ex is an element of the
component of G that is connected to the identity. All automorphisms represented like this form a subgroup of
Aut(G) (Aut(g)), called the inner automorphism group Inn(G) (Inn(g)).

Outer automorphism: Roughly, the outer automorphisms are defined as all automorphisms which are not inner.
So for Lie groups (algebras), it is not possible to represent these by the adjoint map of Eq. (6.4) (Eq. (6.5)) for
some element of G (g). More formally, we can define the outer automorphisms as follows:

Out(G) ≡ Aut(G)/ Inn(G). (6.6)

A similar definition holds for the outer automorphisms of g. Note that from this definition, it follows that outer
automorphisms are determined up to inner automorphisms.

We know that characters are unique for different irreducible representations and that they are invariant under
conjugation (they are class functions). From the definition of inner automorphisms, it follows therefore that Inn(G)
leaves the characters alone. However, the action of Out(G) can induce permutations among the conjugacy classes
and this means the outer automorphisms can switch between inequivalent representations. In other words, an outer
automorphism maps representation matrices to other representation matrices, but the latter do not necessarily
correspond to the same representation, i.e.

R(a(g)) = AR′(g)A−1, ∀g ∈ G, (6.7)

where A is some unitary matrix and R and R′ are two (possibly inequivalent) representations. In fact, Eq. (6.7)
holds for all irreducible representations R of G, if and only if a : g 7→ a(g) is an automorphism. Note that only
for inner automorphisms R = R′ is automatically implied. To prove this statement, we first assume that a is an
automorphism and we show that Eq. (6.7) holds. Therefore, define R(a(g)) ≡ Γ(g) and from

Γ(gh) = R(a(gh)) = R(a(g)a(h)) = R(a(g))R(a(h)) = Γ(g)Γ(h) (6.8)

it follows that Γ(g) is a representation itself. Therefore, we can find an equivalent represenation R′ that is related
to Γ(g) via a basis transformation. To be more precise, we can find a matrix A such that Γ(g) = AR′(g)A−1. To
show the reverse direction, we assume that Eq. (6.7) holds and show that a is an automorphism. Therefore, we
need to show that a is bijective and a homomorphism. In order to show that a is injective, we need to show that

a(g) = a(h) =⇒ g = h, ∀g, h ∈ G. (6.9)

Therefore, assume that a(g) = a(h) and apply R on both sides. Then R(a(g)) = R(a(h)) and by using our
assumption Eq. (6.7), we find

R′(g) = R′(h). (6.10)

Because Eq. (6.7) holds for all irreducible representation of G, it will hold for at least one invertible representation
R′ such that Eq. (6.10) can be inverted. Applying the inversion map to both sides shows that g = h and therefore
that a is injective. In order to show injectivity, we need to prove that

∀g ∈ G, ∃h ∈ G such that a(h) = g. (6.11)

Now require that a(h) = g and use Eq. (6.7) again for an invertible representation R′, then

h = R−1(A−1R(g)A) (6.12)

and we therefore constructed the element h explicitly. In order to show the homomorphism property, we compute

R(a(gh)) = AR′(gh)A−1 = AR′(g)A−1AR′(h)A−1 = R(a(g))R(a(h)). (6.13)

Taking for R an invertible representation we can invert Eq. (6.13), which completes our proof that a is a bijective
group homomorphism G→ G.

The above theorem can now be used to find an explicit matrix representation A of an outer automorphism a
by solving Eq. (6.7), and we will see in the next subsection that we can do this by looking at induced outer
automorphisms on the Lie algebra. Eq. (6.7) has a straightforward translation to the Lie algebra g:

R(a(x)) = AR′(x)A−1, ∀x ∈ g, (6.14)
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where R and R′ are two, not necessarily equivalent, representations of g, and A some unitary matrix. Because
the adjoint representation is unique in its dimension we note that all possible automorphism for Lie groups can
be classified by looking at the non-trivial linear mappings of the adjoint representation to itself. The adjoint
representations plays an important role in representation theory because the weights of this representation are the
roots of the Lie algebra. Therefore, all possible automorphisms of a Lie algebra can be classified from the symmetries
of its root system. Furthermore, as the Weyl symmetries of the root system leave conjugacy classes invariant, we
see that these symmetries correspond with the inner automorphisms. The outer automorphism are captured by
non-trivial symmetries of the Dynkin diagram, as these corresponds to the ordering of simple roots. The formal
construction of the outer automorphisms therefore becomes:

Out(g) = Aut(g)/ Inn(g) = Aut(ρ)/W = SDyn, (6.15)

with ρ the root system, W the Weyl group and SDyn the symmetries of the Dynkin diagram. Therefore, the task
of finding all outer automorphisms is reduced to finding all symmetries of the Dynkin diagrams, or equivalently of
the symmetries of the Cartan matrix. This will be the topic of the next subsection.

6.2 Dynkin Diagrams and Induced Outer Automorphisms

In this subsection we follow the content of Ref. [27]. Every simple or semi-simple Lie algebra g can be obtained
from Dynkin diagrams. These diagrams are in a one-to-one correspondence with the Cartan matrix, which is an
n× n-matrix A = (aij)i,j∈I , with I = {1, 2, ..., n}. This matrix has the following properties:

(i) aij ≤ 0 if i 6= j, (ii)
2aij
aii
∈ Z, (iii) if aij = 0, then aji = 0. (6.16)

We can construct the Lie algebra from the Cartan matrix by choosing an Abelian Lie algebra h, consisting of n

elements Hi, i ∈ I and n roots α(j) such that α
(j)
i = aij . The Lie algebra g is then generated by Hi and E±i , i ∈ I,

obeying the relations

[E+
i , E

−
j ] = δijHj , [Hi, E

+
j ] = α

(j)
i E+

j , [Hi, E
−
j ] = −α(j)

i E−j , (6.17)

where Hi are known as the Cartan operators and E± as the raising and lowering operators. A symmetry of the
Dynkin diagram is now determined by an automorphism ω̃ : I → I that leaves the Cartan matrix invariant, i.e.

aω̃(i),ω̃(j) = aij . (6.18)

This automorphism ω̃ can be used to define a folding of the Dynking diagram, but before we do this, we have a
look at how this induces an (outer) automorphism ω : g→ g on the Lie algebra. The action of ω on the Lie algebra
is defined by its action on the generators Hi and E±i as

ω(E+
i ) = E+

ω̃(i), ω(E−i ) = E−ω̃(i), ω(Hi) = Hω̃(i). (6.19)

For a representation (R, V ) of the Lie algebra, where V is the vector space on which R acts, this means that

(R(ω), V ), with R(ω)(x) ≡ R(ω(x))), x ∈ g, (6.20)

is also a representation. We know that for (semi-)simple Lie algebras, we can classify (R, V ) and (R(ω), V ) in terms
of some highest weight λ and λ(ω) respectively. We therefore write (R, Vλ) and (R(ω), Vλ(ω)) from now on. In the
case that λ = λ(ω), we call λ a symmetric highest weight. This gives rise to a map τω : Vλ → Vλ(ω) of the highest
weight vector spaces, which intertwines the action of g

τω(R(x) · v) = R(ω)(x)·τω(v), ∀v ∈ Vλ, (6.21)

and we call τω the intertwining map. This means that τω maps the highest weight vector vλ of Vλ to the highest
weight vector vλ(ω) of Vλ(ω) . As Eq. (6.21) holds ∀v ∈ Vλ, we can strip off v to get

τωR(x) = R(ω)(x)·τω (6.22)

Notice that we can relate τω and R(ω) to A and R′ in Eq. (6.14), respectively. Now let N be the order of ω̃, that is
the smallest integer such that ω̃N = 1. Then N is also the order of ω, i.e. ωNx = 1 and we can apply Eq. (6.22)
N times:

R(x) = R(ωN (x)) ≡ R(ωN ) = τωR
(ωN−1)(x)τ−1

ω = (τω)2R(ωN−2)(x)(τω)−2 = ... = (τω)NR(x)(τω)−N , (6.23)

which we can solve for (τω)N = ±1, meaning that we have some freedom in choosing the phase of τω.
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6.2.1 Orbit Lie algebra

We can use ω̃ to construct a folded Dynkin diagram, whose induced Lie algebra is called the orbit Lie algebra.
However, with the notation of above it is easier to define the folding for the Cartan matrix18. In order to construct
this folding, recall that N is the order of ω̃, then denote by

Ni =
∣∣{i, ω̃i, ω̃2i, ..., ω̃N−1i}

∣∣ (6.24)

the length of the ω̃-orbits. The folded Cartan matrix becomes now a matrix Ã with index set Ĩ. It is convenient to
choose the latter to contain the smallest representatives of the orbits:

Ĩ = {i ∈ I|i ≤ ω̃ni, for 1 ≤ n < N} (6.25)

For each i ∈ I we define the integer

si = 1−
Ni−1∑
l=1

aω̃l(i),i. (6.26)

With this, the Cartan matrix Ã = (ãij)i,j∈Ĩ of the orbit Lie algebra g̃ is defined by

ãij = si
Ni
N

Ni−1∑
l=0

aω̃l(i),j (6.27)

One can show that this folded Cartan matrix satisfies all properties of Eq. (6.16), so it is a Cartan matrix itself (for
a proof, see Ref. [27]). Therefore, the folded Cartan matrix induces a new Lie algebra, which we call the orbit Lie
algebra g̃19.

The map τω can be used to define the twining character on the Cartan subalgebra:

χ
(ω)
λ (h) = trVλ

[
τωe

iRλ(h)
]
, h ∈ h. (6.28)

It is clear that for the trivial automorphism ω = 1, the character reduces to the ordinary character of (R, Vλ). An
important result is that

The twining character of Eq. (6.28) is in a one to one correspondence with the character of the orbit Lie algebra.

For a proof of this statement, we refer the reader to Ref. [27].

This is a good point to pause for a moment, and summarize what we have done so far. We mentioned at the beginning
of this section that we want to extend the representations of the fields such that parity and charge conjugation
become honest symmetries of the EFT. We discussed how outer automorphism can induce permutations among
representations and in particular the map τω can intertwine the action of the representations. Assuming that the
order of ω is N = 2 and R is an irreducible representation20, we can then extend R to an irreducible representation
containing τω. We have to distinquish between two cases: in the case that λ is a symmetric highest weight, R
extended with τω is irreducible. In the case that λ is not symmetric, R⊕R(ω) becomes an irreducible representation
as τω intertwines the action between R and R(ω). We can also extend the characters of these representations to
elements of the form τωR(g) by using Eq. (6.28).

Until now, the discussion has been rather abstract, but we will show in the next sections explicitly that τω can
describe the matrix representation of parity and charge conjugation. In particular, we can make use of Eq. (6.28)
to compute the characters.

18In the end, the folded Dynkin diagram and the folded Cartan matrix are in a one-to-one correspondence.
19It is important to note that g̃ is not a subalgebra of g.
20Generalization to arbitrary N and reducible representations is straightforward.
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6.3 Parity

In App. C we show that the Lorentz group has two positive orthogonal roots (1, 0) and (0, 1). The root system,
Cartan matrix, and Dynkin diagram therefore take the following form:

(1,0)

(0,1)

J3
L →

J3
R

↑

, A =

(
2 0
0 2

)
, A1 ∪A1 = (6.29)

With this, it is not hard to see that the (non-trivial) automorphism of the Cartan matrix is given by ω̃ : 1↔ 2. We
can construct the induced outer automorphism ω : so(3, 1) → so(3, 1), by constructing the explicit action on the
generators of the Lorentz algebra, i.e. H1 = J3

L, H2 = J3
R, E±1 = J±L and E±2 = J±R . We get for example:

ω(JL3 ) = ω(H1) = Hω̃(1) = H2 = JR3 , (6.30)

and a similar derivation for the other generators yields

ω(JR3 ) = JL3 , ω(JL±) = JR± , and ω(JR± ) = JL±. (6.31)

We see in particular that the induced outer automorphism ω interchanges the left and right generators, and we
conclude that ω indeed is in a one-to-one correspondence with the (more) familiar parity transformation.

In order to see how ω can induce other representations, we look at an arbitrary eigenstate |`1, `2〉 of some represen-
tation R, i.e.

R(J3
L)|`1, `2〉 = `1|`1, `2〉, and R(J3

R)|`1, `2〉 = `2|`1, `2〉 (6.32)

The induced representation R(ω) then has eigenstates |`2, `1〉 because

R(ω)(J3
L)|`1, `2〉 ≡ R(ω(J3

L))|`1, `2〉 = R(J3
R)|`1, `2〉 = `2|`1, `2〉, and similarly R(ω)(J3

R)|`1, `2〉 = `1|`1, `2〉. (6.33)

Therefore, the intertwining map Eq. (6.21) should act on the eigenstates according to

τω|`1, `2〉 = |`2, `1〉. (6.34)

From this action, we see that the intertwining map τω is actually the matrix representation of parity, and to make this
analogy explicit we will write P = τω in what follows. This means that we can extend the following representations
of SO(3, 1)o to representations that transform irreducibly under the component O(3, 1)o that includes parity:

(`, `), as well as (`1, `2)⊕ (`2, `1) with `1 6= `2. (6.35)

In general, the representations of O(3, 1)o are tensor products and direct sums of these.

Before we compute the twining characters for both cases, we construct the folding of the Cartan matrix (or Dynkin

diagram). As there is just one ω̃-orbit, we see that N = Ni = 2 and we get Ĩ = {1}. So Eq. (6.26) in this case is
given by

s1 = 1− aω̃(1),1 = 1− a2,1 = 1, (6.36)

and the folded Cartan matrix becomes

Ã = s1
N1

N
(a1,1 + a2,1) = 2. (6.37)

We recognize the Cartan matrix of su(2), and with the results of the previous subsection this means that the twining
characters are in a one-to-one correspondence with the characters of SU(2).
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6.3.1 Twining characters

We now compute the twining character of Eq. (6.28) and make the analogy with the character of the orbit Lie
algebra explicit. Assume that we have a representation R that is of the form of Eq. (6.35). The twining character
then becomes

χ(ω)(h) ≡ tr
[
τωe

iθ1R(J3
L)+iθ2R(J3

R)
]

=
∑
µ

〈µ|Peiθ1R(J3
L)+iθ2R(J3

R)|µ〉, h ∈ so(3, 1), (6.38)

where h = θ1J
3
L+θ2J

3
R, and the sum runs over all weight vectors |µ〉. From the explicit action of P (see Eq. (6.34)),

we see that two weights get permuted under P. Because the weights are orthogonal, i.e. 〈µ|µ′〉 = δµµ′ , we see that
Eq. (6.38) only picks up terms in which the weights are invariant under P, i.e. P|µ〉 = |µ〉. For a representation
of the form (`, `), we can easily pick out the weights that are invariant. Denote by |`〉 the highest weight of this
representation, and because this state is invariant under parity, we have P|`〉 = |`〉. Starting from the highest
weight, we can always construct the other eigenstates by lowering with J−L and J−R

|µ〉 = (J−L )mL(J−R )mR |`〉. (6.39)

Then P|µ〉 = |µ〉 if
P(J−L )mL(J−R )mRP−1 (6.40)

is invariant. Because P interchanges left and right, and as (JL,R− ) commute, the only states |µ〉 invariant under P,
are those with m = mL = mR:

|µ〉 = (JL−J
R
− )m|l〉, (6.41)

which are the states with an equal number of left and right lowering operators. Effectively, this means that there
is just one lowering operator, from which it follows that the character obtained in this way is indeed the character
of an SU(2) representation. In order words, an (`, `) representation behaves like a spin ` representation of SU(2).
In the case that R is the direct sum (`1, `2)⊕ (`2, `1) with `1 6= `2, none of the weight states |µ〉 is invariant under
P and therefore we see that the twining characters vanishes.

We can now discuss the general case where the representation might decompose into a direct sum of multiple
irreducible representations under O(3, 1)o (see Eq. (6.35)). In general, we can write an element g− = g+P, with
g+ = exp(iθ1R(J3

L) + iθ2R(J3
R)) as

g− =



. . .

(x1x2)mi

. . .

. . . (
x
mj
1 x

nj
2 0

0 x
nj
1 x

mj
2

)
. . .





. . .

1
. . .

. . . (
0 1
1 0

)
. . .


,

(6.42)
where we defined the U(1) variables xi = eiθi . Furthermore, we went to a basis in which g+ is diagonal. Note that
the following matrix can be diagonalised (

0 a
b 0

)
7→
(√

ab 0

0 −
√
ab

)
(6.43)

where ±
√
ab are the eigenvalues the matrix. Using this fact, we find that we can diagonalise Eq. (6.42):

g− =



. . .

(x1x2)mi

. . .

. . . ( √
(x1x2)(mj+nj) 0

0 −
√

(x1x2)(mj+nj)

)
. . .


. (6.44)
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We see that the variables of SO(3, 1)o only group together in the form (x1x2)n. Using this, we can make the
translation to the variable α of the characters for the orbit SU(2) algebra, i.e.

x1x2 7→ α. (6.45)

Therefore, we find that the twining character is given by

χ(P)(g−) =

dim(R)∑
n=1

αe(n), (6.46)

where e(n) is some appropriate exponent.

This was rather abstract, so let’s work out the explicit example of the ` = ( 1
2 ,

1
2 ) representation. We get that

g− =


x1x2

x1

x2
x2

x1
1

x1x2




1
0 1
1 0

1

 7→

x1x2

1
−1

1
x1x2

 7→

α

1
−1

1
α

 , (6.47)

where in the first step we diagonalised the matrix and in the second step we translated the variables x1, x2 of the
matrix to the variables α of the orbit Lie algebra SU(2). From the explicit form of Eq. (6.47) we see immediately
that the twining character of ` = ( 1

2 ,
1
2 ) corresponds with the character of spin 1

2 :

χ
(P)

( 1
2 ,

1
2 )

(g−) = α+
1

α
. (6.48)

Diagonalising the matrix seems unnecessary, as it does not alter the trace, i.e. the character. However, we will see
in the next section that the diagonal matrix will be a good form to work with in the Hilbert series.

Before we continue, let’s recall what we have done so far and discuss how it will help us in computing the Hilbert
series. At the beginning of this section, we pointed out that in order to generate operators that are invariant under
parity, we need to extend our representations to O(3, 1)o representations. In order to do so, we showed that there is
one non-trivial outer automorphism of SO(3, 1)o which we related to the object known as parity. Furthermore, we
showed that only the SO(3, 1)o representations of the form (`, `) and (`1, `2)⊕(`2, `1) can be extended to irreducible
representations of O(3, 1)o. General representations then become direct sums and tensor products of these. We saw
that the splitting of Eq. (6.1) is indeed correct for elements g− = g+P with g+ = exp(θ1J

3
L + θ2J

3
R) and we were

able to extend the characters to these elements in Eq. (6.46). Before we can plug these characters into the HS we
need to know how if these characters still obey an orthogonality relation.

6.3.2 Character orthogonality

Because we extended the symmetry group from SO(3, 1)o to O(3, 1)o, integrals over SO(3, 1)o should now become
integrals over O(3, 1)o which we can write as∫

O(3,1)o

=

∫
SO(3,1)

+

∫
O−

. (6.49)

As the characters can be related to the characters of SU(2) on O−, we relate the integral over O− with the integral
over SU(2) as well. Therefore, when integrating over characters, we choose our measure as follows∫

dµO(3,1)o =
1

2

[ ∫
dµSO(3,1) +

∫
dµSU(2)

]
. (6.50)

In order to show that this leads to the correct character orthogonality for the irreducible representations of Eq. (6.35),
we have to distinguish between three cases. First of all, assume we have two representations (`, `) and (`′, `′), then∫

dµO(3,1)o χ(`,`) ·χ(`′,`′) =
1

2

[ ∫
dµSO(3,1) χ(`,`)(x)χ(`′,`′)(x) +

∫
dµSU(2) χ`(α)χ`′(α)

]
= δ``′ , (6.51)

where both integrals contributed a kronecker delta. In the case that we replace (`, `) by (`1, `2)⊕(`2, `1) the twining
character vanishes and therefore the integral over SU(2) does not contribute. However, the integral over SO(3, 1)o
contributes twice δ`′`1δ`′`2 because of the direct sum. As the factor of two is canceled by the factor of 1

2 in the
measure we conclude that this case gives also the character orthogonality we want. A similar argument also shows
that we get the correct character orthogonality when we replace also (`′, `′) by (`′1, `

′
2)⊕ (`′2, `

′
1).
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6.3.3 Plethystic exponential and Parity

The next thing to do is to compute the generating function of the characters of the (anti-)symmetric tensor products

of a representation ` with corresponding spin ˜̀ representation on the orbit Lie algebra

∞∑
n=0

qnχsymn(`)(g) =
1

det`(1− qg)
= exp

[ ∞∑
k=1

qk

k
tr(gn)

]
,

∞∑
n=0

qnχ∧n(`)(g) = det
`

(1 + qg) = exp

[
−
∞∑
k=1

(−q)k

k
tr(gk)

]
. (6.52)

For elements g+ this reduces to the plethystic exponential PE[qχ`(x1, x2)] (PEF[qχ`(x1, x2)]), as we show explicitly
in App. B.1. However, for elements g− = g+P this does not reduce to the plethystic exponential PE[qχ˜̀(α)]
(PE[qχ˜̀(α)]), as tr[gn] 6= χ`(g

n). To see this, we notice that from the diagonal form of Eq. (6.44) that

tr[gn−] =

{
...+ αmi·2k + ...+ 2α(mj+nj)k + ... if n = 2k,

...+ αmi(2k+1) + ... if n = 2k + 1.
(6.53)

where we made the translation to the SU(2) variable α. We see that for n = 2k the minus signs do not cancel,
which directly causes the trouble. However, we can still express tr[gn−] in terms of the character χ`(x1, x2) and the

character of the Orbit Lie algebra χ
(P)
` (α), which gives the important formula

tr[gn−] =

{
χ`(α

k, αk) if n = 2k,

χ
(P)
` (α2k+1) if n = 2k + 1.

(6.54)

With this, the symmetric tensor product yields

∞∑
n=0

qnχsymn(`)(g−) = exp

[ ∞∑
k=0

q2k+1

2k + 1
χ

(P)
` (α2k+1) +

∞∑
k=1

q2k

2k
χ`(α

k, αk)

]
,

= exp

[ ∞∑
k=1

qk

k
χ

(P)
` (αk) +

∞∑
k=1

q2k

k

1

2

(
χ`(α

k, αk)− χ(P)
` (α2k)

)]
,

≡ PE
[
qχ

(P)
` (α)

]
PE
[1

2
q2
(
χ`(α, α)− χ(P)

` (α2)
)]
. (6.55)

And likewise for the anti-symmetric tensor products we get

∞∑
n=0

qnχ∧n(`)(g−) = exp

[
−
∞∑
k=1

(−q)k

k
χ

(P)
` (αk)−

∞∑
k=1

q2k

k

1

2

(
χ`(α

k, αk)− χ(P)
` (α2k)

)]
,

≡ PEF
[
qχ

(P)
` (α)

]
PE
[
− 1

2
q2
(
χ`(α, α)− χ(P)

` (α2)
)]
. (6.56)

To see these formulas in practice, we look again at the example of Eq. (6.47), where now

tr[gn−] =

{
α2k + 2 + 1

α2k if n = 2k,

α2k+1 + 1
α2k+1 if n = 2k + 1.

(6.57)

From this, we can compute the momentum generating function P (q, g) that was so important in dealing with
derivatives for the Hilbert series. We get

P (q, g−) ≡
∞∑
n=0

qnχsymn( 1
2 ,

1
2 )(g−) = exp

[ ∞∑
k=1

qk

k

(
αk +

1

αk

)
+

∞∑
k=1

q2k

2k

(
α2k + 2 +

1

α2k
− α2k − 1

α2k

)]
,

= exp

[
− log

(
1− qα

)
− log

(
1− q

α

)
− log

(
1− q2

)]
=

1(
1− q2

)(
1− qα

)(
1− q

α

)
=

1

1− q2
P (2)(q, α), (6.58)
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where we defined

P (2)(q, α) ≡ 1(
1− qα

)(
1− q

α

) . (6.59)

To make the distinction between the form of the momentum generating function found evaluated on O+ = SO(3, 1)o,
we denote that one defined in Eq. (4.16) by P (4)(q, x).

6.3.4 Hilbert Series and Parity

Recall Sec. 4.2, where we extended the representations of SO(3, 1) to representations of the conformal group
SO(4, 2). In order to include parity, we should now extend the representations of O(3, 1)o that we found above,
to representations of O(4, 2). We get that an irreducible conformal representation with parity as a symmetry is
completely determined by (∆, `), where ` is either equal to (l, l) or (l1, l2)⊕ (l2, l1). The effective characters of these
representations then become

q∆χ`

∞∑
n=0

χsymn( 1
2 ,

1
2 )(g) =

{
q∆χ`(x1, x2)P (4)(q, x1, x2) ≡ χ∆,`(q, x1, x2) if g = g+,
q∆

1−q2χ
(P)
` (α)P (2)(q, α) ≡ χ(P)

∆,`(q, α) if g = g−.
(6.60)

Taking the measure now equal to∮
dq

2πiq

∫
dµO(3,1)o

1

|P |2
=

1

2

∮
dq

2πiq

[∫
dµSO(3,1)

1

P ∗(q, g+)P (q, g+)
+

∫
dµSU(2)

1

P ∗(q, g−)P (q, g−)

]
(6.61)

gives the correct normalization of the characters. Recalling the explicit form for P (q, g±) from Eq. (4.16) and
Eq. (6.58) the HS now becomes

H(D, φ) =
1

2
(H+(D, φ) +H−(D, φ)), (6.62)

where we defined

H+(D, φ) ≡ 1 +

∫
dµSO(3,1)

1

P (4)(D, x1, x2)

(
PE
[ φ

D∆
χ∆,`(D, x1, x2)

]
− 1
)
, (6.63)

H−(D, φ) ≡ 1 +

∫
dµSU(2)

1−D2

P (2)(D, α)

(
PE
[ φ

D∆
χ

(P)
∆,`(D, α)

]
PE
[ φ2

2D2∆

(
χ∆,`(D2, α, α)− χ(P)

∆,`(D
2, α2)

)]
− 1
)
.

For a fermionic field, the PE should be replaced by PEF. Of course H+ reduces to the form of the Hilbert series
which was derived in Eq. (4.24). In order to see how everything comes together, we work out the above formulas
for a scalar field, field strength tensor, and a vector field. Of course, we can look at the action of parity on fermions,
but this will not be useful for our discussion of the SMEFT as the left and right handed components of the Fermions
in the SM are in different representations of the gauge groups. We therefore discuss fermions once we also know
how to treat charge conjugation.

Scalar Field
We start with the example of a scalar field φ. Because the representation is fixed by ` = (0, 0) and ∆ = 1, it follows
that φ is an irreducible representation under O(3, 1)o. From the discussion of above, it follows that the conformal
character is given by

χ̃(q, x) = q∆
(
1− q2

)
P (q, x) =

{
q
(
1− q2

)
P (4)(q, x1, x2) ≡ χ̃1,(0,0)(q, x1, x2) on SO(3, 1)o,

qP (2)(q, α) ≡ χ̃(P)
1,(0,0)(q, α) on O−,

(6.64)

where we subtracted the EOM. Note that the factor 1− q2 drops out on O−. As H+ was already derived in Sec. 4,
we focus on the derivation of H−. Therefore, we first compute (see Eqs. (6.55) and (6.63))

1

2D2

(
χ̃1,(0,0)(D2, α, α)− χ̃(P)

1,(0,0)(D
2, α2)

)
=

1

2

(
1−D4

(1−D2α2)(1−D2)2(1−D2/α2)
− 1(

1−D2α2)(1−D2/α2)

)

=
1 +D2 − (1−D2)

2(1−D2α2)(1−D2)(1−D/α2)

=
D2

1−D2
P (2)(D2, α2), (6.65)
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which gives for the H−:

H−(D, φ) =

∫
dµSU(2) PE

[
± φP (2)(D, α) + (±φ)2 D2

1−D2
P (2)(D2, α2)

]
. (6.66)

Here, we also allow for intrinsic parity, i.e. a pseudoscalar φ. We can treat this case by letting H+ remain the
same, but we evaluate the Hilbert series on O− as H−(D,−φ). This means that operators with an odd number
of φ’s found on O− drop out of the Hilbert series as they come with a minus sign on H−. The results are shown
in Table 8 and we see that we get the expected results. That is, without intrinsic parity all operators are parity
invariant. With intrinsic parity, the operators with an odd number of φ insertions drop out.

Field Strength
The field strength tensor Fµν transforms under the representation (1, 0) ⊕ (0, 1), which is now an irreducible
representation of O(3, 1). We get for the conformal character

χ̃[2,(1,0)⊕(0,1)](q, x) =

{
q2
(
χ(1,0)⊕(0,1)(x)− 2qχ( 1

2 ,
1
2 )(x) + 2q2

)
P (4)(q, x) on SO(3, 1),

0 on O−,
(6.67)

where the character on O− completely vanishes. It is now straightforward to show that H− is given by

H−(φ, p) =

∫
dµSU(2) PE

[ F 2

2D4
χ̃[2,(1,0)⊕(0,1)](D2, α, α)

]
=

∫
dµSU(2) PE

[
F 2 2(α2 + 1 + 1/α2 −D2)

1−D2
P (2)(D2, α2)

]
. (6.68)

In Table 9 we show some results with one field strength tensor.

Vector field
In the case of a vector field we are interested in the case that there are four different vector fields because we know
that one such operator contracts with the epsilon tensor which should be the only parity odd operator. Therefore,
we do not include derivatives, but just look at the character of the ` = ( 1

2 ,
1
2 ) representation. The character then

becomes (see Eq. (6.48) again)

χ( 1
2 ,

1
2 ) =

{(
x1 + 1

x1

)(
x2 + 1

x2

)
≡ χ( 1

2 ,
1
2 )(α, α) on SO(3, 1),(

α+ 1
α

)
≡ χ(P)

( 1
2 ,

1
2 )

(α) on O−,
(6.69)

From which we obtain

1

2

(
χ( 1

2 ,
1
2 )(α, α)− χ(P)

( 1
2 ,

1
2 )

(α2)
)

=
1

2

(
α2 + 2 +

1

α2
− α2 − 1

α2

)
= 1. (6.70)

Therefore, H− for four different vector fields Ai, i = 1, 2, 3, 4, is given by

H−(0, Ai) =

∫
dµSU(2)

4∏
i=1

PE
[
Aiχ

(P)

( 1
2 ,

1
2 )

(α) +A2
i

]
(6.71)

In Table 10 we show the results of this. Unlike the previous two results, we only show the number of operators that
are both generated by H+ and H−, plus the explicit term that has a different pre-factor for H+ and H−. So, we
conclude that indeed only one operator is parity odd.
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Mass dim. H+ H− 1
2 (H+ +H−)

5 φ5 ±φ5 φ5, (0)

6 φ6 φ6 φ6

7 φ7 ±φ7 φ7, (0)

8 φ8 + φ4D4 φ8 + φ4D4 φ8 + φ4D4

9 φ9 + φ5D4 ±φ9 ± φ5D4 φ9 + φ5D4, (0)

10 φ10 + φ6D4 + φ4D6 φ10 + φ6D4 + φ4D6 φ10 + φ6D4 + φ4D6

11 φ11 + φ7D4 + φ5D6 ±φ11 ± φ7D4 ± φ5D6 φ11 + φ7D4 + φ5D6, (0)

12 φ12 + φ8D4 + 2φ6D6 + φ4D8 φ12 + φ8D4 + 2φ6D6 + φ4D8 φ12 + φ8D4 + 2φ6D6 + φ4D8

13 φ13 + φ9D4 + 2φ7D6 + 2φ5D8 ±φ13 ± φ9D4 ± 2φ7D6 ± 2φ5D8 φ13 + φ9D4 + 2φ7D6 + 2φ5D8, (0)

Table 8: Enumerating parity invariant operators for a real scalar field. In the third column, the minus (plus) signs
correspond to a scalar field with(out) intrinsic parity. In the last column, the terms inside brackets are the results
in the case of intrinsic parity.

Mass dim. H+ H− 1
2 (H+ +H−)

6 0 0 0

8

3F 4 F 4 2F 4

10 5F 4D2 F 4D2 3F 4D2

12 4F 6 + 4F 4D4 2F 4D4 2F 6 + 3F 4D4

14 13F 6D2 + 4F 5D4 + 6F 4D6 F 6D2 + 2F 4D6 7F 6D2 + 2F 5D4 + 4F 4D6

Table 9: Enumerating parity invariant operators with one field strength tensor Fµν .

Mass dim. H+ H− 1
2 (H+ +H−)

4 52 + 4A1A2A3A4 52 + 2A1A2A3A4 52 + 3A1A2A3A4

Table 10: Parity invariant operators for four different vector fields Ai, i = 1, 2, 3, 4. The number corresponds to the
operators both generated by H+ and H−. The term that is explicitly written down is the term that has a different
pre-factor for H+ and H−.

6.4 Charge Conjugation

In order to describe charge conjugation, we look at all the outer automorphisms of the gauge groups SU(2) and
SU(3). The dynkin diagram for SU(N) is given by AN−1;

which means that in the case of SU(2) there is just one simple root, and it follows that the only symmetry on this
Dynkin diagram is the trivial symmetry. Therefore, we conclude that SU(2) has no interesting outer automorphisms
and therefore does not transform under charge conjugation. That the outer automorphisms of SU(N) indeed
correspond to the object we know as charge conjugation follows if we construct the outer automorphism for SU(3)
explicitly, which is what we will do next. We first derive the root system of su(3) after which we will be able to
construct the induced outer automorphism that follows from the symmetry of the Cartan matrix. We will then
point out the correspondence with charge conjugation after which we will be able to compute the twining characters.
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6.4.1 Root System and Induced Outer Automorphism of SU(3)

The standard basis for the Lie algebra su(3) is defined in terms of the Gell-Mann matrices as Ti = 1
2λi, with

λ1 =

 0 1 0
1 0 0
0 0 0

 , λ2 =

 0 −i 0
i 0 0
0 0 0

 , λ3 =

 1 0 0
0 −1 0
0 0 0

 , λ4 =

 0 0 1
0 0 0
1 0 0

 ,

λ5 =

 0 0 −i
0 0 0
i 0 0

 , λ6 =

 0 0 0
0 0 1
0 1 0

 , λ7 =

 0 0 0
0 0 −i
0 i 0

 , λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 . (6.72)

The straightforward choice for the Cartan subalgebra are the generators T3 and T8, from which it follows that the
eigenstates (roots) of the adjoint representation are given by

E±(1,0) =
1√
2

(T1 ± iT2), E±(1/2,
√

3/2) =
1√
2

(T4 ± iT5), and E(∓1/2,±
√

3/2) =
1√
2

(T6 ± iT7). (6.73)

For the positive roots we may choose α1 = (1, 0), α2 = (−1/2,
√

3/2) and α3 = (1/2,
√

3/2) = α1 +α2, and therefore
the root systems of su(3) becomes

α1

α2 α1 + α2

T1 →

T2

↑

We can now also compute the Cartan matrix and Dynkin diagram

Aij =
2αi ·αj

(αj)2
=

(
2 -1
-1 2

)
, A2 = (6.74)

The automorphism of the Cartan matrix is again given by ω̃ : 1 ↔ 2. In order to define the action of the induced
outer automorphism on the generators, we change the basis such that the generators satisfy Eq. (6.17). The two
raising and lowering operators corresponding to the simple roots become

E±1 = E±(1,0), E±2 = E±(−1/2,
√

3/2), (6.75)

and we rotate the generators of the Cartan sub-algebra as follows:

H1 = 2T3 =

 1 0 0
0 -1 0
0 0 0

 , H2 = −T3 +
√

3T8 =

 0 0 0
0 1 0
0 0 -1

 . (6.76)

One can easily check that Eq. (6.17) is indeed satisfied.

To see that the induced outer automorphism corresponds to what we know as charge conjugation, we compute the
action of the induced outer automorphism ω on the fundamental representation 3. As the explicit matrix form
of Eq. (6.76) corresponds to the Cartan matrices of the fundamental representation, we immediately see that the
vectors v1 = (1, 0, 0)T , v2 = (0, 1, 0)T and v3 = (0, 0, 1)T are the eigenvectors of this representation with weights
(1, 0), (−1, 1) and (0,−1), respectively. From

R(ω)(H1) · v1 ≡ R3(ω(H1)) · v1 = R3(H2) · v1 = 0, (6.77)

R(ω)(H2) · v2 ≡ R3(ω(H2)) · v1 = R3(H1) · v1 = v1. (6.78)
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we see that v1 is also an eigenvector of the representation R(ω), but with weight (0, 1) instead. Similar we get that
v2 and v3 are eigenvectors with weights (1,−1) and (−1, 0) respectively. We recognize the weight vectors of the anti-
fundamental representation 3̄, from which we conclude that the induced representation R(ω) is the 3̄ representation
of SU(3). The induced outer automorphism is therefore indeed the object we know as charge conjugation. To
make the distinction between the eigenvalues of both representations we denote by |1, 0〉, |−1, 1〉, and |0,−1〉 the
eigenvectors of the 3 representation and the eigenvectors of 3̄ are denoted by |0, 1〉, |1,−1〉, and |−1, 0〉, respectively.
From this, it immediately follows that the intertwining map of Eq. (6.21) is completely determined by

τω : |m,n〉 7→ |n,m〉. (6.79)

Similar to what we did for parity, it is now reasonable to define C ≡ τω as the matrix representation of charge
conjugation. However, unlike in the case of parity, this will give some difficulties as states of the same weight can
be degenerate, meaning that C can still induce permutations between eigenstates with the same weight. We will
say more about this when we discuss the twining characters and finish this section by folding the Dynkin diagram.

As ω̃ is the same as for parity, we have again N = Ni = 2 and Ĩ = {1}. However, we get

s1 = 1− a2,1 = 2 (6.80)

which leads to

Ã = s1
N1

N
(a11 + a21) = 2. (6.81)

Therefore, the folded Cartan matrix is again that of an su(2) algebra.

6.4.2 Twining Character of SU(3)

As the induced outer automorphism and folded Cartan matrix are the same as in the case of parity, the derivation
of the twining character for an SU(3) representations R, i.e.

χ(C)(h) ≡ tr
[
τωe

iθ1R(H1)+iθ2R(H2)
]

=
∑
µ

〈
µ
∣∣Ceiθ1R(H1)+iθ2R(H2)

∣∣µ〉, h = θ1H1 + iθ2H2 ∈ su(3), (6.82)

is similar to the example of parity discussed in Sec. 6.3.1. The only complication arises because the lowering
operators of su(3) do not commute, so we cannot make the same conclusion as we did in Eq. (6.41). To show this
with an example, let’s look at the adjoint representation which has highest weight state |λ〉 = |1, 1〉. Then both
states E−1 E

−
2 |1, 1〉 and E−2 E

−
1 |1, 1〉 have weight (0, 0), but they are not the same state, i.e.

E−1 E
−
2 |1, 1〉 6= E−2 E

−
1 |1, 1〉. (6.83)

This means that we do not get just an effective lowering of the form (E−1 E
−
2 ), because this operator is different

compared to (E−2 E
−
1 ), and C still permutes the states E−1 E

−
2 |1, 1〉 and E−2 E

−
1 |1, 1〉.

That said, we can still compute the twining characters case by case if we carefully construct the intertwining map C
explicitly and check which states are invariant under C, such that we know what terms in Eq. (6.82) do not vanish.
We will discuss the HS for two examples that are most useful to us: the adjoint representation 8 and the direct
sum of the fundamental and anti-fundamental representations 3⊕ 3̄. In particular we will work out the plethystic
exponentials21, for which we will need to compute tr[gn−] (see Eq. (6.52)), where we now have that g− = g+C, with
g+ = exp(iθ1R(H1) + iθ2R(H2)) and H1 and H2 given in Eq. (6.76).

Fundamental and Anti-Fundamental representation
Let’s start with the representation 3 ⊕ 3̄. An element g− = g+C can be written in terms of the variables zi =

21 The derivation of the plethystic exponentials is completely analogous to what we did in Sec. 6.3.3
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exp(iθiR(Hi)), so we get

g− =



z1

z2
z2
z1

z1
z2

1
z2

1
z1




0 1
1 0

0 1
1 0

0 1
1 0



7→



√
z1z2

−√z1z2

1
−1 √

1
z1z2

−
√

1
z1z2


, (6.84)

where we diagonalized the matrix. We see that the variables z1 and z2 always group together in the form (z1z2)n

in the diagonalized matrix, and we make the translation to the variable z of the folded SU(2) Lie algebra

z1z2 7→ z, (6.85)

and it follows that

tr[gn−] =

{
2zk + 2 + 2

zk
if n = 2k,

0 if n = 2k + 1.
(6.86)

Because the trace completely vanishes in the case that n is odd, the plethystic exponentials become

∞∑
n=0

Anχsymn(8)(g−) = exp

[ ∞∑
k=1

A2k

2k

(
2zk + 2 +

2

zk

)]
, (6.87)

∞∑
n=0

Anχ∧n(8)(g−) = exp

[
−
∞∑
k=1

A2k

2k

(
2zk + 2 +

2

zk

)]
. (6.88)

The results for the symmetric and anti-symmetric case can be found in Table 11 and Table 12 respectively, and
we see that the symmetric case gives the correct answer. However, in the anti-symmetric case the operators of the
form A2 and A6 drop out and seem therefore to be odd under charge conjugation. Now recall Eq. (6.23), where
we showed that we have some freedom in choosing the phase of the intertwining map C. Therefore, we replace C of
Eq. (6.84) by

C =


0 i
i 0

0 i
i 0

0 i
i 0

 , (6.89)

from which we obtain

tr[gn−] =

{
2(−1)k

[
zk + 1 + 1

zk

]
if n = 2k,

0 if n = 2k + 1.
(6.90)

With this choice of phase for the matrix representation of C, we get the correct answer H− = A2 +A4 +A6.

Adjoint representation
We can follow the same strategy for the adjoint representation, also denoted by (1, 1), of SU(3). Using the diagonal
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form of g+, we get

g− =



z1z2
z2
1

z2
z2
2

z1
1

1
z1
z2
2

z2
z2
1

1
z1z2





1
0 1
1 0

0 1
1 0

0 1
1 0

1



7→



z1z2 √
z1z2

−√z1z2

1
−1 √

1
z1z2

−
√

1
z1z2

1
z1z2


, (6.91)

where we again diagonalized the matrix. Note that (as discussed above) there are two degenerate states with the
same weight, and C permutes these two states. Making the replacement z1z2 → z, we see that the twining character
of the adjoint representation is the spin- 1

2 representation of SU(2)

χ
(C)
8 (g−) = z +

1

z
. (6.92)

In order to work with the plethystic exponentials, we compute

tr[gn−] =

{
z2k + 2zk + 2 + 2

zk
+ 1

z2k if n = 2k,

z2k+1 + 1
z2k+1 if n = 2k + 1.

(6.93)

Using this for the plethystic exponential, we get for the symmetric and anti-symmetric tensor products:

∞∑
n=0

Anχsymn(8)(g−) = exp

[ ∞∑
k=0

A2k+1

2k + 1

(
z2k+1 +

1

z2k+1

)
+

∞∑
k=1

A2k

2k

(
z2k + 2zk + 2 +

2

zk
+

1

z2k

)]
,

= exp

[ ∞∑
k=1

Ak

k

(
zk +

1

zk

)
+

∞∑
k=1

A2k

2k

(
2zk + 2 +

2

zk

)]
, (6.94)

∞∑
n=0

Anχ∧n(8)(g−) = exp

[
−
∞∑
k=0

(−A)2k+1

2k + 1

(
z2k+1 +

1

z2k+1

)
−
∞∑
k=1

(−A)2k

2k

(
z2k + 2zk + 2 +

2

zk
+

1

z2k

)]
,

= exp

[
−
∞∑
k=1

(−A)k

k

(
zk +

1

zk

)
−
∞∑
k=1

A2k

2k

(
2zk + 2 +

2

zk

)]
. (6.95)

The results for this are summarized in Table 13 and Table 14, and we see that all operators in the symmetric case
seem to be C-invariant. However, in the anti-symmetric case the operators of the form A3 and A8 drop out and
seem therefore to be odd under C. We can use Eq. (6.23) again to choose another phase for the representation
matrix of C, but everything we tried does not give the correct answer. We leave this as an open question for now,
to be answered in further research.
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An A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15

H+ AA† 0 (AA†)2 0 (AA†)3 0 (AA†)4 0 (AA†)5 0 (AA†)6 0 (AA†)7 0

H− A2 0 A4 0 A6 0 A8 0 A10 0 A12 0 A14 0

C-inv. X X X X X X X X X X X X X X

Table 11: Number of symmetric invariants formed out of the 3⊕ 3̄ representation of SU(3).

An A2 A3 A4 A5 A6

H+ AA† A3 + (A†)3 (AA†)2 0 (AA†)3

H− −A2 0 A4 0 −A6

C-inv. - X X X -

Table 12: Number of anti-symmetric invariants formed out of the 3 ⊕ 3̄ representation of SU(3). Note that there
are no operators higher than A6, as the vector space over which we anti-symmetrize has dimension 6.

An A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19

H+ 1 1 1 1 2 1 2 2 2 2 3 2 3 3 3 3 4 3

H− 1 1 1 1 2 1 2 2 2 2 3 2 3 3 3 3 4 3

C-inv. X X X X X X X X X X X X X X X X X X

Table 13: Number of symmetric invariants formed out of the adjoint representation of SU(3).

An A2 A3 A4 A5 A6 A7 A8

H+ 0 1 0 1 0 0 1

H− 0 −1 0 1 0 0 −1

C-inv. X - X X X X -

Table 14: Number of anti-symmetric invariants formed out of the adjoint representation of SU(3). Note that there
are no operators higher than A8, as the vector space over which we anti-symmetrize has dimension 8.

6.5 CP

Finally, we arrive at the point where we can combine the above formulas to enumerate the CP-invariant operators
of the SMEFT. Before we can do this, we need to know what representations R can be extended such that CP
acts as an honest symmetry on these representations. Because P only acts on the Lorentz part, and C only on
the gauge groups, it follows that R is the tensor product of an O(3, 1)o representation (recall Eq. (6.35) for the
irreducible O(3, 1)o representations) and a representation that transforms well under the gauge group extended with
the outer automorphism C, e.g. the trivial representation or 3⊕ 3̄ and 8 of SU(3). For the SM these are all SU(3)
representations that we need to know, but what about SU(2) and U(1)? At the beginning of Sec. 6.4 we pointed out
that SU(2) has no interesting outer automorphisms, so this means that all SU(2) representations already transform
well under charge conjugation. For U(1) charge conjugation acts by sending the charge Q of a field to −Q. We
therefore conclude that the extended representations for the SM are the direct sum of the representation of the field
and the representation of the conjugate field.

The Hilbert series still takes the form of Eq. (6.62), but the generating functions for the characters of the symmetric
and anti-symmetric tensor products change slightly because we include the gauge group SU(3) × SU(2) × U(1)
on which C acts. Just like we did for parity and charge conjugation separately, we can compute the plethystic
exponentials of Eq. (6.52) by deriving tr[gn−], with g− = g+CP, where we will parametrize g+ in terms of the usual
variables x1, x2, x, y, z1, z2. Therefore, we compute for all fields of the SM the explicit matrix form of an element
g− = g+CP which we then sub-sequentially diagonalize. Just like in the previous cases, there is some freedom in
choosing the phase for the matrix CP, and we will fix this phase by demanding that the kinetic terms of the SM
Lagrangian of mass dimension 4 are CP invariant (see Eq. (3.1) and Table 15).
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Higgs field
Because the Higgs field ϕ is a scalar, it transforms already trivially under P, but still transforms under C. That is,
CP acts on ϕ by mapping it to ϕ†. Therefore, the representation of the Higgs field becomes the direct sum of the
representations of ϕ and ϕ†, i.e. [

(0, 0)⊗ 1⊗ 2⊗ Y1/2

]
⊕
[
(0, 0)⊗ 1⊗ 2⊗ Y−1/2

]
. (6.96)

Without derivatives, the matrix g− = g+CP becomes

g− =


x

1
2 y

x−
1
2 y

x
1
2

1
y

x−
1
2

1
y




0 i
i 0

0 i
i 0

 7→

iy
−iy

i
y

− i
y

 , (6.97)

with x the U(1) variable and y the SU(2) variable. We have included a complex phase in the matrix representation
of CP, which is necessary because otherwise the kinetic term D2φ2 will not be counted as a CP-invariant operator.
That is, we would find H− = −D2φ2 without this phase which gives the incorrect answer 1

2 (H+ + H−) = 0, and
we have more to say about this in Sec. 6.5.1. Notice that we do not have to worry about U(1) charges as they drop
out in the diagonalization process, and this will be true for all other fields as well. We can include the derivatives
by extending the Lorentz part of the representation to the conformal representation of O(4, 2), just like we did in
Sec. 6.3.4. Using Eq. (6.54) then yields

tr[gn−] =

{
2(−1)kP (4)(q2k, αk, αk)

(
y2k + 1

y2k

)
if n = 2k,

0 if n = 2k + 1.
(6.98)

Up and down quark
For the up quark u, the extended representation with CP included becomes the direct sum of the ‘old’ representations
of u and its antiparticle ū. Therefore we get[(

0,
1

2

)
⊗ 3⊗ 1⊗ Y2/3

]
⊕
[(1

2
, 0
)
⊗ 3̄⊗ 1⊗ Y−2/3

]
. (6.99)

Without derivatives, we can write an element g− as

g− =



x2z1

x1z2

x2
z2
z1

x1
z1
z2

x2
1
z2

x1
1
z1

xi ↔ 1
xi





0 1
1 0

0 1
1 0

0 1
1 0

. . .


, (6.100)

→



√
x1x2z1z2

−√x1x2z1z2 √
x1x2

−√x1x2 √
x1x2

z1z2

−
√

x1x2

z1z2

xi ↔ 1
xi


(6.101)

where we have neglected the U(1) charges because they drop out in the diagonalization process. We can restore the
derivatives by using Eq. (6.54):

tr[gn−] =

{
2P (4)(q2k, αk, αk)

[(
αk + 1

αk

)
− q2k

(
αk + 1

αk

)](
zk + 1 + 1

zk

)
if n = 2k,

0 if n = 2k + 1.
(6.102)
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Likewise, the down quark d is in the representation[(
0,

1

2

)
⊗ 3⊗ 1⊗ Y2/3

]
⊕
[(1

2
, 0
)
⊗ 3̄⊗ 1⊗ Y−2/3

]
, (6.103)

but this leads to the same equation as Eq. (6.102), because the only difference is the charge under U(1), which
drops out in this formula.

Electron
The extended representation with CP included becomes for the (right handed) electron e:[(

0,
1

2

)
⊗ 1⊗ 1⊗ Y−1

]
⊕
[(1

2
, 0
)
⊗ 1⊗ 1⊗ Y1

]
. (6.104)

From now on, we will not write down the explicit matrices as we did in the last two examples as they can become
quite large and they are straightforward to compute. For the electron we therefore get

tr[gn−] =

{
2P (4)(q2k, αk, αk)

[(
αk + 1

αk

)
− q2k

(
αk + 1

αk

)]
if n = 2k,

0 if n = 2k + 1.
(6.105)

Lepton and quark doublet
The representations for the lepton l and quark doublet q become[(1

2
, 0
)
⊗ 1⊗ 2⊗ Y−1/2

]
⊕
[(

0,
1

2

)
⊗ 1⊗ 2⊗ Y1/2

]
,[(1

2
, 0
)
⊗ 3⊗ 2⊗ Y1/6

]
⊕
[(

0,
1

2

)
⊗ 3̄⊗ 2⊗ Y−1/6

]
, (6.106)

respectively. With little effort we then compute for the lepton doublet

tr[gn−] =

{
2(−1)kP (4)(q2k, αk, αk)

[(
αk + 1

αk

)
− q2k

(
αk + 1

αk

)](
y2k + 1

y2k

)
if n = 2k,

0 if n = 2k + 1,
(6.107)

and for the quark doublet

tr[gn−] =

{
2(−1)kP (4)(q2k, αk, αk)

[(
αk + 1

αk

)
− q2k

(
αk + 1

αk

)](
y2k + 1

y2k

)(
zk + 1 + 1

yk

)
if n = 2k,

0 if n = 2k + 1.

(6.108)
Notice that in both cases we had to include a non-trivial phase such that the kinetic terms are CP invariant, i.e.
otherwise we would find H− = −e2D − q2D which would kill the contribution from H+ .

Field strength tensors
We begin this case by noting that the field strength tensors already transform well under CP (they are their own
anti-particle), e.g. for Bµν we have

[(1, 0)⊕ (0, 1)]⊗ 1⊗ 1⊗ Y0. (6.109)

This is of course the same case as we already discussed when we treated parity only. So recalling Eqs. (6.54) and
(6.67), we get

tr[gn−] =

{
χ̃[2,(1,0)⊕(0,1)](q

2k, αk, αk) if n = 2k,

0 if n = 2k + 1,

=

{
P (4)(q2k, αk, αk)

[
2
(
α2k + 1 + 1

α2k

)
− 2q2k

(
α2k + 2 + 1

α2k

)
+ 2q4k

)]
if n = 2k,

0 if n = 2k + 1.
(6.110)

Likewise, the representations for Gµν and Wµν yield

[(1, 0)⊕ (0, 1)]⊗ 8⊗ 1⊗ Y0, [(1, 0)⊕ (0, 1)]⊗ 1⊗ 3⊗ Y0, (6.111)
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respectively. We can ‘tensor’ the result of Eqs. (6.93) and (6.110) together to get

tr[gn−] =

{
χ̃[2,(1,0)⊕(0,1)](q

2k, αk, αk)
(
z2k + 2zk + 2 + 2

zk
+ 1

z2k

)
if n = 2k,

0 if n = 2k + 1,
(6.112)

for Gµν , and for Wµν we use that all SU(2) representations transform well under C:

tr[gn−] =

{
χ̃[2,(1,0)⊕(0,1)](q

2k, αk, αk)
(
y4k + 1 + 1

y4k

)
if n = 2k,

0 if n = 2k + 1.
(6.113)

6.5.1 Results

With the formulas we found above, we can now enumerate the CP invariant operators for the SMEFT. As discussed,
we had some freedom in choosing the phase for the matrix representations of CP and we fixed it to produce the
correct CP invariant operators of mass dimension 4. These operators are summarized in the first two columns of
Table 15, and in column 3 and 4 we give the results for H+ and H−, where in the latter we show in red the operators
for which we had to choose a non-trivial phase for the CP matrix. Note that for the enumeration in H−, we can
only use one symbol per field in the Hilbert series as the fields transform now in an irreducible representation in
which the particle and anti-particle get intertwined. Therefore, we decided make the convention to give the field
the name without the dagger in the Hilbert series. To get from the results of H+ and H− to the CP-invariant
operators, we drop the daggers in H+. These results are shown in the fifth column. In the last column we add a
checkmark for all operators that are CP-invariant.

We have shown the results for the dimension 6 operators earlier in Tables 3 and 4. We also worked out the result
for dimension 5 and 7 and they are shown in Tables 16, and 19, respectively. In Table 20 to Table 22, we have
worked out the bosonic operators of mass dimension 8. A summary of all operators classes of mass dimension 8 is
given in Table 17. For the explicit contraction of the operators at mass dimension 8, we have used [28]. Note that
in all tables, the results for which we need the complex phase in the matrix representation of CP are coloured red
in the tables.

We can make three important observations from the results of Table 15 that turn out to be true in general. First
of all, if an operator is CP invariant, then it is enumerated on both H+ and H− such that when we average we get
the correct answer. As an example, see the pure Higgs operators at mass dimension 4, 6 and 8. Second, the field
strength tensors often come in pairs where one of the operators is contracted with the epsilon tensor. Because the
epsilon tensor is CP odd, this operator should drop out. In cases like this, we find 2 operators on H+ and none
on H− (see e.g. the second class of Table 15). Averaging then gives the correct answer that there is just one CP
invariant operator. Third, it might happen that we have an operator plus its hermitian conjugate (see e.g. the third
class in Table 15). In that case, there are two operators enumerated on H+ and zero on H−. Because CP sends
the operator to its complex conjugate we see that there is effectively one operator that is CP invariant22, which we
also find when we average over H+ and H−.

For mass dimension 4, 5, 6 and 7 we enumerate the correct operators that are CP invariant and the explicit output
is given in the corresponding tables. We conclude that there are 13 CP invariant operators at mass dimension 4,
1 at dimension 5, 57 at dimension 6, and 15 at dimension 7. We also checked the operator basis of dimension 8,
by using the complete set of operators published in Ref. [28]. All bosonic operators are reproduced correctly, and
the results are explicitly shown in the tables in App. E. For an overview of the enumeration in operator classes see
Table 17, and we see that 563 out of the 993 operators are CP invariant. For the following classes with fermions:
ψ2X2ϕ,ψ2Xϕ3, ψ2ϕ5, ψ2Xϕ2D, ψ2XϕD2, ψ4X, and ψ4ϕD we do not find any operators on H− because it is either
the case that a field strength tensor appears together with a dual field strength tensor, or that an operator appears
with its complex conjugate. Therefore, the only classes which can cause problems are ψ2ϕ2D3, ψ2ϕ4D, ψ2X2D,
ψ4ϕ2, and ϕ4D2, but they are fine as some differences between H+ and H− arise due to the fact that some of the
operators in these classes appear together with a dual field strength tensor, or their hermitian conjugate.

We can therefore conclude that the methods we have developed in this section to enumerate the CP-invariant
operators of the SMEFT works fine up to at least mass dimension 8. However, before we can be fully conclusive

22As long as the Wilson-coefficients are real.
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about the results for higher dimensional operators, we need to have better understanding why we needed to make
the non-trivial choice of phase in the representation matrix of CP for the Higgs scalar, lepton doublet and quark
doublet (see Eqs. (6.98), (6.107), and (6.108)).

ϕ4 and ϕ2D2 H+ H− 1
2 (H+ +H−) CP-inv.

Qϕ4 (ϕ†ϕ)2 (ϕ†)2ϕ2 ϕ4 ϕ4 X

Qϕ2D2 (Dµϕ)†(Dµϕ) ϕ†ϕD2 ϕ2D2 ϕ2D2 X

X2

Q
(1)
G2 GAµνG

Aµν

2G2 0 G2
X

Q
(2)
G2 G̃AµνG

Aµν -

Q
(1)
W 2 W I

µνW
Iµν

2W 2
0 W 2 X

Q
(2)
W 2 W̃ I

µνW
Iµν -

Q
(1)
B2 BµνB

µν

2B2
0 B2 X

Q
(2)
B2 B̃µνB

µν -

ψ2D and ψ2ϕ

Ql2D l̄ /Dl l†lD l2D l2D X

Qe2D ē /De e†eD e2D e2D X

Qq2D q̄ /Dq q†qD q2D q2D X

Qu2D ū /Du u†uD u2D u2D X

Qd2D d̄ /Dd d†dD d2D d2D X

Qleϕ l̄eϕ+ h.c. l†eϕ+ le†ϕ† 0 leϕ X

Qquϕ q̄uϕ̃+ h.c. q†uϕ† + qu†ϕ 0 quϕ X

Qqdϕ q̄dϕ+ h.c. q†dϕ+ qd†ϕ† 0 qdϕ X

Total: 16 19 - 13 13

Table 15: All dimension 4 operators of the SMEFT. Note that we have included the operators with two field strength
tensors and an epsilon tensor, as it is one of the operators that fall out of the Hilbert series.

H+ H− 1
2 (H+ +H−) CP-inv.

Qνν εjkεmnϕ
jϕm(lkp)TClnr+ h.c. ϕ2l2 + (ϕ†)2(l†)2 0 ϕ2l2 X

Table 16: All dimension 5 operators of the SMEFT.
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Class H+ H− 1
2 (H+ +H−)

X4 43 9 26

ϕ8 1 1 1

ϕ6D2 2 2 2

ϕ4D4 3 3 3

X3ϕ2 6 0 3

X2ϕ4 10 0 5

X2ϕ2D2 18 4 11

Xϕ4D2 6 4 3

ψ2X2ϕ 96 0 48

ψ2Xϕ3 22 0 11

ψ2ϕ2D3 16 14 15

ψ2ϕ5 6 0 3

ψ2ϕ4D 13 7 10

ψ2X2D 57 23 40

ψ2Xϕ2D 92 0 46

ψ2XϕD2 48 0 24

ψ2ϕ3D2 36 0 18

ψ4ϕ2 87 31 59

ψ4X 200 0 100

ψ4ϕD 166 0 83

ψ4D2 65 39 52

Total 993 133 563

Table 17: Summary of all dimension-8 operators of the SMEFT
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7 Conclusion

The initial goal of this masters thesis was to find a general method that can assist in constructing a minimal operator
basis for effective field theories at any effective order. Before we were able to do so, we took some time to properly
define what the operator basis is, and in particular what we actual mean by minimal in this sense. We showed
that the operator basis consists of all independent invariants under the symmetry groups and that operators can be
related by integration by parts and through usage of the classical equations of motion. The minimal operator basis
then is the subset of independent operators that cannot be related by these relations. We found out that finding the
minimal operator basis can be assisted by the Hilbert series which counts the number of independent operators of
a particular form. Using some beautiful results of group theory, we managed to derive general formulas to compute
the HS for EFTs in 4 dimensional space-time with SM like field content, i.e. scalars, field strength tensors and
fermions, and we extended this with the Weyl tensor: the building block for an EFT with gravity.

We explicitly computed the HS for the SMEFT and some extension, i.e. GRSMEFT and 2HDM. By doing so, we
have implemented an efficient algorithm of the HS called Eco (Efficient Counting of Operators), in Form, and the
code can be found in [20]. Eco can be used to enumerate operators for EFTs in 4 dimensional space time with
the above mentioned field content. The user has the freedom to include as many of these fields as desired, together
with their representations under the SM gauge group SU(3) × SU(2) × U(1), as well as additional U(1) global or
gauge symmetries. The user flexibility, together with the speed-up due to how we structured the calculation, makes
Eco a valuable addition to the model-building toolkit.

We have shown that the HS technique can be extended to EFTs that are symmetric under parity and charge
conjugation, by relating these to the outer automorphisms of the symmetry groups. With the outer automorphisms,
we were able to extend the representations of the Lorentz group and SU(3), and we explicitly computed the
extended representation matrices. Furthermore, we showed that all outer automorphisms can be classified using
the symmetries of the Dynkin diagrams, and this gave us a way to fold these diagrams, which we used to explicitly
compute the HS. We managed to implement this for the SMEFT, and we obtained the correct enumeration of CP
invariant operators up to and including mass dimension 8. Because we had to manually insert a phase for the
matrix representation of CP, we cannot yet be fully conclusive that we will obtain the correct answer for higher
mass dimensions. Therefore, some open questions remain, but it also opens new interesting questions about the
nature of orbit Lie algebras, which we might address in the future.

Although we were able to produce the number of operators of the SMEFT up to mass dimension 20 with Eco,
something that was out of practical reach before, we have yet been far away from the limits of Eco. Pushing the
program further might result in new interesting questions. For instance, what drives the exponential growth of the
number of operators of the SMEFT, observed in Fig. 2? In order to answer this question, Eco can be an excellent
starting point as the user flexibility and Eco’s speed allows for easy changes in the field content of the SMEFT or
their representations under the gauge group. Furthermore, it will certainly be interesting to extend the methods
of the HS technique to other EFTs like chiral perturbation theory or soft collinear effective theory, and implement
these new degrees of freedom in Eco.
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A NOTATIONS AND CONVENTIONS I

A Notations and Conventions

Throughout this thesis, we use the following notations and conventions. The signature of the Minkowski metric
tensor ηµν is taken to be (−+ ++). We work in natural units in which

~ = c = 1. (A.1)

We will denote by j = 1, 2, and I = 1, 2, 3 the SU(2) doublet and triplet indices, by α = 1, 2, 3, and A = 1, ..., 8 the
SU(3) colour and octet indices, and by p = 1, 2, 3 the generation indices. The Pauli matrices τ I , the generators of
SU(2) are given by

τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 1

)
. (A.2)

The projection matrices for Lorentz spinors are

PL = 1
2 (1− γ5), and PR = 1

2 (1 + γ5) (A.3)

where γ5 is given by
γ5 = iγ0γ1γ2γ3. (A.4)

The epsilon tensors in 2, 3, and 4 dimensions are defined with

ε12 = +1, ε123 = +1, and ε0123 = +1, (A.5)

respectively. We denote by ϕj the Higgs scalar, and the complex conjugate will always occur either as

ϕ†, or ϕ̃j = εjk(ϕk)∗. (A.6)

We write

Bµν = ∂µBν − ∂νBµ,
W I
µν = ∂µW

I
ν − ∂νW I

µ − gεIJKW J
µW

K
ν ,

GAµν = ∂µG
A
ν − ∂νGAµ − gsfABCGBµGCν , (A.7)

for the field strength tensors of the U(1), SU(2), and SU(3) gauge groups respectively. Here gs is the strong
coupling constant, and g and g′ the SU(2) and U(1) coupling constants respectively. For the quark content, we
write qαjLp for the left handed quark doublet, uαRp for the right handed up type quarks and dαRp for the right handed

down type quarks. The leptons are denoted by ljLp and eRp for the lepton doublet and singlet respectively. We drop
the index structure if it is clear from the context. The dual tensor of a field strength tensor Xµν is given by

X̃µν =
1

2
εµνρσX

ρσ, (A.8)

where X stands for B, W I , or GA. Our sign convention for the covariant derivative is

(Dµq)
αj =

[
δαβδjk(∂µ + ig′YqBµ) + igδαβS

I
jkW

I
µ + igsδjkT

A
αβG

A
µ

]
qβk, (A.9)

where TA = 1
2λ

A and SI = 1
2τ

I are the usual SU(3) and S(U(2) generators, with λA the Gell-Mann matrices23.
We will denote the mass dimension of a operator by δ and if not specified, the number of space-time dimensions by
d.

23They are explicitly given in Eq. (6.72).
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B Characters

Let G be a (Lie) group and R a representation of this group. Then the character of this representation is equal to
the trace of the matrix constituting this representation, i.e.

χ(g) = tr[R(g)]. (B.1)

From the cyclic property of the trace we get that characters of conjugate group elements are equal, and such
functions are called class functions. A torus T in a compact Lie group G is defined as a compact connected abelian
Lie subgroup of G. We can define a maximal torus as one which is maximal among such subgroups, that is T is
maximal if for any torus T ′ containing T we have T = T ′. Note that this does not imply that a maximal torus is
unique. We can make use of the Torus Theorem which states that every element of G is conjugate to an element of a
maximal torus T [29]. For simple, semi-simple Lie groups, we can choose the maximal torus in terms of the Cartan
matrices Hk, i.e. T consists of all elements of the form eiθkHk . This means that we can calculate the characters in
terms of the Cartan matrices’ parameters:

χ(g) = χ(xk) = tr
[
ei

∑
k θkHk

]
, (B.2)

with xk = eiθk . Note that this implies that the xk are on the unit circle. Table 18 contains explicit expressions of
some of the characters for representations of the Lorentz group and the SM gauge group SU(3) × SU(2) × U(1).
Because we often integrate over these characters, we showed the Haar measure in the fourth column. Note that
this measure only holds for class functions like the characters.

Group Representation Character Haar measure

Lorentz (0, 0) 1

1
(2πi)2

∮
|y1|=1

dy1

y1
(1− y2

1)

×
∮
|y2|=1

dy2

y2
(1− y2

2)

( 1
2 , 0) y1 + 1

y1

(0, 1
2 ) y2 + 1

y2

( 1
2 , 0)⊕ (0, 1

2 ) y1 + 1
y1

+ y2 + 1
y2

( 1
2 ,

1
2 ) (y1 + 1

y1
)(y2 + 1

y2
)

(1, 0)⊕ (0, 1) y2
1 + 1 + 1

y2
1

+ (y1 ↔ y2)

(2, 0)⊕ (0, 2) y4
1 + y2

1 + 1 + 1
y2

1
+ 1

y4
1

+ (y1 ↔ y2)

( 3
2 ,

1
2 ) (y3

1 + y1 + 1
y1

+ 1
y3

1
)(y2 + 1

y2
)

( 1
2 ,

3
2 ) (y1 + 1

y1
)(y3

2 + y1 + 1
y2

+ 1
y3

2
)

U(1) charge Q xQ 1
2πi

∮
|x|=1

dx
x

SU(2) singlet 1
1

2πi

∮
|y|=1

dy
y (1− y2)fundamental/doublet y + 1

y

triplet/adjoint y2 + 1 + 1
y2

SU(3) singlet 1

1
(2πi)2

∮
|z1|=1

dz2
z2

∮
|z2|=1

dz2
z2

×(1− z1z2)(1− z2
1

z2
)(1− z2

2

z1
)

fundamental/3 z1 + z2
z1

+ 1
z2

antifundamental/3̄ z2 + z1
z2

+ 1
z1

adjoint z1z2 +
z2
2

z1
+

z2
1

z2
+ 2 + z2

z2
1

+ z1
z2
2

+ 1
z1z2

Table 18: Explicit formulas for some of the characters of the Lorentz group and the SM gauge groups SU(3) ×
SU(2)× U(1) representations and the Haar measures (see also Eq. (B.2)).

B.1 Plethystic Exponential

Consider a d-dimensional representation R of some group G. We assume that R can be diagonalized, i.e. we can
find a set of eigenvectors {ei}i=1,...,d with eigenvalues R(g)ei = λiei, which is also a basis for the representation. If
we know the eigenvalues λi, the character of R is just the sum over these eigenvalues χR(g) =

∑n
i=1 λi. Using this
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basis for R we know that a basis of the n-th symmetric tensor product symn(R) is given by{
1

n!

∑
σ∈Sn

eiσ(1)
⊗ · · · ⊗ eiσ(n)

∣∣∣1 ≤ i1 ≤ · · · ≤ in ≤ n}, (B.3)

where Sn is the symmetric group. For the n-th anti-symmetric tensor product ∧n(R) we get the basis{
1

n!

∑
σ∈Sn

ε(σ)eiσ(1)
⊗ · · · ⊗ eiσ(n)

∣∣∣1 ≤ i1 ≤ · · · ≤ in ≤ n}, (B.4)

with ε(σ) the sign of the permutation. As an explicit example of this, lets take d = 3 and n = 2. Then the basis
for the symmetric representation is{

e1 ⊗ e2, e2 ⊗ e2, e3 ⊗ e3,
1

2
(e1 ⊗ e2 + e2 ⊗ e1),

1

2
(e1 ⊗ e3 + e3 ⊗ e1),

1

2
(e2 ⊗ e3 + e3 ⊗ e2)

}
, (B.5)

and for the anti-symmetric representation{1

2
(e1 ⊗ e2 − e2 ⊗ e1),

1

2
(e1 ⊗ e3 − e3 ⊗ e1),

1

2
(e2 ⊗ e3 − e3 ⊗ e2)

}
. (B.6)

B.1.1 Bosonic Plethystic Exponential

We want to compute the sum over all the characters of all symmetric tensor products of R

∞∑
n=0

qnχsymn(R)(g), (B.7)

where the character is weighted by q. Using the eigenbasis of R, we easily compute for the example of Eq. (B.5)
that the character χsym2(R)(g) is given by

χsym2(R)(g) = tr[sym2(R)] = λ2
1 + λ2

2 + λ2
3 + λ1λ2 + λ1λ3 + λ2λ3, (B.8)

which are all symmetric polynomials in λi of order 2. In general we get for arbitrary d and n that the character is
given by symmetric polynomials of order n in λi:

χsymn(R)(g) = tr[symn(R)] =
∑

i1+···+id=n

λi11 . . . λidd . (B.9)

Plugging this into Eq. (B.7), we can express this as

∞∑
n=0

qnχsymn(R)(g) =

∞∑
n=0

qn
∑

i1+···+id=n

λi1d . . . λ
id
d =

∞∑
i1=0

(qλ1)i1 · · ·
∞∑
id=0

(qλd)
id

=

d∏
i=1

1

1− qλi
=

1

det
(
1− qR(g)

) . (B.10)

Using log(det(A)) = tr(log(A)) and log(1− x) = −
∑∞
k=1

xk

k we get

∞∑
n=0

qnχsymn(R)(g) = exp

[
tr

∞∑
k=1

qk

k
R(g)k

]
= exp

[ ∞∑
k=1

qk

k
tr[R(gk)]

]
. (B.11)

Note that when we go to the eigenbasis of R(g) we can write this equation in terms of the characters

∞∑
n=0

qnχsymn(R)(g) = exp

[ ∞∑
k=1

qk

k

d∑
i=1

λki

]
= exp

[ ∞∑
k=1

qk

k
χR(λki )

]
≡ PE[qχR(λi)] (B.12)

where in the last step we defined the Pletystic exponential

PE[f(x)] = exp

[ ∞∑
n=1

1

n
f(xn)

]
, (B.13)

for some arbitrary function f(x). So, we see that we can express the sum over the symmetric tensor products of R
in terms of only the character of R.
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B.1.2 Fermionic Plethystic Exponential

In analogy with above, we derive the sum over the characters of all anti-symmetric tensor products of a representation
R

∞∑
n=0

qnχ∧n(R)(g), (B.14)

For d = 3 and n = 2, we can use Eq. (B.6) to compute the character

χ∧2(R)(g) = tr[∧2(R)] = λ1λ2 + λ1λ3 + λ2λ3. (B.15)

where we used the eigenbasis of R. For arbitrary d and n this becomes

χ∧n(R)(g) = tr[∧n(R)] =
∑

1≤i1≤···≤in≤n

λi1 . . . λin . (B.16)

Plugging this back into Eq. (B.14) we can do a similar computation as for the symmetric case:

∞∑
n=0

qnχ∧n(R)(g) =

∞∑
n=0

qn
∑

1≤i1≤···≤id≤n

λi1 . . . λid =

d∏
i=1

(1 + qλi) = det(1 + qR(g))

= exp

[
−
∞∑
k=1

(−q)k

k
tr[R(g)k]

]
= exp

[
−
∞∑
k=1

(−q)k

k
χR(λki )

]
(B.17)

where we went to the eigenbasis of R again. Defining the anti-symmetric Pletystic exponential as

PEF[f(x)] ≡ exp

[ ∞∑
k=1

(−1)k+1

k
f(xk)

]
, (B.18)

for some function f(x), we finally obtain

∞∑
n=0

qnχ∧n(R)(g) = PEF[qχR(λi)]. (B.19)
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C Lorentz Group

In this appendix we present some background information on the Lorentz group O(3, 1) and it representations. We
denote by Λµν an element of O(3, 1). This matrix obeys the following property:

ηµνΛµρΛ
ν
σ = ηρσ, (C.1)

with ηµν the Minkowski metric. One can show that either det Λ = +1 or det Λ = −1, and we call such transforma-
tions proper and improper respectively. Notice that the product of two proper Lorentz transformations is proper,
meaning that they form a subgroup of O(3, 1). From Eq. (C.1), we note that (Λ0

0)2 −Λi0Λi0 = 1. Therefore either
Λ0

0 ≥ +1, which are called orthochronous Lorentz transformations, or Λ0
0 ≤ −1. It is straightforward to show that

the product of two orthochronous transformations is also orthochronous, so this is also a subgroup of O(3, 1). We
denote by SO(3, 1)o the proper orthochronous subgroup and when it is clear from the context that we mean the
orthochronous transformations, we drop the subscript.

C.1 Lorentz Algebra

For an infinitesimal Lorentz transformation, we can write

Λµν = δµν + iδωµν . (C.2)

Eq. (C.1) can be used to show that
δωµν = −δωνµ. (C.3)

Thus, there are six independent infinitesimal Lorentz transformations and we can divide them into three rotations
Li and three boosts Kj . Such an infinitesimal transformation is both proper and orthochronous and they form the
Lie algebra so(3, 1) of the Lorentz group. A common choice of basis for the generators of the algebra is

L1 = i


0 0 0 0
0 0 0 0
0 0 0 1
0 0 -1 0

 , L2 = i


0 0 0 0
0 0 0 -1
0 0 0 0
0 1 0 0

 , L3 = i


0 0 0 0
0 0 1 0
0 -1 0 0
0 0 0 0

 ,

K1 = i


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , K2 = i


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 , K3 = i


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 , (C.4)

and their algebra24 is given by

[Li, Lj ] = iεijkLk, [Li,Kj ] = iεijkKk, [Ki,Kk] = −iεijkJk. (C.5)

In order to classify the algebra, we make the following change of basis

J iL =
1

2
(Li − iKi), J iR =

1

2
(Li + iKi). (C.6)

Notice that (J iL) and J iR are conjugate to each other. These generators obey the Lie algebra

[J iL, J
j
R] = 0, [J iL, J

j
L] = iεi,j,kJ

k
L, [J iR, J

k
R] = iεi,j,kJ

k
R, (C.7)

thus the splitting of the Lie algebra in terms of two su(2) sub-algebras. Because of the first commutator in Eq. (C.7),
a natural choice for the Cartan subalgebra is the algebra spanned by {JL3 , JR3 }, and we can define the raising and
lowering operators by

J±L =
1√
2

(J1
L ∓ iJ2

L), J±R =
1√
2

(J1
R ∓ iJ2

R), (C.8)

such that
[J3
L, J

±
L ] = ±J±L , [J3

R, J
±
R ] = ±J±R , (C.9)

24This is the same algebra as that of sl(2,C) (viewed as a real Lie algebra), the algebra of SL(2,C) which is the double covering group
of SO(3, 1).
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with all other commutators vanishing. We now read off that the roots (weights of the adjoint representation) are
given by α1 = (1, 0) and α2 = (0, 1). Therefore, the root diagram, Cartan matrix and Dynkin diagram are given by

(1,0)

(0,1)

J3
L →

J3
R

↑

, Aij =
2αi ·αj

(αj)2
=

(
2 0
0 2

)
, A1 ∪A1 = (C.10)

C.2 Representations

We know that a d-dimensional irreducible representation of SU(2) is specified by an integer of half-integer j, where
2j + 1 = d. Eq. (C.7) shows that the Lie algebra of the Lorentz group is that of two SU(2) algebras. As these
two sub-algebras are commuting, we therefore conclude that an irreducible representation of the Lorentz group is
specified by two integers or half integers `1 and `2, so we label these representations by ` = (`1, `2)25. Note that
the dimension of such a representation is equal to (2`1 + 1)(2`2 + 1).

The general decomposition of the tensor products of two irreducible representations (j1, j2) and (k1, k2) is given by
[30]:

(j1, j2)⊗ (k1, k2) =
⊕
`1,`2

(`1, `2), (C.11)

where |j1 − k1| ≤ `1 ≤ j1 + k1 and |j2 − k2| ≤ `2 ≤ j2 + k2.

C.3 Fierz Identities

In EFTs, one often encounters products of four spinors (here spinor refers to Weyl or Dirac spinors) and often we
can relate such operators using Fierz identities [31]. Lets denote spinors by ψ1, ψ2, etc. First note that we can write
ψ2ψ̄1 as a 4× 4-matrix and it is convenient to express this matrix in a basis constructed from the gamma matrices:

ψ2ψ̄1 = a1 + bµγµ + cµνσµν + dµγµγ5 + eγ5. (C.12)

We can determine the coefficients a, ..., e by taking traces. For example, taking the trace of Eq. (C.12) gives

tr[ψ2ψ̄1] = atr[1] = 4a, (C.13)

where we used that the trace of any odd number of γ-matrices is zero. Also the trace of σµν is zero as it is a
commutator. Using the cyclic property of the trace, we conclude

a =
1

4
tr[ψ̄2ψ1] =

1

4
ψ̄1ψ2 (C.14)

Likewise, we can multiply Eq. (C.12) by γρ before taking the trace to get

bµ =
1

4
ψ̄1γ

µψ2. (C.15)

Repeating this process yields

ψ2ψ̄1 =
1

4
(ψ̄1ψ2)1 +

1

4
(ψ̄1γ

µψ2)γµ +
1

8
(ψ̄1σ

µνψ2)σµν −
1

4
(ψ̄1γ

µγ5ψ2)γµγ5 +
1

4
(ψ̄1γ5ψ2)γ5. (C.16)

25In fact, this is not completely true. We get representations of the double covering group SL(2, c) and they are honest SO(3, 1)o
representations if `1 + `2 is an integer [30]
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We can find all Fierz identies from this equation. For example multiply both sides from the left with ψ̄3 and with
ψ4 from the right. We get

(ψ̄3ψ2)(ψ̄1ψ4) =
1

4
(ψ̄1ψ2)(ψ̄3ψ4) +

1

4
(ψ̄1γ

µψ2)(ψ̄3γµψ4) +
1

8
(ψ̄1σ

µνψ2)(ψ̄3σµνψ4)

− 1

4
(ψ̄1γ

µγ5ψ2)(ψ̄3γµγ5ψ4) +
1

4
(ψ̄1γ5ψ2)(ψ̄3γ5ψ4). (C.17)

Similar multiply with ψ̄3γ
λ from the left and with γλψ4 from the right to get (ψ̄3γ

λψ2)(ψ̄1γλψ4). The RHS can
then be simplified using some identities for the gamma matrices. In particular, the RHS simplifies a lot in the case
of Weyl spinors. All Fierz identities can be obtained in this way. Some Fierz identities worth remembering are

(ψ̄1Lγ
µψ2L)(ψ̄3Rγµψ4R) = −2(ψ̄1Lψ4R)(ψ̄3Rψ2L),

(ψ̄1Lγ
µψ2L)(ψ̄3Lγµψ4L) = (ψ̄1Lγ

µψ4L)(ψ̄3Lγµψ2L),

(ψ̄1Rγ
µψ2R)(ψ̄3Rγµψ4R) = (ψ̄1Rγ

µψ4R)(ψ̄3Rγµψ2R). (C.18)
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D Conformal Group

In order to deal with IBP and EOM redundancies in the HS, we will need representations (in particular the characters
of these representations) of the conformal group. In this appendix, we follow the discussion of [32] to construct the
representations in four dimensional space-time. For a review of conformal representations in arbitrary space-time
dimension, see [33].

D.1 Conformal Algebra

Let us start by showing that we can extend the Lorentz group SO(3, 1)o to get the conformal group SO(4, 2). In
general, O(p, q) is the group of real matrices Λ such that

ΛT ηΛ = η, (D.1)

with
η = diag(+1, ...,+1︸ ︷︷ ︸

p

,−1, ...,−1︸ ︷︷ ︸
q

). (D.2)

The generators form the algebra of so(p, q), and they are given by a set of Hermitian operators Mµν = −Mνµ

obeying the following algebra:

[Mµν ,Mρσ] = i
(
ηµρMνσ + ηνσMµρ − ηνρMµσ − ηµσMνρ

)
. (D.3)

We will show in a moment how this relates to the generators J iL,R of Eq. (C.7) that we used in App. C.1 in the case
of so(3, 1). The conformal group of space-time is an extension of the Poincaré group, the Lie group of space-time
isometries:

Rp,q oO(p, q), (D.4)

which includes the orthogonal transformations of Eq. (D.1) and the translations. The algebra of the Poincaré group
is therefore an extension of the algebra of Eq. (D.3):

[Pµ, Pν ] = 0,

[Mµν , Pρ] = i(ηµρPν − ηνρPµ),

[Mµν ,Mρσ] = i(ηµρMνσ + ηνσMµρ − ηνρMµσ − ηµσMνρ), (D.5)

with the momentum operator Pµ as the generator of the translations. We can now extend the Poincaré algebra by
adding the Hermitian operators D and Kµ with the extra commutators

[D,Pµ] = −iPµ,
[D,Kµ] = iKµ,

[Kµ, Pν ] = 2i(ηµνD +Mµν),

[Mµν ,Kρ] = i(ηµρKν − ηνρKµ), (D.6)

with all other commutators involving D and Kµ vanishing. The operators D and Kµ are called the generators of
dilatations and special conformal transformations respectively. We can define the generators Jmn = −Jnm, with
m = −1, 0, 1, ..., p, and n = −1, 0, 1, ..., q, by

Jµν ≡Mµν , J−1µ ≡
1

2
(Pµ −Kµ), J0µ ≡

1

2
(Pµ +Kµ), and J−1,0 ≡ D, (D.7)

and it is straightforward to show that these form the algebra so(p + 1, q + 1) as they satisfy the commutation
relations of Eq. (D.3) [34]. Going back to four space-time dimensions, we can now conclude that SO(3, 1)o can be
extended to the conformal group SO(4, 2), showing that SO(3, 1) is indeed a subgroup.

Instead of working with Hermitian generators, it will be more convenient to redefine some of the generators as
follows: D′ = iD such that D′† = −D′, P ′µ = iPµ, and K ′µ such that K ′†µ = P ′µ. Dropping primes in what follows,
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we get the following non-zero commutators

[D,Pµ] = Pµ,

[D,Kµ] = −Kµ,

[Pµ,Kν ] = 2(ηµνD + iMµν),

[Mµν ,Kρ] = −i(ηµρKν − ηνρKµ),

[Mµν , Pρ] = i(ηµρPν − ηνρPµ),

[Mµν ,Mρσ] = i(ηµρMνσ + ηνσMµρ − ηνρMµσ − ηµσMνρ). (D.8)

We can extract the two sets of SU(2) generators for the Lorentz group from Mµν by defining

J3
L =

1

2
(M23 +M01 + i(M02 −M13)), J3

L =
1

2
(M23 −M01 − i(M02 +M13)),

J+
L =

1

2
(M12 +M03), J+

R =
1

2
(M12 −M03),

J−R = J+†
R , J−L = J+†

L . (D.9)

It is straightforward to show that these satisfy the commutation relations of Eq. (C.8). We denote by h0, h+, and
h− the subspaces generated by H0 = {D,J3

L, J
3
R}, H+ = {Pµ, J+

L , J
+
R }, and H− = {Kµ, J

−
L , J

−
R } respectively. With

this, it follows from Eq. (D.8) that

[h0, h0] ∈ h0, [h0, h+] ∈ h+, [h0, h−] ∈ h−, [h+, h−] ∈ h0, (D.10)

so the elements of h+ (h−) act as raising (lowering) operators on the commuting Cartan sub-algebra h0. As D
commutes with Mµν and therefore also with J±L,R, we get that the weights of J±L,R under h0 are given by

D J3
L J3

R

J±L 0 ±1 0

J±R 0 0 ±1

(D.11)

where we used Eq. (C.9). As Pµ has one Lorentz index, we know that we can take a linear combination that has
the weights of the fundamental Lorentz representation under J3

L,R. In fact, the following combinations achieve this:

Pw = P1 + iP2, Pw̄ = P1 − iP2, Pz = P3 + iP4, Pz̄ = P3 − iP4. (D.12)

Defining similar linear combinations of Kµ, and using [D,Pµ] = Pµ and [D,Kµ] = −Kµ, we get the weights under
h0:

D J3
L J3

R

Pw 1 1
2

1
2

Pw̄ 1 − 1
2 − 1

2

Pz 1 − 1
2

1
2

Pz̄ 1 1
2 − 1

2

D J3
L J3

R

Kw −1 − 1
2 − 1

2

Kw̄ −1 1
2

1
2

Kz −1 1
2 − 1

2

Kz̄ −1 − 1
2

1
2

(D.13)

D.2 Representations

We found that the Cartan subalgebra of the Conformal group is spanned by H0 = {D,J3
L, J

3
R}. As J3

L and J3
R span

the algebra of the Lorentz group, we see that we can label weights of a conformal representation by a set of two
SU(2) quantum numbers ` = (`1, `2), and an extra label ∆, which is the eigenvalue under D. As ∆ is the eigenvalue
under the dilaton D, we can physically associate this with the scaling dimension of a field. From Eq. (D.11) we read
of that the Lorentz generators J3

L,R do not change the weight ∆ under D. However, we see from Eq. (D.13) that
Pµ (Kµ) raise (lower) the scaling dimension by 1. Of course, this is to be expected as the derivative (the generator
of the translations) has scaling dimension 1. As the weights of Pµ under J3

L and J3
R are that of the fundamental

Lorentz representation we see that Pµ shifts weights as follows:

Pµ : (∆, `)→
(

∆ + 1, `⊗
(1

2
,

1

2

))
(D.14)
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As Kµ has precisely opposite weights of Pµ, we see that Kµ reverses the action of Pµ on the weights. Therefore, a
conformal representations can be written as a direct sum of representations R`i of the Lorentz group

RSO(4,2) =
⊕
i

R`i , (D.15)

where all states inside R`i have the same scaling dimension ∆i. The operators Pµ and Kµ move us through all the
R`i , and we can up and down using J±L,R inside a single R`i . We get an infinite sum as the momentum operator Pµ
increases the dimension of the R`i , meaning that we can act with an infinite number of Pµ. However, Kµ decreases
the dimension of the R`i and this implies that there must be some term R` that has lowest dimension. The states
of this term, denoted by |∆, `〉, all have the same scaling dimension ∆ and are annihilated by the Kµ operators.
We can build the whole representation out of the |∆, `〉 by acting with the momentum operators Pµ on these states

|∆, `〉∗ =
{ ∑
nw,nw̄,nz,nz̄

Pnww Pnw̄w̄ Pnzz Pnz̄z̄ × |∆, `〉
}
, (D.16)

where we have denoted the (infinite) spectrum of states by |∆, `〉∗. It is therefore natural to say that the Pµ acts as
a lowering operator on conformal representations (although they are elements of h+), and we call |∆, `〉 the highest
weight state.

D.2.1 Unitary representations

It can be shown that the conformal representation is unitary if one of the following conditions holds for the highest
weight state |∆, `1, `2〉 [35]:

(i) ∆ ≥ `1 + `2 + 2 `1 6= 0, `1 6= 0,

(ii) ∆ ≥ `1 + `2 + 1 `1`2 = 0. (D.17)

In the case where equality does not hold, we call the representation long and all the states of Eq. (D.16) are non-zero.
However, if equality holds in one of the conditions, then we speak of a short representation and some of the states
listed in Eq. (D.16) vanish. To be more precise, we can find a non-zero state |λ〉 on which we can apply a linear
combination of lowering operators aµP

µ such that aµP
µ|λ〉 = 0. This implies that then also all the descendants of

aµP
µ|λ〉 do not occur in the representation. One can show that in 4 dimensional space-time, a short representation

is one of the following cases [32]:

1. In the case `1 6= 0, `2 6= 0,∆ = `1 + `2 + 2, the state |∆ + 1, `1 − 1
2 , `2 −

1
2 〉 and its descendants also vanish in

the representation.

2. In the case `1 = `2 = 0,∆ = 1, the state |3, 0, 0〉 and its descendants are not found in the representation.

3. In the case `1 > 0, `2 = 0,∆ = `1 + 1, the state |∆ + 1, `1 − 1
2 ,

1
2 〉 and its descendants are absent. Note

that when we delete the descendant states |∆ + 1, `1 − 1
2 ,

1
2 〉
∗ from Eq. (D.16) we need to treat them as a

short representation, that is we must only delete the states that do not occur in in the short representation
(∆ + 1, `1 − 1

2 ,
1
2 ). The case `1 = 0, `2 > 0,∆ = `2 + 1 can be treated similar.

D.3 EFTs and Conformal Representations

We can now start thinking about building a conformal representation for the fields of the EFTs. Lets focus on
a single field φ for now, transforming in some representation ` = (`1, `2) of the Lorentz group26. Furthermore,
we assign a mass dimension ∆ to the field. From the above discussion, it is clear that we can build a conformal
representation out of the Lorentz representation by acting with the momentum operator on the states of `. As the
derivative is the momentum operator, we get that the conformal representation R∆,` acts on objects like:

R∆,` ∼


φ

∂µ1φ
∂µ1∂µ2φ

∂µ1
∂µ2

∂µ3
φ

...

 , (D.18)

26And some gauge symmetry group G, but we focus on the Lorentz group now.
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where the highest weight φ is called the primary state. Using that the derivatives commute, we can simply read of
the weights under H0 = {D,J3

L, J
3
R} from

Scaling dim. Spin

φ ∆ `

∂µ1φ ∆ + 1 ( 1
2 ,

1
2 )⊗ `

∂µ1
∂µ2

φ ∆ + 2 sym2( 1
2 ,

1
2 )⊗ `

∂µ1
∂µ2

∂µ3
φ ∆ + 2 sym3( 1

2 ,
1
2 )⊗ `

...
...

...

(D.19)

The conformal representations are very useful for the HS technique because the operators related through EOM
relations correspond with the states that do not appear in the short representations. Furthermore, we can take care
of IBP identities by noting that only the highest weight in Eq. (D.18) is not a total derivative.

D.4 Characters

The characters for a representation R∆,`, with ` = (`1, `2) are given by:

χ∆,` = tr|∆,`〉∗
[
eiθD+iθLJ

3
L+iθRJ

3
R

]
=

∑
nw,nw̄,nz,nz̄

∑
|m1,2|≤l1,2

〈
∆,m1,m2

∣∣eiθD+iθLJ
3
L+iθRJ

3
RPnww Pnw̄w̄ Pnzz Pnz̄z̄

∣∣∆,m1,m2

〉
, (D.20)

which we can easily compute using Eq. (D.19). Defining the U(1)-variables q = eiθD, x1 = eiθLJ
3
L and x2 = eiθRJ

3
R ,

we get

χ∆,`(q, x) =

∞∑
n=0

q∆+nχsymn( 1
2 ,

1
2 )⊗`(x) = q∆χ`(x)

∞∑
n=0

qnχsymn( 1
2 ,

1
2 )(x) ≡ q∆χ`(x1, x2)P (q, x), (D.21)

where we notated x = (x1, x2). Note that the characters of the short representations are modified, which we discuss
in Sec. 4.4.

D.4.1 Character Orthogonality

In order for these characters to be orthogonal, we choose the Haar measure to be∫
dµSO(4,2) =

∫
dµL

∮
dq

2πiq

1

P ∗(q, x)P (q, x)
. (D.22)

with dµL the Haar measure of the Lorentz group. With this, we get the correct normalized orthogonality of the
characters∫

dµSO(4,2) χ
∗
∆,`χ∆′,`′ =

∫
dµL

∮
dq

2πiq

1

P ∗(q, x)P (q, x)

(
q∆χ`(x)P (q, x)

)∗
q∆′χ`′(x)P (q, x)

=

∫
dµL χ

∗
` (x)χ`′(x)

∮
dq

2πiq

q∆

q∆′

= δ`,`′

∮
dq

2πi
q∆−∆′−1

= δ`,`′δ∆,∆′ ,

(D.23)

were we used the orthonormality of the characters of representations of the Lorentz group and that q ∈ U(1).
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E SMEFT Operators

In all tables in this appendix, the first two columns show the explicit operator contraction. The results of the
Hilbert series for H+ and H− are shown in column 3 and 4. The enumeration of CP-invariant operators is given in
column 5, and in column 6 we show a checkmark for every CP-invariant operator.

ψ2Xϕ2 H+ H− 1
2 (H+ +H−) CP-inv.

Ql2Wϕ2 εmn(τ Iε)jk(lmp Ciσ
µν ljr)ϕ

nϕkW I
µν+ h.c. l2ϕ2W + (l†)2(ϕ†)2W 0 l2ϕ2W X

ψ2ϕ4

Ql2ϕ4 εmnεjk(lmp Cl
j
r)ϕ

nϕk(ϕ†ϕ)+ h.c. l2ϕ3ϕ† + (l†)2(ϕ†)3ϕ 0 l2ϕ4 X

ψ4ϕ

Ql3eϕ εjkεmn(ēpl
j
r)(l

k
sCl

m
t )ϕn+ h.c. e†l3ϕ+ e(l†)3ϕ† 0 el3ϕ X

Qleudϕ εjk(d̄pl
j
r)(usCet)ϕ

k+ h.c. d†lueϕ+ dl†u†e†ϕ† 0 dlueϕ X

Q
(1)
l2qdϕ εjkεmn(d̄pl

j
r)(q

k
sCl

m
t )ϕn+ h.c.

2d†l2qϕ+ 2d(l†)2q†ϕ† 0 2dl2qϕ
X

Q
(2)
l2qdϕ εjmεkn(d̄pl

j
r)(q

k
sCl

m
t )ϕn+ h.c. X

Ql2quϕ εjk(q̄mp ur)(lsmCl
j
t )ϕ

k+ h.c. q†ul2ϕ+ qu†(l†)2ϕ† 0 qul2ϕ X

Qlud2ϕ εαβγ(l̄pd
α
r )(uβsCd

γ
t )ϕ̃+ h.c. l†d2uϕ† + l(d†)2u†ϕ 0 ld2uϕ X

Qlq2dϕ εαβγεjk(l̄mp d
α
r )(qβsmCq

jγ
t )ϕ̃k+ h.c. l†dq2ϕ† + ld†(q†)2ϕ 0 ldq2ϕ X

ψ2ϕ3D

Qleϕ3D εmnεjk(lmp Cγ
µer)ϕ

nϕjiDµϕ
k+ h.c. leϕ3D + l†e†(ϕ†)3D 0 leϕ3D X

ψ4D

Ql2udD εjk(d̄pγ
µur)(l

j
sCiDµl

k
t )+ h.c. d†ul2D + du†(l†)2D 0 dul2D X

ψ2ϕ2D2

Q
(1)
l2ϕ2D2 εjkεmn(ljpCD

µlkr )ϕm(Dµϕ
n)+ h.c.

2l2ϕ2D2 + 2(l†)2(ϕ†)2D2 0 2l2ϕ2D2
X

Q
(2)
l2ϕ2D2 εjmεkn(ljpCD

µlkr )ϕm(Dµϕ
n)+ h.c. X

ψ4D

Qlqd2D εαβγ(l̄pγ
µqαr )(dβsCiDµd

γ
t )+ h.c. l†qd2D + lq†(d†)2D 0 lqd2D X

Qed3D εαβγ(ēpγ
µdαr )(dβsCiDµd

γ
t )+ h.c. e†d3D + e(d†)3D 0 ed3D X

Total: 15 30 0 15 15

Table 19: SMEFT operators at mass dimension 7. The first two columns are taken from [28].
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X4, X3X ′ and X2X ′2 H+ H− 1
2 (H+ +H−) CP-inv.

Q
(1)
G4 (GAµνG

Aµν)(GBρσG
Bρσ)

9G4 3G4 6G4

X

Q
(2)
G4 (GAµνG̃

Aµν)(GBρσG̃
Bρσ) X

Q
(3)
G4 (GAµνG

Bµν)(GAρσG
Bρσ) X

Q
(4)
G4 (GAµνG̃

Bµν)(GAρσG̃
Bρσ) X

Q
(5)
G4 (GAµνG

Aµν)(GBρσG̃
Bρσ) -

Q
(6)
G4 (GAµνG

Bµν)(GAρσG̃
Bρσ) -

Q
(7)
G4 dABEdCDE(GAµνG

Bµν)(GCρσG
Dρσ) X

Q
(8)
G4 dABEdCDE(GAµνG̃

Bµν)(GCρσG̃
Dρσ) X

Q
(9)
G4 dABEdCDE(GAµνG

Bµν)(GCρσG̃
Dρσ) -

Q
(1)
W 4 (W I

µνW
Iµν)(W J

ρσW
Jρσ)

6W 4 2W 4 4W 4

X

Q
(2)
W 4 (W I

µνW̃
Iµν)(W J

ρσW̃
Jρσ) X

Q
(3)
W 4 (W I

µνW
Jµν)(W I

ρσW
Jρσ) X

Q
(4)
W 4 (W I

µνW̃
Jµν)(W I

ρσW̃
Jρσ) X

Q
(5)
W 4 (W I

µνW
Iµν)(W J

ρσW̃
Jρσ) -

Q
(6)
W 4 (W I

µνW
Jµν)(W I

ρσW̃
Jρσ) -

Q
(1)
B4 (BµνB

µν)(BρσB
ρσ)

3B4 B4 2B4

X

Q
(2)
B4 (BµνB̃

µν)(BρσB̃
ρσ) X

Q
(3)
B4 (BµνB

µν)(BρσB̃
ρσ) -

Q
(1)
G3B dABC(BµνG

Aµν)(GBρσG
Cρσ)

4G3B 0 2G3B

X

Q
(2)
G3B dABC(BµνG̃

Aµν)(GBρσG̃
Cρσ) X

Q
(3)
G3B dABC(BµνG̃

Aµν)(GBρσG
Cρσ) -

Q
(4)
G3B dABC(BµνG

Aµν)(GBρσG̃
Cρσ) -

Q
(1)
G2W 2 (W I

µνW
Iµν)(GAρσG

Aρσ)

7G2W 2 G2W 2 4G2W 2

X

Q
(2)
G2W 2 (W I

µνW̃
Iµν)(GAρσG̃

Aρσ) X

Q
(3)
G2W 2 (W I

µνG
Aµν)(W I

ρσG
Aρσ) X

Q
(4)
G2W 2 (W I

µνG̃
Aµν)(W I

ρσG̃
Aρσ) X

Q
(5)
G2W 2 (W I

µνW̃
Iµν)(GAρσG

Aρσ) X

Q
(6)
G2W 2 (W I

µνW
Iµν)(GAρσG̃

Aρσ) X

Q
(7)
G2W 2 (W I

µνG
Aµν)(W I

ρσG̃
Aρσ) X

Q
(1)
G2B2 (BµνB

µν)(GAρσG
Aρσ)

7G2B2 G2B2 4G2B2

X

Q
(2)
G2B2 (BµνB̃

µν)(GAρσG̃
Aρσ) X

Q
(3)
G2B2 (BµνG

Aµν)(BρσG
Aρσ) X

Q
(4)
G2B2 (BµνG̃

Aµν)(BρσG̃
Aρσ) X

Q
(5)
G2B2 (BµνB̃

µν)(GAρσG
Aρσ) -

Q
(6)
G2B2 (BµνB

µν)(GAρσG̃
Aρσ) -

Q
(7)
G2B2 (BµνG

Aµν)(BρσG̃
Aρσ) -

Q
(1)
W 2B2 (BµνB

µν)(W I
ρσW

Iρσ)

7W 2B2 W 2B2 4W 2B2

X

Q
(2)
W 2B2 (BµνB̃

µν)(W I
ρσW̃

Iρσ) X

Q
(3)
W 2B2 (BµνW

Iµν)(BρσW
Iρσ) X

Q
(4)
W 2B2 (BµνW̃

Iµν)(BρσW̃
Iρσ) X

Q
(5)
W 2B2 (BµνB̃

µν)(W I
ρσW

Iρσ) -

Q
(6)
W 2B2 (BµνB

µν)(W I
ρσW̃

Iρσ) -

Q
(7)
W 2B2 (BµνW

Iµν)(BρσW̃
Iρσ) -

Table 20: SMEFT operators at mass dimension 8. The first two columns are taken from [28].
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ϕ8, ϕ6D2 and ϕ4D4 H+ H− 1
2 (H+ +H−) CP-inv.

Qϕ8 (ϕ†ϕ)4 (ϕ†ϕ)4 ϕ8 ϕ8 X

Q
(1)
ϕ6 (ϕ†ϕ)2(Dµϕ

†Dµϕ)
2(ϕ†ϕ)3D2 2ϕ6D2 2ϕ6D2 X

Q
(2)
ϕ6 (ϕ†ϕ)(ϕ†τ Iϕ)(Dµϕ

†τ IDµϕ) X

Q
(1)
ϕ4 (Dµϕ

†Dνϕ)(Dνϕ†Dµϕ)

3(ϕ†ϕ)2D4 3ϕ4D4 3ϕ4D4

X

Q
(2)
ϕ4 (Dµϕ

†Dνϕ)(Dµϕ†Dνϕ) X

Q
(3)
ϕ4 (Dµϕ†Dµϕ)(Dνϕ†Dνϕ) X

X3ϕ2

Q
(1)
G3ϕ2 fABC(ϕ†ϕ)GAνµ GBρν GCµρ 2ϕ†ϕG3 0 ϕ†ϕG3 X

Q
(2)
G3ϕ2 fABC(ϕ†ϕ)GAνµ GBρν G̃Cµρ -

Q
(1)
W 3ϕ2 εIJK(ϕ†ϕ)W Iν

µ W Jρ
ν WKµ

ρ 2ϕ†ϕW 3 0 ϕ†ϕW 3 X

Q
(2)
W 3ϕ2 εIJK(ϕ†ϕ)W Iν

µ W Jρ
ν W̃Kµ

ρ -

Q
(1)
W 2Bϕ2 εIJK(ϕ†τ Iϕ)B ν

µW
Jρ
ν WKµ

ρ 2ϕ†ϕW 2B 0 ϕ†ϕW 2B
X

Q
(2)
W 2Bϕ2 εIJK(ϕ†τ Iϕ)(B̃µνW J

νρW
Kρ
µ +BµνW J

νρW̃
Kρ
µ ) -

X2ϕ4

Q
(1)
G2ϕ4 (ϕ†ϕ)2GAµνG

Aµν

2(ϕ†ϕ)2G2 0 (ϕ†ϕ)2G2 X

Q
(2)
G2ϕ4 (ϕ†ϕ)2G̃AµνG

Aµν X

Q
(1)
W 2ϕ4 (ϕ†ϕ)2W I

µνW
Iµν

4(ϕ†ϕ)2W 2 0 2(ϕ†ϕ)2W 2

X

Q
(2)
W 2ϕ4 (ϕ†ϕ)2W̃ I

µνW
Iµν -

Q
(3)
W 2ϕ4 (ϕ†τ Iϕ)(ϕ†τJϕ)W I

µνW
Jµν X

Q
(4)
W 2ϕ4 (ϕ†τ Iϕ)(ϕ†τJϕ)W̃ I

µνW
Jµν -

Q
(1)
WBϕ4 (ϕ†ϕ)(ϕ†τ Iϕ)W I

µνB
µν

2(ϕ†ϕ)2WB 0 (ϕ†ϕ)2WB
X

Q
(2)
WBϕ4 (ϕ†ϕ)(ϕ†τ Iϕ)W̃ I

µνB
µν X

Q
(1)
B2ϕ4 (ϕ†ϕ)2BµνB

µν

2(ϕ†ϕ)2B2 0 (ϕ†ϕ)2B2 X

Q
(2)
B2ϕ4 (ϕ†ϕ)2B̃µνB

µν -

X2ϕ2D2

Q
(1)
G2ϕ2D2 (Dµϕ†Dνϕ)GAµρG

Aρ
ν

3ϕ†ϕG2D2 ϕ2G2D2 2ϕ2G2D2

X

Q
(2)
G2ϕ2D2 (Dµϕ†Dµϕ)GAνρG

Aνρ X

Q
(3)
G2ϕ2D2 (Dµϕ†Dµϕ)GAνρG̃

Aνρ -

Q
(1)
W 2ϕ2D2 (Dµϕ†Dνϕ)W I

µρW
Iρ
ν

6ϕ†ϕW 2D2 2ϕ2W 2D2 4ϕ2W 2D2

X

Q
(2)
W 2ϕ2D2 (Dµϕ†Dµϕ)W I

νρW
Iνρ X

Q
(3)
W 2ϕ2D2 (Dµϕ†Dµϕ)W I

νρW̃
Iνρ -

Q
(4)
W 2ϕ2D2 εIJK(Dµϕ†τ IDνϕ)W J

µρW
Kρ
ν X

Q
(5)
W 2ϕ2D2 εIJK(Dµϕ†τ IDνϕ)(W J

µρW̃
Kρ
ν − W̃ J

µρW
Kρ
ν ) X

Q
(6)
W 2ϕ2D2 εIJK(Dµϕ†τ IDνϕ)(W J

µρW̃
Kρ
ν + W̃ J

µρW
Kρ
ν ) -

Q
(1)
WBϕ2D2 (Dµϕ†τ IDµϕ)BνρW

Iνρ

6ϕ†ϕWBD2 0 3ϕ2WBD2

X

Q
(2)
WBϕ2D2 (Dµϕ†τ IDµϕ)BνρW̃

Iνρ -

Q
(3)
WBϕ2D2 (Dµϕ†τ IDνϕ)(BµρW

Iρ
ν −BµρW Iρ

ν ) -

Q
(4)
WBϕ2D2 (Dµϕ†τ IDνϕ)(BµρW

Iρ
ν +BµρW

Iρ
ν ) X

Q
(5)
WBϕ2D2 (Dµϕ†τ IDνϕ)(Bρ[µW̃

I
ν]ρ − B̃

ρ
[µW

I
ν]ρ) X

Q
(6)
WBϕ2D2 (Dµϕ†τ IDνϕ)(Bρ(µW̃

I
ν)ρ + B̃ρ(µW

I
ν)ρ) -

Q
(1)
B2ϕ2D2 (Dµϕ†Dνϕ)BµρB

ρ
ν

3ϕ†ϕB2D2 ϕ2B2D2 2ϕ2B2D2

X

Q
(2)
B2ϕ2D2 (Dµϕ†Dµϕ)BνρB

νρ X

Q
(3)
B2ϕ2D2 (Dµϕ†Dµϕ)BνρB̃

νρ -

Table 21: SMEFT operators at mass dimension 8. The first two columns are taken from [28].
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Xϕ4D2 H+ H− 1
2 (H+ +H−) CP-inv.

Q
(1)
Wϕ4D2 (ϕ†ϕ)(Dµϕ†τ IDνϕ)W I

µν

4(ϕ†ϕ)2WD2 0 2ϕ4WD2

X

Q
(2)
Wϕ4D2 (ϕ†ϕ)(Dµϕ†τ IDνϕ)W̃ I

µν -

Q
(3)
Wϕ4D2 εIJK(ϕ†τ Iϕ)(Dµϕ†τJDνϕ)WK

µν X

Q
(4)
Wϕ4D2 εIJK(ϕ†τ Iϕ)(Dµϕ†τJDνϕ)W̃K

µν -

Q
(1)
Bϕ4D2 (ϕ†ϕ)(Dµϕ†Dνϕ)Bµν

2(ϕ†ϕ)2BD2 0 ϕ4BD2 X

Q
(2)
Bϕ4D2 (ϕ†ϕ)(Dµϕ†Dνϕ)B̃µν -

Table 22: SMEFT operators at mass dimension 8. The first two columns are taken from [28].
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