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1 Abstract

Functionally equivalent multi-layer perceptron networks (MLPs) can be written
in many different forms. This presents difficulty when trying to recombine these
networks using the crossover operator. This thesis aims at finding a method to
identify similar neurons in different MLPs by their parameters. This allows
for defining crossover operators that do not depend on the forms in which dif-
ferent networks are written. Two new crossover operators are presented that
use similarity between the parameters of different neurons to facilitate a non-
disruptive crossover. These crossover operators have been found to be relatively
non-disruptive compared to uniform and one-point crossover.

2 Introduction

Neural networks have been gaining in popularity over the past years for their ap-
plicability as universal function approximators (Hornik et al., 1989), combined
with their ability to ’learn’ from data. Neural networks come in many forms.
In this paper we will focus on multilayer perceptron networks (MLPs), which
are among the most common. The most common way to train neural networks
is by gradient descent. This is a process of incrementally making small changes
to reduce the error of the network. Gradient descent is a form of local search,
meaning it searches solutions that lie close to the point where it starts its search.
Gradient descent therefore only searches a small part of the total available so-
lutions. As only a small part of all potential solutions are searched, there is a
decent chance gradient descent won’t find the best solution. Instead gradient
descent finds local optima (definition 2.1). In order to search all solutions, and
find the global optimum (definition 2.2), a global search operator is required.
Evolutionary algorithms are global search operators.

Definition 2.1. Local optimum: The best of all nearby solutions.

Definition 2.2. Global optimum: The best solution that can be found.

Local vs Global optima

Figure 1: This figure shows a fitness landscape with two local optima (definition
2.1) and a global optimum (definition 2.2).
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Evolutionary, or genetic, algorithms (EAs / GAs) have a long history as an
optimization tool for neural networks (NNs), both for training their parameters
(Montana and Davis, 1989) and designing their architecture (Miller et al., 1989).
The main advantage of population based algorithms, such as EAs, is that they
search the search space more globally, reducing the chance of ending up in
local optima. Although multiple operators exist in the field of EAs, we will
focus on one, crossover. The crossover operator is arguably the most innovative
operator of in the field of genetic algorithms (Ortiz-Boyer et al., 2007). This
operator allows for recombining traits in individual solutions (parents), resulting
in new individuals (children) who inherit their strengths (and weaknesses). The
goal of this operator is to mix the different traits of two parents, while still
producing individuals that behave like their parents. Producing children that
behave similarly to their parents is called being non-disruptive (definition 2.3).
When applying a simple crossover operator to neural networks the property of
non-disruptiveness does not hold. This is due to the competing conventions
problem. Which brings us to our goal: Defining a crossover operator for neural
networks that is untouched by the competing conventions problem.

Definition 2.3. Non-disruptive: A crossover operator is called non-disruptive
if it produces children that are similar in behaviour to their parents.

We will go deeper into what the competing conventions problem is in the fol-
lowing section, but for now it is sufficient to know it has to do with the fact
that the same network can be written in many different ways. One way to cir-
cumvent this issue could be to have our crossover operator use some mapping
between differently written networks, such that the way the network is written
becomes irrelevant. This will be achieved by finding similar neurons in different
networks. This leads us to our research questions:

Main Question. Is it possible to facilitate a non-disruptive exchange of infor-
mation between multi-layer perceptron networks by matching similar neurons?

Subquestion 1. Given 1 ’base’ neuron and 2 others, can we predict which of
the 2 others behaves most similar to the base?

Subquestion 2. Does this prediction still hold when these neurons are situated
in a trained network?

Subquestion 3. Is it possible to use these predictions to facilitate a non-
disruptive exchange of information between individuals?

In the upcoming section we will dive deeper into the competing conventions
problem. This starts with a more detailed explanation, followed by examples of
earlier attempts at tackling this issue. In section 4 individual neurons will be
investigated with the aim of answering the first subquestion. Section 5 expands
on this by validating these results for neurons in a network (subquestion 2). The
goal of section 6 is to answer the third subquestion by defining crossover opera-
tors using what we have learned so far. To satisfy our curiosity the performance
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of the new crossover operators will be measured and discussed in section 7. In
the final section we will answer our main question, and briefly look forward at
what can be done to improve our operators.

2.1 About the code

Programming has been done in Python (Van Rossum and Drake, 2009). For
neural network generation and training the pytorch package (Paszke et al., 2017)
was used. Pytorch and Numpy (Oliphant, 2006) have been used in calculations.
Distance measures and clustering based thereon has been done using the scipy
package (Virtanen et al., 2020). Visualisations were made using matplotlib
(Hunter, 2007). Pandas (McKinney et al., 2010) has aided in dataprocessing.

3 Competing Conventions

In this section previous attempts at solving the competing conventions problem
are discussed. But first an explanation will be given of what a multilayer per-
ceptron is, along with how this results in competing conventions and why this
is problematic when defining a non-disruptive (definition 2.3) crossover operator.

A multilayer perceptron (MLP) network consists of layers of nodes. Except for
the first layer, where the nodes contain the input variables of the network, each
node is a neuron. For n inputs, neurons perform the following computation:

tanh(bias+ x1 ∗ w1 + x2 ∗ w2 + ...+ xn ∗ wn)

Where x1 to xn are the inputs to that neuron. The weights (w1 to wn) and
bias are the parameters of the neuron, these parameters are optimized trough
training. The transfer function, tanh(), is the hyperbolic tangent. The hyper-
bolic tangent maps any number to a unique number between −1 and 1, where
tanh(0) = 0.

Above is shown that neurons use their inputs to calculate a weighted sum. This
means the order of the inputs to a neuron is irrelevant for its calculation, so
long as the weights still correspond to the correct input. In turn, this means
that the location of a neuron in a layer is similarly irrelevant for the functioning
of an MLP. Figure 2 shows an example of two MLPs that compute the same
function, but where the neurons in the second layer are ordered differently. The
outputs of the networks, calculated by Nout, are tanh(x1 ∗ w1 + x2 ∗ w2) and
tanh(x2 ∗ w2 + x1 ∗ w1), proving the networks’ computations are equivalent.
The idea that the competing conventions problem is caused by the fact that the
order, or permutation, of neurons in a layer is irrelevant is where this problem
gets its second name: the permutation problem.
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Two Multilayer Perceptrons Performing the Same Calculation

Figure 2: Shown here are two multilayer perceptrons (MLPs). These MLPs
differ solely in the position of the neurons in the second layer and the weights
of the output neuron. Both those neurons and the weights are swapped with
respect to the other MLP. As such both MLPs calculate the same function.

Generally, the crossover operator exchanges parts of the parent genome based
on them being in the same location. As the location of a neuron within a layer
is irrelevant, exchanging neurons based on their location can be very disruptive
(definition 2.3). Figure 3 shows children that could be generated by applying a
standard crossover operator to the networks in figure 2. The outputs of these
children are tanh(x1 ∗ w1 + x1 ∗ w2) and tanh(x2 ∗ w2 + x2 ∗ w1). Neither
of these children behaves similar to its parents, implying the requirement of
non-disruptiveness has not been met.

Children of Parents with Differently Ordered Neurons

Figure 3: Shown here are two multilayer perceptrons (MLPs) which are children
of the MLPs shown in figure 2) formed by crossover. Both children perform
quite different calculations from their parents, implying the requirement of non-
disruptiveness (definition 2.3) is not met.

In multilayer neural networks the problem of competing conventions enlarges.
For deep layers not only the neurons of the layer itself but also the former layer
can be randomly permuted, effectively permuting the incoming weights. Figure
4 displays 4 network sub-graphs that are functionally equivalent. In general the
amount of permutations for subsequent layers i to j equals

∏j
l=i−1Nl!, where

Nl equals the number of neurons in layer l. This holds for any layer except the
first, as the inputs to the first layer come from outside the network and are, as
such, given in a set order. It is good to note that, as the input to every layer
is a function of the layer before, neurons in later layers of equivalent networks
are affected by the possible permutations in former layers. Because of this extra
redundancy, layers beyond the second layer are not part of this research.
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Multilayer Neural Network: Four Equivalent Genotypes

Figure 4: Shown above are 4 permutation of a functionally equivalent part of
a multilayer neural network. Different neurons are shown as having different
colors.

In the rest of this section, previous attempts at defining a crossover operator for
neural networks are discussed. However, before we continue, we should have a
look at two terms that will be used often throughout this section, genotype and
phenotype. In a nutshell, the genotype refers to the encoding of an individual,
whereas the phenotype refers to it’s behavior. Genotype and phenotype are, as
much of the terminology used in evolutionary computing, lend from biology. A
common biological example of the difference between genotype and phenotype
is eye color. There are multiple DNA structures (genotypes) that encode for
brown eyes (phenotype). Figure 2 shows two genotypes that correspond to one
phenotype.

Definition 3.1. Genotype: The encoding of a neural network.

Definition 3.2. Phenotype: The functional behaviour of a neural network.

Using these definitions it can be stated that the competing conventions, or
permutation, problem arises from the fact that the ordering of neurons in a
fully connected layer results in the same phenotype (definition 3.2), for many
different genotypes (definition 3.1).

3.1 A Non-Redundant Genetic Encoding

The competing conventions problem, as described before, was solved by profes-
sor Thierens over two decades ago (Thierens, 1996). In his paper he defined
equivalence classes along with a way to reduce every member of these classes
to one representative of its class. In other words, he proposed a standardized
genotype (definition 3.1) representation along with a way to rewrite networks of
the same phenotype (definition 3.2) in the form of this standardised genotype.
The proposed method works for multilayer perceptrons using the hyperbolic
tangent as their transfer function. In this case, besides the redundancy in the
order of neurons in a layer, any neuron can also be rewritten into a functionally
equivalent neuron using sign flips.

Rewriting a neuron using sign flips is possible because the hyperbolic tangent
has a rotational symmetry around the origin with a degree of 2. I.e. when a plot
of this function is rotated 180 degrees around the origin, the original function
is retrieved. This can be written as tanh(−x) = −tanh(x), from which can be
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derived that tanh(x) = −tanh(−x). The latter is the interesting part, it means
that if the sign of the input (x) to the hyperbolic tangent (tanh(x)) is flipped
(− ↔ +) along with the sign of the output of the function, the result does not
change. For a neuron we saw that the input to the hyperbolic tangent equals:
bias + x1 ∗ w1 + x2 ∗ w2 + ... + xn ∗ wn. This means we can flip the sign of
the input (x) of the hyperbolic tangent (tanh(x)) by flipping the signs of the
bias and all of the weights. The sign of the output can be flipped by flipping
the signs of of the weights of all outgoing connections from a neuron. Thierens
choose to solve this redundancy by enforcing positive biases. When the bias of
a neuron is negative, this neuron is rewritten by 1) flipping the signs of the bias
and all weights of this neuron, then 2) flipping the signs of the weights of all
outgoing connections from this neuron.

At the start of this section it was discussed that the order of neurons in a layer
does not affect the behavior of a network. As neurons in a layer containing N
neurons can be ordered in N ! different ways we can conclude there are N dif-
ferent genotypes (definition 3.1) corresponding to a single phenotype (definition
3.2). Above was discussed that, when using the hyperbolic transfer function, it
is possible to write each neuron in two different ways. As such it is possible to
write a layer containing N neurons in 2N different ways. Combining these two,
it can be concluded that a layer consisting of N neurons with the hyperbolic
tangent as their transfer function can be written in 2NN ! functionally equivalent
ways (Thierens, 1996). In other words, there are 2NN ! genotypes correspond-
ing to a single phenotype for a layer of size N . To achieve his non-redundant
encoding, Thierens chose to rewrite different genotypical representations of the
same phenotype in two steps 1) by flipping the signs such that all biases in the
networks became larger than zero, and 2) by sorting the networks’ layers by in-
creasing bias. The eight different genotypes for a layer containing two neurons
are shown in figure 5. Step 1 would reduce any genotype to one the two on the
left, which one would depend on step 2. The resulting genotype was named the
non-redundant encoding.

Genotypes for a two-neuron layer corresponding to any phenotype

Figure 5: Shown are eight different representations (genotypes, definition 3.1)
that can correspond to a single network behavior (phenotype, definition 3.2.)

Definition 3.3. Non-redundant encoding (Thierens, 1996): A neural network
encoding that has been reduced to the member of its equivalence class where
all biases are positive, and neurons in a layer are sorted by increasing bias.

The crossover operator would operate on complete neurons, which were defined
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as their incoming weights and their bias. The result was that when crossover was
applied to the networks written in non-redundant form, the crossover correlation
coefficient (CCC) (definition 3.4) was significantly higher than when written in
any (random) form. This implies that the children of two non-redundant net-
works indeed behave more like their parents than their redundant counterparts.

Definition 3.4. Crossover correlation coefficient (CCC) (Manderick et al.,
1991): A measure of how correlated the fitness landscape (a simple example
of such a landscape is given in figure 1) appears to the crossover operator. Cal-
culated as:

cov(Fp, Fc)

σ(Fp)(σ(Fc)

Where: Fp and Fc are arrays containing the average fitnesses (sum of squared
errors) of parents and their respective children. In this thesis the CCC is used
as a measure of non-disruptiveness.

Mapping genes along the genome by sorting on a single feature does in effect
solve the competing conventions problem. However, when the goal is to perform
crossover effectively, such a method gives rise to a new problem. When applying
the standard crossover, neurons are exchanged based on their location in the
genotype. As such, similar neurons should ideally occupy similar locations in
genotypes of different individuals. An ideal solution would not just yield a single
representation for each network phenotype, but also similar representations for
similar phenotypes. This is however not necessarily the case when sorting a net-
work by bias. Figure 6 shows an example of this. The first network (left) shows
two neurons, in orange and blue, that are sorted by bias. Then a minor change
occurs to the orange neuron, increasing it’s bias, becoming the red neuron in
the second network (middle). Sorting the second neuron by bias, as is done to
achieve the non-redundant encoding, results in the third network (right). Even
though the red neuron is only a small variation on the orange, it is now located
in an entirely different place on the genome. On top of that the blue neuron,
which has not changed at all, is also displaced.

Figure 7 shows a practical example of how this may impact children’s perfor-
mance on the XOR problem. In figure 7 the difference between both parents
is also only a swap between biases of two neurons, after which the neurons are
sorted.
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Sorting by bias does not lead to similar representations of similar
phenotypes

Figure 6: This figure shows three genotypes, corresponding with two pheno-
types. The first nodes (x and y) are input nodes. The colored nodes represent
neurons, whose weights are shown along the connection to their inputs. The
genotypes on the left and right are sorted by bias, however the middle repre-
sentation matches the left better than the right.

Parent solutions to the XOR problem with children who are not

Figure 7: Two parent networks in non-redundant form (definition 3.3), both
solutions to the XOR problem, along with two children who are not solutions.
Chidren were generated by crossing the second neuron in the hidden layer (with
the lowest bias). As this regards the XOR problem, the inputs can be either 0
or 1. Arrows represent connections between neurons, the numbers show their
respective weights. The transfer function is the hyperbolic tangent.
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3.2 Redefining the Crossover Operator

In 2006 another approach was made to combat the competing conventions prob-
lem, by redefining the crossover operator such that it would not be effected
(Garćıa-Pedrajas et al., 2006). As in the formerly discussed paper (Thierens,
1996), no neurons were split during crossover. Instead the goal of the algorithm
was to find the optimal combination of the neurons in the layers of five parents.
The essence of the algorithm is as follows. When trying to optimize a certain
layer in a neural network, five networks are trained independently. If we make
the layer of interest a size of 10, that results in 50 candidate neurons for the
optimized layer. An individual is then defined as a binary array of length 50,
where 1 means that the corresponding neuron will be a part of the individual
and 0 the contrary. These individuals are then optimized by a genetic algorithm.

The crossover that is used is the half uniform crossover (HUX), which means
that exactly half on non-matching bits are exchanged between parents. After
crossover the best N individuals are selected from the parents and children to
form the new generation. The nodes in this new generation are then, with some
probability, subject to parametric mutation, either random or backpropagation
for a fixed number of cycles. An exponential regularization term, using the
amount of included neurons as input, was added to the fitness function, mainly
to prevent the rise of very large networks.

This algorithm has a few advantages over regular crossover. As the order of
neurons is irrelevant to this algorithm, the permutation problem is of no con-
sequence. Also, the size of a network layer does not need to be pre-specified,
as the option to combine multiple networks allows for large layer sizes, whereas
the regularization term keeps the network from growing unnecessarily large.
The amount of combinations that can be made from multiple layers however
grows exponentially with the total amount of neurons. Combinatorial opti-
mization could be done more efficiently if it would be possible to group similar
neurons, such that functionally overlapping neurons can be avoided in solution.
This would reduce the search space dramatically. That clustering of nodes be-
fore crossover could be beneficial has been recognized by the authors in the dis-
cussion. Later they tried such an approach using ’virtual parents’ (Ortiz-Boyer
et al., 2007). An alternative approach could be to try to measure similarity more
directly, clustering neurons based on that measure. Finding such a measure is
one of the goals of this thesis (subquestions 1 and 2).

3.3 Growing Neural Networks

Ways to exploit neuron similarities without measuring them do exist, such as
the innovation number in the NEAT algorithm. NeuroEvolution through Aug-
menting Topologies (NEAT) (Stanley and Miikkulainen, 2002) is one of the
most impactful algorithms in the field that combines neural networks with evo-
lutionary algorithms. It has the ability to optimize both structure and weights
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by incrementally growing and combining small networks.
The evolutionary methods employed by NEAT can be described in four parts:
encoding, crossover, mutation, and selection using speciation. NEAT uses a
direct encoding, i.e. the phenotype (definition 3.2) of an individual can be read
directly from the genotype (definition 3.1). Neurons (or nodes) are numbered,
such that a connection between neurons (or edge) can be described using two
numbers (e.g. 1-3 would describe a connection going from neuron 1 to 3). Con-
nections are then described by the two neurons it connects, a weight and a
binary number, the last allowing a connection to be turned off so that it is
not present in the phenotype. Most importantly, evolved edges will the tracked
using a innovation number, this innovation number plays an important part
during crossover.

The crossover operator is relatively straight forward to describe. Important to
note is that it is only applied to the connection genes, as the required neurons for
a functional individual can be derived from its connections alone. The first step
is to align the genes of the two parents that share an innovation number. The
genes that are not aligned are taken from the best performing parent, the genes
that are aligned are crossed uniformly. Having the structure of the offspring
be determined by one of its parents ensures that it is functional (assuming its
parent is).

NEAT makes use of five mutations. Simplest are the weight mutations. One
being the weight shift, where a small number is added or subtracted from a
weight present in the network. The other being weight randomization, where a
weight is replaced by a random number. There are three mutations that change
connections in the phenotype. Firstly, the enable/disable edge mutation flips
the boolean that describes whether an edge will be present in the phenotype.
Secondly, the edge addition mutation generates a new edge between two neu-
rons, with a random weight. If an edge is new, where new edges are kept track
of on a per generation basis, it receives a new (incremental) innovation number.
The third is the node addition, this effectively splits an edge down the middle
and places a node in between. More precisely, it disables an edge, generates a
node, then generates two edges that reconnect the original nodes through the
newly generated node.

Selection through speciation grants newly generated individuals a chance to
optimize before being removed from the population. Before selection, the al-
gorithm groups individuals based on similarities in the genome. These groups,
or species, are then made to compete against each other, instead of the whole
population. This means that after selection the best individuals of each species
are kept, contrarily to the best individuals on the whole. This protects species
that contain structural innovations that still need some generations to optimize.

Growing a network gives NEAT the ability to track innovative changes. The
innovation number tracks something similar to homologous genes in evolutionary
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biology, i.e. genes with the same ancestor. The other type of similarity that
genes can have is analogy. Even though analogous genes share no ancestor
they are still alike, this happens when two individuals evolve the same structure
independently of one another. When training different individuals separately,
there can be no homologous genes. Analogous genes do however arise frequently,
as different solutions often have commonalities. The similarity measure that this
thesis aims to find should make it possible to find analogous genes, which could
be treated similarly to homologous genes by the crossover operator.

3.4 Ignoring crossover

Although it is not the focus of this research, it is important to note that
some evolutionary algorithms ignore the crossover operator all together, thereby
avoiding the competing conventions problem as a whole. An example of this is
Deepmind’s population based algorithm (Jaderberg et al., 2017). The weights
in the population’s networks are optimized using gradient descent and are not
directly impacted by genetic operators. Instead, the operators are applied in two
ways, which are fairly standard aside from some modifications to allow paral-
lelization. Firstly ’exploit’, meaning selection is performed. Selection was done
using two methods. One was by binary tournament, meaning two individuals
are compared and the best individual replaces the worst. The other is truncation
selection, where the bottom x% of solutions are replaced by solutions randomly
chosen from the top x%. Secondly ’explore’, an operator which only affected the
hyperparameters such as the learning rate, thus not the weights directly. This
operator could affect hyperparameters either by perturbing or resampling them.
The success of this algorithm proves that adding just basic genetic operators
can result in improvements over current state of the art. However, the crossover
operator can be a strong addition to an algorithm (Jansen and Wegener, 2002),
and attempts to make its inclusion possible, have sparked quite some research.

3.5 Summary

It has been shown that there are solutions to the permutation problem (Thierens,
1996), in the sense that any network can be written in a standardized form.
However, the difficulties of facilitating a non-disruptive exchange of information
between neural networks (per our main research question) do not stop there.
Ideally, not only could we match the same genes in differently permuted net-
works, but also similar genes in otherwise different networks.

This idea is not new. The NEAT algorithm keeps track of homologous genes
(genes with a shared ancestry) via its innovation number. Crossover is then
applied to homologous genes only. Due to how the algorithm grows its net-
works, it is believable that most similar genes will be homologous. As such, in
the context of the NEAT algorithm, tracking homologous genes is a good way
of finding similar genes. However, when trying to combine separately trained
networks this is not possible. Similar genes in this case are not homologous but
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analogous. Meaning they are similar, but lack a shared origin. As we cannot
keep track of our neurons throughout the process, a computationally feasible
way in which to predict whether two neurons are similar is desired. To be
feasible our resulting measure should not require functional network analysis,
meaning it must be able to determine similarity using only the available weights
and biases. Such a measure may also make it possible to improve a sorting
method as done by D. Thierens (Thierens, 1996), or to improve the crossover
operator such as one relying on combinatorial optimization (Garćıa-Pedrajas
et al., 2006) by grouping similar neurons.

This research aims to define a crossover operator that is minimally disruptive.
The approach is to find some measure that allows us to easily predict whether
two neurons behave similarly. These predictions may then be used to facilitate a
non-disruptive crossover (subquestion 3). Potential similarity measures will be
evaluated by testing if neurons that are similar according to the measures also
yield similar outputs. This is done for both individual neurons (subquestion 1)
and networks containing these neurons (subquestion 2).

4 Distance Measure - Single Neuron Network

In this subsection we will be looking at individual neurons, which alternatively
can be viewed as networks that consist of a single neuron. Recapping our first
research question, the aim is to predict if the behavior of some neuron is similar
to some other neuron (definition 4.1), based on their parameters (definition
4.2). The possibility of this will be investigated by comparing a list ordered by
neurons’ behavior with a list ordered based on their parameters.

Definition 4.1. Behavioral similarity : Viewing a neuron as applying a function
to its inputs. Two neurons are considered to behave similarly if they yield similar
outputs for the same input.

Definition 4.2. Parametric similarity : Neurons can be described by their pa-
rameters (weights and biases). Two neurons are considered parametrically sim-
ilar if the values of their parameters are similar.

We are looking for parametric based orderings that are much alike to the behav-
ior based ordering, as this implies that we can accurately predict the similarity
in 2 neurons’ behaviour based on their parameters. This results in a three-step
process:

1. Order neurons based on behavioral similarity (definition 4.1)

2. Order neurons based on parametric similarity (definition 4.2)

3. Compare the ordering based on parametric similarity with the ordering
on behavioral similarity
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All three steps mentioned above can be done in a variety of ways. As this phase
of the study is exploratory in nature, the choice was made to cast a wide net.
This effectively means that multiple methods are used for all three steps. These
will be discussed not far from now, but first we should have a look at the neurons
themselves and the way the data is gathered.

4.1 Methods

The neuron-similarity-measures will be tested on two types of neuron. One
where there are two inputs (figure 8A), and one where there are ten (figure 8B).
In both settings the inputs are connected to this one neuron. Different neurons
will receive the same set of inputs, so that we can compare their difference in
outputs.

Single neuron networks

Figure 8: Two (A) or ten (B) controlled input neurons, one output neuron which
can be replaced.

In the two-input setting an exhaustive search in the input space is performed,
by varying both inputs from -1 to 1 in steps of 0.1. The differences in output
are calculated from the 441 results obtained this way. How will be discussed
momentarily. We can describe our neurons using their three parameter values
weight1, weight2 and bias, or w1, w2, b. Weight1 is held constant at 5, weight2
ranges from 1 up to and including 10 in steps of 1, as symmetry in inputs
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around 0 allows us to only research positive weights. Biases range from -10 up
to and including 10 in steps of 5. In the ten-input setting the neuron-similarity-
measures are tested using 1000 random inputs. A hyperbolic tangent is used as
the transfer function.

So far we have discussed sorting (neurons) based on similarity. However we
have ignored an important question: Similarity to what? If we wish to sort
100 neurons based on similarity we need some baseline for these neurons to
be similar to. As there is no clear ‘baseline neuron’, the decision was made
to repeat the sorting and comparison for all neurons. In the list of all (100)
neurons, first neuron is chosen as the comparison neuron. The similarities of
other neurons are then calculated using that as the base, after which neurons
are ordered accordingly. We will then iterate over our list of neurons, until each
neuron has had the role of comparison neuron. We end by averaging the results
obtained to score the similarity measures.

4.1.1 Similarity measures

We have discussed that lists of neurons ordered by behavioral similarity (defini-
tion 4.1) will be compared with lists ordered by parametric similarity (definition
4.2). How exactly these lists are made depends on how similarity is measured.
In this subsection we will define the similarity measures that will be researched
along with discussing why these may be relevant.

Behavioral similarity measures
Behavioral similarity is defined by the relation between the input and output
of a neuron (definition 4.1). We approximate behavioral similarity by applying
distance measures to lists of generated outputs. Three distance measures were
chosen to compare the outputs of different neurons: cityblock, sqeuclidian, and
classification.

Definition 4.3. Cityblock distance: The cityblock distance d between vectors
p and q of length n is given as follows:

d(p,q) =

n∑
i=1

|pi − qi|

The cityblock distance, also known as the Manhattan distance, is probably the
most straightforward way of measuring a distance. This distance is computed
by taking the sum of all absolute differences.

Definition 4.4. Sqeuclidian distance: The sqeuclidian distance d between vec-
tors p and q of length n is given as follows:

d(p,q) =

n∑
i=1

(pi − qi)
2
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The sqeuclidian distance equals the sum of all squared differences between two
lists (which equals the euclidian distance squared). Compared to the absolute
difference, the sqeuclidian distance (4.4) weighs larger differences more heavily.
This type of weighing is common when training neural networks, where gradi-
ent descent generally optimizes over the squared error. For a single input given
to two neurons, yielding the outputs out1 and out2, this looks like: (out1−out2)2

Definition 4.5. Classification distance: The number of inputs that two net-
works classify differently.

Later, the promising methods will be tested on bi-classification problems, mean-
ing a classifier is trained to classify inputs as belonging to one of two possible
categories. It may therefore be useful to see whether we can predict the impact
of different neurons on the classification directly.

Parametric similarity measures
Parametric similarity is a measure of the similarity between the weights and bias
of neurons (definition 4.2). Six distance measures were chosen to compare the
parameters of different neurons. The first four of these apply a single distance
measure to all parameters, summing the total to calculate the distance between
two neurons. The latter two combine two distance measures, the reason for this
is discussed as we reach them.

The cityblock (definition 4.3) and the sqeuclidian distance (4.4) that we dis-
cussed for measuring behavioral similarity are reused for measuring parametric
similarity. The arguments of simplicity and wide usage apply here as well.

Definition 4.6. Canberra distance: The Canberra distance d between vectors
p and q of length n is given as follows:

d(p,q) =

n∑
i=1

|pi − qi|
|pi|+ |qi|

For each value pair in the two vectors, the absolute distance between two points

divided by the sum of their absolute values
|pi−qi|
|pi|+|qi|

is calculated. Summing

these values yields the Canberra distance (definition 4.6). The Canberra dis-
tance can be seen as a distance relative to the size of the points the distance is
calculated between. Relative differences may be a useful way to look at varia-
tion in parameters, as the weights of a neuron (which all parameters but 1 are)
are used in a multiplicative way (as described in example 4.7).

Example 4.7. Neuron parameters are used multiplicatively : Let us look at the
calculation performed by a neuron with one input (i), no transfer function, and
a bias of 0. This means the calculation it performs is simply a multiplication of
the input (i) with its weight (w): i ∗w. Let’s compare 2 sets of 2 such neurons,
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defined by their weights: w1 = 0.1, w2 = 0.2 and w3 = 1.0, w4 = 1.1. Using
either absolute or squared difference as a metric, the difference between w1 and
w2 is equal to the difference between w3 and w4. However, it may be better to
view a change from w1 to w2 as doubling the impact of its corresponding input
(in this case the only input), whereas this cannot be said for a change from w3

to w4.
For two neurons (n1 and n2) with J parameters (p1...pJ), this difference can be
formally described as:

∑
j(|p1j − p2j |/|p1j |+ |p2j |)

Definition 4.8. The cosine distance d between vectors p and q of length n is
given as follows:

d(p,q) = 1− p · q
||p||+ ||q||

Where · is the dot product and ||v|| is the magnitude of vector v

Neurons can be viewed as drawing hyperplanes (or just planes since we’re re-
searching neurons with two inputs) through the input space. As such their dif-
ference may be best described by the angular difference between these planes.
This is represented by the cosine distance (definition 4.8).

Looking back at the reasoning for using the cosine distance, it seems incom-
plete. This is because angle alone does not fully specify the difference between
two lines. Two lines with the same angle are only parallel, not necessarily equal.
We can however fully describe these two lines if we also include their distance
from 0, given that all input parameters are 0. Luckily for us it is quite straight-
forward to handle angle and this distance from 0 separately, as they are already
separated in our list of parameters. The angle is described by the weights, and
the bias gives the distance from 0 given that all inputs are 0. The final two
parametric similarity measures, cos-abs distance (definition 4.9 and cos-sq dis-
tance (definition 4.10) use this.

Definition 4.9. Cos-abs distance: A weighted sum of the cosine distance (defi-
nition 4.8), calculated over the weight vector and the absolute difference in bias.
The weighting is determined by the full range of neurons that the operator re-
ceives, such that the absolute difference is scaled between 0 and 1.

Definition 4.10. Cos-sq distance: A weighted sum of the cosine distance (defi-
nition 4.8), calculated over the weight vector and the squared difference in bias.
The weighting is determined by the full range of neurons that the operator
receives, such that the absolute difference is scaled between 0 and 1.

Two ways are used to compare the lists ordered by parametric similarity with
those on behavioral similarity. When discussing the choices made we should
keep our goal in mind: To find neurons that are similar to one another. The
first comparison, simset intersection (definition 4.12), is designed to test for
the minimally necessary quality, namely that both orderings agree on the most
similar neurons. The second comparison will use Kendall’s tau (definition 4.14)
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to compare the relative position of each pair of neurons in both ordered lists.
A parametric similarity measure will be considered successful at finding the
most similar neurons if 75% of the predicted most similar neurons are also
most similar according to the behavioral similarity measures. A parametric
similarity measure will be considered successful at pairwise ordering of neurons
if its pairwise orderings of agree with those made using behavioral similarity
75% of the time. A 95% confidence interval (definition 4.11) will be used to
determine whether results are considered to lie above or below these bounds.

Definition 4.11. 95% confidence interval : The range in which the true mean
lies with 95% certainty. The general expression for the 95% confidence limits
(Daly, 1998) is:

statistic± 1.96 ∗ SE(statistic)

For the usage in this paper this translates to mean±1.96∗SE, where SE refers
to the standard error.

4.2 Results & Discussion

4.2.1 Simset intersection

The simset intersection (definition 4.12) is a measure of how well two sorting
methods agree on the most similar neurons. It yields a number between 0 and
1, where 0 means no agreement and 1 means full agreement. A parametric sim-
ilarity measure will be considered successful at finding the most similar neurons
if 75% of the predicted most similar neurons are also most similar according to
the behavioral similarity measures.

Definition 4.12. Simset intersection: A measure of correspondence between
two orderings. It takes lists of neurons ordered by similarity, list B and list
P , and generates the sets containing the 20% most similar neurons, Bsim and
Psim. The simset intersection is then calculated as the intersection of the two
sets divided by their size.

Example 4.13. Simset intersection: Say we have ordered 25 neurons both by
behavior (list B) and parameters (list P ). We now create two sets by taking
the 5 neurons that are most similar to our comparison neuron from both lists,
Bsim = {a, b, c, d, e}, Psim = {b, f, a, d, g}. The intersection of these lists is
{a, b, d}, which has a length of three. Here, the simset intersection equals 3/5

The tables below show how sorting by different parametric similarity mea-
sures (rows) compare with sorting by certain behavioral similarity measures
(columns). The tables below show the results of the neuron distance measure
tests for individual neurons formatted as: mean ± standard error
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Simset intersection, two-input neurons
Output Distance Cityblock Sqeuclidian Categorization
Neuron distance
Cityblock 0.753 ± 0.020 0.747 ± 0.020 0.745 ± 0.020
Sqeuclidian 0.724 ± 0.018 0.725 ± 0.018 0.718 ± 0.019
Canberra 0.725 ± 0.022 0.727 ± 0.022 0.713 ± 0.023
Cosine 0.776 ± 0.016 0.778 ± 0.014 0.765 ± 0.017
Hybrid: Cos-abs 0.833 ± 0.023 0.820 ± 0.024 0.822 ± 0.024
Hybrid: Cos-sq 0.820 ± 0.016 0.811 ± 0.016 0.802 ± 0.018

Table 1: This table shows the simset intersection (definition 4.12) between the
ordered lists generated by the behavioral and parametric distance measures
for the neurons with 2 inputs. Values are shown as mean ± standard error.
Performance significantly above 75% is shown bold.

The parametric similarity methods based on the hybrid distance measures per-
form significantly (95% confidence interval, definition 4.11) above 75% accuracy
in predicting behavioral similarity (however measured). The parametric similar-
ity method based on the cosine distance also performs significantly above 75%
accuracy, although only when the behavioral similarity is measured using the
squeclidian (definition 4.4) distance. All other methods’ results are inconclusive,
75% lies within the 95% confidence interval for each of those results.

Simset intersection, ten-input neurons
Output Distance Cityblock Sqeuclidian Categorization
Neuron distance
Cityblock 0.436 ± 0.013 0.432 ± 0.010 0.430 ± 0.013
Sqeuclidian 0.443 ± 0.011 0.447 ± 0.010 0.436 ± 0.011
Canberra 0.381 ± 0.013 0.380 ± 0.013 0.372 ± 0.013
Cosine 0.441 ± 0.013 0.440 ± 0.012 0.434 ± 0.012
Hybrid: Cos-abs 0.450 ± 0.012 0.451 ± 0.011 0.443 ± 0.012
Hybrid: Cos-sq 0.449 ± 0.012 0.449 ± 0.011 0.442 ± 0.012

Table 2: This table shows the simset intersection (definition 4.12) between the
ordered lists generated by the behavioral and parametric distance measures for
the neurons with 10 inputs. Values are shown as mean ± standard error.

All parametric similarity measures perform significantly (95% confidence inter-
val, definition 4.11) below the 75% accuracy that was aimed for. This means
no method is considered successful at predicting the behavioral similarity of
neurons with 10 inputs.

4.2.2 Kendall’s tau

Kendall’s tau (definition 4.14) gives a measure for how well the total orderings
compare to one another. It compares each pair that can be found in the or-
derings. Pairs can be concordant, meaning they agree, or discordant, meaning

19



they disagree. Kendall’s tau is, for as far as we’re concerned here, calculated as
the number of concordant pairs (C) minus the number of discordant pairs (D),
divided by the total number of pairs (N): (C−D)/N . Kendall’s tau lies between
-1 and 1, meaning complete disagreement and complete agreement respectively.
A 75% accuracy in pairwise ordering corresponds to Kendall’s tau equalling 0.5.

Definition 4.14. Kendall’s tau (Kendall, 1945): A measure of correspondence
between two rankings. For the ordered lists that occur in this paper, Kendall’s
tau (tau) reduces to:

tau =
C −D
C +D

Were C is the number of concordant (agreeing) pairs, and D the number of
discordant (disagreeing pairs)

Example 4.15. Kendall’s tau: Let’s compare two orderings: [1 > 2 > 3] and
[1 > 3 > 2], where > means ’more alike to our comparison neuron’. As we have
three neurons, we have three pairs: {1, 2}, {1, 3} and {2, 3}. Our concordant
(agreeing) pairs are: {1, 2} and {1, 3}. We have one discordant (disagreeing)
pair: {2, 3}. Thus Kendall’s tau equals (2− 1)/3 = 1/3.

The tables below show how sorting by different parametric similarity mea-
sures (rows) compare with sorting by certain behavioral similarity measures
(columns). The tables below show the results of the neuron distance measure
tests for individual neurons formatted as: mean ± standard error.

Kendall’s tau, two-input neurons
Output Distance Cityblock Sqeuclidian Categorization
Neuron distance
Cityblock 0.213 ± 0.038 0.217 ± 0.034 0.233 ± 0.041
Sqeuclidian 0.245 ± 0.041 0.215 ± 0.036 0.212 ± 0.039
Canberra 0.220 ± 0.035 0.208 ± 0.033 0.219 ± 0.033
Cosine 0.198 ± 0.030 0.208 ± 0.032 0.185 ± 0.025
Hybrid: Cos-abs 0.221 ± 0.034 0.266 ± 0.041 0.183 ± 0.027
Hybrid: Cos-sq 0.214 ± 0.033 0.242 ± 0.036 0.176 ± 0.024

Table 3: This table shows the Kendall’s tau (definition 4.14) for the ordered lists
generated by the behavioral and parametric distance measures for the neurons
with 2 inputs. Values are shown as mean ± standard error.
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Kendall’s tau, ten-input neurons
Output Distance Cityblock Sqeuclidian Categorization
Neuron distance
Cityblock 0.218 ± 0.029 0.216 ± 0.028 0.215 ± 0.029
Sqeuclidian 0.233 ± 0.028 0.230 ± 0.028 0.230 ± 0.029
Canberra 0.227 ± 0.030 0.232 ± 0.030 0.234 ± 0.031
Cosine 0.236 ± 0.030 0.227 ± 0.031 0.213 ± 0.028
Hybrid: Cos-abs 0.233 ± 0.031 0.234 ± 0.031 0.232 ± 0.031
Hybrid: Cos-sq 0.251 ± 0.031 0.224 ± 0.029 0.255 ± 0.032

Table 4: This table shows the Kendall’s tau (definition 4.14) for the ordered lists
generated by the behavioral and parametric distance measures for the neurons
with 10 inputs. Values are shown as mean ± standard error.

Kendall’s tau is measured to be significantly (95% confidence interval, definition
4.11) below 0.5 in all instances. This implies that none of the parametric similar-
ity measures are a successful basis for pairwise ordering of neurons. The highest
measure of Kendall’s tau, in all experiments, lies around 0.25. A Kendall’s tau
of 0.25 corresponds to 5/8, or 62.5%, of all pairs being concordant (pairs both
sorts agree on).

4.3 Conclusion

In this section we set out to answer if we could predict which of two neurons
would behave more similar to a third neuron by looking at their parameters alone
(subquestion 1). A consistently low value for Kendall’s tau implies we cannot
do this effectively. A less stringent requirement for our crossover operator,
predicting if two neurons are similar, was however met with reasonable success
for 2 input neurons. This may be enough for our crossover operator to function.
Best performance was achieved using the hybrid similarity measures, of the non-
hybrid measures the cosine distance performed best. In the next section this
experiment shall be repeated using neurons as part of network instead of single
neuron networks.

5 Distance Measure - Neuron in Network

In the former section we looked at predicting the behavior of individual neurons
based on their parameters. The aim now is to find out if these predictions hold
when a neuron is situated in an organised (trained) network. In this section
the same behavioral and parametric similarity measures as in the last (section
4.1.1) are applied to predict the impact of changing individual neurons in trained
networks.
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5.1 Methods

Networks consisting of an input layer with 2 nodes, a second (hidden) layer with
15 neurons, and an output layer containing single neuron (simple net, figure 9
on the right) will be trained on both the two spirals (definition 5.2) and the
checkerboard (definition 5.3) problem (shown in figure 10). A neuron, chosen
randomly from the hidden layer, will then be replaced by others to determine
the accuracy of the similarity-predictions made by our measures for trained
networks.

Definition 5.1. Simple net : A small multilayer perceptron network consisting
of the following three layers:

1. An input layer containing 2 input nodes

2. A hidden layer containing 15 neurons

3. An output layer containing 1 neuron

Exchanging a single neuron in a hidden layer

Figure 9: Neurons with randomly generated parameters (left), and a network
with one hidden layer containing 15 neurons (right). In the experiment one
of the hidden neurons (here: H2) is chosen at random to be the comparison
neuron, meaning it is exchanged with the random neurons from the left.

Definition 5.2. Two-spirals dataset : A dataset for a classification problem
where two differently classified spirals are entwined. Shown in figure 10 on the
left.

Definition 5.3. Checkerboard dataset : A detaset of a classifiaction problem
where two differetly classified tiles are alternated both horizontally and verti-
cally. Shown in figure 10 on the right.
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Classification Test Problems

Figure 10: Two classification problems on which to test applications of similarity
measures

5.2 Results & Discussion

This section is divided in two parts corresponding to the two methods used for
the comparison of the ordered lists. First the results for the simset intersection
(definition 4.12) are discussed, followed by those for Kendall’s tau (definition
4.14). Predicting the effects of different neurons within a network is expected
to be more difficult than predicting that of individual neurons. As such the
performance that is considered adequate is lowered to 70% accuracy (from 75%
in the former experiment) for both predicting the most similar neurons and
comparing neuron pairs. In order to decide if these conditions are met the 95%
confidence interval (definition 4.11) is used.

5.2.1 Simset intersection

The simset intersection measures how well the 20% most similar neurons coin-
cide between our parametric and behavioral similarity (definitions 4.2 and 4.1)
measures. The tables below show the results of the neuron distance measure
tests for trained networks where a single neuron is replaced formatted as: mean
± standard error.
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Simset intersection - two-spiral dataset
Output Distance Cityblock Sqeuclidian Categorization
Neuron distance
Cityblock 0.622 ± 0.015 0.648 ± 0.016 0.618 ± 0.015
Sqeuclidian 0.621 ± 0.015 0.646 ± 0.016 0.615 ± 0.015
Canberra 0.559 ± 0.011 0.569 ± 0.011 0.541 ± 0.011
Cosine 0.665 ± 0.014 0.687 ± 0.014 0.643 ± 0.014
Hybrid: Cos-abs 0.714 ± 0.013 0.743 ± 0.013 0.699 ± 0.013
Hybrid: Cos-sq 0.695 ± 0.014 0.719 ± 0.014 0.676 ± 0.014

Table 5: This table shows the simset intersection (definition 4.12) between the
ordered lists generated by the behavioral and parametric distance measures.
Networks were trained with and outputs were measured using inputs from the
two-spirals data set (definition 5.2). Values are shown as mean ± standard
error. Performance significantly above 70% is shown bold.

Simset intersection - checkerboard dataset
Output Distance Cityblock Sqeuclidian Categorization
Neuron distance
Cityblock 0.644 ± 0.011 0.649 ± 0.011 0.625 ± 0.010
Sqeuclidian 0.649 ± 0.011 0.654 ± 0.011 0.632 ± 0.010
Canberra 0.588 ± 0.010 0.588 ± 0.010 0.575 ± 0.010
Cosine 0.675 ± 0.011 0.675 ± 0.011 0.659 ± 0.011
Hybrid: Cos-abs 0.723 ± 0.011 0.727 ± 0.011 0.703 ± 0.011
Hybrid: Cos-sq 0.703 ± 0.011 0.706 ± 0.011 0.685 ± 0.010

Table 6: This table shows the simset intersection (definition 4.12) between the
ordered lists generated by the behavioral and parametric distance measures.
Networks were trained with and outputs were measured using inputs from the
checkerboard data set (definition 5.3). Values are shown as mean ± standard
error. Performance significantly above 70% is shown bold.

The cos-abs hybrid distance measure (definition 4.9) is the only measure with
which results significantly (95% confidence interval, definition 4.11) above 70%
accuracy are reached. The other hybrid, cos-sq (definition 4.10), results in in-
conclusive results. The non-hybrid measures perform significantly below the
70% accuracy at which they would be deemed successful. Except for one in-
stance where the cosine method of measuring parametric similarity could predict
the impact of changing neurons in a network that has been trained on the two-
spiral problem, when this is measured by the squeclidian method. Generally, the
cosine, squeclidian and cityblock distance yield very comparable results. The
Canberra distance method performs significantly worse than the others.
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5.2.2 Kendall’s tau

Here the ordered lists resulting from our parametric (definition 4.2) and be-
havioral (definition 4.1) similarity measures will be compared using Kendall’s
tau (definition 4.14). A 70% accuracy in in pairwise ordering corresponds to
Kendall’s tau equalling 0.4.

Kendall’s tau, two-spiral dataset
Output Distance Cityblock Sqeuclidian Categorization
Neuron distance
Cityblock 0.223 ± 0.029 0.206 ± 0.027 0.231 ± 0.029
Sqeuclidian 0.201 ± 0.025 0.208 ± 0.027 0.208 ± 0.028
Canberra 0.183 ± 0.027 0.199 ± 0.027 0.200 ± 0.027
Cosine 0.195 ± 0.025 0.206 ± 0.027 0.222 ± 0.029
Hybrid: Cos-abs 0.198 ± 0.026 0.206 ± 0.027 0.195 ± 0.025
Hybrid: Cos-sq 0.211 ± 0.027 0.208 ± 0.026 0.191 ± 0.026

Table 7: This table shows Kendall’s tau (definition 4.14) for the ordered lists
generated by the behavioral and parametric distance measures. Networks were
trained with and outputs were measured using inputs from the two-spirals data
set (definition 5.2). Values are shown as mean ± standard error.

Kendall’s tau, checkerboard dataset
Output Distance Cityblock Sqeuclidian Categorization
Neuron distance
Cityblock 0.217 ± 0.028 0.195 ± 0.026 0.203 ± 0.026
Sqeuclidian 0.208 ± 0.028 0.211 ± 0.027 0.187 ± 0.025
Canberra 0.173 ± 0.023 0.172 ± 0.022 0.186 ± 0.026
Cosine 0.195 ± 0.024 0.191 ± 0.024 0.185 ± 0.024
Hybrid: Cos-abs 0.185 ± 0.024 0.177 ± 0.022 0.187 ± 0.025
Hybrid: Cos-sq 0.206 ± 0.027 0.184 ± 0.024 0.199 ± 0.025

Table 8: This table shows Kendall’s tau (definition 4.14) for the ordered lists
generated by the behavioral and parametric distance measures. Networks were
trained with and outputs were measured using inputs from the checkerboard
data set (definition 5.3). Values are shown as mean ± standard error.

Kendall’s tau is measured to be significantly (95% confidence interval, defini-
tion 4.11) below 0.4 in all instances. This implies that non of the parametric
similarity measures are a successful basis for pairwise ordering of neurons that
are situated in a network. The methods that resulted in a Kendall’s tau of 0.25
before, now yield approximately 0.2. This means that the amount of correct
pairwise comparisons has dropped to around 60% (from 62.5%).
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5.3 Conclusion

We set out to verify the results from the last section on neurons in trained net-
works (subquestion 2). Although generally performance was a bit worse that
in single neuron networks, the results for this experiment tell much the same
picture as the last. Kendall’s tau was still consistently low, implying that the
measures are not very effective at differentiating behavioral similarity of any
two neurons to a third. The results for the simset intersection however imply
that a simple prediction of similarity is still possible for neurons in a network.

The hybrid measures are the best performing measures in predicting the 20%
most similar neurons (simset intersection, definition 4.12). The cosine, cityblock
and sqeuclidian form the middle of the pack of parametric similarity measure-
ments, where the cosine distance pulls ahead of the other two. It seems predict-
ing neuron similarity by relative differences in parameters is inefficient. These
findings hold irrespective of the way behavioral similarity is measured.

6 Designing Crossover Operators

This section is aimed at researching if the predictive distance measures can be
used as a basis for a non-disruptive crossover operator (the third subquestion).
Standard crossover operators will be compared with newly designed operators
that use distance measures to estimate behavioral similarity. Non-disruptiveness
will be tested by measuring the crossover correlation coefficient (definition 3.4)
of these different crossover operators on a set of random parents. The new
crossover operators will be defined at the start of this section, followed by a
discussion of the experimental results. Then the behavior of the more complex
operator (analogue cross, definition 6.6) will be investigated further. At the end
of the discussion a seeming replication error will be investigated, gaining some
insights in the complexities of crossovers on neural networks. Our conclusions
will be reiterated at the end of this section.

6.1 Methods

A number of crossover operators will be defined. Operators using the similarity
measures will be tested for non-redundancy and standard operators will be used
for comparison. These operators are tested on both random networks as gen-
erated, and these same networks in their non-redundant encoding (definition
3.3). In this experiment the simple net (definition 5.1) is used, meaning the
networks have an input layer containing 2 nodes, a hidden layer containing 15
nodes and a single output node. The crossover correlation coefficient (definition
3.4) is used as the metric to determine the quality of the crossover operators.
The two-spiral and checkerboard classification problems, shown in figure 10 are
used for this testing.
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After this we graphically compare analogue crossover with uniform crossover.
For this we use the relation between the cluster distance for the analogue oper-
ator and the amount of locations in which crossover will occur.

Example 6.1. Analogue vs uniform crossover experiment : A single data point
is collected as follows: a cluster distance of 0.2 may cause crossovers in, on
average, 9 locations. We then compare the crossover correlation coefficient of
analogue crossover with a cluster distance of 0.2 with uniform crossover on 9
locations.

First we define the standard crossovers that will be used for comparison:

Definition 6.2. Halfway crossover : This operator cuts the two parent layers
down the middle. Children are then generated by exchanging the second half
of both parents’ layers.

Halfway Crossover

Figure 11: Two parent genomes (left) are both ’cut in half’ (center). The
children are then created by combining the different halves of the parents.

Definition 6.3. Uniform crossover : This operator generates a list of neuron
locations of half the length of the number of neurons. Children are generated
by exchanging the neurons in these locations.
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Uniform Crossover

Figure 12: Half of the neurons from the parents (left) are randomly selected
(middle) to be exchanged with one another to form the child genomes (right).

Definition 6.4. Partial uniform crossover : This operator generates a list of
neuron locations of half the length of a given number. Children are generated
by exchanging the neurons in these locations. If this number is set to the
total number of neurons, this operator behaves the same as uniform crossover
(definition 6.3).

Partial Uniform Crossover

Figure 13: Shown here is partial uniform crossover on 4 neurons. Of the parent
genomes (right), 4 neurons are randomly selected to be eligible for crossover
(non-selected neurons shown opaque). Of the selected neurons, half are ran-
domly selected to be exchanged. Resulting in the new children (right)

Following are the definitions of the newly designed crossover operators. These
will use the parametric distance measures in two ways. The mindist crossover
(definition 6.5) generates a mapping of minimal distance between two parents,
which is used as a basis for uniform crossover. The analogue crossover (definition
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6.6) lends its name from analogues, meaning similar in activity, genes in biology.
This operator uses the distance measures to create sets of similar neurons, which
are then randomly permuted.

Definition 6.5. Mindist crossover : This operator uses a distance measure to
find the pairs between the neurons from both parents that are most similar while
using each neuron once. Crossover is applied to these pairs uniformly. This is a
three step process:

1. Generate the distance matrix for all neurons in parent1 to all neurons in
parent2

2. Create a mapping between the neurons from the two parents such that the
total distance is minimized, using the Hungarian algorithm (Kuhn, 1955).

3. Apply uniform crossover (definition 6.3) on the mapped pairs.

Mindist Crossover

Figure 14: A minimal distance mapping is generated between the two parent
genomes (left). Half the neurons are randomly selected for crossover with their
corresponding neuron from the other parent (middle). Exchanging these neurons
yields the new child genomes (right).

Definition 6.6. Analogue crossover : This operator uses a distance measure to
generate sets of neurons such that no two neurons in a set can be more than a
certain distance from one another. It then randomly permutes neurons within
these sets. This is done in a three step process:

1. Generate the distance matrix for the complete set of neurons (thus from
both parents)

2. Group neurons into sets using the distance matrix and some maximum
distance, using farthest point linkage. Farthest point was chosen because
no neurons within a set should be very different from one another.
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3. For each set that contains at least one neuron in both parents, randomly
permuted the neurons in that set.

Analogue Crossover

Figure 15: Sets of similar neurons are generated from the set of all neurons
(left), not all neurons necessarily belong to a set. Neurons within each set are
randomly permuted, this may result in the same permutation as they already
were (center). Resulting in new child genomes (right).

In this experiment, the following distance measures (defined in section 4.1.1)
are used by our crossover operators:

• Cityblock distance (definition 4.3)

• Cosine distance (definition 4.8)

• Cos-abs distance (definition 4.9)

• Cos-sq distance (definition 4.10)

6.2 Results & Discussion

The tables below show the crossover correlation coefficients (definition 3.4) for
various crossover operators formatted as: mean ± standard error
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Crossover Correlation Coefficients - redundant networks, two-spiral
dataset

Neuron distance Cityblock Cosine Hybrid: Hybrid:
Crossover Method Cos-Abs Cos-Sq

Mindist 0.620 ± 0.015 0.686 ± 0.012 0.611 ± 0.016 0.615 ± 0.015
Analogue (12 clust) 0.676 ± 0.014 0.745 ± 0.011 0.693 ± 0.012 0.647 ± 0.014

Halfway 0.296 ± 0.019
Uniform 0.310 ± 0.019
Uniform (12 clust) 0.443 ± 0.018

Table 9: Shown are the crossover correlation coefficients (definition 3.4) for the
novel crossover methods per similarity measure and for the standard crossover
methods. Measurements were made by crossing over random parents, and mea-
suring performance on the two-spiral data set (definition 5.2). Values are shown
as mean ± standard error.

Crossover Correlation Coefficients - non-redundant networks, two-spiral
dataset

Neuron distance Cityblock Cosine Hybrid: Hybrid:
Crossover Method Cos-Abs Cos-Sq

Mindist 0.696 ± 0.013 0.750 ± 0.011 0.670 ± 0.012 0.683 ± 0.013
Analogue (12 clust) 0.745 ± 0.012 0.819 ± 0.010 0.743 ± 0.010 0.757 ± 0.010

Halfway 0.269 ± 0.019
Uniform 0.426 ± 0.020
Uniform (12 clust) 0.541 ± 0.019

Table 10: Shown are the crossover correlation coefficients (definition 3.4) for the
novel crossover methods per similarity measure and for the standard crossover
methods. Measurements were made by crossing over non-redundant (definition
3.3) parents, and measuring performance on the two-spiral data set (definition
5.2). Values are shown as mean ± standard error.

Crossover Correlation Coefficients - redundant networks, checkerboard
dataset

Neuron distance Cityblock Cosine Hybrid: Hybrid:
Crossover Method Cos-Abs Cos-Sq

Mindist 0.305 ± 0.021 0.368 ± 0.021 0.319 ± 0.023 0.291 ± 0.021
Analogue (12 clust) 0.431 ± 0.020 0.474 ± 0.019 0.431 ± 0.019 0.364 ± 0.019

Halfway 0.103 ± 0.023
Uniform 0.092 ± 0.021
Uniform (12 clust) 0.203 ± 0.018

Table 11: Shown are the crossover correlation coefficients (definition 3.4) for the
novel crossover methods per similarity measure and for the standard crossover
methods. Measurements were made by crossing over random parents, and mea-
suring performance on the checkerboard data set (definition 5.3). Values are
shown as mean ± standard error.
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Crossover Correlation Coefficients - non-redundant networks,
checkerboard dataset

Neuron distance Cityblock Cosine Hybrid: Hybrid:
Crossover Method Cos-Abs Cos-Sq

Mindist 0.463 ± 0.018 0.456 ± 0.019 0.481 ± 0.017 0.442 ± 0.019
Analogue (12 clust) 0.517 ± 0.016 0.577 ± 0.017 0.492 ± 0.019 0.511 ± 0.019

Halfway 0.336 ± 0.020
Uniform 0.376 ± 0.021
Uniform (12 clust) 0.426 ± 0.020

Table 12: Shown are the crossover correlation coefficients (definition 3.4) for the
novel crossover methods per similarity measure and for the standard crossover
methods. Measurements were made by crossing over non-redundant (definition
3.3) parents, and measuring performance on the checkerboard data set (defini-
tion 5.3). Values are shown as mean ± standard error.

The halfway crossover on redundant networks is equivalent to the uniform
crossover, as the neurons are permuted randomly. It therefore is no surprise
that the crossover correlation coefficients of these two seem to come from the
same distribution. For non-redundant networks this difference differs per prob-
lem and will be discussed later.
Minimal distance crossover outperforms non-distance-dependent crossovers in
terms of crossover correlation coefficient. This implies it pairs similar neurons
more accurately than random (as in redundant encodings) and Thierens’ non-
redundant encoding (Thierens, 1996).

Parametric similarity measures
The cosine distance almost always results in the best performance for the
distance-based crossover operators. The cityblock and cos-abs hybrid distances
do not perform significantly differently from one another, their performance
generally lying within each others standard errors. The Cosine-Squared Hybrid
often performs worst of the metrics, sometimes performing equally to the abso-
lute distance and its hybrid counterpart. This performance is a deviation from
the former experiment, where the hybrid methods yielded the highest perfor-
mance.

(non-)redundancy
Writing networks in their non-redundant form (definition 3.3) improves the
crossover correlation coefficient across the board. This could be caused by it
being easier to match similar neurons when they are written in a standard-
ized form. Another explanation is that there are more similar neurons in non-
redundant networks. For example, say we have neurons, f and f’, such that
f(inputs) = -f’(inputs). As for now, crossover on these two neurons will be quite
disruptive. We can however change f’ to f without changing the network’s func-
tionality, if we change all outgoing weights of f’ to be their negative counterpart
as well. After changing f’ to f we can obviously apply crossover on both versions
of f without this being disruptive to the network’s functionality. This is exactly
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what Thierens’ non-redundant encoding does (Thierens, 1996). Figure 16 shows
that there are more crossover locations (implying more similar neurons) for any
cluster distance in non-redundant networks compared to their redundant coun-
terparts.

dataset-dependent results
The crossover correlation coefficients in the test on the checkerboard dataset
are lower than those on the two-spirals dataset. This implies that the fitness
landscape for multilayer perceptrons on the checkerboard dataset appears less
correlated to the crossover operator than the fitness landscape corresponding to
the two-spiral dataset. The crossover operator defines a way to move through
the fitness landscape. If this movement results in relatively well functioning chil-
dren for relatively well-functioning parents, then this results in a high crossover
correlation coefficient. Whether this happens may not solely depend on the
movement dictated by the operator, but it may also depend on the shape of the
fitness landscape itself. A possible explanation for the observed difference in
CCC between the two datasets is that the movement through the fitness land-
scape, determined by the crossover operator, corresponds better to the fitness
landscape of the two-spiral dataset than that of the checkerboard dataset.

It is also interesting that on the two-spiral dataset the halfway crossover is
outperformed by the uniform crossover (on non-redundant networks of course,
for redundant networks these operators are equivalent). A performance worse
than random implies that some set of neurons which is relevant to the networks’
performance is often taken apart. This implies that, at least with respect to
some data sets, neurons with biases that are relatively far apart from one another
interact in some way and should not be automatically separated by our operator.

6.2.1 Graphical Comparison

In this section we see five plots aiding in comparing the crossover correlation
coefficient of analogue crossover with that of uniform crossover. The first plot
shows the relation between the cluster distance for the analogue crossover and
the number of crossover locations. The other four plots show the crossover corre-
lation coefficients of the analogue crossover operator and the uniform crossover
operator with respect to the number of crossover locations. Cosine distance
was used as the distance measure for the crossover operator. The crossover
correlation coefficient achieved by the minimal distance crossover is also shown.
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Cluster Distance vs Number of Crossover Locations

Figure 16: The data plotted above shows the cluster distance vs the average
number of crossovers performed during analogue crossover using the cosine dis-
tance metric. Data was gathered from networks with random weights in [-10,
10) and their non-redundant (Thierens, 1996) counterparts.

Crossover Correlation Coefficient of Analogue vs Uniform Crossover
redundant networks - two-spirals dataset

Figure 17: The data plotted above was generated by applying the respective
crossovers to redundant networks. Performance was measured as the perfor-
mance on the two-spirals dataset.
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Crossover Correlation Coefficient of Analogue vs Uniform Crossover
non-redundant networks - two-spirals dataset

Figure 18: The data plotted above was generated by applying the respective
crossovers to non-redundant networks. Performance was measured as the per-
formance on the two-spirals dataset.

Crossover Correlation Coefficient of Analogue vs Uniform Crossover
redundant networks - checkerboard dataset

Figure 19: The data plotted above was generated by applying the respective
crossovers to redundant networks. Performance was measured as the perfor-
mance on the checkerboard dataset.
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Crossover Correlation Coefficient of Analogue vs Uniform Crossover
non-redundant networks - checkerboard dataset

Figure 20: The data plotted above was generated by applying the respective
crossovers to non-redundant networks. Performance was measured as the per-
formance on the checkerboard dataset.

So long as the distances within sets of neurons are kept small, analogous crossover
results in a larger crossover correlation coefficient than minimal distance crossover.
The reason behind this is two-fold. Firstly, small distances result in a smaller
number of crossover locations as shown in figure 16. This leads to fewer changes
in the genome and thus a larger correlation between parents and children, as
shown for both analogue and uniform crossover in figures 17, 18, 19 and 20. In
these same figures we can also see that the crossover correlation coefficient for
analogues crossover has a shallow curve for few crossovers, which gets steeper
as more crossovers are performed, which brings us to the second reason for ana-
logue crossover’s success. Not only are fewer crossover locations chosen, the
locations that are chosen are those where crossover is relatively non-disruptive.

As distances within sets of neurons are set too large, the analogue crossover
operator becomes unstable. At some point its performance even drops below
that of the minimal distance crossover, even when crossover is not performed on
all neurons. Figure 21 shows the difference between the performed crossovers
for small and large cluster distances respectively. What is important to note
is that for large cluster distances, the sets that are randomly permuted may
contain more than two neurons. Firstly, this makes it more likely neurons
actually change place (a random permutation of two neurons has only a 50%
chance that it’s different from the original permutation). Secondly it allows
for neurons to be swapped within one parent, which does cause disruption in
the networks behaviour, but does not result in information exchange between
networks. In the extreme, such as a cosine distance of 2 (the maximum this
distance can be) one big cluster will be formed containing all neurons from
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both parents. In that case the operator will randomly permute all neurons in
both parents, which is possibly more disruptive than even uniform crossover.
It can therefore be said that the analogue crossover operator does not function
properly, and should thus not be used, with large cluster distances.

Analogue Crossover Sets for Small and Large Cluster Distance

Figure 21: Shown are imagined sets as they could have been made by the
analogue crossover operator. Circles represent neurons. Neurons of the same
color belong to the same set, empty neurons do not belong to any set. It is
noteworthy that for a large cluster distance, the sets can exceed a size of two
neurons.

6.2.2 Network parameter scaling, reproduction error?

A notable result from the crossover correlation experiments is that they differ
from the results in Thierens’ experiment (Thierens, 1996). The code that was
used in the original is no longer available, however it seems this difference can
be explained by the size of the parameters.

Effect of parameter scaling on crossover correlation coefficient
Thierens Parameters in [-10, 10) Parameters in [-1, 1)

Redundant 0.456 0.310 ± 0.019 0.356 ± 0.021
Non-redundant 0.892 0.426 ± 0.020 0.912 ± 0.007

Table 13: Crossover Correlation Coefficient for Uniform Crossover (mean ±
standard error), Two Spiral Set

As we can see, the results from the original experiment with non-redundant
encoding coincide with our replication if we choose the parameters to be in [-1,
1). The range of parameters of [-10, 10) has been chosen as it resembles the
parameters of a network that was trained on the classification problems that
were discussed. However, it is common practice to use smaller numbers for ini-
tializing networks. PyTorch’s linear layers (the ones used in our experiments)
are initialized from a uniform distribution with a maximum absolute value of√

1/Ninp, where Ninp is the number of inputs (PyTorch Contributors, 2019). It
is easy to see this number cannot exceed 1.
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The effective difference in the behavior of a single neuron when it’s parameters’
magnitude is increased lies in the sharpness of the decision boundary, as shown
in figure 22. It is noteworthy that the location of the decision boundary does not
change, because the equation that corresponds to the neuron’s behavior equals
zero for the same inputs, shown in table 14.

For a network the decision boundary still sharpens with increased parameters,
but the boundaries location changes as well, as shown in figure 23. This means
we cannot just reduce the parameters in a network linearly as a transformation
to improve the crossover correlation coefficient.

Decision boundaries of neurons are unaffected by parameter scaling
Neuron with parameters in [-1, 1) Neuron with parameters in [-10, 10)

tanh(x1 ∗ w1 + x2 ∗ w2 + b) = 0 tanh(x1 ∗ (10 ∗ w1) + x2 ∗ (10 ∗ w2) + (10 ∗ b)) = 0
- x1 ∗ (10 ∗ w1) + x2 ∗ (10 ∗ w2) + (10 ∗ b) = 0

x1 ∗ w1 + x2 ∗ w2 + b = 0 10 ∗ (x1 ∗ w1 + x2 ∗ w2 + b) = 0

Table 14: Above is a short derivation showing that the decision boundaries for
an individual don’t change when parameters are scaled.

Parameter Scaling Single Neuron

Figure 22: On the left we see the output of a neuron given two inputs, x and
y. The neuron uses a hyperbolic tangent as the transfer function, such that it’s
behaviour is described by: tanh(x ∗ wx + y ∗ wy + b). To the right we see the
output for this same neuron with its weights (wx, wy) and bias (b) multiplied
by 10.
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Parameter Scaling Small Network

Figure 23: On the left we see the output of a simple network (definition 5.1)
given two inputs, x and y. The network uses a hyperbolic tangents as it’s transfer
function. To the right we see the output for this same network with its weights
and biases multiplied by 10.

6.3 Conclusion

Aiming to reduce the disruptiveness of crossover on neural networks, two crossover
operators which use the parametric similarity measures have been defined. Both
analogue (definition 6.6) and mindist (definition 6.5) crossover have been seen
to improve the crossover correlation coefficient, compared to using standard op-
erators. The cosine distance performed best as a similarity measure to base
the operator on, outperforming the hybrid methods that seemed best before.
This may be due to difficulties in balancing the two parts of the hybrid meth-
ods. However, the answer to whether these operators were truly non-disruptive
(subquestion 3) is that it unfortunately seems to depend on the data set the
operator is applied to. A possible explanation for this could lie in the shape of
the fitness landscapes corresponding to the simple network (definition 5.1) and
the datasets.

Next different cluster distances for the analogue crossover operator (definition
6.6) were compared with partial uniform crossover (definition 6.4) on an equal
amount of neurons. The most important conclusion was that analogue crossover
does not function correctly for large cluster distances.

7 Hybrid Genetic Algorithm

In this section we will have a look at the new crossover operators in action.
Instead of answering a research question the aim is to gain some insight into
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whether the new crossovers function in their current form. In the introduction
it was discussed that gradient descent is a very well-performing local optimizer,
and that the aim for the crossover operator was to aid in global optimization.
In this section the two will be combined into what is called a hybrid genetic
algorithm.

Definition 7.1. Hybrid genetic algorithm: An algorithm that combines a ge-
netic algorithm with another optimizer. In this case the genetic algorithm will
solely be represented by our crossover operator, our second optimizer is gradient
descent.

7.1 Methods

The training algorithm is simple and can be split in two parts. The first part is
aimed at searching the global search space, which is done by alternating short
intervals of training by gradient descent with crossover. In the second part the
individuals in our population converge to their local optima using gradient de-
scent. This experiment is repeated 10 times to allow for statistical comparisons.

Algorithm 1: Hybrid Genetic Algorithm

population = instantiate population(population size=40);
for in range(10) do

population = gradient descent(population, short interval);
parents = best performing half(population);
children = crossover(parents);
population = merge(parents, children);

population = gradient descent(population, long interval);

Crossover will be done using the following operators:

• No crossover: In this case crossover is skipped.

• Uniform crossover (definition 6.3)

• Mindist crossover (definition 6.5), using the cosine distance as the para-
metric similarity measure.

• Analog crossover (definition 6.6), using the cosine distance as the para-
metric similarity measure. This operator will be tested with three cluster
distances: 0.15, 0.30 and 0.45.
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7.2 Results & Discussion

Checkerboard Two spirals
Method Mean Sd Mean Sd
No Cross 0.788 0.011 0.828 0.011
Uniform 0.814 0.022 0.833 0.017
Mindist 0.813 0.015 0.829 0.010
Analog 0.15 0.807 0.019 0.818 0.015
Analog 0.30 0.807 0.015 0.828 0.015
Analog 0.45 0.818 0.024 0.826 0.011

Table 15: The mean and standard deviation (Sd) of the best individuals in all
ten experiments for each method.

Comparing the results using Welch’s t-test (Welch, 1947) yields that no method
performs significantly different from another when applied to the two-spirals
dataset. When training on the checkerboard set applying no crossover performs
significantly worse (p < 0.05) than any other, otherwise no method is signifi-
cantly different from another.

7.3 Conclusion

The crossover operator may aid convergence of neural networks to a more op-
timal solution compared to using no crossover operator. There is however no
hard evidence to suggest that the crossover operator developed for this thesis is
superior to uniform crossover.

8 Conclusion

The goal of this research was to find a way to facilitate a non-disruptive ex-
change of information between multi-layer perceptron networks (main question,
section 2). In order to answer the main question was divided into subquestions
and experiments were performed to answer to these (sections 4, 5, and 6). It
was concluded that the parametric similarity (definition 4.2) measures did not
allow us to predict the ordering of neurons by behavioral similarity (definition
4.1). This resulted in a negative answer to the first two research questions.
Nonetheless the parametric similarity measures could still form a strong enough
basis for a non-disruptive (definition 2.3) crossover operator. Two such opera-
tors, analogue crossover (definition 6.6) and mindist crossover (definition 6.5),
were tested in section 6. These operators turned out to be non-disruptive, at
least for the two-spiral dataset.

In this section we will recap the conclusions that were drawn from the experi-
ments, using this to answer the main question. At the end of this section ideas
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for further research on the subject are discussed.

8.1 Finding a distance measure

Section 4 was aimed at determining if, given some base neuron, other neurons’
similarity in behaviour (subquestion 1) could be predicted by their parameters.
This was approached by comparing lists of neurons ordered based on behavioral
similarity with those based on parametric similarity. A consistently low value
for Kendall’s tau revealed that none of the six distance measures researched are
a good basis for predicting the relative differences in neurons’ behavior with high
accuracy. However, measuring the overlap of similar neurons in both ordered
lists (simset intersection, definition 4.12) yielded that the distance measures can
distinguish between similar and non-similar neurons. As being able to make this
distinction might be a good enough basis for a non-disruptive (definition 2.3)
crossover operator, the research was continued.

In section 5 a similar prediction was researched, but this time neurons in trained
networks were used instead of individual neurons. Trained networks more closely
resemble the environment in which the crossover operator would operate. The
results were quite similar to those in the first half, though generally not as good
as in section 4. The lower values for Kendall’s tau (definition 4.14) and simset
intersection (definition 4.12) imply that the effect of a neuron on a network’s
behaviour is harder to predict. However the answer to the second subquestion is
the same as to the first: The parametric similarity measures are not capable of
ordering neurons by their similarity effectively, but they are capable of finding
the most similar neurons reasonably well. Whether this second capability is
enough for a non-disruptive crossover operator was researched next.

8.2 Designing Crossover Operators

In section 6 two crossover operators were defined, mindist and analogue crossover
(definitions 6.5 and 6.6). These operators were made to use the distance mea-
sures that were researched in the former sections. The goal was to find out if
these crossover operators would be non-disruptive (definition 2.3). The crossover
correlation coefficients (definition 3.4) indicated that 1) the novel operators out-
performed the standard crossover operators, and 2) the cosine distance (defi-
nition 4.8) was generally the best distance measure for the crossover operator.
However, whether the new crossover operators could be called non-disruptive
depended on the dataset. Both operators yielded little disruption with respect
to the spirals set, but were quite disruptive with respect to the checkerboard set.
This may be caused by the combination of the movement through the fitness
landscape, as dictated by the crossover operator, and the shape of the fitness
landscape.

The behavior of the analogue crossover was further discussed for different cluster
distances. At small distances it would both allow for few crossovers, and the
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performed crossovers would yield small change. More importantly, for large
cluster distances this operator breaks by randomizing neurons in large clusters
(Figure 21 on page 37).

8.3 A non-disruptive exchange in information

With our subquestions answered, our main research question can be answered:
Is it possible to facilitate a non-disruptive exchange of information between
multi-layer perceptron networks by matching similar neurons?

The crux of the answer lies in a way to define a distance measure, indicating
similarity of neurons. It was found that putting the weights and bias of neurons
into an array, and computing the cosine distance (definition 4.8) between these
arrays to be a valid method of computing neuron dissimilarity. This dissimilar-
ity can then be used to 1) compute the minimal distance pairing of two parents
(definition 6.5), or 2) generate sets of similar, or analogues, neurons (definition
6.6). We can then apply uniform crossover over these pairings or randomize
neurons within sets respectively.

The disruptiveness for analogue and mindist crossover (definitions 6.6 and 6.5),
is not the same across all datasets. At least for some (such as the checkerboard
set, definition 5.3), applying these crossover operators are relatively disruptive.
Measuring disruptiveness using the crossover correlation coefficient (definition
3.4), as done in section 6, is however computationally cheap (relative to training
a neural network). As such the viability of these operators can be estimated
without much trouble.

8.4 Hybrid Genetic Algorithm

In section 7 it was tested whether our crossover operators truly aided in optimiz-
ing neural network parameters. We found that using some crossover operator
was an improvement to using no crossover operator when learning the checker-
board dataset. However we did not find a significant difference between any
of the other tests. Therefore we conclude that there is no hard evidence that
the newly designed crossover operators (mindist and analague) are superior to
uniform crossover.

8.5 Further research

• Scaling both parts of Hybrid Measures: The hybrid distance mea-
sures seemed promising during the first experiments, but where less ef-
fective when applied in a crossover operator. This may have to do with
balancing the size of the cosine distance with the (squared) bias distance.
The cosine distance lies between -1 and 1, whereas the other is unbounded.
Finding a way to scale these may result in increased performance for the
crossover operator using hybrid distance methods.
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• Parameter Size and Disruptiveness: We have seen that the size of
the parameters in the neural network has an impact on the disruptiveness
of the crossover operator (section 6.2.2). Further research is needed if we
wish to fully understand why.

• Fitness landscape of the two datasets: In section 6 we observed a
difference in CCC that depended on the dataset the networks were applied
to. A difference in fitness landscape was given as a possible explanation
for this. It could be interesting to try mapping the fitness landscapes
corresponding to the simple networks (definition 5.1) on these datasets to
see if this explanation is valid.

• More Inputs: We have seen that increasing the number of inputs for the
neurons in our network decreases the predictive capacities of our neuron
distance measures (section 4). We have not researched the effects this has
on the crossover operator. This is paramount if we wish to apply this
crossover to real problems, as they seldom have only two inputs.

• Large Layers: It is not uncommon for networks to be designed with
layers much larger than what we’ve seen in this thesis. Research is needed
to estimate the effect this has on the crossover operators.

• layer-wise optimization: Assuming other hurdles can be cleared, the
most promising application of this operator could be greedy layer-wise
training (Bengio et al., 2007). As the name suggests this method entails
training a network in a layer by layer. Our crossover operator is only
applicable if the inputs are the same for our population, which fits quite
well with this method.
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