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Abstract

This thesis explores a recently developed approach to rescaling symmetry of quantum field

theories in an extension of general relativity. Unfortunately it has not been named yet, but

the model developed by Lucat and Prokopec is best described as gauging Weyl transforma-

tions by a vector field interpreted as space-time torsion. After introducing Riemann-Cartan

geometry as extension of general gelativity with torsion, the appropriate gauge connection

is constructed. A massless, non-minimally coupled scalar field on de Sitter space is selected

to test for the conformal anomaly in the framework of the new theory. Integrating out the

scalar fluctuations yields an effective field theory description, that is determined to one loop

in the scalar field and up to second order in external graviton and torsion perturbations.

By renormalizing the corresponding vertex functions using dimensional regularization, the

Ward-Takahashi identities are shown to remain consistent to arbitrary linear perturbations.

The results are discussed in the context of the trace anomaly.
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1 Introduction

As every physics student learns at some point in their career, physical experiments can only mea-

sure dimensionless quantities which are assigned a physical unit by comparing the experimental

outcome to a reference scale. Any set of physical units is as good as any other and performing

an experiment using a different scale cannot change the result. Consequently, one may start to

wonder if a physical theory can be free of any inherent scale at all. Unsurprisingly, this is indeed

the case and the concept of rescaling invariance has led to many applications in modern physics,

most notably the development of conformal field theories, or CFTs for short.

A universe described by a theory without intrinsic scale could be compared to a fractal like

structure, that is, observed as identical regardless how far one zooms in or out. This stands in

clear contradiction to reality, where one can distinguish between cosmic scales, human scales

and (sub-)atomic scales. As the important physics is different in each regime (general relativity,

classical mechanics and quantum mechanics, respectively), it seems obvious that the symmetry

is not realized today. Accordingly, current physical models contain some elementary scales,

induced by dimensionfull coupling constants. One of them is the mass of the Higgs particle

mh ≈ 125GeV in the standard model of particles, which generates various other mass scales by

Yukawa coupling to different fields. For instance, the fermionic interaction term

Lint = gψ̄hψ (1.1)

is interpreted as a mass term for the fermion ψ in a Higgs field condensate 〈h〉 6= 0. Hence,

mψ = g〈h〉 acts as an apparent mass, where g is the Yukawa coupling constant. In this way, all

fields in the standard model obtain their respective mass; for the Higgs field, however, there is

currently no such explanation and it is thought of as fundamental.

Additionally, when gravity is taken into account, one can combine Newton’s constant GN ,

Planck constant ~ and speed of light c to obtain the Planck length

lP =

√
~GN
c3
≈ 1.6× 10−35 m , (1.2)

which is thought of as a fundamental length scale of physics as it is built from the constants

of nature. For instance, lP is used as a typical length-scale in quantum loop gravity and string

theory or, alternatively, could be thought of as a lattice spacing on a discretized space-time. On

distances shorter than the Planck length, space is expected to look and behave vastly different

as the current understanding of the laws of physics does not extent into this regime. A pressing

question arises immediately: why is this symmetry investigated so thoroughly in research and also

in this thesis, if it is apparently not present in nature? The approach pursued here is that scaling

symmetry ought to be realized by the fundamental theory, valid on scales below lP or at energies
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higher than the Planck mass. In such a theory, no dimensionfull parameter can be present and

all physical scales observed today arise spontaneously, for instance via the condensation of a field

by radiative corrections as in the Coleman-Weinberg mechanism [3]. In order to motivate this

choice, it seems helpful to first get the different notions of the underlying symmetry principle

straight.

Mathematically speaking, a rescaling of dimensionfull parameters is mediated by transforma-

tions of the type

ds2 = gµνdx
µ dxν → Ω2ds2 , (1.3)

where ds2 is the line element and gµν denotes the metric tensor, used to determine lengths.

For constant Ω ∈ R, it is a question of choice if the metric tensor or the coordinates xµ are

changed. The resulting transformation is known as dilation which stretches or contracts space

uniformly, in the sense that an experimenter using the metric Ω2gµν would measure each length

by a factor Ω larger compared to the experimenter using the metric gµν . In the more general

case of Ω(x) being a smooth function of space-time, the transformation (1.3) is known as a

Weyl transformation, which, by definition, can only act on fields and not on coordinates. In this

case, (1.3) should more precisely be written as gµν → Ω2(x)gµν , xµ → xµ, and a theory is said

to be Weyl invariant, if the corresponding action does not change under it. A distinct, yet similar

notion is that of conformal transformations. These are coordinate transformations x→ x̃(x) that

may result in a change of the metric tensor up to a Weyl factor (1.3). As conformal symmetry

transformations are closed under composition, which means that two successive transformations

can be combined into a single one, they form a group, known as the conformal group. Although

the notions are not exactly the same, following common practice, both ’conformal invariance’

and ’Weyl invariance’ shall be used interchangeably in this thesis for theories that exhibit local

rescaling symmetry.

Theoretical and experimental evidence for Weyl symmetry in theories of nature is plentiful.

For instance, the standard model of particles is in fact almost conformal invariant [4]. Except

for the Higgs mass (and the neutrino’s, which could like the electron’s be Yukawa generated),

all coupling constants are dimensionless in four dimensions, which means that they cannot

induce a physical scale. Furthermore, all other terms in the standard model Lagrangian are also

classically conformal. In other words, the standard model presents itself as the first example

of a fundamental theory almost obeying the symmetry principle, which can be made exact if

one considers the Higgs mass to be dynamically generated, e.g. by condensation of a conformal

scalar field.

Another piece of evidence is given by the density fluctuations of the early universe which

are considered the seeds for structure formation of the universe, that eventually developed to

galaxies, clusters of galaxies and the large scale structure visible today. These perturbations are
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described by their statistical properties such as the power spectrum P (k) that determines the

strength of the fluctuations as a function of momentum k. Early studies on galaxy formation

[5] implied an almost flat power spectrum, later confirmed by cosmic microwave background

measurements. That is to say, the fluctuations are nearly independent of the scale (or time) of

their creation with only small corrections up to a few percent. While inflation itself provides an

explanation for this observation, it follows quite naturally in a theory with Weyl symmetry, as

there exists no dimensionfull parameter that could potentially spoil the symmetry.

Other applications of the principle of scaling invariance include the solution of the gauge

hierarchy problem [4, 6] and the study of quantum field theories at renormalization group fixed

points [7]. At such points, the running of the coupling constants as induced by renormalization

ceases and the corresponding physical systems typically become self-similar. In other words, they

look identical on all scales and thus conformal symmetry is realized. This fact has been crucial for

understanding the ultraviolet completion of QCD, for example. In the high energy regime, quarks

and gluons behave essentially as free particles, a phenomenon known as asymptotic freedom.

From a theoretical perspective, the theory runs into a renormalization group fixed point with

vanishing coupling constants.

Therefore, the idea that the fundamental theory of nature lacks any dimensionfull parameter

and thus exhibits Weyl invariance is certainly appealing. However, the symmetry is assumed to

be realized only in the high energy regime, say, at the Planck scale or during inflation of the

early universe.

In [2], the authors have pushed the idea of conformal symmetry even further. They argue,

that just like a coordinate transformation is nothing but a change in the observers point of view,

the same interpretation can be applied to conformal transformations. In this picture, a change of

scale is considered nothing more but a change of reference frame. It also explains the necessity

for Weyl transformations over dilations; just as a diffeomorphism can be considered as a local

Lorentz transformation with Λµν(x) = ∂x̃µ(x)
∂xν , rescalings ought to be local as well. After all,

every experimenter is free to choose their own scale locally for observations in their region of

space-time.

The problem with this construction, however, is gravity, as general relativity ceases to be Weyl

invariant. While there already exist conformal models of gravity, for instance based on the Weyl

tensor, they are plagued by many theoretical obstacles, such as being both classical and quantum

unstable and containing ghost fields [8]. The approach pursued in [2] is different, as gravity is

made invariant by introducing a gauge vector field Tα that compensates for the transformation

(1.3). The authors further show that Tα admits a natural interpretation as torsion, a geometrical

property of space-time absent in Einstein’s theory of relativity. These observations are fantastic
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for many reasons. Not only does this construction yield a consistent and completely conformally

invariant theory, that reduces for vanishing torsion to general relativity, an extremely successful

theory describing the physics of the universe. It furthermore explains why the symmetry is not

observed today. Current measurements are in accordance with vanishing torsion [9], which is

interpreted as the symmetry broken phase. On the other hand, in the early universe, when

densities are high, torsion is known to be more significant and can thus restore Weyl invariance.

This new model has been thoroughly investigated in [1] and indeed appears very promising.

However, there exist more arguments in favor of including these additional degrees of freedom

in the form of space-time torsion. Apart from the purely mathematical reasons, this construc-

tion can, as inflation once did, provide very natural explanations for many problems in modern

theoretical cosmology such as the singularity problem and dark energy. A broader overview of

these benefits will be given in chapter 2 where torsion is properly introduced, but the application

most significant for this thesis is directly related to its role as symmetry restoring gauge field,

namely the resolution of a problem known as the conformal anomaly.

To get a grasp on this anomaly, notice how, in accordance with Noether’s theorem, Weyl

symmetry has direct consequences for the observables of the theory. To wit, consider the change

of an action under the infinitesimal version of (1.3):

gµν → (1 + 2ω)gµν =⇒ S → S +

∫
dDx
√
−g
[
−2√
−g

δS

δgµν
ω(x)gµν

]
(1.4)

Upon recalling the definition for the energy momentum tensor Tµν = −2√
−g

δS
δgµν , demanding

conformal invariance leads to the condition

gµνTµν = 0 . (1.5)

In other words, theories that exhibit Weyl symmetry have a traceless stress-energy tensor. Al-

though being true on a classical level, it was found that upon quantization Tµν may develop a

trace [10], a phenomenon known as the conformal (or trace-) anomaly. Its explicit form depends

on the matter content of the theory, but for a scalar field it is given by [11]

〈T̂µµ〉 = gµν〈T̂µν〉 =
1

16π2

(
1

120
CαβγδC

αβγδ − 1

360
E +

1

180
�R

)
, (1.6)

where Cαβγδ denotes the Weyl tensor, E the Gauss-Bonnet term1, R the Ricci scalar and

� = gµν∇µ∇ν the d’Alembertian operator.

The anomaly has a long and sometimes controversial history and has thus received much

attention in research; see also [12] for an overview. For instance, it might be related to the

1See (6.57) for a definition.
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Hawking effect, which states that due to spontaneous particle-antiparticle pair creations near the

horizon, black holes radiate and therefore evaporate over time. In 2 dimensions, the anomalous

contributions to Tµν have been proven to completely determine the strength of the Hawking

radiation, or vice versa [13]. Moreover, the anomaly has also applications in low energy physics.

As an example, it induces corrections to the partition function of a 2 dimensional statistical system

at a conformally invariant fixed point at finite temperature [14]. The physical significance, but

also the historical development of the anomaly will be discussed in more detail in section 6.4,

where a proof of the identity (1.6) is presented.

In quantum field theories with gauge symmetries, Noether’s theorem is replaced by Ward-

Takahashi identities, which constrain the quantum correlators of the fields. The crucial observa-

tion is that the introduction of a torsion vector as a compensating field for Weyl transformations

leads to a correction to the identity Tµµ = 0 of the form

gµν〈T̂µν〉 − ∇α〈D̂α〉 = 0 , (1.7)

where the vector Dα is known as the dilation current. The proposition is that there will be no

anomaly in the setup with gauged conformal symmetry, that is, no anomalous terms are to be

written on the right-hand side of the Ward identity (1.7). Lucat has proven the absence of �R

in his PhD thesis [1]. The purpose of the present thesis is to continue this investigation for the

other terms on the right-hand side of (1.6). Upon a positive outcome, Weyl symmetry is found

to be respected in the quantum theory, contrary to the statement of the anomaly.

To set up the calculations for proving this proposition, a scalar field on de Sitter space is

selected to test for the anomaly. This choice is motivated by theoretical, but mostly practical

arguments. As the universe can be very accurately described by de Sitter during inflation and also

approaches this space-time asymptotically in the future, the results will have direct applications

to our universe. On the other hand, it also facilitates the explicit calculations as the de Sitter

space has non-vanishing curvature which certainly helps to detect curvature built terms, as the

ones in the anomaly (1.6). Moreover, because of its cosmological significance, much research

about quantization in this space-time has been carried out and can be invoked here.

Straightforward quantization of classical theories typically leads to infinities, that have to

dealt with somehow, a process known as regularization and renormalization. As Weyl invariance

forbids the introduction of a length scale, regularization schemes such as cut-off are ruled out.

Instead, dimensional regularization is the natural choice as it preserves Lorentz and Gauge in-

variance and breaks rescaling symmetry only weakly by logarithmic corrections. To summarize

quickly how it works, calculations are done in an arbitrary, analytically continued number of

space-time dimensions D and only at the end the limit D → 4 is taken. The aforementioned

divergences show in poles 1/(D−4) (regularization), which are removed by addition of so-called
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counterterms, whose purpose is to produce the same infinities but with opposite sign (renormal-

ization).

This thesis is roughly structured as follows. First, in chapter 2 the concept of space-time

torsion as an extension of general relativity is introduced. Building on that, chapter 3 outlines

the construction of gauging conformal symmetry by vectorial torsion as introduced in [2]. The

de Sitter space is defined in chapter 4, and will be used as a classical background upon which

the field theory will be quantized, starting with the scalar field in chapter 5 . The subsequent

chapter 6 contains the main calculations of this thesis. There, the one-loop effective action is

derived in a perturbative setup and the Ward identities are proven. It continues with a proof of

the trace anomaly as it is frequently found in the literature and ends with a discussion about

the relation of the anomaly with the results presented here and in particular, why no anomaly is

found when Weyl symmetry is gauged. The concluding part 7 rounds everything up. Throughout

the entire thesis, conformal symmetry will be used as a guiding principle. The reader should

be acquainted with general relativity and quantum field theory; in particular, familiarity with

dimensional regularization might be helpful.

Notation and Conventions

In this thesis, the speed of light c, Newton’s constant GN and Planck constant ~ are set to

unity, i.e. c = G = ~ = 1.

The Einstein sum convention will always be used unless stated explicitly. Greek indices, such

as α, β, ..., µ, ν, ... take the values 0, 1, .., D − 1, where D is the space-time dimension. The

metric tensor is denoted by gµν with signature (−,+,+,+). If gµν is a metric, then g equals its

determinant.

∇̊ stands for differentiation using the Levi-Civita connection. The covariant derivative in Einstein-

Cartan theory uses the standard ∇ and the conformally gauged derivative is denoted by ∇. The

latter two are introduced in chapters 2 and 3, respectively.

The Riemann tensor is defined as

Rλσµν = ∂µΓλσν − ∂νΓλσµ + ΓλκµΓκσν − ΓλκνΓκσµ . (1.8)

The Ricci tensor is Rµν = Rαµαν and the Ricci scalar is R = gµνRµν .

In order to simplify long expressions the ± symbol is used in connection with the Γ(x) function

and its logarithmic derivative ψ(x) = d
dx ln Γ(x):

Γ(x± y) ≡ Γ(x+ y)× Γ(x− y)

ψ(x± y) ≡ ψ(x+ y) + ψ(x− y) (1.9)
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A Remark Regarding Non-Local Covariant Differentiation

This part concerns a serious issue with the covariant derivative the author had to struggle for some

time to resolve. It is rather technical and can be skipped without affecting the comprehensibility

of the rest of the thesis. Although not crucial at the end of the day, it seemed too important

not to be mentioned.

It is well known that partial derivatives are manifestly local objects as they do not act on functions

at different space-time points,

∂yαA
ν1..νm
µ1..µn(x) = 0. (1.10)

Here Aν1..νmµ1..µn(x) denotes an arbitrary tensor field and ∂yα ≡ ∂
∂yα . It seems natural to demand the

same property from covariant differentiation, that is

∇yαAν1..νmµ1..µn(x) = 0. (1.11)

This, however, is not true in general. Let ∇ be the Levi-Civita connection for now. A straight-

forward calculation shows

gµν(y)∇yα
δ4(x− y)√
−g

= ∇yα
(
gµν(y)

δ4(x− y)√
−g

)
= ∇yα

(
gµν(x)

δ4(x− y)√
−g

)
= gµν(x)∇yα

δ4(x− y)√
−g

+
δ4(x− y)√
−g

∇yαgµν(x), (1.12)

where metric compatibility and the Leibniz rule were used. On the other hand

gµν(y)∇yα
δ4(x− y)√
−g

= gµν(y)∂yα
δ4(x− y)√
−g

= ∂yα

(
gµν(y)

δ4(x− y)√
−g

)
− δ4(x− y)√

−g
∂yαgµν(y)

= ∂yα

(
gµν(x)

δ4(x− y)√
−g

)
− δ4(x− y)√

−g
∂yαgµν(y)

= gµν(x)∂yα
δ4(x− y)√
−g

− δ4(x− y)√
−g

∂yαgµν(y)

= gµν(x)∇yα
δ4(x− y)√
−g

− δ4(x− y)√
−g

∂yαgµν(y), (1.13)

where once more the product rule and the fact that δ4(x−y)√
−g is a scalar in the sense that ∂ δ

4(x−y)√
−g =

∇ δ4(x−y)√
−g were used. Comparison yields

−δ
4(x− y)√
−g

∂yαgµν(y) =
δ4(x− y)√
−g

∇yαgµν(x)

and thus in particular

∇yαgµν(x) 6= 0
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for a general metric gµν . With a bit more effort one can show that the correct expression is

∇yαgµν(x) = −Γλαµ(y)gνλ(x)− Γλαν(y)gµλ(x). (1.14)

It seems worth noting that the right-hand side is exactly what one would compute naively using

the standard rules for covariant differentiation since ∂yαgµν(x) = 0.

So what is the point of all of this? As done in [15], for instance, there appears to be a

common understanding in the physics community that the covariant derivative is local in the

sense of equation (1.11). However, as shown above, this is not the case. Yet, having a local

generalization of partial differentiation is clearly advantageous. One way to resolve the problem

is to use a different covariant derivative than the mathematically unambiguously defined one

and enforce the locality condition (1.11) to hold. This gives rise to a well-defined derivative

operator which is commonly used in the literature and will also be used for the rest of this thesis.

The only subtlety is that one has to be very careful which indices belong to which space-time

points, as transferring tensors to different points will in general give wrong results in combination

with this ’physical’ covariant derivative (even when the points become the same eventually, that

is, for limx→y). The issue of translating indices to different space-time points requires careful

treatment involving bi-local tensors (bitensors) and is postponed to chapter4; see in particular

the discussion around equation (4.19).
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2 Riemann-Cartan Geometry

General relativity (GR) is far from being a complete description of gravitational physics, despite

its tremendous success and large variety of applications [16], such as explaining the expansion of

the universe, gravitational wave physics and deviations from Newton’s law of gravity in the range

of the solar system. There is, as of today, no quantum mechanical formulation of the theory

and its unification with the standard model of particles remains largely unknown. A lot of recent

research concerns this fundamental issue and gave birth to some branches of modern physics,

most famously string theory. Other attempts to cure the shortcomings of general relativity

have led to a variety of so-called extended theories of gravity. As GR is in great observational

concordance with observations, there is little room for such extensions. One approach, nearly as

old as GR itself, is to equip space-time with torsion resulting in a manifold structure known as

Riemann Cartan geometry. In the way that curvature is typically interpreted as a ’bending’ of

the space which causes parallel transport to change the direction of vectors, torsion is frequently

associated with a ’twist’ in space-time. It can result in a shift or rescaling of vectors after parallel

translation.

In the axiomatic derivation of GR, torsion is required to vanish. An early attempt to include

torsion into the theory was via the coupling to spin, in a similar way as GR predicts coupling of the

space-time metric to matter. The resulting theory is known as Einstein-Cartan-Sciama-Kibble

theory [17, 18] and has been intensively investigated. It was found [19] that the interpretation of

torsion as a spin coupling contains the risk of inconsistent predictions and in fact, torsion allows

for much more applications when it is regarded as a free and independent field.

The modern, revived interest in torsion is caused by new ideas to resolve current problems

of cosmology. To name only two of them, torsion might be able to solve the initial singularity

problem [20] (or see also the explanation after equation (3.4)) and there exists an argument

that it could also avert Black Hole singularities. Namely, by investigating collapsing uniformly

distributed thermal matter, one finds in place of a singularity a bounce at finite size, most likely

due to the violation of the null-energy condition and consecutive negative contributions to the

energy momentum tensor from fermions coupled to skew symmetric torsion. Additionally, it can

explain the current accelerated expansion of the universe [21]. Theoretical evidence, or at least

arguments in favor of torsion are therefore abundant. It is expected to be of significance only

in the early, dense universe when all symmetries were restored. Current observations can only

give upper bounds and indeed, torsion is found to be very weak today [9]. Hence, the correction

to GR is very small and Einstein’s theory remains a valid approximation for all its successful

applications. Unfortunately, though, this means that only future experiments can reach a final

verdict about the presence and nature of space-time torsion.
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The following discusses the geometric and algebraic properties of torsion in differential ge-

ometry on an introductory level, mainly following the construction given in the extended review

on gravity with torsion [11]. For more on its geometry see also [22].

A key notion in differential geometry is the covariant derivative. Its non-trivial nature stems

from the fact that partial derivatives are not (that is, do not transform as) tensors on general

manifolds. This is cured by adding another, necessarily also non-tensorial quantity resulting in

the covariant derivative. For instance, its action on a vector field is given by

∇µV λ = ∂µV
λ + ΓλνµV

ν . (2.1)

The connection Γλµν appearing on the right-hand side is not unique, as adding any tensor Cλµν
to it results in another, equally valid definition of the covariant derivative. In general relativity

this choice is restricted by the additional requirements (i) symmetry, Γλµν = Γλ(µν) and (ii) metric

compatibility ∇µgαβ = 0, where indices in parenthesis denote symmetrization,

Γλ(µν) :=
1

2

(
Γλµν + Γλνµ

)
. (2.2)

The unique derivative satisfying (i) & (ii) is known as the Levi-Civita derivative and will be

regarded as a reference point for other possible connections. Here it is denoted with a circle on

top,

∇̊µV λ = ∂µV
λ + Γ̊λµνV

ν , (2.3)

and the connection coefficients can be computed from its defining properties to equal

Γ̊λµν =
1

2
gλσ (∂µgνσ + ∂νgµσ − ∂σgµν) . (2.4)

The failure of covariant derivatives to commute is encoded in the Riemann curvature tensor

[∇̊µ, ∇̊ν ]V λ = R̊λσµνV
σ , (2.5)

or, inserting the connection

R̊λσµν = ∂µΓ̊λσν − ∂νΓ̊λσµ + Γ̊λκµΓ̊κσν − Γ̊λκνΓ̊κσµ . (2.6)

Physically, equation (2.5) describes the effect of parallel transport of the vector V σ along an

infinitesimal rectangle spanned by the xµ and xν coordinate lines. Thus, a non-vanishing right-

hand side indicates the presence of curvature, while spaces with zero Riemann tensor are called

flat. Note that curvature can only change the direction of the vector V σ, but neither its length

nor position.

Relaxing one (or both) of the conditions (i), (ii), that led to the Levi-Civita connection,

results in alternative geometries. Violating requirement (i) gives torsion, while violating (ii)
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gives non-metricity. Frequently, these features are summarized in the statements that torsion

induces displacement and non-metricity changes the length of vectors under parallel transport2.

While there is not so much to say about the latter, as it generally receives the least attention, the

following observation shows that it is potentially of interest on its own. Namely, define condition

(iii) no curvature, that is Rλσµν = 0. The geometrical trinity of gravity [23] states that one

can satisfy (at most) two of the three requirements (i), (ii), (iii) and the resulting theory will be

classically equivalent to general relativity, although they are expected to differ on the quantum

level. Nonetheless, metric compatibility shall be retained here.

The torsion tensor is defined as the antisymmetric part of the connection,

T σµν := Γσ[µν] , (2.7)

where the square brackets denote normalized antisymmetrization,

A[µν] =
1

2
(Aµν −Aνµ) . (2.8)

By construction, it is skewsymmetric in the last two indices. The inversion of the above formula

is

Γσµν = Γ̊σµν +Kσ
µν , (2.9)

where the tensor

Kσ
µν = T σµν + Tµν

σ + Tνµ
σ (2.10)

is known as contorsion tensor, which is antisymmetric in the first two indices. In the presence

of non-vanishing torsion the commutator of covariant derivatives acquires an additional term,

[∇µ,∇ν ]V σ = T λµν∇λV σ +RσλµνV
λ . (2.11)

Using this result, one can examine the effect of torsion on vectors during parallel transport. To

this end, it is helpful to decompose T σµν into 3 Lorentz invariant components:

• The trace Tν = 2
D−1T

λ
λν

• The axial vector (or totally antisymmetric part) Sρ = εµνσρTµνσ

• The tensor qσµν that satisfies qλλν = 0 and εµνσρqµνσ = 0

Each of these can be further categorized depending on whether the contributing components

are time-, light- or space-like. It turns out that the different theoretical applications of torsion

2As shown below, this is not quite correct. Also torsion can affect the length of vectors in parallel translation.
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Figure 2.1: Effect of the torsion trace on the parallel transport of V along W and vice versa.

The failure to yield a closed rectangle is directly proportional to torsion. Note that the parallel

translated vectors lie in the plane spanned by their parent vectors, which is no longer the case if

more components of torsion are included. This graphics is taken from[2].

mentioned before are mediated by different parts in this decomposition of T σµν . Thus, in

general, the torsion used in one theory can be completely different from the torsion used in

other theories. An exhaustive geometrical classification and their different applications can, for

instance, be found in [24]. To summarize the results, the totally antisymmetric part induces a

rotation orthogonal to the trajectory during parallel transport and is therefore linked to parity

and chiral transformation. Likewise, the mixed component qσµν can induce rotation and shear of

vectors and the torsion trace can yield a rescaling of the length of vectors as shown for instance

in figure 2.1. Because Weyl transformation are essentially a change of length scale, it will be

the torsion trace that gives rise to a non-trivial interplay with conformal symmetry. Thus, in the

rest of the thesis, a purely vectorial torsion is assumed and Sρ and qσµν are set to zero.

For a purely vectorial torsion, the trace can be inverted to obtain the torsion tensor, contorsion

tensor and connection:

T σµν = δσ [µTν] (2.12)

Kσ
µν = gµνT

σ − δσνTµ (2.13)

Γσµν = Γ̊σµν + gµνT
σ − δσνTµ (2.14)

Given the connection coefficients (2.14), the Riemann curvature tensor is computed in the same

12



way as in general relativity:

Rλσµν = ∂µΓλσν − ∂νΓλσµ + ΓλκµΓκσν − ΓλκνΓκσµ

= R̊λσµν − 2gσ[µ∇̊ν]T
λ + 2δλ[µ∇̊ν]Tσ − 2δλ[µgν]σTκT

κ − 2gσ[µTν]T
λ + 2δλ[µTν]Tσ

Contractions yield the Ricci tensor and Ricci scalar, respectively:

Rµν = Rλµλν = R̊µν + gµν(∇̊λT λ − (D − 2)TλT
λ) + (D − 2)(∇̊νTµ + TµTν) (2.15)

R = gµνRµν = R̊+ 2(D − 1)∇̊µTµ − (D − 1)(D − 2)TµT
µ (2.16)

Note that the Ricci tensor is not symmetric due to the term ∇̊νTµ. This is contrary to GR,

where both sides of the Einstein equations

R̊µν −
1

2
gµνR̊ = 8πTµν

are manifestly symmetric in µ and ν. In other words, the presence of torsion allows for a

non-symmetric stress-energy tensor.

The Weyl tensor is defined as the traceless part of the Riemann curvature tensor, but having

the same symmetries. It is invariant under a Weyl transformation and is thus naturally of interest

in theories with conformal symmetry. Taking into account the correct index symmetries, one

finds that it is given by

Cρσµν = Rρσµν −
2

D − 2

(
Rσ[νgµ]ρ −Rρ[νgµ]σ

)
+

2

(D − 1)(D − 2)
gρ[µgν]σR

= R̊ρσµν − 2gσ[µ∇̊ν]Tρ + 2gρ[µ∇̊ν]Tσ − 2gρ[µgν]σTκT
κ − 2gσ[µTν]Tρ + 2gρ[µTν]Tσ

− 2

D − 2
gρ[µR̊ν]σ −

2

D − 2
gρ[µgν]σ∇̊κT κ + 2gρ[µgν]σTκT

κ − 2gρ[µ∇̊ν]Tσ − 2gρ[µTν]Tσ

+
2

D − 2
gσ[µR̊ν]ρ +

2

D − 2
gσ[µgν]ρ∇̊κT κ − 2gσ[µgν]ρTκT

κ + 2gσ[µ∇̊ν]Tρ + 2gσ[µTν]Tρ

+
2

(D − 1)(D − 2)
gρ[µgν]σR̊+

4

D − 2
gρ[µgν]σ∇̊κT κ − 2gρ[µgν]σTκT

κ

= R̊ρσµν −
2

D − 2

(
R̊σ[νgµ]ρ − R̊ρ[νgµ]σ

)
+

2

(D − 1)(D − 2)
gρ[µgν]σR̊ = C̊ρσµν (2.17)

That is, the Weyl tensor does not depend on Tµ. One could interpret this as another hint about

the connection of Weyl symmetry and the torsion trace.

In the perturbative picture employed in this thesis, the geometrical quantities metric and

torsion will be treated as external fields. Thus, there is no need to worry about quantization

of either of them. However, to get a full picture one should include the effects of propagating

torsion, which is still an active field of research and new tests for the detection of its imprints

are proposed regularly [25], [26].

13



3 Weyl Invariant Geometry with Torsion

In this chapter, the techniques developed in the preceding section are refined to create the

framework of the Weyl invariant theory, which will be used in the rest of the thesis. Recall the

definition of a Weyl rescaling (1.3):

gµν → Ω2(x)gµν (3.1)

Equivalently, one can say that the metric is a field of conformal weight w = 2. The first proposal

to introduce a fundamental field compensating for this transformation was by Hermann Weyl

himself using the Weyl vector Wα defined by

∇αgµν = Wαgµν . (3.2)

In the language of chapter 2 this means that metric compatibility of the covariant derivative is

violated. Despite looking very promising when comparing (3.2) with (3.1), this idea was not

further pursued after a criticism from Einstein: Since the metric is used to measure distance,

and therefore proper time, it cannot change under parallel transport, as equation (3.2) suggests.

If it would, then different observers reuniting after traveling along distinct paths could not agree

on the time lapse passed, since this is now a path-dependent quantity. In other words, the

absolute notion of time, which is crucial to define the causal structure of space-time, would

become meaningless.

Since, in chapter 2, the trace of the torsion tensor was shown to change the length of vectors

as well, another natural candidate to absorb transformation (3.1) into a geometric redefinition

is the usage of torsion. This can yield a self-consistent, conformally invariant theory which shall

be outlined below, following the derivation in [2].

To obtain an intuition about the required transformation for the torsion trace, it is sufficient

to consider the change of the Ricci scalar of general relativity under the infinitesimal version of

(3.1):

gµν → (1 + 2ω(x))gµν =⇒ R̊→ R̊− 2(D − 1)�̊ω − (D − 1)(D − 2)(∇̊ω)2 (3.3)

A naive comparison with the expression for the Ricci scalar in Riemann-Cartan geometry (2.16)

shows that the transformation cancels to linear order in ω for the choice Tµ → Tµ+∂µω. In fact,

on a closer inspection, one finds that this cancellation is exact to all orders when properly taking

into account the transformation of the covariant derivative in (2.16). While being far from a

proof, of course, this transformation is arguably the most natural choice, as it has been shown

to leave invariant the Riemann tensor (and its contractions), Geodesic equation, Raychaudhuri

equation and was already considered in the literature before [27].
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Because of its significance, this main result shall be rephrased once more: Under the combined

conformal transformations

gµν → e2ω(x)gµν ,

Tµ → Tµ + ∂µω(x) , (3.4)

the Riemann tensor and therefore the left-hand side of the Einstein equations are invariant. From

a physical perspective, this means that the scale transformations can be pushed forward onto

the same level as diffeomorphisms, as they also leave the geometry unaltered, but correspond to

a change of frame. The same interpretation can now be applied to conformal transformations,

describing nothing more than the different observers. Moreover, this also explains how the intro-

duction of torsion can solve the singularity problem, which is defined as geodesic incompleteness

of space-time. Upon performing the transformation (3.1), a finite range of proper time can

be stretched to infinite length making the singularity unreachable. This statement is further

supported by the investigation of nearby geodesics, governed by the Jacobi equation. Torsion

eventually slows down approaching geodesics preventing them from running into a singularity

[2].

While the geometric side of the Einstein equations has been found invariant under (3.4), the

right-hand side is in general not. Explicitly, a rescaling implies

√
−g → eDω(x)√−g ,

Tµν =
−2√
−g

δSm
δgµν

→ e−(D−2)ω(x)Tµν , (3.5)

where the matter action Sm is assumed to be conformally invariant. This issue is most easily

resolved by replacing the coupling constant, GN , on the matter side by a scalar field (dilaton),

Rµν −
1

2
gµνR =

α2

Φ2(x)
Tµν . (3.6)

Here α2 is a dimensionless coupling constant and the scalar field is required to have a conformal

weight of wΦ = −(D− 2)/2. Under these assumptions, the altered Einstein equations (3.6) are

conformal in any space-time dimension D. They follow from the action

S =
1

α2

∫
dDx
√
−gΦ2R+ Sm . (3.7)

Of course, this means that Newton’s constant GN is no longer regarded as a fundamental

constant of nature, but rather generated as a condensate of some scalar field in a similar way as

the Higgs field condensate generates the mass of particles in the standard model.
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A final remark concerning the transformation of Tµ is in order. While (3.4) resembles

the gauge transformation of an abelian U(1) symmetry, these two concepts are in fact very

distinct. Most notably, the gauge group U(1) is compact (that is, the gauge parameter is

periodic α ∼ α + 2π), which causes the electromagnetic charge to be quantized. On the other

hand, there is no such restriction for Weyl transformations as the scale can be changed by any

real number. There exist more observable differences between the two cases, which are for

instance discussed in [26], but they are of no importance for considerations in this thesis.

The search for conformal invariant theories requires the introduction of an appropriate gauge

connection. Consider the derivative of some tensor field of type ( pq ) as it might appear in the

action,

∇λA
µ1···µp
ν1...νq , (3.8)

which transforms under a conformal rescaling as

∇λA
µ1···µp
ν1...νq → e(p−q)ωe−ω∇λA

µ1···µp
ν1...νq +A

µ1···µp
ν1...νq (p− q)e(p−q)ωe−ω∇λω . (3.9)

To get rid of the second piece one thus defines

∇λA
µ1···µp
ν1...νq := (∇λ + wgTλ)A

µ1···µp
ν1...νq (3.10)

such that the transformation of the torsion trace cancels the additional term on the right-

hand side of (3.9). The integer wg = q − p is known as the geometrical conformal weight.

Unfortunately this is not yet the end of the construction of the Weyl invariant derivative. Physical

fields can, due to their units, have an internal conformal weight as well. An an example, consider

the kinetic term of a scalar field∫
dDx
√
−g
(

1

2
gµν∂µφ∂νφ

)
.

Rescaling invariance of the action requires that φ transforms as

φ(x)→ e−
D−2
2
ωφ(x). (3.11)

The conformally invariant derivative acting on the scalar would thus be

∇µφ = (∇µ − wTµ)φ =

(
∂µ +

D − 2

2
Tµ

)
φ , (3.12)

where the real number w will be called the scaling dimension of the field. The conformal

covariant derivative ∇ is obtained by combining the two possible extra contributions due to the

geometrical weight and physical unit. It acts on a physical field Ψ as

∇µΨ = ∇µΨ + (wg − w)TµΨ , (3.13)
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with wg its geometrical weight, that is wg = q − p for a tensor field of type ( pq ). Notice that ∇
maintains metric compatibility, because the geometric weight of gµν equals its scaling dimension

of w = 2:

∇λgµν = ∇λgµν = 0 (3.14)

As a second instructive example, consider a vector field Aν . Its scaling dimension w can be

found from the kinetic term gµρgνσFµνFρσ to be w = −(D − 4)/2 and the geometrical weight

is wg = 1, because it has one lower index. Thus, application of equation (3.13) implies

∇µAν = ∇µAν +
D − 2

2
TµAν

= ∇̊µAν + TνAµ − gµνTλAλ +
D − 2

2
TµAν , (3.15)

which also shows how to step-by-step calculate the conformal covariant derivative.

Having established the correct way to use the torsion trace as a gauge boson for conformal

transformations, the non-minimally coupled scalar field action of general relativity,

Sφ =

∫
dDx
√
−g
[
−1

2
gµν∂µφ∂νφ−

1

2
m2φ2 +

1

2
ξR̊ φ2 .

]
(3.16)

is refined according to the minimal coupling procedure ∇̊ → ∇, R̊→ R to yield

Sφ =

∫
dDx
√
−g
[
−1

2
gµν∇µφ∇νφ−

1

2
m2φ2 +

1

2
ξRφ2

]
=

∫
dDx
√
−g
[
−1

2
gµν

(
∂µφ+

D − 2

2
Tµφ

)(
∂νφ+

D − 2

2
Tνφ

)
− 1

2
m2φ2 +

1

2
ξRφ2

]
.

(3.17)

Observe that the non-minimal coupling term Rφ2 is automatically conformal, as R → e−2ωR

under (3.4) due to the inverse metric in R = gµνRµν and the Ricci tensor being invariant. The

conformal weight of this term is thus equal to −2− 2(D−2
2 ) = −D which compensates the +D

scaling dimension of
√
−g. Only the mass term can spoil the symmetry. This seems natural, as

a mass would introduce a (length-) scale into the theory which cannot be present when Weyl

invariance is demanded. Thus, when necessary, m2 will be set to 0.
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4 The de Sitter Space-Time

This chapter defines the background geometry which is set up in the framework of general

relativity, so that there will be no torsion. For a review about the history of cosmology, see [28].

About a century ago, Edwin Hubble discovered in 1929 that the universe is expanding. By

that time, Friedmann and Lemâıtre had already found their solution

ds2 = −dt2 + a2(t)dx2 (4.1)

of the Einstein equations, which can also predict an expanding space via an increasing scale

factor a(t). Under the fundamental assumptions of homogeneity and isotropy on large scales

(' 100 Mpc3), which are both confirmed by experiments, this solution is found by modeling the

universe as an ideal fluid with spatially constant energy density. Further generalizations of (4.1)

include spherical and hyperbolic spatial geometry and these solutions are commonly known as

Friedmann–Lemâıtre–Robertson–Walker (FLRW) space-times.

Over the decades, more observations led to the development of the standard model of cosmol-

ogy, according to which the universe went through a stage of accelerated expansion (a(t) ∝ eHt)
shortly after the big bang, also known as inflation. This stage was followed by the eras of radi-

ation (a(t) ∝ t1/2) and matter (a(t) ∝ t2/3) domination and current observations indicate that

the universe is again in a state of accelerated expansion (a(t) ∝ eΛt). To our current knowl-

edge, despite their similar behavior, the two stages of accelerated expansion are not related.

For instance, most popular inflationary models are driven by a scalar field condensate known as

the inflaton, while all observations are consistent with the late time acceleration being driven

by the cosmological constant Λ, even though more general models have been proposed as the

explanation.

A space-time (4.1) with a(t) = eHt is known as de Sitter space (dS), and the early universe

is a very good approximation. Indeed, an exact de Sitter solution would cause eternal inflation in

obvious conflict with observation and hence this era is called quasi de Sitter stage. Nonetheless,

because it is such a close approximation, understanding elementary physics in this space-time

is crucial to obtaining a deeper understanding of the nature of inflation. Moreover, obser-

vations suggest that de Sitter geometry is the one asymptotically approached by our universe.

The remainder of this chapter is therefore devoted to a thorough introduction to this space-time.

The geometrical discussion follows the lines of [29] with some additional remarks from [30],

[31]. A way to visualize the D dimensional de Sitter space dSD that makes its symmetries

manifest is via the embedding into the (D + 1) dimensional Minkowski space. In this picture,

3 1parsec ≡ 1 pc ≈ 3.1× 1016 m ≈ 3.3 ly
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Figure 4.1: Embedding of the 2 dimensional de Sitter dS2 space into 1+2 dimensional flat

Minkowski space. Horizontal/spatial sections correspond to circles S1. This graphic is included

from[29].

the de Sitter space of radius 1/H is given as the hypersurface parameterized by

−X2
0 +X2

1 + . . .+X2
D =

1

H2
. (4.2)

An example of this embedding for the 2 dimensional case can be seen in figure 4.1 which also

reflects the hyperbolic nature of equation (4.2). The embedding gives an easy way to find the

isometries of de Sitter space, which is analogous to finding the symmetry group SO(3) in the

more familiar context of the embedding of the sphere S2 in R3. The symmetries of the ambient

Minkowski space that also leave the embedding (4.2) invariant are the usual rotations of the

D-sphere and boosts. For each spatial direction there is one linearly independent boost, so that

#isometries of dSD =
D(D − 1)

2
+D =

D(D + 1)

2
,

having thus established that de Sitter is a maximally symmetric space as it contains the maximal

number of Killing vector fields. There are countless coordinate systems on de Sitter, each

constructed to highlight certain features of the space. Two of them are of primary interest here.

First, introduce the so-called planar or flat-slicing coordinates (t, xi) via the transformations

X0 =
1

H
sinhHt+

H

2
xix

ieHt ,

Xi = xieHt , i = 1, · · · , D − 1, (4.3)

XD =
1

H
coshHt− H

2
xix

ieHt .
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These coordinates cover only half of the space as it can intuitively be seen by the constraint

X0 + XD = 1
H e

Ht > 0. However, every point of de Sitter can still be reached if one includes

the antipodal transformation

Xa(t, x)→ X̂a(t, x) ≡ −Xa(t, x) (4.4)

that mirrors all coordinate values about the origin of the ambient Minkowski space. The antipodal

transformation will return below when examining the causal structure. The induced metric in

this coordinate system reads

ds2 = −dt2 + e2Htδijdx
idxj , (4.5)

which confirms the previous result that de Sitter space is equivalent to a spatially flat FLRW

space-time with scale factor

a(t) = eHt .

By performing yet another transformation of the time coordinate given by dη = dt
a , it is possible

to write the line element in conformally flat form

ds2 = a2(η)(−dη2 + dx2) (4.6)

with scale factor

a(η) = − 1

Hη
.

The parameter η is called conformal time and has range η ∈ (−∞, 0) for an expanding universe

or η ∈ (0,∞) for a contracting one. Unless stated differently conformal time shall be used in

the remainder of this thesis.

Having established the preferred coordinate system one can readily examine differential geometry

on de Sitter space. Recall the metric from equation (4.6):

gµν = a2(η)ηµν (4.7)

Either direct calculation or using the formulas for maximally symmetric space-times gives the

Riemann tensor:

R̊µνρσ = 2H2gµ[ρgσ]ν (4.8)

Also recall the notation Å used for quantities that are computed with the Levi-Civita connection

Γ̊σµν =
1

2
gσλ (∂µgνλ + ∂νgµλ − ∂λgµν) = Ha

(
δ0
µδ
σ
ν + δ0

νδ
σ
µ − ησ0ηµν

)
, (4.9)
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where the last evaluation holds for conformal coordinates. Contractions yield the Ricci tensor

and scalar, respectively:

R̊µν = R̊λ µλν = H2(D − 1)gµν

R̊ = H2D(D − 1) (4.10)

It is worth noting that the de Sitter space-time is also a solution to the vacuum Einstein equations

with cosmological constant,

R̊µν −
1

2
R̊gµν + Λgµν = 0 . (4.11)

Insertion of the Ricci tensor yields the relation between Hubble constant and cosmological con-

stant,

H2 =
2Λ

(D − 1)(D − 2)
.

Considering de Sitter as cosmological fluid with an equation of state ρ = −p (inflation) or as

vacuum solution at the price of a cosmological constant (current acceleration) is just a physical

re-interpretation. Mathematically they are equivalent and describe the same space-time.

To further explore the causal structure of de Sitter, it is helpful to construct its Penrose diagram.

Recall the 3 defining properties of a Penrose (or conformal) diagram: (i) it covers the entire

space-time, (ii) light rays traverse under ±45◦ and (iii) the diagram has finite size. Although

metric (4.6) is already in conformal form, that is, null geodesics are given by x = x0 ± η and

would thus show as lines with slope ±45◦ in a (η, x) diagram, neither of the other conditions (i),

(iii) are satisfied. Both coordinate ranges are infinite, and as remarked above, the coordinates

do not cover the full space. Instead, it is easier to start directly from the embedding (4.2) and

perform the transformations

X0 = ±
√

1

cos2 T
− 1 ,

Xi = wi
1

cosT
, (4.12)

where the domain of T is (−π/2, π/2) and the + should be chosen for T ∈ (0, π/2) and − for

T ∈ (−π/2, 0). The wi with i = 1, . . . , D are an arbitrary, but redundant coordinate system

of the (D − 1)-sphere and typically parameterized by (D − 1) angles θ1, . . . , θD−1. Hence, all

coordinates have finite range and the Penrose diagram will be drawn with axes (θ, η) belonging

to the metric

ds2 =
1

cos2 T
(−dT 2 + dθ2 + dΩ2

D−2), (4.13)

where dΩ2
D−2 denotes the metric of the (D − 2)-sphere. Figure 4.2 shows the causal structure
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Figure 4.2: Conformal diagram for de Sitter space. Horizontal axis: θ with θ = 0 at the north

pole and θ = π at the south pole. Each interior point corresponds to a SD−2 while the poles are

timelike lines. A horizontal section is thus an entire SD−1. Also indicated are past- and future

timelike infinity I+, I− as well as the past and future horizon (dashed lines) for an observer at

the north pole (or south pole, respectively). This graphic is taken from[29].

of de Sitter space. Perhaps the most prominent feature is the existence of horizons. An observer

at the north pole θ = 0 will never be able to observe events that occur at space-time points in

the upper right corner of the diagram, because there is not enough (conformal) time left for the

events to reach him. This future horizon is sometimes called curvature radius of de Sitter space.

Similarly, events at the north pole can only influence the upper left half of the diagram. The

intersection of the causal past (bottom left) and causal future (top left) of an observer at the

north pole is therefore called the (northern) causal diamond or causal patch. It is mapped to

the same region in the southern hemisphere by the antipodal transformation (4.4). Both causal

patches are completely causally disconnected and for simplicity one typically restricts to one of

them when considering a physical application, so that all points can be in causal contact.

For doing physics, in particular for comprehending how events at point x can be observed

at point x′ one needs a profound understanding of distance in de Sitter space. Once more, an

analogy with a lower dimensional and more familiar case can provide helpful intuition. Consider

two points x and x′ on a sphere of radius R. The unique SO(3) invariant distance between

them is given by the angle θ swept out by a great circle, the geodesic on the sphere. Thus,

l(x, x′) = Rθ is called the geodesic distance between the points. However, if one imagines the

sphere to be embedded into R3 via δijXiXj = R2, a natural and useful notion of separation

appears in form of the quantity Z defined by R2Z ≡ δijXiX
′
j = R2 cos θ. The same construction

will now be applied to de Sitter space. Let l(x, x′) be the unique SO(1, D−1) invariant geodesic

distance between two points x, x′ in dSD. It can be related to the invariant distance defined by
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Figure 4.3: Causal structure of de Sitter space using the distance function y. The wavy line at

η = 0 corresponds to future infinity. The antipodal point of x is denoted by x̂. Graphics adapted

from[32]

the embedding (4.2) via

Z = H2 ηijX
iX ′j = cosHl, i, j = 0, 1, . . . , D. (4.14)

The function Z is frequently used in the literature as de Sitter invariant distance. A more

convenient choice for calculations is the function y(x, x′) defined by 1− y
2 = Z, or in terms of

the geodesic distance

y(x, x′) = 4 sin2

(
Hl

2

)
. (4.15)

It vanishes for null separation which makes the advantage of the variable y as a more intu-

itive generalization for distance from special relativity even more apparent. In the conformal

coordinates (4.6) it takes the form

y(x, x′) = H2aa′∆x2 =
−(η − η′)2 + ∆~x2

ηη′
. (4.16)

The causal structure of de Sitter space using the y coordinate is shown in figure 4.3. The

geodesic distance l and hence y vanish for points x′ on the lightcone of x, while the lightcone
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of the antipodal point x̂ is given by y(x, x′) = 4. Notice, however, that the antipodal point is

not covered by the conformal coordinate system because η is strictly negative there.

Another interesting feature of the distance function y is contained in its derivatives. By using

equation (4.16) one can verify

∇̊µ∇̊ν y = (2− y)H2gµν , (4.17)

so that the metric can be recovered as a coincidence limit:

lim
x′→x

1

2H2
∇̊µ∇̊νy = gµν(x) (4.18)

This observation motivates the definition

g̃µρ′(x, x
′) := − 1

2H2
∇̊µ∇̊′ρy (4.19)

as a bilocal generalization of the metric tensor4, where the additional minus accounts for the

differentiation at x′ (∇′ ≡ ∇x′) instead of x. From a differential geometric point of view, g̃µρ′

behaves as a covector at both x and x′ and hence it is sometimes called a bivector. Its purpose

is to translate other (co-)vectors between the two points in a consistent manner, for instance

gµν g̃µρ′∂ν
δD(x− x′)√

−g
= −∂′ρ

δD(x− x′)√
−g

, (4.20)

as an explicit calculation confirms. The notation with a prime on the index ρ in g̃µρ′ indicates

that the corresponding derivative is calculated in the tangent space of x′. It is indispensable to

keep track of this information, because the covariant derivative used in this thesis does not act

on indices at different points. The bilocal metric also reduces to the metric tensor at coincidence,

lim
x′→x

g̃µρ′ = gµρ , (4.21)

though it is not recommended to write it this way as derivatives acting on it will likely give wrong

results. In particular, (4.21) does not5 imply

∇̊α
(
g̃µρ′δ

D(x− x′)
)

= ∇̊α
(
gµρδ

D(x− x′)
)
, (4.22)

since the covariant derivative is sensitive to changing the space-time point of indices it is acting

on. The bitensor g̃µρ′ facilitates the computation of many bilocal quantities and will appear

frequently in the remainder of this thesis. Appendix A contains all necessary identities for the

distance function y including g̃µρ′ .

4Another, more commonly used choice in the literature is the so called parallel propagator ḡµρ′ :=

2
(
1− y

4

)
∇µ∇′ρ ln

(
1− y

4

)
. Together with the unit vectors nµ := 1

H
√

y
4

√
1− y

4

∇µ y4 (and similarly at x′) it forms

a basis for maximally symmetric bilocal tensors (bitensors), as each such tensor can be expanded in terms of the

metric, parallel propagator, unit vectors and derivatives thereof. While having advantages on their own, using

(4.19) as bilocal metric is more convenient for the calculations in this thesis. See also [33, 15].
5See also the comment at the end of the introduction. Relation (4.22) would perfectly hold if ∇ was the

proper covariant derivative instead of the ’physical’ one which is used in this thesis.
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5 Non-Minimally Coupled Scalar Field

The theory under consideration will be a massive scalar field coupled to gravity

L = −1

2
gµν∇µφ∇νφ−

1

2
m2φ2 +

1

2
ξRφ2 , (5.1)

where ξ is the non-minimal coupling parameter. Note that the φ here should not be considered

the inflaton field, but rather a so-called spectator during the de Sitter-like stages of the universe.

This means that φ is assumed not to contribute significantly to the energy density and thus also

not to change the cosmic evolution. Its sole purpose is to test the quantum behavior of the

geometric quantities. In other words, the theory can be quantized around the vanishing expec-

tation value of the scalar field without impact. In this picture, the quadratic action decouples

fluctuations of torsion and the graviton from the scalar sector, which implies that they can be

considered separately. In particular, quantization of the scalar field can be performed on de Sitter

space with vanishing torsion, which will be assumed for the rest of this chapter.

The equation of motion follows by varying the action S =
∫
dDx
√
−gL with respect to φ,

(�̊−m2 + ξR̊)φ = 0 , (5.2)

which is of course the familiar Klein-Gordon equation with an effective mass

m2
eff := m2 − ξR̊ .

The stress-energy tensor of the theory is given by

Tµν :=
−2√
−g

δSφ
gµν

= ∂µφ∂νφ+ gµνL − ξ(R̊µν + gµν�̊− ∇̊µ∇̊ν)φ2 , (5.3)

where it is useful to recall the variation of the Ricci scalar δR̊ = (R̊µν + gµν�̊ − ∇̊µ∇̊ν)δgµν .

Tµν becomes traceless for ξ = − (D−2)
4(D−1) , or ξ = −1

6 in 4 dimensions, and thus this value will be

referred to as conformal coupling.

After establishing these basic results, the next step is the quantization of the scalar degree

of freedom, that is, promoting the field φ to an operator φ̂. However, quantization on curved

backgrounds is known to be a delicate matter [34, 35]. For instancen, the definitions of a vacuum

state and excited, n-particle states become typically ambiguous in the presence of curvature. For

de Sitter space it is known that there exists a one parameter family of vacuum states, so called

α vacua. As there is no global timelike Killing vector field, also the definition of energy becomes

a frame dependent quantity. Luckily, most of these problems are of minor interest for the work

in this thesis. On the contrary, it will be sufficient for now to know the propagator of the scalar

field, that shall be determined now.
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Starting point is the Wightman function [29]

G(x, x′) := 〈Ω|φ̂(x)φ̂(x′)|Ω〉 (5.4)

where the state |Ω〉 is chosen to be the Bunch-Davies vacuum, which is defined by reducing to

the flat space limit in the far past η → −∞. G(x, x′) satisfies the free field equation

(�̊−m2)G(x, x′) = 0 , (5.5)

which can easily be solved under the reasonable assumption of de Sitter invariance, so that

G(x, x′) = G(y(x, x′)). Using for instance the expression (4.16) for the de Sitter invariant

distance y(x, x′) one finds the action of the d’Alembertian on a function of y to be given by

�̊
H2

F (y) = (4y − y2)
d2F (y)

dy2
+D(2− y)

dF (y)

dy
. (5.6)

The homogeneous equation of motion thus reads[
(4y − y2)

d2

dy2
+D(2− y)

d

dy
−
m2

eff

H2

]
G(y) = 0 , (5.7)

which is known as Euler’s hypergeometric differential equation. Its solution is the hypergeometric

function

G(y) = c× 2F 1

(
D − 1

2
+ ν,

D − 1

2
− ν;

D

2
; 1− y

4

)
, (5.8)

where ν2 = (D−1
2 )2 − m2

eff
H2 and a so far arbitrary constant c. Physical requirements will both

yield the value for c and also modify the right-hand side slightly. The hypergeometric function

can be expanded as an infinite series

2F 1 (a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, (5.9)

where (d)n denotes the Pochhammer symbol which has the two useful representations

(d)n =
Γ(d+ n)

Γ(d)
= d (d+ 1) · · · (d+ n− 1) . (5.10)

Thus, expression (5.8) is singular for y = 4, or, on the lightcone of the antipodal point x̂. The

Hadamard form, in which all singularities of the propagator are demanded to be on the lightcone

of x, can be obtained by using one of the Gauss identities for 2F1:

G(x, x′) = c
Γ
(
D
2

)
Γ
(
1− D

2

)
Γ(1

2 ± ν)
2F 1

(
D − 1

2
+ ν,

D − 1

2
− ν;

D

2
;
y

4

)
+ c

Γ
(
D
2

)
Γ
(
D
2 − 1

)
Γ(D−1

2 ± ν)

(y
4

)1−D/2
2F 1

(
1

2
+ ν,

1

2
− ν; 2− D

2
;
y

4

)
(5.11)
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Here and in the following the ± symbol is used to abbreviate Γ(x± y) ≡ Γ(x+ y)× Γ(x− y).

Since linear ODEs obey the superposition principle, one could theoretically add the original so-

lution (5.8) with another constant c̃. This would lead to no observable consequences because x

and its antipodal point x̂ do neither share a common history nor a common future. Still, for the

sake of simplicity and fulfilling the Hadamard criterion, this second linearly independent solution

shall be discarded.6

The physical expression that can be used in the path integral, however, requires usage of the

time ordered two-point function

i∆(x, x′) := 〈Ω|T {φ̂(x)φ̂(x′)}|Ω〉 , (5.12)

where the symbol T stands for time ordering

T {φ̂(x)φ̂(x′)} = θ(η − η′)φ̂(x)φ̂(x′)− θ(η′ − η)φ̂(x′)φ̂(x) .

Due to the Heaviside step-function, the equation of motion (5.5) acquires a dirac-delta δD(x−x′)
source term. The Chernikov-Tagirov propagator [36] is then defined for the particular source

(�̊−m2)i∆(x, x′) =
iδD(x− x′)√

−g
, (5.13)

and can be obtained from the Wightman function 5.11 with little effort. In fact, a pole prescrip-

tion [37]

y → y++ = H2aa′
(
−(|η − η′| − iε)2 + ∆~x2

)
(5.14)

sources the δ-function on the right-hand side of (5.13) correctly, as will readily be proven. For

completeness, other possible prescriptions are

y+− = H2aa′
(
−(η − η′ + iε)2 + ∆~x2

)
,

y−+ = H2aa′
(
−(η − η′ − iε)2 + ∆~x2

)
,

y−− = H2aa′
(
−(|η − η′|+ iε)2 + ∆~x2

)
,

and yield the Wightman propagators (+−,−+) and the anti-time ordered propagator (−−),

respectively. Unless stated differently, all instances of the distance y in the remainder of the

thesis are meant to include the pole prescription (++) implicitly. The value of the constant c

6The one parameter family of propagators obtained by including this linearly independent solution corresponds

to the one parameter family of α vacua mentioned earlier. Choosing the Hadamard state, i.e neglecting the

undesired solution is in fact equivalent to choosing the Bunch Davies vacuum in (5.4).
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follows directly from normalization. First, notice that due to the pole prescription the action of

the d’Alembertian changes according to

�̊
H2

F (y) = (4y − y2)
d2F (y)

dy2
+D(2− y)

dF (y)

dy
− 4iεδ(η − η′)

− 2iεHa(η′)sgn(η − η′)
[
2y
d2F (y)

dy2
+D

dF (y)

dy

]
. (5.15)

When F (y) is a non-singular function of y, that is, its expansion does not contain the power

y1−D/2, the right-hand side is regular and one can take the ε→ 0 limit so that the d’Alembertian

reduces to (5.6). However, when F (y) = y1−D/2 one gets

�̊
H2

y1−D/2 =
D(D − 2)

4
y1−D/2 − 2(D − 2)

iεδ(η − η′)
yD/2

.

The last term gives rise to a D-dimensional delta function in the limit ε→ 0 [38],

lim
ε→0

2(D − 2)
iεδ(η − η′)
yD/2

=
4πD/2

Γ
(
D
2 − 1

) iδD(x− x′)√
−g

, (5.16)

which can, for instance, be obtained by multiplying both sides with a test function f(x) and

evaluation in an integral over x. The identity

�̊
H2

(y
4

)1−D/2
=

(4π)D/2

Γ
(
D
2 − 1

)
HD

iδD(x− x′)√
−g

+
D(D − 2)

4

(y
4

)1−D/2
, (5.17)

where the implicit pole prescription is crucial, will be of great importance in regularizing the

theory. All other terms in the expansion of the hypergeometric functions in (5.11) are regular so

that the constant can be inferred to be c = HD−2

(4π)D/2
Γ(D−1

2
±ν)

Γ(D2 )
. Thus, the final result eventually

reads:

i∆(x, x′) =
HD−2

(4π)D/2

{
Γ(D−1

2 ± ν)Γ
(
1− D

2

)
Γ(1

2 ± ν)
2F 1

(
D − 1

2
+ ν,

D − 1

2
− ν;

D

2
;
y

4

)
+ Γ

(
D
2 − 1

) (y
4

)1−D/2
2F 1

(
1

2
+ ν,

1

2
− ν; 2− D

2
;
y

4

)}
(5.18)

Recall once more the three requirements that led to this unique result: (i) De Sitter invariance,

(ii) the vacuum state is the Bunch Davies vacuum and (iii) Hadamard form, that is all singularities

lie on the lightcone. This scalar propagator will be heavily used in the following chapter to obtain

the explicit form of the effective field theory.
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6 Effective Field Theory

This chapter constitutes the main part of the thesis. It will be investigated to what extent Weyl

symmetry of the scalar theory defined by (6.3) survives at the quantum level. Following the core

reference [1], the first step is to prove how the inclusion of torsion will lead to a modification of

the condition that the stress-energy tensor ought to be traceless for a conformal theory:

∇α〈D̂α〉 − 〈T̂µµ〉 = 0 (6.1)

The vector Dα is known as the dilation current, which acts as a source for the torsion trace. As it

stems from a gauge symmetry, identity (6.1) is called a Ward identity and should be interpreted

as follows. While the energy momentum tensor might acquire a trace, there exists a dilation

current that compensates these contributions in a way that can make Weyl transformations a

symmetry of the quantum theory.

This stands in contrast with the torsionless case, where no vector Dα can be defined. There,

it has been shown that the energy momentum tensor develops a non-vanishing trace at the

quantum level, known as the conformal anomaly. Its explicit form for a scalar field can, for

instance, be found in [11] and is also derived in section 6.4 below:

〈T̂µµ〉 =
1

16π2

(
1

120
CαβγδC

αβγδ − 1

360
E̊ +

1

180
�̊R̊

)
(6.2)

Here E stands for the Gauss-Bonnet term as defined in equation (6.57). The claim is that there

is no anomaly when Weyl symmetry is gauged by torsion. In other words, no additional terms

are found on the right-hand side of (6.1). Lucat has shown the absence of the �̊R̊ term by

an explicit calculation of the left-hand side in his PhD thesis [1]. Because he only calculated

the two-point functions of an effective scalar field theory in Minkowski space, there was no way

to test for the Weyl tensor or Gauss-Bonnet term which contribute, at lowest order on a flat

background, to the three-point functions of the theory. This thesis is meant to close this gap.

Because de Sitter space has non-vanishing curvature, the Gauss-Bonnet term is finite and calcu-

lation of the two-point functions is sufficient to determine its presence (or absence) in the Ward

identity. Interestingly, although de Sitter is conformally flat and hence Cαβγδ = 0, the analysis

will also yield information about the Weyl tensor.

The scalar field theory used to verify this proposition was defined in (3.17), which gives, after

inserting the Ricci scalar from (2.16) and integrating by parts,

Sφ =

∫
dDx
√
−g
[
− 1

2
gµν∂µφ∂νφ−

(
D − 2

2
+ 2ξ(D − 1)

)
Tµφ∂µφ

− D − 2

4

(
D − 2

2
+ 2ξ(D − 1)

)
TλT

λφ2 +
1

2
ξR̊φ2

]
. (6.3)
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Note that the dependence on Tµ vanishes completely for the conformal coupling ξ = − D−2
4(D−1) .

The re-appearance of this value is a direct consequence of the construction as torsion imple-

menting conformal symmetry. Additionally, m2 has been set to 0 as a non-vanishing mass would

introduce a scale into the theory and thereby breaking the symmetry.

The perturbative quantization of the theory defined by (6.3) is also known as the background

field method. The fields are split according to

φ(x) = φcl(x) + δφ(x)

gµν(x) = gdS
µν(η) + δgµν(x) (6.4)

Tα(x) = δTα(x) ,

where gdS
µν = a2(η) ηµν is the de Sitter metric and it has already been employed that the back-

ground geometry has no torsion. Because φ has merely the purpose of a spectator field, the

classical solution is in accordance with the considerations in chapter 5 chosen to be φcl = 0.

To simplify notation, the fluctuations δφ, which then have the same two-point function (5.8) as

the original scalar field, will be called φ again. As their dynamics is of no interest here, they are

integrated out by defining the following vacuum to vacuum transition amplitude

〈in|out〉 =

∫
DφeiSφ[φ,gµν ,Tα] (6.5)

with scalar field action (6.3). As it was pointed out in [39], the path measure

Dφ =
∏
x

dφ(x)

(√
−g(x)

‖n(x)‖2

)1/2

is in fact conformally invariant, despite the fact that φ transforms non-trivially. The metric

dependent result of the integration of canonical momenta is typically omitted in the notation

and absorbed into the measure D, but it is crucial for the symmetry. The vector nµ is of no

importance here, but necessary to set a direction of time to obtain a Hamiltionian description,

required for the definition of the path integral.

A comment about the amplitude (6.5) is in order. The in-out formalism with asymptotic

boundary states at infinity is not well-defined on de Sitter space because fields are interacting

through all of space. Instead, this amplitude is understood in the general boundary formalism

[40], where the quantum fluctuations are confined to a finite, but arbitrarily large volume of space

and vanish outside. Hence, integration in (6.5) is only over this volume and yields a well-defined

path integral, still general enough to draw conclusive statements. For instance, the domain of

the fluctuations can be chosen to contain all of inflation in an early universe application.
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Performing an infinitesimal Weyl transformation

gµν(x)→ (1 + 2ω(x))gµν(x)

Tα(x)→ Tα(x) + ∂αω(x)

φ(x)→
(
1− D−2

2 ω(x)
)
φ(x)

on the 〈in|out〉 amplitude leads to∫
DφeiSφ →

∫
DφeiSφ ×

{
1 + i

∫
dDx
√
−g
[
− D − 2

2
√
−g

δSφ
δφ(x)

ω(x)φ(x)

− 2√
−g

δSφ
δgµν

ω(x)gµν − ∇̊α
(

1√
−g

δSφ
δTα(x)

)
ω(x)

]}
. (6.6)

The first term in the square brackets vanishes due to the Ehrenfest theorem [39], or the fact

that for any operator Ô in the theory 〈
δSφ
δφ
Ô
〉

= 0 .

Demanding Weyl invariance means that (6.6) has to equal
∫
DφeiSφ for any choice of ω(x).

This implies ∫
DφeiSφ(Tµµ − ∇̊αDα) = 0 , (6.7)

where the stress-energy tensor and dilation current are defined by

Tµν(x) =
−2√
−g

δSφ
δgµν(x)

(6.8)

Dα(x) =
1√
−g

δSφ
δTα(x)

. (6.9)

Dividing (6.7) by 〈in|out〉 leads to the Ward-Takahashi identity

〈T̂µµ〉 − ∇̊α〈D̂α〉 = 0 , (6.10)

and thus proves (6.1), because ∇̊αDα = ∇αDα as a weight analysis shows. It will sometimes

be referred to as the fundamental Ward identity to distinguish it from the perturbative identites

satisfied by the two-point vertex functions in the effective field theory formulation.

The only issue that might still spoil conformal symmetry is whether the path integral is

well-defined. This could indeed become a problem, because amplitudes such as (6.5) or (6.7)

are in general divergent and thus, equation (6.10) expresses formally ′∞−∞ = 0′. However,

as it shall be proven in due time, the infinities can be consistently renormalized by conformal
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counterterms and the finite, physical results obey the Ward identity without anomalous terms.

The effective action Γ[gµν , Tα] for metric and torsion is defined by

iΓ[gµν , Tα] = ln(〈in|out〉) = ln

(∫
DφeiSφ

)
, (6.11)

such that it generates the quantum expectation values

〈T∗{T̂µν}〉 =
−2√
−g

δΓ

δgµν(x)
=
−2√
−g

〈
T∗
{
δSφ
δgµν

}〉
C
, (6.12)

〈T∗{D̂α}〉 =
1√
−g

δΓ

δTα(x)
=

1√
−g

〈
T∗
{
δSφ
δTα

}〉
C
. (6.13)

〈T∗(·)〉 :=
∫
Dφ(·)eiS∫
DφeiS denotes T∗ ordering, that is the time ordered product of operators where all

derivatives are to be evaluated outside the expectation value, while the subscript C indicates that

only connected Feynman diagrams contribute. The vertex functions are defined by expansion of

the functional Γ according to the number of external legs. Up to second order this reads

Γ =

∫
dDx
√
−g
(
gΓµν(x) δgµν(x) + TΓα(x) δTα(x)

)
+

∫
dDx dDx′

√
−g(x)

√
−g(x′)

(
1
2 ggΓµνρσ(x, x′) δgµν(x) δgρσ(x′)

+ gTΓαµν(x, x′) δgµν(x) δTα(x′) + 1
2 TTΓαβ(x, x′) δTα(x) δTβ(x′)

)
+ . . . , (6.14)

where the dots stand for terms with 3 or more external fields, for instance TTTΓαβγδTαδTβδTγ .

The external graviton perturbation δgµν and torsion trace perturbation δTα are understood as

small deviations from their de Sitter values gdS
µν = a2(η) ηµν and Tα = 0. Equation (6.14) implies

the following expansions for the dilation current and energy momentum tensor, respectively:

〈D̂α(x)〉 = TΓα(x) +

∫
dDx′

√
−g′

(
gTΓαµν(x′, x) δgµν(x′) + TTΓαβ(x, x′) δTβ(x′)

)
, (6.15)

〈T̂µν(x)〉 = −2 gΓµν(x)− 2

∫
dDx′

√
−g′

(
ggΓµνρσ(x, x′) δgρσ(x′) + gTΓαµν(x, x′) δTα(x′)

)
,

(6.16)

up to higher order terms, of course, and obvious notation
√
−g′ ≡

√
−g(x′). Insertion of

(6.15), (6.16) into the fundamental Ward identity (6.1) yields two derived Ward identities which

have to be satisfied by the vertex functions separately. One of them is obtained by acting with
δ

δTβ(x′)

∣∣∣
gµν=gdS

µν ,Tα=0
on (6.1),

∇̊α TTΓαβ(x, x′) + 2gµν(x) gTΓβµν(x, x′) = 0 . (6.17)
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Now act with δ
δgρσ(x′)

∣∣∣
gµν=gdS

µν ,Tα=0
on (6.1):

∇̊α gTΓαρσ(x′, x) + 2
δD(x− x′)√

−g gΓρσ(x) + 2gµν(x) ggΓµνρσ(x, x′) = 0 . (6.18)

Relations (6.17), (6.18) will be referred to as the first and second Ward identity, respectively.

The remainder of this chapter is devoted to a proof of their validity for the theory defined by (6.3)

and their relation to the commonly known trace anomaly. To this end, an explicit expression

for the vertex functions will be derived using the scalar propagator obtained in chapter 5. The

divergences contained in the vertex functions are extracted using dimensional regularization, that

is, they appear as simple poles 1/(D−4), where D is the number of space-time dimensions. This

last statement holds true because for a scalar field without self-interaction (e.g. a term ∝ λφ4

in the Lagrangian), the effective action is fully determined by its one-loop expression [34], while

higher order loops could also cause higher order divergences such as 1/(D−4)2. After removing

the divergent parts by addition of suitable counterterms in section 6.2, the renormalized vertices

are shown to obey the identities (6.17) and (6.18). Subsequently, a typical derivation of the

anomaly shall be outlined. The discussion in section 6.5 gives the authors interpretation of his

results, in particular in relation to the anomaly, as well as further insights and open questions.

6.1 One-Loop Vertex Functions

Here, all terms on the right-hand side of (6.14) are computed in increasing order of difficulty.

Consider the two one-point functions first:

gΓµν(x) =
1√
−g

〈
T∗
{

δSφ
δgµν(x)

}∣∣∣∣
g=gdS,T=0

〉
C

TΓα(x) =
1√
−g

〈
T∗
{

δSφ
δTα(x)

}∣∣∣∣
g=gdS,T=0

〉
C

By using the conformal action (6.3) one finds

gΓµν(x) = −1
2

(
δαµδ

β
ν − 1

2gµνg
αβ
)
〈T∗{∂αφ̂∂βφ̂}〉

− 1
2

(
1
2gµνξR̊− ξR̊µν − ξgµν�̊+ ξ∇̊µ∇̊ν

)
〈T∗{φ̂2(x)}〉 ,

TΓα(x) = −
(
D−2

2 + 2ξ(D − 1)
)
gαβ〈T∗{φ̂∂βφ̂}〉 . (6.19)

The diagrammatic representation of these vertices is shown in figure 6.1. From the defining

equation

〈T {φ̂(x)φ̂(x′)}〉 = i∆(x, x′)
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Figure 6.1: One-loop Feynman diagrams constituting the vertex functions in (6.19) with the

external lines attached at point x. Solid lines correspond to the scalar propagator. Because of

their shape, these kind of diagrams are typically called tadpole diagrams.

for the propagator, the contractions can be computed by the point splitting technique

〈T∗{φ̂2(x)}〉 = lim
x′→x
〈T {φ̂(x)φ̂(x′)}〉 = i∆(x, x) ,〈

T∗{φ̂∂βφ̂}
〉

= ∂β

(
lim
x′→x

〈
T {φ̂(x′)φ̂(x)}

〉)
= ∂β(i∆(x, x)) , (6.20)

〈T∗{∂αφ̂∂βφ̂}〉 = lim
x′→x

∂α∂
′
βi∆(x, x′) ,

because T∗-ordering reduces to usual time ordering once all derivatives are pulled out of the

expectation value. The Chernikov-Tagirov propagator was derived in chapter 5,

i∆(x, x′) =
HD−2

(4π)D/2

{
Γ
(
D
2 − 1

) (y
4

)1−D/2
+
∞∑
n=0

[
Γ(D−1

2 ± ν)

Γ(1
2 ± ν)

(D−1
2 + ν)n(D−1

2 − ν)n

(D/2)nn!
×

Γ
(
1− D

2

) (y
4

)n
+ Γ

(
D
2 − 1

) 1
4 − ν

2

2−D/2
(3

2 + ν)n(3
2 − ν)n

(3−D/2)n(n+ 1)!

(y
4

)n+2−D/2
]}

,

(6.21)

where the series representation (5.9) for the hypergeometric function has been applied. Also

recall the ± notation Γ(x± y) = Γ(x+ y)×Γ(x− y) used in context with the gamma function.

To obtain the coincidence limit x′ → x, it is important to note that any D-dependent power

of y vanishes for y → 0, when evaluated at the complex continued dimension D. According to

the rules of dimensional regularization [41], the identity 0n = 0, which is valid for positive n,

is analytically continued to all n ∈ C. Since D-dependent powers of y at coincidence vanish

wherever they are defined, analyticity ensures that they vanish everywhere in the complex plane.

In particular
(y

4

)1−D/2 → 0 because the limit y → 0 is taken before setting D to 4. This means

that only the constant term (∝ y0) in (6.21) survives the limit

lim
x′→x

i∆(x, x′) =
HD−2

(4π)D/2
Γ(D−1

2 ± ν)Γ(1− D
2 )

Γ(1
2 ± ν)

, (6.22)

so that one can immediately conclude that the one-point function TΓα(x) vanishes because

〈T∗{φ̂∂βφ̂}〉 = ∂βi∆(x, x) = ∂β const = 0 . (6.23)
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The last contraction in (6.20) also receives a contribution from the linear term of the propagator.

Two derivatives acting on y give (see also appendix A)

∂α∂
′
β

y

4
= H2aa′

(
δ0
αδ

0
β
y

4
− 1

2
Haδ0

α∆xβ +
1

2
Ha′δ0

β∆xα −
1

2
ηαβ

)
,

which implies

〈T∗{∂αφ̂∂βφ̂}〉 =
ξR̊

D
gαβi∆(x, x) , (6.24)

where the definition ν2 = (D−1)2

4 + ξR̊
H2 has been used. Applying these results to (6.19) shows

that also gΓµν vanishes. In other words, no tadpole contributes to the effective action.

Next, the function TTΓαβ(x, x′) will be derived. Out of the three vertices with two external

lines, it is the easiest to compute and will thus be used to illustrate how to regularize expressions

involving the Chernikov-Tagirov propagator (6.21) within the framework of dimensional regular-

ization. Most of the manipulation rules involving the de Sitter invariant distance y are explained

in and adapted from [37].

By making use of the expansion (6.15) one finds

TTΓαβ(x, x′) =
1√
−g(x′)

δ〈T∗{D̂α(x)}〉
δTβ(x′)

∣∣∣∣∣
g=gdS,T=0

=
1√

−g(x)
√
−g(x′)

〈
T∗
{
i
δSφ

δTα(x)

δSφ
δTβ(x′)

+
δ2Sφ

δTα(x)δTβ(x′)

}∣∣∣∣
g=gdS,T=0

〉
C
,

(6.25)

where the last step follows from the defining equation (6.13). Figure 6.2 shows the Feynman

diagrams contributing to this vertex. Insertion of the action yields

TTΓαβ(x, x′) = i

(
D − 2

2
+ 2ξ(D − 1)

)2 〈
T∗
{
φ̂ (∇̊αφ̂) φ̂′ (∇̊′βφ̂′)

}〉
C

− D − 2

2

(
D − 2

2
+ 2ξ(D − 1)

)
gαβ(x)

δD(x− x′)√
−g

〈
T∗{φ̂2(x)}

〉
C
, (6.26)

with obvious short-hand notation φ ≡ φ(x), φ′ ≡ φ(x′) and ∇′ ≡ ∇x′ . Here, and in what

follows, derivatives are always meant to act at point x if not indicated differently. Computing

the first term involves Wicks theorem [42], which states that the vacuum expectation value of a

product of four operators can be decomposed according to

〈T (Ô1Ô2Ô3Ô4)〉 = 〈T (Ô1Ô2)〉〈T (Ô3Ô4)〉+ 〈T (Ô1Ô3)〉〈T (Ô2Ô4)〉+ 〈T (Ô1Ô4)〉〈T (Ô2Ô3)〉 .
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Figure 6.2: One-loop Feynman diagrams with two external torsion fields contributing to the TT

vertex. The left diagram corresponds to the first term in (6.25), while the middle diagram is

given by the second. The third graph represents the counterterm contribution that is necessary

to cancel the divergences and will be explicitly computed in section 6.2. The external lines are

attached to points x and x′, respectively, and hence the second and third diagram are referred

to as local (that is, ∝ δD(x− x′)), while the left diagram gives also non-local terms.

Notice that this is only the leading order of a loop expansion but sufficient here. Moreover,

only two terms of the right-hand side contribute because 〈φ̂ ∇̊αφ̂〉〈φ̂′ ∇̊′βφ̂′〉 = 0 according to

equation (6.23). By making use of the identities (6.20) and〈
T∗
{
φ̂(x′)∇̊αφ̂(x)

}〉
= ∇̊α 〈T {φ̂(x)φ̂(x′)}〉 = ∇̊α i∆(x, x′) (6.27)

one arrives at

TTΓαβ(x, x′) =
i

2

(
D − 2

2
+ 2ξ(D − 1)

)2

∇̊α∇̊′β(i∆(x, x′))2

− D − 2

2

(
D − 2

2
+ 2ξ(D − 1)

)
gαβ(x)

δD(x− x′)√
−g

i∆(x, x) . (6.28)

The first line corresponds to the first diagram in figure 6.2, while the second line gives the local

one in the middle. In order to proceed, an expression for the square of the scalar propagator

i∆(x, x′) is required. Notice that the sum on the right-hand side of (6.21) is in fact finite in

D = 4, despite seemingly being divergent due to the poles in (D − 4). To prove this claim, it

suffices to expand all terms to first order in (D − 4),

Γ(D−3
2 ± ν)

Γ(1
2 ± ν)

= 1 +
D − 4

2

[
ψ

(
1

2
+ ν4

)
+ ψ

(
1

2
− ν4

)]
+O(D − 4)2 (6.29)

Γ
(
1− D

2

)
=

2

D − 4
+ (−1− ψ(1)) +O(D − 4) (6.30)

Γ
(
D
2 − 1

)
= 1 +

D − 4

2
ψ(1) +O(D − 4)2 (6.31)(

D − 3

2

)2

− ν2 =

(
1

4
− ν2

)
+
D − 4

2
+O(D − 4)2 , (6.32)
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where ν4 stands for ν|D=4 =

√
9
4 + ξR̊

H2 , and ψ(x) = d
dx ln Γ(x) is the digamma function with

ψ(1) = −γE the Euler-Mascheroni constant. Upon defining the function f0(y) as the D → 4

limit of the sum appearing in (6.21), one thus finds

f0(y) =

(
1

4
− ν2

4

) ∞∑
n=0

(3
2 + ν4)n(3

2 − ν4)n

(2)n

(y
4

)n
n!
×[

ln
y

4
+ ψ

(
3

2
+ n± ν4

)
− ψ (1 + n)− ψ (2 + n)

]
+O(D − 4) , (6.33)

with ± notation in the digamma function ψ(x ± y) ≡ ψ(x + y) + ψ(x − y). In other words,

the infinite terms cancel to each order and can be ’resummed’ to give the finite function f0(y).

With this definition the square now becomes

(i∆(x, x′))2 =
H2D−4

(4π)D

{
Γ2

(
D

2
− 1

)(y
4

)2−D
+

8

y
f0(y) + f2

0 (y)

}
. (6.34)

Although the first term has a finite prefactor in D = 4, it is not integrable as it scales ∼ y−2,

which means that it diverges more than logarithmically at the lower boundary when integrated

over y. To make it integrable, one has to increase the power of y by extracting derivatives [37].

This is, in general, done as follows. First, observe that the action of the d’Alembertian (5.6)

implies (y
4

)2−D
=

2

(D − 3)(D − 4)

�̊
H2

(y
4

)3−D
− 4

D − 4

(y
4

)3−D
. (6.35)

In order to localize the divergence of the ∝ y3−D term on a delta function δD(x− x′), subtract

a zero in the form of the fundamental identity (5.17) with coefficient 2
(D−3)(D−4) ,

(y
4

)2−D
=

2

(D − 3)(D − 4)

�̊
H2

[(y
4

)3−D
−
(y

4

)1−D/2
]

− 4

D − 4

[(y
4

)3−D
− D(D − 2)

8(D − 3)

(y
4

)1−D/2
]

+
2

(D − 3)(D − 4)

(4π)D/2

Γ
(
D
2 − 1

)
HD

iδD(x− x′)√
−g

, (6.36)

where one should recall that the distance y(x, x′) contains the pole prescription (5.14). The first

two terms on the right-hand side are finite in D = 4 as expansion shows(y
4

)2−D
=

2

(D − 3)(D − 4)

(4π)D/2

Γ
(
D
2 − 1

)
HD

iδD(x− x′)√
−g

− 4
�̊
H2

ln(y4 )

y
+ 8

ln(y4 )

y
− 4

y
(6.37)
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plus terms proportional to (D− 4). As this combination appears very frequently, it makes sense

to define another auxiliary function by

g(y) = −4
�̊
H2

ln(y4 )

y
+ 8

ln(y4 )

y
− 4

y
, (6.38)

such that (y
4

)2−D
=

2

(D − 3)(D − 4)

(4π)D/2

Γ
(
D
2 − 1

)
HD

iδD(x− x′)√
−g

+ g(y)

up to terms that vanish when D → 4. In appendix A.1 it is shown how to apply the same

construction also to other powers of y. Replacing this term in (6.34) makes everything integrable

and yields the desired split into divergent and finite terms:

(i∆(x, x′))2 =
HD−4

(4π)D/2
2Γ(D2 − 1)

(D − 3)(D − 4)

iδD(x− x′)√
−g

+
H4

(4π)4

{
g(y) +

8

y
f0(y) + f2

0 (y)

}
≡ HD−4

(4π)D/2
2Γ(D2 − 1)

(D − 3)(D − 4)

iδD(x− x′)√
−g

+ (i∆(x, x′))2
fin (6.39)

The local part of the TT vertex additionally involves the propagator at coincidence (6.22),

lim
x′→x

i∆(x, x′) =
HD−2

(4π)D/2
Γ(D−1

2 ± ν)Γ(1− D
2 )

Γ(1
2 ± ν)

=
HD−2

(4π)D/2
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(D − 3)(D − 4)

(
1

4
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)
+

HD−2

(4π)D/2

[(
1

4
− ν2

4

)[
1− 2ψ(1) + ψ

(
1
2 ± ν4

)]
+ 1

]
,

(6.40)

which gives another infinite contribution. To get to the last line, expansions (6.29)-(6.32) were

used once more such that the divergence is presented in the same way as above and the resulting

finite terms are evaluated in D = 4. Upon inserting (6.39), (6.40) into the formula for the TT

vertex and using R̊ = D(D − 1)H2 for de Sitter space one obtains the regularized result

TTΓαβ(x, x′) =

=

(
D − 2

2
+ 2ξ(D − 1)

)2 HD−4

(4π)D/2
Γ
(
D
2 − 1

)
(D − 3)(D − 4)

(
−∇̊α∇̊′β +DH2gαβ

) δD(x− x′)√
−g

+
1

16π2
H2gαβ

{
− (1 + 6ξ) + 2 (1 + 6ξ)2 [2− 2ψ(1) + ψ (1/2± ν4)

]} δ4(x− x′)√
−g

+
i

2
(1 + 6ξ)2 ∇̊α∇̊′β(i∆(x, x′))2

fin . (6.41)

The last two lines are finite and hence written in four dimensions, while the counterterm that is

required to cancel the divergence in the first line will be computed in the following section.
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Figure 6.3: Diagrams contributing to gTΓβµν . Again, the external legs are attached to points x

and x′, respectively.

Next, the gT vertex function gTΓβµν(x, x′) will be calculated. Following the same procedure

as before, one finds that it is given by

gTΓβµν(x, x′)

=
1√

−g(x)
√
−g(x′)

〈
T∗
{
i
δSφ

δTβ(x′)

δSφ
δgµν(x)

+
δ2Sφ
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〈
T∗
{
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−g

〈
T∗
{
δβµ φ̂ ∂ν φ̂+ δβν φ̂ ∂µφ̂− gµν φ̂ ∂βφ̂

}〉
C
.

(6.42)

The terms in the last line vanish according to (6.23), which means that no local diagram

contributes as shown in figure 6.3. Wick contraction of the remaining pieces yields

gTΓβµν(x, x′)

=
i

2

(
D − 2

2
+ 2ξ(D − 1)

)
∇̊′β

[
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2
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ξ
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)(
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)
∇̊′β(i∆(x, x′))2 . (6.43)

In the second line one can simply use the formula for the square of the scalar propagator obtained

in (6.39). The first term is more subtle, though. Due to the additional derivatives acting on the

propagator, not only is the square of the y1−D/2 term not integrable, but also its product with

the power y2−D/2. To wit,

∂µi∆(x, x′)∂νi∆(x, x′) =
H2D−4

(4π)D

[
Γ2
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]
, (6.44)

39



where f1(y) is defined by the same series (6.33) as f0(y) but with the sum starting at n = 1.

The appearance of the additional infinity can be understood from a simple argument. Previously,

when showing that f0(y) contains no divergence, the 1/(D−4) in the coefficient of y2−D/2 was

balanced against the constant term ∝ y0. Here, however, the derivative acting on the scalar

propagator removes this constant and hence the infinity needs to be considered separately. The

first two lines in (6.44) are simplified by using the identities (A.18) and (A.19) from appendix

A, where it is shown how to combine them into a single power of
(y

4

)
. They contain the power

y1−D which requires the extraction of one more d’Alembertian, also calculated in (A.36). The

main strategy remains the same as before, lowering the degree of divergence until the result

becomes integrable, that is, of power ∝ y−1 or higher. Keeping track of the additional arising

poles in 1/(D − 4) this eventually results in

∂µi∆(x, x′)∂νi∆(x, x′) =

=
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}
,

where, as before, D has been set to 4 in the finite terms. For the regularized gT vertex function

one then finds

gTΓβµν(x, x′) =

=

(
D − 2

2
+ 2ξ(D − 1)

)2 HD−4

(4π)D/2
Γ(D2 − 1)

2(D − 1)(D − 3)(D − 4)
×[

gµν�̊− ∇̊µ∇̊ν + R̊µν

]
∇̊′β δ

D(x− x′)√
−g

+
H2

16π2
(1 + 6ξ)2 gµν∇̊′β

δ4(x− x′)√
−g

+
i

4

H4

(4π)4
∇̊′β
{

(1 + 6ξ)2

[
− 1

3
H2gµν

�̊
H2

g(y) +
1

3
∇̊µ∇̊ν g(y)−H2gµν g(y) + 4∇̊µ∇̊ν

4

y

]
+ 2 (1 + 6ξ)

(
δρ(µδ

σ
ν) −

1

2
gµνg

ρσ

)(
∂ρ

8

y
∂σf1(y) + ∂ρf0(y) ∂σf0(y)

)
+ 2ξ (1 + 6ξ)

(
R̊µν − gµν�̊+ ∇̊µ∇̊ν

)(8

y
f0(y) + f2

0 (y)

)}
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which makes the separation into infinite and finite terms manifest. Again, renormalization of the

divergent terms is postponed to the next section.

Only the calculation of the gg-vertex is left. As for the other vertices, the starting point is

a functional derivative of (6.12):

ggΓµνρσ(x, x′) = − 1

2
√
−g(x′)

δ

δgρσ(x′)

∣∣∣∣
g=gdS,T=0

〈T∗{T̂µν(x)}〉
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√
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〈
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δSφ
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δgρσ(x′)

+
δ2Sφ

δgµν(x)δgρσ(x′)

}∣∣∣∣
g=gdS,T=0

〉
C

(6.46)

The diagrammatic representation is the same as for the TT-vertex in figure 6.2 but with the two

external lines being replaced with gravitons. By definition, the vertex is manifestly symmetric

in µν and ρσ and also under the bose symmetry (µν, x) ↔ (ρσ, x′). To simplify notation and

make the expressions more readable, symmetrization of the index pairs (µν) and (ρσ) will be

omitted. Nonetheless it is important to keep in mind that this symmetrization is implicit in all

the following formulas.

This time, it makes sense to consider each term separately, starting with the local contri-

bution, that is, the second term in (6.46). Its calculation requires the knowledge of the second

order variation of the Ricci scalar, which is given in the appendix, more precisely, in identity

(D.5). This result can be used, because 〈T {φ̂2}〉 yields a constant, which means that it is not

necessary to keep terms that are proportional to a derivative of φ2 that naturally arise by partial

integration. Explicitly, one finds〈
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}∣∣∣∣
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with g̃µρ′ being the bilocal generalization of the metric tensor as defined in (4.19). To obtain

the last expression, identity (6.24) was used once more.

The first term in (6.46) is known as TT -correlator in the literature, because it is proportional

to 〈T̂µν(x)T̂ρσ(x′)〉 with Tµν the stress-energy tensor. This name will not be used here, however,

to avoid the ambiguity with T standing for torsion. Inserting the metric derivatives and Wick

contracting gives:

1√
−g(x)

√
−g(x′)

〈
T∗
{
i
δSφ

δgµν(x)

δSφ
δgρσ(x′)

}∣∣∣∣
g=gdS,T=0

〉
C

=
i

4

〈
T∗
{[(

δαµδ
β
ν − 1

2gµνg
αβ
)
∂αφ∂βφ+

(
1
2gµνξR̊− ξR̊µν − ξgµν�̊+ ξ∇̊µ∇̊ν

)
φ̂2
]
×[(

δγρδ
δ
σ − 1

2g
′
ρσg
′γδ
)
∂′γφ

′∂′δφ
′ +
(

1
2g
′
ρσξR̊− ξR̊′ρσ − ξg′ρσ�̊′ + ξ∇̊′ρ∇̊′σ

)
φ̂′2
]}〉

C

=
i

4

{
2
(
δαµδ

β
ν − 1

2gµνg
αβ
)(

δγρδ
δ
σ − 1

2g
′
ρσg
′γδ
)
∂α∂

′
γi∆(x, x′)∂β∂

′
δi∆(x, x′)

+ 2ξ
(
δαµδ

β
ν − 1

2gµνg
αβ
)(

1
2g
′
ρσR̊− R̊′ρσ − g′ρσ�̊′ + ∇̊′ρ∇̊′σ

)
∂αi∆(x, x′)∂βi∆(x, x′)

+ 2ξ
(
δγρδ

δ
σ − 1

2g
′
ρσg
′γδ
)(

1
2gµνR̊− R̊µν − gµν�̊+ ∇̊µ∇̊ν

)
∂′γi∆(x, x′)∂′δi∆(x, x′)

+ 2ξ2
(

1
2gµνR̊− R̊µν − gµν�̊+ ∇̊µ∇̊ν

)(
1
2g
′
ρσR̊− R̊′ρσ − g′ρσ�̊′ + ∇̊′ρ∇̊′σ

)
(i∆(x, x′))2

}
(6.48)

Regularization requires knowledge of the term ∂α∂
′
γi∆(x, x′)∂β∂

′
δi∆(x, x′). This turns out to

have a vast variety of infinities whose computation is very lengthy and thus, it is presented in

appendix B in detail. The basic strategy remains the same as for the similar expression with

only two derivatives acting on the propagators. By usage of the bitensor g̃µρ′ one can extract

the derivatives to write individual terms of the product as a single power of y and then raise

the power to split off the divergence and make it integrable. The remaining terms in (6.48) are

known, and putting all together yields:

ggΓµνρσ(x, x′) =(
D−2

2 + 2ξ(D − 1)
)2 HD

4(4π)D/2
Γ(D2 −1)

(D−1)(D−2)(D−3)(D−4)

{
− D−2

D−1∇̊µ∇̊ν∇̊
′
ρ∇̊′σ

+ D−2
D−1H

2
(
gµν∇̊′ρ∇̊′σ + g′ρσ∇̊µ∇̊ν

)
�̊
H2 − D−2

D−1H
4gµνg

′
ρσ
�̊
H2

�̊
H2

− 2H2(gµν∇̊′ρ∇̊′σ + g′ρσ∇̊µ∇̊ν) + 2(D − 1)H4gµνg
′
ρσ

−DH4g̃µρ′ g̃νσ′
�̊
H2 − 2DH2g̃µρ′∇̊ν∇̊′σ

}δD(x− x′)√
−g

+ HD

4(4π)D/2
Γ(D2 −1)

(D+1)(D−1)(D−3)(D−4)

{
− D−2

2(D−1)∇̊µ∇̊ν∇̊
′
σ∇̊′ρ
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− 1
2(D−1)H

2
(
gµν∇̊′ρ∇̊′σ + g′ρσ∇̊µ∇̊ν

)
�̊
H2 +H2(gµν∇̊′ρ∇̊′σ + g′ρσ∇̊µ∇̊ν)

+ 1
2(D−1)H

4gµνg
′
ρσ
�̊
H2

�̊
H2 + 1

2H
4gµνg

′
ρσ
�̊
H2 − (D − 1)H4gµνg

′
ρσ − g̃µρ′∇ν∇′σ �̊H2

+ 2H2g̃µρ′∇ν∇′σ − 1
2H

4g̃µρ′ g̃νσ′
�̊
H2

�̊
H2 + D−2

2 H4g̃µρ′ g̃νσ′
�̊
H2

}δD(x− x′)√
−g

+ 1
4(4π)2

{[
− 2

15 −
1
6 (1 + 6ξ)2 − 2ξ (1 + 6ξ)

(
−1

2 − 2ψ(1) + ψ
(

1
2 ± ν4

))]
×

×H2(gµν∇̊′ρ∇̊′σ + g′ρσ∇̊µ∇̊ν)

+
[

1
3 −

1
3 (1 + 6ξ)− 5

6 (1 + 6ξ)2 − (2ξ − 1
2) (1 + 6ξ)

(
2ψ(1)− ψ

(
1
2 ± ν4

))]
H4gµνg

′
ρσ

�̊
H2

+
[
−11

10 −
4
3 (1 + 6ξ) + 5

2 (1 + 6ξ)2 + 12ξ (1 + 6ξ)
(
2ψ(1)− ψ

(
1
2 ± ν4

))]
H4gµνg

′
ρσ

+
[
− 4

15 + 5
3 (1 + 6ξ)− 4

3 (1 + 6ξ)2 + 4ξ (1 + 6ξ)
(
2ψ(1)− ψ

(
1
2 ± ν4

))]
H2g̃µρ′∇̊ν∇̊′σ

+
[
−1

6 + 5
6 (1 + 6ξ)− 2

3 (1 + 6ξ)2 + 2ξ (1 + 6ξ)
(
2ψ(1)− ψ

(
1
2 ± ν4

))]
H4g̃µρ′ g̃νσ′

�̊
H2

+
[
1− 5 (1 + 6ξ) + (1 + 6ξ)2 − 12ξ (1 + 6ξ)

(
2ψ(1)− ψ

(
1
2 ± ν4

))]
H4g̃µρ′ g̃νσ′

}
δ4(x− x′)√
−g

+
iH4

4(4π)4
×
{
∇̊µ∇̊ν∇̊′ρ∇̊′σ

[ (
1
90 + 1

18 (1 + 6ξ)2
)
g(y) +

(
−2

3 (1 + 6ξ) + 4
3 (1 + 6ξ)2

)
4
y

+
(

8
3 (1 + 6ξ)− 4 (1 + 6ξ)2

)
ln y

4 + 2ξ2
(

8
yf0(y) + f2

0 (y)
) ]

+H2
(
gµν∇̊′ρ∇̊′σ + g′ρσ∇̊µ∇̊ν

) �̊
H2

[ (
1

180 −
1
18 (1 + 6ξ)2

)
g(y)

+
(
−1

3 (1 + 6ξ)− 2
3 (1 + 6ξ)2

)
4
y − 2ξ2

(
8
yf0(y) + f2

0 (y)
) ]

+H2
(
gµν∇̊′ρ∇̊′σ + g′ρσ∇̊µ∇̊ν

) [(
− 1

30 + 1
3 (1 + 6ξ)− 1

6 (1 + 6ξ)2
)
g(y)

+ 6ξ2
(

8
yf0(y) + f2

0 (y)
) ]

+H4gµνg
′
ρσ

�̊
H2

�̊
H2

[ (
− 1

180 + 1
18 (1 + 6ξ)2

)
g(y) +

(
1
8 + 2ξ2

) (
8
yf0(y) + f2

0 (y)
) ]

+H4gµνg
′
ρσ

�̊
H2

[ (
− 1

60 −
5
6 (1 + 6ξ) + 1

3 (1 + 6ξ)2
)
g(y) + 2 (1 + 6ξ) 4

y

+ (6ξ − 12ξ2)
(

8
yf0(y) + f2

0 (y)
) ]

+H4gµνg
′
ρσ

[ (
1
10 + 2 (1 + 6ξ)− 5

2 (1 + 6ξ)2
)
g(y) +

(
−6 (1 + 6ξ) + 6 (1 + 6ξ)2

) 4

y

+ 90ξ2
(

8
yf0(y) + f2

0 (y)
)]

+ 1
30H

2g̃µρ′∇̊ν∇̊′σ �̊H2 g(y)
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+H2g̃µρ′∇̊ν∇̊′σ
[ (
− 1

15 + 2
3 (1 + 6ξ)

)
g(y)− 96ξ (1 + 6ξ)

ln(
y
4 )

y

+
[
− 2 + 14

3 (1 + 6ξ) + 14
3 (1 + 6ξ)2 − 24ξ (1 + 6ξ)

(
2ψ(1)− ψ

(
1
2 ± ν4

)) ]4

y

]
+ 1

60H
4g̃µρ′ g̃νσ′

�̊
H2

�̊
H2 g(y) +

(
− 1

30 + 1
3 (1 + 6ξ)

)
H4g̃µρ′ g̃νσ′

�̊
H2 g(y)

+
(
−2 (1 + 6ξ) + 2 (1 + 6ξ)2

)
H4g̃µρ′ g̃νσ′g(y)

+ 4∇̊µ∇̊′ρ
4

y
∇̊ν∇̊′σf2(y)− 8 (1 + 6ξ) ∇̊µ∇̊′ρ ln

y

4
∇̊ν∇̊′σf1(y) + 2∇̊µ∇̊′ρf1(y) ∇̊ν∇̊′σf1(y)

+
(
−1

2H
2gµν

�̊
H2 − 12ξH2gµν

)(
∂′ρ

8
y ∂
′
σf1(y) + ∂′ρf0(y) ∂′σf0(y)

)
+
(
−1

2H
2g′ρσ

�̊
H2 − 12ξH2g′ρσ

)(
∂µ

8
y ∂νf1(y) + ∂µf0(y) ∂νf0(y)

)
+ 2ξ(−gµν�̊+ ∇̊µ∇̊ν + 3H2gµν)

(
δγρδ

δ
σ − 1

2g
′
ρσg
′γδ
)(

∂′γ
8
y ∂
′
δf1(y) + ∂′γf0(y) ∂′δf0(y)

)
+ 2ξ(−g′ρσ�̊′ + ∇̊′ρ∇̊′σ + 3H2g′ρσ)

(
δαµδ

β
ν − 1

2gµνg
αβ
)(

∂α
8
y ∂βf1(y) + ∂αf0(y) ∂βf0(y)

)}
(6.49)

In the same spirit as for f1(y), the function f2(y) appearing here is defined by (6.33) with the

series starting at n = 2. In other words, the two lowest order contributions of the propagator

(6.21) have to be kept separated before one can set D = 4 in the tail of the sum. The divergences

are given by the first two blocks of terms and organized whether they are proportional to the

conformal factor
(
D−2

2 + 2ξ(D − 1)
)2

or not. The next task is to determine the counterterms

that will renormalize them.

6.2 Renormalization

Renormalizing a quantum field theory means to add terms to the Lagrangian, so called coun-

terterms, that give the same divergences as the vertex functions but with opposite sign so that

their combination is finite. To be more specific, consider the Lagrangian (5.1),

L0 = −1

2
gµν∇µφ0∇νφ0 −

1

2
m2

0φ
2
0 +

1

2
ξ0Rφ

2
0 , (6.50)

where the subscript 0 indicates bare quantities, which possibly contain divergences. They differ

from the physical observed ones by

φ0 =
√
Zφ φ =

√
1 + δZφ φ (6.51)

m2
0 = m2 + δm2 (6.52)

ξ0 = ξ + δξ, (6.53)
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where the δ-terms are the counterterm corrections, of order O(~) for one-loop. If renormalization

is done correctly, physical results computed this way are finite.

However, not all divergences can be absorbed by redefinitions such as (6.51)-(6.53), in which

case new, previously not present interactions have to be added to the Lagrangian. This is more

than certainly true in the effective theory obtained by integrating out φ, where one needs to find

new four dimensional operators. Of course, the structure of the terms one has to add cannot

be arbitrary. Apart from obvious conditions, for example obeying causality, only a finite number

of such terms is allowed. If a theory needs an infinite number of different terms to remove the

divergences, it is said to be not renormalizable, which typically occurs if one of the coupling

constants of the theory has a negative mass dimension.7

For the theory at hand, the most general counterterm action is [11]

Sct =

∫
dDx
√
−g
[
a1R

2 + a2RµνR
µν + a3RµνρσR

µνρσ + a4�R+ a5TµνT µν
]
, (6.54)

where the curvature tensors include torsion implicitly, � = gµν∇µ∇ν is the conformal d’Alem-

bertian and Tµν = ∂µTν − ∂νTµ the field strength of the torsion trace. One now has to find the

correct coefficients ai, i = 1, . . . 5 such that the addition of Sct to the effective action renders

the theory finite. Is is clear that all ai will be proportional to 8

ai ∝
µD−4

D − 4
, (6.55)

where µ is an arbitrary mass scale necessary in dimensional regularization to give the action the

correct units in D dimensions. The role of the denominator is to possibly remove the poles in

1/(D − 4). In general relativity, demanding conformal symmetry places further constrictions on

the coefficients a1, a2, a3, [44]. Only the two linearly independent combinations

CµνρσC
µνρσ = RµνρσR

µνρσ − 4
D−2RµνR

µν − 2
(D−1)(D−2)R

2 (6.56)

E = RµνρσR
µνρσ − 4RµνR

µν +R2 (6.57)

are allowed, where Cµνρσ is the Weyl tensor (2.17), which is conformal in any D and, in particular,

independent of torsion. Some authors, such as Duff in [44], use the four dimensional version of

the Weyl tensor and therefore obtain results which are conformal in D = 4 only. This ambiguity

7For instance, the scalar field theory with interaction Lint = λφ6 is not renormalizable, because of the mass

dimension [λ] = −2 in four space-time dimensions. For more on renormalization of quantum fields see also [43].
8 Technically, in the spirit of (6.51), the ai appearing here should be written as ai,0 = ai + δai, where δai

denotes the divergence and ai is finite. However, as none of the counterterms terms are present in the tree level

effective action, both ai and δai are of order O(~). As finite terms can be arbitrarily distributed between ai and

δai without physical consequences, the symbol ai shall be used as the coefficient for the counterterm, which is

determined only up to finite (O(D − 4)0) corrections.
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in choosing the counterterm will return in the trace anomaly and is further discussed in section

6.5. The symbol E is used to denote the term known as the Gauss-Bonnet integrand which is

a topological contribution in D = 4, [45].

Due to the enhanced symmetry induced by torsion, more general combinations are allowed

in the theory under consideration. As found in chapter 3, the Riemann tensor is invariant under

a Weyl rescaling, making each R2, RµνR
µν and RµνρσR

µνρσ a valid counterterm on their own.

More precisely, the conformal weight of each term is w = −4, which implies that the action is

invariant in D = 4 as the square root of the metric determinant has a weight of +D. The same

holds true for �R and the kinetic term TµνT µν , both having a weight of −4.

Insertion of the Ricci scalar, Ricci tensor, Riemann tensor results in:

Sct1 =

∫
dDx
√
−g a1

{
R̊2 + 4R̊(D − 1) ∇̊λT λ − 2R̊(D − 1)(D − 2)TλT

λ

+ 4(D − 1)2(∇̊λT λ)2 +O(T 3
α)
}

(6.58)

Sct2 =

∫
dDx
√
−g a2

{
R̊µνR̊

µν + 2R̊ ∇̊λT λ − 2(D − 2)R̊ TλT
λ + 2(D − 2)R̊µν∇̊νTµ+

2(D − 2)R̊µνTµTν + (3D − 4)(∇̊λT λ)2 − (D − 2)2(Tµ�̊T
µ) +O(T 3

α)
}

(6.59)

Sct3 =

∫
dDx
√
−g a3

{
R̊µνρσR̊

µνρσ + 8R̊µν(∇̊νTµ + TµTν)− 4R̊ TλT
λ + 4(∇̊λT λ)2

− 4(D − 2)(Tµ�̊T
µ) +O(T 3

α)
}

(6.60)

Sct4 =

∫
dDx
√
−g a4

{
�̊R̊+ 2(D − 1)�̊(∇̊λT λ) + (D − 4)R̊(∇̊λT λ)− 2(D − 4)R̊ TλT

λ

+ 2(D − 1)(D − 4)(∇̊λT λ)2 − (D − 1)(D − 2)�̊(TλT
λ) +O(T 3

α)
}

(6.61)

Sct5 =

∫
dDx
√
−g 2a5

[
− Tµ�̊Tµ + R̊µνTµTν − (∇̊λT λ)2

]
(6.62)

Expansion up to second order in Tµ is sufficient here, because at most two functional derivatives

with respect to torsion will be taken. In order to get to the fourth result, the definition for the

conformal covariant derivative (3.13) was used:

�R = gµν∇µ∇νR

= gµν(∇µ + 3Tµ)(∇ν + 2Tν)R

= gµν
[
(∇̊µ + 3Tµ)(∇̊ν + 2Tν)R− (gµνT

σ − δσµTν)(∇̊σ + 2Tσ)R
]

= �̊R+ 2(∇̊λT λ)R− (D − 6)T λ ∇̊λR− 2(D − 4)RTλT
λ (6.63)

Equation (6.61) now follows by inserting the Ricci scalar and integration by parts. Obviously,

46



each term in this action is either proportional to (D − 4) or gives a boundary contribution and

hence it cannot be used for renormalization of the theory. One can safely set a4 = 0.

A careful inspection immediately results in another simplification. The term Tµ�̊Tµ present

in Sct2, Sct3 and Sct5 will induce a contribution to the TT-vertex function

TTΓαβ(x, x′) ∼ δ2

δTα(x)δTβ(x′)

∫
dDx
√
−g Tµ�̊Tµ ∼ g̃αβ

′
�̊
δD(x− x′)√

−g
,

which is not present as divergence in (6.41). It is therefore necessary to remove it from the

counterterm action which is done by forming the linear combinations

Sct2,5 ≡ Sct2 + Sct5|a5=−a2(D−2)2/2 =

=

∫
dDx
√
−g a2

{
R̊µνR̊

µν + 2R̊
(
∇̊λT λ − (D − 2)TλT

λ
)

+ 2(D − 2)R̊µν∇̊νTµ

− (D − 2)(D − 4)R̊µνTµTν +D(D − 1)(∇̊λT λ)2 +O(T 3
α)
}
, (6.64)

Sct3,5 ≡ Sct3 + Sct5|a5=−2(D−2)a3
=

=

∫
dDx
√
−g a3

{
R̊µνρσR̊

µνρσ + 8R̊µν∇νTµ − 4(D − 4)R̊µνTµTν − 4R̊ TλT
λ

+ 4(D − 1)(∇̊λT λ)2 +O(T 3
α)
}
, (6.65)

so that only three independent coefficients a1, a2 and a3 are left. Just as in the theory without

torsion, conformal symmetry will be the guiding principle to determine their relative values.

Because the counterterm actions are by construction conformal in D = 4 only, they can violate

the Ward identity (6.1) by terms∝ (D−4). This is indeed the case and demanding cancellation of

these violations for general D will lead to two linear combinations, very much like the restriction

to the Weyl tensor and Gauss-Bonnet terms in (6.56), (6.57). Nonetheless, one should not

confuse these two, admittedly, similar results. The fact that only (6.56), (6.57) are allowed for

a conformal theory in general relativity is a consequence of the transformation of the curvature

tensors under a Weyl rescaling and, in particular, the Gauss-Bonnet term is conformal in D = 4

only. In the theory presented here, on the other hand, the curvature tensors are invariant and

one thus seeks for a priori different combinations obeying the Ward identities in any number of

space-time dimensions D.

The vertex functions for the individual counterterms and their failure to be conformal in

general D are computed in the appendices C and D. By inspection of the tensor structures in the

divergences of the regularized gg vertex (6.49) and demanding conformal invariance in arbitrary

space-time dimension, one arrives at the following results: The first block of divergences is
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renormalized by a term proportional to

RµνρσR
µνρσ − 4RµνR

µν +
4D − 6

D(D − 1)
R2 + 2(D − 2)(D − 3)TµνT µν =

= E − (D − 2)(D − 3)

D(D − 1)
R2 + 2(D − 2)(D − 3)TµνT µν , (6.66)

where in the second line the definition of the Gauss-Bonnet term (6.57) has been used. It seems

reasonable to write it this way, because E yields a mere boundary contribution in D = 4 and

its presence is only required to make the term conformal. With this choice, also the gT - and

TT -vertices can be rendered finite. The second block of divergences in (6.49) is renormalized

by the square of the Weyl tensor,

CµνρσC
µνρσ = RµνρσR

µνρσ − 4

D − 2
RµνR

µν − 2

(D − 1)(D − 2)
R2 , (6.67)

which is independent of torsion and will thus not change the other vertices. The final counterterm

action reads

Sct =

∫
dDx
√
−g
{
b1

[
R2 − D(D − 1)

(D − 2)(D − 3)
E − 2D(D − 1)TµνT µν

]
+ b2CµνρσC

µνρσ

}
(6.68)

where the coefficients are 9

b1 =
µD−4

(4π)D/2

(
D − 2

2
+ 2ξ(D − 1)

)2 Γ
(
D
2 − 1

)
8(D − 1)2(D − 3)2(D − 4)

(6.69)

b2 =
µD−4

(4π)D/2
(D − 2)Γ

(
D
2 − 1

)
16(D + 1)(D − 1)(D − 3)3(D − 4)

. (6.70)

The final vertex corrections induced by these choices are also given in appendix C. In order to

add them to the original theory, one has to expand HD = H4µD−4
(

1 + (D − 4) ln H
µ

)
plus

higher order terms, which will potentially induce a scale dependence of H on µ. This is also

called running of the coupling constants and is typically used to explore the infrared (µ → 0)

or ultraviolet (µ → ∞) behavior of a quantum theory. Perhaps the most famous example is

asymptotic freedom of QCD [46], which refers to the phenomenon that the elementary particles

of QCD, are essentially free particles at very high energies. It is predicted by renormalization as

the induced running coupling constants vanish at high energies.

9The same comment as in footnote 8 applies.
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Adding the counterterm vertex (C.20) to the regulated result (6.41) yields:

TTΓαβ(x, x′)ren =
1

32π2
(1 + 6ξ)2 ln H2

µ2

(
−∇̊α∇̊′β + 4H2gαβ

) δ4(x− x′)√
−g

+
1

16π2
H2gαβ

{
− (1 + 6ξ) + 2 (1 + 6ξ)2

[
2− 2ψ(1) + ψ

(
1
2 ± ν4

) ]}δ4(x− x′)√
−g

+
i

2
(1 + 6ξ)2 ∇̊α∇̊′β(i∆(x, x′))2

fin (6.71)

Renormalizing (6.45) by means of (C.21) results in:

gTΓβµν(x, x′)ren =
1

192π2
(1 + 6ξ)2 ln H2

µ2

(
gµν�̊− ∇̊µ∇̊ν + R̊µν

)
∇̊′β δ

4(x− x′)√
−g

+
1

16π2
(1 + 6ξ)2H2gµν∇̊′β

δ4(x− x′)√
−g

+
i

4

H4

(4π)4
∇̊′β
{

(1 + 6ξ)2

[
− 1

3
H2gµν

�̊
H2

g(y) +
1

3
∇̊µ∇̊νg(y)−H2gµνg(y) + 4∇̊µ∇̊ν

4

y

]
+ 2 (1 + 6ξ)

(
δρµδ

σ
ν −

1

2
gµνg

ρσ

)(
∂ρ

8

y
∂σf1(y) + ∂ρf0(y) ∂σf0(y)

)
+ 2ξ (1 + 6ξ)

(
R̊µν − gµν�̊+ ∇̊µ∇̊ν

)(8

y
f0(y) + f2

0 (y)

)}
(6.72)

At last, the renormalized gg vertex becomes (symmetrization in (µν) and (ρσ) is again implicit):

ggΓµνρσ(x, x′)ren =

=
1

1152π2
(1 + 6ξ)2 ln H2

µ2

{
− ∇̊µ∇̊ν∇̊′ρ∇̊′σ +H2

(
gµν∇̊′ρ∇̊′σ + g′ρσ∇̊µ∇̊ν

) �̊
H2

− 3H2(gµν∇̊′ρ∇̊′σ + g′ρσ∇̊µ∇̊ν)−H4gµνg
′
ρσ

�̊
H2

�̊
H2

+ 9H4gµνg
′
ρσ

− 6H4g̃µρ′ g̃νσ′
�̊
H2
− 12H2g̃µρ′∇̊ν∇̊′σ

}
δ4(x− x′)√
−g

+
1

720

1

(4π)2
ln H2

µ2

{
− 2∇̊µ∇̊ν∇̊′σ∇̊′ρ −H2

(
gµν∇̊′ρ∇̊′σ + g′ρσ∇̊µ∇̊ν

) �̊
H2

+H4gµνg
′
ρσ

�̊
H2

�̊
H2

+ 6H2(gµν∇̊′ρ∇̊′σ + g′ρσ∇̊µ∇̊ν) + 3H4gµνg
′
ρσ

�̊
H2
− 18H4gµνg

′
ρσ − 6g̃µρ′∇ν∇′σ

�̊
H2

+ 12H2g̃µρ′∇ν∇′σ − 3
1

2
H4g̃µρ′ g̃νσ′

�̊
H2

�̊
H2

+ 6H4g̃µρ′ g̃νσ′
�̊
H2

}
δ4(x− x′)√
−g

+
1

64π2

{[
− 2

15 −
1
6 (1 + 6ξ)2 − 2ξ (1 + 6ξ)

(
−1

2 − 2ψ(1) + ψ
(

1
2 ± ν4

))]
×

×H2(gµν∇̊′ρ∇̊′σ + g′ρσ∇̊µ∇̊ν)

+

[
5
15 + 1

3 (1 + 6ξ)− 2
3 (1 + 6ξ)2 − (2ξ − 1

2) (1 + 6ξ)
(
2ψ(1)− ψ

(
1
2 ± ν4

)) ]
H4gµνg

′
ρσ

�̊
H2
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+
[
−11

10 −
4
3 (1 + 6ξ) + 5

2 (1 + 6ξ)2 + 12ξ (1 + 6ξ)
(
2ψ(1)− ψ

(
1
2 ± ν4

))]
H4gµνg

′
ρσ

+
[
− 4

15 + 5
3 (1 + 6ξ)− 4

3 (1 + 6ξ)2 + 4ξ (1 + 6ξ)
(
2ψ(1)− ψ

(
1
2 ± ν4

))]
H2g̃µρ′∇̊ν∇̊′σ

+
[
−1

6 + 5
6 (1 + 6ξ)− 2

3 (1 + 6ξ)2 + 2ξ (1 + 6ξ)
(
2ψ(1)− ψ

(
1
2 ± ν4

))]
H4g̃µρ′ g̃νσ′

�̊
H2

+
[
1− 5 (1 + 6ξ) + (1 + 6ξ)2 − 12ξ (1 + 6ξ)

(
2ψ(1) + ψ

(
1
2 ± ν4

))]
H4g̃µρ′ g̃νσ′

}
δ4(x− x′)√
−g

+
i

4

H4

(4π)4

{
∇̊µ∇̊ν∇̊′ρ∇̊′σ

[ (
1
90 + 1

18 (1 + 6ξ)2
)
g(y) +

(
−2

3 (1 + 6ξ) + 4
3 (1 + 6ξ)2

)
4
y

+
(

8
3 (1 + 6ξ)− 4 (1 + 6ξ)2

)
ln(y4 ) + 2ξ2

(
8
yf0(y) + f2

0 (y)
) ]

+H2
(
gµν∇̊′ρ∇̊′σ + g′ρσ∇̊µ∇̊ν

) �̊
H2

[ (
1

180 −
1
18 (1 + 6ξ)2

)
g(y)

+
(
−1

3 (1 + 6ξ)− 2
3 (1 + 6ξ)2

)
4
y − 2ξ2

(
8
yf0(y) + f2

0 (y)
) ]

+H2
(
gµν∇̊′ρ∇̊′σ + g′ρσ∇̊µ∇̊ν

) [(
− 1

30 + 1
3 (1 + 6ξ)− 1

6 (1 + 6ξ)2
)
g(y) + 6ξ2

(
8
yf0(y) + f2

0 (y)
) ]

+H4gµνg
′
ρσ

�̊
H2

�̊
H2

[ (
− 1

180 + 1
18 (1 + 6ξ)2

)
g(y) +

(
1
8 + 2ξ2

) (
8
yf0(y) + f2

0 (y)
) ]

+H4gµνg
′
ρσ

�̊
H2

[ (
− 1

60 −
5
6 (1 + 6ξ) + 1

3 (1 + 6ξ)2
)
g(y) + (1 + 6ξ) 8

y

+ (6ξ − 12ξ2)
(

8
yf0(y) + f2

0 (y)
) ]

+H4gµνg
′
ρσ

[ (
1
10 + 2 (1 + 6ξ)− 5

2 (1 + 6ξ)2
)
g(y) +

(
−6 (1 + 6ξ) + 6 (1 + 6ξ)2

) 4

y

+ 90ξ2
(

8
yf0(y) + f2

0 (y)
) ]

+ 1
30H

2g̃µρ′∇̊ν∇̊′σ �̊H2 g(y)

+H2g̃µρ′∇̊ν∇̊′σ
[ (
− 1

15 + 2
3 (1 + 6ξ)

)
g(y)− 96ξ (1 + 6ξ)

ln(
y
4 )

y

+
[
− 2 + 14

3 (1 + 6ξ) + 14
3 (1 + 6ξ)2 − 24ξ (1 + 6ξ)

(
2ψ(1)− ψ

(
1
2 ± ν4

)) ]4

y

]
+ 1

60H
4g̃µρ′ g̃νσ′

�̊
H2

�̊
H2 g(y) +

(
− 1

30 + 1
3 (1 + 6ξ)

)
H4g̃µρ′ g̃νσ′

�̊
H2 g(y)

+
(
−2 (1 + 6ξ) + 2 (1 + 6ξ)2

)
H4g̃µρ′ g̃νσ′g(y)

+ 4∇̊µ∇̊′ρ
4

y
∇̊ν∇̊′σf2(y)− 8 (1 + 6ξ) ∇̊µ∇̊′ρ ln

y

4
∇̊ν∇̊′σf1(y) + 2∇̊µ∇̊′ρf1(y) ∇̊ν∇̊′σf1(y)

+
(
−1

2H
2gµν

�̊
H2 − 12ξH2gµν

)(
∂′ρ

8
y ∂
′
σf1(y) + ∂′ρf0(y) ∂′σf0(y)

)
+
(
−1

2H
2g′ρσ

�̊
H2 − 12ξH2g′ρσ

)(
∂µ

8
y ∂νf1(y) + ∂µf0(y) ∂νf0(y)

)
+ 2ξ(−gµν�̊+ ∇̊µ∇̊ν + 3H2gµν)

(
δγρδ

δ
σ − 1

2g
′
ρσg
′γδ
)(

∂′γ
8
y ∂
′
δf1(y) + ∂′γf0(y) ∂′δf0(y)

)
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+ 2ξ(−g′ρσ�̊′ + ∇̊′ρ∇̊′σ + 3H2g′ρσ)
(
δαµδ

β
ν − 1

2gµνg
αβ
)(

∂α
8
y ∂βf1(y) + ∂αf0(y) ∂βf0(y)

)}
(6.73)

It remains to be shown that these finite vertices are still conformal, that is, obey the Ward

identities.

6.3 Ward Identities

Recall the two derived Ward identities (6.17) and (6.18) that ought to be satisfied by the one-loop

vertex functions:

∇̊α TTΓαβ(x, x′) + 2gµν(x) gTΓβµν(x, x′) = 0

∇̊α gTΓαρσ(x′, x) + 2
δD(x− x′)√

−g gΓρσ(x) + 2gµν(x) ggΓµνρσ(x, x′) = 0

The trace of the energy momentum tensor descends to a trace of the gT - and gg-vertex functions.

For the first Ward identity, it can be computed from (6.72) by means of the identities given in

appendix A.2:

gµν gTΓβµν(x, x′)ren =

=
ln H2

µ2

64π2
(1 + 6ξ)2

(
4H2 + �̊

)
∇̊′β δ

4(x− x′)√
−g

+
H2

32π2

{
− (1 + 6ξ) + 2 (1 + 6ξ)2

[
2− 2ψ(1) + ψ

(
1
2 ± ν4

) ]}
∇̊′β δ

4(x− x′)√
−g

− i

4
(1 + 6ξ)2 ∇̊′β�̊(i∆(x, x′))2

fin (6.74)

On the other hand, the covariant divergence of (6.71) becomes (using ∂xα(gαβδD(x − x′)) =

−∂βx′δ
D(x− x′))

∇̊α TTΓαβ(x, x′)ren =

=
ln H2

µ2

32π2
(1 + 6ξ)2

(
−4H2 − �̊

)
∇̊′β δ

4(x− x′)√
−g

− H2

16π2

{
− (1 + 6ξ) + 2 (1 + 6ξ)2

[
2− 2ψ(1) + ψ

(
1
2 ± ν4

) ]}
∇̊′β δ

4(x− x′)√
−g

+
i

2
(1 + 6ξ)2 ∇̊′β�̊(i∆(x, x′))2

fin , (6.75)

which is indeed twice the negative of (6.74). Thus, the first Ward identity is satisfied. Similarly,

the trace appearing in the second Ward identity is computed by using the bitensor traces given
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in appendix A.3:

gµν ggΓµνρσ(x, x′)ren =

=
1

384π2
(1 + 6ξ)2 ln

H2

µ2

[
−g′ρσ�̊�̊+ ∇̊′ρ∇̊′σ�̊− 3H2g′ρσ�̊

] δ4(x− x′)√
−g

− 1

32π2
(1 + 6ξ)2H2g′ρσ�̊

δ4(x− x′)√
−g

+
i

4

H4

(4π)4

{
(1 + 6ξ)2

[
1

6
g′ρσ�̊�̊g(y)− 1

6
∇̊′ρ∇̊′σ�̊g(y) +

1

2
H2g′ρσ�̊g(y)− 2∇̊′ρ∇̊′σ�̊

4

y

]
− (1 + 6ξ)

(
δγρδ

δ
σ −

1

2
g′ρσg

′γδ
)
�̊

(
∂′γ

8

y
∂′δf1(y) + ∂′γf0(y) ∂′δf0(y)

)
− ξ (1 + 6ξ)

(
3H2g′ρσ − g′ρσ�̊+ ∇̊′ρ∇̊′σ

)
�̊

(
8

y
f0(y) + f2

0 (y)

)}
(6.76)

Because neither the original theory nor the counterterms induce a one-point function ∝ gΓµν ,

the middle term of the second Ward identity can be ignored. The covariant divergence of the

renormalized gT vertex (6.72) on the other hand is

∇̊α gTΓαρσ(x′, x)ren =

=
1

192π2
(1 + 6ξ)2 ln

H2

µ2

[
g′ρσ�̊�̊− ∇̊′ρ∇̊′σ�̊+ 3H2g′ρσ�̊

] δ4(x− x′)√
−g

+
1

16π2
(1 + 6ξ)2H2g′ρσ�̊

δ4(x− x′)√
−g

+
i

4

H4

(4π)4

{
(1 + 6ξ)2

[
− 1

3
g′ρσ�̊�̊g(y) +

1

3
∇̊′ρ∇̊′σ�̊g(y)−H2g′ρσ�̊g(y) + 4∇̊′ρ∇̊′σ�̊

4

y

]
+ 2 (1 + 6ξ)

(
δγρδ

δ
σ −

1

2
g′ρσg

′γδ
)
�̊

(
∂′γ

8

y
∂′δf1(y) + ∂′γf0(y) ∂′δf0(y)

)
+ 2ξ (1 + 6ξ)

(
3H2g′ρσ − g′ρσ�̊+ ∇̊′ρ∇̊′σ

)
�̊

(
8

y
f0(y) + f2

0 (y)

)}
, (6.77)

which is also twice the negative of (6.76). That is, both Ward identities are satisfied by the

one-loop vertices and no anomalous terms are found.

6.4 Interlude: A Derivation of the Trace Anomaly

This part is a sketch of the calculation of the trace anomaly for a scalar field following chapters

3 and 6 of Birrell and Davies’ book [34]. The aim is to be as understandable as possible and if

in doubt, one should go back to the original source. Many authors refer to either their or very

similar derivations when citing the anomaly. While being arguably the most technical chapter

of the thesis, it will be of great use in understanding the nature of the anomaly, as well as why

52



the results (6.74), (6.76) deviate from it even in their local pieces. In this section, the space-

time is general and does not necessarily have to be de Sitter. Furthermore, Birrell and Davies

work in the realm of general relativity, and thus there will be no torsion. These simplifications

are sufficient for the present purpose of highlighting the main steps that lead to the anomaly.

The same analysis for non-vanishing torsion is performed in [1] and the derived anomaly has

qualitatively the same form as (6.97).

It turns out that the anomaly is a consequence of renormalization and one thus seeks for an

expression of the divergences of the effective action. In general, these divergences are caused by

the ultraviolet (or short distance) behavior of the scalars Green’s function. This implies that a

local construction will be sufficient and a preferred choice of local reference frame are Riemann

normal coordinates (RNC). By definition, in a RNC system of x around the point x′, geodesics

are locally straight lines, that is, the geodesic equation reduces to

d2xµ

dτ2
= 0 . (6.78)

Equivalently, after introducing zα(x, x′) = xα− x′α as normal coordinates, one may expand the

metric tensor around ηµν ,

gµν(x) = ηµν + 1
3R̊µανβ z

αzβ − 1
6∇̊γR̊µανβ z

αzβzγ + . . . (6.79)

such that gµν(x′) = ηµν and the Christoffel symbols vanish at x′ because there is no linear term

in z. The expansion of a function into the coordinate z will therefore also yield an expansion

in the curvature tensors. To calculate the anomaly, it turns out to be more convenient to work

with a slightly modified scalar propagator

GF (x, x′) := 4
√
−gGF (x, x′) , (6.80)

where GF is the Feynman propagator of the massive scalar field with equation of motion

[�̊−m2 + ξR̊]φ = 0 .

The inclusion of the mass helps to avoid infrared singularities that can occur when R̊ vanishes.

The Fourier transformation of the Green’s function using RNC is defined by

GF (x, x′) =

∫
dDk

(2π)D
e−ikzGF (k) , (6.81)

with kz = ηµνkµzν owing the locally flat coordinate system. Next, Birell and Davies use the

asymptotic momentum space expansion of this propagator [47], which follows from the equation

of motion, to conclude

GF (x, x′) =

∫
dDk

(2π)D
e−ikz

[
a0(x, x′) + a1(x, x′)

∂

∂m2
+ a2(x, x′)

(
∂

∂m2

)2
]

1

k2 +m2
,

(6.82)
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plus higher derivative terms. The coefficients aj(x, x
′) are up to fourth order in metric derivatives

given by

a0(x, x′) = 1 (6.83)

a1(x, x′) = 1
6 (1 + 6ξ) R̊− 1

12 (1 + 6ξ) ∇̊αR̊ zα − 1
3aαβ z

αzβ (6.84)

a2(x, x′) = 1
12 (1 + 6ξ)2 R̊2 + 1

3a
λ
λ (6.85)

with

aαβ = 1
12 (1 + 6ξ) ∇̊α∇̊βR̊+ 1

120∇̊α∇̊βR̊−
1
40�̊R̊αβ −

1
30R̊α

λR̊λβ

+ 1
60R̊καλβR̊

κλ + 1
60R̊

λµκ
αR̊λµκβ . (6.86)

All geometric quantities on the right-hand sides are to be evaluated at the anchor point x′. Also

notice how (6.82) reduces (up to a pole prescription) to the familiar result

GF (k) = GF (k) =
1

k2 +m2
(6.87)

in the special relativistic limit gµν → ηµν . By using the integral formula of the flat space

propagator
1

k2 +m2 + iε
= −i

∫ ∞
0

ds eis(k
2+m2+iε) (6.88)

in (6.82), and performing the k integration, one arrives at

GF (x, x′) =
−i

(4π)D/2

∫ ∞
0

ds
1

(is)D/2
e−ism

2+isz2/4 F (x, x′; is) , (6.89)

which is known as Schwinger-DeWitt proper time representation. While this derivation only

holds in Riemann normal coordinates, the general expression is only slightly more complicated,

but not required here. Equation (6.82) implies that F (x, x′; is) admits the expansion

F (x, x′; is) = a0(x, x′) + a1(x, x′)is+ a2(x, x′)(is)2 + . . .

To obtain the implications for the one-loop effective action Γ one needs the standard result from

quantum field theory (see Birell, Davies (6.25))

Γ =
−i
2

∫
dDx
√
−g ln(−GF (x, x)) . (6.90)

Finally, the logarithm can be recast as m2 integration so that at last the general effective

Lagrangian takes the form

Leff =
i

2
lim
x′→x

∫ ∞
m2

dm2GF (x, x′) ,

54



where GF (x, x′) is up to a factor of the metric determinant given by (6.89). The divergent terms

are determined by inserting the Schwinger-DeWitt expansion and performing the m2 integration,

which leads to

Leff =
1

2

1

(4π)D/2

∞∑
j=0

aj(x)

∫ ∞
0

(is)j−1−D/2 e−ism
2
ids

=
1

2

1

(4π)D/2

∞∑
j=0

aj(x)(m2)D/2−jΓ(j −D/2) , (6.91)

and aj(x) ≡ aj(x, x). In D = 4 dimensions, j = 0, 1, 2 constitute the divergent terms which

follow from the poles in the Γ function at non-positive integers. However, by conformal invariance

m2 has to be set to 0 at last (ignoring the already mentioned infrared divergences) and hence

only a2(x) will survive. The divergent effective action that ought to be renormalized is thus

Γdiv =
1

2

1

(4π)D/2
Γ(2−D/2)

∫
dDx
√
−g a2(x) , (6.92)

with

a2(x) =
1

180
R̊αβγδR̊

αβγδ − 1

180
R̊αβR̊

αβ − 1

30
(1 + 5ξ) �̊R̊+

1

72
(1 + 6ξ)2 R̊2 . (6.93)

Birrell and Davies drop the �̊R̊ and R̊2 terms because the former is a boundary contribution

and the latter vanishes for conformal coupling10. The other two summands can be rewritten

according to

1

180
R̊αβγδR̊

αβγδ − 1

180
R̊αβR̊

αβ =
1

120 4C̊αβγδ 4C̊
αβγδ − 1

360
E̊ ,

where 4C̊αβγδ denotes the Weyl tensor in four dimensions and E̊ = R̊αβγδR̊
αβγδ − 4R̊αβR̊

αβ +

R̊2 is the Gauss-Bonnet integrand. From here, the anomaly arises as follows: By means of

renormalization, a counterterm action

Γct =
µD−4

D − 4

1

(4π)D/2

∫
dDx
√
−g
[

1

120 4C̊αβγδ 4C̊
αβγδ − 1

360
E̊

]
(6.94)

is added to the effective action that cancels the divergences. Upon using the relations

−2gµν√
−g

δ

δgµν

∫
dDx
√
−g 4C̊αβγδ 4C̊

αβγδ = (D − 4)
(

4C̊αβγδ 4C̊
αβγδ + 2

3�̊R̊
)

(6.95)

−2gµν√
−g

δ

δgµν

∫
dDx
√
−gE̊ = (D − 4)E̊ , (6.96)

10More precisely, (1 + 6ξ)2 ∝ (D − 4)2 so that the 1/(D − 4) of the divergence cancels and the result still

vanishes when D → 4.
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one finds that the renormalized stress-energy tensor has acquired the anomalous trace

〈T̂µµ〉ren =
−2gµν√
−g

δ

δgµν
(Γ + Γct) =

−2gµν√
−g

δ

δgµν
Γct

=
1

16π2

(
1

120 4C̊αβγδ 4C̊
αβγδ − 1

360
E̊ +

1

180
�̊R̊

)
, (6.97)

as the finite combination of (D− 4) on the right-hand side of (6.95), (6.96) with the 1/(D− 4)

prefactor of the counterterm action. In the first line it was used that the original theory was

assumed to be conformal, so that Γ does not contribute to the trace. The result (6.97) is

commonly known as the conformal anomaly.

Historically, the presence of the �̊R̊ term was found first, originally by Capper and Duff [10].

Subsequently, further investigation by Deser, Duff, Isham [48] showed also the potential presence

of the other terms and over the years, the coefficients were determined for various different field

content (see also [12] for an extended overview). A geometrical analysis [49] revealed that the

role of the Weyl tensor and the Gauss-Bonnet term in the anomaly are quite distinct. The

former requires the introduction of a renormalization scale µ which breaks conformal symmetry,

while the latter is scale independent and in general necessary for consistency. For instance, its

coefficient can also be determined by demanding diffeomorphism invariance. The authors also

show that there is always one term of the second type, namely the Euler density, which equals

the Gauss-Bonnet term in four dimensions, while the number of terms of the first type increase

drastically with dimension, and only in D = 4 there happens to be only one, namely the square of

the Weyl tensor. The distinction into scale dependent and scale independent terms is important

because the former may induce a running of the coupling constants of the theory.

Despite being discovered first, the �̊R̊ term in the anomaly is not universal. In fact, it would

not even arise in the given derivation if one decides to renormalize with the D dimensional Weyl

tensor, as it was done in section 6.2. In this case, the identity (6.95) is replaced by

−2gµν√
−g

δ

δgµν

∫
dDx
√
−g DCαβγδ DCαβγδ = (D − 4)DCαβγδ DC

αβγδ , (6.98)

and thus no �̊R̊ term on the right-hand side of (6.97). Additionally, its coefficient can be

changed by a finite and hence ambiguous counterterm. For instance, the inclusion of R̊2 leads

to
−2gµν√
−g

δ

δgµν

∫
dDx
√
−gR̊2 = −4(D − 1)�̊R̊+O(D − 4) (6.99)

as modification of the trace anomaly. On the other hand, there is no local action11 that can

reproduce the other terms of the anomaly which are thus considered unambiguous: Indeed, all

renormalization schemes predict the same terms with the same coefficients.

11There is, however, a non-local one known as the Riegert action [50].
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6.5 Discussion

The main conclusion of section 6.3 came, in principle, as no surprise. By starting with a con-

formal action and applying a conformal renormalization scheme, the Ward identities were found

to be satisfied identically. The non-trivial part of this statement lies in the renormalization. It

was not obvious that the required counterterms could be chosen to obey the Ward identities

themselves. In general relativity, this is obviously not possible as the renormalization spoils con-

formal symmetry, which ultimately leads to the anomaly. In the approach presented here, on

the other hand, the stress-energy tensor may develop a non-vanishing trace which the dilation

current always compensates for and it is therefore an elementary part of the Ward identity.

If Weyl symmetry is not gauged by a vector field and therefore no dilation current is present,

the trace of the energy momentum tensor after quantization is interpreted as an anomaly, because

the symmetry predicts vanishing of the trace at classical level. Accordingly, in the language of

this thesis, the anomaly should be handed down from 〈T̂µµ〉 to local terms in the traces of

the gT and gg-vertex functions, explicitly given by (6.74) and (6.76), respectively. The precise

relation could, for instance, be found by functional variation of the anomaly (6.97), although it

is clear that the calculation can be spared. A prominent feature of the anomaly is its presence

even for a conformally coupled scalar. Since the traced vertices vanish for ξ = −1
6 , none of the

anomalous terms on the right-hand side of (6.97) can be observed.

For the square of the Weyl tensor and the �R term this poses no problem. The prefactor of

the latter in the anomaly is not unique anyway and it would not show up there when renormal-

izaton is performed as in section 6.2, as remarked above. Additionally, an explicit calculation

[1] already revealed that it does not arise in the theory with gauged Weyl symmetry. C2
µνρσ, on

the other hand, contributes to lowest order to the three-point function because de Sitter is a

conformally flat space. Hence it does also not show itself in the gg-vertex.

This leaves only the Gauss-Bonnet term in the anomaly unexplained. It is finite on de Sitter

and one would thus expect to find its imprints in the one-loop vertices, which unfortunately

cannot be confirmed in the calculations done here. Going back to the derivation of the anomaly,

one realizes that it arises in (6.97) because the divergences of the general one-loop effective

action are renormalized by a counterterm

∝ µD−4

D − 4

(
1

120
C2
µνρσ −

1

360
E

)
.

On the other hand, for the theory under investigation, the corresponding counterterm (that was
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determined by the divergences of the vertex (6.49)) is given by (6.68), (6.70)

µD−4

D − 4

(D − 2)Γ
(
D
2 − 1

)
16(D + 1)(D − 1)(D − 3)3

C2
µνρσ ∼

µD−4

D − 4

1

120
C2
µνρσ +O(D − 4)0 ,

which is the term even present for a conformally coupled scalar field. That is, there is agreement

in the coefficient of the C2
µνρσ term which implicitly confirms it in the anomaly, though there is

no explicit contribution.

The Gauss-Bonnet term is not added here, because it does not renormalize any vertex. By

using the expressions given in appendices C, D one finds that all its potential corrections are

proportional to (D − 4), and hence, it is impossible to obtain it as a counterterm by only con-

sidering the divergences. In fact, its presence in the counterterm action (6.94), which eventually

induces the anomaly, is also not entirely obvious. A term proportional to �R is suppressed at

this point when going from (6.93) to (6.94) because it is a boundary term. But the same can be

said about the Gauss-Bonnet integrand, which gives rise to a boundary contribution in D = 4.

Birrell and Davies use four dimensional counterterms which means it could be dropped by the

same reason, changing the anomaly accordingly.

Moreover, there exists another argument in favor of not including Gauss-Bonnet as a coun-

terterm on the same level as the Weyl tensor. The explicit calculations in section 6.2 show that it

is not conformal in D dimensions, that is, its induced vertices do not satisfy the Ward identities.

On the contrary, it was added to the R2 counterterm to make their combination conformal, while

being only a boundary term itself.

Other authors prove the Gauss-Bonnet term by different means. In [51], the unique combi-

nation 1
120C

2
µνρσ− 1

360E̊ appears as a consequence of diffeomorphism invariance as the resulting

stress-energy tensor would fail to be conserved, unless both terms are added. Unfortunately,

this violation is proportional to a derivative of the curvature scalars, which are constant on de

Sitter space. Also this way of detecting E is ruled out in the present context. Nonetheless, all

instances of Tµν and its functional derivatives, the gT - and gg-vertices, appearing in this thesis

have been verified to be conserved.

Lucat has presented a different interpretation of the Gauss-Bonnet term in his PhD thesis

[1]. It is known that in Riemannian geometry in four dimensions one can write

E̊ = ∇̊µV µ

for some vector field V µ, making its role as boundary term manifest. If one replaces the con-

nection by its conformal cousin (3.13), a weight analysis shows

E̊ = ∇̊µV µ → E = ∇µV µ = ∇̊µV µ − (D − 4)TµV
µ . (6.100)

58



He concludes that the contribution to the dilation current δ
δTα

∫
dDx
√
−gE is the negative of

the one to the energy momentum tensor given by (6.96). If this was the case, then Gauss-Bonnet

is indeed conformal and could be added to the counterterm action for free. It would obey the

Ward identity itself and because it does not contribute to renormalization, its coefficient could

be chosen arbitrarily. In particular, one was free to add

ΓGB = − 1

360

µD−4

D − 4

∫
dDx
√
−g
[
E̊ + (D − 4)TµV

µ
]

(6.101)

to the counterterm action (6.68), such that this action reproduces the same anomaly as (6.94) in

the case without torsion. More precisely, inclusion of the conformal Gauss-Bonnet counterterm

(6.101) gives to lowest order in torsion the following corrections:

TGB
µν =

−2√
−g

δΓGB

δgµν

∣∣∣∣
g=gdS,Tα=0

=
1

180
√
−g

µD−4

D − 4

δ

δgµν

∫
dDx
√
−g
[
R̊αβγδR̊

αβγδ − 4 R̊αβR̊
αβ + R̊2

]
=

1

90

µD−4

D − 4

(
δρµδ

σ
ν − 1

4gµνg
ρσ
) [
R̊αβγρR̊

αβγ
σ − 4 R̊αρR̊

α
σ + R̊R̊ρσ

]
(6.102)

Dα
GB =

1√
−g

δΓGB

δTα

∣∣∣∣
g=gdS,Tα=0

= −µ
D−4

360
V α (6.103)

Upon the observation gµνTGB
µν = 1

90
µD−4

D−4 (1 − D
4 )E̊ = −µD−4

360 ∇̊µV
µ, these two terms satisfy

the Ward identity (6.1) trivially. As for the other terms appearing in the trace of Tµν , it is

compensated for by the contribution to the dilation current, here induced by the second term

in (6.101). The linear combination R2
µνρσ − 4R2

µν +R2 found in section 6.2 should in this case

not be called E, but rather something that resembles Gauss-Bonnet, but is not conformal.

Literature on the Gauss-Bonnet term is scarce and not always coherent. In [45], the authors

give a (non-covariant) expression for the vector field V µ that satisfies E̊ = ∇̊µV µ in Riemannian

geometry, but neither with their result generalized to theories with torsion nor with the explicit

results obtained in this thesis was it possible to recover a form such as (6.100). It might be due

to the fact that the Gauss-Bonnet term is inherently only defined in four dimensions and inclusion

of torsion is not as straightforward as hoped. In any case, the question about its presence in the

counterterm action and hence in the anomaly, as well as the question if it is itself conformal or

not cannot be fully answered by this thesis.

As a concluding remark, the observation that E does not induce any divergent contributions

even when accompanied by a 1/(D − 4) prefactor has led to the development of an extension

of general relativity, where this term is added to the Einstein-Hilbert action,

S =

∫
dDx
√
−g
[
M2
P

2
R̊+

α

D − 4
E̊

]
, (6.104)
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with MP denoting the Planck mass. The resulting theory is known as 4D-Einstein-Gauss-Bonnet

gravity [52] and has received much attention in recent research, thereby causing some contro-

versy (see e.g. [53] and references therein).

On the positive side, the derivation of the trace anomaly yields additional information about

the non-conformally coupled scalar. According to equation (6.93), the divergent part for ξ 6= −1
6

also includes −1
(4π)D/2

1
72 (1 + 6ξ)2 R̊2. It is renormalized by a counterterm with opposite sign, and

inspection of (6.68), (6.69) shows that this is essentially done:

1

(4π)D/2

(
D − 2

2
+ 2ξ(D − 1)

)2 Γ
(
D
2 − 1

)
8(D − 1)2(D − 3)2

R2 ∼ (1 + 6ξ)2

(4π)D/2
1

72
R2 +O(D − 4)

(6.105)

The counterterm chosen in this thesis only differs by a boundary (E) and a torsion dependent

(TµνT µν) term, showing that this part of the theory is in agreement with the literature. One can

go even a step further. The difference between the general divergence induced by (6.93) and the

particular counterterm (6.105) is of order O(D − 4) and hence gives a finite contribution when

multiplying 1/(D − 4). This in turn induces a finite correction according to equation (6.99),

which descends down to the vertex functions. Indeed, a careful analysis shows that this is the

origin of the first line in the trace (6.76) of the renormalized gg-vertex, which cancels in the

Ward identity against a similar expression originating from the gT -vertex.
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7 Conclusion

Nature presents many motivations to study rescaling invariant systems. By using Weyl invariance

as a guiding principle, vectorial space-time torsion appears natural in the form of a U(1)-like

gauge field for Weyl transformations in the sense that it changes as Tα → Tα + ∂αω. This has

two important consequences. Contrary to general relativity, the curvature tensors are invariant

under Weyl transformations and can therefore be used to obtain a conformal theory of gravity

that reduces to GR for vanishing torsion. Moreover, the matter sector also benefits from this

construction, as Tα is used to build a conformally invariant gauge connection (3.13). In this way,

another application is added to the so-far tremendously successful interplay between physics and

geometry.

In general relativity, Weyl symmetry gets broken in the quantum theory by renormalization

which results in the famous anomaly in the trace of the stress-energy tensor. To investigate the

corresponding situation in this new setup, a massless, non-minimally coupled scalar field is quan-

tized on a de Sitter background, while the geometric quantities graviton and torsion are kept as

external perturbations. Some long, intricate calculations lead to the one-loop expressions (6.41),

(6.45), (6.49) for the vertices with two external legs. Remarkably, though, their divergences can

be removed by a fully conformal counterterm action (6.68), so that the renormalized results still

satisfy the Ward-Takahashi identities. In other words, Weyl symmetry is promoted to a true

gauge-like symmetry, also respected by the quantum theory.

The presented results agree with the literature in the case of vanishing torsion. Only the

role of the Gauss-Bonnet term in the divergence, and hence in the anomaly, cannot be fully

determined, as it avoids being detected by the means of the calculations in this thesis. Despite

a prefactor ∝ 1/(D − 4), it in fact does not yield any divergent contributions, because every

vertex induced by E is itself proportional to (D − 4). Moreover, because the Gauss-Bonnet

term has a constant value on de Sitter space, it vanishes whenever it appears under a derivative.

A recalculation for a more general background might be able to shed some light on this issue.

However, whatever the outcome of such an analysis will be, it does not change the fact that

conformal symmetry remains non-anomalous for this theory. This is especially true as the Gauss-

Bonnet term (6.100) might be conformal itself.

Although the universe is clearly not scaling invariant, it seems like a reasonable assumption

that the symmetry is spontaneously broken. In this picture, a new degree of freedom emerges

that ought to dynamically create the Planck scale. It has been shown [1] that a scalar field can

take this role, resulting in a non-trivial interplay between the scalar-gravity sector and torsion

in the high energy regime. Because the coupling of these new fields to the standard model of

particles is suppressed by the Planck scale ∝ k2

M2
p

, where k is the four momentum of the scattering
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process, they are undetectable by current accelerators as the LHC. In the inflationary universe, on

the other hand, such energy scales are available and the degrees of freedom could be excited and

propagate at large distances. If existent, the next generation space-based gravitational waves

observatories, for instance, LISA, are therefore expected to detect their effects [1].

This thesis is all but the first step in establishing the ground for this new theory with gauged

Weyl symmetry. To obtain more conclusive statements, the Ward-Takahashi identities should be

fulfilled not only to linear perturbations, but to quadratic order. Furthermore, as trace anomalies

also exist for different matter content such as fermions and vector fields, their respective absence

has to be shown separately. However, given the combined evidence in [1] and this thesis, the

conclusion that the symmetry is realized in their quantum theories seems very close.

On top of these generalizations, there remain an equal number of related open questions, which

the aforementioned Gauss-Bonnet term is only one of. Particular interest also lies in the way the

new scalar degree of freedom mixes with the gravitational ones, both at classical and quantum

level. We are just at the beginning of understanding Weyl symmetry in nature, which certainly

deserves more investigation.
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A De Sitter Identities

Throughout: Torsion vanishes, that is, ∇̊ = ∇, Γ̊αµν = Γαµν , etc.

The aim of this appendix is to provide an extension (and sometimes repetition) of the identities

given in appendix A of [37] that facilitate calculations of derivatives on the de Sitter space.

Recall the invariant distance

y

4
=
y(x, x′)

4
=
H2aa′∆x2

4
=

(x− x′)µ(x− x′)µ
4ηη′

(A.1)

from chapter 4 with a′ ≡ a(η′) = − 1
Hη′ . For derivatives acting on y there are the following

relations:

∂µ
y

4
= Haδ0

µ
y

4
+

1

2
H2aa′∆xµ (A.2)

∂′ρ
y

4
= Ha′δ0

ρ
y

4
− 1

2
H2aa′∆xρ (A.3)

∂µ∂
′
ρ

y

4
= H2aa′

(
δ0
µδ

0
ρ
y

4
− 1

2
Haδ0

µ∆xρ +
1

2
Ha′δ0

ρ∆xµ −
1

2
ηµρ

)
(A.4)

∂µ∂ν
y

4
= H2a2

(
2δ0

µδ
0
ν
y

4
+Ha′δ0

(µ∆xν)

)
+

1

2
H2aa′ηµν (A.5)

∇µ∇ν
y

4
=

(
1

2
− y

4

)
H2gµν (A.6)

�
H2

y

4
= D

(
1

2
− y

4

)
(A.7)

∇µ
y

4
∇µ y

4
= H2

(
y

4
−
(y

4

)2
)

(A.8)

∇µ
y

4
∇µ∇′ρ

y

4
= H2

(
1

2
− y

4

)
∇′ρ

y

4
(A.9)

�
H2
∇µ

y

4
= −∇µ

y

4
(A.10)

�
H2
∇′ρ

y

4
= −D∇′ρ

y

4
(A.11)

�
H2

(∇′ρ
y

4
∇′σ

y

4
) = −2(D + 1)∇′ρ

y

4
∇′σ

y

4
+

1

2
H2g′ρσ (A.12)

In D = 4 one has:

�
H2

y

4
= −4

y

4
+ 2 (A.13)

�
H2

ln
y

4
=

4

y
− 3 (A.14)

�
H2

(y
4

ln
y

4

)
= −4

y

4
ln
y

4
+ 2 ln

y

4
− 5

y

4
+ 3 (A.15)

�
H2

ln2 y

4
= 8

ln(y4 )

y
− 6 ln

y

4
+ 2

4

y
− 2 (A.16)
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By using (A.6) one can extract derivatives of mixed powers of y:

∂µ

(y
4

)−α
∂ν

(y
4

)−β
=

αβ

(α+ β)(α+ β + 1)
∇µ∇ν

(y
4

)−(α+β)

+
αβ

α+ β + 1
H2gµν

(
1

2
− y

4

)
×
(y

4

)−(α+β+1)
(A.17)

The relevant cases are (α, β) = (D/2− 1.D/2− 1) and (α, β) = (D/2− 1.D/2− 2).

∂µ

(y
4

)1−D/2
∂ν

(y
4

)1−D/2
=

D − 2

4(D − 1)
∇µ∇ν

(y
4

)2−D
+

(D − 2)2

4(D − 1)
H2gµν

(
1

2
− y

4

)
×
(y

4

)1−D

(A.18)

∂µ

(y
4

)1−D/2
∂ν

(y
4

)2−D/2
=

D − 4

4(D − 3)
∇µ∇ν

(y
4

)3−D

+
(D − 2)(D − 4)

4(D − 3)
H2gµν

(
1

2
− y

4

)
×
(y

4

)2−D
(A.19)

These are supplemented by two limiting cases (α+ β)→ 0 in D = 4:

∂µ
4

y
∂ν
y

4
= ∇µ∇ν ln

y

4
− 1

2
H2gµν

4

y
+H2gµν (A.20)

∂µ
4

y
∂ν

(y
4

ln
y

4

)
=

1

2
∇µ∇ν ln2 y

4
+ 2∇µ∇ν ln

y

4
− 2H2gµν

ln(y4 )

y

+H2gµν ln
y

4
−H2gµν

4

y
+ 2H2gµν (A.21)

Also recall the bilocal generalization for the metric tensor from (4.19),

H2g̃µρ′ = −2∇µ∇′ρ
y

4
. (A.22)

This definition immediately implies:

∇ν g̃µρ′ = 2gµν∇′ρ
y

4
(A.23)

∇′σ g̃µρ′ = 2g′ρσ∇µ
y

4
(A.24)

∇ν∇′σ g̃µρ′ = (1− y/2)gµνg
′
ρσ (A.25)

�
H2

g̃µρ′ = −g̃µρ′ (A.26)

A.1 Extracting d’Alembertians

In order to lower the degree of divergence one can raise the power of y-dependent terms by

extracting derivatives. The action of the d’Alembertian on a non-singular function of y was

given in (5.6),

�
H2

F (y) = (4y − y2)F ′′(y) +D(2− y)F ′(y) , (A.27)
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where a prime denotes a derivative with respect to y. A non-singular function contains no term

proportional to y1−D/2 when expanded in powers of y. Equation (A.27) can be used to prove(y
4

)−α
= − 2

(α− 1)(D − 2α)

�
H2

(y
4

)1−α
+

2(D − α)

D − 2α

(y
4

)1−α
(α 6= D/2) (A.28)

�
H2

(y
4

)1−D/2
=

(4π)D/2

Γ
(
D
2 − 1

)
HD

iδD(x− x′)√
−g

+
D(D − 2)

4

(y
4

)1−D/2
, (A.29)

where the pole prescription (5.14) is necessary for the second equality to hold. Application of

identity (A.28) to α = D,D − 1, D − 2 yields(y
4

)−D
=

2

D(D − 1)

�
H2

(y
4

)1−D
(A.30)(y

4

)1−D
=

2

(D − 2)2

�
H2

(y
4

)2−D
− 2

D − 2

(y
4

)2−D
(A.31)(y

4

)2−D
=

2

(D − 3)(D − 4)

�
H2

(y
4

)3−D
− 4

D − 4

(y
4

)3−D
(A.32)

In order to localize the divergence of the ∝ y3−D term subtract the fundamental identity (A.29)

of (A.32) with prefactor 2
(D−3)(D−4) :(y

4

)2−D
=

2

(D − 3)(D − 4)

�
H2

[(y
4

)3−D
−
(y

4

)1−D/2
]

− 4

D − 4

[(y
4

)3−D
− D(D − 2)

8(D − 3)

(y
4

)1−D/2
]

+
2

(D − 3)(D − 4)

(4π)D/2

Γ
(
D
2 − 1

)
HD

iδD(x− x′)√
−g

(A.33)

The first two terms on the right-hand side are finite in D = 4 and expansion shows(y
4

)2−D
=

2

(D − 3)(D − 4)

(4π)D/2

Γ
(
D
2 − 1

)
HD

iδD(x− x′)√
−g

+ g(y) +O(D − 4). (A.34)

Upon recalling the definition g(y) =
(
−4 �

H2

ln( y
4

)

y + 8
ln( y

4
)

y − 4
y

)
from (6.38) one can thus recast

the identities (A.30)-(A.32) in D = 4 space-time dimensions:(y
4

)2−D
=

2

(D − 3)(D − 4)Γ(D2 − 1)

(4π)D/2

HD

iδD(x− x′)√
−g

+ g(y) (A.35)

(y
4

)1−D
=

4
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HD
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�
H2
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(A.36)
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(y
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=
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A.2 Chernikov-Tagirov Propagator

This section provides relations for the various finite parts of the Chernikov-Tagirov propagator

introduced in chapter 5. Recall the definitions

f0,1,2 =
∞∑
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− ψ (1 + n)

− ψ (2 + n)

]
, (A.38)

g(y) = −4
�
H2

ln(y4 )

y
+ 8

ln(y4 )

y
− 4

y
, (A.39)

for which the propagator and its square become (after setting D = 4 wherever possible)

i∆(x, x′) =
HD−2

(4π)D/2

[
Γ

(
D

2
− 1

)(y
4

)1−D/2
+ f0(y)

]
, (A.40)

(i∆(x, x′))2 =
HD−4

(4π)D/2
2 Γ
(
D
2 − 1

)
(D − 3)(D − 4)

iδD(x− x′)√
−g

+
H2D−4

(4π)D

[
g(y) + 2

4

y
f0(y) + f2

0 (y)

]
=

HD−4

(4π)D/2
2 Γ
(
D
2 − 1

)
(D − 3)(D − 4)

iδD(x− x′)√
−g

+ (i∆(x, x′))2
fin . (A.41)

The equation of motion (5.13) for the propagator implies in arbitrary dimension D:

�f0(y) = (−ξR̊+m2)f0(y) +H2 Γ
(
D
2 − 1

)(1

4
− ν2

D

)(y
4

)1−D/2
(A.42)

�f1(y) = (−ξR̊+m2)f0(y) +
D + 2

2
H2 Γ

(
D
2 − 1

)(1

4
− ν2

D

)(y
4

)2−D/2
(A.43)
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When D = 4 one furthermore has:

f0(y) = f1(y) +

(
1

4
− ν2

4

)[
−1− 2ψ(1) + ψ

(
1

2
± ν4

)
+ ln

(y
4

)]
+ 1 (A.44)

f1(y) = f2(y) +
1

2

(
1

4
− ν2

4

)(
9

4
− ν2

4

)[
(ψ

(
1

2
± ν4

)
− 5

2
− 2ψ(1))

y

4
+
y

4
ln
y

4

]
+

3

2

(
1

4
− ν2

4

)
y

4
+

1

2

(
9

4
− ν2

4

)
y

4
(A.45)

�
H2

f0(y) =

(
9

4
− ν2

4

)
f0(y) +

(
1

4
− ν2

4

)
4

y
(A.46)

�
H2

f1(y) =

(
9

4
− ν2

4

)
f0(y) + 3

(
1

4
− ν2

4

)
=

(
9

4
− ν2

4

)
f1(y) +

(
1

4
− ν2

4

)(
9

4
− ν2

4

)[
−1− 2ψ(1) + ψ

(
1

2
± ν4

)]
+

(
1

4
− ν2

4

)(
9

4
− ν2

4

)
ln
y

4
+

(
9

4
− ν2

4

)
+ 3

(
1

4
− ν2

4

)
(A.47)

�
H2

f2(y) =

(
9

4
− ν2

4

)
f1(y) + 2

(
1

4
− ν2

4

)(
9

4
− ν2

4

)[
(ψ

(
1

2
± ν4

)
− 5

4
− 2ψ(1))

y

4
+
y

4
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y

4

]
+ 6

(
1

4
− ν2

4

)
y

4
+ 2

(
9

4
− ν2

4

)
y

4
(A.48)

In the calculation of the Ward-identities one has to trace some combinations of derivatives of

these functions. Traces with two derivatives (D = 4):

gµν

H2
∂µ

4

y
∂νf1(y) = −1

2

(
1

4
− ν2

4

)[
−1− 2ψ(1) + ψ

(
1

2
± ν4

)]
(4π)2

H4

iδ4(x− x′)√
−g

+
1

2

�
H2

(
4

y
f0(y)

)
− 4

y
f0(y)− 1

2

(
9

4
− ν2

4

)
4

y
f0(y)− 1

2

�
H2

4

y

+
1

2

(
1

4
− ν2

4

)
g(y)−

(
1

4
− ν2

4

)
4

y
+

4

y
(A.49)

gµν

H2
∂µf0(y) ∂νf0(y) =

1

2

�
H2

f2
0 (y)−

(
1

4
− ν2

4

)
4

y
f0(y)−

(
9

4
− ν2

4

)
f2

0 (y) (A.50)

Traces with four derivatives (D = 4):

gµν

H2
∂µ∂

′
ρ

4

y
∂ν∂

′
σf2(y) =

=
1

2

�
H2

(
∂′ρ

4

y
∂′σf1(y)

)
− ∂′ρ

4

y
∂′σf1(y)− 1

2

(
9

4
− ν2

4

)
∂′ρ

4

y
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−
(

1

4
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4

)(
9

4
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4
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ln(y4 )

y
+

1

4
∇′ρ∇′σ ln2 y

4

]
+

[(
1

4
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4

)(
9

4
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4

)(
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2
− 2ψ(1) + ψ

(
1

2
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+

(
9

4
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4

)
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(
1

4
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4
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×
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×
[
−1

4
∇′ρ∇′σ

4

y
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2
∇′ρ∇′σ ln

y

4
+

1

8
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�
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4

y
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+
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∇′ρ∇′σ

4

y
− 1

2
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4

y
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]
+

(
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)(
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4
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2
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+

1

2
H2g′ρσ

(
2
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(A.51)

gµν

H2

[
2

(
1

4
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4

)
∂µ∂

′
ρ ln
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4
∂ν∂

′
σ f1(y) + ∂µ∂

′
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′
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]
=

=
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2

�
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[
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]
−
(
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4
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4

)
∂′ρ f0(y) ∂′σ f0(y) +

1

2

(
1

4
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4

)2 �
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∇′ρ∇′σ ln

y

4

− 1
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(
1

4
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�
H2

4

y
−
(

1

4
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)
∂′ρ

4

y
∂′σ f1(y) (A.52)

A.3 Traces involving Bitensors

This section provides some gµν traces of terms containing bitensors that appear in the gg-vertex.

Traces with g̃µρ′ :

gµν g̃µρ′∂ν
δD(x− x′)√

−g
= −∇′ρ

δD(x− x′)√
−g

(A.53)

gµν g̃µρ′∂ν∂
′
σ

δD(x− x′)√
−g

= −∇′ρ∇′σ
δD(x− x′)√

−g
+DH2g′ρσ

δD(x− x′)√
−g

(A.54)

gµν g̃µρ′∂ν∂
′
σ

�
H2

δD(x− x′)√
−g

= −∇′ρ∇′σ
�
H2

δD(x− x′)√
−g

+ (D + 2)∇′ρ∇′σ
δD(x− x′)√

−g
+

+ (D + 2)H2g′ρσ
�
H2

δD(x− x′)√
−g

−D2H2g′ρσ
δD(x− x′)√

−g
(A.55)

gµνH2g̃µρ′ g̃νσ′ = H2g′ρσ − 4∇′ρ
y

4
∇′σ

y

4
(A.56)

gµνH2g̃µρ′ g̃νσ′
�
H2

δD(x− x′)√
−g

= H2g′ρσ
�
H2

δD(x− x′)√
−g

− 2H2g′ρσ
δD(x− x′)√

−g
(A.57)

gµνH2g̃µρ′ g̃νσ′
�
H2

�
H2

δD(x− x′)√
−g

= H2g′ρσ
�
H2

�
H2

δD(x− x′)√
−g

− 4H2g′ρσ
�
H2

δD(x− x′)√
−g

−

− 8∇′ρ∇′σ
δD(x− x′)√

−g
+ 4(D + 1)H2g′ρσ

δD(x− x′)√
−g

(A.58)

gµν g̃µρ′∂ν
y

4
= −(1− y/2)∂′ρ

y

4
(A.59)
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gµν g̃µρ′∂ν

(y
4

)−α
= −∇′ρ

(y
4

)−α
+ 2

α

α− 1
∇′ρ
(y

4

)−(α−1)
(A.60)

gµν g̃µρ′∂ν

(y
4

)−1
= −∇′ρ

(y
4

)−1
− 2∇′ρ ln

y

4
(A.61)

gµν g̃µρ′∂ν∂
′
σ
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4

)−α
= −∇′ρ∇′σ
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4

)−α
+ 2

α
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(y
4

)−(α−1)
+

+ 2αH2g′ρσ

((y
4

)−α
−
(y

4

)−(α−1)
)

(A.62)

In D = 4 there are the two relevant cases:

gµν g̃µρ′∂ν∂
′
σ

4

y
= −∇′ρ∇′σ

4

y
− 2∇′ρ∇′σ ln

y

4
+ 2H2g′ρσ

4

y
− 2H2g′ρσ (A.63)

gµν g̃µρ′∂ν∂
′
σ

ln(y4 )

y
= −∇′ρ∇′σ

ln(y4 )

y
+

1

2
∇′ρ∇′σ ln

y

4
− 1

4
∇′ρ∇′σ ln2
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)
+

1

2
H2g′ρσ −

1

2
H2g′ρσ

4

y
+ 2H2g′ρσ
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y
− 1

2
H2g′ρσ ln

y

4
(A.64)

For the function g(y) =
(
−4 �

H2

ln( y
4

)

y + 8
ln( y

4
)

y − 4
y

)
it furthermore holds (D = 4):

gµν g̃µρ′∇ν∇′ρg(y) = −∇′ρ∇′σg(y) + 4∇′ρ∇′σ
4

y
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�
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4

y
− 8H2g′ρσ
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(A.65)

gµν g̃µρ′∇ν∇′ρ
�
H2

g(y) = −∇′ρ∇′σ
�
H2

g(y) + 6∇′ρ∇′σg(y) + 8∇′ρ∇′σ
�
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4

y
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4

y
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�
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y
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(A.66)

gµνH2g̃µρ′ g̃νσ′g(y) = 4∇′ρ∇′σ ln
y

4
+H2g′ρσg(y)− 2H2g′ρσ

4

y
+ 4H2g′ρσ (A.67)

gµνH2g̃µρ′ g̃νσ′
�
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g(y) = −4∇′ρ∇′σ
4
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+ 8∇′ρ∇′σ ln

y

4
+H2g′ρσ

�
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− 2H2g′ρσ
�
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4

y
+ 4H2g′ρσ

4

y
+ 8H2g′ρσ (A.68)

gµνH2g̃µρ′ g̃νσ′
�
H2

�
H2

g(y) = −8∇′ρ∇′σg(y)− 12∇′ρ∇′σ
�
H2

4

y
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�
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�
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4

y
+ 40H2g′ρσ

�
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4

y
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4

y
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(A.69)
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B An Expression for ∂µ ∂′ρ i∆(x, x′) ∂ν ∂
′
σ i∆(x, x′)

Throughout: Torsion vanishes, that is, ∇̊ = ∇, Γ̊αµν = Γαµν , etc.

Throughout: (µν) and (ρσ) are understood to be symmetrized, which will be omitted in the

notation for clarity, i.e ∂µ∂
′
ρi∆(x, x′)∂ν∂

′
σi∆(x, x′) ≡ ∂µ)∂

′
(ρi∆(x, x′)∂′σ)∂(νi∆(x, x′), etc.

The calculation of ∂µ∂
′
ρi∆(x, x′)∂ν∂

′
σi∆(x, x′) essentially means to find an an expression for

∂µ∂
′
ρ

(y
4

)−α
∂ν∂

′
σ

(y
4
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. Using the results of appendix A one can compute:

∂µ∂
′
ρ
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∂ν∂

′
σ
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4
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4
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∂µ
y

4
∂ν
y

4
∂′ρ
y

4
∂σ
y

4
+

+
αβ

2(α+ β + 1)
H2g̃µρ′∇ν∇′σ

(y
4

)−(α+β+1)
(B.1)

On the other hand:

∇µ∇ν∇′ρ∇′σ
(y

4

)−γ
= γ(γ + 1)(γ + 2)(γ + 3)

(y
4

)−(γ+4)
∂µ
y

4
∂ν
y

4
∂′ρ
y

4
∂σ
y

4

− γ
[
H2gµν∇′ρ∇′σ +H2g′ρσ∇µ∇ν

](1

2

(y
4
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−
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4
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′
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(
1

2

(y
4
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(y

4
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− γ(γ + 1)

2
H4gµνg

′
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(
1

2

(y
4

)−(γ+2)
−
(y

4
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)
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(y

4

)−(γ+1)
− γ(γ + 1)

2
H4g̃µρ′ g̃νσ′

(y
4

)−(γ+2)
(B.2)

Combination with γ = α+ β yields:

∂µ∂
′
ρ

(y
4

)−α
∂ν∂

′
σ

(y
4

)−β
=

α(α+ 1)β(β + 1)

(α+ β)(α+ β + 1)(α+ β + 2)(α+ β + 3)

{
∇µ∇ν∇′ρ∇′σ

(y
4
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2
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4
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4
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(
1

2
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(y

4
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4

)−(α+β+2)
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)

+

[
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(α+ β + 1)(α+ β + 2)(α+ β + 3)
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αβ

2(α+ β + 1)

]
H2g̃µρ′∇ν∇′σ
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4

)−(α+β+1)

+
α(α+ 1)β(β + 1)

2(α+ β + 2)(α+ β + 3)
H4g̃µρ′ g̃νσ′

(y
4

)−(α+β+2)
(B.3)

The relevant cases are (α, β) = (D/2 − 1, D/2 − 1).(D/2 − 1, D/2 − 2), (D/2 − 1), (D/2 −
3), (D/2− 1, 1), (D/2− 2, D/2− 2)

Non-integrable powers of y are replaced according to equations (A.35)-(A.37).
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B.1 α = D/2− 1 , β = D/2− 1

The prefactor of this term is Γ2
(
D
2 − 1

)
. Application of (B.3) yields:

∂µ∂
′
ρ

(y
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∂ν∂
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+
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+

+
(D − 2)2

8(D + 1)(D − 1)
H2g̃µρ′∇ν∇′σ

(y
4

)1−D
+
D(D − 2)2

32(D + 1)
H4g̃µρ′ g̃νσ′

(y
4

)−D
(B.4)

Thus with prefactor it takes the following form in D = 4:
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[
1

240

�
H2

�
H2

g(y)− 11

120

�
H2

g(y) +
3

10
g(y)

]
+H2g̃µρ′∇ν∇′σ

[
1

60

�
H2

g(y)− 1

30
g(y)

]
+H4g̃µρ′ g̃νσ′

[
1

120

�
H2

�
H2

g(y)− 1

60

�
H2

g(y)

]
(B.5)

B.2 α = D/2− 1 , β = D/2− 2

The prefactor of this term is − 2
D−4Γ2

(
D
2 − 1

) (
1
4 − ν

2
)
. Application of (B.3) yields:

∂µ∂
′
ρ

(y
4

)1−D/2
∂ν∂

′
σ

(y
4

)2−D/2
=

(D − 2)(D − 4)

16(D − 1)(D − 3)
∇µ∇ν∇′ρ∇′σ

(y
4

)3−D
+

+
(D − 2)(D − 4)

16(D − 1)

[
H2gµν∇′ρ∇′σ +H2g′ρσ∇µ∇ν

](1

2

(y
4

)2−D
−
(y

4

)3−D
)
−

− (D − 2)(D − 3)(D − 4)

16(D − 1)
H4gµνg

′
ρσ

(
1

2

(y
4

)2−D
−
(y

4

)3−D
)

+

+
(D − 2)2(D − 4)

32(D − 1)
H4gµνg

′
ρσ

(
1

2

(y
4

)1−D
−
(y

4

)2−D
)

+

+
(D − 4)

8(D − 1)
H2g̃µρ′∇ν∇′σ

(y
4

)2−D
+

(D − 2)2(D − 4)

32(D − 1)
H4g̃µρ′ g̃νσ′

(y
4

)1−D
(B.6)

Thus with prefactor and additional symmetry factor of 2 it takes the following form in D = 4:

− 2
2

D − 4
Γ2

(
D

2
− 1

)(
1

4
− ν2

)
∂µ∂

′
ρ

(y
4

)1−D/2
∂ν∂

′
σ

(y
4

)2−D/2
=

(
1

4
− ν2

)
×
{

−
(D − 2)Γ

(
D
2 − 1

)
4(D − 1)(D − 3)(D − 4)

(4π)D/2

HD

[
H2gµν∇′ρ∇′σ +H2g′ρσ∇µ∇ν

] iδD(x− x′)√
−g

−
Γ
(
D
2 − 1

)
4(D − 1)(D − 3)(D − 4)

(4π)D/2

HD
H4gµνg

′
ρσ

�
H2

iδD(x− x′)√
−g

+
(D − 2)2Γ

(
D
2 − 1

)
2(D − 1)(D − 3)(D − 4)

(4π)D/2

HD
H4gµνg

′
ρσ

iδD(x− x′)√
−g

−
Γ
(
D
2 − 1

)
(D − 1)(D − 3)(D − 4)

(4π)D/2

HD
H2g̃µρ′∇ν∇′σ

iδD(x− x′)√
−g

−
Γ
(
D
2 − 1

)
2(D − 1)(D − 3)(D − 4)

(4π)D/2

HD
H4g̃µρ′ g̃νσ′

�
H2

iδD(x− x′)√
−g

+
(D − 2)Γ

(
D
2 − 1

)
2(D − 1)(D − 3)(D − 4)

(4π)D/2

HD
H4g̃µρ′ g̃νσ′

iδD(x− x′)√
−g

}
+
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+

(
1

4
− ν2

4

)
×
{
− 1

6
∇µ∇ν∇′ρ∇′σ

4

y
+
[
H2gµν∇′ρ∇′σ +H2g′ρσ∇µ∇ν

] [
− 1

12
g(y) +

1

6

4

y

]
+H4gµνg

′
ρσ

[
− 1

24

�
H2

g(y) +
1

3
g(y)− 1

6

4

y

]
− 1

6
H2g̃µρ′∇ν∇′σg(y) +H4g̃µρ′ g̃νσ′

[
− 1

12

�
H2

g(y) +
1

6
g(y)

]}
(B.7)

B.3 α = D/2− 1 , β = D/2− 3 and α = D/2− 1 , β = 1

Consider (α, β) = (D/2− 1, D/2− 3) first.

The prefactor of this term is 2
(D−4)(D−6)Γ2

(
D
2 − 1

) (
1
4 − ν

2
) (

9
4 − ν

2
)
. Application of (B.3)

yields:

∂µ∂
′
ρ

(y
4

)1−D/2
∂ν∂

′
σ

(y
4

)3−D/2
=

D(D − 6)

16(D − 1)(D − 3)
∇µ∇ν∇′ρ∇′σ

(y
4

)4−D
+

+
D(D − 4)(D − 6)

16(D − 1)(D − 3)

[
H2gµν∇′ρ∇′σ +H2g′ρσ∇µ∇ν

](1

2

(y
4

)3−D
−
(y

4

)4−D
)
−

− D(D − 4)2(D − 6)

16(D − 1)(D − 3)
H4gµνg

′
ρσ

(
1

2

(y
4

)3−D
−
(y

4

)4−D
)

+

+
D(D − 4)(D − 6)

32(D − 1)
H4gµνg

′
ρσ

(
1

2

(y
4

)2−D
−
(y

4

)3−D
)

+

+

[
−D(D − 4)(D − 6)

8(D − 1)(D − 3)
+

(D − 2)(D − 6)

8(D − 3)

]
H2g̃µρ′∇ν∇′σ

(y
4

)3−D

+
D(D − 4)(D − 6)

32(D − 1)
H4g̃µρ′ g̃νσ′

(y
4

)2−D
(B.8)

Consider now (α, β) = (D/2− 1,−1).

The prefactor of this term is Γ
(
1− D

2

)
Γ
(
D
2 − 1

)
2
D

(
(D−1)2

4 − ν2
)

Γ(D−1
2
±ν)

Γ( 1
2
±ν)

. Because β+1 =

0, formula (B.3) is particularly simple.

∂µ∂
′
ρ

(y
4

)1−D/2
∂ν∂

′
σ

(y
4

)
= −1

2
g̃µρ′∇ν∇′σ

(y
4

)1−D/2
(B.9)

Thus the combined contribution of (α, β) = (D/2 − 1, D/2 − 3) and (α, β) = (D/2 − 1,−1)

together witch a symmetry factor of 2 reads in D = 4:

2

[
2

(D − 4)(D − 6)
Γ2

(
D

2
− 1

)(
1

4
− ν2

)(
9

4
− ν2

)
∂µ∂

′
ρ

(y
4

)1−D/2
∂ν∂

′
σ

(y
4

)3−D/2
+

+ Γ

(
1− D

2

)
Γ

(
D

2
− 1

)
2

D

(
(D − 1)2

4
− ν2

)
Γ(D−1

2 ± ν)

Γ(1
2 ± ν)

∂µ∂
′
ρ

(y
4

)1−D/2
∂ν∂

′
σ

(y
4

)]
=

=

(
1

4
− ν2

)(
9

4
− ν2

)
×
{

DΓ
(
D
2 − 1

)
8(D − 1)(D − 3)(D − 4)

(4π)D/2

HD
H4gµνg

′
ρσ

iδD(x− x′)√
−g
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+
DΓ

(
D
2 − 1

)
4(D − 1)(D − 3)(D − 4)

(4π)D/2

HD
H4g̃µρ′ g̃νσ′

iδD(x− x′)√
−g

}
+

[
−1

2

(
9

4
− ν2

4

)
− 3

2

(
1

4
− ν2

4

)]
H2g̃µρ′∇ν∇′σ

4

y

+

(
1

4
− ν2

4

)(
9

4
− ν2

4

)
×
{
− 1

3
∇µ∇ν∇′ρ∇′σ ln

y

4
+

1

6

[
H2gµν∇′ρ∇′σ +H2g′ρσ∇µ∇ν

] 4

y

+
1

12
H4gµνg

′
ρσg(y)− 1

6
H4gµνg

′
ρσ

4

y
− 2H2g̃µρ′∇ν∇′σ

ln(y4 )

y

+

[
ψ(1)− 5

12
− 1

2

(
ψ(

1

2
+ ν4) + ψ(

1

2
− ν4)

)]
H2g̃µρ′∇ν∇′σ

4

y
+

1

6
H4g̃µρ′ g̃νσ′g(y)

}
(B.10)

B.4 α = D/2− 2 , β = D/2− 2

The prefactor of this term is
(
− 2
D−4Γ

(
D
2 − 1

) (
1
4 − ν

2
))2

. Application of (B.3) yields:

∂µ∂
′
ρ

(y
4

)2−D/2
∂ν∂

′
σ

(y
4

)2−D/2
=

(D − 2)(D − 4)

16(D − 1)(D − 3)
∇µ∇ν∇′ρ∇′σ

(y
4

)4−D
+

+
(D − 2)(D − 4)2

16(D − 1)(D − 3)

[
H2gµν∇′ρ∇′σ +H2g′ρσ∇µ∇ν

](1

2

(y
4

)3−D
−
(y

4

)4−D
)
−

− (D − 2)(D − 4)3

16(D − 1)(D − 3)
H4gµνg

′
ρσ

(
1

2

(y
4

)3−D
−
(y

4

)4−D
)

+

+
(D − 2)(D − 4)2

32(D − 1)
H4gµνg

′
ρσ

(
1

2

(y
4

)2−D
−
(y

4

)3−D
)

+

+
(D − 4)2

8(D − 1)(D − 3)
H2g̃µρ′∇ν∇′σ

(y
4

)3−D

+
(D − 2)(D − 4)2

32(D − 1)
H4g̃µρ′ g̃νσ′

(y
4

)2−D
(B.11)

Thus with prefactor it takes the following form in D = 4:(
2

D − 4
Γ(
D

2
− 1)

(
1

4
− ν2

))2

∂µ∂
′
ρ

(y
4

)2−D/2
∂ν∂

′
σ

(y
4

)2−D/2
=(

1

4
− ν2

)2

×
{

(D − 2)Γ
(
D
2 − 1

)
8(D − 1)(D − 3)(D − 4)

(4π)D/2

HD
H4gµνg

′
ρσ

iδD(x− x′)√
−g

+
(D − 2)Γ

(
D
2 − 1

)
4(D − 1)(D − 3)(D − 4)

(4π)D/2

HD
H4g̃µρ′ g̃νσ′

iδD(x− x′)√
−g

}
+

(
1

4
− ν2

4

)2

×
{
− 1

6
∇µ∇ν∇′ρ∇′σ ln

y

4
+

1

12

[
H2gµν∇′ρ∇′σ +H2g′ρσ∇µ∇ν

] 4

y

+
1

24
H4gµνg

′
ρσg(y)− 1

12
H4gµνg

′
ρσ

4

y
+

1

6
H2g̃µρ′∇ν∇′σ

4

y
+

1

12
H4g̃µρ′ g̃νσ′g(y)

}
(B.12)
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B.5 Full Expression

Combining yields:

∂µ∂
′
ρi∆(x− x′)∂ν∂′σi∆(x− x′) =

HD−4

(4π)D/2
Γ
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D
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9
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)
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D
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D
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]
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(
1

4
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)2

×
[
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′
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−g
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′
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(
− 1

24
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+

[
−1

2
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9

4
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4
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2

(
1

4
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4

)]
H2g̃µρ′∇ν∇′σ

4

y

+

(
1

4
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4

)(
9

4
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4

)
×
[
− 1

3
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y

4
+

1

6

[
H2gµν∇′ρ∇′σ +H2g′ρσ∇µ∇ν

] 4

y

+
1

12
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′
ρσg(y)− 1

6
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′
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4

y
− 2H2g̃µρ′∇ν∇′σ
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(
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2
ψ

(
1
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4

y
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1

6
H4g̃µρ′ g̃νσ′g(y)

]
+

(
1

4
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4
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×
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6
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y

4
+

1

12

[
H2gµν∇′ρ∇′σ +H2g′ρσ∇µ∇ν

] 4

y

+
1

24
H4gµνg

′
ρσg(y)− 1

12
H4gµνg

′
ρσ

4

y
+

1

6
H2g̃µρ′∇ν∇′σ

4

y
+

1

12
H4g̃µρ′ g̃νσ′g(y)

]
+ 2∂µ∂

′
ρ

4

y
∂ν∂

′
σ f2(y) + 2

(
1

4
− ν2

4

)
∂µ∂

′
ρ ln

y

4
∂ν∂

′
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′
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C Counterterm Vertices

Here the vertices for the countererm actions of section 6.2 are computed. Recall the ’improved’

results (6.58),(6.64),(6.65),

Sct1 =

∫
dDx
√
−g a1

{
R̊2 + 4R̊(D − 1) ∇̊λT λ − 2R̊(D − 1)(D − 2)gµνTµTν

+ 4(D − 1)2(∇̊λT λ)2 +O(T 3
α)
}

(C.1)

Sct2,5 =

∫
dDx
√
−g a2

{
R̊µνR̊

µν + 2R̊
(
∇̊λT λ − (D − 2)TλT

λ
)

+ 2(D − 2)R̊µν∇̊νTµ

− (D − 2)(D − 4)R̊µνTµTν +D(D − 1)(∇̊λT λ)2 +O(T 3
α)
}

(C.2)

Sct3,5 =

∫
dDx
√
−g a3

{
R̊µνρσR̊

µνρσ + 8R̊µν∇νTµ − 4(D − 4)R̊µνTµTν − 4 R̊TλT
λ

+ 4(D − 1)(∇̊λT λ)2 +O(T 3
α)
}
, (C.3)

with the B̊ notation for quantities computed using the Levi-Civita connection.

The relevant vertices are computed by

T cti
µν (x) =

−2√
−g

δScti

δgµν(x)

∣∣∣∣
g=gdS,T=0

(C.4)

TTΓαβ(x, x′)cti =
1√

−g(x)
√
−g(x′)

δ2Scti

δTα(x)δTβ(x′)

∣∣∣∣
g=gdS,T=0

(C.5)

gTΓβµν(x, x′)cti =
1√

−g(x)
√
−g(x′)

δ2Scti

δgµν(x)δTβ(x′)

∣∣∣∣
g=gdS,T=0

(C.6)

ggΓµνρσ(x, x′)cti =
1√

−g(x)
√
−g(x′)

δ2Scti

δgµν(x)δgρσ(x′)

∣∣∣∣
g=gdS,T=0

(C.7)

with i ∈ {1, (2, 5), (3, 5)}. As for the vertices of the original theory, the second order metric

variation in (C.7) is the most intricate calculation, which is done in the appendix D.

Upon using (C.1) one finds:

T ct1
µν = a1gµνR̊

2D − 4

D

TTΓαβ(x, x′)ct1 = 4a1(D − 1)
(
−R̊(D − 2)gαβ + 2(D − 1)∇̊α∇̊′β

) δD(x− x′)√
−g

(C.8)

gTΓβµν(x, x′)ct1 = −4a1(D − 1)
(
R̊µν + gµν�̊− ∇̊µ∇̊ν

)
∇̊′β δ

D(x− x′)√
−g

(C.9)

As in section 6.1, derivatives with prime act at x′, while unprimed derivatives are to be evaluated

at x.
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It violates the Ward identities (6.17),(6.18) according to:

∇̊α TTΓαβ(x, x′)ct1 + 2gµν(x) gTΓβµν(x, x′)ct1 = 4a1H
2D(D − 1)2(D − 4)∇̊′β δ

D(x− x′)√
−g

(C.10)

∇̊β gTΓβρσ(x′, x)ct1 −
δD(x− x′)√

−g
T ct1
ρσ + 2gµν ggΓµνρσ(x, x′)ct1 =

= 2a1D(D − 1)(D − 4)
(
−H2g′ρσ�̊+H2∇̊′ρ∇̊′σ + 1

4(D − 1)(D − 4)H4g′ρσ

) δD(x− x′)√
−g

(C.11)

Counterterm action 2:

T ct2,5
µν = a2gµνR̊αβR̊

αβ(D − 4)

TTΓαβ(x, x′)ct2,5 = 2a2(D − 1)
(
−(D − 2)(3D − 4)H2gαβ +D∇̊α∇̊′β

) δD(x− x′)√
−g

(C.12)

gTΓβµν(x, x′)ct2,5 = −Da2

(
R̊µν + gµν�̊− ∇̊µ∇̊ν

)
∇̊′β δ

D(x− x′)√
−g

(C.13)

It violates the Ward identities (6.17),(6.18) according to:

∇̊α TTΓαβ(x, x′)ct2,5 + 2gµν(x) gTΓβµν(x, x′)ct2,5 = 4a2H
2(D − 1)2(D − 4)∇̊′β δ

D(x− x′)√
−g

(C.14)

∇̊β gTΓβρσ(x′, x)ct2,5 −
δD(x− x′)√

−g
T ct2,5
ρσ + 2gµν ggΓµνρσ(x, x′)ct2,5 =

= 2a2(D − 1)(D − 4)
(
−H2g′ρσ�̊+H2∇̊′ρ∇̊′σ + 1

4(D − 1)(D − 4)H4g′ρσ

) δD(x− x′)√
−g

(C.15)

Counterterm action 3:

T ct3,5
µν = a3gµνR̊αβγδR̊

αβγδD − 4

D

TTΓαβ(x, x′)ct3,5 = 8a3(D − 1)
(
−2(D − 2)H2gαβ + ∇̊α∇̊′β

) δD(x− x′)√
−g

(C.16)

gTΓβµν(x, x′)ct3,5 = −4a3

(
R̊µν + gµν�̊− ∇̊µ∇̊ν

)
∇̊′β δ

D(x− x′)√
−g

(C.17)
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It violates the Ward identities (6.17),(6.18) according to:

∇̊α TTΓαβ(x, x′)ct3,5 + 2gµν(x) gTΓβµν(x, x′)ct3,5 = 8a3H
2(D − 1)(D − 4)∇̊′β δ

D(x− x′)√
−g

(C.18)

∇̊β gTΓβρσ(x′, x)ct3,5 −
δD(x− x′)√

−g
T ct3,5
ρσ + 2gµν ggΓµνρσ(x, x′)ct3,5 =

= a34(D − 4)
(
−H2g′ρσ�̊+H2∇̊′ρ∇̊′σ + 1

4(D − 1)(D − 4)H4g′ρσ

) δD(x− x′)√
−g

(C.19)

Final counterterm vertices

After determining the correct linear combinations and coefficients in (6.68) and (6.69),(6.70),

respectively, the theory is eventually renormalized with the following corrections: (R2 denoting

contributions from term (6.66))

TTΓαβ(x, x′)R2 =

(
D − 2

2
+ 2ξ(D − 1)

)2 µD−4

(4π)D/2
Γ
(
D
2 − 1

)
(D − 3)(D − 4)

×

×
(
−DH2gαβ + ∇̊α∇̊′β

) δD(x− x′)√
−g

(C.20)

gTΓβµν(x, x′)R2 = −
(
D − 2

2
+ 2ξ(D − 1)

)2 µD−4

(4π)D/2
Γ
(
D
2 − 1

)
2(D − 1)(D − 3)(D − 4)

×

×
(
R̊µν + gµν�̊− ∇̊(µ∇̊ν)

)
∇̊′β δ

D(x− x′)√
−g

(C.21)

The way to read the gg vertices is that all terms in the curly brackets act on the δ function

outside of it. Also recall the bitensor g̃µρ′ from (4.19).

ggΓµνρσ(x, x′)R2 =
1

4

(
D − 2

2
+ 2ξ(D − 1)

)2 µD−4

(4π)D/2
Γ
(
D
2 − 1

)
(D − 1)(D − 2)(D − 3)(D − 4)

×

×
{
D − 2

D − 1
∇̊µ∇̊ν∇̊′ρ∇̊′σ −

D − 2

D − 1
H2
(
gµν∇̊′ρ∇̊′σ + g′ρσ∇̊µ∇̊ν

) �̊
H2

+ 2H2(gµν∇̊′ρ∇̊′σ + g′ρσ∇̊µ∇̊ν) +
D − 2

D − 1
H4gµνg

′
ρσ

�̊
H2

�̊
H2

+ (D − 4)H4gµνg
′
ρσ

�̊
H2
− 2(D − 1)H4gµνg

′
ρσ

+DH4g̃µρ′ g̃νσ′
�̊
H2

+ 2DH2g̃µ)(ρ′∇̊σ′)∇̊(ν

}
δD(x− x′)√

−g
(C.22)

ggΓµνρσ(x, x′)C2 =
µD−4

(4π)D/2
Γ
(
D
2 − 1

)
8(D + 1)(D − 1)(D − 3)(D − 4)

×
{
D − 2

D − 1
∇̊µ∇̊ν∇̊′σ∇̊′ρ
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+
1

D − 1
H2
(
gµν∇̊′ρ∇̊′σ + g′ρσ∇̊µ∇̊ν

) �̊
H2
− 1

D − 1
H4gµνg

′
ρσ

�̊
H2

�̊
H2

− 2H2(gµν∇̊′ρ∇̊′σ + g′ρσ∇̊µ∇̊ν)−H4gµνg
′
ρσ

�̊
H2

+ 2(D − 1)H4gµνg
′
ρσ

+ 2g̃µ)(ρ′∇̊σ′)∇̊(ν
�̊
H2
− 4H2g̃µ)(ρ′∇̊σ′)∇̊(ν +H4g̃µρ′ g̃νσ′

�̊
H2

�̊
H2

− (D − 2)H4g̃µρ′ g̃νσ′
�̊
H2

}
δD(x− x′)√

−g
(C.23)

Neither C2 nor the R2 term give rise to a tadpole-like contribution Tµν ∝ δS
δgµν .
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D Second Order Metric Variations of Curvature Scalars

Throughout: Torsion vanishes, that is, ∇̊ = ∇, Γ̊αµν = Γαµν , etc.

Throughout: (µν) and (ρσ) are understood to be symmetrized, which will be omitted in the

notation for clarity.

In the second order variation of the counterterm action (6.54) with respect to gµν appear 4

tensor structures that require the usage of the bilocal metric g̃µρ′ together with the relations

(A.23)-(A.26). The metric variations on the left-hand side are meant to only act on δgµν on the

right-hand side only, while all other metric tensors on the right side are kept fixed.

1√
−g(x)

√
−g(x′)

δ2

δgµν(x)δgρσ(x′)

∫
dDx
√
−g∇βδgαβgαγ∇δδgγδ =

= g̃µρ′∇ν∇′σ
δD(x− x′)√

−g
−H2gµνg

′
ρσ

δD(x− x′)√
−g

(D.1)

1√
−g(x)

√
−g(x′)

δ2

δgµν(x)δgρσ(x′)

∫
dDx
√
−g�δgαβgαγgβδδgγδ =

= g̃µρ′ g̃νσ′�
δD(x− x′)√

−g
+ 2H2g̃µρ′ g̃νσ′

δD(x− x′)√
−g

(D.2)

1√
−g(x)

√
−g(x′)

δ2

δgµν(x)δgρσ(x′)

∫
dDx
√
−g�∇βδgαβgαγ∇δδgγδ =

= g̃µρ′∇ν∇′σ�
δD(x− x′)√

−g
+H2g̃µρ′∇ν∇′σ

δD(x− x′)√
−g

−H2gµνg
′
ρσ�

δD(x− x′)√
−g

− 2H2(gµν∇′ρ∇′σ + g′ρσ∇µ∇ν)
δD(x− x′)√

−g
+ (D − 1)H4gµνg

′
ρσ

δD(x− x′)√
−g

(D.3)

1√
−g(x)

√
−g(x′)

δ2

δgµν(x)δgρσ(x′)

∫
dDx
√
−g�δgαβgαγgβδ�δgγδ =

= g̃µρ′ g̃νσ′��
δD(x− x′)√

−g
+ 4H2g̃µρ′ g̃νσ′�

δD(x− x′)√
−g

− 8H2g̃µρ′∇ν∇′σ
δD(x− x′)√

−g
+ 4H4(gµνg

′
ρσ + g̃µρ′ g̃νσ′)

δD(x− x′)√
−g

(D.4)

With the four basic results at hand the second order variations of the curvature scalars follow

after a short calculation: (All results are valid up to terms ∝ ∇Rµνρσ, which vanish on de Sitter)

δ2

δgµν(x)gρσ(x′)

∫
dDx
√
−gR =

=
√
−g(x)

√
−g(x′)

{
− 1

2
gµνg

′
ρσ�+

1

2
(gµν∇′ρ∇′σ + g′ρσ∇µ∇ν) +

(D − 1)(D − 4)

4
H2gµνg

′
ρσ

+
1

2
g̃µρ′ g̃νσ′�+ g̃µρ′∇ν∇′σ +

(D − 1)(D − 2)

2
g̃µρ′ g̃νσ′

}
δD(x− x′)√

−g
(D.5)

81



δ2

δgµν(x)gρσ(x′)

∫
dDx
√
−gR2 =

=
√
−g(x)

√
−g(x′)

{
2gµνg

′
ρσ��− 2(gµν∇′ρ∇′σ�+ g′ρσ∇µ∇ν�) + 2∇µ∇ν∇′ρ∇′σ

− (D − 1)(D − 4)H2gµνg
′
ρσ�+ (D − 1)(D − 2)H2(gµν∇′ρ∇′σ + g′ρσ∇µ∇ν)

+

[
D2(D − 1)2

4
− 2(D − 1)3

]
H4gµνg

′
ρσ

+D(D − 1)H2g̃µρ′ g̃νσ′�+ 2D(D − 1)H2g̃µρ′∇ν∇′σ

+

[
D2(D − 1)2

2
− 2D(D − 1)2

]
H4g̃µρ′ g̃νσ′

}
δD(x− x′)√

−g
(D.6)

δ2

δgµν(x)gρσ(x′)

∫
dDx
√
−gRαβRαβ =

=
√
−g(x)

√
−g(x′)

{
1

2
gµνg

′
ρσ��

′ − 1

2
(gµν∇′ρ∇′σ�+ g′ρσ∇µ∇ν�′) +∇µ∇ν∇′σ∇′ρ

− D − 3

2
H2gµνg

′
ρσ�+ (D − 3)H2(gµν∇′ρ∇′σ + g′ρσ∇µ∇ν)

+

[
D(D − 1)2

4
− 2(D − 1)(D − 2)

]
H4gµνg

′
ρσ

+
1

2
g̃µρ′ g̃νσ′��

′ + g̃µρ′∇ν∇′σ�+ (D − 1)H2g̃µρ′ g̃νσ′�+ 3(D − 2)H2g̃µρ′∇ν∇′σ

+

[
D(D − 1)2

2
− 2(D − 1)2

]
H4g̃µρ′ g̃νσ′

}
δD(x− x′)√

−g
(D.7)

δ2

δgµν(x)gρσ(x′)

∫
dDx
√
−gRαβγδRαβγδ =

=
√
−g(x)

√
−g(x′)

{
2∇µ∇ν∇′σ∇′ρ − 2H2gµνg

′
ρσ�− 2H2(gµν∇′ρ∇′σ + g′ρσ∇µ∇ν)

+
D(D − 1)

2
H4gµνg

′
ρσ + 2g̃µρ′ g̃νσ′��

′ + 4g̃µρ′∇ν∇′σ�− 2(D − 4)H2g̃µρ′ g̃νσ′�

+ (D − 1)(D − 4)H4g̃µρ′ g̃νσ′

}
δD(x− x′)√

−g
(D.8)

δ2

δgµν(x)gρσ(x′)

∫
dDx
√
−gCαβγδCαβγδ =

=
√
−g(x)

√
−g(x′)

{
− 2

D − 3

(D − 1)(D − 2)
gµνg

′
ρσ��

′

+ 2
D − 3

(D − 1)(D − 2)
(gµν∇′ρ∇′σ�+ g′ρσ∇µ∇ν�′) + 2

D − 3

D − 1
∇µ∇ν∇′σ∇′ρ
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− 2
D − 3

D − 2
H2gµνg

′
ρσ�− 4

D − 3

D − 2
H2(gµν∇′ρ∇′σ + g′ρσ∇µ∇ν) + 4

(D − 1)(D − 3)

D − 2
H4gµνg

′
ρσ

+ 2
D − 3

D − 2
g̃µρ′ g̃νσ′��

′ + 4
D − 3

D − 2
g̃µρ′∇ν∇′σ�− 2(D − 3)H2g̃µρ′ g̃νσ′�

− 8
D − 3

D − 2
H2g̃µρ′∇ν∇′σ

}
δD(x− x′)√

−g
(D.9)

δ2

δgµν(x)gρσ(x′)

∫
dDx
√
−gE =

=
√
−g(x)

√
−g(x′)(D − 3)(D − 4)

{
−H2gµνg

′
ρσ�+H2(gµν∇′ρ∇′σ + g′ρσ∇µ∇ν)

+ 1
4(D − 1)(D − 6)H4gµνg

′
ρσ +H2g̃µρ′ g̃νσ′�

+ 2H2g̃µρ′∇ν∇′σ + 1
2(D − 1)(D − 2)H4g̃µρ′ g̃νσ′

}
δD(x− x′)√

−g
(D.10)
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