
UTRECHT UNIVERSITY

MASTER’S THESIS

Pareto Local Search For
Multi-Objective Land-Use Allocation

Author:
G. DE JONGE

Supervisor:
Dr. Ir. D. THIERENS

Second Examiner:
Dr. F. van der HILST

A Thesis Submitted In Fulfillment Of The
Requirements For The Degree Of Master Of Science

of the

Master’s Programme Computing Science
Department of Information and Computing Sciences

July 15, 2020

http://www.uu.nl
mailto:g.jonge@students.uu.nl
https://www.uu.nl/staff/dthierens
https://www.uu.nl/staff/fvanderhilst
https://www.uu.nl/masters/en/computing-science
https://www.uu.nl/en/organisation/department-of-information-and-computing-sciences

iii

UTRECHT UNIVERSITY

Abstract

Pareto Local Search For
Multi-Objective Land-Use Allocation

by G. DE JONGE

Multi-objective land-use allocation (MOLA) is a multi-combinatorial opti-
mization problem, in which land-use types are allocated to units of land to
optimize multiple objectives while satisfying imposed constraints. MOLA
techniques are among others used by researchers and land planners to assist
in planning sustainable land-use. As land-use change is currently an im-
portant human driver of environmental degradation, the demand for MOLA
techniques has increased. Main challenges in this field are the scalability of
the spatial optimisation process to enable the optimisation for larger areas
and multiple objectives and to develop realistic solutions. This research ex-
amines the potential of a local search based algorithm Pareto Local Search
(PLS) for MOLA to address these issues. In this research, a modular (iter-
ated) PLS algorithm for MOLA, named (I)PLS-MOLA, was designed and im-
plemented. Together with this algorithm, three search operators for MOLA,
two repair operators and a new data structure for storing MOLA solutions
were set up. The proposed algorithm, operators and data structure were ap-
plied to a case study that concerns land-use optimization in Brazil, which
could provide insight in how Brazil could plan its future land-use to meet
the future food, feed and biofuel demands in a sustainable manner. Even-
tually, the performance of the PLS-MOLA and IPLS-MOLA algorithm were
compared to the performance of NSGA-II, which is currently the most used
optimization technique for MOLA. The results show that PLS-MOLA and
IPLS-MOLA prove to be more scalable than NSGA-II, with a more efficient
and better converging optimization process. Especially with larger MOLA
problems, the solution quality of PLS is significantly higher than the solution
quality of NSGA-II. Combined with the fact that PLS can also search more
efficiently for solutions that can emerge from the current situation, assuring
more realistic solutions, the algorithm proves to be a promising technique for
future MOLA research.

HTTP://WWW.UU.NL

iv

Preface

Before you lies the bachelor thesis "Pareto Local Search For Multi-Objective
Land-Use Allocation". It has been written to fulfill the graduation require-
ments of the master’s degree in Computing Science at Utrecht University.
The thesis has been written in the period between November 2019 and July
2020.

The project has evolved from the demand of F. van der Hilst from the En-
ergy and Resources group for an efficient technique to optimize land-use al-
location in Brazil. The group has executed research in land-use change and
sustainability for several years, and recently became interested in applying
multi-objective optimization techniques. As evolutionary algorithms are cur-
rently the most applied technique in this field, Dr. Ir. D. Thierens was in-
volved. Eventually, this exploratory research project was set up to examine
the current techniques available and sort out which ones are most effective.
During this research, the PLS algorithm came into the picture as an interest-
ing and promising technique to optimize MOLA problems. Eventually, I am
happy to say that an algorithm has been designed, implemented and com-
pared that shows promising results for not only the Brazil case, but MOLA
problems in general.

I would like to thank Dr. Ir. D. Thierens for his guidance throughout the
project. Additionally, I would like to thank Dr. F. van der Hilst for her exper-
tise regarding land-use optimization in Brazil.

I hope you enjoy your reading.

Guus de Jonge

Utrecht, July 15, 2020

vi

Table of Contents

Abstract iii

Preface iv

Phase I

1 Introduction 2
1.1 Introduction . 2
1.2 Problem Description . 4
1.3 Research Questions . 5
1.4 Contribution & Relevance . 7
1.5 Research Outline . 8

2 Preliminaries 10

3 Multi-Objective Land-Use Allocation 12
3.1 Problem Context . 12
3.2 Problem Definition . 13
3.3 Problem Objectives . 14

3.3.1 Minimizing Development Costs 14
3.3.2 Maximizing Suitability 14
3.3.3 Maximizing Compactness 15
3.3.4 Maximizing Accessibility 16
3.3.5 Maximizing Compatibility 17

3.4 Optimization Approaches . 18
3.4.1 A Priori . 18
3.4.2 A Posteriori . 21

3.5 Problem Representations . 21
3.5.1 Grid Representation . 21
3.5.2 Quad-Tree Representation 22
3.5.3 Polygon Vector Representation 23
3.5.4 Patch Vector Representation 24
3.5.5 Multi-Dimensional Representation 25

3.6 Example Case Studies . 26
3.6.1 Overview Case Studies 26
3.6.2 Case 1: Jisperveld, The Netherlands 27
3.6.3 Case 2: Tongzhou New Town, China 29

4 Previous Research 36
4.1 Linear Programming . 36
4.2 Local Search Heuristics . 37

4.2.1 Simulated Annealing . 37
4.2.2 Pareto Simulated Annealing 39
4.2.3 Tabu Search . 41

4.3 Genetic Algorithms . 43

vii

4.3.1 Introduction to Genetic Algorithms 43
4.3.2 Genetic Algorithms and MOLA 44
4.3.3 Step 1: Representation 45
4.3.4 Step 2: Initialization . 46
4.3.5 Step 3: Selection . 48
4.3.6 Step 4: Crossover . 52
4.3.7 Step 5: Mutation . 58
4.3.8 Single-Objective GAs for MOLA 64
4.3.9 Multi-Objective GAs for MOLA 67

5 Pareto Local Search 72
5.1 Definition . 72
5.2 Variants . 74

5.2.1 Multi-Restart Pareto Local Search 74
5.2.2 Iterated Pareto Local Search 75
5.2.3 Genetic Pareto Local Search 76

5.3 Components . 77
5.3.1 Selection Procedures . 77
5.3.2 Acceptance Criteria . 78
5.3.3 Neighborhood Exploration 78

5.4 Anytime Behavior . 80

Phase II

6 Pareto Local Search for MOLA 84
6.1 Introduction . 84
6.2 Algorithm Setup . 84

6.2.1 Problem Specification 85
6.2.2 Problem Representation 86
6.2.3 Data Structures . 87

6.3 Algorithm Definitions . 89
6.3.1 Algorithm I: PLS-MOLA 89
6.3.2 Algorithm II: IPLS-MOLA 91

6.4 Selection Procedure . 93
6.5 Selection Operators . 94

6.5.1 Operator I: S-R . 94
6.5.2 Operator II: S-CD . 94

6.6 Neighborhood Exploration . 95
6.6.1 Strategy I: T-NE-BPI . 95
6.6.2 Strategy II: T-NE-FPI . 96

6.7 Search Procedure . 96
6.8 Search Operators . 97

6.8.1 Operator I: LS-KRCM 97
6.8.2 Operator II: LS-KRPM 98
6.8.3 Operator III: LS-KRBM 99

6.9 Reparation Procedure . 100
6.10 Repair Operators . 101

6.10.1 Repair Operator: LR-KCRM 101
6.10.2 Repair Operator: LR-KBRM 103

6.11 Acceptance Criteria . 105
6.11.1 Criterion I: AC-ND . 106
6.11.2 Criterion II: AC-NDS . 106
6.11.3 Criterion III: AC-CD . 106

viii

6.12 Updating Procedures . 107
6.12.1 Solution Updating . 107
6.12.2 Archive Updating . 108

6.13 Validating Procedure . 109
6.14 Perturbation Procedure . 110

7 Implementation 111
7.1 Setup . 111
7.2 Framework . 112

7.2.1 Problem Setup . 112
7.2.2 Solution Storage . 113
7.2.3 Other Features . 115

7.3 Algorithms . 115
7.3.1 PLS-MOLA . 115
7.3.2 IPLS-MOLA . 117
7.3.3 NSGA-II-MOLA . 117

7.4 Parameters . 119
7.5 Concurrency . 122

8 Experimentation 124
8.1 Experimental Setup . 124
8.2 Problem Case: Brazil . 124

8.2.1 Problem Context . 124
8.2.2 Problem Definition . 125
8.2.3 Objectives . 128

8.2.3.1 Compactness 129
8.2.3.2 Potential Yield 129
8.2.3.3 Carbon Stock 131

8.2.4 Constraints . 132
8.2.4.1 Allocation Ranges 132

8.2.5 Subcases . 133
8.2.5.1 Centre West . 133
8.2.5.2 Sul Goiano . 135

8.2.6 Resources . 136
8.3 Test Cases . 136

8.3.1 Test Setup . 136
8.3.2 Test Case I: Allocation Ranges 139
8.3.3 Test Case II: Selection Operators 139
8.3.4 Test Case III: Search Operators 140
8.3.5 Test Case IV: Reparation Operators 142
8.3.6 Test Case V: Acceptance Criteria 144
8.3.7 Test Case VI: Objectives 145
8.3.8 Test Case VII: IPLS Optimization 146
8.3.9 Test Case VIII: NSGA-II Comparison 148

8.4 Materials . 149

9 Results & Discussion 151
9.1 General . 151
9.2 RQ I: PLS Optimization . 151

9.2.1 Data Structure . 151
9.2.2 Allocation Range Size 152
9.2.3 Selection Strategy . 153
9.2.4 Exploration Strategy . 154

ix

9.2.5 Reparation Strategy . 158
9.2.6 Acceptance Criteria . 163

9.3 RQ II: PLS Objective Scalability 166
9.4 RQ III: IPLS Optimization . 169
9.5 RQ IV: NSGA-II Comparison 178

10 Conclusions 188

11 Recommendations 196

Bibliography 201

A Metadata Initialization 205
A.1 MD-I . 205
A.2 MD-III . 205

B Incremental Objective Functions 207
B.1 Development Costs . 207
B.2 Compactness . 208

C Incremental Constraint Validation 209
C.1 Allocation Ranges . 209

D Optimized CD Calculation 210
D.1 CD-PLS . 210

E Implementation Structures 211
E.1 Other Framework Structures 211
E.2 NSGA-II Framework Extensions 213

F Implementation Statistics 214
F.1 Framework and (I)PLS-MOLA 214
F.2 NSGA-II-MOLA . 215

G Run Results 216
G.1 Run 1 - 6 . 216
G.2 Run 7 - 9 . 216
G.3 Run 10 - 12 . 216
G.4 Run 13 - 19 . 217
G.5 Run 20 - 26 . 217
G.6 Run 27 - 34 . 217
G.7 Run 35 - 41 . 217
G.8 Run 42 - 44 . 218
G.9 Run 45 - 47 . 218
G.10 Run 48 - 53 . 218
G.11 Run 54 - 55 . 219
G.12 Run 56 - 57 . 219
G.13 Run 58 - 59 . 219
G.14 Run 60 - 66 . 220
G.15 Run 67 - 68 . 220
G.16 Run 69 - 70 . 220

x

H Performance Results 221
H.1 PLS . 221
H.2 IPLS . 222
H.3 NSGA-II . 223

xi

List of Tables

3.1 Specifications of several MOLA case studies. 26
3.2 Cost values Cijk of Objective 1 (Nature Value) and Objective 2

(Recreation Value) (Stewart, Janssen, and Herwijnen, 2004) . . 28
3.3 Transition Costs Between Land-Use Types. Forbidden transi-

tions are noted with ’-’ (Aerts, Herwijnen, and Stewart, 2003) . 28
3.4 Constraint Vaues per Land-Use Type (Stewart, Janssen, and

Herwijnen, 2004) . 29
3.5 The GDP Ratio Per Land-Use Type (Cao, Huang, Wang, et al.,

2012) . 32
3.6 Influence Index for Different Roads (Cao, Huang, Wang, et al.,

2012) . 34
3.7 Compatibility Values in Tongzhou (Cao, Huang, Wang, et al.,

2012) . 35

7.1 Problem Parameters . 120
7.2 PLS-MOLA Parameters . 120
7.3 IPLS-MOLA Parameters . 121
7.4 NSGA-II-MOLA Parameters . 121
7.5 Other Parameters . 123

8.1 Land-Use Types Brazil . 126
8.2 Land-Use Types Brazil with No-Go Areas 127
8.3 Area in 2012 and Expected Area in 2030 132
8.4 Example Allocation Ranges in Number of Cells when all Range

Sizes set to 10 . 133
8.5 Allocation Ranges with Range Size 10 for Microregion 4 134
8.6 Allocation Ranges with Range Size 10 for Mesoregion Sul Goiano135
8.7 Problem Parameter Setup . 137
8.8 PLS-MOLA Parameter Setup 138
8.9 Other Parameter Setup . 138
8.10 PLS-MOLA Runs with Range Size 0 - 100 139
8.11 PLS-MOLA Runs with Different Selection Operators (Time) . 140
8.12 PLS-MOLA Runs with Different Selection Operators (Iterations) 140
8.13 PLS-MOLA Runs with Different Search Operators (Time) . . . 141
8.14 PLS-MOLA Runs with Different Search Operators (Iterations) 141
8.15 PLS-MOLA Runs with Search KT 0 - 8 142
8.16 PLS-MOLA Runs with Exploration N 10 - 1000 142
8.17 PLS-MOLA Runs with different Repair Operators (Time) . . . 143
8.18 PLS-MOLA Runs with different Repair Operators (Iterations) 143
8.19 PLS-MOLA Runs with Repair KC 1 - 100 143
8.20 PLS-MOLA Runs with and without Repair BT 144
8.21 PLS-MOLA Runs with and without Allow Repair (Time) . . . 144
8.22 PLS-MOLA Runs with and without NDS Criterion 145
8.23 PLS-MOLA Runs with Max. Archive Size 5 - 100 145
8.24 PLS-MOLA Runs with Different Objectives 146

xii

8.25 PLS-MOLA Runs with Different Objectives 146
8.26 PLS-MOLA Parameters Settings 147
8.27 IPLS-MOLA Runs with Perturbation Size 10000 - 1000000 . . . 147
8.28 IPLS-MOLA Parameters Settings 148
8.29 NSGA-II-MOLA Parameters Settings 149
8.30 Hardware Specifications . 150
8.31 Software Specifications . 150

9.1 Selected PLS-MOLA Parameters Settings 170
9.2 NSGA-II-MOLA Parameters Settings 179

F.1 Implementation Statistics MOLA Framework, PLS-MOLA and
IPLS-MOLA . 214

F.2 Implementation Statistics MOLA Framework Extensions and
NSGA-II-MOLA . 215

G.1 Running Times (ms) of Run 1 - 6 216
G.2 Hypervolumes (×1014) of Run 7 - 9 216
G.3 Running Times (ms) of Run 10 - 12 216
G.4 Hypervolumes (×1014) of Run 13 - 19 217
G.5 Running Times (ms) of Run 20 - 26 217
G.6 Hypervolumes (×1014) of Run 27 - 34 217
G.7 Hypervolumes (×1014) of Run 35 - 41 217
G.8 Hypervolumes (×1014) of Run 42 - 44 218
G.9 Running Times (ms) of Run 45 - 47 218
G.10 Hypervolumes (×1014) of Run 48 - 53 218
G.11 Running Times (ms) of Run 48 - 53 218
G.12 Hypervolumes (×1014) of Run 54 - 55 219
G.13 Hypervolumes (×1014) of Run 56 - 57 219
G.14 Hypervolumes (×1014) of Run 56 - 57 219
G.15 Archive Size of Run 58 - 59 . 219
G.16 Hypervolumes (×1014) of Run 60 - 66 220
G.17 Running Times (ms) of Run 67 - 68 220
G.18 Archive Size of Run 67 - 68 . 220
G.19 Hypervolumes (×1014) of Run 69 - 70 220

H.1 Hypervolumes (×1014) of PLS-MOLA for Brazil 221
H.2 Results of PLS-MOLA for Brazil 221
H.3 Hypervolumes (×1013) of PLS-MOLA for Centre West 221
H.4 Results of PLS-MOLA for Centre West 222
H.5 Hypervolumes (×1011) of PLS-MOLA for Sul Goiano 222
H.6 Results of PLS-MOLA for Sul Goiano 222
H.7 Hypervolumes (×1011) of IPLS-MOLA for Sul Goiano with Per-

turbation Size = 25 . 222
H.8 Hypervolumes (×1011) of IPLS-MOLA for Sul Goiano with Per-

turbation Size = 50 . 223
H.9 Hypervolumes (×1011) of IPLS-MOLA for Sul Goiano with Per-

turbation Size = 75 . 223
H.10 Results of IPLS-MOLA for Sul Goiano with Perturbation Size

= 25 . 223
H.11 Hypervolumes (×1014) of NSGA-II-MOLA for Brazil 223
H.12 Results of NSGA-II-MOLA for Brazil 224
H.13 Hypervolumes (×1013) of NSGA-II-MOLA for Centre West . . 224

xiii

H.14 Results of NSGA-II-MOLA for Centre West 224
H.15 Hypervolumes (×1011) of NSGA-II-MOLA for Sul Goiano . . 224
H.16 Results of NSGA-II-MOLA for Sul Goiano 224
H.17 Hypervolumes (×1011) of NSGA-II-MOLA for Sul Goiano with

Initial Map in Initial Population 225
H.18 Results of NSGA-II-MOLA for Sul Goiano with Initial Map in

Initial Population . 225

xiv

List of Figures

3.1 MOLA Domains On Spatio-Temporal Land-Use Planning Scales
(Matthews, Craw, Elder, et al., 2000) 12

3.2 Grid Representation (Matthews, Craw, Elder, et al., 2000) . . . 22
3.3 Quad-Tree Representation (Matthews, Craw, Elder, et al., 2000) 23
3.4 Polygon-Level Vector Representation (Matthews, Craw, Elder,

et al., 2000) . 24
3.5 Patch-Level Vector Representation (Strauch, Cord, Pätzold, et

al., 2019) . 25
3.6 Model Of A 3-Dimensional Landscape (Datta, Deb, Fonseca,

et al., 2007) . 26
3.7 Jisperveld (Aerts, Van Herwijnen, Janssen, et al., 2005) 27
3.8 Map With The Current Fixed Types (Aerts, Herwijnen, and

Stewart, 2003) . 29
3.9 The Tongzhou New Town District (Cao and Ye, 2013) 30
3.10 Current Tongzhou New Town Land-Use Map (Cell Size 100m

x 100m) (Cao, Batty, Huang, et al., 2011) 31
3.11 Geology Suitability Values Per Region (Cao, Huang, Wang, et

al., 2012) . 32
3.12 Ecological Suitability Values Per Region (Cao, Huang, Wang,

et al., 2012) . 33
3.13 Roads Network of Tongzhou (Cao, Huang, Wang, et al., 2012) 34

4.1 Flow Diagram of a Simulated Annealing Algorithm for MOLA
(Aerts, Herwijnen, and Stewart, 2003) 38

4.2 Flow Diagram of a Tabu Search Algorithm for MOLA (Sharma,
2005) . 42

4.3 Flowchart of Genetic Algorithm (Heydari and Yousefli, 2017) . 44
4.4 Selection in NSGA-II(Deb, Pratap, Agarwal, et al., 2002) 49
4.5 Crowding Distance of a Solution (Cao, Batty, Huang, et al., 2011) 51
4.6 The TDX Operator (Li and Parrott, 2016) 53
4.7 Six Problem Independent Spatial Crossover Operators (Schwaab,

Deb, Goodman, et al., 2018) . 54
4.8 The BCX-II Operator (Song and Chen, 2018) 55
4.9 The BCX-III Operator (Cao, Huang, Wang, et al., 2012) 56
4.10 The BCX-IV Operator (Li and Parrott, 2016) 57
4.11 The SPX Operator (Cao and Ye, 2013) 57
4.12 The RCSM, BRCSM, RBM and RCLRM Operators (Schwaab,

Deb, Goodman, et al., 2018) . 59
4.13 Example Patch Window (Cao, Huang, Wang, et al., 2012) . . . 61
4.14 The RPM Operator (Cao, Huang, Wang, et al., 2012) 61
4.15 The RPSM Operator (Cao, Batty, Huang, et al., 2011) 62
4.16 The RCRM and BCRM Operators (Schwaab, Deb, Goodman,

et al., 2018) . 62

xv

4.17 The original map (left), result of optimization with SA (centre)
and result of optimization with GA (right) (Aerts, Van Herwij-
nen, Janssen, et al., 2005) . 65

4.18 Comparison between GGA and CGPGA (Cao and Ye, 2013) . 66
4.19 Comparison between GA and SA (Li and Parrott, 2016) 66
4.20 NSGA-II-LUM using TDX, RBCM and BCRM (left) and BCX,

RBCM and BCRM (right) (Datta, Deb, Fonseca, et al., 2007) . . 69
4.21 OFV Values of NSGA-II and KI-NSGA-II (Song and Chen, 2018) 70
4.22 Computational Time of NSGA-II and KI-NSGA-II (Song and

Chen, 2018) . 71

5.1 The OHI is the total area (marked) between a solution its clos-
est neighbors (Dubois-Lacoste, López-Ibáñez, and Stützle, 2015) 78

5.2 Example of an algorithm with good anytime behavior (1) and
bad anytime behavior (2) (Dubois-Lacoste, López-Ibáñez, and
Stützle, 2015) . 80

6.1 16x16 Grid Representation (Matthews, Craw, Elder, et al., 2000) 87

7.1 UML Diagram: Problem Structure 112
7.2 UML Diagram: Solution Structure 114
7.3 UML Diagram: The PLS-MOLA Algorithm 116
7.4 UML Diagram: The PLS Algorithm 117
7.5 UML Diagram: The PLS Algorithm 118

8.1 Initial Map of Brazil . 126
8.2 Initial Map of Brazil with No-Go Areas 127
8.3 Potential Yield Map of Crops in Brazil 130
8.4 Initial Carbon Stock Map of Brazil 131
8.5 Centre West of Brazil . 134
8.6 Mesoregion Sul Goiano of Brazil 135

9.1 Range Size versus Average Running Time for PLS-MOLA (1000
Iterations, N = 5) . 153

9.2 Average Hypervolume per Selection Operator(s) for PLS-MOLA
(5 Min, N = 5) . 154

9.3 Average Hypervolume per Search Operator(s) for PLS-MOLA
(5 Min, N = 5) . 155

9.4 KT versus Average Hypervolume for PLS-MOLA (5 Min, N = 5) 157
9.5 Exploration N versus Average Hypervolume for PLS-MOLA

(5 Min, N = 5) . 158
9.6 Average Hypervolume per Repair Operator(s) for PLS-MOLA

(5 Min, N = 5) . 159
9.7 Reparation KC versus Average Hypervolume of Repaired Ini-

tial Solution for PLS-MOLA (N = 5) 160
9.8 Reparation KC versus Average Reparation Time of the Initial

Solution for PLS-MOLA (N = 5) 161
9.9 Average Hypervolume per BT Setting for PLS-MOLA (5 Min,

N = 5) . 162
9.10 Average Hypervolume per AllowRepair (AR) Setting for PLS-

MOLA (5 Min, N = 5) . 163
9.11 Average Hypervolume per NDS Setting for PLS-MOLA (5 Min,

N = 5) . 164

xvi

9.12 Average Number of Solutions per NDS Setting for PLS-MOLA
(5 Min, N = 5) . 165

9.13 Maximum Archive Size versus Average Hypervolume for PLS-
MOLA (5 Min, N = 5) . 166

9.14 Average Archive Size per Objective(s) Optimized for PLS-MOLA
(1000 Iterations, N = 5) . 167

9.15 Average Hypervolume Comp. & Yield per Objectives Opti-
mized for PLS-MOLA (5 Min, N = 5) 168

9.16 Average Running Time per Objective(s) Optimized for PLS-
MOLA (1000 Iterations, N = 5) 169

9.17 Average Hypervolume versus Running Time for PLS-MOLA
for Brazil (n = 5) . 171

9.18 Brazil with PLS-MOLA . 172
9.19 Average Hypervolume versus Running Time for PLS-MOLA

for Centre West (N = 5) . 173
9.20 Centre West with PLS-MOLA 174
9.21 Average Hypervolume versus Running Time for PLS-MOLA

for Sol Goiano (N = 5) . 175
9.22 Sul Goiano with PLS-MOLA . 175
9.23 Average Hypervolume versus Perturbation Size for IPLS-MOLA

for Sul Goiano (N = 5) . 176
9.24 Final Archive of PLS-MOLA and IPLS-MOLA for Sul Goiano 177
9.25 Sul Goiano with IPLS-MOLA 178
9.26 Convergence of PLS-MOLA and NSGA-II-MOLA for Brazil . 180
9.27 Brazil with NSGA-II-MOLA . 181
9.28 Convergence of PLS-MOLA and NSGA-II-MOLA for Centre

West . 183
9.29 Centre West with NSGA-II-MOLA 184
9.30 Convergence of IPLS-MOLA and NSGA-II-MOLA for Sul Goiano185
9.31 Hypervolume versus Running Time for NSGA-II-MOLA with

and without the Initial Map of Sol Goiano in the Initial Popu-
lation . 186

9.32 Sul Goiano with NSGA-II-MOLA 187

E.1 UML Class: jMetal.NET . 211
E.2 UML Class: IOHandler . 211
E.3 UML Class: SolutionExtensions 212
E.4 UML Class: Logger . 212
E.5 UML Class: GeneralUtils . 212
E.6 UML CLass: RandomUtils . 212
E.7 UML Class: Validator . 213
E.8 UML Class: IOHandlerExtensions 213
E.9 UML Class: LoggerExtensions 213
E.10 UML Class: Validator . 213

H.1 Convergence of IPLS-MOLA and NSGA-II-MOLA with the Ini-
tial Map of Sul Goiano in the Initial Population 225

xvii

List of Abbreviations

AC Acceptance Criterion / Angle Crossover
ACD Average Crowding Distance
ARI Average Recurrence Interval
ASC Action Script Communication
BC Block Crossover
BCRM Biased Cell Repair Mutation
BCX Boundary Cell Crossover
BPI Best Pareto Improvement
BRCM Biased Random Cell Mutation
BRCSM Biased Random Cell Swap Mutation
BUC Block Uniform Crossover
CD Crowding Distance
CGPGA Coarse-Grained Parallel Genetic Algorithm
COP Combinatorial Optimization Problem
DM Decision Maker
EA Evolutionary Algorithm
FPI First Pareto Improvement
GA Genetic Algorithm
GHG Greenhouse Gas
GP Goal Programming
GPLS Genetic Pareto Local Search
HBC Horizontal Band Crossover
HC Horizontal Crossover
IDE Integrated Development Environment
IO Input - Output
IPLS Iterated Pareto Local Search
KBRM K-Tournament Boundary Cell Repair Mutation
KCRM K-Tournament Cell Repair Mutation
KRBM K-Tournament Random Boundary Cell Mutation
KI Knowledge Improved
KRPM K-Tournament Random Patch Mutation
KRCM K-Tournament Random Cell Mutation
LP Linear Programming
LR Local Repair
LS Local Search
LUM Land-Use Management
MAGNET Modular Applied General Equilibrium Tool
MCDA Multi-Criteria Decision Analysis
MD Metadata
MSIS Mutation for Steering Infeasible Solution
MOCO Multi-Objective Combinatorial Optimization
MOGA Multi-Objective Genetic Algorithm
MOLA Multi-Objective Land-Use Allocation
MOLU Multi-Objective Optimization of Land-Use
MOPSO Multi-Objective Pareto Swarm Optimization

xviii

MPLS Multi-Restart Pareto Local Search
MR Macroregion
NE Neighborhood Exploration
NIMBY Not In My Back Yard
NPI Neutral Pareto Improvement
NSGA-II Non-Dominated Sorting Genetic Algorithm II
OHI Optimistic Hypervolume Improvement
PAES Pareto Archive Evolutionary Strategies
PBIO Problem-Based Initialization Operator
PC Personal Computer
PLS Pareto Local Search
POC Proof Of Concept
PSA Pareto Simulated Annealing
RAM Random Access Memory
RBCM Random Boundary Cell Mutation
RBCRM Random Boundary Cell Repair Mutation
RBIM Random Block Initialization Mutation
RBM Random Block Mutation
RCLM Random Cluster Mutation
RCLRM Random Cluster Removal Mutation
RCM Random Cell Mutation
RCRM Random Cell Repair Mutation
RCSM Random Cell Swap Mutation
RDCO Regional District of Central Okanagan
RPM Random Patch Mutation
RPRM Random Patch Repair Mutation
RPSM Random Patch Swap Mutation
RQ Research Question
SA Simulated Annealing
SDSS Spatial Decision Support Systems
SOGA Single-Objective Genetic Algorithms
SOP Single-Objective Optimization Problem
SPM Single-Point Mutation
SPX Single-Point Crossover
TDX Two-Dimensional Crossover
TEL Total Edge Length
TS Tabu Search
UC Uniform Crossover
UML Unified Modeling Language
VBC Vertical Band Crossover
VC Vertical Crossover
XBC Boundary Cell Crossover
XTD Two-Dimensional Crossover

1

Phase I
Exploration and Preparation

2

Chapter 1

Introduction

1.1 Introduction

Multi-objective land-use allocation (MOLA) is an optimization problem in
which land-use types are allocated to land units (cells), subjecting to a set of
objectives and constraints. (Song and Chen, 2018). MOLA can be found in
many domains, such as urban, land-use and local authority planning (Huang,
Liu, Li, et al., 2013). In each domain, the so-called planner is challenged to
come up with an optimal type allocation for the involved land units. These
land units can be variables in a vector or cells in a grid, managed by a ge-
ographic information system (GIS). MOLA is a combinatorial optimization
problem (COP), of which the solution space can be significantly large and
has been described as an NP-hard problem. As often many stakeholders are
involved, land-use allocation can be a complicated process in which formu-
lating the problem and ending up with a final plan that satisfies all involved
parties can be a difficult task (Schwaab, Deb, Goodman, et al., 2018). Several
often-used objectives are the maximization of the compactness, the suitabil-
ity and the economic profitability. (Masoomi, Mesgari, and Hamrah, 2013).
As these objectives are often contradictory, only rarely one solution is found
that is optimal to each objective. Therefore, the ’solution’ is often a set of
solutions known as the Pareto optimal set (Pareto front). In order to assist
decision makers in a MOLA case, several techniques have been developed
to come up with scenarios that approximate this Pareto front. These tools
are often called Spatial Decision Support Systems (SDSS), and are build upon
techniques from Geographical Information Science (GIS) and Multi-Criteria
Decision Analysis (MCDA).

Over the previous decades, multiple MCDA techniques have been proposed
for SDSS’s to approximate the requested Pareto front (Huang, Liu, Li, et al.,
2013). Earlier attempts tried to rephrase MOLA into a single-objective opti-
mization problem (SOP). This was done by for instance addressing weights to
the objectives and summing them up. By repeatedly altering the weights and
optimizing the resulting problem with single-objective optimization techniques,
the Pareto front could be approximated. At first, linear programming (LP)
was applied to find solutions for MOLA (Aerts, Eisinger, Heuvelink, et al.,
2003). However, there were two distinct limitations to this approach: one is
that it can not completely take into account spatial objectives whose values
vary non-linearly with cells’ attribute values; the other is that it is helpless in
handling regions with more than 50 x 50 cells because of the numerous vari-
ables and constraints that emerge (Li and Parrott, 2016). Other techniques
implement single-objective search heuristics together with a weighted sum
or goal programming approach. This includes the implementation of heuris-
tics such as simulated annealing (SA), tabu search (TS) and single-objective

1.1. Introduction 3

genetic algorithms (SOGAs) (Aerts, Herwijnen, and Stewart, 2003) (Sharma,
2005) (Cao and Ye, 2013). SA en TS are probabilistic techniques that apply
local search to approximate the global optimum, whereas SOGAs tend to
evolve a pool of solutions to an optimum using an evolution based approach.
Although these approaches scale significantly better than LP, they still suffer
from several drawbacks. These drawbacks are mainly the result of applying
an a priori approach to a multi-objective problem. First of all, the result-
ing solutions can be unevenly distributed and secondly, some sections of the
Pareto front (especially the concave part) might be approximated badly. Also,
the single-objective problem (SOP) resulting from the a priori approach, may
need to be solved repeatedly to eventually approximate the complete front.
Although these drawbacks can partly be overcome by using strategies that
steer the convergence to less explored areas, the resulting scalability is still
too weak for interactive SDSS systems (Cao and Ye, 2013).

In order to overcome these issues, multi-objective search heuristics have been
applied to MOLA which are able to approximate the complete Pareto front
in one execution. Various multi-objective optimization algorithms have been
proposed, such as Pareto Archive Evolutionary Strategies (PAES), Multi-Objective
Particle Swarm Optimization (MOPSO) and Multi-Objective Genetic Algo-
rithms (MOGAs) (Huang, Liu, Li, et al., 2013). If applied well, these algo-
rithms are able to approximate the Pareto front of multi-objective optimiza-
tion problems (MOPs) with complicated factors, such as a large number of
candidate solutions, non-linearity and complicated objectives. Among these
attempts, evolutionary algorithms (EAs) have been applied to MOLA most
often. One of the first applications of MOGAs to land-use planning was done
in (Matthews, Craw, Elder, et al., 2000). Afterwards, many others followed.
Efforts to boost the performance of genetic algorithms for MOLA have re-
sulted in a variety of challenges, such as the optimization of several non-
standard parameters. (Schwaab, Deb, Goodman, et al., 2018). Examples of
these, are the population size, crossover and mutation probabilities and stop-
ping criteria. However, most challenging is to adapt a GA to the spatial na-
ture of MOLA, asking for crossover and mutation operators that are able to
efficiently exchange genes. Also, setting up an initial population that allows
for an efficient convergence to the Pareto front can be a difficult task. The
MOGA that has been applied to MOLA most often, is the Non-Dominated
Sorting Genetic Algorithm (NSGA-II). This algorithm implements a domi-
nation based selection mechanism that has proven to be efficient in many
multi-objective combinatorial optimization problems (Datta, Deb, Fonseca,
et al., 2007).

In this research, the use of a multi-objective local search (MOLS) heuristic for
MOLA will be examined. The possibilities of MOLS for MOLA have been re-
search earlier, for instance by using PSA in (Duh and Brown, 2007). However,
the amount of research to properly adopt these search heuristics to MOLA in
an efficient manner, is still relatively low. This research will further elabo-
rate on the possibilities of MOLS by exploring in more depth how a MOLS
algorithm can be applied to MOLA efficiently. The most straightforward ap-
proach of multi-objective local search, is the Pareto Local Search (PLS). PLS
has proven to be an efficient method for multi-objective combinatorial opti-
mization (MOCO) (Dubois-Lacoste, López-Ibáñez, and Stützle, 2015). It was

4 Chapter 1. Introduction

first proposed and experimentally tested in (Paquete, Chiarandini, and Stüt-
zle, 2004) for the multi-objective traveling salesman problem. PLS extends
the often-used single-objective hill-climbing algorithm, by turning it into a
multi-objective optimization algorithm (Cabrera-Guerrero, Mason, Raith, et
al., 2018). In PLS, the set of the most optimal solutions found are stored in an
archive. Repeatedly, the neighborhood of one of these solutions is explored,
after which the archive is updated. In order to globally explore the search
space, the algorithm can be extended to an Iterated PLS (IPLS) algorithm.
This algorithm iteratively calls PLS, using a perturbed solution from a pre-
vious run as the input. By perturbing these solutions, the algorithm aims to
escape local optima. The PLS algorithm has a completely different approach
than the previously discussed techniques, which could bring several inter-
esting advantages. The PLS and IPLS algorithm move through the solution
space in a more controllable manner (smaller steps), which can decrease the
number of constraint violations. Besides, the PLS algorithm is able to more
efficiently explore solutions similar to the current situations, which is some-
times desired by stakeholders. More details on the challenges that current
algorithms are facing, and the advantages that PLS could bring will be dis-
cussed in the Problem Description of Chapter 1.2. As PLS has never been
applied to MOLA before, this research will first examine how PLS and IPLS
can be applied to MOLA efficiently. In order to do so, different strategies and
operators being used in the algorithm will have to be optimized. These com-
ponents are for instance responsible for the exploration of a neighborhood
or reparation of an invalid solution. All PLS components that are being ex-
amined to explore the potential of PLS for MOLA are stated in the Research
Questions of Chapter 1.3. Each question is accompanied with a small expla-
nation of why it is relevant to exploring the possibilities of PLS in the MOLA
domain. Eventually, the algorithm will be compared with the currently most
used optimization technique for MOLA, namely NSGA-II. The results will be
analyzed in order to bring a clearer view on the actual effectiveness of PLS for
MOLA, pointing out whether PLS could be a promising technique for current
applications and future MOLA research.

1.2 Problem Description

The aim of optimization techniques in the domain of MOLA, is to enable
the realization of functional SDSS’s that can add value to the decision mak-
ing process. In order to do so, MOLA techniques are needed that provide
both a high scalability and approximation quality (Li and Parrott, 2016). The
approximation quality concerns how close the eventual Pareto front resem-
bles the optimal Pareto front. In order to add value to the decision-making
process, a minimum approximation quality will need to be assured. The scal-
ability concerns the running time of the algorithm for a given problem size to
obtain a certain approximation quality. Generally, it is undesirable to let the
running time scale exponentially with the problem size. Currently, most so-
lutions are especially experiencing difficulties with respect to the scalability.
First of all, the linear programming (LP) algorithms, which already require
extremely long running times with normal sized MOLA problems (Aerts,
Eisinger, Heuvelink, et al., 2003). Secondly, the single-objective algorithms
combined with a priori approaches, such a SA, TS and several GAs, which
need multiple runs to eventually deliver the Pareto front (Duh and Brown,

1.3. Research Questions 5

2007) (Sharma, 2005) (Cao, Huang, Wang, et al., 2012). Finally, the multi-
objective GAs for MOLA, among which the NSGA-II algorithm (Deb, Pratap,
Agarwal, et al., 2002) is the most popular. These bring the challenge of de-
signing qualitative operators that allows for an efficient convergence towards
the Pareto front. Unfortunately, current NSGA-II approaches still result in rel-
atively high running times. Besides enabling functional SDSS’s, current tech-
niques also bring the disadvantage of always trying to explore the complete
search space. In case a stakeholders is interested in how the current situa-
tion could or should emerge, only solutions close to the current situation will
need to be examined. This can be enforced with objectives and constraints,
but as the performance generally drops as the number of objectives increases,
this is not desirable.

As discussed before, the PLS and IPLS algorithm are deemed interesting for
solving MOLA cases due to their completely different optimization approach.
Namely, by only taking small steps in the search space, the algorithms are
able to alter solutions in a much more controlled manner. In this way, except
for when perturbing a solution, the number (and size) of constraint violations
can be kept relatively low. For MOGAs such as NSGA-II, it is more difficult
to move through the search space without without causing violations. This
would require crossover operators that are able to effectively exchange genes
while respecting the constraints, which are difficult to set up for large sized
problems. The disadvantage of more constraint violations is that it requires
more ’repair’ operations to fix these invalid solutions, which can be costly. As
so, IPLS is expected to be more scalable than NSGA-II and optimize MOLA
problems more efficiently. Besides the improved scalability, PLS is also ex-
pected to be more effective in generating solutions comparable to the current
situation. As it is a local search algorithm, the PLS algorithm first explores the
solution space close to the initial solution and converges to one or more local
optima nearby. This obviates the need of extra objectives or constraints to en-
force similarities with the current solution, increasing the efficiency. Due to
these two expected advantages, PLS could be an interesting option for MOLA
optimization. The potential of the PLS and IPLS algorithm will be further ex-
plored in this research, to bring insight in whether and to what extent PLS
could indeed bring answers to the challenges currently being faced within
the MOLA domain.

1.3 Research Questions

The overarching goal of this exploratory research project is to explore the po-
tential of PLS in the MOLA domain. The ’potential’ of PLS is indicated by
the efficiency of PLS compared to currently used MOLA techniques. The ’ef-
ficiency’ is hereby measured in terms of the hypervolume obtained after a
certain running time. In case the efficiency of an algorithm is higher than the
state-of-the-art algorithms, it will be considered as ’efficient’. In this research,
the overarching research question will be whether the PLS algorithm is an
efficient algorithm for solving MOLA problems.

Is PLS an efficient algorithm for MOLA?

In order to answer this overarching question, four research questions have
been formulated. The four research questions are explained in more detail

6 Chapter 1. Introduction

below. The first question focuses on how PLS can be applied to MOLA most
efficiently. To do so, six subquestions have been formulated to examine the
efficiency of different strategies and operators. The second question exam-
ines the scalability in terms of the number of objectives to view the impact of
adding more objectives on the efficiency. Next, the third question concerns
how PLS can most efficiently be transformed to a global IPLS algorithm. Fi-
nally, the fourth question asks for a comparison between the efficiency of
IPLS and NSGA-II, which is currently the most applied MOLA technique.
Together, these research questions are able to provide an answer on the over-
arching question of whether PLS is an efficient algorithm for MOLA.

1. How can PLS most efficiently be applied to MOLA?
The first step in examining whether PLS is an efficient algorithm, is to optimize
PLS for MOLA problems. The overall outline of the PLS algorithm will be
based upon the setup of Paquete, Chiarandini, and Stützle, 2004. However,
the design of its data structures, strategies, operators and criteria being used,
will be optimized for MOLA problems specifically.

(a) What is an efficient data structure for storing MOLA solutions?
The most straightforward manner to store a MOLA solution is by naively
storing the land-use type of each cell of the map. As many new solutions
are being created (and copied) in the optimization process of PLS, this
could result in large memory demands. This subquestion examines what
data structure(s) could be used to store solutions more efficiently and
reduce those memory costs.

(b) What is the influence of the allocation range size on the running
time?
The most common MOLA constraint, states to how many cells each land-
use type should be allocated (Chapter 3.2). Often, this is done using a
lower and upper bound. The larger the size of this range, the less viola-
tions (and so ’reparations’) are expected to occur, which could decrease
the time to perform an equal number of iterations. However, this also de-
creases the control of the user. This subquestion examines the relationship
between range size and running time.

(c) What is an efficient strategy for selecting the next solution to be
explored?
In the standard PLS algorithm, the solution of which the neighborhood
will be explored next, is chosen at random among the unexplored ones.
This subquestion will explore whether the usage of an alternative selec-
tion strategy that selects the least crowded solution (Chapter 5.3.1, 6.4
and 6.5), could improve upon the efficiency of PLS for MOLA.

(d) What is an efficient strategy for exploring the neighborhood of a
solution?
A variety of operators and procedures can be used to explore a solution
its neighborhood. Several of these will be discussed in Chapter 5.3.3 and
6.6. This subquestion will address which operators and procedures result
in an efficient search (either separately or combined) when implemented
in PLS for MOLA.

(e) What is an efficient strategy for repairing non-feasible solutions?
Different reparation operators and procedures can be used to repair so-
lutions violating the problem constraints. Several will be discussed in

1.4. Contribution & Relevance 7

Chapter 6.9 and 6.10. This subquestion will address which operators and
procedures will result in an efficient reparation of solutions.

(f) What are efficient archive acceptance criteria for non-dominated
solutions?
The standard PLS algorithm adds a solution to archive in case it is not
dominated by any solution currently in the archive. However, different
criteria have been introduced to manage the quality and size of the archive
as will be discussed in Chapter 5.3.2 and 6.11. This subquestion will
examine the effects of different criteria on the efficiency of PLS for MOLA.

2. How does the efficiency of PLS for MOLA scale with the number of
objectives?
The PLS algorithm is able to solve multiple objectives at once. However, the
more objectives are being optimized, the lower the optimization efficiency per
objective (individually) generally becomes. It might therefore be preferable to,
for instance, combine multiple objectives into one. This question will tend to
examine the impact of the number of objectives on the optimization efficiency.

3. How can PLS most efficiently be processed into a global IPLS algo-
rithm for MOLA?
Different variants of PLS have been proposed to improve upon the overall per-
formance. One of these variants is Iterated PLS, and will be discussed in more
detail in Chapter 5.2.2. This question will comprise how the PLS algorithm
can efficiently be processed into an IPLS algorithm for MOLA by looking at
aspects such as the convergence speed of PLS and the perturbation size.

4. How does IPLS compare to NSGA-II in terms of efficiency when ap-
plied to MOLA?
As the NSGA-II algorithm is currently the most applied and researched tech-
nique for optimizing MOLA problems, IPLS will be compared to NSGA-II.
The NSGA-II algorithm will be implemented according to the previous re-
search discussed in Chapter 4.3.2. The algorithm will hereby be optimized
by incorporating the neighborhood exploration and reparation operators that
have proven to be most efficient in Research Question 1D and 1E.

1.4 Contribution & Relevance

MOLA is currently a hot topic, as the search towards an algorithm that en-
ables a high-quality interactive SDSS is in full swing (Schwaab, Deb, Good-
man, et al., 2018). Since the current techniques are not able to live up to the
demands, existing algorithms for MOLA are continuously being improved
while new ones are being introduced (Li and Parrott, 2016). The currently
most popular technique, namely NSGA-II, especially performs poorly in terms
of scalability. This is partly caused by the fact that designing efficient crossover
operators that respect the constraints tends to be a difficult task. As discussed
before in Chapter 1.2, designing efficient search operators that take relatively
small steps in the search space can be designed more easily. Therefore, local
search heuristics become an interesting option for MOLA, possibly bringing
an outcome for the current scalability issues. Currently, the amount of re-
search towards techniques incorporating multi-objective local search heuris-
tics for MOLA is relatively low compared to other directions. By examining
MOLS for MOLA, more insight can be gathered in whether and to what ex-
tent this local search based approach could contribute to the development

8 Chapter 1. Introduction

of scalable MOLA techniques. Furthermore, the research goes beyond the
general PLS framework and examines its separate components as well. This
includes the design of an efficient data structure, neighborhood exploration
operators, selection procedure, archive acceptance criteria and exploration
strategy. Since these components can be exchanged between different algo-
rithms, these findings will be interesting for other MOLA techniques as well.
Furthermore, different variants of PLS will be tested and eventually com-
pared with NSGA-II. Since this is the most popular algorithm currently used
for MOLA, the performance of PLS will be put in perspective to the current
state-of-the-art techniques being used.

Finally, the results might contribute to the research being performed at the
Energy and Resources group of Utrecht University. This research group is
examining land-use changes due to the increasing global demands in biofuel
and their effect on the environment. An efficient multi-objective optimiza-
tion technique could assist this group in getting more insight in how these
changes could (ideally) be handled more sustainably. One of the projects of
this institute focuses on the situation in Brazil, which will be be translated
to a MOLA problem and serve as a case study for the PLS algorithm. As
so, the case study being used will be a realistic now-a-days MOLA problem.
More details of the MOLA problem in Brazil can be found in Chapter 8.2. The
outcome of this research will eventually aid in the exploration and selection
of an optimization approach suitable for this research project. All software
generated for this research will optionally be transferred to this institute.

1.5 Research Outline

The research will be executed in the period between November 2019 and July
2020. At first, a literature research will be executed towards multi-objective
land-use allocation in general. In Chapter 3.1, 3.2 and 3.3, the problem con-
text, definition and five of the most common objectives will be handled. This
will be followed by an outline of several a priori and a posteriori approaches
for MOLA in Chapter 3.4 and different representations of MOLA solutions
in Chapter 3.5. Finally, ten example MOLA cases are summarized in Chapter
3.6.1, of which the two most common ones are described in more detail. After
handling multi-objective land-use allocation in general, a literature research
will be executed to previous and current optimization techniques being used
for MOLA. First, in Chapter 4.1, the application of linear programming is
discussed. Next, in Chapter 4.2, several local search heuristics will be han-
dled. This will be followed by an extensive summary of genetic algorithms
for MOLA in Chapter 4.3, including both single- and multi-objective GAs
together with their initialization procedures, selection procedures, crossover
operators and mutation operators. Finally, a third literature research will be
executed towards Pareto Local Search in general. At first, the definition and
several variants will be discussed in Chapter 5.1 and 5.2. Next, the most im-
portant components/procedures are discussed in Chapter 5.3, followed by
its anytime behavior in Chapter 5.4.

After the literature research has been completed, a Pareto Local Search al-
gorithm will be designed for MOLA. At first, the algorithm setup will be
defined in Chapter 6.2, which includes the solution representation and data
structures being used. Next, the PLS and IPLS algorithms will be defined

1.5. Research Outline 9

in Chapter 6.3, of which the most important components will be handled in
the following chapters. In Chapter 6.4 and 6.5, the selection procedure and
two selection operators will be discussed. In Chapter 6.6, two neighborhood
exploration strategies will be discussed based upon the search procedure of
Chapter 6.7, and three search operators will be defined in Chapter 6.8. Next,
the reparation procedure and two reparation operators will be discussed in
Chapter 6.9 and 6.10, after which several archive acceptance criteria will be
outlined in Chapter 6.11. Finally, incremental solution updating and validat-
ing procedures will be discussed in Chapter 6.12 and 6.13 to eventually con-
clude with the perturbation procedure for IPLS in Chapter 6.14. The next step
in the research, is to implement the PLS algorithm for MOLA that has been
designed. The general setup and frameworks used to build the algorithm will
be described in Chapter 7.1 and Chapter 7.2. Next, the UML diagrams show-
ing how the algorithm can be implemented in an objective-oriented program-
ming language will be shown and discussed in Chapter 7.3. This includes the
implementation of both PLS and IPLS, followed by an NSGA-II variant for
MOLA. Finally, the parameters of the algorithms will be discussed in Chap-
ter 7.4 and eventually concurrency (parallelism) within these algorithms will
be handled in Chapter 7.5

After the algorithms have been implemented, several experiments will be
set up and executed to answer the research questions of this research. The
general setup of these experiments will be discussed in Chapter 8. Next, a
problem case will be defined together with F. van der Hilst of the Energy and
Resources group of Utrecht University. The problem case will be set up and
discussed in Chapter 8.2. This includes the problem context, definition and
subcases. Next up, several test cases will be proposed to answer the research
questions in Chapter 8.3. Each test describes what algorithm runs should be
executed, what data should be measured, and how this can aid in answered
one or more research questions. Eventually, the materials that will be used to
run the experiments will be summarized in Chapter 8.4. In the final phase,
all experiments will be executed and the required data will be gathered. The
results of the experiments will then be summarized and discussed in Chapter
9.2, 9.3, 9.4 and 9.5. Throughout this chapter, the research questions will be
answered. In Chapter 10 a conclusion will be given regarding all research
questions and the overall exploratory goal of the research. Finally, based
upon the discussed results and conclusions of the research, recommendations
for future research will be outlined in Chapter 11. These recommendations
will eventually be passed on the Energy and Resources group of Utrecht Uni-
versity, which will continue to work in this research direction if deemed in-
teresting.

10

Chapter 2

Preliminaries

Most real world problems cope with multiple, often conflicting, objectives
simultaneously (Abraham and Jain, 2005). Consider for example, the opti-
mization of an electric car that has to be both fast and have a long driving
range. Improving on one objective could degrade another objective, resulting
in multiple ’best’ solutions. The interest in optimizing such multi-objective
problems has increased significantly over the last three decades, as it can be
used to deliver better (automated) decision making in all kinds of domains,
ranging from finance to healthcare to artificial intelligence (Abraham and
Jain, 2005). However, multi-objective problem optimization brings multiple
challenges compared to single-objective optimization. When there are two or
more conflicting objectives, one will not be able to find one unique optimal
solution anymore. There will now be a set of multiple solutions that are all
of equal quality (Abraham and Jain, 2005). A multi-objective optimization
problem can be defined as follows (Zitzler, Deb, Thiele, et al., 2001):

Minimize{ f1(x), f2(x), ..., fk(x)} (2.1)
subject to x ∈ S

With k ≥ 2 objective functions fi : Rn → R that we are all minimizing at
the same time. The decision vector x = (x1, x2, ..., xn)T belongs to the feasible
region S ⊂ Rn. This feasible region is formed by constraint functions. The
elements of the feasible region Z ⊂ Rk are called the objective vectors. Note
that maximizing fi is equivalent to minimizing− fi (Zitzler, Deb, Thiele, et al.,
2001). When all objectives and constraints are linear functions, the problem
is a nonlinear multi-objective optimization problem. In case one or more of
these functions are nonlinear, it is considered to be a nonlinear multi-objective
optimization problem.

When the objective functions contradict each other, it will not be possible to
find one single solution that optimizes all objectives simultaneously. In multi-
objective optimization, a solution is said to be dominated by another solution,
if the other solution can improve on at least one of its objective values with-
out degrading any of the other objective values. If solution s dominates s′,
this is notated as s ≺ s′. A solutions is non-dominated, if it is dominated by
no other solution; this is called Pareto optimality.

Definition 2.0.1. Decision vector x ∈ S is Pareto optimal if there is no other
x∗ ∈ S such that fi(x∗) ≤ fi(x) for all i = 1, ..., k and f j(x∗) < f j(x) for at
least one index j (Zitzler, Deb, Thiele, et al., 2001).

The set of all Pareto optimal solutions is called the Pareto optimal set. The
solutions of this set are all equally acceptable solutions of the multi-objective
optimization problem. However, in real world situations, it is often desired

Chapter 2. Preliminaries 11

to end up with one single solution. Selecting one solution out of the Pareto
optimal set calls for a decision maker (DM) (Zitzler, Deb, Thiele, et al., 2001).
Therefore, finding the final decision usually means a collaboration between
the decision maker and the analyst. The analyst is a person or program that is
accountable for the information, for instance an approximation of the Pareto
optimal set, which is used by the DM to decide upon the final solution.

12

Chapter 3

Multi-Objective Land-Use Allocation

3.1 Problem Context

One of the multi-objective optimization problems that has gained an increased
interest lately, is the multi-objective land-use allocation problem (MOLA).
The MOLA problem is defined as the process of allocating land-use types to
units of land to meet a set of objectives of the stakeholders (Datta, Deb, Fon-
seca, et al., 2007). Currently, land-use changes are an important human driver
of environmental degradation on local, regional, and global scales (Li and
Parrott, 2016). Therefore, the demand for effective tools to assist future land
planners has increased. In order to realize these tools, effective heuristics for
solving and/or approximating the multi-objective land-use allocation prob-
lem are needed. Over the years, multiple approaches to this problem have
been introduced and evaluated, which will later on be discussed in Chapter
4.

FIGURE 3.1: MOLA Domains On Spatio-Temporal Land-Use
Planning Scales (Matthews, Craw, Elder, et al., 2000)

According to (Matthews, Craw, Elder, et al., 2000), several land-use plan-
ning domains can be distinguished, characterised by their spatial and tem-
poral scales. The spatial scales range from the individual plants and ani-
mals to global ecologies, whereas the temporal scales range from hour(s) to
decade(s). Several domains including their position on these scales are shown
in Figure 3.1. In most researches, the focus is on domains that are either re-
gional or national on the spatial scale, and in between a year and a decade on
the temporal scale. Some of these cases will be discussed in Chapter 3.6.

3.2. Problem Definition 13

3.2 Problem Definition

The basic MOLA problem is formulated as follows. We have a rectangular
area, which we will divide into a grid (N rows and M columns). Next, we
have K land-use types, denoted by k = 1, ...K that can be allocated to one cell.
We therefore define a binary variable xijk, that is equal to 1 in case k is given
to cell (i, j), and 0 otherwise. Parameter Tk represents the number of cells in
the grid that need to be given a type k. Finally, Bijk equals the parameter of
an objective, of which its value differs per location. The MOLA model can
now be formulated as follows (Cao, Huang, Wang, et al., 2012) (Cao, Batty,
Huang, et al., 2011):

Minimize:

K

∑
k=1

N

∑
i=1

M

∑
j=1

Bijkxijk (3.1)

Subject to:

K

∑
k=1

xijk = 1 ∀i = 1, ..., N, j = 1, ..., M (3.2)

N

∑
i=1

M

∑
j=1

xijk = Tk ∀k = 1, ..., K (3.3)

where:

xijk ∈ {0, 1} ∀i = 1, ..., N, j = 1, ..., M, k = 1, ..., K (3.4)

Equation (3.1) can occur multiple times, with different values of Bijk set for
each objective. In case only one objective is used, the problem becomes a
single-objective land-use allocation problem. In equation (3.2), it is specified
that a land-use type needs to be given to every land unit. Next in equation
(3.3), the number of land units to which each type should be allocated are set.
(Aerts and Heuvelink, 2002). Alternatively, the exact numbers of Tk can be
replaced with percentages Pk that states the percentage of cells that should be
of type k. Equation (3.3) would than become as follows:

N

∑
i=1

M

∑
j=1

xijk = NMPk ∀k = 1, ..., K (3.5)

Often, a different land-use restriction is used instead of Equation (3.3) or (3.5),
that allows the number of cells to which a land type is assigned to be in a cer-
tain range (Cao, Huang, Wang, et al., 2012). The number of land units to
which type k can be allocated is then allowed to be in between a lower bound
Lk and upper bound Uk. This results in the following constraint.

14 Chapter 3. Multi-Objective Land-Use Allocation

Lk ≤ Sk ≤ Uk (3.6)
N

∑
i=1

M

∑
j=1

xijk = Sk ∀k = 1, ..., K (3.7)

K

∑
k=1

Sk = NM (3.8)

Hereby, Sk is the total number of cells to which type k is allocated. Equation
(3.8) forces that the total number of cells to which a land type is allocated, is
equals the number of land units in the grid.

Finally, the problem does not necessarily have to be notated using a grid of
N times M cells. Other notations are possible as well, such as a numbering
system that assigns a unique number i = 1, ...N to each cell. Then, a cell can
be noted as xi (Cao and Ye, 2013). In Chapter 3.5, more different problem
representations will be discussed.

3.3 Problem Objectives

In reality, objectives are concretized by the urban planners and other related
stakeholders. However, in this chapter several of the most frequently return-
ing objective functions will be outlined.

3.3.1 Minimizing Development Costs

The basic and most used objective of the land-use allocation program, is the
minimization of development costs (Aerts, Eisinger, Heuvelink, et al., 2003).
Hereby, the development costs Cijk are simply the costs for assignment land-
use type k to cell (i, j). The objective then becomes as follows:

Minimize:

K

∑
k=1

N

∑
i=1

M

∑
j=1

Cijkxijk (3.9)

In case of a single-objective land-use allocation problem, this is often the
(only) objective. Another naming for development costs is conversion costs,
as in most cases you are actually conversing an already existing land-use type
to a new land-use type (Cao, Batty, Huang, et al., 2011).

3.3.2 Maximizing Suitability

A more extended version of the development costs objective, is the ’suitabil-
ity’ objective. Now, the ’costs’ of assigning land-use is specified more exten-
sively according to multiple decisive factors. The suitability of a single cell
is then calculated using the weights given to each of these factors. Factors
considered by (Masoomi, Mesgari, and Hamrah, 2013) are the area (A), the
accessibility (Ac),the number of edges per cell (Ed), the slope (S), the owner-
ship type (P), the sound pollution (Sp), the air pollution (Ap) the resistance
to change (R) and the difference between edge sizes (De). More factors can

3.3. Problem Objectives 15

be added or removed up to the stakeholder’s preferences. The suitability Sik
of land-use type k for cell i can now be defined as follows:

Sik = w1Aik + w2Acik + w3Edik + w4Sik + w5Pik (3.10)
+ w6Spik + w7Apik + w8Rik + w9DEik

where w1 to w9 are the weights that are assigned to each suitability factor.
These are defined as follows:

9

∑
i=1

wi = 1 (3.11)

As the units and concepts of the factors are different, these are translated to
comparable scales and normalized to the range [0, 1]. Finally, the objective
can be formulated as follow:

Minimize:

1
n

n

∑
i=1

Sik (3.12)

The weights given to each factors, can be determined by urban planners and
involved stakeholders. As can be noted, it can take some effort to do so for
each land-use type for each cell. Therefore, this objective is not very conve-
nient to use. More often, its factors are replaced by separate objective func-
tions, of which the values are calculated in a more dynamic manner. For
example, the accessibility objective, which is discussed later in Chapter 3.3.4.

3.3.3 Maximizing Compactness

Generally, it is not desired (as it is impractical) to have small patches of land-
use being scattered all over the map. As so, large and continuous sections of
equal land-use are often favored. (Aerts and Heuvelink, 2002). Therefore, in
addition to the development costs objective, it is common to add an objective
that encourages compactness of land-use. The eight-neighbour objective for
maximizing compactness is defined as follows (Li and Parrott, 2016):

Maximize:

K

∑
k=1

N

∑
i=1

M

∑
j=1

(
xijk

i+1

∑
m=i−1

j+1

∑
n=j−1

Neigmn

8

)
(3.13)

where

Neigmn =

{
1, if xijk = xmnk

0, otherwise
(3.14)

If the land-use type of a neighbour cell (m, n) of cell (i, j) is the same, the the
value of Neigmn will be 1, and 0 otherwise (Li and Parrott, 2016). In Equa-
tion 3.13, diagonal cells are also counted as neighbouring cells, making this

16 Chapter 3. Multi-Objective Land-Use Allocation

called the eight-neighbour method. A more simpler variant of the compact-
ness objective is the four-neighbour method, that only counts the four directly
neighbouring cells. An example of the four-neighbour objective can be found
in (Aerts, Eisinger, Heuvelink, et al., 2003). In this research, we will work
according to the four-neighbour system (which is more simple), unless stated
differently.

There are multiple other objective functions possible to stimulate compact-
ness. For instance, a minimization of the number of clusters formed per land-
use (Aerts, Herwijnen, and Stewart, 2003). Minimizing this number, would
promote the formation of larger and more continuous clusters. Another pos-
sibility, is a minimization of the perimeters (number of edges) of each cluster.
This value is often divided by the square root of its area, resulting in the fol-
lowing objective function:

Minimize:

C

∑
c=1

Hc√
sc

(3.15)

with Hc is the perimeter and sc is the area size of cluster c = 1, ...C. In this
research, we will not go into further detail on this approach. For more details,
view (Aerts, Herwijnen, and Stewart, 2003).

Additionally, constraints can be added to stimulate the convergence towards
a compact solution. For example, it is generally undesirable to have single
cells as clusters in the final solution. Therefore, we may introduce a con-
straint for a minimum cluster area of smin for all cluster c = 1, ..., C as follows:

sc ≥ smin ∀c = 1, ..., C (3.16)

Finally, a spatial objective that is closely related to compactness, is contigu-
ity. This objective asks for a maximization of the size of the largest cluster of
each type (Cao, Huang, Wang, et al., 2012). As compactness arranges cells in
preferably as least clusters as possible, it generally includes contiguity. There-
fore, both aspects are encapsulated in the compactness objective.

3.3.4 Maximizing Accessibility

A good accessibility is able to increase the operational efficiency of an area
and decrease its emissions. According to (Cao, Batty, Huang, et al., 2011),
better accessibility planning could decrease up to 80% of the CO2 emission
resulting from human and automobile activities within city limits. In MOLA,
accessibility is increased when the land-use types are close to road types that
are as ’compatible’ with these land-use types as possible. For example, a
road meant for industrial transportation, should preferable be close to an in-
dustrial area, instead of a residential area.

Although there are many implementations of the accessibility objective, we
will discuss a more-often used implementation derived from the Tongzhou

3.3. Problem Objectives 17

case study (Chapter 3.6). Let’s say there are r = 1, ..., R road types. The acces-
sibility Aijk of cell (i, j) with land-use k can be calculated as follows;

Aijk =
R

∑
r=1

ek
rij (3.17)

Where ek
rij is the influence value (accessibility) of road type r for cell (i, j)

of land-use type k. The ek
rij function can differ per land-use type. In the

Tongzhou case, this is for example done as follows for commercial land-use;

ek
rij = (f k

r)
1−d (3.18)

And for residential and industrial land:

ek
rij = f k

r (1− d) (3.19)

Where d denotes the distance from cell (i, j) to a road of type r, and f k
r is a

function value that given road type r and land-use type k is defined as fol-
lows (Cao, Batty, Huang, et al., 2011):

f k
r = 100× Ik

r (3.20)

Here, Ik
r is the influence (compatibility) index of road type r for land-use type

k. This value should be known (given) for each road and land-use type com-
bination. This value is always in between 0 and 1, where 0 means that this
road and land type are not compatible at all, and 1 means maximum compat-
ibility.

Finally, the accessibility values Aijk of all cells are summed up. A maximiza-
tion of this value will lead to the best situation in terms of accessibility. The
final objective function then becomes;

Maximize:

K

∑
k=1

N

∑
i=1

M

∑
j=1

Aijkxijk (3.21)

3.3.5 Maximizing Compatibility

In reality, every type might have its preferences regarding its neighbouring
land-use types (Cao, Batty, Huang, et al., 2011). For example, a residual area
might prefer to be adjacent to a forest, rather than an industrial area. In that
case, the residual land-use type is said to more ’compatible’ with forest land-
use than industrial land-use. By creating a compatibility matrix, the compat-
ibility between different types can be determined at parcel level. (Masoomi,
Mesgari, and Hamrah, 2013). This matrix contains the compatibility index
of each type combination. A larger index indicates a higher compatibility,
and so the more preferred they are to be neighbouring land-use types. The
compatibility indices can for example be obtained from stakeholders, experts
or other involved parties. Once they are obtained, the compatibility Compxy
between cell x and y can be calculated as follows:

18 Chapter 3. Multi-Objective Land-Use Allocation

Compxy = Ikxky α1
xy(dxy) (3.22)

where Ikxky is the compatibility index between the land-use type of cell x (de-
noted as kx) and cell y (denoted as ky). The function α1

xy(dxy) defines the effect
of the distance dxy between x and y and is defined as follows;

α1
xy(dxy) =

1 dxy ≤ dmin

xy(
dmax

xy −dxy

dmax
xy −dmin

xy

)β
dmin

xy ≤ dxy ≤ dmax
xy

0 dxy ≥ dmax
xy

(3.23)

where dmin denotes the minimum distance and dmax denotes the maximum
distance. The resulting objective is a maximization of the summation of the
compatibility of each land unit, defined as:

Maximize:

K

∑
k=1

N

∑
i=1

M

∑
j=1

(
xijk

i+1

∑
m=i−1

j+1

∑
n=j−1

Comp(i,j)(m,n)

8

)
(3.24)

Optionally, the objective function can be altered to stimulate a more uniform
compatibility distribution over all cells. More details on these methods can
be found on (Masoomi, Mesgari, and Hamrah, 2013). Finally, an identical
approach to the maximization of compactness, is the minimization of the to-
tal edge length (TEL) (Schwaab, Deb, Goodman, et al., 2018). The total edge
length is inversely related to compactness. Note, that the total edge length
can only be calculated using a four-neighbour approach.

An alternative for maximizing ’compatibility’ is maximizing ’dependency’.
In that case, a land-use is said to depend on other land-use types in its vicin-
ity (Masoomi, Mesgari, and Hamrah, 2013). However, two land-use types
that depend on each other, could also be seen as two land-use types that
are highly compatible with each other. As such, the dependency objective is
somehow equivalent to the compatibility objective, and can be implemented
in a similar manner as the compatibility objective.

3.4 Optimization Approaches

There are a variety of approaches for optimizing multi-objective problems
(Amine, 2019). In the following sections, several approaches in the context of
MOLA will be handled. These can be classified into a priori and a posteriori
approaches.

3.4.1 A Priori

When using an a priori approach, also called ’decide-then-search’, the deci-
sion maker transforms the mathematical multi-objective model into a mono-
objective one before searching for the solution(s) (Matthews, Craw, Elder, et

3.4. Optimization Approaches 19

al., 2000). Several methods have been introduced from this perspective. In
this section we will discuss the two most frequently used a priori methods in
the domain of MOLA, namely, the weighted sum method and goal program-
ming (Amine, 2019).

The weighted sum method is the most simple approach based on aggrega-
tion (Cao, Huang, Wang, et al., 2012). For this approach, a weight is given to
each objective, after which they can all be combined to one single objective
to minimize. For the multi-objective land-use allocation problem with objec-
tives o = 1, ..., O, this would result in the following single-objective function;

Minimize:

ftotal = −
O

∑
o=1

K

∑
k=1

N

∑
i=1

M

∑
j=1

αoBoijkxijk (3.25)

where Boijk is the parameter based on cell (i, j) for type k of objective o and αo
equals the weight of objective o.

However, the weighed sum method has several disadvantages. First of all,
it can be difficult for decision makers or planners to value or weight the ob-
jectives directly (Cao, Huang, Wang, et al., 2012). This is particularly true,
when each objective value has a different scale. In certain situations, partic-
ularly where there is conflict over a decision, it may be impossible to agree a
priori weightings or orderings (Matthews, Craw, Elder, et al., 2000). Further-
more, it has been shown that the use of linear forms such as the above can
lead to highly biased results (Stewart, Janssen, and Herwijnen, 2004). Result-
ing in, for instance, some objectives being optimized very badly compared to
others. In real-world land-use planning scenarios, such solution properties
would often be unacceptable.

Due to the scaling difficulties of the weighted sum approach mentioned above,
a more often used approach is some general form of goal programming (GP).
An often-used goal programming approaches in the spatial optimization do-
main, is the Chebyshev approach. The approach, also called the Minimax
approach, was first introduced in (Flavell, 1976). The Chebyshev approach
minimizes the maximum weighted deviation of any function from a certain
reference point (M.C. Roberts and Vaughan, 2012). A slightly modified ver-
sion of the Chebyshev goal programming approach was applied to MOLA in
(Cao, Huang, Wang, et al., 2012). For objectives i = o, ...O, this approach was
defined as follows;

Minimize:

ftotal =
O

∑
o=1

αo

(
fo − f min

o
f max
o − f min

o

)
(3.26)

where fo is the objective value, f min
o is the ideal value, f max

o is the worst
value and αo is the weight given to objective o. This approach addresses the
scale differences of each objective value while helping planners capture pref-
erences for different objectives (Mohammadi, Nastaran, and Sahebgharani,
2016).

20 Chapter 3. Multi-Objective Land-Use Allocation

The approach of (Cao, Huang, Wang, et al., 2012) still requires planners or
stakeholders to define weights for each objective. In case this is considered
to be unwanted, a weight-free approach can be used, as was shown in (Aerts,
Herwijnen, and Stewart, 2003). It is defined as follows:

Minimize:

ftotal =
O

∑
o=1

(
fo − f min

o
f max
o − f min

o

)ρ

(3.27)

where ρ should be a suitably large power. The use of ρ places more weight on
the least well satisfied goal, aiming to create a more uniform minimization of
all objective functions.

Besides the objectives being optimized, the solution also has to meet con-
straints regarding the number of cells allocated to each cell. One can either
formulate these constraints as hard constraints, or handle them as goals as
well. In the second case, the constraint goals have to be added to the function
value as well, in order to penalize a violation. An example of how this can
be implemented, was shown in (Stewart, Janssen, and Herwijnen, 2004). Lets
say that for each number of cells allocated to a type Sk, there is an upper-
bound Uk and lowerbound Lk as specified earlier in Equation (3.6). Also, lets
assume that we have a minimum cluster size smin for the size sc of all clusters
c, ..., C as shown in Equation (3.16). The a priori goal programming objective
of Equation (3.27), can then be extended by adding the following three terms
(Stewart, Janssen, and Herwijnen, 2004). For the lower bound Lk on Sk:

Minimize:

(
max(0, Lk − Sk)

β0
k

)ρ

(3.28)

For the upper bound Uk on Sk:

Minimize:

(
max(0, Sk −Uk)

β0
k

)ρ

(3.29)

And for the minimum cluster size smin of sc:

Minimize:

(
max(0, smin − sc)

β1
k

)ρ

(3.30)

where β0
k denotes the scaling factor relating to the upper and lower bounds,

β1
k the scaling factor of the minimum cluster size and ρ the power used for

3.5. Problem Representations 21

goal programming as used in Equation (3.27).

3.4.2 A Posteriori

A posteriori methods, also called search-and-decide, first search for the Pareto
set of solutions and then present these to the decision maker (Matthews,
Craw, Elder, et al., 2000). In general, posteriori methods are preferred and
found superior for the MOLA problem. It does not yield the disadvantages
stated in Section 3.4.1, and presents the conflicts between objectives without
(the need for) prior knowledge of the solution space. Yet, such a construction
is often more difficult and computationally consuming. Therefore, approxi-
mation algorithms are commonly suggested in this case (Amine, 2019). They
consist in constructing a subset of the Pareto set, or otherwise a set of effi-
ciently near-Pareto optimal solutions. The construction of the actual Pareto
set or an approximating of it, is referred to as Pareto optimisation.

A posteriori approaches can also be combined with a priori approaches to
create a so-called progressive approach. This is a hybridisation of a posteri-
ori and a priori, where the decision-maker provides a kind of guidance to the
algorithm execution. It often consists of an a priori approach, that learns from
the user’s preferences among intermediate a posteriori results, for as long as
the algorithm runs (Amine, 2019).

3.5 Problem Representations

The MOLA problem can be represented in different ways. The representa-
tion used, can influence the efficiency and performance of the optimisation
approach or algorithms being used. The problem definition and objectives
described in Chapter 3.2 and 3.3 make use of the grid representation. In this
chapter, several possible representations including their advantages and dis-
advantages are outlined.

3.5.1 Grid Representation

The grid representation is the simplest and most commonly used represen-
tation (Matthews, Craw, Elder, et al., 2000). With the grid representation, a
solution is encoded as a two dimensional array in which each value corre-
sponds to a land-use type. Each cell in the array hereby represents a geo-
graphic area of fixed size. The size of these cells determines the level of detail
and the eventual size of the data structure.

22 Chapter 3. Multi-Objective Land-Use Allocation

FIGURE 3.2: Grid Representation (Matthews, Craw, Elder, et
al., 2000)

The main advantages of the grid representation is that is a simple struc-
ture that can easily be manipulated. However, the grid representation also
has a significant downside, which is redundancy. This is particularly likely
when using categorical data such as land-use types on predefined parcels
(Matthews, Craw, Elder, et al., 2000). For example, look at the grid represen-
tation of a certain map in Figure 3.2. The actual map exists out of 5 parcels, to
which we need to assign land-use types. When using a grid representation of
16 x 16, this turns into a double array of 256 cells. Meaning, we now have to
allocate land-use types to 256 cells, while in reality we are only allocating a
type to 5 parcels. Eventually, the results of the grid can be translated back to
land-use types for each parcel, by for each parcel selecting the most occurring
land-use type of its overlapping cells in the grid. As can be seen, the grid rep-
resentation would deliver a lot of redundancy, resulting in more overhead in
the optimization process. However, when there are no strict parcels, the grid
representation can be a suitable approach. In that case, this representations
allows for an easy creation and modification of clusters of all kinds of shapes,
in contrast to for example vector representations that will be discussed later.

3.5.2 Quad-Tree Representation

In order to address the redundancy problem of the grid representation, other
data structures have been proposed. One of these structures, is the quad-
tree structure. The quad-tree recursively subdivides space into progressively
smaller spatial units, indexed using a tree-structure (Matthews, Craw, Elder,
et al., 2000). This subdivision continues, until either a node in the tree is ho-
mogeneous with only one land-use represented or the maximum recursion
depth is reached.

3.5. Problem Representations 23

FIGURE 3.3: Quad-Tree Representation (Matthews, Craw, El-
der, et al., 2000)

In Figure 3.3, four levels of recursion are shown on the same polygon map as
in Figure 3.2. As can be seen, the grid is continuously split in four separate
grids. Redundancy is reduced when one split grid completely exists out of
one color.

The advantage of the quad-tree structure is that is able to decrease part of the
redundancy of the grid structure. However, this comes at the expense of algo-
rithmic and computational complexity (Matthews, Craw, Elder, et al., 2000).
Besides that, building and repairing the quad-tree structure could bring more
overhead to the optimisation process.

3.5.3 Polygon Vector Representation

A different representation type is based upon vectors. The polygon-level
vector-based representation, is the most-used vector representation. It is also
called the fixed-length vector or land block representation (Datta, Deb, Fon-
seca, et al., 2007). The representation directly maps the land-uses of indi-
vidual fields to a vector, as shown in Figure 3.4. Similar to the grid-based
approach, each value is again a vector of size K, of which the value at index
k = 1, ...K is 1 in case type k is given to it (0 otherwise). The major advan-
tage of this representation is that it is not bothered by any redundancy and
scales well with an increasing number of parcels. As such, a vector represen-
tations is able to decrease the size of the decision variables. (Schwaab, Deb,
Goodman, et al., 2018). Still, this representation also has several downsides.
First, it is more difficult to combine, split or modify parcel shapes than when
using the patch-level representation. Secondly, a one-value fixed-length vec-
tor does not maintain spatial data which can complicate the working with
spatial objectives and operators. As such, it may require the incorporation of
supplementary algorithmic schemes or a GIS system to take note of this data.
(Cao, Batty, Huang, et al., 2011).

24 Chapter 3. Multi-Objective Land-Use Allocation

FIGURE 3.4: Polygon-Level Vector Representation
(Matthews, Craw, Elder, et al., 2000)

The fixed-length vector representation can be formulated as follows. Let us
assume that the area exists out of i = 1, ..., N vectors with k = 1, ..., K types.
The variable xik is 1 if the vector i equals k, and 0 otherwise. Bik equals the
parameter of an objective, of which its value differs per location. For every
objective, the fixed-length MOLA model can be formulated as follows (Cao
and Ye, 2013):

Minimize:

−
K

∑
k=1

N

∑
i=1

Bikxik (3.31)

Subject to:

K

∑
k=1

xik = 1 ∀i = 1, ..., N (3.32)

where:

xik ∈ {0, 1} ∀i = 1, ..., N, k = 1, ..., K (3.33)

Note, that most constraints mentioned before, such as the boundary con-
straints of Equation (3.7), would now require a reformulation as well.

Another polygon-level vector-based representation is the variable-length vec-
tor (also called percentage and priority) representation (Datta, Deb, Fonseca,
et al., 2007). This representation is more complex, and focuses on the ’per-
centage and priority’ in the allocation of land-use. It therefore requires more
a priori knowledge of the scenario. The exact definition and working of this
structure can be found in (Matthews, Craw, Elder, et al., 2000).

3.5.4 Patch Vector Representation

In previous methods, the land-use type of land parcels were either allocated
cell by cell or by a single value in a polygon-based vector. The polygon-based
representation had a low redundancy, but brought difficulties when modifi-
cations of the parcels are allowed. The cell by cell approach had a high re-
dundancy, but parcel shapes could be modified easily. The patch-level vector

3.5. Problem Representations 25

representation, brings a balance between both (Liu, Peng, Jiao, et al., 2016). It
looks at the map from a patch-level, which is simply a cluster of cells from the
same land-use type. To decrease the number of spatial units (and hence the
computational effort), we first transform the input raster map representing
the current status of land-use into a patch or cluster map, where neighboring
raster cells of the same type are aggregated (Strauch, Cord, Pätzold, et al.,
2019). Next, a solution can be represented as a vector, where the index of the
value corresponds to the ID of the patch in the patch ID map. This is shown
in Figure 3.5. In case the parcels are not modified, the same patch ID map can
be used for multiple solutions. In case the parcels are modified, a new patch
ID map can be recreated or the current one can be modified. Note, that the
last land-use type can be left out of the vector, as this can be allocated to all
remaining patches.

FIGURE 3.5: Patch-Level Vector Representation (Strauch,
Cord, Pätzold, et al., 2019)

The patch-level representation decreases the redundancy of a single solution.
As such, it is more efficient to work with when handling multiple different so-
lutions and is better of handling larger areas than cell-based representations
(Liu, Peng, Jiao, et al., 2016). Another big advantage, is that in case the user
would like to do operations/calculations on patches (instead of cell), this can
be done much more efficiently. However, it might become expensive if the
ID patch map needs to be recreated regularly. In that case, it might become
more efficient to use the simple grid representation again.

3.5.5 Multi-Dimensional Representation

An extra dimension can be added to any of the previously described struc-
tures, to include the changes in land-use over time. (Datta, Deb, Fonseca, et
al., 2007). In case of the vector representations, this would be a second dimen-
sion. In case of a grid representation, this would be a third dimension. For
now, we will elaborate on the third-dimensional grid representation. Each
cell would now obtain a vector of land-use allocation over time. An example
is shown in Figure 3.6. Here, ei j contains the land-use vector y of cell (i, j).
The vector y now contains 1, ..., n values for year 1 to n on the t-th axis.

26 Chapter 3. Multi-Objective Land-Use Allocation

FIGURE 3.6: Model Of A 3-Dimensional Landscape (Datta,
Deb, Fonseca, et al., 2007)

3.6 Example Case Studies

Different case studies have been introduced and optimized throughout pre-
vious researches. In this chapter, we will give a short overview of these case
studies and discuss the two most used case studies in more detail.

3.6.1 Overview Case Studies

In Table 3.1, ten MOLA use cases are listed, including their number of dif-
ferent land-use types, objectives and area size. First of all, there are several
relatively small cases, such as the Baboldash case of 0.2 km2 (Mohammadi,
Nastaran, and Sahebgharani, 2016), the Jisperveld case of 4 km2 (Aerts, Van
Herwijnen, Janssen, et al., 2005) and the As Pontes case of 25km2 (Aerts,
Eisinger, Heuvelink, et al., 2003). Secondly, there are medium sized cases,
like the Tonghzou case of 906 km2 (Cao, Huang, Wang, et al., 2012) and the
Panyu case of 786 km2 (Liu, Li, Shi, et al., 2012). Thirdly, we have the rela-
tively large cases, such as the RDCO case of 2902 km2 (Li and Parrott, 2016)
and the Terra Cha case of 1832 km2 (Santé-Riveira, Boullón-Magán, Crecente-
Maseda, et al., 2008). The latter has up to 13 different land-use types. Finally,
the exact area size of three cases are unknown. Those are the Baixo Alentejo
case (Datta, Deb, Fonseca, et al., 2007), the District 1 case of Tehran (Masoomi,
Mesgari, and Hamrah, 2013) and the Guitiriz case (Porta, Parapar, Doallo, et
al., 2013).

TABLE 3.1: Specifications of several MOLA case studies.

Case Study Land-Use Types Objectives Area Size
As Pontes, Spain 3 2 25 km2

Jisperveld, Netherlands 9 6 4 km2

Baixo Alentejo, Portugal 5 3 Unknown
Terra Cha, Spain 13 3 1832 km2

Tongzhou, China 6 8 906 km2

Panyu, China 7 3 786 km2

District 1, Region 7, Tehran 12 4 Unknown
Guitiriz, Spain 4 2 Unknown
Baboldasht, Iran 7 5 0.2 km2

RDCO, Canada 8 3 2902 km2

3.6. Example Case Studies 27

The two most used case studies, are the Jisperveld case study and the Tongh-
zou case study. As such, these will discussed in more detail in Chapter 3.6.2
and 3.6.3. For more details on any of the other previously named case studies,
view the associated research.

3.6.2 Case 1: Jisperveld, The Netherlands

The first case study that will be discussed, is the management of the Jisper-
veld region in The Netherlands. The Jisperveld is a natural area in the Nether-
lands of 2000ha. (Stewart, Janssen, and Herwijnen, 2004). It is the breeding
ground of several rare birds, and so 800ha of this area belongs to a natural
conservation organization. The future land-use planning and management
has led to a discussion between different stakeholders, including agricultural,
recreational and natural parties (Aerts, Van Herwijnen, Janssen, et al., 2005)
(Aerts, Herwijnen, and Stewart, 2003). Every party has its own vision on
how the Jisperveld should allocate its land-use. Therefore, the Jisperveld has
been translated into an optimizable MOLA problem to support these parties
in coming up with a plan.

FIGURE 3.7: Jisperveld (Aerts, Van Herwijnen, Janssen, et al.,
2005)

For purposes of the present numerical studies, a 400ha region was selected
and displayed in the form of a 2020 grid in Figure 3.7 (Stewart, Janssen, and
Herwijnen, 2004). As many as 33 distinct land-use types could be identi-
fied in this area, but for purposes of the illustration these have been reduced
to seven. The legend in Figure 3.7 identifies nine land-use types, which in-
cludes the two possible future types “water (limited access)” and “extensive
agriculture". These do not occur in the current situation. Together with the
stakeholders, a total of six different objectives have been set up (Aerts, Van
Herwijnen, Janssen, et al., 2005):

1. Maximize the natural value of the area.
2. Maximize the recreational value of the area.
3. Minimize the cost of changing land-use.
4. Minimize the number of clusters.
5. Maximize the cluster size.
6. Maximize the compactness.

28 Chapter 3. Multi-Objective Land-Use Allocation

Note, that the last three objectives are all similar to the compactness objective
of Equation (3.13). The values of objective 1 and 2 can be calculated using
the maximization of Equation (3.9). For a land-use type k, the value of Cijk
is either a uniform value (the same for each cell (i, j)), or a variable value
(different per cell (i, j)). These values are shown in Table 3.2; all values are
scaled between 1 and 10 and the variable values are shown as ’Map’.

TABLE 3.2: Cost values Cijk of Objective 1 (Nature Value) and
Objective 2 (Recreation Value) (Stewart, Janssen, and Herwij-

nen, 2004)

Land-Use Type (k) Nature Value Recreation Value
1. Intensive agriculture 4 6
2. Extensive agriculture Map Map
3. Residence 3 3
4. Industry 1 1
5. Recreation (day trippers) 5 Map
6. Recreation (overnight) 5 Map
7. Wet natural area Map 7
8. Water (recreational use) 7 Map
9. Water (limited access) Map 1

Furthermore, the costs of adjusting a present type kc into a new type k f are
shown in Table 3.3 (Aerts, Herwijnen, and Stewart, 2003). These can be used
to calculate the value of Objective 3, using Equation 3.9 with the transition
costs as Cijk. Note, that not all land-use type combinations in Table 3.3 have
associated transition costs (noted with a ’-’). These types are simply not al-
lowed to be converted into each other, and are fixed. In Figure 3.8, all cells
with a fixed land-use type are visualized.

TABLE 3.3: Transition Costs Between Land-Use Types. For-
bidden transitions are noted with ’-’ (Aerts, Herwijnen, and

Stewart, 2003)

Current Land-Use Type (k)
Future Land-
Use Type (k)

1 2 3 4 5 6 7 8 9

1 0 1000 1000 500 - 7000 - - -
2 - 0 - - - - - - -
3 - - 0 - - - - - -
4 - - - 0 - - - - -
5 - - 9000 - 0 5000 - - -
6 - - - - - 0 - - -
7 - - - - - - 0 - -
8 - - - - - - - 0 1000
9 - - - - - - - - 0

3.6. Example Case Studies 29

FIGURE 3.8: Map With The Current Fixed Types (Aerts, Her-
wijnen, and Stewart, 2003)

Finally, there are several constraints to which the solution should obey. These
are a lower and upper bound on the number of cells per land-use type (Equa-
tion (3.6)), and a minimum cluster size per land-use type (Equation (3.16))
(Aerts, Herwijnen, and Stewart, 2003). The values of these constraints are
listed in Figure 3.4. Note, that certain land-use types (such as Intensive Agri-
culture) need to decrease in area size, whereas other land-use types (such
as Extensive Agriculture) need to increase. Also, different minimum cluster
sizes are given for each land-use type.

TABLE 3.4: Constraint Vaues per Land-Use Type (Stewart,
Janssen, and Herwijnen, 2004)

Land-Use
Type (k)

Lower Bound Upper Bound Current Min. Cluster Size

1 100 130 157 4
2 27 57 0 3
3 28 35 28 3
4 5 9 7 2
5 3 10 6 3
6 1 5 1 1
7 4 20 8 3
8 150 193 193 4
9 0 43 0 4

3.6.3 Case 2: Tongzhou New Town, China

In the previous years, China has been experiencing an enormous industrial
and urban growth. One of the most rapidly developing areas of China is
Tongzhou (Cao and Ye, 2013). This area is located south of Beijing and cov-
ers 906 km2. The area contains 11 towns and 4 communities, and has always
been involved in a debate on how the area can best be further developed in
the future (Cao, Batty, Huang, et al., 2011). Especially the Tonghzou New
Town district, shown in Figure 3.9, asked for a lot of discussions. In order
to offer help, the Tongzhou New Town region has been converted into an
optimizable MOLA problem, which can be used to obtain possible favorable
future scenarios.

30 Chapter 3. Multi-Objective Land-Use Allocation

FIGURE 3.9: The Tongzhou New Town District (Cao and Ye,
2013)

The map of Tongzhou New Town includes five different land-use types: res-
idential, industrial, commercial, green and undeveloped land. Different rep-
resentations can be used, such as a vector of size 586 (Cao and Ye, 2013) a
small grid with cells of 400mx400m (Cao, Batty, Huang, et al., 2011) or a large
grid with cells of 100mx100m (Cao, Huang, Wang, et al., 2012). For now, we
will focus on the large grid representation, as is shown in Figure 3.10.

3.6. Example Case Studies 31

FIGURE 3.10: Current Tongzhou New Town Land-Use Map
(Cell Size 100m x 100m) (Cao, Batty, Huang, et al., 2011)

Many objectives can, if desired, be included in the optimization of the Tongzhou
case study. For now, we will shortly discuss eight different objectives that can
be optimized. For more details, view (Cao, Huang, Wang, et al., 2012). The
following objectives will be discussed;

1. Maximize the gross domestic product (GDP).
2. Minimize the conversion.
3. Maximize the geological suitability.
4. Maximize the ecological suitability.
5. Maximize the accessibility.
6. Minimize the not in my back yard (NIMBY) factor.
7. Maximize the compactness.
8. Maximize the compatibility.

At first, the maximization of the gross domestic product (GDP). The GDP can
be used to evaluate land-use scenarios from an economic standpoint. Using
historical data and statistical methods, the correlation between these land-use
types can be obtained, which can be used to represent the anticipated GDP
in 2020 (Cao, Huang, Wang, et al., 2012). The resulting GDP ratios of differ-
ent land-use types are shown in Figure 3.5. The objective value can now be

32 Chapter 3. Multi-Objective Land-Use Allocation

calculated using Equation (3.9), where Cijk is equal to the GDP ratio of k, re-
gardless of i and j.

TABLE 3.5: The GDP Ratio Per Land-Use Type (Cao, Huang,
Wang, et al., 2012)

Land-Use Type GDP Ratio
Residential 0
Industrial 59.92
Commercial 505.20
Green 0
Undeveloped 0

The second objective, is the minimization of the conversion. Conversion costs
for different land-uses decreases the expenditure of the social capital, while
enhancing the economic benefit of the society. Evidently, the cost of different
land-use types is different. However, under the consideration of data limita-
tion and the inaccuracy by the Delphi method, the minimization of conver-
sion can be simplified to the minimization of the total number of land-use
changes (Cao, Batty, Huang, et al., 2011).

The third objective, is the maximization of the geological suitability. Geolog-
ical suitability states how ’suitable’ a cell is for a land-use type different than
’undeveloped’. Figure 3.11 shows the geological suitability map of Tongzhou.
The districts for geological construction have a trend of degradation from I
to IV. Hence, the maximization of the sum of all the cells’ suitability values
of all cells other than ’undeveloped’ can bring about a better solution (Cao,
Batty, Huang, et al., 2011).

FIGURE 3.11: Geology Suitability Values Per Region (Cao,
Huang, Wang, et al., 2012)

3.6. Example Case Studies 33

The fourth objective, is the maximization of the ecological suitability. Ecolog-
ical factors need to be incorporated as part of sustainable land-use allocation.
Based upon the values of the world’s ecosystem services and natural capital,
including the suitability of allocating green land per region, the values of Fig-
ure 3.12 arose. As shown, allocating green in district II or III adds up more
to the objective value than other land-use types. Since district I is highly un-
suitable for green land-use, other types are preferred here instead. The sum
of all suitability values results in the final objective value to be maximized.

FIGURE 3.12: Ecological Suitability Values Per Region (Cao,
Huang, Wang, et al., 2012)

The fifth objective, holds a maximization of the accessibility. The accessibility
objective was described earlier in Chapter 3.3.4. Its objective value is cal-
culated according to Equation (3.17), (3.18), (3.19), (3.20) and (3.21). In the
Tongzhou case study, there are three different road types; roads for living,
roads for transportation and roads for mixed use (both). The influence (com-
patibility) index Ik

r of each road type r for every land-use type k is shown in
Table 3.6. Finally, the road network of Tongzhou is shown in Figure 3.13.

34 Chapter 3. Multi-Objective Land-Use Allocation

TABLE 3.6: Influence Index for Different Roads (Cao, Huang,
Wang, et al., 2012)

Residential Industrial Commercial
Main Road for Living 1 0.7 0.875
Main Road for Transportation 0.7 1 0.7
Main Road for Mixed Use 0.875 0.875 1

FIGURE 3.13: Roads Network of Tongzhou (Cao, Huang,
Wang, et al., 2012)

The sixth objective, is the minimization of the NIMBY influence. The term of
NIMBY (Not in My Back Yard) is used to refer to the opposition by residents
to new developments in their proximity (Cao, Huang, Wang, et al., 2012). It
may not be easy to change the location of projects such as railways, landfill
fields, or power stations, etc. However, this study takes a novel attempt to
address the NIMBY factor. Owing to data limitation, only railways are con-
sidered in the Tongzhou case study. More details on this objective, including
a Euclidean distance based function decreasing map, can be found in (Cao,
Huang, Wang, et al., 2012). The purpose of this objective is to minimize the
occurrence of residential and commercial land inside the high influence value
of railways in the city.

The final two objectives, are the maximization of compactness and compati-
bility. The first objective is simply calculated using the standard eight-neighbor
method of Equation (3.13). The second is calculated using the compatibility

3.6. Example Case Studies 35

function of Equation (3.24). The compatibility value Compxy between cell x
and y depends on the land-use type of both cells. The value for each possible
combination in the Tongzhou case, is given in Table 3.7

TABLE 3.7: Compatibility Values in Tongzhou (Cao, Huang,
Wang, et al., 2012)

Residential Industrial Commercial Green Undev.
Residential 1
Industrial 0.41 1
Commercial 0.95 0.48 1
Green 1 0.88 0.62 1
Undeveloped 0.47 0.75 0.41 0.74 1

Finally, several constraints have been set up. First of all, there are several
restricted areas that can not be changed. These areas are visualised in Figure
3.10 (Cao, Batty, Huang, et al., 2011). Finally, a minimum bound was set on
the number of cells to which the residential land-use type should be allocated.
Based upon future estimations, this resulted in a minimum bound of 3150
cells (when using a cell size of 100m x 100m) (Cao and Ye, 2013).

36

Chapter 4

Previous Research

4.1 Linear Programming

One of the classic techniques for combinatorial optimisation is linear pro-
gramming (LP) (Stewart, Janssen, and Herwijnen, 2004). It aims to optimise
a single linear objective function, given multiple linear equality and inequal-
ity constraints. Over the years, linear programming solvers have become
faster and more sophisticated, allowing an optimisation problem to be solved
efficiently when a single clear objective could be identified. Linear program-
ming can be used to optimize multi-objective problems too, by converting the
objectives into one single objective. This can for example be done by using
aggregation procedures such as weighted sum as discussed in Chapter 3.4.1,
in which all objectives are weighted and summed up (Stewart, Janssen, and
Herwijnen, 2004).

In the research of (Aerts, Eisinger, Heuvelink, et al., 2003), several LPs were
set up for solving the multi-objective land-use allocation problem with two
objective functions; minimizing the developments costs as well as maximiz-
ing the compactness. The objectives were combined using the weighted sum
method of Equation (3.25). The LP was then defined as (Aerts, Eisinger,
Heuvelink, et al., 2003):

Minimize:

K

∑
k=1

N

∑
i=1

M

∑
j=1

Cijkxijk − α
K

∑
k=1

N

∑
i=1

M

∑
j=1

yijk (4.1)

Subject to:

yijk ≤ 4xijk (4.2)

yijk ≤ xi−1jk + xi+1jk + xij−1k + xij+1k (4.3)

yijk ≥ xi−1jk + xi+1jk + xij−1k + xij+1k − 4(1− xijk) (4.4)

yijk ≥ 0 (4.5)

∀k = 1, ..., K, i = 1, ..., N, j = 1, ..., M

including Equation (3.2), (3.3) and (3.33). Hereby, Cijk are the development
costs of allocating land-use type k to cell (i, j) where α equals the (relative)
weight of the compactness objective. Constraints (4.2), (4.3), (4.4), (4.5) are
necessary to implement the compactness objective function while still main-
taining a linear problem. Eventually, (Aerts, Eisinger, Heuvelink, et al., 2003)
also introduces the concept of buffer-cells to encourage compactness. We will

4.2. Local Search Heuristics 37

not elaborate on these constraints.

The linear programming model of (Aerts, Eisinger, Heuvelink, et al., 2003)
was eventually tested on a case study of 300x300 cells. Unfortunately, it was
impossible to solve the whole area within one model run; it was too compli-
cated and did not finish (within a reasonable amount of time). Therefore, the
area was split up to sample areas of 30x30 and even 16x16, after which the re-
sults for each area were combined. Since most multi-objective problems tend
to have a large number or cells, this turned out to be a major drawback of the
linear programming approach. Also, the model scaled badly for an increase
in the number of objectives. When solving for the development costs only, it
only took about two minutes for a 30x30 grid. When the compactness objec-
tive was added, this increased to more than eight hours. Since most MOLA
problems use to have more than two objectives, this is expected to be a major
bottleneck. As such, linear programming is considered not to be a suitable
approach for realistic MOLA problems. After the research of (Aerts, Eisinger,
Heuvelink, et al., 2003), the interest in LP for MOLA therefore significantly
decreased.

4.2 Local Search Heuristics

Given the limitations of linear programming, heuristic local search methods
have been examined to handle the MOLA problem. In this chapter, we will
discuss approaches based upon two heuristics; simulated annealing and tabu
search.

4.2.1 Simulated Annealing

The search heuristic that has been applied to MOLA in most researches, is
simulated annealing. The simulated annealing algorithm emulates the be-
haviour of a thermodynamic system. It applies local search, with an acceptance-
function that is based upon a temperature variable s0 (Santé-Riveira, Boullón-
Magán, Crecente-Maseda, et al., 2008). As the temperature decreases, the
probability of accepting a new worse solution found by local search decreases
as well. The general procedure of (single-objective) simulated annealing works
at follows; At first, an initial solution is generated. Next, a new solution is cre-
ated out of this solution, using a local search operator. In case the objective
value of this solution is an improvement over the objective value of the cur-
rent solution, this solution becomes the new current solution. In case it is
worse, it can still become the new current solution with the following proba-
bility (Aerts, Herwijnen, and Stewart, 2003);

P(acceptchange) = exp(
f (0)− f (1)

s0
) (4.6)

where s0 is the temperature, f (0) equals the objective value regarding the
current solution and f (1) equals the objective value regarding the new solu-
tion. This procedure continues, until a certain criterion is met. Note, that the
chance of accepting a worse solution reduces as the temperature s0 decreases.
Usually, the temperature is decreased using a constant multiplication factor r
(Aerts, Herwijnen, and Stewart, 2003);

38 Chapter 4. Previous Research

si+1 = r ∗ si (4.7)

where 0 < r < 1 and i denotes the iteration index.

The standard simulated annealing algorithm is meant for single-objective
optimization problems. In (Aerts, Herwijnen, and Stewart, 2003) goal pro-
gramming was applied to aggregate the objectives into a single objective, as
discussed earlier in Chapter 3.4.1. The resulting simulated annealing algo-
rithm for MOLA problems is shown in Figure 4.1. New solutions are being
generated by swapping the land-use type of two randomly selected cells. A
maximum number of iterations Lm was set as the termination criterion.

FIGURE 4.1: Flow Diagram of a Simulated Annealing Algo-
rithm for MOLA (Aerts, Herwijnen, and Stewart, 2003)

When approaching the MOLA problem a priori, simulated annealing seems
to be a feasible approach. In (Aerts and Heuvelink, 2002), it was applied
to a case study with 50x50, 250x250 and 300x300 with two objectives; min-
imization of the costs and maximisation of the compactness. As excepted,
the running time rises fast as the grid size expands. Still, the larger grids

4.2. Local Search Heuristics 39

could be optimized in hours on, according to the authors, ’average’ PCs at
that time. Therefore, this approach clearly outperforms the previously dis-
cussed linear programming results of (Aerts, Herwijnen, and Stewart, 2003).
However, according to (Santé-Riveira, Boullón-Magán, Crecente-Maseda, et
al., 2008) this approach still has one big downside; it relies heavily on starting
with a relative good land-use allocation. Starting from scratch would result
a high computational burden, drastically increasing the time to solve prob-
lems. Also, the approach of (Aerts and Heuvelink, 2002) was still limited to
finding a single solution. In order to approximate the Pareto front, it would
therefore be necessary to re-run the algorithm multiple times given different
goals, which is a big disadvantage.

4.2.2 Pareto Simulated Annealing

The approach of (Aerts, Herwijnen, and Stewart, 2003) was limited to find-
ing a single solution given one aggregated objective function. To tackle this
issue, (Duh and Brown, 2007) applied a Pareto simulated annealing (PSA)
approach, capable of approximating (a subset of) the Pareto front in one run.

Pareto simulated annealing was first introduced by (Czyzżak and Jaszkiewicz,
1998). It is a modified version of simulated annealing that uses a set S of
interacting solutions at each iteration to propagate new solutions (Duh and
Brown, 2007). This starting set is (usually) generated at random. The fol-
lowing sets of solutions are created by applying local search operations on
previous solutions. In case a solution y is non-dominated by the solution x it
originates from, it can be added to a set M in case it is not dominated by so-
lutions of this set either. If added, the solutions of M that that are dominated
by the added solution are removed. As so, set M continuously contains all
non-dominated solutions found so far. If y is rejected (dominated), it can still
be added to M with a chance P equal to:

P(x, y, T, Λx) = min
{

1, exp
(D

∑
j=1

λx
j (f j(x)− f j(y))/T

)}
(4.8)

hereby, f j(x)− f j(y) equal the difference in objective value j for solution x and
y, with D objectives, temperature T and weighted vector Λx = [λx

1 , λx
2 , ..., λx

D]
of the previous iteration of x. The weighted vector Λx aims to create disper-
sion among the different solutions (Duh and Brown, 2007). For each solution
x ∈ S, the weights are updated after each iteration, and set to rise the chance
of going away from their nearest neighbour x

′
. The outline of the complete

algorithm is shown in Algorithm 1.

40 Chapter 4. Previous Research

Algorithm 1 Pseudo-Code PSA (Duh and Brown, 2007)

1: input: a initial set of solutions S
2: for all x ∈ S do
3: update set M with x
4: end for
5: set current temperature T to initial temperature T0
6: while stop conditions are not fulfilled do
7: for all x ∈ S do
8: construct a solution y
9: if y is not dominated by x then

10: update set M with y
11: end if
12: select x′ ∈ S nearest (non-dominated) to x
13: if x′ does not exist (or in the first iteration) then
14: assign weights at random, assuring ∀jλx′

j ≥ 0 and ∑j λx′
j = 1

15: else
16: for all objectives f j do

17: λx′
j =

{
αλx

j if f j(x) ≥ f j(x′)

λx
j /α if f j(x) < f j(x′)

18: end for
19: normalize the weights such that ∑j λx′

j = 1
20: end if
21: update x with y, given P(x, y, T, Λx′)
22: end for
23: if the criteria of adjusting the temperature are met then
24: lower T using T(k)
25: end if
26: end while
27: output: the set M

In the research of (Duh and Brown, 2007), different combinations of the com-
pactness maximization and cost minimization objectives are handled. In or-
der to do so in a more efficient manner, the authors generate new solutions
using two knowledge-informed rules; the compactness rule and the conti-
guity rule. In contrast to randomly swapping two cells, the compactness
rule preferentially moves a randomly selected cell to a location that promotes
compactness. For example, this could be a location that has the highest num-
ber of neighboring cells with the same cover type. On the other hand, the
contiguity rule encourages contiguous pattern characteristics by moving a
randomly selected cell to a location that promotes patch connectivity. For ex-
ample, a location that has one or more neighboring cells of the same cover
type. Both rules are proven to be more efficient and effective in maximizing
compactness than conventional simulated annealing approaches for single-
objective spatial pattern optimization problems.

The Pareto simulated annealing algorithm was applied to several benchmark
problems with and without the knowledge-informed (KI) rules (Duh and
Brown, 2007). The compactness related rule(s) showed to be more effective
in approximating the Pareto front when the compactness objective was in-
volved. However, the KI rules turned out to be less efficient in creating a
diverse set of solutions. In most cases, the solutions were more diverse when

4.2. Local Search Heuristics 41

the rules where not used. This was caused by the fact that rules (for exam-
ple the Compactness rule) can force PSA to preferentially explore and exploit
the objective(s) that have been made easier and result in neglecting other ob-
jectives. It therefore tends to steer the search towards these objectives. As
such, the rules should not be to ’aggressive’ and have to much influence on
the overall course of the search. The results were not compared to single-
objective simulated annealing approaches. Therefore, no comments can be
made on whether (multiple) a priori runs or one posteriori would be pre-
ferred in terms of time and solution quality.

4.2.3 Tabu Search

Another search heuristic applied to the MOLA problem, is tabu search (TS).
Tabu search incorporates a different way of hindering the algorithm to get
stuck in a local optimum or minimum. In contrast to simulated annealing,
tabu search always accepts a new solution, even if it is worse then the cur-
rent one (Matthews, Craw, Elder, et al., 2000). It uses a memory to prevent
the search from going to places it has already been and to keep it away from
local optima or minima (Sharma, 2005). All previous solutions that do not
satisfy certain conditions, are regarded as ’forbidden’ or ’Taboo’. In addition
to the tabu-list, a long-term memory list can also be used to guide the search
with a diversification strategy. This memory could direct the search to un-
visited regions of the search space, by the longterm prohibition of solutions
previously found.

Similarly to simulated annealing, tabu search is originally meant for single
objective problem optimization. In the research of (Sharma, 2005), the MOLA
problem was changed to a single-objective problem using an aggregated sum
method. A flow chart of their tabu search algorithm for MOLA is shown in
Figure 4.2. At first, a feasible initial solution is created. Next, a new solu-
tion was generated by randomly selecting one single land unit to swap, and
several (4 or 8) potential others to swap this cell with. The best one out of
these potential other cells was chosen and swapped. In case this solution im-
proved over the objective values of current one, it is accepted. Otherwise, the
solution is accepted with a chance equal to the ’potential hot-swaps’ chance,
which is called a hot swap. The potential hot-swap chance is calculated as
follows;

Potential Hot-Swaps = int
[

1
Swapping Rate/No. Of Steps

]
(4.9)

where the swapping rate denotes the total number of land-use swappings in a
step. The higher the total number of steps taken (iterations of the algorithm),
the less hot swaps will be performed. The chance will become 0 in when a
certain percentage (for instance 5%) of the number of swaps for each step is
reached. In case the swapping rate is met, the algorithm continues to the next
step. After each step, the search strategy, neighbourhood size, tabu list and
tabu length, and swapping rate can be adjusted. The tabu list contains all so-
lutions that have been forbidden for a certain number of iterations. The tabu
length states the number of iterations for which each of these solutions are
considered as forbidden. (Sharma, 2005). Finally, the algorithm ends when a
certain criterion is met, such as when no improvement is found after a step.

42 Chapter 4. Previous Research

FIGURE 4.2: Flow Diagram of a Tabu Search Algorithm for
MOLA (Sharma, 2005)

The advantage of a heuristic search algorithm as TS lies in the structured con-
trol of the search process. In comparison to simulated annealing, the user is
simply able to have more control on its search strategy. However, is obtained
at the expense of a significant book-keeping overhead (Matthews, Craw, El-
der, et al., 2000). Especially storing of the tabu list could become quite ex-
pensive at higher tabu lengths. The computational time of the TS based algo-
rithm for MOLA depended on (among others) the tabu size, swapping rate
and search strategy. According to (Sharma, 2005), within the combinatorial

4.3. Genetic Algorithms 43

methods, SA still performed better than TS. On average, SA resulted in higher
quality approximations given an equal running time. However, according to
(Sharma, 2005) this could be improved with more future research towards
appropriate search strategy and tabu list handling.

4.3 Genetic Algorithms

4.3.1 Introduction to Genetic Algorithms

Genetic algorithms (GA) are search heuristics based upon evolution (Whitley,
1994). In essence, GAs are a crude representation of natural evolution with a
population improving its genetics to best survive an environment (Matthews,
Craw, Elder, et al., 2000). A GA encodes solutions to a certain problem on a
chromosome-like structure, and uses recombination and selection on a pop-
ulation of solutions to slowly improve the overall quality. In this chapter, we
will discuss the basics of genetic algorithms, and how these can be used to
optimize combinatorial problems.

The general flow of a genetic algorithm is shown in Figure 4.3 An implemen-
tation of a genetic algorithm begins with a population of (random) solutions
(Whitley, 1994). Next, these solutions are evaluated, and their quality (fitness)
regarding the problem is being rated. In case of MOLA, the fitness could de-
pend on whether a solution dominates other solutions and/or is being dom-
inated by others considering the previously discussed objectives. Solutions
with a higher fitness, should have a higher chance of being selected as ’par-
ents’ for the creating new solutions for the next generation. These new solu-
tions are created by crossover and random mutation operators. A crossover
operator combines genes of different parents to create new off springs. In
MOLA, this could for instance mean that the land-use allocations of different
regions are being swapped/combined. A mutation operator randomly ad-
justs genes to alter these offspring, by for example swapping or adjusting a
few patches of the solution. The cycle of selecting parents of the current pop-
ulation, and generating off springs to create the next population, continues
until a certain stop criterion is met.

44 Chapter 4. Previous Research

FIGURE 4.3: Flowchart of Genetic Algorithm (Heydari and
Yousefli, 2017)

GAs have proven to be consistently effective in different fields of applica-
tion (Matthews, Craw, Elder, et al., 2000). The robustness of GA performance
can be seen in their consistent ability to find good solutions, particularly in
very large and complex search spaces. Furthermore, the population based na-
ture of their search reduces the likelihood to become trapped in local optima.
When globally optimal solutions are desired, a common approach has been
to combine the GA with local search heuristics such as hill-climbing to find
the peak in a certain region. Genetic algorithms are a common approach for
MOLA. One of the reasons for this, is the large search space of the problem.
However, efficiency of a GA depends on the existence of an appropriately re-
sponsive model to evaluate solutions, an effective representation of the search
space, and a compatible set of operators. The challenge of applying a GA to
MOLA, is therefore to find a suitable representation and operators, that allow
for an efficient convergence towards the optimum. For MOLA, a fast conver-
gence is desirable as it allows larger scale planning problem to be analyzed
interactively using planning tools.

4.3.2 Genetic Algorithms and MOLA

GAs can be applied to MOLA in two manners; using either an a priori or
a posteriori approach. A priori approaches have been discussed in Chapter
3.4.1. In most cases, the goal programming approach was used as was shown
in Equation (3.27). Often, the constraints of the MOLA problem, such as the
bounds on the number of cells per land-use type and minimum cluster, are
also added to the goal programming function. This can for instance be done
in the same manner shown in Equation (3.28), (3.29) and (3.30). In Chapter
4.3.8, we will outline several of these a priori approaches and compare these
to other techniques. In the second case, when a posteriori approach is chosen,
the genetic algorithm discussed in Chapter 4.3.1 is modified to return a com-
plete Pareto front. This means, that the fitness of a solutions now depends on
its fitness per objective in regard to other solutions. In general, the final pop-
ulation of such an algorithm is the approximation of the front. An often used
multi-objective genetic algorithm is the NSGA-II algorithm, which stands for

4.3. Genetic Algorithms 45

non-dominated sorting genetic algorithm. These algorithms, including their
application to MOLA, will be discussed in more detail in Chapter 4.3.8 and
4.3.9.

In general, a genetic algorithm as shown in Figure 4.3, exists out of five core
steps; deciding upon a chromosome representation and the four main steps
of the algorithm. Different chromosome representation can be chosen, as was
shown in Chapter 3.5. However, as we will see in Chapter 4.3.3, representa-
tions among previous research deviate relatively little. The first step of the
algorithm, is the initialization of the first population. This can either be done
randomly, or using techniques to enhance the quality of this population. The
second step, is a selection of the parents that will be used for recombination.
This should in some manner depend on the fitness of the solutions, where
a higher fitness should increase the chance of a solution being picked. The
third step is crossover, where parents exchange their genes and create new
children. The crossover operators can be divided in problem dependent and
independent operators, based upon whether they are specifically targeted at
MOLA. The final step is mutation, that in some manner should cause for
random changes among the children. In the following subchapters, we will
outline how these steps have been implemented for GAs for MOLA in pre-
vious research. As the representations chosen among almost all researches
deviate only little, the different techniques (such as the operators) can easily
be exchanges among distinct GAs for MOLA. Except for the selection part,
most outlined techniques can also be exchanged between single- and multi-
objective GAs.

4.3.3 Step 1: Representation

As shown in Chapter 3.5, there are multiple possible representations of the
problem. Genetic algorithms ask for a ‘chromosome’ representation that en-
codes the land-use allocations (Cao, Batty, Huang, et al., 2011). The manner
in which a chromosome and its genes are encoded, affects the possible oper-
ations and their efficiency. In general, there are two categories of representa-
tions; grid-based and vector-based representations.

The vector-based representation can allow for a relatively small decision vari-
ables size, as was discussed previously in Chapter 3.5.3. As such, if imple-
mented well, the amount of memory required to run the algorithm can be
kept rather small. Still, the vector-based representation been applied in only
few approaches, including the one of (Cao and Ye, 2013). Reason for this,
is that the vector-based representation method also brings some challenges.
First of all, the spatial relationships are much more sophisticated. It does not
take note of all spatial information or relations (that might for instance be
necessary for certain objectives), and could therefore require the use of a sup-
plementary data structure (Schwaab, Deb, Goodman, et al., 2018). Secondly,
it requires the user(s) to have knowledge about the area being optimized in
advance (Cao, Batty, Huang, et al., 2011). These complications led to a big
majority of the researchers applying a grid-based representation. Since the
big majority of the genetic algorithms make use of the grid-based representa-
tion, we will continue to use this representation in the following steps as well.
In case that a components is aimed at a vector-based representation, this will
be mentioned and (if possible) translated to the grid-based representation as
well.

46 Chapter 4. Previous Research

Finally, as for as concerned, no research has implemented the quad-tree rep-
resentation or the patch vector representation of Chapter 3.5.2 and 3.5.4. One
approach, by (Datta, Deb, Fonseca, et al., 2007), makes use of the the three-
dimensional model as formulated in Chapter 3.5.5. In this model, the grid-
based representation is extended with a third-dimension to represent time.

4.3.4 Step 2: Initialization

Theoretically, evolutionary algorithms are not dependant on the the initial
population. However, the quality of the initial population can have a sig-
nificant influence on the convergence speed of the GA (Datta, Deb, Fonseca,
et al., 2007). These initial solutions do not necessarily have to be feasible, in
case the GA has access to operators to fix infeasible solutions (Chapter 4.3.7).
According to (Datta, Deb, Fonseca, et al., 2007), it is observed that guidance
in the initialization for creating (nearly) feasible solutions, can help in a dras-
tic reduction of computational time for the GA. However, the initialization
is also of importance to the quality of the GA’s convergence (Cao, Huang,
Wang, et al., 2012). For example, one has to be careful not to use any settings
for initialization that may lead to local optima only. In the this section, we
will outline some initialization approaches used in previous research in more
detail.

The most simple initialization approach, is by simply creating random so-
lutions only. This method is, among other, applied in (Cao, Huang, Wang,
et al., 2012) and (Cao and Ye, 2013). Advantage of this approach, is its sim-
plicity and (probably) high divergence in solutions, decreasing the chance
of ending up in local minima. However, this approach could require a lot
of computational effort to converge. Another approach, is to generate part
of the initial population at random, and fill up the other part with solutions
that represent the current situation or ’status quo’ of the area. This initializa-
tion operator is named the problem-based initialization operator (PBIO). In
(Cao, Batty, Huang, et al., 2011), 90% was created at random and 10% was
status quo. In this manner, more information regarding the current situa-
tion remains involved, which can for example be relevant for maintaining
low development costs. Another simple approach that tends to retain part of
this information, was proposed in (Song and Chen, 2018). In their approach,
they randomly mutated part of the current situation (30%), while keeping
the rest intact (70%). A balance has to found between between the amount of
randomly created solutions and initial ones that support an efficient conver-
gence.

Knowledge-informed initialization strategies tend to create initial solutions
using properties for MOLA. The solutions hereby already respond to the ob-
jectives for as far as possible (Duh and Brown, 2007). One common knowledge-
informed initialization strategy based upon the use of a selection value, was
proposed and used in (Stewart, Janssen, and Herwijnen, 2004) and (Aerts,
Van Herwijnen, Janssen, et al., 2005). The strategy worked as follows. Every
solution was generation by first randomly selecting one cell (i, j), to which a
random type k was given. The chance of assigning a certain type to this cell
equals σijk (the selection value). The selection value indicates the benefit of
assigning land-use k to cell (i, j). Hereby, dijk = 0 when constraints prohibit
allocation of land-use k to this cell. The higher σijk, the higher the chance that

4.3. Genetic Algorithms 47

type k will be allocated to (i, j). In (Stewart, Janssen, and Herwijnen, 2004)
the chance Pij(k) for selecting land-use x of x = 1, ..., K for cell (i, j) is calcu-
lated linearly as follows;

Pij(x) =
dijx

∑K
k=1 dijk

(4.10)

After the randomly selected first cell has received a type, a random neighbor
of this cell is selected. Again, a land-use type is chosen based upon dijk for this
new cell (i, j). This process continues until a land-use type has been allocated
to all cells. The specific calculation of dijk can for example be done by sum-
ming up factors that contribute to the preference of k. In (Stewart, Janssen,
and Herwijnen, 2004), two factors are named that can be used to calculate the
selection value;

(1) A factor to encourage aggregations into clusters, when compactness is
being maximized. This factor should increase dijk with the number of neigh-
bouring cells of (i, j) that also have land-use type k. In (Stewart, Janssen,
and Herwijnen, 2004), this factor is defined as θvk , where vk is the number of
neighbouring cells already allocated to land-use k, and θ is the ’tuning factor’.

(2) A factor to encourage achievement of the target numbers for each land-
use, when these are bounded by constraints. In (Stewart, Janssen, and Her-
wijnen, 2004) this is done by first randomly selecting nominal target values
Sk for each land-use k within the given bounds. Next, the factor can be de-
fined as Sk−Sc

k
Sk

, where S1
k is the number of cells allocated to land-use k up to

this stage.

As mentioned, the process continues until a land-use type has been allocated
to all cells. In case no unallocated neighbour cells can be found before this
is met, another unallocated cell is selected at random and allocated. It can
occur that the area constrains certain cells to be converted to certain land-use
types. This can either be problem-specific or due to the choice not to alter a
certain part or percentage of the current situation. In that case, the selection
value Pij(x) can than be defined as follows (Li and Parrott, 2016);

Pij(x) = Bijx ×
dijx

∑K
k=1 dijk

(4.11)

where Bi j(x) is 0 if cell (i, j) may not be converted to land-use type k, and 1
otherwise. The advantage of this knowledge-informed strategy is the high
level of control that the land-use planner has due to the selection value func-
tion. Disadvantage, is the fact that it costs more computational time to gener-
ate an initial population than when generated randomly. Also, it may not be
desirable to make the selection function very ’extreme’ or specific in a manner
that it would significantly decrease variation between the initial solutions.

48 Chapter 4. Previous Research

4.3.5 Step 3: Selection

Selection is the procedure in which individuals are selected for reproduction
(Cao and Ye, 2013). Hereby, the selection operators should promote fit solu-
tions and nullify the less fit ones. This simulates the natural selection process,
where genes with a higher fitness have a higher chance to reproduce, result-
ing in an overall increase in fitness throughout the populations. As such, the
selection operator should provide higher probability of choosing a solution
for a crossover with a high fitness value (Aerts, Van Herwijnen, Janssen, et
al., 2005). Different selection mechanisms can be chosen, which will be out-
lined in the next paragraphs. In contrast to other GA components, most se-
lection techniques for single-objective GAs are not efficient (or even possible)
for multi-objective GAs. As such, we will handle those separately. At first,
we will be discussing methods for single-objective GAs for MOLA, of which
fitness proportionate selection is most common. Finally, we will discuss se-
lection methods for multi-objective GAs for MOLA, of which the NSGA-II
selection mechanism is applied most often.

Selection In Single-Objective GAs

A commonly used selection operator in single-objective genetic algorithms,
is fitness proportionate selection, also called roulette wheel selection. In fit-
ness proportionate selection, the probability of a particular solution being
selected as a parent is a function of a single fitness value function (Stew-
art, Janssen, and Herwijnen, 2004). As for a multi-objective problem such
as MOLA, this means that the objectives have to combined with for instance
an a priori method of Chapter 3.4.1. Next, a solution is chosen with relative
probability based on this function’s value. A simple and common approach
to do so, based upon linear interpolation, works as follows (Aerts, Van Her-
wijnen, Janssen, et al., 2005); First, calculate the fitness of all solutions using
an a priori technique such as goal programming. A (relative) probability of 1
is given to the individual with the most optimal objective value and a proba-
bility of ζ is given to the individual with the worst. The value of ζ needs to be
between 0 and 1. Next, the probabilities of the other solutions are calculated
by linearly interpolating. Next a solution will be chosen, where the chance
P(x) of a solution x ∈ S with interpolated value xp (ζ ≤ xp ≤ 1) is equal to;

P(x) =
xp

∑y∈S yp
(4.12)

To allow for additional tuning of the algorithm, the value of ζ is allowed to
vary during the process (Aerts, Van Herwijnen, Janssen, et al., 2005). This can
for example be done by defining two values ζ0 and ζ1, such that ζ is equal to
ζ0 in the first generation and linearly increases until its value is ζ1 in the last
(predefined) generation. Finally, the selection method can be combined with
other methods such as elitism selection, as was done in (Cao and Ye, 2013).
With elitism selection, the best k number or % of solutions are always copied
directly to the next generation. This can be used to overcome the (small)
chance of the individuals with the best fitness values not getting selected for
the next generation.

Selection In Multi-Objective GAs

4.3. Genetic Algorithms 49

In multi-objective genetic algorithms, it would not be suitable to base the
selection chance upon an a priori fitness function, as we are searching for the
complete Pareto front. As such, the selection chance in multi-objective GAs
is often based upon a solution’s dominance by other solutions of the popu-
lation. The ’less’ a solution is dominated by other solutions, the higher its
chance should be to be selected for the next generation.

The most adopted MOGA is the Non-dominated Sorting Genetic Algorithm
II (NSGA-II) algorithm. This algorithm provides a mechanism for selecting
candidates for the next population and deciding upon the fitness of its solu-
tions. As NSGA-II is the most applied multi-objective GA for MOLA, we will
now discuss its selection procedure in more detail. The overall outline of the
selection procedure of the algorithm is visualised in Figure 4.4.

FIGURE 4.4: Selection in NSGA-II(Deb, Pratap, Agarwal, et
al., 2002)

The algorithm starts off with population Pt, that creates an offspring popu-
lation Qt of equal size. The parent selection mechanism for recombination
will be discussed later. First, we will look at how the next population Pt+1 is
selected out of Pt and Qt. In order to do so, we need to determine which so-
lutions in this multi-objective space are considered ’best’. This is done using
non-dominated sorting and the crowding distance property.

50 Chapter 4. Previous Research

Algorithm 2 Pseudo-Code Fast-Non-Dominated-Sort (P) (Deb, Pratap, Agar-
wal, et al., 2002)

1: for all p ∈ P do
2: Sp = ∅
3: np = 0
4: for all q ∈ P do
5: if p ≺ q then
6: Sp = Sp ∪ {q}
7: else
8: if q ≺ p then
9: np = np + 1

10: end if
11: end if
12: end for
13: if np = 0 then
14: prank = 1
15: F1 = F1 ∪ {p}
16: end if
17: end for
18: i = 1
19: while Fi 6= ∅ do
20: Q = ∅
21: for all p ∈ Fi do
22: for all q ∈ Sp do
23: nq = nq − 1
24: if nq = 0 then
25: qrank = i + 1
26: Q = Q ∪ {q}
27: end if
28: end for
29: end for
30: i = i + 1
31: Fi = Q
32: end while

At first, the complete population Pt and Qt are sorted based upon their dom-
inance. As discussed in Chapter 2, a solution is said to be dominated by
another solution, if the other solution can improve on at least one of its ob-
jective values without degrading any of the other objective values. The non-
dominated sorting procedure sorts the solutions in ’ranks’. Hereby, solutions
in F1 are dominated by no other solutions, F2 are dominated by solutions from
F1, F3 by solutions from F2 and F1, and so on. The procedure of this sorting is
shown in Algorithm 2 (Deb, Pratap, Agarwal, et al., 2002). With M objectives
and population size of N, it has a complexity of O(M(2N)2) (Zitzler, Deb,
Thiele, et al., 2001). The lower the rank, the ’better’ we consider this solution
to be. Hence, the solutions are ordered by rank, and the ones with the lowest
ranking are taken to the next population.

4.3. Genetic Algorithms 51

FIGURE 4.5: Crowding Distance of a Solution (Cao, Batty,
Huang, et al., 2011)

Still, it can occur that we are not able to take all solutions of a certain ranking
to the next population. As such, we also need to be able to decide upon the
quality between solutions in the same non-dominated sorting rank. There-
fore, the crowding distance property is used. The crowding distance gives an
indication of the solution density in its neighbourhood, as shown in Figure
4.5. For each objective, all solutions are sorted and the distance between a
solution’s ’previous’ and ’next’ neighbour is added to its crowding distance.
The exact calculation of the crowding distance is shown in Algorithm 3. With
M objectives and population size N, it has a complexity O(M(2N)log(2N))
(Zitzler, Deb, Thiele, et al., 2001). The higher the crowding distance, the lower
the density of solutions in its neighbourhood. In general, these solutions are
preferred above solutions in dense areas, as this promotes ’spread’ among
the solutions (and genes) in the population. As such, the solutions with the
lowest crowding distance are taken to the next population.

Algorithm 3 Pseudo-Code Crowding-Distance-Assignment (I) (Deb, Pratap,
Agarwal, et al., 2002)

1: l = |I|
2: for all solution i ∈ I do
3: set I [i]distance = 0
4: end for
5: for all objective m ∈ M do
6: I = sort(I , m)
7: I [1]distance = I [l]distance = ∞
8: for i = 2 to (l − 1) do
9: I [i]distance = I [i]distance +

I [i+1].m−I [i−1].m
f max
m − f min

m
10: end for
11: end for

Using non-dominated sorting and the crowding distance, we have been able
to decide upon the solutions for the next population. Finally, we need to
decide upon what parents are going to produce offerings for the next pop-
ulation. In NSGA-II, this is usually done by doing binary tournaments (k
= 2) with randomly selected solutions from population P. The one with

52 Chapter 4. Previous Research

the lowest non-dominated sorting rank wins, or in case the rank is equal,
the one with the highest crowding distance. Sorting all solutions on fitness
costs O(2Nlog(2N)), with population size N. Note, that the non-dominated
sorting procedure has the highest complexity, and so dominates the overall
NSGA-II’s complexity.

Although most researches apply the standard NSGA-II selection mechanism
to MOLA, some variations on it have been introduced and tested on MOLA.
In (Song and Chen, 2018), a variation on NSGA-II is used where parents are
selected for reproduction at random. According to the researchers, random
parent selection has proven to work best with two-point-crossover (Chap-
ter 4.3.6) and swap-mutation (Chapter 4.3.7). Nevertheless, the general con-
viction is that parent selection based upon dominance and/or crowding-
distance leads to a faster convergence. As such, the vast majority of multi-
objective genetic algorithms for MOLA implement this standard selection
method.

4.3.6 Step 4: Crossover

In order to recombine solutions, crossover (also named recombination) is per-
formed, which is the process of exchanging genes between solutions (parents)
of the current population, to create new solutions (offsprings) (Cao, Huang,
Wang, et al., 2012). In order for a GA to realize an effective optimization pro-
cess, building blocks need to be formed and passed on through consecutive
populations in a manner that allows fit genes to survive. As such, suitable
crossover operators need to be chosen, that avoid the destruction of these
building blocks. In this section, several crossover operators will be outlined,
divided in four different categories. The four categories are defined using
two (independent) operator properties. First of all, a crossover operator can
either be problem dependent or problem independent (Cao, Huang, Wang, et
al., 2012). Problem independent operators do not exploit any characteristics
of the MOLA problem, where problem dependent operators do. In the case of
MOLA, a problem dependent operator could for example focus on maintain-
ing or increasing the compactness of its offsprings. Secondly, crossover op-
erators can be categorized using the chromosome representations on which
they operate. In the case of MOLA, previous research mentions operators
for the grid- and vector-based representation. Organized in four categories
using these two properties, the following paragraphs will outline the most
common crossover operators for MOLA.

Finally, note that after applying most of the crossover operators, the feasi-
bility of an offspring solution can not be always be guaranteed. It could
for example occur that offsprings violate the allocation ranges constraint of
Equation (3.3). In that case, a reparation mutation may need to be applied, in
order to fix this solution (Datta, Deb, Fonseca, et al., 2007). Reparation muta-
tions will be discussed in more detail later in Chapter 4.3.7.

Problem Independent Grid Crossover

A problem independent operator can be applied to any problem, whereas
a problem dependent operator is specifically designed for one problem, such
as MOLA. As such, exchanging a square or circle of a grid would be problem

4.3. Genetic Algorithms 53

independent, where the exchange of a land-use cluster would be problem de-
pendent. The advantage of a problem independent operator, is that they are
generally less complicated and computationally expensive. The downside,
is that they are often less efficient in optimizing the problem objectives then
tailored problem dependent operator.

The first independent crossover operator for grid-based MOLA that will be
discussed, is the two-dimensional crossover operator (TDX). The TDX oper-
ator works as follows. First, the grid is split up in four squares, by selecting
a row and a column at random. Next, these four blocks are recombined to
create new offsprings. This can be done in different manners. In (Datta, Deb,
Fonseca, et al., 2007), one random block was chosen and swapped. In (Li
and Parrott, 2016), the first (left-top) and fourth (right-bottom) are always
swapped. The latter is depicted in Figure 4.6.

FIGURE 4.6: The TDX Operator (Li and Parrott, 2016)

In the work of (Schwaab, Deb, Goodman, et al., 2018), multiple spatial crossover
operators were applied to MOLA, of which the results were compared. The
tested operators are visualised in Figure 4.7. The shown grids are the off-
springs after using the associated operator, where the darker areas contain
land-uses of one parent, and the light areas contain land-uses of the other.
The operators work as follows;

1. Uniform Crossover (UC): In this type of crossover, information is (typ-
ically) randomly exchanged between individual cells of the grid. In
some cases, other mixed ratios are used. Note, that this crossover type
is non-spatial, as it could also be applied to a vector.

2. Vertical/Horizontal Crossover (VC/HC): One random column (VC) or
one random row (HC) is selection, after which the parents are split into
two and recombined to new offsprings. The previously discussed TDX
operator is a combination of both.

54 Chapter 4. Previous Research

3. Vertical/Horizontal Band Crossover (VBC/HBC): Two random columns
(VBC) or random rows (HBC) are selection. The cells inside the created
region (band) is exchanged between the parents.

4. Angle Crossover (AC): A line is drawn that intersects the middle of the
grid with a random angle. Next, the parents are split and recombined
across this line.

5. Block Crossover (BC): Two random columns and two random rows are
selected. The information inside the block formed between these four
lines is exchanges between parents.

6. Block Uniform Crossover (BUC): Blocks are formed according to a cer-
tain predefined shape, such as pairs of two as in Figure 4.7. Next, uni-
form crossover is applied on these blocks.

FIGURE 4.7: Six Problem Independent Spatial Crossover Op-
erators (Schwaab, Deb, Goodman, et al., 2018)

The performance of the previous six operators was tested on MOLA in com-
bination with different mutation operators in (Schwaab, Deb, Goodman, et
al., 2018). However, results show that, when only using one operator in
combination with a basic NSGA-II algorithm, there are no significant dif-
ferences in their performance. The VBC and HC seem to perform slightly
better, but again these differences are of such small magnitude that they can
be neglected. The authors do not provide any explanation or justification of
the results obtained. Eventually, the crossover operators were combined with
mutation operators, to obtain more insight in what operators perform best.
This will further be discussed further in Chapter 4.3.7.

Problem Dependent Grid Crossover

Since the previously independent operators do not take any objectives and/or
problem properties in account, this can lead to an inefficient optimization
process. In fact, they can be very disruptive for clusters, which can be unde-
sirable when optimizing compactness. Therefore, problem dependent crossover
operators are, despite of their higher complexity, often preferred. By taking
the objectives of MOLA in account and understanding how/when these are
optimized, operators can be formed to stimulate these objective values in the

4.3. Genetic Algorithms 55

resulting offsprings.

The problem dependent crossover operators for MOLA with a grid repre-
sentation all have one aspect in common; they focus on the boundary cells
(or edge nodes) of a solution. A boundary cell is a cell that has at least one
neighbor cell with a different land-use type (Song and Chen, 2018). The rea-
son for these crossover operators to target boundary cells, is due to the fact
that compactness depends on the land-use type of neighbouring cells (Equa-
tion (3.13)). The compactness is minimized if a cell has as much neighbour-
ing cells of the same type as possible, meaning that you prefer to have as less
boundary cells in your solution as possible. Throughout previous researches,
different terms and notations are being used for crossover operators that de-
pend upon boundary cells. In this research, we will refer to these operators
as boundary cell crossover (BCX) operators.

FIGURE 4.8: The BCX-II Operator (Song and Chen, 2018)

The first BCX operator was introduced by (Datta, Deb, Fonseca, et al., 2007).
The operator works as follows. First, a random Hamming cell is chosen. A
Hamming cell is a cell of which the land-use differs between the two par-
ents. If the Hamming cell is on a boundary cell of the first parent, its type
is swapped with the type of that cell of the second parent. This means that
in case the cell only lays on a boundary of one of the two parents, only one
parent will be modified. The modification was applied to all Hamming cells
with a certain probability, modifying only a percentage of the Hamming cells.

A slightly modified version of BCX, which we will call BCX-II, was defined
by (Song and Chen, 2018). BCX-II only looks at the boundary cells of the first
parent. Meaning, that if the Hamming cell is a boundary cell of the first par-
ent, the land-uses are exchanged between both parents, and otherwise not.
The process of BCX-II is shown in Figure 4.8. All Hamming cells are checked
and swapped, meaning that the probability of the modification is set to 100%.
The BCX-II operator is computationally less expensive then BCX, as you only

56 Chapter 4. Previous Research

have to check whether a Hamming cell is a boundary cell in the first parent.
On the downside, clusters from the second parent can now be fragmented, as
can be seen in the second child of Figure 4.8.

FIGURE 4.9: The BCX-III Operator (Cao, Huang, Wang, et al.,
2012)

The previous crossover operators only focused on whether the Hamming cell
was a boundary cell or not. In (Cao, Huang, Wang, et al., 2012), a boundary
cell operator was introduced that also takes the land-use types of neighbour-
ing cells into account. The operator, which we will refer to as BCX-III, works
as follows. At first, a random Hamming cell is selected that is a boundary
cell on either one of the parents. Now, the land-use type of this cell is only
copied to the other parent, if afterwards it will have at least one neighbour of
the same type. This means that, in both directions, the land-use types of the
neighbouring cells of the Hamming cell need to be checked to assure that at
least one of them is of the same type. The process is depicted for one direction
in Figure 4.9. The operation will be repeated with a certain crossover rate for
all Hamming cells.

A slightly modified version of BCX-III, called BCX-IV, was introduced by (Li
and Parrott, 2016). It is shown in Figure 4.10. In this crossover operator, a
minimum number of neighbouring cells is defined that should be of the same
type as the land-use type being copied. In case of the image, this minimum
number is set to two. As can be seen, this means that the cell type of parent 1
is copied to parent 2, but not the other way around. Note, that this operator
can either be applied with four or eight neighbours. The advantage of tak-
ing the land-use types of neighbours in account, is that this avoids copying a
land-use type that will form a new cluster of size one. Using BCX and BCX-II,
this could occur, which is undesirable with respect to the compactness objec-
tive.

4.3. Genetic Algorithms 57

FIGURE 4.10: The BCX-IV Operator (Li and Parrott, 2016)

Problem Independent Vector Crossover

In this section, possible independent vector crossover operators for the MOLA
problem will be outlined. As mentioned before, the amount of research defin-
ing and implementing vector-based crossover operators is relatively small
compared to grid-based operators.

In (Cao and Ye, 2013), the single-point crossover (SPX) operator is used to
recombine vectors for the MOLA problem. The reason this operator was ap-
plied, was for its simplicity. Compared to previously discussed grid-based
crossover operators, the operator also has a very low computational com-
plexity. The SPX operator works as follows. First, a crossover point is chosen
somewhere on the vector, where both vectors are ’cut’ in two. Next, a part of
each parent is swapped, in order to form two new off springs. The process of
SPX is depicted in Figure 4.11

FIGURE 4.11: The SPX Operator (Cao and Ye, 2013)

Except for single-point crossover, other problem independent vector-based
crossover operators could be applied tot MOLA as well. However, as far as
we aware of, that has not yet been implemented in any previous research.
Examples of possible independent vector crossover operators that could be
used are k-point and uniform crossover. With k-point crossover, multiple
(k) random points are being chosen, after which the segments that are be-
ing formed between these points are exchanged. With uniform crossover, the

58 Chapter 4. Previous Research

land-use type of each cell will be exchanges with a certain probability. As was
discussed previously, this operator can and was also applied to grid-based
MOLA (Matthews, Craw, Elder, et al., 2000). Note, that these crossover oper-
ators might not be suitable when optimizing compactness, as they can easily
create more fragmentation among a solution’s clusters.

Problem Dependent Vector Crossover

As far as concerned, no previous research has been performed towards prob-
lem dependent crossover operators for MOLA using a vector representation.
One of the reasons for this lack of research, could be the fact that it is more
difficult to retrieve spatial information from a vector than a grid. When work-
ing with vectors, additive information is required for the spatial relations
between the cells or regions represented in the vector. This makes it more
difficult to for example identify boundaries than when using a grid-based
representation.

4.3.7 Step 5: Mutation

Mutations in a genetic algorithm, are comparable with biological mutations.
Mutations increase the diversity in the genes of the population, decreasing
the chance of being trapped in a local minimum (Cao and Ye, 2013). By intro-
ducing changes that would not arise through crossover only, the performance
of a GA can be increased significantly (Schwaab, Deb, Goodman, et al., 2018).
Contrariwise, too man mutations can also negatively influence the conver-
gence and quality of the optimization, in case too many good building blocks
are destroyed.

In the following paragraphs, several mutation operators will be outlined.
Similar to crossover, a mutation could lead to an infeasible solution, as the off-
spring might for example violate the minimum cluster size (Equation (3.16)
or minimum/maximum allowed number of cells per land-use type (Equation
(3.7)). In order to ’fix’ this, several ’repair’ mutations can be used, which will
also be introduced in this chapter. All operators are once more assigned an
operator code for referencing. Similar to the crossover operators of Chapter
4.3.6, a distinction will be made between operators that are either problem
dependent or independent, and grid- or vector-based.

Problem Independent Grid Mutation

In this section, multiple problem independent grid mutation operators will
be discussed that can be applied when using grid-structured chromosomes.

The most straightforward mutation operator, is the random cell mutation
(RCM) operator. It was applied in combination with NSGA-II, in the research
of (Masoumi, Maleki, Mesgari, et al., 2017). When applied to MOLA, the op-
erator simple picks a random cell and assigned a random different land-use
type to it. It can be applied to either one single cell, or to all cells with a cer-
tain mutation probability (rate).

An alternative to RCM, is the random cell swap mutation (RCSM). This op-
erator was applied to MOLA and tested in the research of (Schwaab, Deb,
Goodman, et al., 2018). The operator is, among with several others that will

4.3. Genetic Algorithms 59

be discussed later, visualised in Figure 4.12. Two random cells of different
land-use types are selected, of which the land-use types are swapped. Note,
that although the constraint concerning the number of cells per land-use type
can not be violated, the minimum cluster size constraint can.

FIGURE 4.12: The RCSM, BRCSM, RBM and RCLRM Opera-
tors (Schwaab, Deb, Goodman, et al., 2018)

A more disruptive mutation operator can be created, by mutating complete
blocks instead of separate cells. The most straightforward block mutation op-
erator, is random block mutation (RBM), as was implemented in (Schwaab,
Deb, Goodman, et al., 2018). A random location is chosen, where a block of
cells of predefined size is completely converted to a random land-use type.
The cells in this block that already had this type, remain untouched. The op-
erator is shown in Figure 4.12.

Instead of converting a block to one random type, it is also possible to re-
execute the initialization procedure on this block. This will be referred to as
the random block initialisation mutation (RBIM) and was applied on MOLA
in (Aerts, Van Herwijnen, Janssen, et al., 2005). The operator is knowledge
independent, as the operator itself does not take the problem (initialization)
in account.

Problem Dependent Grid Mutation

In this section, multiple problem dependent grid mutation operators for MOLA
will be discussed that can be applied when using grid-structured chromo-
somes.

The problem independent RCM operator converts a random cell, which could
lead to the fragmentation of existing or creation of new clusters, decreas-
ing the compactness. Hence, biased random cell mutation (BRCM) was in-
troduced, which takes the compactness in account. It simply increases the
chance of choosing a land-use type proportionate to the number of neigh-
bours having this type as well. In the case of (Li and Parrott, 2016), this was

60 Chapter 4. Previous Research

implemented using the following formula;

MPijk = Bijk ×
(

Nijk

8

)2

(4.13)

where MPijk is the (unnormalized) conversion probability of cell (i, j) to type
k, Nijk is the number of (the eight) neighbouring cells of cell (i, j) with type k,
and Bijk is 1 in case type k is allocated at cell (i, j) (otherwise 0).

Similar to with RCM and BRCM, we can also introduced a biased version of
RCSM. This was implemented by (Schwaab, Deb, Goodman, et al., 2018), and
will be referred to as biased random cell swap mutation (BRCSM). The opera-
tor is visualised in Figure 4.12. First, two random land-use types k are chosen.
Now, for each k a cell is chosen that will be swapped, of which the chance of
selecting this cell is inversely proportionate to its number of neighbouring
cells with the same k. This means, that the more a cell is surrounded by cells
of its own type, the less chance it has to be swapped. This decreases the
chance of clusters being fragmented or new ones being formed, resulting in
an overall higher compactness. In the research of (Schwaab, Deb, Goodman,
et al., 2018), the four-cell neighbourhood (Von Neumann neighbourhood) is
used to do so. The operator can also be used to stimulate other objectives
than compactness in a similar manner. In that case, the probability of a cell
conversion is biased according to the (other) objective value(s) of its neigh-
bours.

Besides mutating cells separately, it is again possible to mutate bigger spatial
forms as well. A simple problem dependent mutation to do so, is the random
cluster mutation (RCLM) operator. This operator was applied to MOLA in
(Li and Parrott, 2016). First, a land-use cluster composed of adjacent cells of
the same type is selected. Next, all cells of this cluster are converted to the
same land-use, which is randomly selected from the set of all possible land-
uses. A possible extension of this operator could be to make the chance of
selecting a cluster irreversibly proportionate to its size, as it can be very dis-
ruptive when applied to large cluster.

Another disruptive cluster mutation operator, was proposed by (Schwaab,
Deb, Goodman, et al., 2018). The operator, which we will refer to as the
random cluster removal mutation (RCLRM), removes a complete cluster and
reattaches it to other clusters of equal type. The authors describe the operator
for a MOLA problem with two land-use types, which is done as follows. At
first, a random cluster is selected, with the probability of a cluster getting se-
lected, being inversely proportional to its size. Next, the cluster is completely
removed, meaning that it is converted to the other (second) land-use type.
Finally, the same number of cells the cluster had, are ’re-attached’ to bound-
aries of other remaining clusters of the same type. The RCLRM procedure is
shown in Figure 4.12. The operator can be expended to support MOLA with
more than two land-use types as well, by for example converting the selected
cluster to a random other land-use type.

4.3. Genetic Algorithms 61

FIGURE 4.13: Example Patch Window (Cao, Huang, Wang,
et al., 2012)

A more often used spatial form for mutations on MOLA, is a randomly gen-
erated patch. Random patch mutation (RPM) is the most basic form of patch
mutation and was applied to MOLA in (Cao, Huang, Wang, et al., 2012). The
RPM procedure works as follows. First, a patch is created by randomly se-
lecting 7 cells from a 3x3 grid as visualised in Figure 4.13. Selecting 7 cells
will always result in one continuous patch, which is beneficial for the com-
pactness. Next, the patch is placed at a random location in the grid, and all
cells inside are converted to a random land-use type. The complete RPM pro-
cedure is visualised in Figure 4.14.

FIGURE 4.14: The RPM Operator (Cao, Huang, Wang, et al.,
2012)

A second slightly modified version of RPM, which we will refer to as RPM-
II, was proposed by the same authors (Cao, Huang, Wang, et al., 2012). The
RPM-II operator uses the same procedure as RPM, but only converts the cells
in the patch if one of its neighbouring cells has the same land-use type as the
patch will retrieve. In that manner, it assured that the patch will not introduce
a new cluster of this color. It is still able to fragment surrounding clusters of
different land-use types.

A third variation of the RPM operator was introduced by (Cao, Batty, Huang,
et al., 2011). The operator, which we will call RPM-III, sets the color of the
patch to the most occurring land-use type of its current 7 cells. In this manner,
the chance of cluster fragmentation is again decreased. Also, the constraint
concerning the allowed number of cells to which each type may be allocated
is violated less quickly. The RPM-III operator was applied to MOLA in the
research of (Song and Chen, 2018).

Finally, the patch form can also be used to perform a swap, as is done with
random patch swap mutation (RPSM) (Cao, Batty, Huang, et al., 2011). First,
a patch is formed using the same approach as with RPM. Next, two random
locations are chosen for the patches, while making sure that the patches do
not overlap. Next, the land-use types of the patches were swapped. Swap-
ping ensures that the number of cells per land-use type remains equal. The
minimum cluster size can still be violated.

62 Chapter 4. Previous Research

FIGURE 4.15: The RPSM Operator (Cao, Batty, Huang, et al.,
2011)

Similar to most problem dependent crossover operators, several mutation
operators focus on the boundary cells of a solution. Most straightforward,
is the random boundary cell mutation (RBCM), as was proposed in (Datta,
Deb, Fonseca, et al., 2007). The operator works as follows. First, all bound-
ary cells are detected. Next, one boundary cell is selected at random, and
its land-use type is converted to the type of one of its neighbours (chosen at
random). Note, that the procedure of sorting all boundary cells can be rather
expensive. The authors mention this to be necessary, in order to have the pos-
sibility of giving different selection probabilities to the boundary cells, but do
not further elaborate on this aspect.

Finally, several mutation operators have been proposed that are intended to
repair infeasible solutions which violate the problem constraints. The most
basic repair mutation operator, is the random cell repair mutation (RCRM)
(Cao, Batty, Huang, et al., 2011). The RCRM can be used to fix or reduce
the magnitude a violation of the allowed number of cells per land-use type.
The operator works similar to RCM, but now the land-use type of which a
cell may be selected and converted to, are based upon the violation of the
constraint. First of all, in case there are land-use types of which the num-
ber of cells are above the upper bound, only one of these may (randomly)
be selected for mutation. Secondly, in case there are land-use types of which
the number of cells are below the lower bound, the selected cells may only
(randomly) be converted to one of these. The RCRM operator is visualised
in Figure 4.16. The RCRM mutation operator can be applied multiple times,
until the number of cells per land-use types are all within range again.

FIGURE 4.16: The RCRM and BCRM Operators (Schwaab,
Deb, Goodman, et al., 2018)

4.3. Genetic Algorithms 63

A disadvantage of the RCRM operator, is the fact that it can easily fragment
or create clusters, which is not beneficial for the compactness. Therefore, the
biased cell repair mutation (BCRM) was introduced by (Schwaab, Deb, Good-
man, et al., 2018). The procedure of BCRM is almost similar to the procedure
of RCRM. However, the chance of a cell to be chosen is now higher if it has
a lower compactness. As such, chances are higher that boundary cells are
being converted, which is beneficial for the compactness. The procedure is
visualised in Figure 4.16. The BCRM operator was described for a MOLA
problem with two different land-use types. In case more land-use types are
used, it can also be beneficial to count the number of neighbours having the
same ’new’ land-use type. As such, the chance of creating new 1-cell clusters
can be reduced as well.

Another repair mutation operator, is the random patch repair mutation (RPRM)
operator (Cao, Huang, Wang, et al., 2012). Similar to the RCRM operator, the
RPRM operator can be used in case the allocation ranges constraint is vio-
lated. The operator works similar to RPM, but now the probability of the
type and location of the path is biased. First of all, the probability of select-
ing a certain land-use type for the patch increases, when the number of cells
of this type is currently below its lower bound. Secondarily, the probability
of selecting a location located on a cell of certain type increases, when the
number of cells of this type is above the upper bound. The research of (Cao,
Huang, Wang, et al., 2012) does not specify how these probabilities are calcu-
lated in their implementation. The RPRM operator is expected to have a less
negative effect on the compactness compared to the RCRM operator. How-
ever, in case the allowed range of cells per land-use type is rather small or
even an exact number, converting complete patches might be an inefficient
approach to eventually reach such a specific goal.

Next, a repair mutation operator based upon boundary cells was described
in (Song and Chen, 2018). The operator, which we will call random bound-
ary cell repair mutation (RBCRM), is a modified version of the previous dis-
cussed RBCM. The operator is shown in Figure 4.16 and works at follows. At
first, all boundary cells are defined and a random boundary cell is selected.
Next, the number of cells with a type equal to this boundary cell are counted.
If this number is below the lower bound, the cell will not be converted to
another type. If this number is above the upper bound, the cell will be con-
verted to a random other land-use type (excluding the current type). In case
the number is within its allowed range, the cell will be converted to a random
type out of all types (including the current type). Similar to RBCM, defining
all boundary cells can be computationally expensive.

The previous solutions all focus on repairing violations of the allowed num-
ber of cells per type. Another constraint that can be violated and repaired, is
the minimum cluster size. In (Datta, Deb, Fonseca, et al., 2007), the MSIS2 op-
erator was defined, which was inspired by the MSIS repair operator for class
timetabling problem. The MSIS2 can be applied to a solution when the min-
imum cluster size constraint is violated, and works as follows. First, a naive
search is executed to detect all boundary cells. For each of these boundary
cells, the area of the corresponding cluster is calculated. In case the size of
a cluster is below the minimum, neighboring cells (of this cluster) will be
merged into this cluster. As can be seen, the MSIS2 operator can be a rather

64 Chapter 4. Previous Research

computationally expensive operator. No further researches besides (Datta,
Deb, Fonseca, et al., 2007) implements MSIS2 or any other operator for clus-
ter size violation.

Problem Independent Vector Mutation

As far as we are aware, only one problem independent vector mutation for
MOLA has been defined and applied in previous research. This was done by
(Cao and Ye, 2013), which also implemented the previously discussed prob-
lem independent vector crossover operator SPX. The mutation operator the
authors choose to apply to MOLA, was the single-point mutation (SPM) oper-
ator. The operator randomly selects one value (cell) in the vector, and changes
its value (type). The SPM operator for vectors has the same result as the RCM
mutation for grids. It was chosen by the authors for its simplicity.

Except for the SPM operator, other independent vector mutations could be
applied to MOLA as well. Examples of such, are the swap and inversion mu-
tation. The swap mutation simply swaps the values of two random values of
the vector, whereas the inversion mutation inverses a random subset of the
vector. Unfortunately, no research seems to implement any other operator
besides SPM in the domain of MOLA.

Problem Dependent Vector Mutation

Again, no problem dependent vector mutation operator seems to have been
defined or implemented in previous research. As was also the case with
crossover operators, the amount of research towards vector-based mutation
operators is relatively scarce. Again, this could be caused by the difficulty
of obtaining spatial information corresponding to the values (regions) of the
vector.

4.3.8 Single-Objective GAs for MOLA

Single-objective GAs have been applied to MOLA using a priori approaches
in multiple researches. In this section, several of these application will be
outlined. The focus will be on the eventual results that were obtained with
these algorithms, in order to point out their advantages and disadvantages
compared to other approaches.

Single-Objective Genetic Algorithm I

The first single-objective GA for MOLA that will be discussed, is from (Stew-
art, Janssen, and Herwijnen, 2004). The authors tend to minimize the costs,
number of clusters per land-use and relative magnitude of the largest clus-
ter, while maximizing compactness. The GA used goal programming as de-
fined earlier in Equation (3.27), in combination with a penalty for exceeding
bounds as was defined in Equation (3.28), (3.29) and (3.30). The GA imple-
ments a grid representation, and initializes uses Equation (4.10) and the two
factors named afterwards. Selection is done according to fitness proportion-
ate selection and crossover according to a problem dependent grid crossover
operator that split clusters in half and switch their type. Finally, mutation
was done using random block mutation (RBM). Eventually, the algorithm
was applied to a MOLA problem with a grid of only 20x20 and 40x40. The

4.3. Genetic Algorithms 65

results focus mainly on the computational time of the GA. Hereby, the com-
putational time appears to increase quadratically with problem size defined
by the number of cells. Since it is eventually desired to solve MOLA with
much larger grids than 40x40, more research towards the refinement of this
algorithm is needed. According to the authors, one possibility would be to
retain a relatively coarse resolution for initial exploration, and to increase the
resolution for final tuning of the selected plans. Another option may be to
simplify the spatial criteria and reduce the number of objectives. One year
later in (Aerts, Van Herwijnen, Janssen, et al., 2005), the same authors of
(Stewart, Janssen, and Herwijnen, 2004) extended their research with a more
comprehensive comparison with an algorithm for MOLA based on simulated
annealing. The general working of the single-objective simulated annealing
algorithm is shown in Figure 4.1 and compared to the previous GA on a 20x20
MOLA problem with the same objectives (Figure 4.17). The results show that
the GA generates slightly better results than simulated annealing (higher ob-
jective values). Especially considering the compactness values, the GA tends
to win over the SA approach. The performance regarding the cluster size ob-
jective was slightly better for the SA algorithm.

FIGURE 4.17: The original map (left), result of optimization
with SA (centre) and result of optimization with GA (right)

(Aerts, Van Herwijnen, Janssen, et al., 2005)

Single-Objective Genetic Algorithm II

The second single-objective GA that will be discussed, was proposed by (Cao
and Ye, 2013). A vector representation was used, including a goal program-
ming approach based on Wierzbicki as was defined in Equation (3.26). Initial-
ization was done by creating random solutions and selection was done using
fitness proportionate selection combined with elitism selection. Furthermore,
crossover was done using single-point crossover as was shown in Figure 4.11
and mutation was realized using single-point mutation. Besides this single-
objective algorithm (GGA), another version using parallelism was proposed
and implemented as well (CGPGA). This coarse-grained type GA separates
the chromosomes into several subsets to improve performance. Both algo-
rithms were applied on a MOLA problem with a vector of size 586 and the
objectives of maximizing the ecological suitability, accessibility and compat-
ibility. The results of the single-objective GA were compared to the modi-
fied parallel version, as shown in Figure 4.18. With small population sizes
(N=100), the performance of both were similar. When increasing the popu-
lation (N=400), the parallel version became around 2.5 times as fast. As con-
cerned the quality of the solutions provided by both algorithms, they were all
near-optimal. Unfortunately, no further analysis, for example by comparing
the algorithms to other available (grid based) approaches, was performed.

66 Chapter 4. Previous Research

FIGURE 4.18: Comparison between GGA and CGPGA (Cao
and Ye, 2013)

Single-Objective Genetic Algorithm III

The third single-objective GA for MOLA that will be discussed, was imple-
mented in (Cao, Huang, Wang, et al., 2012). The GA was applied using the
goal programming approach of Equation (3.26). A grid based representation
was used, with randomized solutions as the initial population. Selection was
done using fitness proportionate selection, and the boundary cell crossover
operator (BCX-III) as shown in Figure 4.9 was applied for recombination.
Mutation was done using random patch mutation (RPM and RPM-II) as vi-
sualized in Figure 4.14. Finally, the random patch repair mutation (RPRM)
operator was implemented for reparation. The algorithm was applied to a
MOLA problem with eight different objectives, among which all five objec-
tives described in Chapter 3.3. Besides this, five different land-use types were
present. At first, the run time of the algorithm was compared to a simple GA
with basic problem independent operators. This GA took about 45.5h to fin-
ish the process, whereas the proposed GA only required 5.5h. Except for
this comparison, the results mainly focus on the quality of solutions gained,
discussing the scores obtained for each objective. According to the authors,
the best solution found would be of such high quality that it could notably
contribute to the actual planning process. However, no further comparisons
between other approaches were given.

FIGURE 4.19: Comparison between GA and SA (Li and Par-
rott, 2016)

4.3. Genetic Algorithms 67

Single-Objective Genetic Algorithm IV

The final single-objective GA for MOLA that will be discussed, was proposed
by (Li and Parrott, 2016). The GA implements a grid representation, and uses
goal programming based on Wierzbicki for combining the objectives. Ini-
tialization is done using the knowledge-informed strategy that implements
a selection value, as was described in Equation (4.11). Furthermore, selec-
tion is done using fitness proportionate selection and recombination is done
using boundary cell crossover (BCX-IV) and two dimensional crossover op-
erator (TDX). Finally, mutation was implemented using random cluster mu-
tation (RCLM) and biased random cell mutation (BRCM). The algorithm was
applied to a MOLA problem with three objectives, eight different land-use
types and a grid size of 364 x 482 cells. The GA eventually took 9h to com-
plete the process. This is a significant improvement compared to the 4.5h of
(Cao, Huang, Wang, et al., 2012), which run with a grid size that was only
one tenth of this one. However, the population size is only 20, which is con-
siderably less than that required by the common GA. Eventually, the GA was
also compared to an SA based approach. The comprehensive objective val-
ues over time for both SA and GA are shown in Figure 4.19. The results
show that in the first 2h of computation, SA performed better than GA, with
a comprehensive value that was smaller than that of GA. However, after the
second hour, the rate of convergence of SA gradually reached 0; while our im-
proved GA continued to evolve, resulting in a more ideal land-use scenario.
Thus, while for our case study an SA would likely stop sooner, having con-
verged towards a solution, the GA computes for a longer period of time and
ultimately finds a more optimal land-use solution. This may be because the
evolutionary operations, i.e., crossover and mutation, improve the ability of
the GA to satisfy both the additive and spatial objectives. Still, as the authors
mention, even with improved heuristics that increase the efficiency, there is
still a gap between what the technology can provide and the computational
demands of interactive land-use planning. Future research should for exam-
ple focus on ways to enhance the efficiency of methods for MOLA. Heuristics
such as GA and SA are currently insufficient.

4.3.9 Multi-Objective GAs for MOLA

The majority of algorithms that have been applied to MOLA are multi-objective
GAs. In this section, several of these implementations will be outlined. For
more details on the exact working of NSGA-II, view Chapter 4.3.5. In this
section, the focus will be on the implementation of the algorithms together
with the results that were obtained.

Multi-Objective Genetic Algorithm I

The first multi-objective GA for MOLA that will be discussed is from (Datta,
Deb, Fonseca, et al., 2007), who introduced the ’NSGA-II-LUM’ algorithm.
The authors applied the algorithm on a three-dimensional MOLA problem
as was discussed in Chapter 3.5.5. Initialization was done at random and
two dimensional crossover operator (TDX) and boundary crossover operator
(BCX) were used for crossover. Furthermore, random boundary cell muta-
tion (RBCM) in combination with the boundary cell repair mutation (BCRM)

68 Chapter 4. Previous Research

were used for mutation. Optionally, an (computationally expensive) guid-
ance/repair procedure could be used to reduce the violation of (initial) so-
lutions. The objectives are merged into a single weighted objective in the
following manner:

Minimize:

F(x) =
M
∑
i=1

w̄x
i fi(x) (4.14)

whereM equals the number of objective functions, and weight w̄x
i (of objec-

tive i) is defined as:

w̄x
i =

(f max
i − fi(x))/(f max

i − f min
i)

∑Mj=1((f max
j − f j(x))/(f max

j − f min
j))

(4.15)

hereby f min
i and f max

i are equal to the minimum and maximum objective val-
ues of objective i that have been found. After all weights have been calcu-
lated, a local search is performed. The local search operators used in NSGA-
II-LUM of (Datta, Deb, Fonseca, et al., 2007), replaced every boundary cell
by one of its adjacent cells (in case the constraints allows so). Then F(x) is
re-evaluated, and the change (for each boundary cell) is accepted if an im-
provement in F(x) is found.

The results of (Datta, Deb, Fonseca, et al., 2007) showed interesting insights
regarding the feasibility of solutions. The algorithm was applied to a MOLA
problem with a 100x100 grid and 5 different land-use types. One of the con-
straints concerned a minimum and maximum cluster size. Without any spe-
cial guidance, the NSGA-II was not able to produce any results that satisfied
this constraint. First of all, all solutions in the initial population (generated
at random) violated the problem constraints. Secondly, even after 5000 gen-
eration (where the the BCRM repair operator was also active), there was no
feasible solution among the final results either. As such, a special guidance
procedure had to be applied, which increased the computational complexity
of the process significantly. For more details on this procedure, view (Datta,
Deb, Fonseca, et al., 2007). Next up, a comparison was made between the
problem independent crossover operator TDX and the problem dependent
crossover operator BCX. The results are shown in Figure 4.20, where all three
objectives needed to be minimized. Remarkably, using the problem indepen-
dent TDX operator resulted in higher quality solutions. A test was performed
to discover whether these bad results were caused by the mutation ratio of
BCX. However, with every mutation ratio (0-100%) for BCX, the TDX still de-
livered better results. Finally, no further comparisons were made between
NGSA-II-LUM and other algorithms for MOLA.

4.3. Genetic Algorithms 69

FIGURE 4.20: NSGA-II-LUM using TDX, RBCM and BCRM
(left) and BCX, RBCM and BCRM (right) (Datta, Deb, Fonseca,

et al., 2007)

Multi-Objective Genetic Algorithm II

The second application of NSGA-II to MOLA that will be discussed, is the
’knowledge-improved’ NSGA-II (KI-NSGA-II) algorithm introduced by (Schwaab,
Deb, Goodman, et al., 2018). According to these authors, the KI-NSGA-II dif-
fers from NSGA-II on three different aspects. First of all, the ’archive’ size was
being limited. The archive contains the best (non-dominated) solutions that
have been found. The archive is updated after every generation, and its size
can be become quite large. Limiting the size to the population size by trunca-
tion non-dominated solutions with the lowest crowding distance when this
size is exceeded, could so prevent this from happening. Eventually, this could
increase the performance of NSGA-II. Secondly, a knowledge-informed ini-
tialization strategy is being used; instead of randomly generating solutions,
solutions are now generated by mutating 30% of the current situation. Fi-
nally, three knowledge-informed operators are being used; the boundary cell
crossover operator BCX-II, the random patch mutation operator RPM-III and
the random boundary cell repair mutation operator RBCRM.

70 Chapter 4. Previous Research

FIGURE 4.21: OFV Values of NSGA-II and KI-NSGA-II (Song
and Chen, 2018)

Both NSGA-II and KI-NSGA-II were applied to a MOLA problem on a 30x30
grid with three different land-use types. Four objectives were optimized;
maximization of the suitability for agricultural, construction and conserva-
tion (obj. 1 to 3) and maximization of the overall compactness (obj. 4). The
performance of the algorithms were measured, by plotting the the average
OFVs of the solutions for the four objectives, as shown in Figure 4.21. The
OFV value is based upon the ARI and ACD values, which are measure for
respectively the closeness to a the Pareto front and the diversity of the solu-
tions. View (Schwaab, Deb, Goodman, et al., 2018) for the exact calculation
of both both values. As a lower OFV value is better, the KI-NSGA-II does not
perform any better regarding obj. 1 and 2, but it is obviously more efficient in
handling obj. 3 and 4. The improvement in obj. 3 can be explained by the fact
that land that is to be conserved, is strictly protected from being converted
during the initialization and the operators used. The improvement in obj.
4, the compactness, is most likely caused by the fact that both the crossover
and mutation operators are designed to encourage compact land allocation,
in contrast to the operators of the classical NSGA-II algorithm.

4.3. Genetic Algorithms 71

FIGURE 4.22: Computational Time of NSGA-II and KI-
NSGA-II (Song and Chen, 2018)

As can be seen in Figure 4.22, when the number of generations increases, the
computation time of KI-NSGA-II increases at a lower rate than the compu-
tation time of NSGA-II. Eventually, NSGA-II took 13 hours and 11 minutes
to complete 5000 generations whereas the KI-NSGA-II algorithm took only 9
hours. Together with the previously compared OFV scores, we can so con-
clude that KI-NSGA-II performs better than NSGA-II.

Multi-Objective Genetic Algorithm III

The final multi-objective GA for MOLA that will be discussed, is the so-called
NSGA-II-MOLU algorithm from (Cao, Batty, Huang, et al., 2011). The algo-
rithm uses a grid representation, with an initial population existing out of
random solutions (90%) and solutions with the current land-use allocation
(10%). Remarkably, the algorithm does not implement crossover; instead, it
implements the random patch swap mutation (RPSM) operator as a ’single-
parent’ crossover operator. Furthermore, the random patch mutation (RPM)
and random cell repair mutation (RCRM) are used. The algorithm was ap-
plied to a 400x400 grid with 5 different land-use types. Three objectives were
optimized; minimization of the conversion costs, maximization of the acces-
sibility, and maximization of the compatibility. The authors claim the algo-
rithm to be a step forwards in terms of speed. The use of these three (mu-
tation) operator, made the algorithm require less than 10 minutes of compu-
tation for 1000 generations with a population of size 100 on a standard (ca.
2010) general PC. The authors state this proves that single-parent crossover
(RPSM) operator is superior to traditional two-parent crossover. However,
no actual comparison with an algorithm implementing two-parent crossover
was done to prove this claim.

72

Chapter 5

Pareto Local Search

In this chapter, a small literature study towards the Pareto Local Search algo-
rithm will be conducted. This will be succeeded by several variations on this
algorithm, such as multi-start Pareto local search, iterated Pareto local search
and genetic Pareto local search. Finally, the possibilities of anytime behavior,
including several neighborhood search strategies, will be handled.

5.1 Definition

Pareto Local Search (PLS) is a simple iterative improvement algorithm for
multi-objective combinatorial optimization problems. It was first proposed
and experimentally tested in (Paquete, Chiarandini, and Stützle, 2004) for
the multi-objective traveling salesman problem. Independently, a similar al-
gorithm was proposed by (Angel, Bampis, and Gourvés, 2004). Pareto Local
Search extends the single-objective hill climbing algorithm to make it suitable
for multi-objective problems as well (Cabrera-Guerrero, Mason, Raith, et al.,
2018). In PLS, an archive is used to store the best (non-dominated) solutions
that have been found so far. At the beginning, the archive only holds the
initial solution. Next, local search operators are applied to solution(s) in the
archive, to obtain new solutions. Solutions that are non-dominated by the so-
lutions in the archive are added. At the same time, solutions from the archive
that become dominated are removed. As so, the PLS algorithm continuously
improves upon a set of solutions, instead of a single one.

Algorithm 4 PLS (A0) (Paquete, Chiarandini, and Stützle, 2004)

1: input: The initial set of non-dominated solutions A0
2: explored(s) := FALSE ∀s ∈ A0
3: A := A0
4: while A0 6= ∅ do
5: s := select random solution from A0
6: for all s′ ∈ N (s) do
7: if A 6≺ s′ then
8: explored(s′) := FALSE

9: A := Update(A,s′)
10: end if
11: end for
12: explored(s) := TRUE

13: A0 := {s ∈ A | explored(s) = FALSE}
14: end while
15: output: A

5.1. Definition 73

Algorithm 4 illustrates the PLS framework (Dubois-Lacoste, López-Ibáñez,
and Stützle, 2015). The PLS algorithm is called with a set A0 that contains
(non-dominated) starting solutions. All of these are given the status ’unex-
plored’. Now, PLS continuously keeps record of an archive A, to which all
solutions of A0 are initially added. Next, the algorithm iteratively picks a so-
lution s from the unexplored solutions of A and explores its neighborhood.
All solutions found that are non-dominated by all solution of A, are added
to A. At the same time, solutions that now get dominated are removed from
A. The updating procedure is responsible for this process, and is shown in
Algorithm 5. After all solutions of the neighborhood of s have been exam-
ined, s is given the status ’explored’. PLS terminates after are solutions in A
have received this status. The final archive A is the outcome (Pareto front
approximation) of the algorithm.

Algorithm 5 Update(A, A′) (Paquete, Chiarandini, and Stützle, 2004)

1: input: A set of non-dominated solutions A and a set A′
2: A′′ := ∅
3: for all s ∈ (A∪A′) do
4: if s′ ∈ (A∪A′) 6≺ s then
5: A′′ := A′′ ∪ s
6: end if
7: end for
8: output: A′′

The PLS algorithm can be decomposed in four main algorithmic components
that need to be defined before running the algorithm (Dubois-Lacoste, López-
Ibáñez, and Stützle, 2015).

• Input initialization. Although this is officially not part of the algo-
rithm, this component defines the input of the algorithm. Note, that
it is possible to start of with a single solution (for example the current
land-use allocation) as input A0.

• Selection procedure. This procedure is responsible for selecting a solu-
tion from the archive of which the neighborhood will be explored next.
In the standard PLS algorithm, the (yet unexplored) solution is chosen
from the archive at random.

• Acceptance criterion. This procedure is responsible for determining
whether or not a new solution may be added to the archive or not. In
the standard PLS algorithm, a solution may be added to archive in case
it is not dominated by any other solution currently in the archive.

• Neighborhood exploration. This procedure is responsible for explor-
ing the neighborhood of a solution. In the standard PLS algorithm, this
is done by examining the complete neighborhood. Other strategies will
be discussed later in Chapter 5.4.

The standard version of PLS has proven to be an efficient technique for many
multi-objective optimisation problems. Over time, different variants of the
PLS have arisen over time to improve on the performance. The Multi-Restart
PLS, Iterated PLS and Genetic PLS will now be discussed in Chapter 5.2.1,

74 Chapter 5. Pareto Local Search

5.2.2 and 5.2.3. Finally, PLS is said to have poor ’anytime behavior’, stating
that it can take up to a long time before A contains a (relatively) qualitative
approximation of the Pareto front. In Chapter 5.4, we will discuss several pos-
sible improvements for the anytime behavior of PLS. This will, among other
extensions, include a variety of possible neighborhood exploration strategies.

5.2 Variants

5.2.1 Multi-Restart Pareto Local Search

The first variant of PLS that will be discussed, is the multi-restart Pareto local
search (MPLS). This algorithm tends to prevent getting stuck in a local op-
timum or minumum, by iteratively restarting the PLS algorithm with a new
random initial population. In this section, a variant on the ’standard’ MPLS
algorithm will be discussed, that uses a set of non-dominated solutions as the
new initial population, instead of only one (random) solution. The pseudo-
code for the algorithm is shown in Algorithm 6 (Drugan and Thierens, 2012).

Algorithm 6 Multi-Restart PLS (T) (Drugan and Thierens, 2012)

1: input: A stopping criterion T
2: A := ∅
3: while Stopping criterion T is not met do
4: s := generate random solution (uniformly)
5: A′ := Deactivate(s, A)
6: A := Update(A, Pareto Local Search(A′))
7: end while
8: output: A

The input parameter for MPLS is its own stopping criterion. This can, for
instance, be the maximum number of restarts. At the start of each restart, a
random solution s is generated. Given the deactivation procedure of Algo-
rithm 7, this solution is used to create a Pareto set out of A that will serve as
the input for the next PLS run. This Pareto set exists out of s and all solutions
of the archive that do not dominate nor are being dominated by s. Finally, the
outcome of the PLS algorithm is used to update archive A .

Algorithm 7 Deactivate(s, A0) (Drugan and Thierens, 2012)

1: input: An set of non-dominated solutions A0
2: A := {s}
3: for all s′ ∈ A0 do
4: if s 6≺ s′ and s′ 6≺ s then
5: A := Update(A, s′)
6: end if
7: end for
8: output: A

The difference between the MPLS of Algorithm 6 and the basic MPLS of (Pa-
quete, Chiarandini, and Stützle, 2004), is the use of the deactivation algo-
rithm. However, as most solutions from A will most likely dominate s, the
procedure will probably still lead to a set with only s (and so by similar to

5.2. Variants 75

standard MPLS). As so, the deactivation procedure will most likely only be
profitable in case relatively fit new solutions can be created.

5.2.2 Iterated Pareto Local Search

The second variant of PLS that will be discussed, is Iterated Pareto Local
Search (IPLS). In Algorithm 8, the pseudo-code of an IPLS based upon (Dru-
gan and Thierens, 2010) is shown. Given a stopping criterion T , IPLS works
as follows. At first, the MPLS is run to construct an initial archive A. Then,
a solution is chosen from the archive at random and mutated. This mutated
solution then forms the input for the PLS algorithm. This continues until
criterion T is satisfied.

Algorithm 8 Iterated PLS (T) (Drugan and Thierens, 2010)

1: input: An set of non-dominated solutions A0 and a stopping criterion T
2: A := Multi-Restart Pareto Local Search (A0)
3: while Stopping criterion T is not met do
4: s := select random solution from A
5: s’ = Mutate(s)
6: A := Update(A, Pareto Local Search (s’))
7: end while
8: output: A

Optionally, the IPLS algorithm can be combined with the meta-heuristic method
Variable Neighborhood Search (VNS) (Geiger, 2011). The pseudo-code for
this algorithm is shown in Algorithm 9. The search starts with a single, ran-
domly generated solution. Then, the neighborhood of the current solution is
generated, updating the approximation set A of the Pareto front. Line 10 of
the pseudo-code then distinguishes two cases: Either the current solution is
replaced by some neighboring, dominating one, or the search continues with
the next neighborhood operator. In the first case, more than one neighbor-
ing solution might exist that dominates the current one. This implies that
the selection of a replacing solution needs to be made, which, in the follow-
ing, we implement by a random choice. The entire process continues until all
elements ofA have been searched using the neighborhoods N1, ..., Nk. Escap-
ing local optima is then tried by the use of some mutation operator, stated in
lines 23–25. For now, we will not go further into detail on the combination
of IPLS and VNS. View (Geiger, 2011) or (Geiger, 2008) for more information
regarding its working and performance.

76 Chapter 5. Pareto Local Search

Algorithm 9 Iterated PLS with VNS (T) (Geiger, 2011)

1: input: A stopping criterion T
2: Initialize control parameters: Define the neighborhoods N1, ..., Nk
3: i := 1
4: s := generate random solution (uniformly)
5: A := {s}
6: while Stopping criterion T is not met do
7: while s locally optimal with respect to N1, ..., Nk, therefore i > k do
8: A := Update(A, Ni(s))
9: if ∃s′ ∈ Ni(s) | s′ � s then

10: s := s′

11: i := 1
12: Rearrange the neighborhoods N1, ..., Nk in a random order
13: else
14: i := i + 1
15: end if
16: end while
17: explored(neighborhoods of s) := TRUE

18: i := 1
19: if ∃s′ ∈ A | neighborhoods not investigated yet then
20: s := s′

21: else
22: s′ := select random s′ ∈ A
23: s′′ := Mutate(s′)
24: s := s′′

25: end if
26: end while

5.2.3 Genetic Pareto Local Search

The final variant of PLS that will be discussed, is genetic Pareto local search
(GPLS). The GPLS algorithm, as derived from (Drugan and Thierens, 2012),
is shown in Algorithm 10. First of all, the initial archive A is created using
MPLS. Next, a random solution is chosen from A and either mutated or re-
combined with another random solution from the archive. The α value deter-
mines what part of the solution gets mutated and what part gets recombined.
In general, mutating a solution results in less different (’closer’) solution than
when recombining. Next, the deactivation procedure is used again to create
a starting set for PLS given the mutated or recombined solution. This goes on
until criterion T is satisfied.

5.3. Components 77

Algorithm 10 Genetic PLS (α, T1, T2) (Drugan and Thierens, 2012)

1: input: An initial set of non-dominated solutions A0, a stopping criterion
T1 and a stopping criterion T2

2: A := Multi-Restart Pareto Local Search (T1)
3: while Stopping criterion T2 is not met do
4: s := select random solution from A
5: if α > U(0, 1) or |A| < 2 then
6: s′ := Mutate(s)
7: else
8: s′′ := select random solution s′′ 6= s from A
9: s′ := Recombine(s, s′′)

10: end if
11: A′ := Deactivate(s’, A))
12: A := Update(A, Pareto Local Search (A′))
13: end while
14: output: A

5.3 Components

5.3.1 Selection Procedures

In the standard PLS algorithm, the next solution to be explored is selected
at random. A different method, is selecting the solution that is expected to
deliver the best improvements. This can be done using Optimistic Hyper-
volume Improvement (OHI), shown in Figure 5.1 (Dubois-Lacoste, López-
Ibáñez, and Stützle, 2015). The OHI value indicated the ’gap’ between a solu-
tion and its neighboring solutions. A bigger gap can be seen as a less explored
neighborhood, which is more interesting for the PLS algorithm. The OHI of
solution s is calculated as follows;

OHI(s) =

2ohvc(ssup, s) if 6 ∃sin f

2ohvc(s, sin f) if 6 ∃ssup

ohvc(ssup, s) + ohvc(s, sin f) otherwise

(5.1)

where;

ssup = argminsi∈A{ f2(si)| f2(si) > f2(s)} (5.2)

sin f = argmaxsi∈A{ f2(si)| f2(si) < f2(s)} (5.3)

and in case of the bi-objective space;

ohvc(s, s′) = (f1(s)− f1(s′)(f2(s′)− f2(s) (5.4)

The ssup and sin f are the two closest neighbours of s. In case either ssup or sin f
does not exist (when s is an extreme), the OHI value equals double the gap
with its only neighboring solution. The OHI value can be calculated in linear
time when optimizing two objectives. When optimizing more objectives, a

78 Chapter 5. Pareto Local Search

data structure will be required that allows for an efficient search towards a so-
lution’s nearest solutions (Dubois-Lacoste, López-Ibáñez, and Stützle, 2015).
As an alternative to random selection, PLS can now select the solution with
the highest OHI value.

FIGURE 5.1: The OHI is the total area (marked) between a
solution its closest neighbors (Dubois-Lacoste, López-Ibáñez,

and Stützle, 2015)

5.3.2 Acceptance Criteria

The standard PLS algorithm accepts all solutions that are not being domi-
nated by any solution from the archive. Different criteria can be applied,
for example more strict ones, to prevent the archive from growing too fast.
An example of such a criterion, is to only accept solutions that dominate the
solution being explored. This could result in a faster convergence, but also
decrease the overall approximation quality. Finally, we can also switch from
one rule to another during one neighborhood exploration. Meaning, that if
one or more neighborhood solutions dominate the solution being explored,
only these are accepted. If no neighborhood solutions dominate the solution
being explored, other solutions (if non dominated by the archive of course)
are accepted as well.

5.3.3 Neighborhood Exploration

Finally, standard PLS explores all neighboring solutions. The exploration
strategy influences both the quality of the outputted Pareto set and its size.
In (Drugan and Thierens, 2012) three neighbourhood exploration strategies
are described that can be applied to PLS. Such an improvement strategy can
be passed on as a parameter to a local search algorithm (noted as I in (Dru-
gan and Thierens, 2012)). Finally, a type of order relationship and a fitness
function are required in order to realize a search strategy. We assume both
are constantly present, and have left out the fitness function notation in the
pseudo-code for the sake of simplicity.

5.3. Components 79

Algorithm 11 Best Pareto Improvement (s, A, N) (Drugan and Thierens,
2012)

1: A′ := {s} ∪ A
2: for all s′ ∈ N (s) do
3: if ∀s′′ ∈ A′, s′ ≺ s′′ ∨ s′||s′′ then
4: explored(s′) := FALSE

5: A′ := Update(A′,{s’})
6: end if
7: end for
8: A′ := A′ \ ({s} ∪ A)
9: output: A′

The first strategy that will be discussed is Best Pareto Improvement (BPI), of
which the pseudo-code is given in Algorithm 11 (Drugan and Thierens, 2012).
This search strategy examines each solution of the neighborhood that is being
explored. The resulting archive A contains all solutions of the neighborhood
that are not dominated by either s or the current archive A (or each other).
Possibly, set A is empty, meaning no non-dominated solutions were found.

Algorithm 12 Neutral Pareto Improvement (s, A, N) (Drugan and Thierens,
2012)

1: A′ := {s} ∪ A
2: for all s′ ∈ N (s) do
3: if ∀s′′ ∈ A′, s′ ≺ s′′ ∨ s′||s′′ then
4: explored(s′) := FALSE

5: A′ := Update(A′,{s’})
6: A′ := A′ \ ({s} ∪ A)
7: output: A′
8: end if
9: end for

10: output: ∅

The second search strategy that will be discussed, is called Neutral Pareto
Improvement (NPI) (Drugan and Thierens, 2012). The pseudo-code is given
in Algorithm 12. The procedure simply terminates as soon as one solution is
found that is not dominated by the solution being explored and all solutions
in the archive. An empty set is returned in case no solution is found in the
entire neighborhood that does so.

80 Chapter 5. Pareto Local Search

Algorithm 13 First Pareto Improvement (s, A, N) (Drugan and Thierens,
2012)

1: A′ := {s} ∪ A
2: for all s′ ∈ N (s) do
3: if ∀s′′ ∈ A′, s′ ≺ s′′ ∨ s′||s′′ then
4: explored(s′) := FALSE

5: A′ := Update(A′,{s’})
6: if s′ ≺ s then
7: A′ := A′ \ ({s} ∪ A)
8: output: A′
9: end if

10: end if
11: end for
12: A′ := A′ \ ({s} ∪ A)
13: output: A′

Finally, the pseudo-code of the First Pareto Improvement (FPI) is given in Al-
gorithm 13. In FPI, the procedure terminates as soon as a solution is found
that dominates the solution of which the neighborhood is being explored.
For now, we will not go into further detail on the different exploration strate-
gies. View (Drugan and Thierens, 2012) for a more elaborate view on all
definitions and proofs related to the discussed strategies, including a fourth
strategy based on hypervolume.

5.4 Anytime Behavior

The standard PLS of Algorithm 4 terminates when each solution of the archive
is marked as ’explored’. However, this can result in very long running times
(Dubois-Lacoste, López-Ibáñez, and Stützle, 2015). Possibly, it can take up to
an exponential time to eventually terminate, as the size of the archive is not
restricted. When ran on real life problems of common sizes, this could result
in running times of multiple days. As so, it can be desired to terminate the
PLS algorithm beforehand, and still obtain a high quality approximation. A
so-called ’anytime algorithm’ aims to realize such a qualitative approxima-
tion as fast as possible, and continues on improves upon this quality for as
long as the algorithm runs. As so, anytime algorithm can be terminated ’at
any time’ and are still expected to return a good approximation.

FIGURE 5.2: Example of an algorithm with good anytime
behavior (1) and bad anytime behavior (2) (Dubois-Lacoste,

López-Ibáñez, and Stützle, 2015)

5.4. Anytime Behavior 81

The standard PLS algorithm delivers a poor approximation quality if termi-
nated before completion. In order to measure the approximation quality of
a Pareto front, the hypervolume indicator can be used. The hypervolume of
a set of solutions is equal to the area of the objective space that those solu-
tions dominate (Dubois-Lacoste, López-Ibáñez, and Stützle, 2015). In order
to compute this area, a reference point is used that is dominated by each of
those solutions. A higher hypervolume corresponds to a better approxima-
tion quality, which is shown in Figure 5.2. In (Dubois-Lacoste, López-Ibáñez,
and Stützle, 2015), the influence of different components on the hypervolume
of the archive over time was compared to the original PLS. The results show
for instance, that the use of an OHI based selection clearly improves the any-
time behavior compared to the standard selection procedure. Secondly, the
FPI strategy tends deliver a better any time behavior than the standard BPI
strategy. However, combining different components, could again degrade
the performance, showing that these components interact with each other.
For more details on all test results obtained, view (Dubois-Lacoste, López-
Ibáñez, and Stützle, 2015).

83

Phase II
Implementation and Experimentation

84

Chapter 6

Pareto Local Search for MOLA

6.1 Introduction

In this chapter, the Pareto Local Search algorithm for MOLA including sev-
eral knowledge-informed components and operators will be defined. The
algorithms are build upon previous research, further extending the PLS pro-
cedures to specifically fit the MOLA problem. By exploiting common prop-
erties and domain knowledge of MOLA, these extensions aim to improve the
efficiency of the optimization process in this specific domain. All algorithms,
components and operators will be outlined in detail and the (important) ex-
tensions being proposed will be justified.

In Chapter 6.2, the setup of the algorithm will be discussed. This will in-
clude the objectives and constraints on which the proposed algorithm will
mainly focus, and the problem representation and data structures that will
be used to efficiently store and retrieve the information necessary. As the
algorithm is loosely coupled, it can easily be extended to handle a different
setup as well. In Chapter 6.3, the algorithms of Pareto Local Search for MOLA
(PLS-MOLA) and Iterated Pareto Local Search for MOLA (IPLS-MOLA) will
be defined. These are modified versions of the general (iterated) PLS algo-
rithm, specifically focusing on the MOLA domain. Next up, several com-
ponents and/or procedures that can be implemented in this algorithm will
be handled. First, the selection procedure including two selection operators
for selecting the next solution from the archive, will be discussed in Chapter
6.4 and 6.5. This will be followed by two different neighborhood exploration
strategies for exploring the selected solution in Chapter 6.6. In order to do so,
a general neighborhood search procedure and three possible search operators
will be proposed in Chapter 6.7 and 6.8. Next, the general reparation proce-
dure and two reparation operators to repair solutions that violate constraints
will be formulated in Chapter 6.9 and 6.10. This will be followed by three cri-
teria that can be used for accepting solutions in the archive in Chapter 6.11.
Finally, incremental metadata updating and constraint validation will be dis-
cussed in Chapter 6.12 and 6.13 and a perturbation procedure for IPLS will
be proposed in Chapter 6.14.

6.2 Algorithm Setup

In order to design efficient knowledge-informed algorithm components, we
will first have to define what (types of) objectives and constraints will be
taken in account. For now, we will focus on the most common ones in previ-
ous literature, that support both incremental checking and updating (this will
be explained later). Extensions to these can easily be set up in future search.

6.2. Algorithm Setup 85

Finally, we will decide upon an appropriate problem representation and data
structure that allow for an efficient solution storage and optimization process.

6.2.1 Problem Specification

Many objectives can be optimized within a MOLA problem. In Chapter 3.3,
five of these were discussed. The Tongzhou case study of Chapter 3.6.3 even
incorporated eight different objectives. Besides objectives, we can also apply
multiple constraints, of which several were discussed in 3.2. It is out of the
scope of this project to design efficient optimization procedures and compo-
nents for all (types of) objectives and constraints. This section will therefore
narrow down the MOLA problem to a more concrete case, on which the PLS
for MOLA algorithm will focus.

The objectives for MOLA can take on many different forms and types, that
may require different approaches to realize an efficient optimization process.
When applying PLS to MOLA, there is one type of objective that is highly
preferable; objectives of which the value is incrementally adaptable. This
means, that when a small change has been applied to a solution, it should
not be necessary to use the entire solution to recalculate the new objective
value. Knowing the changed cell, and possibly its neighbors, should allow
you to calculate the (relative) change in objective value. As the PLS algorithm
constantly applies a lot of small changes, it would otherwise require the al-
gorithm to continually recalculate the complete objective value, which can be
costly. Therefore, this research will require the objective functions to be incre-
mentally updatable. As so, only objectives that satisfy Definition 6.2.1 will be
accepted.

Definition 6.2.1 (Incremental Objective). An objective o is considered as in-
cremental, if there exists a function fo(s) that can compute the objective value
of o of a solution s created from a solution s′ in O(n) time, with n being the
number of land-use changes between s′ and s.

Definition 6.2.2 (Incremental Constraint). A constraint c is considered as in-
cremental, if the validation of a solution s created from a valid solution s′

subject to constraint c can be done in O(n) time, with n being the number of
land-use changes between s and s′.

The incremental objective o should be able to calculate the objective value of
a newly created solution based upon the applied changes and previous ob-
jective value. In case n changes have been applied, calculating this new value
should cost at most O(n) time. In most cases, such an objective function is
formulated as fo(s) = ∑c∈S f c

o (c), where f c
o (c) is the objective value related

to one single cell c of solution s. Besides objective value calculation, con-
straint checking is also an operation that needs to be performed each time a
new solution has been formed. As such, the validity of a solution will also be
required to be verifiable in an incremental manner. The definition of an incre-
mental constraint is given in Definition 6.2.2. Similar to objective calculation,
a solution that was created due to n changes on a another valid solution,
should be validatable in at most O(n) time.

Although we have now required the objective functions and constraints to
be incrementally updatable, there are still a large number of objectives that
can be optimized. As it is out of the scope of this project to design efficient

86 Chapter 6. Pareto Local Search for MOLA

optimization procedures and components for all of these objectives and con-
straints, only the most common ones will be taken in account. In this case,
the algorithm will optimize the general MOLA problem as defined in Chap-
ter 3.2, using the following two objectives and constraint. The codes upfront
will later on be used for referencing.

Objective O1: Minimizing Development Costs. The most basic and often
used objective is the minimization of development costs. In case of the single-
objective land-use allocation problem, this is often the (only) objective. The
exact definition of this objective is given in Equation (3.9).

Objective O2: Maximizing Compactness. The second most used objective is
the maximization of the compactness. The definition of this objective is given
in Equation (3.13). The algorithm will focus on the four-neighbour variant,
which is the most simple form.

Constraint C1: Allocation Ranges. Finally, the most often used constraint
will be taken in account, which is an allowed range on the number of cells
per land-use type. The exact definition of this constraint is given in Equation
(3.6).

As noted earlier, the PLS algorithm for MOLA can be used to optimize other
objectives and constraints as well as the algorithm is loosely coupled. There-
fore, other operators or procedures can be implemented easily. Finally, a so-
lution can contain both dynamic or static land-use types, whereas static land-
use types are not allowed to change. It is required that each MOLA problem
should have at least two dynamic land-use types, in order to be optimizable.

6.2.2 Problem Representation

In Chapter 3.5, several possible problem representations including their ad-
vantages and disadvantages have been discussed. In this research, the choice
has been made to work with the grid representation of Chapter 3.5.1. The grid
representation is the most straightforward and convenient representation to
work with. Although the vector representation can reduce redundancy, these
structures require additional spatial information in order to for example sup-
port spatial operators or fitness functions, which can significantly increase
the complexity. Besides, almost all previous research makes use of the grid
based representation, including the operators defined in Chapter 4.3.6 and
4.3.7. When researching PLS for MOLA, we aim to build upon previous re-
search findings as much as possible. Usage of a relatively little researched
representation such as a vector would require a lot more investigation, which
is out of the scope of this research. Therefore, this research will implement
the grid representation, which is shown in Figure 6.2.3 In this representation,
a land-use type is stored in each cell of the grid. More details on this repre-
sentation can be found in Chapter 3.5.1.

6.2. Algorithm Setup 87

FIGURE 6.1: 16x16 Grid Representation (Matthews, Craw, El-
der, et al., 2000)

6.2.3 Data Structures

A suitable data structure has to be set up that is capable of efficiently stor-
ing the information necessary for the optimization process. The efficiency is
hereby determined by two properties. First of all, the required storage space.
The less storage space is required to store the same information, the better.
Secondly, whether often-user information can easily be accessed. Meaning,
that if certain variables (metadata) are commonly asked for, a structure that
stores these values will be preferred; this will prevent the algorithm from con-
stantly having to recalculate these values. First, the MOLA problem that we
build upon will be defined in more detail, including a data structure for stor-
ing a single solution. Afterwards, several data structures will be proposed
that can be used to store additional metadata to either one solution or the
archive (a set of solutions).

The problem will optimize O objectives. For each objective o ∈ O, where
O = {1, ..., O}, an incremental objective function fo(s) will be available as
was defined in Definition 6.2.1. The solutions will be subject to C constraints,
of which each constraint c ∈ C (with C = {1, ..., C}) satisfies Definition
6.2.2. A solution s exists out of a two dimensional array, representing a grid
of width X and height Y. As such, s[p] contains the land-use type of cell
p = (x = {1, ..., X}, y = {1, ..., Y}). For each land-use type t ∈ T , where
T = {1, ..., T}, a variable static(t) is defined that states whether or not this
type is static or not. Each solution s can be identified using a unique id(s) and
has a valid(s) and explored(s) property that can be used to indicate whether a
solution is valid, respectively explored. These are the minimal solution vari-
ables necessary to run PLS for MOLA and are always assumed to be present.

In case certain solution information needs to be calculated often, metadata
can be added to keep track of this information. Storing metadata can be
beneficial in case incrementally updating this information is less expensive
than constantly recalculating these values from scratch. We will now define
two metadata structures that can be added to a solution s and one that can
be added to a set of solutions, called an archive A. The first two metadata
structures (MD-I and MD-II) are considered as ’essential’, as these are able
to reduce the computational complexity of PLS in all cases. This is caused
by a (large) reduction in the number of computations necessary to update
the archive, as will be shown in Chapter 6.12. The final metadata structures
(MD-III) is considered as ’optional’, as this structure is especially useful when

88 Chapter 6. Pareto Local Search for MOLA

specific objectives are being optimized or constraints are validated. This will
be shown in Chapter 6.8 and 6.13.

Definition 6.2.3 (MD-I). Essential: A metadata structure that concerns the
addition of an array f (s) with | f (s)| = O to each solution s ∈ A. The
array stores the objective value fo(s) of s at position o for every objective
o = {1, ..., O}.

Definition 6.2.4 (MD-II). Essential: A metadata structure that concerns the
addition of a two-dimensional array v(A) with |v(A)| = O to the archive A.
At position o for every objective o = {1, ..., O}, the array stores an array of
size |A| with the id(s) of each solution s ∈ A sorted by increasing objective
value fo(s).

Definition 6.2.5 (MD-III). Optional: A metadata structure that concerns the
addition of an array n(s) with |n(s)| = T to each solution s ∈ A. The array
stores the total number of cells with land-use type t of s at position t for every
land-use type t = {1, ..., T}.

The first metadata structure proposed, called MD-I, is shown in Definition
6.2.3. It concerns the addition of an array to every solution that contains
the objective value of that solution for every objective. The second metadata
structure, MD-II, is shown in Definition 6.2.4. This structure is added to the
archive (set of solutions) of the PLS algorithm. It concerns a two-dimensional
array with all solutions sorted per objective value for each objective. Finally,
the third metadata structure, MD-III, is shown in Definition 6.2.5. This struc-
ture concerns the addition of an array to each solution, with the total number
of cells of each land-use type. In case a metadata structure is used in an up-
coming operator or algorithm, a reference will be made to the corresponding
metadata code.

At the start of the PLS algorithm, all metadata values will need to be com-
puted. This is done using the initialization procedure of Algorithm 14. The
initialization algorithm only needs to be run once. Afterwards, the meta-
data values will be updated incrementally after a change has occurred to the
solution. The metadata regarding the archive of PLS does not have to be ini-
tialized, as it does not contain any solutions at the start. The initialization
procedures of the two solution related metadata structures are shown in Al-
gorithm 31 and 33 of Appendix A. Finally, the solution is being validated
using Algorithm 29. This procedures determines and stores whether the so-
lution is currently obeying the constraints. More details on this procedure can
be found in Chapter 6.13. After the initialization procedure has completed,
all information necessary for the optimization process is available.

Algorithm 14 Initialize(s)

1: input: a solution s
2:
3: for all metadata MD-x used in s do
4: s := InitializeMD-x(s) . Appendix A
5: end for
6:
7: valid(s) := Validate(s) . Chapter 6.13
8:
9: output: s

6.3. Algorithm Definitions 89

In future research, it might also be considered to add a list of all bound-
ary cells to a solution as an extra metadata structure. This list can be used
for search and repair operators that make use of boundary cells. However,
this metadata structure is expensive, both performance and memory wise, to
maintain. It would require the algorithm to constantly check all neighboring
cells of any adjusted cell to see whether or not these are (still) boundary cells.
Since this might not be worth the gain in performance for these specific op-
erator (and would so require more research), the decision has been made to
leave this structure out of the current research.

Finally, we need to define one last data structure for the changes that are
being made to a solution. These changes can be used to incrementally up-
date the metadata or calculate the new objective values of a solution. The
changes will be stored and passed on using an update set, as defined in Def-
inition 6.2.6. The update set contains all cells that will be changed of a solu-
tion, together with the new land-use type they will obtain. The usage of an
update set to incrementally update metadata is discussed in more detail in
Chapter 6.12. In order to incrementally update objective values, the objective
functions can be called with both the current solution and the update set. Ex-
amples of incremental objective functions of O1 (Cost Minimization) and O2
(Compactness Maximization) are shown in Algorithm 35 and 36 of Appendix
A.

Definition 6.2.6 (Update Set). An update set U contains only the cells of a
solution that should be updated including their new type, stored as type(c)
for each c ∈ U .

6.3 Algorithm Definitions

The standard PLS and IPLS algorithms are applicable to any multi-objective
optimization problem. However, using domain specific knowledge these can
be tailored to a specific problem, possibly enhancing the algorithm its effi-
ciency. In this chapter, both the PLS and IPLS algorithms are being modi-
fied to fit the properties of MOLA. The resulting MOLA-specific algorithms,
named PLS-MOLA and IPLS-MOLA, will now be outlined, explained and
justified in more detail.

6.3.1 Algorithm I: PLS-MOLA

The PLS-MOLA algorithm is based upon the standard Pareto Local Search of
Algorithm 4. The overall outline of the algorithm is shown in Algorithm 15.
PLS-MOLA uncouples the key processes of the standard PLS algorithm, al-
lowing for an easy incorporation of different procedures. This includes for
instance an uncoupling of the repair and search procedure, together with
the repair and local search operators. Furthermore, the incorporation of two
extra termination criteria allow for an easy configuration of the repair and
neighborhood exploration strategies. The PLS-MOLA algorithm can there-
fore be considered as a configurable framework for the MOLA optimization
process, that still retains the essence of PLS. The actual knowledge-informed
procedures and/or operators for MOLA that can be implemented using this
algorithm, are discussed in Chapter 6.4 to 6.14. The PLS-MOLA algorithm
works as follows;

90 Chapter 6. Pareto Local Search for MOLA

Line 1 - 8 The algorithm has seven parameters. The first one is the initial
solution s0 with the current land-use allocation. Next up, we have a set of
repair operators R, a set of local search operators O and an archive accep-
tance criterion P . Finally, termination criteria T1, T2 and T3 are required for
the reparation procedure, neighborhood exploration and the algorithm itself
respectively.

Line 9 - 20 The first step of the algorithm is to initialize all metadata struc-
tures that are being used. This is done once with the initialization procedure,
as was discussed earlier in Chapter 6.2.3. Next up, the original solution will
be repaired if it does not satisfy the constraints of the MOLA problem. This
is done using a repair procedure that applies the required repair operators.
Repairing will be discussed in more detail in Chapter 6.9. In case the repair
procedure is unable to repair the original solution, PLS-MOLA will terminate
and output an empty set. If the repair procedure succeeds or the solution was
already valid, s0 is set to unexplored and added to archive A0 (set of all unex-
plored solutions) and A (set of all non-dominated solutions currently found).

Line 21 - 38 The next step is to continuously run the neighborhood explo-
ration procedure. This procedure works as follows: first, a selection proce-
dure is called to return an unexplored solution s from the archive A0. Two dif-
ferent selection procedures will be examined in this research, both described
in Chapter 6.4. Next up, a search procedure is called to return a neighborhood
solution s′ of N (s). The general search procedure being used in this research
is outlined in Chapter 6.7, and several possible operators are proposed in
Chapter 6.8. Possibly, s′ needs to be repaired again using the repair proce-
dure. The search and repair procedures are repeated until a valid solution s′

is obtained. When such a valid solution is found, a check will be performed
to see whether solution s′ satisfies the acceptance criteria for being added to
the archive. Three different acceptance criteria are described later on in Chap-
ter 6.11. If accepted, s′ is set to unexplored and A′ (the temporary archive)
will be updated with solution s′. The updating of an archive is discussed in
more detail in Chapter 6.12. The neighborhood exploration procedure ends
when termination criterion T2 is met. An example of such a criterion can be a
maximum number of neighborhood solutions that has been explored, as will
be handled in Chapter 6.6. Finally, s is set to explored, archive A is updated
with A′, and A0 will be filled with the currently unexplored solutions. As
the metadata is updated within the search and repair operators, no further
update function needs to be called.

Line 39 - 41 The algorithm will continuously perform a new neighborhood
exploration, until eventually a termination criterion T3 is met. This research
will implement the termination criterion of Definition 6.3.1, named T-PLSnm.
The criterion ends the optimization process after either a total of n iterations
have been done or the archive A has remained unchanged for m consecutive
iterations. When the PLS-MOLA algorithm terminates, archive A will be the
final output.

Definition 6.3.1 (T-PLSnm). A termination criterion that terminates the PLS-
MOLA optimization loop after a total of n neighborhood explorations have
been completed or the archive has remained unchanged for the last m neigh-
borhood explorations.

6.3. Algorithm Definitions 91

Algorithm 15 PLS-MOLA(s0,R, O, P , T1, T2, T3)

1: input: solution s0 with the current land-use allocation
2: setR with repair operators
3: set O with local search operators
4: archive acceptance criterion P
5: termination criterion T1 for the reparation procedure
6: termination criterion T2 for the neighborhood exploration
7: termination criterion T3 for the PLS-MOLA algorithm
8:
9: s0 := Initialize(s0) . Chapter 6.2

10: if !valid(s0) then
11: s0 := Repair(s0,R, T1) . Chapter 6.9
12: if !valid(s0) then
13: output: ∅
14: end if
15: end if
16:
17: explored(s0) := f alse
18: A0 := {s0}
19: A := A0
20:
21: repeat
22: A′ := A
23: s := Select(A0) . Chapter 6.4
24: repeat
25: repeat
26: s′ := Search(s, O) . Chapter 6.7
27: if !valid(s′) then
28: s′ := Repair(s′,R, T1) . Chapter 6.9
29: end if
30: until valid(s′)
31: if s′ satisfies acceptance criteria P then . Chapter 6.11
32: explored(s′) := f alse
33: A′ := UpdateA(A′, {s′}) . Chapter 6.12
34: end if
35: until stopping criterion T2 is met . Chapter 6.6
36: explored(s) := true
37: A := UpdateA(A, A′)
38: A0 := {s ∈ A | explored(s) = f alse}
39: until termination criterion T3 is met
40:
41: output: A

6.3.2 Algorithm II: IPLS-MOLA

The IPLS-MOLA algorithm is based upon the Iterated Pareto Local Search
algorithm that was defined in Algorithm 8. The overall outline of the algo-
rithm is shown in Algorithm 16. Similar to PLS-MOLA, the algorithm tends
to decouple different components to allow for an easy configuration. New in
comparison to PLS-MOLA, is the use of a perturbation procedure to perturb
a solution from the archive.

92 Chapter 6. Pareto Local Search for MOLA

Line 1 - 10 The algorithm has nine different parameters. The first seven pa-
rameters are similar to the parameters of PLS-MOLA. In addition, a termina-
tion criterion for the perturbation procedure and IPLS-MOLA are added.

Line 11 - 12 At first, PLS-MOLA is run once to gain a starting archive. This
can be done by simply passing on the first seven parameters. Note, that there
is no need for a reparation procedure of s0, as this is already incorporated in
PLS-MOLA.

Line 13 - 22 Next up, multiple iterations are done to improve upon the archive.
A single iteration starts off by selecting a solution s from the archive A using
a selection procedure from Chapter 6.4. Next up, a perturbation procedure is
started using s to create s′. The perturbation procedure and its termination
criterion will be discussed in more detail in Chapter 6.14. Possibly, solution
s′ needs to be repaired using the repair procedure. The process of perturbing
and repairing is repeated until a valid solution s′ is found. Next up, PLS-
MOLA is run again using solution s′ as the initial solution. The remaining
six parameters stay the same. Finally, the archive A is updated with the re-
sults. Optionally, the repairing of a perturbed solution can be outsourced
completely to the PLS-MOLA algorithm (similar to the initial solution). How-
ever, by repairing beforehand the perturbation process and PLS-MOLA be-
come more separated, allowing for instance termination criteria T5 to target
only IPLS operations more easily.

Line 23 - 25 The algorithm keeps on iterating until termination criterion T5
is met. The termination criterion A5 for IPLS-MOLA can be similar to the
termination criterion used for PLS-MOLA (T-PLSnm) in Definition 6.3.1. The
optimization process then ends after a total of n iterations have been done or
the archive A has remained unchanged for m consecutive iterations. When
the IPLS-MOLA algorithm terminates, the archive A will be the final output.

6.4. Selection Procedure 93

Algorithm 16 IPLS-MOLA(s0,R, O, P , T1, T2, T3, T4, T5)

1: input: solution s0 with the current land-use allocation
2: setR with repair operators
3: set O with local search operators
4: archive acceptance criterion P
5: termination criterion T1 for the reparation procedure
6: termination criterion T2 for the neighborhood exploration
7: termination criterion T3 for the PLS-MOLA algorithm
8: termination criterion T4 for the perturbation procedure
9: termination criterion T5 for the IPLS-MOLA algorithm

10:
11: A := PLS-MOLA(s0,R, O, P , T1, T2, T3) . Algorithm 15
12:
13: repeat
14: s := Select(A) . Chapter 6.4
15: repeat
16: s′ := Perturb(s, O, T4) . Chapter 6.14
17: if !valid(s′) then
18: s′ := Repair(s′,R, T1) . Chapter 6.9
19: end if
20: until valid(s′)
21: A′ := PLS-MOLA(s′,R, O, P , T1, T2, T3)
22: A := UpdateA(A, A′) . Chapter 6.12
23: until stopping criterion T5 is not met
24:
25: output: A

6.4 Selection Procedure

The first step in every iteration of the optimization procedure of PLS-MOLA,
is selecting the next solution that will be explored. The selection procedure
is responsible for selecting this solution from the archive, using a selection
operator. In this research, one simple selection procedure is used that ran-
domly selects a selection operator out of all selection operators passed on to
the algorithm. The procedure is shown in Algorithm 17. In future research,
the selection procedure could be expanded to choose the next selection oper-
ator being applied based on for example situations or results obtained from
previous selections (Chapter 11).

Algorithm 17 Select(A, O)

1: input: an archive A
2: a set O with selection operators . Chapter 6.8
3:
4: s := apply random selection operator from O to A
5:
6: output: s

94 Chapter 6. Pareto Local Search for MOLA

6.5 Selection Operators

Different selection operators can be implemented to select a solution from
the current archive. In this research, two different operators are defined; one
based on randomness (S-R) and one based on the crowding distance (S-CD).

6.5.1 Operator I: S-R

The first selection operator is also used in the standard PLS algorithm of Al-
gorithm 4. It simply selects a solution at random from the archive A. The
operator is straightforward, as shown in Algorithm 18.

Algorithm 18 S-R(A)

1: input: an archive A
2:
3: s := select random solution s from A
4:
5: output: s

6.5.2 Operator II: S-CD

The second selection operator makes use of the crowding distance (CD) prop-
erty. For more details on the CD property, view Chapter 4.3.5. A higher
crowding distance represents a ’less crowded’ solution and is therefore pre-
ferred. As such, the selection operator simply returns the solution from the
archive with the highest crowding distance value. The operator is similar to
the optimistic hypervolume strategy of Chapter 5.3.1, but uses the crowding
distance property instead of the OHI value (Equation (5.1)). The advantage
of using the crowding distance, is that it scales more easily to more than two
objectives. Algorithm 19 shows the resulting selection operator S-CD.

Algorithm 19 S-CD(A)

1: input: an archive A
2:
3: s := ∅
4: cd := 0
5: for all s′ ∈ A do
6: cd′ = CD-PLS(s′, A) . Algorithm 38
7: if cd′ > cd then
8: s := s′

9: cd := cd′

10: end if
11: end for
12:
13: output: s

Calculating the crowding distance of each solution of the archive can be a
computationally expensive task. As such, a CD algorithm has been defined
that makes use of MD-II, which concerned the addition of an array to the
archive with all solutions sorted per objective value. Using this array the
crowding distance can be calculated more efficiently. The algorithm, named
CD-PLS, is shown in Algorithm 38 of Appendix D. In contrast to the original

6.6. Neighborhood Exploration 95

crowding-distance calculation, the crowding distance of an extreme solution
is now two times the distance to its nearest solution. This is similar to OHI
in Equation (5.1), and prevents the operators from always selecting the ex-
tremes (as these would have infinite CD values). When implementing the
S-CD selection operator, usage of the MD-II structure can be considered as
essential. Calculating the crowding distance of all solutions from the archive
from scratch is an expensive task, whereas incrementally updating the MD-II
structure requires (much) less operations.

6.6 Neighborhood Exploration

Once a solution has been selected from the archive, different neighborhood
exploration approaches can be applied for searching its neighborhood. In
Chapter 5.3.3, several different strategies were discussed. The exploration
strategy is passed on to the PLS-MOLA or IPLS-MOLA algorithm using a
termination criterion T, as was shown in Algorithm 4 and 8. In this research,
the termination criterion T-NEnm is used, which is defined in Definition 6.6.1.
The termination criterion T-NEnm ends the neighborhood exploring loop af-
ter either n neighborhood solutions have been explored or m neighborhood
solutions have been added to the archive. In the following subchapter, two
exploration strategies will be discussed that can be implemented using spe-
cific settings of the T-NEnm criterion.

Definition 6.6.1 (T-NEnm). A termination criterion that terminates the neigh-
borhood exploration process after either n neighborhood solutions have been
explored or m neighborhood solutions have been added to the archive.

6.6.1 Strategy I: T-NE-BPI

The first exploration strategy that will be defined is the Best Pareto Improve-
ment (BPI) strategy of Algorithm 11. The BPI strategy tends to explore the
complete neighborhood of a solution, assuring that the best solution(s) present
in this neighborhood will always be added to the archive. Theoretically, this
strategy can be defined as T-NEnm with both n = |N (s)| and m = |N (s)|,
where N (s) contains all solutions from the neighborhood of solution s that
is being explored. However, the neighborhood of a solution in MOLA can be
incredibly large, which would (when applied to a realistic case) result in ex-
tremely long exploration times. As such, we do not determine the complete
neighborhood before exploring its solutions, and sample solutions from the
neighborhood space. This will be discussed in more detail in Chapter 6.7,
where we will elaborate on the search procedure. As the complete neigh-
borhood is not defined before the exploration, the total size of the neighbor-
hood is also unknown. Therefore, the BPI strategy will be implemented (ap-
proached) by using T-NEnm with both n = c and m = c where c is some large
integer. The resulting T-NE-BPIc strategy is defined in Definition 6.6.2. A
larger c value will result in a more close approximation of the BPI strategy, at
the cost of more processing time.

Definition 6.6.2 (T-NE-BPIc). The termination criterion of T-NEnm with n = c
and m = c where c >> 1.

96 Chapter 6. Pareto Local Search for MOLA

6.6.2 Strategy II: T-NE-FPI

The second exploration strategy that will be defined using T-NEnm, is the First
Pareto Improvement (FPI) strategy of Algorithm 13. The FPI strategy tends to
explore the neighborhood until a single new solution is accepted and added
to the archive. Theoretically, this strategy can be implemented using T-NEnm
with n = |N (s)| and m = 1, where N (s) contains all solutions from the
neighborhood of solution s that is being explored. However, as mentioned
before the neighborhood is not defined before the exploration and so its size
is unknown. As such, n is set to a large value c, similar to T-NE-BPIc. The
resulting T-N-FPIc strategy is defined in Definition 6.6.3. The larger c, the
closer the T-NE-FPIc criterion will implement the FPI strategy, but the more
processing time the exploration of a solution its neighborhood might cost.

Definition 6.6.3 (T-NE-FPIc). The termination criterion of T-NEnm with n = c
and m = 1 where c >> 1.

6.7 Search Procedure

The search procedure is responsible for returning a solution from another
solution (the selected one) its neighborhood. The procedure does so, by ap-
plying a local search operator to the current solution being explored. In this
research, only one search procedure will be used, that simply applies a ran-
domly selected search operator from the set of search operators passed on to
the algorithm. The procedure is shown in Algorithm 6.8. As already men-
tioned in Chapter 6.6, the complete neighborhood of a solution in a (realistic)
MOLA case can be incredibly large. As so, it can be very costly to deter-
mine the complete neighborhood of a solution in advance and then sample
from or iterate over this set. The current search procedure therefore ran-
domly samples solutions directly from the neighborhood space, until the de-
sired number of solutions from the exploration termination criterion have
been explored or added to the archive. This means that possibly a neighbor-
hood solution might be sampled twice during one neighborhood exploration.
However, due to the in general significant size of a neighborhood, the num-
ber of twice sampled solutions will most likely be relatively low. As such,
it is considered unnecessary to keep track of all solutions already returned
(which can be very costly). In future research, other search procedures can
be implemented that for example select operators with a certain predefined
or automatically adapting chance (Chapter 11). For now, this was out of the
scope of this research.

Algorithm 20 Search(s, O)

1: input: a solution s
2: a set O with local search operators . Chapter 6.8
3:
4: s := apply random local search operator from O to s
5:
6: output: s

6.8. Search Operators 97

6.8 Search Operators

Multiple local search operators can be passed on to the PLS-MOLA or IPLS-
MOLA algorithm to explore the neighborhood of a solution. As shown in Al-
gorithm 6.7, each time the search procedure is called, a random local search
operator is chosen from this set and applied to the current solution being
explored. In this section, three local search operators for MOLA will be pro-
posed. The first two operators are independent of the objectives being opti-
mized, whereas the third operator is designed to stimulate compactness max-
imization.

6.8.1 Operator I: LS-KRCM

The first local search operator for PLS-MOLA that will be defined is the k-
tournament random cell mutation (LS-KRCM) operator. The operator is based
upon the BRCM mutation operator discussed in Chapter 4.3.7. It changes the
land-use of one random cell to a type that is decided on using an objective
value based tournament. The pseudo-code of the operator is shown in Algo-
rithm 21.

The LS-KRCM operator works as follows. It is called with two parameters:
the solution s to which the operator is applied, and an integer kt for the size of
the type selection tournament. The algorithm starts off by selecting a random
non-static cell c from s, to which a new land-use type will be allocated. The
selection of this new land-use type is based upon a randomly selected objec-
tive o and works as follows. First, kt different land-use types are randomly
selected from the set of all dynamic land-use types (excluding the current
type of c). In case kt is equal to the total number of dynamic land-use types,
the complete set is taken. The incremental value change in the objective that
was selected earlier, is calculated for each of the selected types. This is done
by passing on this change (as an update set U with the cell and its new type)
to the incremental objective function, as was discussed in Chapter 6.2.3 (Def-
inition 6.2.6). The incremental objective function of O1 (Cost Minimization)
and O2 (Compactness Maximization) can be found in Appendix B. Since we
demand all objectives to be maximized, the type that results in the highest
(most positive) incremental value change will be chosen. The update set stat-
ing that this type should be allocated to the selected cell, will be passed on
to a separate update function that will apply this change to s and update its
metadata accordingly. Solution updating will be discussed in more detail in
Chapter 6.12. By separating this process from the search operator, searching
and updating become loosely coupled and can be adjusted separately. After
solution s has been updated, it is returned as the final output of the LS-KRCM
operator.

98 Chapter 6. Pareto Local Search for MOLA

Algorithm 21 LS-KRCM(s, kt)

1: input: a solution s
2: an integer kt for the tournament size
3:
4: c := randomly select a non-static cell c from s
5: o := randomly select an objective o ∈ O
6:
7: T ′ := {t ∈ T | !static(t)} \ type(c)
8: if |T ′| > kt then
9: T ′ := randomly take kt types from T ′

10: end if
11:
12: Ubest := ∅
13: for all land-use type t ∈ T ′ do
14: U := {c} with type(c) := t
15: if fo(s, U) > fo(s, Ubest) then . Appendix B
16: Ubest = U
17: end if
18: end for
19:
20: s := UpdateS(s, Ubest) . Chapter 6.12
21:
22: output: s

6.8.2 Operator II: LS-KRPM

The second local search operator is the k-tournament random patch muta-
tion (LS-KRPM) operator. The operator is shown in Algorithm 22, and is
based upon the RPM mutation operator of Chapter 4.3.7. Instead of a single
cell, the operator mutates a complete 7-cell patch. First, a patch figure is gen-
erated by randomly selecting 7 cells out of a 3 x 3 grid, which always results
in one continuous patch (to stimulate compactness). Next, a random valid
location is selected for the patch, that does not contain any static land-use
types. The operator will now allocate one single land-use type to all 7 cells of
the patch (denoted as the set P), which is selected using a tournament in the
same manner as in LS-KRCM. However, instead of calculating the change in
objective value when allocating a type to one cell, it will now calculate the
change for when a type is allocated to a complete patch. Finally, the solution
is updated given all cells of the patch, accompanied with the newly selected
type. The resulting solution is provided as the final output of the operator.

6.8. Search Operators 99

Algorithm 22 LS-KRPM(s, kt)

1: input: a solution s
2: an integer kt for the tournament size
3:
4: P := randomly select a 7-cell patch with no static cells . Chapter 4.3.7
5: o := randomly select an objective o ∈ O
6:
7: T ′ := {t ∈ T | !static(t)}
8: if |T ′| > kt then
9: T ′ := randomly take kt types from T ′

10: end if
11:
12: Ubest := ∅
13: for all land-use type t ∈ T ′ do
14: U := P with type(c) := t for all c ∈ P
15: if fo(s, U) > fo(s, Ubest) then . Appendix B
16: Ubest = U
17: end if
18: end for
19:
20: s = UpdateS(s, Ubest) . Chapter 6.12
21:
22: output: s

6.8.3 Operator III: LS-KRBM

The third and final local search operator being proposed, is the k-tournament
random boundary cell mutation (LS-KRBM) operator. Whereas the LS-KRCM
and LS-KRPM did not focus on any particular objective, the LS-KRBM is de-
signed to specifically promote compactness maximization. In case this objec-
tive is not maximized, usage of the LS-KRBM will not provide any advan-
tages. The procedure of LS-KRBM is shown in Algorithm 23 and mutates the
land-use type of a boundary cell. The operator works similar to LS-KRCM,
except for two major differences. The first difference, is that the randomly
selected cell is a boundary cell. This cell will be selected by either storing
the location of each boundary cell or sampling random cells until a bound-
ary cell is found. The second difference is that its new land-use type is only
selected out of the types of its non-static neighboring solutions. Both of these
differences serve the same goal; to reduce the chance of creating new clusters,
which promotes the compactness maximization objective. Apart from these
differences, the LS-KRBM operator works similar to LS-KRCM.

100 Chapter 6. Pareto Local Search for MOLA

Algorithm 23 LS-KRBM(s, kt)

1: input: a solution s with:
2: an integer kt for the tournament size
3:
4: bc := randomly select a non-static boundary cell bc from s
5: o := randomly select an objective o ∈ O
6:
7: T ′ := {t ∈ TN (bc) | !static(t)} \ type(bc)
8: if |T ′| > kt then
9: T ′ := randomly take kt types from T ′

10: end if
11:
12: Ubest := ∅
13: for all land-use type t ∈ T ′ do
14: U := {bc} with type(bc) := t
15: if fo(s, U) > fo(s, Ubest) then . Appendix B
16: Ubest = U
17: end if
18: end for
19:
20: s := UpdateS(s, Ubest) . Chapter 6.12
21:
22: output: s

6.9 Reparation Procedure

In order to repair an invalid solution that violates the problem constraints, the
reparation procedure will be used. A simple reparation procedure that will be
used throughout this research, is shown in Algorithm 24. Until the termina-
tion criterion T is met, the algorithm will attempt to repair the solution for as
long as one of the constraints is violated. It is assumed (and required) that for
each constraint c, a validation method is available that states whether or not
a solution satisfies this constraint. An example of such a validation method
for constraint C1 is shown in Algorithm 37 of Appendix E. Note, that this val-
idation method makes use of the metadata structure (MD-III) that stores the
total number of cells of each land-use type, to easily detect a violation of the
allowed range. Validation methods are not passed on as a parameter, as they
are problem specific and assumed to always be present (similar to objective
functions). In case a constraint is violated, the corresponding repair operator
fromR will be applied to (try to) fix this violation. The repair operator setR
should therefore contain at least one repair operator for each constraint. Op-
tionally, these repair operators can again require specific termination criteria,
which we for now assume not to be present. As the metadata of the solution
is being updated within the repair operator (using the update function), con-
straint validation using metadata can continue to be done in the reparation
loop. This process continues until no more constraints are violated or the ter-
mination criterion is met. In Chapter 6.10, two repair operators have been
defined for the most common C1 constraint.

6.10. Repair Operators 101

Algorithm 24 Repair(s,R, T)

1: input: solution s to be repaired
2: setR with repair operators . Chapter 6.10
3: termination criterion T1
4:
5: repeat
6: for all constraint c = {1, ..., C} do
7: if !Validate-c(s) then . Appendix C
8: s := apply repair operator for c fromR to s . Chapter 6.10
9: end if

10: end for
11: until valid(s) or termination criterion T is met
12:
13: output: s

In this research, a reparation termination criterion called T-REPnm will be
used. The definition of T-REPnm is shown in Definition 6.9.1. The n hereby
stands for the maximum number of iterations in the reparation procedure and
m for the maximum number of consecutive repair operations for which the
solution may remain unchanged. A solution can remain unchanged in case
the operator fails to find an improvement (view for example the LR-KBRM
operator in Chapter 6.10.2).

Definition 6.9.1 (T-REPnm). A termination criterion that terminates the repa-
ration procedure loop in case a repair operator has been applied to the solu-
tion n times or the solution has remained unchanged during the last m repair
operators applied.

6.10 Repair Operators

A repair operator needs to be defined for each constraint that can be violated.
As discussed in Chapter 6.2, this research will only provide components and
operators for the allocation range constraint (C1). This has resulted in the
definition of two repair operators: LR-KCRM and LR-KBRM.

6.10.1 Repair Operator: LR-KCRM

The first operator that will be defined is the K-Tournament Cell Repair Mu-
tation (LR-KCRM) operator that aims to repair a solution that violates con-
straint C1. The operator is run with two input parameters; a solution s that
is invalid in terms of the C1 constraint and an integer kc with the size of
the cell selection tournament. The solution s needs to include one metadata
structure; an array n(s) with the number of cells per land-use type (MD-III).
The repair operator is depicted in Algorithm 25. The operator first detects
of which land-use types the number of cells are currently below the lower
bound (Tlb), above the upper bound (Tlb) and in between (Tb). This can be
done efficiently using MD-III, which contains to how many cells each type is
allocated. Next, a tournament between kc cells is held, which works as fol-
lows. For each of the kc iterations, a random cell will be chosen. In case one or
more types violate the upperbound, this cell needs to be of one of these types.
Otherwise, it needs to be of a type that violates the lower bound. If not, a new
cell will be selected until this holds. After a cell has been found to repair, the

102 Chapter 6. Pareto Local Search for MOLA

new type of this cell will be selected. In case the lower bound is violated, this
new type needs to be of a type that does so. Otherwise, the new type needs
to be a type that is already in between the bounds. For all of these types,
the potential change in objective value of a randomly selected objective that
was chosen at the beginning, will be calculated. Eventually, the cell and type
that result in the best objective value improvement, will be saved and used to
update solution s. The repair operator guaranties to reduce the ’amount’ of
violation of C1 after being applied. The operator hereby assumes that at least
one type of the given solution violates constraint C1. With the cell selection
tournament size, the user is able to influence the duration (costs) and qual-
ity (regarding the objective values) of the repaired solution. Especially at the
start of PLS-MOLA, the initial solution might need a large number of repara-
tion operations to become valid. The higher kc, the longer the reparation will
take, but the better the eventual objective values are expected to be.

6.10. Repair Operators 103

Algorithm 25 LR-KCRM(s, kc)

1: input: solution s with:
2: an array n(s) with the number of cells per type . MD-III
3: an integer kc with the cell tournament size
4:
5: o := randomly select an objective o ∈ O
6: Tlb := {t ∈ T ′|n(s)[t] < LBt}
7: Tub := {t ∈ T ′|n(s)[t] > UBt}
8: Tb := T \ (Tlb ∪ Tub)
9:

10: Ubest := ∅
11: for kc times do
12: c := randomly select a non-static cell c from s
13: if |Tub| > 0 then
14: while type(c) 6∈ Tub do
15: c := randomly select a non-static cell c from s
16: end while
17: else
18: while type(c) 6∈ Tlb do
19: c := randomly select a non-static cell c from s
20: end while
21: end if
22:
23: T ′ := Tb
24: if |Tlb| > 0 then
25: T ′ := Tlb
26: end if
27:
28: for all land-use type t ∈ T ′ do
29: U := {c} with type(c) := t
30: if fo(s, U) > fo(s, Ubest) then . Appendix B
31: Ubest = U
32: end if
33: end for
34: end for
35:
36: s := UpdateS(s, Ubest) . Chapter 6.12
37:
38: output: s

6.10.2 Repair Operator: LR-KBRM

The K-Tournament Boundary Cell Repair Mutation (LR-KBRM) is the sec-
ond repair operator that can be used to repair a solution that violates con-
straint C1. Again, the operator is run given a solution s that violates the C1
constraint and an integer kc that states the size of the cell selection tourna-
ment. The repair operator is similar to the LR-KCRM operator, except for
two major differences. First of all, only boundary cells are mutated. Similar
to LS-KBRM, this can either be done by taking note of the boundary cells of
a solution or randomly sampling cells until a boundary cell is obtained. The
operator keeps on sampling boundary cells, until a boundary cell bc with a
type that violates the C1 constraint is found. The second difference, is the set

104 Chapter 6. Pareto Local Search for MOLA

of optional types that can be allocated to this cell; only types of neighboring
cells are allowed. Now lets consider the first case, in which the boundary
cell violates the lower bound. In that case a tournament will be performed
between the types of all neighboring cell that do not violate the lower bound
either, to decide which one is best for the bc cell. In this case, the best type
is the one that results in the highest positive change regarding the randomly
selected objective at the start (assuming we are maximizing). If this update
would result in the best update so far, it is stored. In the second case, the type
of the boundary cell violates the upper bound. This will result in a tourna-
ment between the neighboring types of the boundary cell that do not violate
the upper bound as well, deciding which type will be allocated to bc. Again,
in case this update would result in the best objective change found so far, it
will be stored. This process will be repeated for kc cells, of which eventu-
ally the best update found will be applied and the resulting solution will be
returned. In contrast to LR-KCRM, the LR-KBRM does not assure that the
resulting solution violates constraint C1 ’less’ than before; it is for example
possible that a bc that violated the upper bound, only has neighbors that do
so to. In that case, no change will be made. Remember, that the variable m
is passed on to the reparation procedure, stating the maximum number of
consecutive times that this is allowed to happen. Similar to the LS-KBRM op-
erator, the LR-KBRM operator is made specifically to promote compactness.
In case compactness maximization is not among the objectives being opti-
mized, the operator has no advantage above the LR-KCRM operator; it even
has a disadvantage due to fact that a random boundary cell is more expensive
to obtain than a random cell. Similar to LR-KCRM, a higher kc will result in
a longer and more computationally expensive reparation process, but is also
expected to result in higher objective values.

6.11. Acceptance Criteria 105

Algorithm 26 LR-KBRM(s, kc)

1: input: solution s with:
2: an array n(s) with the number of cells per type . MD-III
3: an integer kc with the cell tournament size
4:
5: o := randomly select an objective o ∈ O
6: Tlb := {t ∈ T ′|n(s)[t] < LBt}
7: Tub := {t ∈ T ′|n(s)[t] > UBt}
8: Tb := T \ (Tlb ∪ Tub)
9:

10: Ubest := ∅
11: for kc times do
12: bc := randomly select a non-static boundary cell bc from s
13: if |Tub| > 0 then
14: while type(bc) 6∈ (Tlb ∪ Tub) do
15: bc := randomly select a non-static boundary cell bc from s
16: end while
17: end if
18:
19: if type(bc) ∈ Tlb then
20: N ′ := {c ∈ N (bc)}| !static(type(c)) and type(c) 6∈ Tlb}
21: for all cell c ∈ N ′ do
22: U := {c} with type(c) := type(bc)
23: if fo(s, U) > fo(s, Ubest) then . Appendix B
24: Ubest = U
25: end if
26: end for
27: else
28: T ′ := {t ∈ TN (bc)| !static(t) and t 6∈ Tub}
29: for all land-use type t ∈ T ′ do
30: U := {bc} with type(bc) := t
31: if fo(s, U) > fo(s, Ubest) then . Appendix B
32: Ubest = U
33: end if
34: end for
35: end if
36: end for
37:
38: s := UpdateS(s, Ubest) . Chapter 6.12
39:
40: output: s

6.11 Acceptance Criteria

Different acceptance criteria can be implemented to decide upon whether a
newly found solution should be added to the archive or not. In this research,
three different acceptance criteria will be discussed.

106 Chapter 6. Pareto Local Search for MOLA

6.11.1 Criterion I: AC-ND

The first acceptance criterion is the most used criterion for PLS, which will
be referred to as AC-ND. The criterion is defined in Definition 6.11.1. The
AC-ND criterion accepts a solution s for inclusion in the archive A in case it
is non-dominated by all solutions currently present in the archive. The AC-
ND criterion is relatively weak and allows for an extensive exploration of the
search space at the cost of a (possibly) quickly expanding archive.

Definition 6.11.1 (AC-ND). A solution s is accepted for inclusion in A if s′ 6≺
s for all s ∈ A.

6.11.2 Criterion II: AC-NDS

The second acceptance criterion is a stronger form of AC-ND, which will be
referred to as AC-NDS. The criterion is defined in Definition 6.11.2. The AC-
NDS criterion only accepts a solution s′ from the neighborhood of solution s
that is currently being explored, if it is not dominated by any solution cur-
rently in the archive A and s′ dominates s. As this criterion is stronger (more
strict) than AC-ND, it will result in a smaller archive. As such, AC-NDS could
allow for a faster approximation of the Pareto front at the cost of a decreased
diversity.

Definition 6.11.2 (AC-NDS). A solution s′ from the neighborhood of solution
s that is being explored, is accepted for inclusion inA if s′ ≺ s and s′′ 6≺ s′ for
all s′′ ∈ A.

6.11.3 Criterion III: AC-CD

The final acceptance criterion will be referred to as AC-CDn and is defined in
Definition 6.11.3. When using AC-CDn, a maximum archive size n is being
maintained to prevent the archive from expanding too rapidly. In case the
archive size |A| is below n, it maintains the AC-NDn criterion. After |A|
reaches its maximum allowed size, a solution s will only replace a solution
s′ ∈ A if AC-NDn is met and the crowding distance of s is higher than the
crowding distance of s′. As such, a high diversity is maintained among the
select group of solutions in the archive. The lower the maximum size of the
archive, the quicker PLS will convergence, but the lower the size of the final
Pareto front is expected to be.

Definition 6.11.3 (AC-CDn). A solution s is accepted for inclusion in A if
s′ 6≺ s for all s ∈ A and |A| < n or else replaces the solution s′′ ∈ A with the
smallest CD, if s′ 6≺ s for all s ∈ A and CD(s) > CD(s′′).

Since all criterion require the solution to not be dominated by any solution
in the archive, the AC-ND criterion has been implemented in the archive up-
date function of Algorithm 28, that will be discussed Chapter 6.12. In order
to check this criterion efficiently, the metadata structure MD-II is used which
adds an array to the archive that keeps track of all solutions sorted per objec-
tive value. The AC-ND criterion is incorporated inside the update function,
as certain information obtained during the validation of criterion AC-ND can
efficiently be re-used for updating MD-II. The AC-NDS will also require a
comparison between s and s′ before updating the archive. Finally, the AC-
CD criterion will require a comparison in crowding distance in the update

6.12. Updating Procedures 107

function of Algorithm 28, before adding a solution to the archive. This can ef-
ficiently be implemented using the CD function for MOLA of 38 in Appendix
D.

6.12 Updating Procedures

The local search or repair operators decide upon the way a solution can be
adjusted to create a new solution from its neighborhood. However, they do
not apply these adjustments to the solution themselves; this is done using
a separate updating procedure. The advantage of separating the operators
and updating procedure, is that the algorithm becomes more loosely coupled.
Where the aim of a search or repair operator is to decide upon the changes
to create a new solution, the updating procedure only aims to update this
solution and its metadata as efficiently as possible, given these changes. As
so, an adjustment in for example the updating procedure does not require
an adjustment in any of the search or repair operators. There are two differ-
ent updating procedures; one for updating a solution and one for updating
an archive. First, we will discuss the solution updating procedure and after-
wards we will handle the archive updating procedure.

6.12.1 Solution Updating

The updating procedure for solutions is depicted in Algorithm 27. It is called
given the solution s to be updated and an update set U with the changes that
should be applied to s. An update set is simply the set of all cells of s that
should obtain a different land-use type including these new types (Definition
6.2.6). Generally, the algorithm consists out of three steps. First, the metadata
of solution s is being updated. For each metadata structure that is being used,
an updating procedure should be available. The updating procedure is also
called given s and U , and should update the corresponding metadata incre-
mentally using the changes that will be applied to s. In this research, two
metadata structures for a solution were defined; MD-I and MD-III. The incre-
mental updating procedures of these two structures are shown in Algorithm
32 and 34 of Appendix A. In the next phase of the algorithm, the changes of
the update set are being applied to solution s. The types of the cells in s that
are mentioned in U , will be changed to their new types. The final step, is to
run the validation function on the new solution. This procedure updates the
valid(s) variable that states whether s satisfies the constraints or not and is
further discussed in Chapter 6.13. After the metadata structures have been
updated, the changes have been applied and the new solution has been vali-
dated, the solution is successfully updated and can be returned.

108 Chapter 6. Pareto Local Search for MOLA

Algorithm 27 UpdateS(s, U)

1: input: a solution s
2: a set U containing the updates for s . Definition 6.2.6
3:
4: for all metadata MD-x used in s do
5: s := UpdateMD-x(s, U) . Appendix A
6: end for
7:
8: for all cell c ∈ U do
9: type(s[c]) := type(c)

10: end for
11:
12: valid(s) := Validate(s) . Chapter 6.13
13:
14: output: s

6.12.2 Archive Updating

Finally, an archive updating procedure is defined in Algorithm 28. The archive
updating procedure is called given the current archive and a new archive
(set of solutions) to be added to this archive. In order to do so efficiently, it
makes use of the two metadata structures of Chapter 6.2.3 that were consid-
ered as ’essential’; the MD-I structure that stores the current objective values
of a solution, and the MD-II structure that stores (an id of) each solution in
the archive sorted per objective value. The archive updating procedure has
three goals. First of all, it needs to determine whether solutions of A′ satisfy
the AC-ND acceptance criteria (Definition 6.11.1). This criteria requires a so-
lution not to be dominated by any other solution currently in the archive.
As discussed in Chapter 6.11.1, this criteria is always present and can be
checked inside the updating procedure. The second and third goal of the
updating procedure, are the actual updating of the archive and the archive
related metadata structure MD-II (in case the criteria were satisfied).

The procedure works as follows. Each solution s ∈ A′ that might be added to
the archive, is checked separately. First, its position in the sorted array v(A)
is determined efficiently using its array f (s) with objective values. All pre-
decessors of s in the list regarding the first objective are stored in P and all
successors of s are stored in S . Note, that the solutions in P now dominate s
regarding the first objective, whereas the solutions in P are dominated. Next,
we iterate over all remaining objectives and intersect (not unite) P with the
new predecessors and S with the successors. After all objectives have been
processed, we now end up with a list P with solutions that dominate s on all
objectives, and a list S with solutions that are dominated by s for all objec-
tives. In case P is not empty, and so s is dominated by one or more solutions
from the archive, the solution is rejected and we continue on to the next solu-
tion. In case P is empty, s is not dominated by any solutions in the archive,
and will be added to archive. While doing so, all solutions that were domi-
nated by s will be removed from the archive, and the sorted array v(A) (MD-
II) will be updated. After all solutions from A′ are processed, the updated
archive A will be returned as the output.

6.13. Validating Procedure 109

Algorithm 28 UpdateA(A, A′)
1: input: an archive A with:
2: an array f (s) for each s ∈ A with obj. values . MD-I
3: an array v(A) with all s ∈ A sorted per obj. value . MD-II
4: an archive A′ for updating A
5:
6: for all s ∈ A′ do
7: v′ := insert s in v′[o] for all objectives o ∈ O using array f (s)
8: P := {s′ ∈ v′[1] | s′ ≺ s}
9: S := {s′ ∈ v′[1] | s′ � s}

10: for all objective o = {2, ..., O} do
11: P := P ∩ {s′ ∈ v′[o] | s′ ≺ s}
12: S := S ∩ {s′ ∈ v′[o] | s′ � s}
13: end for
14: if P == ∅ then
15: A := (A∪ s) \ S
16: v(A) := v′ with all s′ ∈ S removed
17: end if
18: end for
19:
20: output: A

6.13 Validating Procedure

A new solution generated by the updating procedure might violate the con-
straints of the MOLA problem. Therefore, a check has to be performed to
verify whether the solution is still valid. For each constraint that can be vi-
olated, a validation function needs to be implemented. In Appendix C, the
constraint validation function of constraint C1 (allocation ranges) is outlined
in Algorithm 37. The function makes use of metadata structure MD-I to ef-
ficiently check whether the number of cells per land-use type violate the al-
lowed ranges. The general constraint checking function that calls all vali-
dation scripts is shown in Algorithm 29. Although this research only takes
C1 in account, more constraints and so validation functions can be added to
Algorithm 29 easily.

Algorithm 29 Validate(s)

1: input: a solution s to validate
2:
3: for all constraint c ∈ C do
4: if !Validate-c(s) then . Appendix C
5: output: f alse
6: end if
7: end for
8:
9: output: true

110 Chapter 6. Pareto Local Search for MOLA

6.14 Perturbation Procedure

The IPLS-MOLA algorithm of Algorithm 16 uses a perturbation procedure
to create an initial solution for the next iteration out of a solution from the
current archive. The goal of the perturbation procedure is to kick the solu-
tion from the archive out of its current local optimum. As such, the changes
applied to the solution should be large enough to do so, but not too large to
lose all qualitative solution parts. Therefore, the perturbation procedure will
need to be ’tuned’ to the MOLA problem it is being applied to in order to
work efficiently.

The perturbation procedure used in this research is shown in Algorithm 30.
Given a solution s and a perturbation size p, the procedure randomizes p per-
cent of all dynamic cells of s. In order to do so, one big update set is build with
a random type assigned to p percent of all dynamic cells and passed on to the
solution updating function to ensure that all metadata is being updated as
well. The larger the perturbation size p, the more the resulting solution will
deviate from the original solution s. The minimum perturbation size is 0,
resulting in no perturbing at all, whereas the maximum perturbation size of
100 results in a completely randomized solution. Note, that a random type
might result in the same type that a cell already had. As such, the actual per-
centage of cells of which the type has changed will be below (or equal to) the
perturbation size.

Algorithm 30 Perturb(s, p)

1: input: solution s
2: perturbation size p
3:
4: P := randomly select p percent of all dynamic cells
5: U := ∅
6:
7: for all cell c ∈ P do
8: U := U ∪ c with a random type
9: end for

10:
11: s := UpdateS(s, U) . Chapter 6.12
12:
13: output: s

111

Chapter 7

Implementation

7.1 Setup

In order to be able to optimize and examine the performance of the PLS al-
gorithm for MOLA, a proof of concept has been build. Whereas the function-
alities of the algorithm are outlined in Chapter 6, this chapter will elaborate
on how these can be translated and integrated into software. The overall pro-
gram has been designed with the aim to minimize the program complexity
and amount of memory required to store and run the algorithm. Reducing
the complexity will improve the scalability of the algorithm, whereas reduc-
ing the amount of memory required will prevent the algorithm from requir-
ing (unrealistically) high amounts of memory when optimizing large MOLA
problems. Increasing the scalability will have the highest priority, as this was
one of the main challenges currently being faced in the MOLA domain (Chap-
ter 1.2).

The implementation has been created using .NET Framework 4.8 (Microsoft,
2019b). This is the latest version of .NET Framework, released in 2019. No
libraries were used for the core functionalities of the algorithms. The reason
for not using common algorithm libraries is that these are programmed for
combinatorial optimization problems in general. In this research we would
like to optimize PLS specifically for MOLA problems, meaning that we want
to exploit problem-specific properties. As these libraries do not give us the
maximum flexibility to do so, the algorithms have been build independently.
However, in case a general static functionality was required, libraries were
preferred (to reduce both the amount of work and possibility of errors). An
example of such a functionality, is the calculation of the hypervolume (Chap-
ter 7.2.3). In future research, the algorithm could be implemented in more
low level programming languages than C# such as C++, to further enhance
the performance. For now, the goal of the POC is mainly to compare the per-
formance of different operators, strategies and algorithms, so this was out
of the current project its scope. The final software program will be handed
over to the Energy and Resources group of Utrecht University and possibly
be made public over time.

In the following chapters, the design choices considering the implementa-
tion will be explained. The focus will hereby lay on the data structures used
and their relationships. Handling more specific implementation details, such
as method specific optimizations, is out of the scope of this document. If in-
terested, these can be viewed in the source code if made public. At first, the

112 Chapter 7. Implementation

problem and solution framework will be outlined in Chapter 7.2. These struc-
tures will allow an optimization algorithm to read and solve a MOLA prob-
lem. Secondly, the implementation of three of these algorithms will be out-
lined; PLS, IPLS and NSGA-II in Chapter 7.3.1, 7.3.2 and 7.3.3. All structures
are explained and documented using UML class diagrams. Finally, there are
several other supporting classes that provide general functionalities (for ex-
ample for IO handling). These will also shortly be mentioned in Chapter 7.2.3
and are added to Appendix E.

7.2 Framework

In order to allow different algorithms to optimize a MOLA problem, a small
framework has been designed. The framework allows for the storage of a
MOLA problem and solutions in an efficient and convenient manner. The fo-
cus of the framework is on incremental objective handling and solution up-
dating, which is used to decrease the required memory storage space. Also,
the framework allows for a more fair comparison between different algo-
rithms, as all algorithm are able to access the MOLA problem in the same
manner. At first, the problem structure will be discussed, followed by the so-
lution structure. Finally, several small helping structures will be summarized.
In future research, the framework can be reused when proposing and com-
paring improvements for PLS-MOLA or other MOLA-specific algorithms.

7.2.1 Problem Setup

The problem structure allows an algorithm to efficiently access and interact
with the objectives and constraints of the MOLA problem. The UML class
diagram of its structure is shown in Figure 7.1. The problem is stored as a
singleton, which can be accessed by any component of the algorithm at any
time to view its objectives and constraints. Currently, the objectives and con-
straints being optimized are read from the program settings when calling an
initialization function. Optionally, this can be automated in the constructor
function.

FIGURE 7.1: UML Diagram: Problem Structure

7.2. Framework 113

The problem singleton contains both the objectives and constraints. An ob-
jective has two functions; an initialization function and an update function.
The first calculates the objective function value of a solution from scratch.
The second calculates the change in objective function value, given a poten-
tial change to a solution. This allows for an incremental objective function
handling. A constraint only has a validate function, that given a solution, de-
cides whether it satisfies the constraint. Doing so efficiently, can for example
be done using the metadata structures as was discussed in Chapter 6.2.3. The
objective and constraint function are coded as abstract classes, completely
decoupling the framework from the specific objectives or constraints being
used.

7.2.2 Solution Storage

The manner in which solutions to the MOLA problem being optimized are
stored, influences the memory requirements of the optimization program.
Throughout an optimization run, with either PLS or NSGA-II, there are gen-
erally a large number of solutions that are being generated. The number of
solutions stored in the archive or population can be high, and on top of these
new solutions are being created (possibly in a concurrent manner), asking for
even more memory space to be available. Storing all solutions independently
and in a naive manner is therefore considered to be unacceptable when de-
veloping a scalable optimization program. As far as concerned, no previous
MOLA optimization researches have proposed a structure to do so more ef-
ficiently. Therefore, a data structure for MOLA solutions has been designed
that solely stores changes to the initial solution, minimizing the amount of
memory necessary.

114 Chapter 7. Implementation

FIGURE 7.2: UML Diagram: Solution Structure

The data structures used for storing a solution are shown in the UML class
diagram of Figure 7.2. A solution is defined as an abstract class, with two
sub classes; an initial solution and a derived solution. Both provide the same
functionalities that are defined in the abstract solution class, meaning that the
algorithm does not ’know’ with which type of solution it is dealing. However,
they both store the cell types in a different manner. An initial solution stores
a solution in a naive way; it takes note of the type of every cell of the map.
The derived solution however, only stores adjustments made to an initial so-
lution: as so it contains a reference to an initial solution and only takes note
of adjusted cell types. Unchanged cell types are now never stored twice, re-
ducing the redundancy. In case the MOLA problem is run with one initial
map as starting solution, only one initial solution will have to be stored; all
other solutions can be derived solutions based on this initial solution.

The abstract solution class demands both sub classes to have a method to
view and update the type of a cell. For the initial solution, these are straight-
forward. For the derived solution, viewing a cell is done by first checking
whether it has an update for this cell; if so, the updated type is returned
and otherwise the type in the linked initial solution. When updating a cell,
the update is added to its updating list. Furthermore, a solution class takes
note of the number of rows, columns and the locations of the dynamic cells.
As these properties never change, these are only stored in the initial solution.
The derived solutions simply pass on these values when requested. Also, two

7.3. Algorithms 115

metadata structures are stored; the objective value for each objective (MD-I)
and the number of cells per land-use type (MD-III). Both of these values do
change when an adjustment is made, and so these are updated incrementally
when adjustments are made. The derived solution hereby takes note of its
own metadata values. As discussed in Chapter 6.2.3, the MD-I and MD-III
structures allow for incremental objective updating and constraint checking.
Finally, each time a cell type changes, the solution is re-validated to verify
whether it still satisfies the problem constraints. The result is stored in the
solution itself (the valid property).

7.2.3 Other Features

Several helper classes are set up to provide common functionalities that can
be used by any algorithm solving the MOLA problem. These classes are
added to Appendix E.1. First of all, the jMetal.NET library (v0.5) is added
for hypervolume calculation (Nebro, 2015), which can be used to calculate
the hypervolume of an archive or population. Next, a class for IO handling is
added, which contains methods for reading and writing solutions from and
to .ASC files. Also, this class is able to generate statistics when exporting
these solutions, such as the averages and standard deviations of the objective
values. Furthermore, a logger class is added that is able to log and print the
status of the algorithm in the console. In the future, this could be extended to
a form-based interface. Next up, there are two utility classes. One provides
general functions such as list shuffling and one provides thread safe random
number generators. Finally, a class is added with solution based functional-
ities. This includes methods that return a random dynamic cell or boundary
cell of a solution, that can for example be used by local search operators.

Finally, the resulting framework implementation consisted out of 12 differ-
ent classes, covering 458 lines of executable code. This excludes sub classes
of the abstract objectives and constraint classes. More statistics regarding the
framework implementation can be found in Table F.1 of Appendix F. Again,
details regarding the exact implementation of each class are out of the scope
of this research documentation.

7.3 Algorithms

7.3.1 PLS-MOLA

The PLS-MOLA algorithm is implemented according to the design discussed
previously in Chapter 6.3.1. The final UML class diagram is shown in Figure
7.3. First of all, the PLS-MOLA class owns one archive. The archive stores the
set of the (currently) best solutions found by the algorithm. It implements one
metadata structures (MD-II) to fasten the updating process; a list of each so-
lution sorted by objective value for each objective. This allows for an efficient
manner to check whether a new solution is dominated and for crowding dis-
tance calculation according to Algorithm 38. Every time a solution is added
to the archive, the metadata structure is updated. Finally, the archive also
takes note of which solutions are yet unexplored.

In order to explore new solutions, the PLS-MOLA class owns three proce-
dures; a selection procedure, search procedure and repair procedure. These

116 Chapter 7. Implementation

procedures work according to the algorithms described in Chapter 6.4, Chap-
ter 6.7 and Chapter 6.9 respectively. The selection procedure is responsible
for choosing what solution its neighborhood is going to be explored next. The
search procedure is responsible for creating new (derived) solutions from this
selected solution. Finally, the repair procedure tends to repair a new solution
from the search procedure in case it violates any constraints. The PLS-MOLA
algorithm is initialized with these three procedures as constructor parame-
ters. This decouples the algorithm from the procedures, allowing the user
to for example create and run different versions of the PLS-MOLA algorithm
more easily.

Finally, all three procedures possess a set of corresponding operators to re-
alize their task. In Chapter 6.5, Chapter 6.8 and Chapter 6.10, operators were
defined for respectively selecting, searching and repairing solutions. These
are passed on to the procedures when initialized. The selection and search
procedure both require at least one operator to be present; these are necessary
for the PLS-MOLA algorithm to run. The repair procedure does not necessar-
ily need to have a repair operator, as this is unnecessary in case the problem
has no constraints. All operators are defined as abstract classes, allowing the
user to easily add or remove operators from and to the program.

FIGURE 7.3: UML Diagram: The PLS-MOLA Algorithm

Statistics regarding the resulting PLS-MOLA implementation can be found

7.3. Algorithms 117

in Table F.1 of Appendix F. The PLS implementation consists out of a total
of 16 classes: all classes of the UML Diagram of Figure 7.3 and one validator
class. The validator class validates the problem and PLS settings that have
been set by the user before running the algorithm and is shown in Figure E.7.
Eventually, the 16 classes cover a total of 309 lines of executable code.

7.3.2 IPLS-MOLA

The local search algorithm PLS-MOLA can be modified to become the global
search algorithm IPLS-MOLA. The UML diagram of this algorithm is shown
in Figure 7.4. The IPLS algorithm aggregates a PLS-MOLA algorithm, and
calls this algorithm in each of its iterations. At the end of an iteration, a so-
lution is perturbed to create a new initial solution for the next iteration. In
order to perturb a solution for a new iteration, the IPLS algorithm random-
izes a part of the solution. After each iteration, the archive of IPLS-MOLA is
updated with the archive found in the latest iteration. Eventually, the final
archive containing the best non-dominated solutions found in all iterations
is returned. Overall, the implementation follows the general algorithm defi-
nition of IPLS as was described in Chapter 5.2.2. No notable adjustments or
improvements were made.

FIGURE 7.4: UML Diagram: The PLS Algorithm

The IPLS-MOLA algorithm only requires one more class on top of the PLS-
MOLA classes with 45 lines of executable code. More details on the class
statistics can be found in Table F.1 of Appendix F.

7.3.3 NSGA-II-MOLA

The final algorithm implementation to be discussed, is the NSGA-II-MOLA
algorithm. The UML class of the implementation is shown in Figure 7.5. In
contrast to the archive of PLS, the NSGA-II algorithm owns a population class
that aggregates the solutions. This class also contains the methods that are
essential for NSGA-II; a fast non-dominated sorting algorithm and a proce-
dure that selects the next population based upon their domination front and
crowding distance. The fast non-dominated sorting algorithm is shown in
Algorithm 2 of Chapter 4.3.5. In order to perform this sort efficiently, a meta-
data structure has been added to the population that takes note of which
solution(s) dominate or are dominated by what other solution(s). Storing
these, makes it unnecessary to check dominance between any two solutions

118 Chapter 7. Implementation

twice. Similar to the archive class, the population class also contains a list
of each solution sorted by objective value for each objective (MD-II). This
can (similar to with PLS-MOLA) be used to efficiently calculate the crowding
distances. Using the fast non-dominated sorting algorithm, combined with
crowding distance comparing for solutions of similar fronts, the population
class is able to select the next population. Doing so, is triggered by the NSGA-
II-MOLA algorithm, after the desired number of offsprings have been added
to the population. The population class will then bring back the number of
solutions to the desired population size, using the common NSGA-II selec-
tion procedure.

FIGURE 7.5: UML Diagram: The PLS Algorithm

Similar to the PLS-MOLA algorithm, the NSGA-II-MOLA algorithm aggre-
gates several procedure classes to realize the different processes of the algo-
rithm. First of all, the algorithm has an initialization procedure. The ini-
tialization procedure initializes the first population, based upon the initial
solution that is given to the algorithm. The population is initialized by cre-
ating completely random solutions and/or mutating (randomizing) parts of
the initial solution. These are the two most common initialization strategies,
as was discussed earlier in Chapter 4.3.4. The user can decided upon what
part (percentage) of the initial population will be randomized, and what part
will be mutations of the current situation. Besides this, the user is able to
set the size of these mutations. The size is set as the percentage of dynamic
cells that will obtain a random type. The initialization procedure also aggre-
gates a reparation procedure. This procedure is used to eventually repair all
newly created solutions and end up with a valid initial population. In this im-
plementation, both initialization strategies already take the allocation ranges
constraint (see Chapter 3.2) in account in case it is added to the problem. This

7.4. Parameters 119

is not necessary, but prevents the created solutions from deviating too much
from the allowed ranges, shortening the reparation times.

The initialization procedure is used once to create the initial population. Af-
terwards, the NSGA-II-MOLA algorithm continuously uses four other pro-
cedures to create new generations. First of all, a tournament procedure is
used. This procedure performs two tournament selections with k = 2 on
the current population to end up with two new parents. A tournament se-
lection is won by the solution in the highest domination front or with the
highest crowding distance in case these are equal. After the parents have
been selected, the crossover procedure is used to generate offsprings. The
crossover procedure uses crossover operators that create two offsprings out
of two parents. Two crossover operators are implemented; the C-XTD op-
erator, which is equal to the TDX operator of Chapter 4.3.6, and the C-XBC
operators, which is equal to the BCX-III operator of Chapter 4.3.6. Next, both
offsprings are mutated using the mutation procedure which applies muta-
tion operators a pre-defined number of times to a solutions. In this case, local
search operator that were previously used in PLS-MOLA, are now used as
mutation operators. As discussed in Chapter 6.8, these local search opera-
tors were originally based upon mutation operators from previous research.
Finally, a repair procedure equal to the one used in PLS-MOLA is added to
repair invalid offsprings (Chapter 6.9). This procedure also aggregates and
applies the same repair operators as were discussed in Chapter 6.10.

Finally, several extensions were added to the framework to provide func-
tionalities specifically needed for NSGA-II-MOLA. These can be viewed in
Appendix E.2. The extensions allow the user to export population statistics,
log specific NSGA-II details and validate settings of the NSGA-II algorithm.
Statistics regarding the final NSGA-II-MOLA related classes can be found in
Table F.2. In total, 12 classes were added to the existing PLS and framework
classes to realize the NSGA-II-MOLA algorithm. In total, these cover up to
392 lines of executable code.

7.4 Parameters

In this section, a small summary will be given with all parameters that can
be set when running the program. The parameters are mostly parameters
of earlier discussed algorithms, operators and termination criteria. First, pa-
rameters regarding the MOLA problem will be discussed; these always need
to be set. Next up, algorithm specific parameters will be discussed; these only
need to be set in case the corresponding algorithm is executed.

The first parameters to be discussed are used to set the problem, and can
be viewed in table 7.1. The first two parameters decide upon the objectives
and constraints. At least one objective is required to run the optimization
process. Next, the number of different types in the initial solution, including
a list of which of these are static, need to be set. Finally, the problem can be
set to either a four- or eight-neighbor problem.

120 Chapter 7. Implementation

TABLE 7.1: Problem Parameters

Id Parameter Type Size/Range
1 Objectives {Objective} [1, ∞)
2 Constraints {Constraint} [0, ∞)
3 Number of Types int [2, ∞)
4 Static Types {int} [0, ∞)
5 Number of Neighbors int [4, 8]

Next up, are the parameters regarding the PLS-MOLA algorithm, shown in
Table 7.2. First of all, the user is able to set the selection, search and repair
operators. As discussed earlier, at least one selection and search operator
is required. The Search KT parameter sets the type tournament size of the
search operators, whereas the Repair KT sets the cell tournament size of the
repair operators. These are equal to the kt and kc parameters of Chapter 6.8
and 6.10 respectively. The Repair BT parameter is an extra parameter added
to the repair operators, that states whether the type resulting in the highest
positive objective change should be chosen (BT = true) or a randomly selected
type (BT = false). Furthermore, the Allow Repair parameter decides whether
or not the PLS-MOLA algorithm should allow the reparation of invalid new
solutions, or should simply discard invalid solutions and create new ones
until a valid one shows up. The maximum archive size decides upon the
maximum size of the archive; solutions with the lowest crowding distance are
discarded when the maximum size is exceeded (Chapter 6.11.3). Finally, the
exploration, reparation and PLS N and M values of the termination criteria
of the PLS-MOLA algorithm (Chapter 6.3.1, Chapter 6.6 and Chapter 6.9) are
added.

TABLE 7.2: PLS-MOLA Parameters

Id Parameter Type Size/Range
6 Selection Operators {SelectionOperator} [1, ∞)
7 Search Operators {SearchOperator} [1, ∞)
8 Repair Operators {RepairOperator} [0, ∞)
9 Search KT int [1, ∞)
10 Repair KC int [1, ∞)
11 Repair BT bool [True, False]
12 Allow Repair bool [True, False]
13 NDS bool [True, False]
14 Max. Archive Size int [1, ∞)
15 Exploration N int [0, ∞)
16 Exploration M int [0, ∞)
17 Reparation N int [0, ∞)
18 Reparation M int [0, ∞)
19 PLS N int [0, ∞)
20 PLS M int [0, ∞)

The parameters regarding the IPLS-MOLA algorithm are shown in table 7.3.
Since the IPLS algorithm makes use of the PLS algorithm, the previously dis-
cussed PLS settings need to be set as well; the two IPLS parameters simply
expand this parameter set. The first extra parameter states the perturbation
size (Chapter 6.14), whereas the second parameter states the number of iter-
ations of the IPLS-MOLA algorithm. The perturbation size is the percentage

7.4. Parameters 121

of the solution (dynamic cells) that will be randomized in the perturbation
process, and should be in between 0 and 100.

TABLE 7.3: IPLS-MOLA Parameters

Id Parameter Type Size/Range
21 Perturbation Size int [0, ∞)
22 Iterations int [1, ∞)

The fourth and final set of parameters that will be discussed, is related to the
NSGA-II-MOLA algorithm. At first, the crossover, mutation (search) and re-
pair operators need to be set. These are followed up by the population size
and two parameters that define the formation of the initial population. The
first one is the Init. Random Sol. parameter, which decides what part (per-
centage) of the initial population should consist of completely randomized
solutions. The remaining part will consists of mutations of the initial solu-
tion. The second parameter, is the Init. Mut. Size parameter, which decides
the mutation size of these mutated solutions. The size is defined as what
part (percentage) of the dynamic cells of the initial solution should be ran-
domized. Note, that this is not equal to the part of cells that is eventually
updated; a randomization might lead to the same type as before. Both pa-
rameters should be in between 0 and 100. Next up, the mutation parameters
related to the mutations that occur during the optimization process need to
be set. The mutation N is the mutation size, and states the number of times
a local search operator is applied to a solution being mutated. The Mutation
KT is equal tot the Search KT parameter of parameter 9. The repair KC and
repair BT are also equal to the repair KC and repair BT of parameter 10 and
11. Finally, the termination criteria are set. The first two set the N and M for
the C-XBC crossover operator. The third and fourth set the N and M for the
reparation procedure. Finally, the number of generations that the NSGA-II-
MOLA algorithm will run are set using the generation parameter.

TABLE 7.4: NSGA-II-MOLA Parameters

Id Parameter Type Size/Range
23 Crossover Operators {CrossoverOperator} [1, ∞)
24 Mutation Operators {SearchOperator} [0, ∞)
25 Repair Operators {RepairOperator} [0, ∞)
26 Population Size int [1, ∞)
27 Init. Random Sol. (%) int [0, ∞)
28 Init. Mut. Size (%) int [0, ∞)
29 Mutation N int [1, ∞)
30 Mutation KT int [1, ∞)
31 Repair KC int [1, ∞)
32 Repair BT bool [True, False]
33 XBC N int [0, ∞)
34 XBC M int [0, ∞)
35 Reparation N int [1, ∞)
36 Reparation M int [1, ∞)
37 Generations int [0, ∞)

122 Chapter 7. Implementation

7.5 Concurrency

Finally, in order to speed up the optimization processes of the algorithms, in-
dependent parts of the procedures can be run in parallel. However, it should
hereby be assured that the outcome of one thread does not influence the out-
come of another thread. In this section, we will shortly discuss which parts
of the algorithms can be executed in parallel and in which parts concurrency
should be avoided.

First of all, let us discuss parallelism regarding the PLS-MOLA algorithm.
When looking at the PLS-MOLA algorithm in Algorithm 15, we see two loops
that could be executed in parallel. The first one is related to the exploration
of a single solution. Doing so in parallel, would result in the exploration of
multiple solutions of the archive simultaneously. However, the outcome of
the exploration of one solution could affect the need to explore another so-
lutions in the current archive. New and better solutions can be found, that
would provided better ’starting solutions’ for the next exploration. As the
PLS algorithm only runs for a pre-set number of iterations, it is desired to
only ’spend’ iterations on explorations of the best solutions possible. There-
fore, it is undesired to execute this loop in parallel. The second loop consid-
ers the exploration of one neighborhood. In this neighborhood exploration, a
pre-set number of neighborhood solutions will be search for and evaluated,
independently of each other. By doing so in parallel, the exploration of one
single neighborhood can be sped up without affecting the outcome.

Secondly, let’s discuss parallelism regarding the IPLS-MOLA algorithm. At
first, it might look as if multiple iterations (calling the PLS-MOLA algorithm)
can be done in parallel. However, similar as to the exploration of multiple
solutions in the archive, these iterations depend on each other. After each
iteration, the quality of the archive of the IPLS-MOLA algorithm rises, pro-
viding a better start for the next iteration. However, as the PLS-MOLA al-
gorithm already exploits multiple threads in the exploration of one solution,
IPLS-MOLA automatically makes use of concurrency as well.

Thirdly, the NSGA-II-MOLA algorithm can exploit parallelism in two pro-
cesses. First of all, both the generation and reparation of the initial popu-
lation can be done in parallel. As these solutions need to be created and
repaired independently of each other, concurrency can speed up both pro-
cesses. Secondly, the expansion of the population with new offsprings can be
done in parallel. For each generation, the number of solutions in the popula-
tion needs to be doubled. Creating and repairing new offsprings can be done
independently, and so this can efficiently be done in parallel as well.

Finally, the framework exploits parallelism when exporting the final solu-
tions to .ASC files. As shown in Table 7.5, the program can both be set to
run in serial or parallel. As parallelism does not affect the solution quality
of any algorithm, but only decreases the time necessary to complete certain
operations, all algorithms will be experimented with while allowing multi-
ple threads. Meaning, that all results of Chapter 9, were generating using the
concurrency optimizations discussed above.

7.5. Concurrency 123

TABLE 7.5: Other Parameters

Id Parameter Type Size/Range
38 Asynchronous bool [True, False]

124

Chapter 8

Experimentation

8.1 Experimental Setup

In order to answer the research questions defined at the start, several test
cases has been set up. Each test case includes multiple experiments designed
to answer (part of) a research question and/or give more insight in the over-
all efficiency of PLS for MOLA. Eventually, this resulted in a total of 8 test
cases, described in Chapter 8.3. First, multiple tests cases are set up to opti-
mize the PLS-MOLA algorithm, as was stated by RQ1. Next, the influence of
the number of objectives on the performance of PLS-MOLA (RQ2) and op-
timization of IPLS-MOLA (RQ3) will be examined. Finally, the performance
of (I)PLS-MOLA will be compared to NSGA-II in the eighth test cases. How-
ever, before the test cases are described, a present-day MOLA case will be
set up to optimize in the experiments. As was discussed in Chapter 1, this
case will be set up in cooperation with Dr. F. van der Hilst of the Energy and
Resources group of Utrecht University. Van Der Hilst worked on multiple
(international) research projects concerning land use changes due to biomass
production, and their effects on the environment. One of the cases Van Der
Hilst has been working on, involves the direct and indirect land-use changes
in Brazil in relation to several sustainability concerns. As the Brazil case is a
topical land-use optimization problem, it will be used as the case study in the
experiments. The Brazil case is discussed in more detail in Chapter 8.2.

8.2 Problem Case: Brazil

8.2.1 Problem Context

The use of biomass for bio-energy is considered an important option to re-
duce the dependency on fossil resources and mitigate climate change. Among
others, it is able to reduce greenhouse gas emissions and contribute to eco-
nomic development (Hilst, Verstegen, Woltjer, et al., 2018). Over the last few
years, many governments have set biofuel targets. The increase in demand
of biomass for energy and materials has led to several sustainability issues.
Most of these are caused by land-use changes, which can either be direct or
indirect. Direct land-use changes occur for instance when agricultural land
use is converted to biofuel feedstock to meet the rising biofuel demands. In-
direct land-use changes occur for instance when the direct conversions alter
the price of agricultural products, resulting in an increase in the amount of
agricultural land elsewhere (Wicke, Verweij, Meijl, et al., 2012). These land-
use changes are likely to have environmental and socioeconomic effects, such
as an impact on carbon stocks, biodiversity, water availability and soil qual-
ity as well as on rural development and food security. Examples of these, are
deforestation (of for instance the Amazon) and a decrease in the quality of

8.2. Problem Case: Brazil 125

the soil or biodiversity. (Hilst, Verstegen, Woltjer, et al., 2018). Therefore, the
expansion of biomass production requires monitoring and good governance
to reduce these negative effects. Part of this good governance, includes the
development of effective policy strategies. Being able to explore how these
expansions can be done in a sustainable manner, could help in this debate.

An interesting area to examine biofuel-induced land-use changes, is Brazil.
First of all, Brazil plays a crucial role in the production and global supply
of ethanol. Considering ethanol, the annual production increased from 11.5
x 109L in 1990/91 to 30.2 x 109L in 2015/16 (Hilst, Verstegen, Woltjer, et al.,
2018). Projections of future ethanol production expect this amount to increase
even further to meet the upcoming global demands. Brazil is also an impor-
tant producer and exporter of agricultural products and wood (fibre). Due
to the abundance of natural resources and favourable climate conditions, the
agricultural sector has the potential to expand significantly in the upcom-
ing years. These strong developments in the agricultural and biofuel sector
in Brazil have several positive effects, such as economic growth and rural
development (Walter, Galdos, Scarpare, et al., 2014). However, it also re-
sults in land-use change related greenhouse gas emissions and loss of ecosys-
tems such as the Amazon, Cerrado and Atlantic forest (Martinelli, Naylor,
Vitousek, et al., 2010).

The situation in Brazil can be translated into a multi-objective land-use al-
location problem. The essence of this combinatorial problem will be to find
out how the land-use of Brazil can be allocated in a sustainable manner while
satisfying the global food, feed and biofuel demands. Although many objec-
tives can be thought of to steer towards the optimal situation, this research
will be limited to three objectives; compactness, potential yield and carbon
stock maximization. Compactness promotes the creation of less ’scattered’
solutions, potential yield is a proxy for profit/economic viability of the pro-
duction related land-use types and carbon stock states the amount of carbon
(related to greenhouse has emissions) being stored. In Chapter 8.2.3, we will
elaborate more on these objectives and why these were considered as the
most interesting. Finally, the solutions will have to meet the expected pro-
duction demands in food, feed, fibre and biofuel of 2030, which will be the
constraint of the problem. In the next chapter, we will describe in more detail
how the situation of Brazil can be translated into an optimization problem.
In Chapter 8.2.3 and Chapter 8.2.4, the three objectives and constraint will be
discussed. Eventually, the necessary resources and data will be handled in
Chapter 8.2.6.

8.2.2 Problem Definition

In order to optimize land-use allocation in Brazil, the situation of 2012 has
been translated into a grid with the corresponding land-use types. The re-
sulting land-use grid is shown in Figure 8.1. The size of one grid-cell is 5 x
5 km. Eleven different land-use types have been distinguished and are sum-
marized in Table 8.2. Two of these land-use types are static, whereas the
other nine are dynamic. The right columns show the area being covered and
the number of cells per land-use type, including their percentage of the total
number of cells. In total, the map of Brazil exists out of 342815 cells (8570375
km2).

126 Chapter 8. Experimentation

FIGURE 8.1: Initial Map of Brazil

TABLE 8.1: Land-Use Types Brazil

Id Type Static Km2 Cells
1 Urban Yes 5900 236 (0.1%)
2 Water Yes 161925 6477 (1.9%)
3 Natural Forest No 4529000 181160 (52.8%)
4 Rangeland No 239525 19581 (5.7%)
5 Planted Forest No 142800 5712 (1.7%)
6 Crops No 405750 16230 (4.7%)
7 Grass & Shrubs No 1524000 60960 (17.8%)
8 Sugar Cane No 99550 3982 (1.2%)
9 Planted Pasture No 1017375 40695 (11.9%)
10 Bare Soil No 6500 260 (0.1%)
11 Abandoned No 188050 7522 (2.2%)

However, there are several areas in the map of Figure 8.2 of which it is as-
sumed that the land-use will not change (for various reasons). These areas
can be found among all different land-use types. The initial map can there-
fore be simplified, by removing these areas from the map beforehand. In ad-
dition, we can also remove the static types Urban (1) and Water (2), as these
are assumed not to change either. The resulting initial map, that will serve
as the starting point of the optimization process, is shown in Figure 8.2. By

8.2. Problem Case: Brazil 127

removing 236 Urban cells, 6477 Water cells and 57630 so-called no-go cells, a
total of 278472 dynamic cells remain.

FIGURE 8.2: Initial Map of Brazil with No-Go Areas

TABLE 8.2: Land-Use Types Brazil with No-Go Areas

Id Type Static Km2 Cells
3 Natural Forest No 3228875 129155 (46.4%)
4 Rangeland No 477050 19082 (6.9%)
5 Planted Forest No 140500 5620 (2.0%)
6 Crops No 404825 16193 (5.8%)
7 Grass & Shrubs No 1408800 56352 (20.2%)
8 Sugar Cane No 99550 3982 (1.4%)
9 Planted Pasture No 1012125 40485 (14.5%)
10 Bare Soil No 5275 211 (0.1%)
11 Abandoned No 184800 7392 (2.7%)

The Brazil case can be translated into a MOLA problem by rewriting the
MOLA definition given in Chapter 3.2. The choice has been made to max-
imize the objectives (similar to minimizing their negative version). Further-
more, the grid of the Brazil map has 885 rows and 854 columns, and type 3 to
11 are dynamic. Hereby, the static type 12 is added to represent all static types
(1 and 2) together with all cells that do not below to Brazil (white space). The

128 Chapter 8. Experimentation

MOLA problem can now be formulated as follows;

Maximize:

11

∑
k=3

885

∑
i=1

854

∑
j=1

Bijkxijk (8.1)

Subject to:

12

∑
k=3

xijk = 1 ∀i = 1, ..., 885 j = 1, ..., 854 (8.2)

Lk ≤ Sk ≤ Uk (8.3)
885

∑
i=1

854

∑
j=1

xijk = Sk ∀k = 3, ..., 11 (8.4)

where:

xijk ∈ {0, 1} ∀i = 1, ..., 885 j = 1, ..., 854 k = 3, ..., 12 (8.5)

Equation (8.1) can occur multiple times; once for each objective. Each objec-
tive hereby sets different values for Bijk, as will be discussed in Chapter8.2.3.
Note, that an objective only takes land-use type 3 to 11 in account. Constraint
(8.2) states that each cell either has to be of type 3 to 11 or type 12 (static or
outside Brazil). Finally, constraint (8.3) and (8.4) state the desired number of
cells per land-use type in 2030. These should be in between a lower bound
Lk and upper bound Uk for each type k = 3, ..., 11. This will be further dis-
cussed in Chapter 8.2.4. Optionally, the problem could be formulated using a
vector-based representation as was discussed in Chapter 3.5 (for example to
decrease redundancy). However, since the PLS-MOLA algorithm is designed
for the (more convenient) grid-based MOLA representation (Chapter 6.2.2),
the Brazil case is formulated in this manner as well.

8.2.3 Objectives

In the research of Verstegen, Hilst, Woltjer, et al., 2016 and Hilst, Verstegen,
Woltjer, et al., 2018, future land-use changes in Brazil were estimated using
so-called suitability factors. These factors can be translated into objectives, as
they tend to minimize or maximize certain cell properties. The suitability fac-
tors included agro-ecological suitability, the distance to road infrastructures,
the travel time to processing hubs, the availability of the same land-use in
the neighbourhood and the conversion elasticity. The availability of the same
land-use in the neighborhood is comparable with the compactness objective
of Chapter 3.3.3, whereas the conversion elasticity is comparable with cost
minimization of Chapter 3.3.1. Note, that these suitability factors were used
to estimate future changes, whereas the objectives will be used to ’optimize’
these changes.

For this case, three of the suitability factors have been transformed into ob-
jectives. Handling more than three objectives is out of the scope of this re-
search, and so three factors were selected that are considered to be the most

8.2. Problem Case: Brazil 129

interesting when optimizing land-use change in Brazil. The suitability fac-
tors that have been selected, are the availability of the same land-use in the
neighborhood (compactness), the potential yield and the loss of carbon stock.
Compactness was selected in order to prevent solutions from creating a high
amount of small clusters. Potential yield was chosen as it is a proxy for
profit/economic viability, which is assumed to be an important motivation
of land-use change. Finally carbon stock was chosen, to be able to examine
how these changes can be done in a sustainable manner. In the following sub
chapters, the three selected suitability factors and resulting MOLA objectives
will be discussed in more detail. Note, that it should be possible to update
an objective value incrementally, as was one of the requirements when using
PLS-MOLA. All three objectives that were set up, satisfy this requirement.

8.2.3.1 Compactness

The first objective is formed out of the suitability factor concerning the avail-
ability of the same land-use in the neighbourhood. It is preferred to have
similar land-use types nearby, in order to prevent similar land-uses from be-
ing scattered (to a great extent). The neighborhood will be defined as the 4 or
8 cells adjacent to a cell. In the experimentation with MOLA, we will work
according to the 4-cell neighborhood (as this is the most simple form), mean-
ing that parameter 5 (number of neighbors) of Chapter 7.4 will be set to 4.
The objective used to stimulate nearby land will be based on the compact-
ness objective as defined in Algorithm (3.13) and (3.14) of Chapter 3.3.3. The
compactness objective for the Brazil case can then be defined as follows:

Maximize:

11

∑
k=3

885

∑
i=1

854

∑
j=1

(
xijk

i+1

∑
m=i−1

j+1

∑
n=j−1

Neigmn

4

)
(8.6)

where

Neigmn =

{
1, if xijk = xmnk

0, otherwise
(8.7)

8.2.3.2 Potential Yield

The second objective concerns the potential yield, which is a proxy for the
economic viability. For this objective, four yield maps have been created for
five different land-use types; one for Planted Forest (5), one for Crops (6), one
for Sugar Cane (8), and one for both Rangeland (4) and Planted Pasture (9).
More details on the resources and references upon which these maps have
been based, can be found in Verstegen, Hilst, Woltjer, et al., 2016 and Hilst,
Verstegen, Woltjer, et al., 2018. The four yield maps, give a score of 0 to 10000
to each cell to indicate the potential yield in case this type is allocated to that
cell. Hereby, 0 is the worst and 10000 is the highest potential yield value
attainable for one cell. The yield map for the Crops land-use type is depicted
in Figure 8.3 for illustration.

130 Chapter 8. Experimentation

FIGURE 8.3: Potential Yield Map of Crops in Brazil

The total potential yield of the five previously named types should be maxi-
mized. The remaining land-use types do not contribute to the potential yield,
and have a potential yield of 0 assigned to each cell. Land-use type 12 is
static, and will be neglected in the objective. The objective now becomes a
maximization of the potential yield for all dynamic land-use types, formu-
lated as follows;

Maximize:

11

∑
k=3

885

∑
i=1

854

∑
j=1

Yijkxijk (8.8)

Where Yijk is equal to the potential yield (from 0 to 10000) when type k =
3, ..., 11 is the type assigned to cell (i, j). For type k ∈ {4, 5, 6, 8, 9}, this value
can be found in the corresponding cell of its yield map. For all other k, the
Yi jk value is equal to 0 for each cell in the grid. As discussed, an objective
optimized by PLS-MOLA is required to be incrementally updatable. Note,
that with potential yield maximization this is indeed the case; when the land-
use type of a cell is changed, a comparison between the yield of the old and
new type reveals the resulting change in objective value.

8.2. Problem Case: Brazil 131

8.2.3.3 Carbon Stock

The third objective concerns the loss in soil organic carbon and ground biomass,
which can result in the emission of carbon dioxide (CO2) gasses. Minimizing
these gas emissions is equal to maximizing the carbon stock. Allocation of
a new land-use type changes the amount of carbon stock compared to the
current situation. Therefore, carbon stock maps have been created that show
the change in carbon stock compared to the current situation in case a certain
land-use type is allocated to a cell. The changes in the amount of carbon stock
per cell and per type, are given in tonne carbon per hectare. The land-use
types Urban (1), Water (2) and Bare Soil (10) have a carbon stock of 0, mean-
ing that an allocation of any of these types results in the negative amount of
carbon stock currently present. As Urban and Water are already added to
land-use type 12, these will not be taken in account. The initial amount of
carbon stock is shown in Figure 8.4.

FIGURE 8.4: Initial Carbon Stock Map of Brazil

Preferably, the amount of carbon stock should be as high as possible. As
so, the objective will be to maximize the summation of all changes in carbon
stock caused by the allocated land-use types. A positive change hereby notes
an increase in carbon stock, whereas a negative change states a loss. Again,
since land-use type 12 is static it will be ignored in the objective. The carbon
stock maximization objective can now be formulated as follows:

132 Chapter 8. Experimentation

Maximize:

11

∑
k=3

885

∑
i=1

854

∑
j=1

Cijkxijk (8.9)

Where Cijk is equal to the change in carbon stock compared to the initial so-
lution when type k = 3, ..., 11 gets assigned to cell (i, j). These values can be
found in the corresponding cell of the carbon map of the type that is being
allocated. Again, the objective can be updated incrementally when a cell’s
type changes, by comparing the change in carbon stock when allocating the
old type with the change in carbon stock when allocating the new type.

8.2.4 Constraints

The MOLA case has to obey two constraints, as was shown earlier in Equa-
tion (8.2), (8.3) and (8.4). The first constraint is that a land-use type k = 3, ...12
has to be allocated to each cell in the grid. The second constraint considers the
number of cells that should be allocated to each type to satisfy the predictions
of 2030. This will be handled in Chapter 8.2.4.1.

8.2.4.1 Allocation Ranges

In the work of Verstegen, Hilst, Woltjer, et al., 2016 and Hilst, Verstegen, Wolt-
jer, et al., 2018, predictions have been made for the demand in bio ethanol and
other agricultural commodities in 2030. These predictions were made using
the so-called MAGNET model and translated to the area per (active) land-use
type necessary to meet those projected demands. For more details on these
models and projections, view Verstegen, Hilst, Woltjer, et al., 2016. The re-
sults generated by MAGNET can be used as a constraint for the problem, by
requiring each solution to have exact or comparable sizes per land-use type.
As so, an optimization can take place of solutions that satisfy the estimated
demands of 2030. The resulting areas are shown in Table 8.3. In this case,
the areas of the no-go zones have not been deducted from the estimated total
area sizes in 2030. Although this would not result in (relatively) large area
changes, the actual areas sizes should be slightly smaller.

TABLE 8.3: Area in 2012 and Expected Area in 2030

Type 2012 (km2) 2030 (km2) Change
Rangeland 489451 373760 -23.6%
Planted Forest 142783 168887 +18.3%
Crops 405741 724450 +78.5%
Sugar Cane 99586 136281 +36.8%
Planted Pasture 1017641 1089294 +7.0%

As can be seen in Table 8.3, only five land-use types are relevant for satisfy-
ing the estimated global demands in 2030. All other types are allowed to be
of any size. Four out of five land-use types require an increase in size, up to
78.5% for crops. On the other hand, rangeland is asked to decrease in size
by 23.6%. The size areas can be translated to the corresponding number of
cells in the MOLA grid, making the constraint more easy to validate. It is

8.2. Problem Case: Brazil 133

not required to state an exact size for each land-use type. As was discussed
earlier in Chapter 3.2, ranges can be given as well. Ranges are able to make
the constraint less ’strict’, which could result in less violations and make the
algorithm convergence faster. The range size has not been added as a single
parameter, as it can be different for each land-use type. Therefore, they are
provided using an input file to the implementation of this research. In Table
8.4, an example of the resulting allowed allocation ranges is given, in case the
range size of each land-use would be 10 cells. As so, the lower bound is set
to the number of cells necessary to realize the estimated area size in 2030 of
Table 8.3 minus 5 cells, and the upper bound is set to this number plus 5 cells.

TABLE 8.4: Example Allocation Ranges in Number of Cells
when all Range Sizes set to 10

Type Lower Bound Upper Bound Range Size
Rangeland 14567 14577 10
Planted Forest 6642 6652 10
Crops 28908 28918 10
Sugar Cane 5444 5454 10
Planted Pasture 43331 43341 10

The sizes of these ranges influence the performance of the algorithm, as they
could increase or decrease the required number of reparations during the
optimization process. In Chapter 8.3.2, a comparison will be made between
different range sizes (equal for each land-use type) and the time necessary
to complete a certain number of iterations. Eventually, it is up to the user to
decide what range is acceptable. The range size could also be entered as a
proportional value (for example a percentage), in case the user considers this
to be more convenient.

8.2.5 Subcases

8.2.5.1 Centre West

The Brazil case is a relatively large case, considering it has over 278472 dy-
namic cells that take part in the optimization process. In order to also gain in-
sight in the optimization behavior of the algorithms when applied to smaller
cases, two subcases have been set up. The first subcase is one out of six
macroregions of Brazil, as described in the research of Verstegen, Hilst, Wolt-
jer, et al., 2016. The macroregion, called Centre West, takes an important role
in the current and future potential yield of Brazil and is considered to be a
relatively good representation of Brazil as a whole. As so, it makes an in-
teresting and suitable subcase for this research. The Centre West region is
located in the center of Brazil and shown in Figure 8.5. In contrast to the ini-
tial map of Brazil, the Centre West map contains only 63827 dynamic cells
(22.9% of Brazil).

134 Chapter 8. Experimentation

FIGURE 8.5: Centre West of Brazil

The objectives considering the subcase remain equal to the objectives of the
complete Brazil case. Instead of the complete potential yield and carbon stock
maps, only the values regarding the subcase area are needed. The allocation
ranges do change, as these differ per region. The demands in land-use area
for Centre West according to Verstegen, Hilst, Woltjer, et al., 2016 and Hilst,
Verstegen, Woltjer, et al., 2018, are shown in Table 8.5. Again, the ranges are
shown with a size of 10.

TABLE 8.5: Allocation Ranges with Range Size 10 for Microre-
gion 4

Type Lower Bound Upper Bound Range Size
Rangeland 847 857 10
Planted Forest 689 699 10
Crops 12552 12562 10
Sugar Cane 2021 2031 10
Planted Pasture 19449 19459 10

8.2. Problem Case: Brazil 135

8.2.5.2 Sul Goiano

Finally, a second even smaller subcase has been set up. This subcase con-
siders the mesoregion Sul Goiano and is shown in Figure 8.6. Again, the
mesoregion is considered to be a relatively good representation of Brazil as a
whole in terms of land-use division. The mesoregion contains 5229 dynamic
cells, which is only 1.9% of Brazil.

FIGURE 8.6: Mesoregion Sul Goiano of Brazil

Similar to Centre West, Sul Goiano has its own predictions of the number of
cells per land-use type in 2030. These are visualised in Table 8.6. The number
of expected cells in Rangeland was 0, and so it will range from 0 to 5 as the
number of cells can never be negative.

TABLE 8.6: Allocation Ranges with Range Size 10 for Mesore-
gion Sul Goiano

Type Lower Bound Upper Bound Range Size
Rangeland 0 5 10
Planted Forest 5 15 10
Crops 1167 1177 10
Sugar Cane 784 794 10
Planted Pasture 1946 1956 10

136 Chapter 8. Experimentation

8.2.6 Resources

In order to experiment using the Brazil case and its subcases, several datasets
are necessary. First of all, an initial map of the land-uses in Brazil of 2012.
This map is necessary as the starting solution for the algorithm. Next, yield
maps for crops, sugar cane, planted forest and both rangeland and planted
pasture are necessary, in case the potential yield is being maximized. Finally,
carbon stock maps for all land-use types are necessary when carbon stock is
being maximized. All of these datasets were obtained from the Energy and
Resources group of Utrecht University. Obtaining and usage of these datasets
should be in consultation with this institute.

8.3 Test Cases

8.3.1 Test Setup

In order to answer the research questions stated in Chapter 1.3, several ex-
periments will be executed. First of all, the experiments compare the per-
formance of different operators, strategies and criteria that can be used in
PLS-MOLA and IPLS-MOLA. In order to do so, the archive hypervolume ob-
tained after running the algorithm with different settings/components for an
equal running time will be compared. As discussed before, the hypervolume
indicates the overall quality of the archive or population. All experiments
regarding the optimization of PLS-MOLA and IPLS-MOLA will be applied
on the (complete) Brazil case. Finally, several experiments are set up that
will give more insight in how the performance of (I)PLS-MOLA compares
to NSGA-II-MOLA. As NSGA-II is currently the most used algorithm in the
MOLA domain, this will give an idea of the relative efficiency of PLS-MOLA
for MOLA. These comparisons will also be done using the subcases, to gain
more insight in the scalability as well.

In Chapter 8.3.2 to 8.3.7, eight test cases have been set up to examine and
compare the algorithm components stated in the research questions of Chap-
ter 1.3. Each test case consists of multiple algorithm ’runs’, in which an al-
gorithm is either executed for a certain number of iterations or running time.
Together with each run, the parameter settings, what should be measured,
and why this is relevant to a research question will be outlined. As a run
is non-deterministic, each run will be executed 5 times. Executing each run
more than 5 times is considered to be out of the scope of this research (as some
runs take up to 2.5 hours), but could be done in future research to increase the
reliability. The runs will be executed using the implementation of Chapter 7
and the Brazil case of Chapter 8.2 with the land-use map of Brazil of 2012
as input solution. The problem parameters (Chapter 7.4) that will be used,
are shown in Table 8.7. Using these parameters, the problem corresponds to
the problem definition described in Chapter 8.2.2. The number of types is set
to 12, although type 1 and 2 are actually empty (as these were added to 12).
Type 12 now includes all static cells, and is marked as static.

8.3. Test Cases 137

TABLE 8.7: Problem Parameter Setup

Id Parameter Value
1 Objectives Compactness, Yield
2 Constraints Allocation Ranges
3 Number of Types 12
4 Static Types 1, 2, 12
5 Number of Neighbors 4

Compactness and potential yield maximization are set as the two ’standard’
objectives of the problem. For simplicity reasons, the choice has been made
to start with the lowest number of objectives necessary to create a multi-
objective problem, which is two. The effects of expanding the problem to
three objectives are examined later in Chapter 8.3.7. Compactness has been
chosen as the first objective to avoid clusters from becoming completely scat-
tered. Potential yield optimization has been chosen as the second objective as
the profit/economic viability is assumed to have a high influence on land-use
change. In the test case of Chapter 8.3.7, the third objective of carbon stock
maximization will be included as well.

The allocation ranges constraint requires a set of allowed allocation ranges as
input. Research subquestion 1B questions the influence of these range sizes
on the performance of the algorithm. Preferably, the range is as small as pos-
sible, as this allows the user to have more control. However, smaller ranges
(or even a range of 0) are more likely to increase the average running time
necessary to complete one iteration, as more constraint violations (and so
reparations) are expected to occur. Therefore, the influence of the allocation
range sizes on the running time to complete a certain number of iterations
will be examined in the first case described in Chapter 8.3.2. Depending on
these results, allocation ranges will be chosen for the remaining experiments.
This choice will be based upon what size assumed to be a suitable trade-off
between control and performance. Eventually, this choice is up to the end
user, as different sizes also result in different problems that are being opti-
mized. The area sizes of Table 8.3 for 2030 will be used as the required num-
ber of cells per type.

138 Chapter 8. Experimentation

TABLE 8.8: PLS-MOLA Parameter Setup

Id Parameter Value
6 Selection Operators s-r, s-cd
7 Search Operators ls-krcm, ls-krbm, ls-krpm
8 Repair Operators lr-krcm, lr-krbm
9 Search KT 4
10 Repair KC 10
11 Repair BT True
12 Allow Repair True
13 NDS False
14 Max. Archive Size ∞
15 Exploration N 100
16 Exploration M ∞
17 Reparation N ∞
18 Reparation M ∞
20 PLS M ∞

Next up, each test case will examine the influence of a different (set of) param-
eter(s). In order to avoid having to redefine all PLS-MOLA parameter values
for each case, a default set of parameters has been set up, as is shown in Table
8.8. These standard values will be used in all experiments where PLS-MOLA
is applied, except for when mentioned differently. For the selection, search
and repair operators, all operators have been added to decrease the influence
of each operator individually. The KT value of the search operators has been
set to 4, which is half of the maximum number of dynamic types that can
compete a type selection tournament for Brazil (Chapter 8.3.4). For now, the
Repair BT has been set to true and the Repair KC has been set to 10. These
will both be further examined in Chapter 8.3.5. Next up, reparations are al-
lowed during the optimization process, and the NDS criterion is set to false
to do not make the acceptance criteria to strict. Furthermore, the archive size,
Reparation N and both the Exploration and Reparation M values are set to
infinity. Examining all of these parameters is out of the scope of this research,
and by setting these to infinity they will no further influence the optimization
process. The Exploration N value has been set to 100, and will be further ex-
amined in Chapter 8.3.4. Parameter 19 is left out, as this concerns the number
of iterations of the algorithm. This number will be given with each experi-
ment, except for when the algorithm is run for a certain amount of time; this
means the number of iterations becomes irrelevant (infinite).

Finally, all algorithms will be run while allowing concurrency. As was al-
ready discussed in Chapter 7.5, parallelism does not affect the result of any
algorithm, but only decreases the running time necessary for one iteration.
Therefore, it should be rewarded if an algorithm supports parallel process-
ing. All algorithms will be run while allowing multiple threads, as shown by
the parameter setting in Table 8.9.

TABLE 8.9: Other Parameter Setup

Id Parameter Value
38 Asynchronous True

8.3. Test Cases 139

8.3.2 Test Case I: Allocation Ranges

The first test case examines the influence of different allocation range sizes
on the running time of the algorithm. The smaller the allocation range sizes,
the closer the final solutions will be to the predictions of 2030 in terms of area
sizes. However, a smaller allocation range also results in ’faster’ violations of
the bounds, resulting in more repair operations. Hence, research question 1B
states whether and to what extend the range sizes influence the running time
necessary to perform an equal number of iterations. In 8.10, six PLS-MOLA
runs with different range sizes are shown. For now, the assumption is made
that the user would at most want a range size of 100. In future experiments,
larger range sizes can be experimented with as well. Again, each run will be
executed 5 times. The range sizes will be applied to all five land-use types
of Table 8.4 using the predicted area sizes of 2030. All other parameters of
PLS-MOLA will be set according to the standards defined in Chapter 8.3.1.

TABLE 8.10: PLS-MOLA Runs with Range Size 0 - 100

Run Range Size PLS Iterations
1 0 1000
2 5 1000
3 10 1000
4 25 1000
5 50 1000
6 100 1000

Each run will be execute for a 1000 iterations, and the running time will be
measured. This will provide insight in the relation between range size and
running time. Note, that it is not valid to compare the quality of the result-
ing solutions (for example hypervolume), as different allocation ranges create
different problem definitions. Higher range sizes could therefore allow for
solutions with higher potential yields than solutions obeying smaller ranges.
As so, only running times for completing the same number of iterations will
be compared.

8.3.3 Test Case II: Selection Operators

The second case will examine both the performance and complexity of the
two selection operators defined for PLS-MOLA; S-R and S-CD (Chapter 6.5).
The first randomly selects a solution from the archive for exploration, whereas
the second selects the solution with the highest crowding distance. S-R there-
fore costs less operations than S-CD, as it does not have to calculate the CD
of each solution. On the other hand, S-CD is expected to provide more inter-
esting solutions (with a less explored neighborhood), and could so result in a
faster and/or better overall convergence. First of all, three PLS-MOLA runs
have been defined to get insight in the overall optimization quality (perfor-
mance) of each operator, as shown in Table 8.11. Each run will be executed
5 times, and run for 5 minutes. The hypervolume of the final archive will
be measured, to indicate the optimization efficiency of the used operator(s).
In run 9, both operators are used, as they might influence/complement each
other. The other PLS-MOLA parameters are equal to the standards defined
in Chapter 8.3.1.

140 Chapter 8. Experimentation

TABLE 8.11: PLS-MOLA Runs with Different Selection Oper-
ators (Time)

Run Selection Operators Running Time
7 s-r 5 min
8 s-cd 5 min
9 s-r, s-cd 5 min

The previously defined three runs will examine the overall optimization ef-
ficiency of an operator. However, this does not give any insight in the com-
plexity (costs) of the operators. Therefore, three more runs will be executed
as shown in Table 8.12. The algorithms will be run for a certain number of
iterations instead of a predefined running time. As so, we can measure the
running time that the algorithm takes to complete these iterations. The run-
ning time will provide insight in the costs of the operators. The higher the
running time, the higher the costs to run this operator. Eventually, the over-
all optimization efficiency examined previously in run 7 to 9 is a trade-off
between the costs and the effectiveness of the operator.

TABLE 8.12: PLS-MOLA Runs with Different Selection Oper-
ators (Iterations)

Run Selection Operators PLS Iterations
10 s-r 1000
11 s-cd 1000
12 s-r, s-cd 1000

8.3.4 Test Case III: Search Operators

The third test case examines the performance and complexity of the three
search operators defined for PLS-MOLA; LS-KRCM, LS-KRBM and LS-KRPM
(Chapter 6.8). The operators are assumed to have different complexities (costs)
and effectiveness when applied to MOLA problems. For example, the LS-
KRPM operator changes complete patches, and thus requires a high number
of operations. On the other hand, this might result in more qualitative solu-
tions, paying off the extra operations. First of all, the performance (efficiency)
will be examined in a similar manner as with the selection operators of Chap-
ter 8.3.3. Seven runs will be executed as shown in Table 8.13. Each run uses a
different (set of) search operators and will be executed for 5 minutes (5 times).
Since search operators might influence and/or complement each other, all
combinations will be examined. Of each run, the hypervolume of the final
archive will be measured, which indicates the overall optimization quality of
the used (set of) search operators(s). All other PLS-MOLA parameters will be
set according to the standards of Chapter 8.3.1.

8.3. Test Cases 141

TABLE 8.13: PLS-MOLA Runs with Different Search Opera-
tors (Time)

Run Search Operators Running Time
13 ls-krcm 5 min
14 ls-krbm 5 min
15 ls-krpm 5 min
16 ls-krcm, ls-krbm 5 min
17 ls-krcm, ls-krpm 5 min
18 ls-krbm, ls-krpm 5 min
19 ls-krcm, ls-krbm, ls-krpm 5 min

Again, the results of run 13 to 19 only focus on the overall optimization ef-
ficiency. As so, the runs of Table 8.14 have been added to get insight in the
complexity as well. These will all be run for a 1000 iterations (5 times), of
which the total running time necessary to complete these iterations will be
measured. Similar to the selection operators, this will provide insight in the
complexity (costs) of each operator. Again, the overall optimization quality
resulting from run 13 to 19 is a trade-offs between the costs and effectiveness
of the operators. Run 20 to 26 will provide insight in this trade-off.

TABLE 8.14: PLS-MOLA Runs with Different Search Opera-
tors (Iterations)

Run Search Operators PLS Iterations
20 ls-krcm 1000
21 ls-krbm 1000
22 ls-krpm 1000
23 ls-krcm, ls-krbm 1000
24 ls-krcm, ls-krpm 1000
25 ls-krbm, ls-krpm 1000
26 ls-krcm, ls-krbm, ls-krpm 1000

Except for the search operators being used, the search KT parameter also in-
fluences the search process. The search KT parameter, as described earlier
in Chapter 6.8, states the number of types participating in the type selection
tournament of the operators. The maximum number of types competing in
this tournament, is the number of dynamic types minus one (as the current
type of the cell may not participate). This results in a maximum tournament
size of 9 - 1 = 8 for the Brazil case. A KT of 1 will hereby result in a random
type being selected, whereas a KT of 8 results in a greedy selection of the best
type. A higher KT is therefore expected to result in faster increasing objective
values. However, it will also increase the running time necessary for an itera-
tion as more operations need to be executed. In order to answer whether this
trade-off pays off, 8 PLS-MOLA runs will be performed (5 times each) with
the search KT ranging from 1 to 8. The runs are shown in Table 8.15, and
will all be run for 5 min. The final archive hypervolumes will be measured,
to indicate the optimization effectiveness. All other parameters are set to the
prediscussed standards of Chapter 8.3.1.

142 Chapter 8. Experimentation

TABLE 8.15: PLS-MOLA Runs with Search KT 0 - 8

Run Search KT Running Time
27 1 5 min
28 2 5 min
29 3 5 min
30 4 5 min
31 5 5 min
32 6 5 min
33 7 5 min
34 8 5 min

Finally, the search process is influenced by the Exploration N parameter. This
parameter states the number of neighborhood solutions to be explored in
each exploration iteration. A high value of N will result in a more exten-
sive neighborhood exploration, at the cost of a higher running time for one
iteration. As such, different exploration N values ranging from 10 to 1000
will be examined, as shown in Table 8.16. In future research, exploration N
values of above 1000 might be examined as well, in case deemed interesting.
For now, this was out of the scope of this research. Each run will be executed
5 times and run for 5 minutes. The final archive hypervolume will be mea-
sured, to indicate the solution quality. Note, that the ’optimal’ Exploration N
value might differ over the number of iterations. For example, it could pay
off to explore more elaborately in later stages, when finding improvement
gets more difficult. However, examining this is out of the scope of this cur-
rent research.

TABLE 8.16: PLS-MOLA Runs with Exploration N 10 - 1000

Run Exploration N Running Time
35 10 5 min
36 25 5 min
37 50 5 min
38 100 5 min
39 250 5 min
40 500 5 min
41 1000 5 min

8.3.5 Test Case IV: Reparation Operators

The fourth case examines the two reparation operators for PLS-MOLA de-
fined in Chapter 6.10: LR-KRCM and LR-KRBM. The reparation operators
affect both the quality of the repaired solutions and the reparation time nec-
essary. The operators are examined in the same manner as the selection and
search operators of Chapter 8.3.3 and 8.3.4. First, three runs will be executed
with different (sets of) repair operator(s), as shown in Table 8.17. Each runs
will be executed 5 times, for 5 minutes, and the resulting archive hypervol-
umes will be measures. This will give insight in the effectiveness of the repa-
ration operators in terms of final solution quality. All remaining PLS-MOLA
parameters will be set as discussed in Chapter 8.3.1.

8.3. Test Cases 143

TABLE 8.17: PLS-MOLA Runs with different Repair Opera-
tors (Time)

Run Repair Operators Running Time
42 lr-krcm 5 min
43 lr-krbm 5 min
44 lr-krcm, lr-krbm 5 min

Again, in order to gain more insight in the complexity, 3 more runs will be
executed. These are shown in Table 8.18 and will all be run for 1000 iterations
(5 times). Of each run, the total running time will be measured, indicating
the costs of the operator(s) being used. Similar to the previous operators, this
will provide insight in the trade-off between costs and effectiveness.

TABLE 8.18: PLS-MOLA Runs with different Repair Opera-
tors (Iterations)

Run Repair Operators PLS Iterations
45 lr-krcm 1000
46 lr-krbm 1000
47 lr-krcm, lr-krbm 1000

As discussed in Chapter 6.10, there are two parameters that can be used to
adjust the behavior of the repair operators. The first parameter is the repair
KC parameter, which states the number of (boundary) cells competing in the
operator its tournament. A higher KC value will result in a more greedy hill
climbing approach, but also increases the number of operations necessary
(costs). As so, a higher KC value is expected to deliver higher quality solu-
tions, but also require more reparation time. As shown in Table 8.19, 6 runs
will be done given different repair KC values ranging from 1 (the minimum)
to 100. In future research, KC values of above 100 can be examined as well, in
case deemed interesting. For now, this is out of the scope of this research. In-
stead of executing these runs for either a certain time or number of iterations,
run 48 to 53 will terminate after the initial solution has been repaired. The
reason for this, is that it is unknown to what extent high KC values will in-
crease the reparation time necessary. As so, a predefined number of iterations
could take extremely long, whereas a certain timespan (for example 5 min-
utes) might not be enough to repair even one solution. Repairing the initial
solution only, will prevent both problems from happening. The final hyper-
volume and time necessary to repair the initial solution will be measured.
This will give insight in both the effectiveness (reparation quality) and costs
(reparation time). All other parameters will be set according to the standards
defined earlier, meaning that both LR-KRCM and LR-KRBM will be selected.

TABLE 8.19: PLS-MOLA Runs with Repair KC 1 - 100

Run Repair KC PLS Iterations
48 1 1
49 10 1
50 50 1
51 100 1
52 250 1
53 500 1

144 Chapter 8. Experimentation

The second parameter for setting up the repair operators is the Repair BT pa-
rameter. If set to true, the best type (considering one random objective) will
be chosen for each cell competing in the tournament. Otherwise, a random
type will be selected. As shown in Table 8.20, the PLS-MOLA algorithm will
be run with Repair BT both set to true and false. All other parameters will be
equal to the standard settings discussed earlier. With Repair BT set to true,
the costs of the repair operators are expected to be higher. On the other hand,
the quality of the repaired solutions is expected to be higher as well. Each run
will be executed 5 times for 5 minutes, and the final archive hypervolumes
will be measured.

TABLE 8.20: PLS-MOLA Runs with and without Repair BT

Run Repair BT Running Time
54 No 5 min
55 Yes 5 min

Finally, it is optional to not allow PLS-MOLA to repair solutions during the
optimization process. This is determined by the Allow Repair (AR) param-
eter discussed in Chapter 7.4. If set to false, invalid solutions resulting from
a search operator are discarded, and a new search is performed until a valid
one is found. The initial solution will be repaired at all times. Two tests will
be executed (5 times each) as shown in Table 8.21. Both runs will be executed
for 5 minutes and the final archive hypervolume will be measured to indicate
the effectiveness. This will provide insight in whether repairing is worth the
number of operations necessary. If not, immediately generating new solu-
tions could be more beneficial, and result in higher hypervolumes.

TABLE 8.21: PLS-MOLA Runs with and without Allow Re-
pair (Time)

Run Allow Repair Running Time
56 No 5 min
57 Yes 5 min

8.3.6 Test Case V: Acceptance Criteria

In the fifth case, two parameters regarding the acceptance criteria for the
archive will be examined. First of all, the NDS parameter, which if set to
true results in solutions only being accepted to the archive in case they dom-
inate the current solution being explored. If set to false, solutions can also
be accepted in case they do not dominate the current solution being explored
(and of course are non-dominated by all solutions in the archive). Set to false,
more solutions will be accepted (and discarded again if dominated), but the
average quality of these solutions is expected to be lower. The question is,
whether the increase in quality is worth the decrease in the number of solu-
tions. A lower number of solutions, might eventually lead in the algorithm
terminating more easily in later stages. This is caused by the fact that it gets
more difficult to find improvements in later stages, in which case it might also
be beneficial to accept and explore these less qualitative solutions. Therefore,
both the influence on the hypervolume and the number of solutions in the
archive will be examined. As shown in Table 8.22, two runs will be executed

8.3. Test Cases 145

(5 times each) for 5 minutes, with NDS set to either true or false. The remain-
ing PLS settings are set according to the standards of Chapter 8.3.1. Both the
hypervolume and size of the final archive will be measured.

TABLE 8.22: PLS-MOLA Runs with and without NDS Crite-
rion

Run NDS Running Time
58 No 5 min
59 Yes 5 min

The second parameter related to the archive acceptance criteria, is the maxi-
mum archive size. In case the maximum archive size is exceeded, the solution
with the lowest crowding distance will be removed. A lower archive size will
result in less solutions in the archive, decreasing the number of operations
necessary to check for dominance. This again decreases the operational costs
and memory needed. However, the question is how this will influence the ef-
fectiveness and quality of the resulting archive. Also, similar to with NDS, a
decrease in the archive size could result in an earlier termination of the algo-
rithm in later stages. In the standard settings of Chapter 8.3.1, the size was set
to infinity, accepting any number of solutions in the archive simultaneously.
As shown in Table 8.23, seven runs will be executed (5 times each) with the
archive size ranging from 5 to 100. As the standard Exploration N was set to
100, this has also been selected as the largest maximum archive size to be ex-
plored in this research. Theoretically, the archive size can become larger than
100 with an Exploration N of 100, but especially in the first 5 minutes of the
algorithm where improvements are relatively easy to find, this is assumed to
be unlikely. Of each run, the hypervolume of the final archive will be mea-
sured.

TABLE 8.23: PLS-MOLA Runs with Max. Archive Size 5 - 100

Run Max. Archive Size Running Time
60 5 5 min
61 10 5 min
62 15 5 min
63 20 5 min
64 25 5 min
65 50 5 min
66 100 5 min

8.3.7 Test Case VI: Objectives

In this test case, the effects of optimizing a third objective will be examined. In
RQ2, the relation between the number of objectives and the efficiency of PLS-
MOLA is being questioned. So far, we have been optimizing two objectives;
compactness and potential yield maximization. In Chapter 8.2.3.3, a third ob-
jective has been introduced; carbon stock maximization. In this test case, the
effectiveness and costs of optimizing all three objectives simultaneously will
be compared to when optimizing compactness and yield only. First, two runs
will be performed (5 times each) as shown in Table 8.24. Both runs will be ex-
ecuted for 1000 iterations and both the running time and number of solutions

146 Chapter 8. Experimentation

in the final archive will be measured. The running time will give insight in
the increase in computational costs by the addition of an objective. The num-
ber of solutions will confirm whether the addition of an objective affects the
archive size. Expected, is that a third objective will result in a larger archive
size, as a solution is dominated less quickly. A larger archive size, could lead
to a higher demand in memory and possibly increase the processing time as
more operations are required (for example to check dominance). All other pa-
rameters are set according to the PLS-MOLA standards discussed in Chapter
8.3.1.

TABLE 8.24: PLS-MOLA Runs with Different Objectives

Run Objectives PLS Iterations
67 Compactness, Yield 1000
68 Compactness, Yield, Carbon 1000

Secondly, two runs will be executed to examine the influence of adding more
objectives on the resulting solution quality (hypervolume) of the archive, as
shown in Table 8.25. Each run will be executed 5 times for 5 minutes, and the
hypervolume of only the compactness and yield objectives will be measured.
For run 70, this means that the objective values of carbon are neglected for
calculating the hypervolume. By doing so, more insight will be given in the
influence of the extra objective on the optimization effectiveness of the ob-
jectives individually. Expected, is that the compactness and yield objective
values will be lower in Run 70, as the local search operations will now (ap-
proximately 1/3 of the time) focus on the carbon stock objective as well.

TABLE 8.25: PLS-MOLA Runs with Different Objectives

Run Objectives Running Time
69 Compactness, Yield 5 min
70 Compactness, Yield, Carbon 5 min

8.3.8 Test Case VII: IPLS Optimization

In the seventh test case, the focus will be on how the PLS algorithm can effi-
ciently be processed into a global IPLS algorithm for MOLA. The IPLS algo-
rithm iteratively calls the PLS algorithm. Therefore, the results of Test Case I
to VI are also relevant for IPLS, as the optimal parameter settings to call the
PLS algorithm can be based upon these results. In Test Case VIII, the IPLS
algorithm will eventually be run for 2.5 hours to examine and compare its
performance with NSGA-II. Larger running times are considered to be out
of the scope of this research. However, this does require the PLS algorithm
to (on average) reach a local optimum within the timespan of 2.5 hours for
IPLS to be applicable. The PLS algorithm is said to have found such a local
optimum, when it is not able to find a new neighboring solution before the
exploration termination criteria are met and so terminates. In order to deter-
mine for which cases PLS (on average) terminates within 2.5 hours, we will
first run the PLS-MOLA algorithm on all three cases; the large Brazil case, the
medium sized Centre West case, and eventually the small Sul Goiano case.
View Chapter 8.2 for more details on these cases. On each of these cases, the
algorithm will run for at most 2.5 hours using the parameters shown in Table

8.3. Test Cases 147

8.26. As can be seen, all parameters (6 to 15) will be based on the results of
Test Case II to V. The parameters being chosen will be the parameters that
resulted in the best (trade-off between) running time and archive hypervol-
ume. In order to be able to visualize the archive of PLS-MOLA over time, the
archive will be stored each 15 minutes, 10 times in a row. The algorithm will
run for a most 2.5 hours, unless terminated earlier, for 5 times per problem
case. The average, minimum and maximum yield and compactness of the
final archive will be stored as well. These will optionally be used in Test Case
VIII to compare with the NSGA-II algorithm, as will be explained later.

TABLE 8.26: PLS-MOLA Parameters Settings

Id Parameter Value
6 Selection Operators Results Test Case II
7 Search Operators Results Test Case III
8 Repair Operators Results Test Case IV
9 Search KT Results Test Case III
10 Repair KC Results Test Case IV
11 Repair BT Results Test Case IV
12 Allow Repair Results Test Case IV
13 NDS Results Test Case V
14 Max. Archive Size Results Test Case V
15 Exploration N Results Test Case III

After having determined what cases IPLS will be ran on in this research
(namely the ones for which PLS terminates in less than 2.5 hours), effective
perturbation sizes will have to be determined. The perturbation size states
the percentage of the solution (dynamic cells) that will be randomized. If the
perturbation size is too small, the solution will not be apply to ’leave’ its cur-
rent local optimum. If the perturbation size is too big, the solution will lose
a lot up to all of its currently well-optimized parts. As so, three runs will be
performed as shown in Table 8.27. The runs implement a perturbation size
of either 25%, 50% or 75%. Note, that a size of 0% or 100% would not make
sense; the first does not result in any perturbation at all whereas the second
creates a completely randomized solution (losing all valuable information
that was present). Each run will be executed 5 times on each case for which
the PLS algorithm found an optimum within 2.5 hours. For each run, the fi-
nal archive hypervolume will be measured. The perturbation size resulting
in the highest hypervolume will be preferred. The remaining parameters are
equal to the standard parameters stated in Chapter 8.3.1.

TABLE 8.27: IPLS-MOLA Runs with Perturbation
Size 10000 - 1000000

Run Perturbation Size IPLS Iterations PLS Iterations
71 25 10 Results Test Case VII
72 50 10 Results Test Case VII
73 75 10 Results Test Case VII

148 Chapter 8. Experimentation

8.3.9 Test Case VIII: NSGA-II Comparison

In the final test case, the performance of NSGA-II will be compared to either
PLS or IPLS. For all cases where the PLS algorithm did not terminate within
2.5 hours, the NSGA-II performance will be compared to PLS. The perfor-
mance of the PLS algorithm for these cases was already obtained in Test Case
VII. For the cases where PLS did terminate on time, and IPLS could be ap-
plied, the IPLS algorithm will be run using the parameters shown in Table
8.28. The perturbation size will be set according to the results of run 71 to 73
of Test Case VII for that specific case. The algorithm will be run for 2.5 hours,
and the archive will be stored each 15 minutes to get insight in the conver-
gence of the algorithm over time. The average, minimum and maximum
yield and compactness value of the final archive will be stored, and eventu-
ally be compare to NSGA-II. Comparing the statistics of each objective indi-
vidually, gives more information than comparing hypervolume solely. One
algorithm could be better at optimizing one objective than the other, which is
not visible when looking at hypervolume only.

TABLE 8.28: IPLS-MOLA Parameters Settings

Id Parameter Type
21 Perturbation Size Results Run 71 to 73

The NSGA-II-MOLA algorithm will be run on all three cases (Brazil, Centre
West and Sol Goiano) for 2.5 hours, with the parameter values shown in Ta-
ble 8.29. Since it is out of the scope of this research to optimize all parameters
of this algorithm, values have been chosen that are expected to bring the best
trade-off between costs and effectiveness. First of all, both crossover opera-
tors C-XTD and C-XBC have been chosen, to reduce the influence of one indi-
vidual crossover operator. The mutation (search) operators and repair oper-
ators will be set according to Test Case III and IV, assuming that in case these
work well for PLS-MOLA, these will also be effective for NSGA-II-MOLA.
A population size of 100 was chosen, as a suitable trade-off between conver-
gence quality and memory requirements. A larger population size could lead
to a more effective optimization process due to the possibility to store more
(different) genes. However, this comes at the cost of higher memory storage
requirements (especially in later stages, as we are storing differences with
the initial map). As the algorithm is currently ran on a personal computer,
larger populations sizes might therefore cause memory problems. In future
research, it is advised to experiment with larger population sizes and further
examine what size is most effective (Chapter 11). The initial population is set
to exist for 50% out of randomly generated solutions, and 50% out of muta-
tions of the current solution. As the ideal ratio is unknown, an equal share
has been devoted to both. For the same reason, the mutated solutions mutate
50% of the current solution. The Mutation KT, Repair KC and Repair BT are
set based upon the results of Test Case III and IV, assuming these will also
hold for NSGA-II-MOLA. The Mutation N is set to 100, meaning each solu-
tion is mutated (once per generation) by applying a local search operator for
100 times. This was considered as a suitable amount of local search within
the NSGA-II algorithm. In future research, the amount of local search can be
increased or decreased, to view whether this improves the optimization effi-
ciency. Finally, all remaining termination criteria are set to infinity to not limit
the reparations, as there is currently no knowledge about when and whether

8.4. Materials 149

this would be profitable. Again note, that all of these values are based upon
personal assumptions about what will be effective and will most likely not
be optimal. For now, researching these values is out of the scope of this re-
search, as will be discussed in Chapter 11. Similar to with IPLS-MOLA, the
algorithm will be run for a total of 5 times and its population will be stored
every 15 minutes. Also, the same statistics of the final population will be
stored as was done with the archive of PLS and IPLS.

TABLE 8.29: NSGA-II-MOLA Parameters Settings

Id Parameter Value
23 Crossover Operators c-xtd, c-xbc
24 Mutation Operators Results Test Case III
25 Repair Operators Results Test Case IV
26 Population Size 100
27 Init. Random Sol. (%) 50
28 Init. Mut. Size (%) 50
29 Mutation N 100
30 Mutation KT Results Test Case III
31 Repair KC Results Test Case IV
32 Repair BT Results Test Case IV
33 XBC N 100
34 XBC M ∞
35 Reparation N ∞
36 Reparation M ∞

The statistics of the resulting population of NSGA-II will eventually be com-
pared to the statistics of the resulting archives of PLS or IPLS. Hereby, a com-
parison will be done for each of the objectives separately, to see which algo-
rithm performs best for which objective(s) in what case(s). As so, for each
objective, a two-tailed independent sample t-test will be performed on the
objective values obtained by different algorithm. Again, note that comparing
the objectives separately gives a more extended view than comparing hyper-
volumes only, as the hypervolume is (easily said) a combination of both. This
will be done for each of the three cases, and allows us to view what algorithm
optimizes what objective(s) best in what case.

8.4 Materials

All experiments will be executed on a Microsoft Surface Pro 7 (Microsoft,
2019a). The hardware specifications deemed relevant for running the opti-
mization algorithm are summarized in Table 8.30. The clock rate, number of
cores, threads and execution units are related to the processor. The last spec-
ification describes the RAM memory (both size and type) being used.

150 Chapter 8. Experimentation

TABLE 8.30: Hardware Specifications

Processor Intel R© CoreTM i7-1065G7 (10th Generation)
Clock Rate 1.30 GHz up to 3.90 GHz
Number of Cores 4
Number of Threads 8
Execution Units 64
RAM Memory 16GB (3733 MHz LPDDR4X)

Finally, the software specifications deemed relevant for running the optimiza-
tion algorithm are shown in Table 8.31. These are the integrated development
environment (IDE) used to run the algorithm, the development framework
that is it build upon and the operating system running the IDE.

TABLE 8.31: Software Specifications

Development Environment Visual Studio Professional 2019 (Version 16.5.4)
Development Framework .NET Framework (Version 4.8.0375)
Operating System Windows 10 Pro (Build 18363)

151

Chapter 9

Results & Discussion

9.1 General

In this chapter, the results of the conducted experiments will be outlined,
interpreted and discussed. The results are hereby grouped per research ques-
tion being answered. At first, all results regarding the optimization of PLS-
MOLA (RQ 1) will be discussed in Chapter 9.2. This mostly concerns what
operators and procedures have proven to be most effective for the Brazil case.
Secondly, the scalability of PLS-MOLA concerning the number of objectives
being optimized (RQ 2) will be handled in Chapter 9.3. Thirdly, optimization
of IPLS-MOLA (RQ 3) will be outlined in 9.4. This will be done for the Brazil,
Centre West and Sul Goiano case. Finally, the performance of the (I)PLS-
MOLA algorithm will be compared to the NSGA-II-MOLA algorithm (RQ 4).
Again, this will be done for all three test cases. For some experiments, the
parameter settings were based upon results of previous experiments. These
settings will be justified and explained as well. All raw statistics of the exper-
imentation results can be found in Appendix G and H.

9.2 RQ I: PLS Optimization

The first research question states "How can PLS most efficiently be applied
to MOLA?". In order to answer this question, six subquestions were set up
to examine influence of the selection, exploration and reparation strategies,
acceptance criteria, data structure and allocation range sizes on the efficiency
of PLS-MOLA. In this chapter, each subquestion will be answered using the
results obtained by the experiments. Only the first subquestion, regarding
an efficient data structure, will be answered with reasoning (not empirically).
Together, the outcomes of all six subquestion answer the first research ques-
tion of how an efficient PLS algorithm for MOLA can be built.

9.2.1 Data Structure

The first subquestion of RQ 1 states "What is an efficient data structure for
storing MOLA solutions?". The most straightforward data structure would
naively store the land-use type of each cell of the map. However, as the Brazil
case is a relatively large case and new solutions are continuously being cre-
ated and stored during the PLS optimization process, this could result a high
memory demands. In order to decrease these demands, a data structure was
designed to store MOLA solutions more efficiently. This resulted in the de-
sign of an ’initial’ and ’derived’ solution, as was shown in Figure 7.2. An
initial solution is stored in the naive manner, taking note of the type of each
cell. A derived solution on the other hand, stores a reference to an initial solu-
tion and only takes note of the adjusted cell types. As the number of adjusted

152 Chapter 9. Results & Discussion

cells is always below or equal to the total number of cells, this data structure
will require less or equal amount memory space than an initial solution. The
PLS algorithm could now store the input map of the case study as an initial
solution, and create derived solutions referencing to this map during the op-
timization process. As the type of some cells never change, these are now
stored only once, thus decreasing the redundancy. The more adjustments are
being made to the initial map, the higher the memory required for a derived
solution will be.

No experiments were conducted to measure the memory requirements dur-
ing the optimization of PLS and/or NSGA-II. As so, the reduction in memory
requirements is assumed to be occur due to the reasoning above. In Chapter
11, more research in this direction is advised to examine the actual memory
requirements and further improve upon the current structure being used.

9.2.2 Allocation Range Size

The second subquestion of RQ 1 states "What is the influence of the allocation
range size on the running time?". The allocation ranges, which are part of the
most common MOLA constraint, state to how many cells each land-use type
should be allocated (Chapter 3.2). It is expected that the larger the size of the
allowed range, the less violations occur. This will decrease the running time
necessary to perform the same number of iterations (as less ’reparations’ are
required), but also decreases the ’control’ of the user on the final solutions.
This subquestion examines the relationship between range size and running
time. As such, Test Case I of Chapter 8.3.2 was set up and executed, testing
the influence of different range sizes on the running time. The results of this
experiment, concerning run 1 to 6, are shown in Figure 9.1 (Table G.1). As can
be seen, the lower the range size, the higher the running time of the algorithm
necessary to complete 1000 iterations on the Brazil case. This was expected,
as more reparations will be required. According to Figure 9.1, running time
decreases quickly when increasing the range size from 0 to 10. When further
increasing the range size from 10 to 100, a slower decrease in running time
occurs. The running time with a range size of 10 (564659.2ms) is even sightly
lower than with a range size of 25 (565019.2ms), due to an outlier in the latter.
For this research, a range size of 10 was considered to be a suitable trade-off
between accuracy and running time. This results in a deviation of at most 5
cells per land-use type from the estimations, which is a relatively low num-
ber of cells compared to the total number of dynamic cells of Brazil. Note,
that in the end it is up to the user to decide upon what range size is suitable
given the situation of the MOLA problem, as a different size results in a dif-
ferent problem definition. For now, a range size of 10 has been chosen for the
remaining of the experiments.

9.2. RQ I: PLS Optimization 153

0 20 40 60 80 100

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

·105

Range Size

R
un

ni
ng

Ti
m

e
(m

s)

FIGURE 9.1: Range Size versus Average Running Time for
PLS-MOLA (1000 Iterations, N = 5)

9.2.3 Selection Strategy

The third subquestion of RQ 1 states "What is an efficient strategy for se-
lecting the next solution to be explored?". The selection procedure of the PLS
algorithm, decides upon the next solution of the archive that will be explored.
The selection strategy exists out of a selection procedure and one or more se-
lection operators. The selection procedure chooses what selection operator
will be used in the current iteration. The selection operator decides, given
the current archive, which solution its neighborhood will be explored next.
Due to the scope of this project, only one basic selection procedure was im-
plemented that selects a selection operator at random (Chapter 6.4). As for
the selection operators, the S-R and S-CD operators have been examined. The
S-R operator selects the next solution at random, whereas the S-CD operator
selects the solution with the highest crowding distance. Both are explained
in more detail in Chapter 6.5. In Figure 9.2, the results of Run 7 to 9 are
shown (Appendix Table G.2). In these runs, PLS was run with either one or
both of the operators on Brazil for 5 min, and the final hypervolumes were
measured. As can be seen, the S-CD operator results in a slightly higher hy-
pervolume (3.70380×1014) than the S-R operator (3.69318×1014). When per-
forming a two-tailed independent sample t-test between the hypervolumes
of S-R and S-CD, this results in a p-value of 0.083127. As this is above 0.05,
the operators do not result in significantly different hypervolumes. Although
the difference is not significant, the S-CD operator will be used for the final
algorithm comparisons of Test Case VIII as it performed slightly better.

154 Chapter 9. Results & Discussion

s-r s-cd s-r, s-cd

3.690

3.695

3.700

3.705

·1014

3.69 · 1014

3.7 · 1014

3.7 · 1014

Selection Operator(s)

H
yp

er
vo

lu
m

e

FIGURE 9.2: Average Hypervolume per Selection Operator(s)
for PLS-MOLA (5 Min, N = 5)

In order to gain more insight in the complexity of the selection operators, run
10 to 12 were executed. The average running time to complete 1000 itera-
tions on the Brazil case are shown in Table G.3 of Appendix G. As expected,
the running time is considerably higher for the S-CD operator (5.61×105ms)
compared to the S-R operator (5.06×105ms). The S-CD simply requires the
calculation of the crowding distance of each solution, when a new solution is
to be selected. However, despite the increase in efficiency (as the hypervol-
ume was higher after the same running time), this did not lead to a significant
improvement in efficiency, as was shown previously.

To conclude, no significant differences have been detected between the hy-
pervolumes resulting from the different selection operators. As the usage
of S-CD delivered a slightly higher hypervolume, this operator will be used
when comparing the performance of (I)PLS-MOLA in Test Case VIII.

9.2.4 Exploration Strategy

The fourth subquestion of RQ 1 states "What is an efficient strategy for ex-
ploring the neighborhood of a solution?". The exploration strategy exists out
of one or more exploration operators and an exploration procedure. The ex-
ploration operators are responsible for finding new neighbor solutions. The
exploration procedure, as was discussed in Chapter 6.6, repeatedly applies
(randomly selected) exploration operators to explore a neighborhood until
the termination criteria are met. In this research, the efficiency of the LS-
KRCM, LS-KRBM and LS-KRPM operators of Chapter 6.8 have been exam-
ined. Also, experiments regarding different KT values, influencing the work-
ing of these operators (Chapter 6.8), have been conducted. Finally, the Explo-
ration N parameter of the exploration procedure was examined, which states
the number of neighborhood solutions being explored during each iteration.

At first the exploration (search) operators were examined in run 13 to 19. The
findings of these runs can be found in Figure 9.3 (Table G.4) and concern the
average hypervolume obtained after 5 minutes on the Brazil case. Each run,

9.2. RQ I: PLS Optimization 155

different (combinations of) search operators were used. Usage of only the
LS-KRBM operator resulted in the highest hypervolume (3.69651×1014ms),
whereas a combination of all three operators resulted in the second best score
(3.69095×1014ms). A two-tailed independent sample t-test concerning the
hypervolumes of both runs resulted in a p-value of 0.139405. As this is above
0.05, the operators are considered not to be significantly different in terms
of efficiency. In order to decide upon what operators are preferred for the
final comparison in Test Case VIII, we will therefore look at the expected di-
versity of the solutions being created. The combination of all operators, is
hereby expected to (more easily) create a more diverse set of solutions. Also,
the LS-KRBM is especially focusing on the compactness objective, and might
therefore perform less good when this objective is not included. Therefore,
despite of the slightly higher hypervolume of LS-KRBM, the preference will
go to using all three operators in Test Case VIII.

ls-
krcm

ls-
krb

m

ls-
krp

m

ls-
krcm

, ls
-k

rb
m

ls-
krcm

, ls
-k

rp
m

ls-
krb

m
, ls

-k
rp

m

ls-
krcm

, ls
-k

rb
m

, ls
-k

rp
m

3.670

3.675

3.680

3.685

3.690

3.695

3.700

·1014

3.67 · 1014

3.7 · 1014

3.68 · 1014

3.68 · 1014

3.68 · 1014

3.69 · 1014

3.69 · 1014

Search Operator(s)

H
yp

er
vo

lu
m

e

FIGURE 9.3: Average Hypervolume per Search Operator(s)
for PLS-MOLA (5 Min, N = 5)

To gain more insight in the complexity of the operators, run 20 to 26 were
executed. The results are shown in Table G.5 of Appendix G and show the
running times necessary to complete 1000 iterations on the Brazil case for all
combinations of search operators. As expected, the LS-KRPM results in the
highest running time (1.24×106ms) compared to the LS-KRCM (2.46×105ms)

156 Chapter 9. Results & Discussion

and LS-KRBM (1.61×105ms) operators. This is caused due to the fact that this
operator alters seven cells at once, instead of only one. However, applying
the LS-KRPM operator once seems to bring a bigger increase in hypervolume
than applying the LS-KRCM or LR-KRBM once, as it is still able to reach com-
parable (slightly lower) hypervolumes after 5 minutes.

One of the parameters used to influence the behavior of each search oper-
ator, is the KT value (Chapter 6.8). The KT value states the number of types
that are being compared, of which the one resulting in the best change in ob-
jective value is chosen. The results of run 27 to 34 are shown in Figure 9.4 (Ta-
ble G.6), and indicate the average resulting hypervolume on the Brazil case
when run for 5 minutes, using different KT values. A KT value of 4 results
in the lowest hypervolume (3.68667×1014ms) and a KT of 8 (the maximum,
view Chapter 8.3.4) results in the highest hypervolume (3.69256×1014ms). A
KT of 1 has the second-to-highest hypervolume (3.69158×1014ms). The fact
that a KT of 4 performs the worst, is caused by the amount of random num-
ber generations necessary per operation. When randomly selecting 4 types,
4 random number generations are required. When randomly selecting 3 or 5
types, only 3 random number generations are required, and so on. As ran-
dom number generations can be costly, this result in the algorithm being able
to execute less iterations, which can have a negative effect on the final hy-
pervolume. The fact that a KT of 8 performs slightly better than a KT of 1,
indicates that comparing more types positively influences the resulting so-
lution quality. Although comparing more types asks for more operations, it
is apparently a positive trade given the increase in solution quality that is
obtained. When performing a two-tailed independent sample t-test between
the results of KT = 4 and KT = 8, this results in a p-value of 0.053596. As this
is above 0.05, no significant difference is proven. Comparing KT = 1 to KT =
8 results in a p-value of 0.779688, again showing no significant difference. In
the final comparison of Test Case VIII, a KT value of 8 will be used due to the
slightly higher hypervolumes obtained.

9.2. RQ I: PLS Optimization 157

1 2 3 4 5 6 7 8

3.685

3.686

3.687

3.688

3.689

3.690

3.691

3.692

3.693

3.694

3.695

·1014

3.
69
· 1

0
14

3.
69
· 1

0
14

3.
69
· 1

0
14

3.
69
· 1

0
14

3.
69
· 1

0
14

3.
69
· 1

0
14

3.
69
· 1

0
14

3.
69
· 1

0
14

KT

H
yp

er
vo

lu
m

e

FIGURE 9.4: KT versus Average Hypervolume for PLS-
MOLA (5 Min, N = 5)

Finally, the Exploration N parameter was examined in run 35 to 41 (Table
G.7). This parameter indicates the number of neighborhood solutions be-
ing generated (explored) per neighborhood exploration. Figure 9.5 shows
the average hypervolume obtained when ran on the Brazil case for differ-
ent Exploration N values. As can be seen, a lower Exploration N value re-
sults in a higher average hypervolume. This can be explained by the fact
that during the first 5 minutes, there are a lot of improvements possible for
each solution. As so, it is almost certain improvements will be found fast,
and so quickly moving on to the next iteration will speed up the optimiza-
tion process. However, during later iterations, finding improvements can be
more difficult. Low Exploration N values will be insufficient to find further
improvements in time, which could terminate the algorithm early. Unfortu-
nately, this is not the case within the 5 minutes being tested, and so longer
tests should be performed to examine the optimal Exploration N value. For
now, an Exploration N value of 10 has been used in future experiments. As
shown in future experiments (see Chapter 9.4), the PLS-MOLA algorithm is
able to run (at least) 2.5 hours using an Exploration N value of 10 on the
Brazil case and around 1 hour on the Sul Goiano case. This is sufficient for
the future experiments to be conducted successfully. In future research, ex-
periments with longer running times should be conducted to examine the
influence of the Exploration N value on the hypervolume and/or termina-
tion time in later stages more extensively.

158 Chapter 9. Results & Discussion

0 200 400 600 800 1000

3.66
3.67
3.68
3.69
3.70
3.71
3.72
3.73
3.74
3.75

·1014

Exploration N

H
yp

er
vo

lu
m

e

FIGURE 9.5: Exploration N versus Average Hypervolume for
PLS-MOLA (5 Min, N = 5)

Concluding, a combination of the LS-KRCM, LS-KRBM and LS-KRPM is pre-
ferred. Although the obtained hypervolume using this combination shows
no significant improvement over using LS-KRBM only, it is expected to de-
liver a more diverse set of neighborhood solutions. Furthermore, a KT value
of 8 results in the highest hypervolume, although the difference is again not
significant. Finally, the running time of the exploration N experiments was
too short to produce useful results. For now, an Exploration N value of 10
has been chosen to conduct future experiments.

9.2.5 Reparation Strategy

The fifth subquestion of RQ 1 states "What is an efficient strategy for repair-
ing non-feasible solutions?". The reparation strategy is determined by the
reparation procedure and the reparation operators being used. The repara-
tion procedure is discussed in Chapter 6.9 and repeatedly applies reparation
operators to repair an invalid solution. In this research, only operators for the
allocation ranges constraint have been designed and examined.

At first, the reparation operators LR-KRCM and LR-KRBM were compared
in run 42 to 44 (Table G.8). The results of these runs are shown in Figure 9.6
and show the resulting average hypervolumes when using either one or both
of these operators for 5 minutes on the Brazil case. Using the LR-KRBM op-
erator results in a slightly higher hypervolume (3.698×1014) than using only
the LR-KRCM operator (3.650×1014) or both (3.696×1014). When perform-
ing a two-tailed independent sample t-test on the hypervolumes obtained
from using only LR-KRBM or LR-KRCM, this results in a p-value of below
0.0001, showing a significant difference. However, the hypervolumes from
using only LR-KRBM or both LR-KRBM and LR-KRCM result in a p-value
of 0.541648, showing no significant difference. In order to choose what op-
erators to use for the final algorithm comparison in Test Case VIII, we will
therefore look at the diversity that is expected to be created in the repaired
solutions. In that case, LR-KRBM and KRCM will be preferred above LR-
KRBM, as these two combined are expected to (more easily) generate more

9.2. RQ I: PLS Optimization 159

diverse solutions than solely LR-KRBM. Also, the LR-KRBM focuses mainly
on the compactness objective, and could deliver lower hypervolumes when
compactness is not being optimized.

lr-
krcm

lr-
krb

m

lr-
krcm

, lr
-k

rb
m

3.64

3.65

3.66

3.67

3.68

3.69

3.70

3.71

·1014

3.65 · 1014

3.7 · 1014
3.7 · 1014

Repair Operator(s)

H
yp

er
vo

lu
m

e

FIGURE 9.6: Average Hypervolume per Repair Operator(s)
for PLS-MOLA (5 Min, N = 5)

In order to gain more insight in the complexity of running the reparation op-
erators, run 45 to 47 were executed. The operators were used to execute 1000
iterations on the Brazil case, of which the total running times were measured.
As can be seen in Table G.9 of Appendix G, this took on average 9.55×105

ms when using the LR-KRBM repair operator and 3.47×105 ms when using
the LR-KRCM operator. This could be expected, as the LR-KRBM requires
the operator to search for a boundary cell instead of being able to select any
dynamic cell at random. However, applying the LR-KRBM operator seems
to result in solutions with higher objective values, as the final hypervolume
obtained is above the one of LS-KRCM (Figure 9.6). This is also expected, as
modifying only boundary cells promotes the compactness.

Next up, are the results regarding the Reparation KC parameter of the re-
pair operators. This parameter states the number of (boundary) cells that are
competing in one repair operation. The repair operator will eventually ap-
ply the reparation adjustment to the cell that leads to the highest objective
values. As was discussed in Chapter 8.3.5 (Test Case IV), the Reparation KC
parameter was examined by repairing the initial solution and looking at the
resulting solution quality and reparation time. This was done, as it was un-
certain to what extent a high KC value can increase the reparation time. In
case this would be extremely high, running the algorithm for a predefined
number of iterations or time would bring difficulties. In Figure 9.7, the av-
erage hypervolume of the initial solution is shown after being repaired with
different Reparation KC values (Table G.10). As expected, adding more cells
to the competition results in a higher final hypervolume. The increase tends
to be logarithmic, whereas the amount of increase in hypervolume decreases

160 Chapter 9. Results & Discussion

with higher Reparation KC values. However, in order to determine a suitable
Reparation KC value for PLS-MOLA, the average reparation time also has to
be taken in account. These were also measured in run 48 to 53 (Table G.11),
and visualised in Figure 9.8. As can be seen, the reparation time of the initial
solution increases linearly with the Reparation KC value. As so, a trade-off
will have to be made between the reparation time and resulting hypervol-
ume. As can be seen in Figure 9.7, the hypervolume increases relatively fast
when raising the reparation KC from 0 (3.423×1014) to 100 (3.744×1014). Af-
ter a KC of 100, further raising the KC value becomes much less effective (to
only 3.756×1014 at KC = 200). As the reparation time still increases linearly
with the value of KC, it therefore becomes less attractive to choose higher
values of KC. Therefore, a KC value of 100 is considered to be an acceptable
trade-off for the eventual algorithm comparison in Test Case VIII. Note, that
the ’optimal’ trade-off will always differ per user, considering his/her opti-
mization goals.

0 100 200 300 400 500

3.400

3.450

3.500

3.550

3.600

3.650

3.700

3.750

3.800

·1014

Reparation KC

H
yp

er
vo

lu
m

e

FIGURE 9.7: Reparation KC versus Average Hypervolume of
Repaired Initial Solution for PLS-MOLA (N = 5)

9.2. RQ I: PLS Optimization 161

1 100 200 300 400 500
0

1

2

3

4

5

6

7

8

9
·105

Reparation KC

R
ep

ar
at

io
n

Ti
m

e
(m

s)

FIGURE 9.8: Reparation KC versus Average Reparation Time
of the Initial Solution for PLS-MOLA (N = 5)

Besides the Reparation KC parameter, one more parameter regarding the
reparation operators was being examined, called the Reparation BT parame-
ter. If set to true, the reparation operator will not only perform a competition
between different cells, but also between different types. This is only the
case, when multiple types can be chosen for a cell that would aid to repairing
the solution. If so, the type will be chosen that delivers the highest objective
values. If the BT setting is set to false, this type will be chosen at random.
In Run 54 and 55, the influence of the BT parameter on the hypervolume
was examined (Table G.12) when PLS-MOLA was run on the Brazil case for 5
minutes. As shown in Figure 9.9, the PLS-MOLA algorithm reaches a slightly
higher hypervolume with BT set to true (3.686×1014) than with BT set to false
(3.625×1014). A two-tailed independent sample t-test between both settings
results in a p-value of below 0.00001. Since this is below 0.05, we can state that
the algorithm performs significantly better with the Reparation BT parame-
ter set to true. This proves that the costs of performing more type checks are
overruled by the benefits of obtaining repaired solutions with better objective
values. As so, the Reparation BT setting set to true is considered to result in
the most efficient PLS-MOLA optimization process.

162 Chapter 9. Results & Discussion

BT = False BT = True

3.60
3.61
3.62
3.63
3.64
3.65
3.66
3.67
3.68
3.69
3.70

·1014

3.62 · 1014

3.69 · 1014

Parameter Setting

H
yp

er
vo

lu
m

e

FIGURE 9.9: Average Hypervolume per BT Setting for PLS-
MOLA (5 Min, N = 5)

Finally, one more reparation related setting for the PLS-MOLA algorithm has
being investigated, namely the Allow Repair (AR) parameter. When set to
false, no reparations are allowed throughout the optimization process (except
for the initial solution). This means, that all newly found solutions that are
invalid, are immediately discarded (and new ones are created until a valid
one is found). Run 56 and 57 applied PLS-MOLA to Brazil for 5 minutes,
either with AR set to true or false (Table G.13). The results in Figure 9.10
show the resulting average hypervolumes. As can be seen, AR set to true
results in a slightly higher average hypervolume (3.688×1014) than AR set
to false (3.674×1014). A two-tailed independent sample t-test result in a p-
value of 0.002474, showing the difference is significant (below 0.05). As so,
PLS-MOLA performs significantly better with AR set to true. The advan-
tage of AR set to true, is that certain solutions can easier be ’reached’ when
constraint violation and repairing is allowed. Else, it might take multiple lo-
cal search steps to reach the same solution. Also, the reparation operators
used are designed to even further improve solutions (for instance with high
Reparation KC values) when repairing. Finally, in case violations occur often,
a lot of new solutions might have to be generated until a valid one is finally
found. This can explain the PLS-MOLA optimization process becoming more
efficient when allowing reparations.

9.2. RQ I: PLS Optimization 163

AR = False AR = True

3.60
3.61
3.62
3.63
3.64
3.65
3.66
3.67
3.68
3.69
3.70

·1014

3.67 · 1014

3.69 · 1014

Parameter Setting

H
yp

er
vo

lu
m

e

FIGURE 9.10: Average Hypervolume per AllowRepair (AR)
Setting for PLS-MOLA (5 Min, N = 5)

To conclude, a combination of the LR-KRCM and LR-KRBM repair operators
is preferred. Although this combination does not provide a significant im-
provement over using LR-KRBM only, it is expected to bring more diverse
solutions (and less dependent on the compactness objective). The Reparation
KC parameter brings a trade-off between reparation quality and reparation
time. Although this is user dependent, a Reparation KC value of 100 is con-
sidered to bring an acceptable trade-off for this research. Furthermore, the
operators are proven to performs significantly better with the Reparation BT
parameter set to true. Finally, allowing reparations during the optimization
process (AR = True) results in a significantly higher hypervolume.

9.2.6 Acceptance Criteria

The final subquestion of RQ 1 states "What are efficient archive acceptance
criteria for non-dominated solutions?". The acceptance criteria determine
whether a newly found is added to the archive or not. At all times, solu-
tions can only be added to the archive in case they are not dominated by
any other solution currently in it. In this research, two additive criteria have
been examined that can be combined with this criterion. The first additive
criterion is activated with the NDS parameter. If set to true, solutions can
only be added in case they dominate the current solution being explored.
Otherwise, solutions can also be added if they do not dominate this solution
(and are not dominated by other ones either). In run 58 and 59, the PLS-
MOLA algorithm was run on the Brazil case for 5 minutes (Table G.14). In
Figure 9.11, the resulting hypervolumes are shown. If NDS is set to true, a
slightly higher hypervolume is obtained (3.719×1014) than with NDS set to
false (3.688×1014). A two-tailed independent sample t-tests results in a p-
value of below 0.00001. As this is below 0.05, the NDS criterion appears to
bring a significant improvement in the resulting hypervolume. Due to the
more strict NDS criterion, less solutions are accepted to the archive, but the
average quality will be higher. This increase in hypervolume will happen in
each iteration over again, and eventually add up to each other as one solution

164 Chapter 9. Results & Discussion

of the previously more quality archive is the start of the next one.

NDS = False NDS = True

3.65
3.66
3.67
3.68
3.69
3.70
3.71
3.72
3.73
3.74
3.75

·1014

3.69 · 1014

3.72 · 1014

Parameter Setting

H
yp

er
vo

lu
m

e

FIGURE 9.11: Average Hypervolume per NDS Setting for
PLS-MOLA (5 Min, N = 5)

However, as was already mentioned in Test Case V (Chapter 8.3.6), the NDS
criterion also brings a downside; it will result in smaller archive sizes. Espe-
cially in later stages, when improvements become harder to find, this might
result in the algorithm not being able to find any improvements (before the
termination criterion are met) faster. The average number of solutions in the
final archive is shown in Figure 9.12. With NDS set to false, the final archive
has 17.8 solutions on average. With NDS set to true, the average number
of solutions in the archive decreases to only 4 (Table G.15). A two-tailed in-
dependent sample t-test results in a p-value of 0.0193, which is below 0.05
and so proves a significant difference in the archive size. Although the av-
erage hypervolume increases, the chance of not finding any improvements
in an iteration also raises. Not finding any improvements could terminate
the PLS-MOLA algorithm, which could have been prevented by also accept-
ing and exploring these ’lesser’ solutions. Also, the diversity of the solutions
decreases, as a solution now always has to increase in all objective values.
This means, that you will less easily obtain solutions that excel at only one
objective. It is up to the user to decide, whether this is desired or not. In
this research, the NDS will preferably be set to false; the slight increase in
hypervolume (1.01%) is not considered to outweigh the enormous decrease
in archive size (345.00%).

9.2. RQ I: PLS Optimization 165

NDS = False NDS = True
0

5

10

15

20

25

17.8

4

Parameter Setting

A
rc

hi
ve

Si
ze

FIGURE 9.12: Average Number of Solutions per NDS Setting
for PLS-MOLA (5 Min, N = 5)

Finally, one more acceptance criterion was examined; the maximum archive
size. In case the maximum archive size is violated, the solution with the low-
est crowding distance will be removed. In run 60 to 66, the PLS-MOLA al-
gorithm was run on Brazil for 5 minutes using different maximum archive
sizes (Table G.16). The resulting hypervolumes are shown in Figure 9.13. As
can be seen, the obtained hypervolumes are close to each other, and seem to
slightly increase as the maximum archive size raises. A maximum archive
size of 5 delivered an average hypervolume of 3.687×1014, whereas a max-
imum archive size of 100 gave an average hypervolume of 3.693×1014. A
two-tailed independent sample t-test upon these hypervolumes results in a
p-value of 0.077072, showing no significant difference (above 0.05). Limit-
ing the number of solutions, similar to the NDS case, might also result in the
PLS-MOLA algorithm terminating more easily. Accepting a bigger and more
diverse archive will decrease this risk. Therefore, as the size does not seem to
affect the resulting hypervolume, the archive will not be limited in the final
comparison of Test Case VIII.

166 Chapter 9. Results & Discussion

0 20 40 60 80 100

3.60
3.61
3.62
3.63
3.64
3.65
3.66
3.67
3.68
3.69
3.70

·1014

Max. Archive Size

H
yp

er
vo

lu
m

e

FIGURE 9.13: Maximum Archive Size versus Average Hyper-
volume for PLS-MOLA (5 Min, N = 5)

In summary, the NDS criterion delivers a small increase in average hypervol-
ume (1.0%), but an enormous decrease in the average archive size (345.0%).
As this could result in the algorithm terminating more easily in later stages,
the NDS criterion is not preferred in the remaining of this research. Finally,
the maximum archive size does not seem to influence the resulting hypervol-
ume. An infinite maximum archive size will therefore be preferred, to not
limit the archive size and again decrease the chance of the algorithm termi-
nating early.

9.3 RQ II: PLS Objective Scalability

The second research question states "How does the efficiency of PLS for MOLA
scale with the number of objectives?". In theory, an infinite number of objec-
tives can be optimized by PLS simultaneously. However, the more objectives
are being optimized, the less efficient the objectives will be optimized indi-
vidually. The local search operators will have to divide their attention over
more objectives, and solutions will be added to the archive more quickly as
they are dominated less often. In the previous experiments, the PLS-MOLA
algorithm was run on the Brazil case with two objectives; potential yield and
compactness maximization. In this section, the effects of the addition of a
third objective, namely carbon stock maximization, are discussed.

At first, the relation between the number of objectives and the average archive
size was examined. This was done in run 67 and 68, in which the PLS-
MOLA algorithm was run for 1000 iterations with either two or three ob-
jectives (Table G.18). The resulting average archive sizes are shown in Figure
9.14. When only compactness and potential yield are being maximized, an
average archive size of 15.0 solutions was obtained. Now, when adding the
carbon stock maximization objective, the average archive size increased to
over 1135.4 solutions. A two-tailed independent sample t-test results in a
p-value of below 0.00001. As this is below 0.05, the increase is significant.
An increase in archive has both advantages and disadvantage. Disadvan-
tage, is the increase in memory required to run the algorithm. All solutions

9.3. RQ II: PLS Objective Scalability 167

have to be stored simultaneously. Especially in later stages, this could re-
sult in high memory demands (as each solutions stores the number of adjust-
ments made). Also, archive related operations, such as checking whether a
new solution is dominated, will require more operations. In order to counter
these negative effects, a maximum archive size could be used. On the other
hand, a large archive size decreases the chance of the algorithm terminating
early. The fast expanding archive can lead to more diverse solutions, explor-
ing larger sections of the solution space.

Comp, Yield Comp, Yield, Carbon
0

200

400

600

800

1000

1200

1400

15

1,135.4

Objectives

A
rc

hi
ve

Si
ze

FIGURE 9.14: Average Archive Size per Objective(s) Opti-
mized for PLS-MOLA (1000 Iterations, N = 5)

More objectives result in less attention of the local search operators for each
objective individually. As the current local search operators randomly pick an
objective to focus on (Chapter 6.8), the chance of being picked decreases from
50% to only 33%. In run 69 and 70, the hypervolume of only compactness
and potential yield have been measured when PLS-MOLA was run on Brazil
for 5 minutes with either 2 or 3 objectives (Table G.19). Hereby, the carbon
stock values of the runs with 3 objectives have been neglected. As shown in
Figure 9.15, the addition of a third objective decreases the hypervolume of
compactness and potential yield from (on average) 3.691×1014 to 3.572×1014.
This can be considered as a rather large difference, as we are only 5 minutes
in the optimization process. A two-tailed independent sample t-test shows
results in a p-value of below 0.00001, showing the difference is significant.
This confirms our expectations regarding the lower optimization quality per
objective individually when more objectives are added. As so, it is always
important to outweigh whether the addition of an extra objective is worth
this decrease in optimization quality. Optionally, objectives can be combined
to prevent the number of objectives from increasing. Another option, is to do
multiple runs given different sets of objectives and/or using the outputs of
previous runs as input. This will be discussed in more detail in Chapter 11.

168 Chapter 9. Results & Discussion

Comp, Yield Comp, Yield, Carbon
0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50
·1014

3.69 · 1014
3.57 · 1014

Objectives

H
yp

er
vo

lu
m

e
C

om
p.

&
Yi

el
d

FIGURE 9.15: Average Hypervolume Comp. & Yield per Ob-
jectives Optimized for PLS-MOLA (5 Min, N = 5)

Finally, two runs were executed to gain more insight in the relation between
the number of objectives and the time to complete an iteration in PLS-MOLA.
As so, run 67 and 68 were executed (Table G.17), in which the algorithm was
run for 1000 iterations on the Brazil case with either 2 or 3 objectives and
the running times were measured. The results are shown in Figure 9.16, and
show an outcome that one might not expect; the PLS-MOLA algorithm fin-
ished earlier when optimizing 3 objectives (4.26×105) than when optimizing
only 2 objectives (8.36×105). A two-tailed independent sample t-test shows
that the results are significant with a p-value of below 0.00001. In general,
optimizing 3 instead of 2 objectives would require the algorithm to perform
more operations per iteration (for example to check dominance). However,
the costs of these extra operations seem to be outweighed by another aspect;
the chances of violating a constraint. Now, the current decrease in running
time can be explained as follows: the potential yield objective asks for much
more repair operations than both compactness and carbon stock maximiza-
tion. This is caused by the allocation ranges constraint, which is closely re-
lated to the potential yield objective; only boundaries are set upon the land-
use types that influence the potential yield. Therefore, the need (chance) of a
reparation is the highest after a local search operator changes a yield related
land-use type. Now, the local search operators choose one random objective
to focus on. Chances are the highest to pick yield maximization when op-
timizing only 2 objectives (50%) compared to when optimizing 3 objectives
(33%). As so, optimizing 2 objectives results in more constraint violation, re-
quiring more repair operations, which again results in longer running times.
In order to confirm this theory, two more runs have been performed. The
first one maximized the compactness and carbon stock, and resulted in an
average running time of 4.30×105ms (N = 5). The second one maximized
the potential yield and carbon stock, which resulted in an average running
time of 5.02×105ms (N = 5). As expected, the runs optimizing two objectives
among one was yield maximization ended up having longest and second-
longest running time. This shows that yield maximization is the most ’costly’
objective, explaining the results of Figure 9.16.

9.4. RQ III: IPLS Optimization 169

Comp, Yield Comp, Yield, Carbon
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
·106

8.36 · 105

4.26 · 105

Objectives

R
un

ni
ng

Ti
m

e
(m

s)

FIGURE 9.16: Average Running Time per Objective(s) Opti-
mized for PLS-MOLA (1000 Iterations, N = 5)

To conclude, the addition of more objectives can first of all significantly in-
creases the archive size. As so, more memory space will be required. Further-
more, the individual optimization quality per objective reduces, as the search
operators have to focus on more objectives. Therefore, one should consider
whether this is worth the addition of more objectives. Combining objectives
or performing different runs in a row could be an alternative (Chapter 11).
Finally, although optimizing more objectives requires more operations per
iteration, the running times depend strongly on the ’costs’ of the objectives
being optimized. In case an objective requires more repair operations, the
running time can rise significantly. The higher the chance of a local search
operator choosing such an expensive objective to optimize, the longer the
expected running times will be.

9.4 RQ III: IPLS Optimization

The third research question states "How can PLS most efficiently be processed
into a global IPLS algorithm for MOLA?". As shown in Algorithm 16, the
IPLS algorithm iteratively calls the PLS algorithm. As so, the answers to
RQ 1 (optimizing PLS) are also part of an efficient IPLS setup; the settings
used to iteratively call the PLS algorithm will be based upon these results.
In Table 9.1, the settings found most efficient in each section of Chapter 9.2
are summed up. Note, that these parameters were optimized using the large
Brazil case. As so, these might not be optimal for the smaller Centre West and
Sul Goiano case. However, as the smaller cases are assumed to be a relatively
good representation of Brazil (Chapter 8.2.5), and optimizing PLS for each
case separately is out of the scope of this research, the parameter settings will
be reused.

170 Chapter 9. Results & Discussion

TABLE 9.1: Selected PLS-MOLA Parameters Settings

Id Parameter Value
6 Selection Operators s-cd
7 Search Operators ls-krcm, ls-krbm, ls-krpm
8 Repair Operators lr-krcm, lr-krbm
9 Search KT 8
10 Repair KC 100
11 Repair BT True
12 Allow Repair True
13 NDS False
14 Max. Archive Size ∞
15 Exploration N 10

As discussed in Test Case VII (Chapter 8.3.8), we will first determine what
cases IPLS is eligible for. Runs longer than 2.5 hours are considered to be out
of the scope of this research. Therefore, IPLS is only eligible for a case when
the PLS algorithm is able to find a local optimum at least once in 2.5 hours
(on average). To find out for which cases this holds, the PLS algorithm was
run on the Brazil case and the two subcases (5 times each) using the settings
of 9.1. Only in case the PLS algorithm terminated within the timespan of
2.5 hours, meaning a local optimum was found (approximated), the problem
case will be eligible for IPLS. At first, the Brazil case was examined, which
is the largest case study with 342815 dynamic cells. The PLS-MOLA algo-
rithm was run on the Brazil case 5 times and the archive was stored each 15
minutes. The resulting hypervolumes are shown in Table H.1 and visualised
in Figure 9.17. As can be seen, the PLS-MOLA algorithm did not terminate
within the timespan of 2.5 hours when applied to the Brazil case. As so, IPLS
will not be run on Brazil in this research. The reason PLS-MOLA was not able
to find a local optimum in this timespan, is due to the size of the case. The
Brazil case is (significantly) larger than the cases being optimized in previous
research regarding MOLA (Chapter 4). For example, the two most common
MOLA problems discussed in Chapter 3.6, only existed out of 400 and 3150
dynamic cells. The solution space of the Brazil case is much larger, and so
it takes much more operations to reach an optimum. Since IPLS-MOLA will
not be run on the Brazil case, the performance of the NSGA-II algorithm will
be compared to PLS-MOLA (Chapter 9.5).

9.4. RQ III: IPLS Optimization 171

0 30 60 90 120 150

3.70

3.80

3.90

4.00

4.10

4.20

4.30

·1014

Running Time (min)

H
yp

er
vo

lu
m

e

FIGURE 9.17: Average Hypervolume versus Running Time
for PLS-MOLA for Brazil (n = 5)

As can be seen in Figure 9.17, it is difficult to estimate at what time a local op-
timum would have been found. This will approximately be around the time
that the increase in hypervolume stagnates. However, the hypervolume still
seems to increase steadily at the end. In order to successfully run the IPLS
algorithm, longer running times will be necessary. Alternatively, more pow-
erful hardware could be used to speed up the PLS convergence. Currently,
the algorithm was run on a personal computer, which is not optimized for
these kinds of optimization jobs. This will be discussed later in Chapter 11.
Finally, it has to be noted that the first PLS run might take longer than suc-
ceeding ones (depending on the perturbation size), as the initial solution can
be further away from an optimum than a perturbed solution. This can also
be seen with the Sul Goiano problem case later on in this chapter. As later
iterations might take less time, IPLS might be able to perform more iterations
than expected, based upon the first one only. Still, given the resources of this
project, the IPLS algorithm will not be run on the Brazil case.

One of the solutions of the final archive of the PLS-MOLA algorithm is shown
in Figure 9.18. The solution shows, among other developments, an increase
in the amount of crops land-use in the South. As can be seen in the yield map
of Figure 8.3, this is not a surprise; the potential yield of this type is the high-
est at this location. Statistic regarding the final archive can be found in Table
H.2. The original map of Brazil had a compactness value of 6.757×105 and
a potential yield value of 4.413×108. The final archive of PLS-MOLA had an
average compactness value of 6.970×105 (+3.2%) and average potential yield
value of 6.174×108 (+39.9%). Note that these are only averages, and the max-
imum objective values obtained are even higher.

172 Chapter 9. Results & Discussion

FIGURE 9.18: Brazil with PLS-MOLA

The second problem case being examined, is the medium sized Centre West
case with 63827 dynamic cells. Again, the PLS-MOLA algorithm was first run
5 times for 2.5 hours with the parameters shown in Table 9.1. The resulting
hypervolumes are shown in Table H.3 and visualised in Figure 9.19. Similar
to the Brazil case, the algorithm did not terminate in 2.5 hours. The Centre
West case is therefore also not eligible for the IPLS algorithm, given the re-
sources of this project. Similar to the Brazil case, the Centre West case is still
(much) larger than the problem cases examined in previous research.

9.4. RQ III: IPLS Optimization 173

0 30 60 90 120 150

2.00

2.05

2.10

2.15

2.20

2.25

2.30

·1013

Running Time (min)

H
yp

er
vo

lu
m

e

FIGURE 9.19: Average Hypervolume versus Running Time
for PLS-MOLA for Centre West (N = 5)

A solution from the final archive of the PLS-MOLA algorithm when run on
the Centre West case is shown in Figure 9.20. The solution shows, among
other developments, a decrease in rangeland in the West and an increase in
sugar cane in the South. Again, this benefits the potential yield and is there-
fore a logical expansion. Statistics regarding the final archive can be found
in Table H.4. The original map of Centre West had a compactness value of
1.161×105 and a potential yield value of 1.205×105. The average compact-
ness value of the final archive was 1.252×105 (+3.9%), whereas the average
potential yield value was 1.830×105 (+46.2%).

174 Chapter 9. Results & Discussion

FIGURE 9.20: Centre West with PLS-MOLA

Finally, the PLS-MOLA algorithm was run on Sul Goiano, which is the small-
est problem case with 5229 dynamic cells. In contrast to the Brazil and Centre
West case, the PLS-MOLA algorithm did actually terminate before the max-
imum running time of 2.5 hours. The resulting hypervolumes are shown in
Table H.5 and are visualised in Figure 9.21. Three out of five runs terminated
in 45 minutes, whereas two terminated in 60 minutes. This makes an average
running time of the (first) iteration of 51 minutes and makes the case eligi-
ble for IPLS. Note, that the Sol Goiano problem case is still larger than the
largest common example case in previous research, discussed in Chapter 3.6.
Therefore, IPLS is most likely eligible for these cases as well.

9.4. RQ III: IPLS Optimization 175

0 15 30 45 60

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

·1011

Running Time (min)

H
yp

er
vo

lu
m

e

FIGURE 9.21: Average Hypervolume versus Running Time
for PLS-MOLA for Sol Goiano (N = 5)

One of the solutions from the final archive of the PLS-MOLA algorithm when
ran on the Sul Goiano case, is shown in Figure 9.22. As can be seen, the solu-
tion is relatively compact due to its large clusters. The amount of crops seems
to have increased in the East, whereas large sections of sugar cane started to
appear in the South. The original map of Sul Goiano had a compactness value
of 6.751×103 and a potential yield value of 0.795×107. The average compact-
ness value of the final PLS-MOLA archive was 7.800×103 (+15.4%), with an
average potential yield of 1.446×107 (+81.9%).

FIGURE 9.22: Sul Goiano with PLS-MOLA

176 Chapter 9. Results & Discussion

As the PLS-MOLA algorithm is able to find a local optimum within the times-
pan of 2.5 hours, the Sul Goiano case is eligible for the IPLS-MOLA algorithm.
However, before being able to efficiently run the IPLS-MOLA algorithm on
the Sul Goiano case, an effective perturbation size has to be found. As dis-
cussed before, the perturbation size should be large enough to escape the
local optimum of the solution, but small enough to preserve valuable solu-
tion characteristics. Therefore, run 71 to 73 have been executed, in which the
hypervolumes resulting from IPLS-MOLA with different perturbation sizes
were measured (Table H.7, H.8 and H.9). The results are visualised in Fig-
ure 9.23. Note, that a perturbation size of 0 or 100 are never desired; the
first would not perturb the solution at all, whereas the second would create
a completely random solution. As can be seen, a perturbation size of 25%
results in the highest average hypervolume (1.22907×1011). The higher the
perturbation size, the lower the average hypervolume becomes. A two tailed
independent sample t-test between the hypervolumes obtained with a per-
turbation size of 25% and 50% results in a p-value of 0.034204, whereas a
test between the volumes obtained with 25% and 75% results in a p-value of
0.034337. As both are below 0.05, the perturbation size of 25% proves to be
significantly better in terms of solution quality. Apparently, this size allows
the IPLS algorithm to best escape a local optimum, without losing all valu-
able information (as would be the case with for example 100%). As we will
discuss next (Figure 9.24), we can indeed see that 25% was indeed enough to
successfully escape a local optimum. In the future, it could be interesting to
also examine perturbation sizes of below 25%.

25 50 75

1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22
1.23
1.24
1.25

·1011

Perturbation (min)

H
yp

er
vo

lu
m

e

FIGURE 9.23: Average Hypervolume versus Perturbation
Size for IPLS-MOLA for Sul Goiano (N = 5)

The final archive resulting from an IPLS-MOLA run with a perturbation size
of 25% is shown in Figure 9.24. At the right bottom, the archive of the first
PLS-MOLA run (found after 45 minutes) can be seen. By repeatedly perturb-
ing solutions and re-applying PLS-MOLA, IPLS-MOLA was able to escape
this local optimum. This eventually resulted in the IPLS-MOLA archive con-
taining solutions that approximate one or more higher quality local optima.
As can be seen, these solutions especially improve on the potential yield val-
ues. The (maximum) compactness found in later PLS-MOLA iterations is

9.4. RQ III: IPLS Optimization 177

still relatively close to the compactness found in the first PLS-MOLA execu-
tion and in some cases even lower. This shows that IPLS-MOLA is especially
efficient at further improving the potential yield. Possibly, a perturbation size
of 25% is still relatively large, disabling the follow-up PLS-MOLA runs to im-
prove upon the compactness of the first run. Examining perturbation sizes of
below 25% would therefore again be an interesting future research direction.

Also interesting is the number of PLS-MOLA iterations executed by IPLS-
MOLA in the 2.5 hours running time. On average, the PLS-MOLA algorithm
was called 7.5 times per IPLS-MOLA run with a perturbation size of 25%.
The first iteration, given the initial map of the problem case, hereby takes
the longest (Table H.5). All remaining iterations, given a perturbed solution
from the current archive, took significantly less time; approximately 15 min-
utes each. This is caused due to the fact that a (25%) perturbed solution is
closer to a (new) local optimum than the original map. The larger the pertur-
bation size, the longer PLS will take to reach another local optimum.

FIGURE 9.24: Final Archive of PLS-MOLA and IPLS-MOLA
for Sul Goiano

One of the solutions of the final archive of IPLS-MOLA for Sul Goiano is vi-
sualised in Figure 9.25. As can be seen, the solution is more ’scattered’ than
the solution resulting from PLS-MOLA shown in Figure 9.22. This is the re-
sult of repeatedly perturbing solutions, and re-optimizing these again using
PLS-MOLA. Over the iterations, the solutions will start to deviate more from
the initial situation, as is expected with a global search algorithm. The re-
sulting solutions had an average compactness of 7.7380×103 (+14.6%) and

178 Chapter 9. Results & Discussion

an average potential yield value of 1.5686×107 (+97.3%) (Table H.10). Note
again, that these are only averages; the maximum compactness found was
7.7885×103 (+15.4%), with a maximum yield value of 1.5880×107 (+99.7%).

FIGURE 9.25: Sul Goiano with IPLS-MOLA

9.5 RQ IV: NSGA-II Comparison

For the final research question, the performance of IPLS-MOLA and/or PLS-
MOLA is compared to the NSGA-II algorithm. The NSGA-II algorithm is
currently the most applied technique for MOLA and so this will give an in-
dication of the potential of (I)PLS-MOLA in the current MOLA domain. In
case the case study was found not eligible for IPLS-MOLA (due to a long
convergence time of PLS-MOLA), the NSGA-II algorithm will be compared
to PLS-MOLA. The implementation of NSGA-II for MOLA was discussed in
Chapter 7.3.3, and is referred to as NSGA-II-MOLA.

Similar to PLS-MOLA, the NSGA-II-MOLA was build in a modular way,
which enables the user to easily apply different procedures and/or opera-
tors. As so, the search and repair operators found effective for PLS-MOLA
can be used in the NSGA-II-MOLA algorithm as well. The standard param-
eters chosen to run NSGA-II-MOLA were discussed in Chapter 8.3.9 and are
shown in Table 8.29. Some of these parameters were left open, as these will
be based upon results from Test Case III and IV. The final settings for these
parameters are shown in Table 9.2. Hereby, the assumption is made that the
results regarding search and reparation operators for PLS-MOLA, are also
usable for NSGA-II. As will be discussed in Chapter 11, it is advised to op-
timize these aspects solely for NSGA-II as well. First of all, the LS-KRCM,
LS-KRBM and LS-KRPM operators were all selected as mutation operators,

9.5. RQ IV: NSGA-II Comparison 179

as these also provided the best local search results for PLS-MOLA (Chap-
ter 9.2.4). The same holds for the usage of both repair operators LR-KRCM
and LR-KRBM (Chapter 9.2.5). The Mutation KT is set to 8, as this delivered
the best results according to Chapter 9.2.4. Finally, the Repair KC was set to 1
and the Repair BT to true. Whereas the Repair BT set to true was proven to be
most effective, the Repair KC turned out to be a trade-off between reparation
speed and repaired solution quality (Chapter 9.2.5). As the NSGA-II-MOLA
algorithm incorporates the disruptive C-XTD operator, it is expected to cre-
ate offsprings that violate the allocation range boundaries significantly. As
so, the NSGA-II-MOLA algorithm is expected to require a high number of
repair operations per generation, and so the choice has been made to set the
Repair KC to 1 to speed up this process. Future research could examine the
influence of rising the Repair KC parameter on the convergence speed and
resulting population quality of NSGA-II-MOLA.

TABLE 9.2: NSGA-II-MOLA Parameters Settings

Id Parameter Value
24 Mutation Operators ls-krcm, ls-krbm, ls-krpm
25 Repair Operators lr-krcm, lr-krbm
30 Mutation KT 8
31 Repair KC 1
32 Repair BT True

Given the parameters of Table 8.29 and Table 9.2, the NSGA-II-MOLA al-
gorithm was first applied to the Brazil problem case. The obtained hypervol-
umes are shown in Table H.11 and statistics regarding the final population are
shown in Table H.12. In order to visualize the convergence of the NSGA-II-
MOLA algorithm, five populations (obtained every +-30 minutes), are shown
in Figure 9.26. The populations are colored darker over time; meaning the ini-
tial population is the lightest, and the final population is the darkest. Further-
more, the PLS-MOLA algorithm is added (as the Brazil case was not eligible
for IPLS-MOLA), with the archives colored in the same manner. Finally, the
initial Brazil map (before reparation) is shown at the right bottom as a square.
First of all, let’s look at the initial population of NSGA-II-MOLA (the light-
est circles). Half of the initial population was created at random and ended
up with yield values of approximately 5.07×108 and compactness values of
around 5.18×105. The other half was created by mutating (50% of) the initial
population, and ended up with similar yield values but higher compactness
values of around 5.75×105. Reason for this, is that mutating parts of the initial
clusters still results in larger clusters than when each cell is given a random
land-use type. However, both types of initial solutions still end up with lower
a compactness than the initial solution, as no compactness persevering ini-
tialization operators were used. The follow-up populations especially show
improvements in the potential yield values of the solutions. These rise up to
about 5.38×105. It is expected that this is caused by the C-XTD crossover in
combination with the reparation operators; these allow for a re-arrangement
of large sections of Brazil, with the possibility to allocate the new cells in fa-
vor of the yield production. On the other hand, the crossover operators tends
to be less effective considering the compactness objective. It is suspected that
this is also caused by the disruptive C-XTD operator. Re-arranging and re-
pairing large sections can easily lead to the shattering of clusters, decreasing

180 Chapter 9. Results & Discussion

the compactness. A possibility to counter this issue, is the addition of more
local search operations to promote the compactness of the disrupted areas.
Eventually, only a few solutions improve on the compactness of the initial
population, whereas all solutions have a much lower compactness value than
the initial map of Brazil. Overall, the average yield potential of the final pop-
ulation is 5.173×108 with an average compactness of 5.700×105. This is an
average increase in yield compared to the initial solution of 17.2%, with an
average decrease in compactness of 15.6%.

FIGURE 9.26: Convergence of PLS-MOLA and NSGA-II-
MOLA for Brazil

Now, lets compare the performance of the NSGA-II-MOLA algorithm to the
performance of the PLS-MOLA algorithm. The solutions in the final archive
of PLS-MOLA had an average compactness value of 6.970×105 and an aver-
age potential yield value of 6.174×108. Both are above the average objective
values of the solutions resulting from NSGA-II-MOLA. In fact, all of the so-
lutions in the final archive of PLS-MOLA dominate the solutions in the final
population of NSGA-II-MOLA. As so, we can state that given the 2.5 hours
of running time, the PLS-MOLA algorithm performs best in terms of solution
quality. Also, if we look at the convergence of both algorithm, it does not look
like the NSGA-II-MOLA algorithm will outperform PLS-MOLA with longer
running times either; the differences in objective values are still relatively
large compared to the improvements found in the latest generations. Since
the NSGA-II-MOLA algorithm did and most like will not improve upon the
local optimum that is being approximated by the PLS-MOLA algorithm, the
algorithm does not seem to be able to effectively perform a ’global’ search.

9.5. RQ IV: NSGA-II Comparison 181

It is difficult to state why the NSGA-II-MOLA fails to explore the solution
space effectively; possibly due to inefficient crossover operators, which are
not suitable for the current problem type and/or size. The only advantage
NSGA-II-MOLA offers, is the fact that the final populations exists out of a
larger and more diverse set of solutions compared to the relatively small PLS-
MOLA archive.

Finally, one of the solutions of the NSGA-II-MOLA algorithm is shown in
Figure 9.27. As can be seen, usage of the disruptive C-XTD crossover opera-
tor results in many small scattered land-use clusters. The solution clearly has
a low compactness, compared to a solution retrieved by PLS-MOLA as was
shown previously in Figure 9.18. The PLS-MOLA solution also shows more
similarities with the current situation, whereas the global NSGA-II-MOLA
algorithm only shows a few. In case it is desired to examine local optima
that are close to the current situation, PLS-MOLA would therefore be recom-
mended over NSGA-II-MOLA as well.

FIGURE 9.27: Brazil with NSGA-II-MOLA

The next problem case on which NSGA-II-MOLA was ran, is Centre West.
The obtained hypervolumes are shown in Table H.13 and statistics regarding
the final population are shown in Table H.14. The Centre West case is smaller
than the Brazil case as it contains 77.9% less dynamic cells. In Figure 9.28, the

182 Chapter 9. Results & Discussion

generations are visualised in the same manner as before in Figure 9.26. As can
be seen, the convergence of the NSGA-II-MOLA populations over time looks
similar to when run on the larger Brazil case. However, the different popu-
lations now form more solid fronts, clearly improving over previous gener-
ations. The populations of Figure 9.26 were more scattered and merged into
each other. The initial population also shows similarities; the randomly gen-
erated half again shows yield values comparable to the mutated half, with
clearly lower compactness values. However, in contrast to the large Brazil
case, follow-up generations were able to not only improve upon the potential
yield values, but also on the compactness. As so, the capability of optimizing
the compactness seems to increase with smaller problem case sizes. Possibly,
this is due to the local operators (mutations) now being able to improve more
upon the compactness than the disruptive C-XTD operator can take down (as
the problem size is now smaller and the number of local search operations per
generation remains the same). As so, it might be interesting to increase the
number of local search operations per generation (mutation size) when opti-
mizing larger problem cases.

As the Centre West case was also not eligible for IPLS-MOLA, the NSGA-II
algorithm will again be compared to PLS-MOLA. The archives of PLS-MOLA
over time are visualized in Figure 9.28 as well. Similar to the Brazil problem
case, the final PLS-MOLA archive dominates the NSGA-II-MOLA popula-
tion. The average potential yield value of the final NSGA-II-MOLA popu-
lation is 1.6173×108 with an average compactness of 0.9964×105. The aver-
age compactness value of the final PLS-MOLA archive was 1.2520×105, with
an average potential yield value of 1.8303×108. Again, the global NSGA-II-
MOLA algorithm is not able to find a global optimum better than the (local)
optimum found by PLS-MOLA. Possibly, the crossover operator are still not
effective enough given the current problem size. As the increase in objec-
tive values decreases over the NSGA-II-MOLA generations, it also does not
look like the solutions will improve upon the PLS-MOLA solutions in the
near future. The PLS-MOLA algorithm is therefore considered to outperform
NSGA-II-MOLA in terms of solution quality on the Centre West case as well.

9.5. RQ IV: NSGA-II Comparison 183

FIGURE 9.28: Convergence of PLS-MOLA and NSGA-II-
MOLA for Centre West

One of the solutions of the final population of NSGA-II-MOLA for Macrore-
goin 4 is visualised in Figure 9.29. Similar to the Brazil case, the solution con-
tains a lot of small clusters, scattered all over the area. Again, this is expected
to be caused by the disruptive C-XTD operator. The solutions provided by
PLS-MOLA, of which one was shown in Figure 9.20, show larger and more
compact clusters. Again, these solutions also show more similarities with the
current situation, as is expected with a local search algorithm.

184 Chapter 9. Results & Discussion

FIGURE 9.29: Centre West with NSGA-II-MOLA

Finally, the NSGA-II-MOLA algorithm was applied to the Sul Goiano case,
which is only 1.9% the size of the Brazil case. The obtained hypervolumes are
shown in Table H.15 and statistics regarding the final population are shown
in Table H.16. The convergence of the populations over time is shown in Fig-
ure 9.30. Again, it shows a convergence similar to the one of Brazil and Centre
West. Now, let us first compare the performance of the NSGA-II-MOLA algo-
rithm to the local PLS-MOLA algorithm. The PLS-MOLA algorithm finds a
local optimum with an average compactness of 7.800×103 and an average po-
tential yield value of 1.447×107 (Table H.6). For the first time, the population
of NSGA-II-MOLA is therefore not dominated by the local PLS-MOLA algo-
rithm. However, note that the NSGA-II-MOLA hereby ran for a much longer
time. This eventually resulted in a final population with an average potential
yield value of 1.4832×108 and an average compactness of 7.055×103. There-
fore, the global NSGA-II-MOLA is able to improve on the potential yield val-
ues of the final PLS-MOLA archive. The global search therefore seems to
have found an optimum with a more promising potential yield than the lo-
cal optimum found by PLS-MOLA. The solutions of PLS-MOLA still have
higher compactness values, more likely caused by the application of more lo-
cal search operations (such as LS-KRBM).

9.5. RQ IV: NSGA-II Comparison 185

However, the local PLS-MOLA algorithm can be transformed into an IPLS-
MOLA algorithm, making it a global search algorithm. As discussed previ-
ously in Chapter 9.4, a perturbation size of 25 resulted in the highest hyper-
volume for the Sul Goiano case (Table H.7). As so, the IPLS-MOLA was run
on the Sul Goiano case with a perturbation size of 25, of which the results
can be found in Table H.10. The archives over time are shown in Figure 9.30.
As can be seen, the IPLS-MOLA algorithm was successfully able to perturb
solutions from the local optimum of PLS-MOLA, and find new optima with
especially higher potential yield values. The final archive had an average
compactness of 7.738×103 and potential yield value of 1.569×107. All solu-
tions of the final archive hereby dominate the solutions found by NSGA-II-
MOLA. Again, it is difficult to estimate whether a longer running time would
result in NSGA-II-MOLA outperforming IPLS-MOLA. If we look at all of the
three cases previously discussed, the NSGA-II-MOLA solutions come closer
to the archive solutions (in terms of objective values) as the problem size de-
creases. When further decreasing the problem size, there might be a turning
point where NSGA-II-MOLA performs equally as good or even better than
IPLS-MOLA. This would be an interesting future research direction, and will
be discussed further in Chapter 11. However, considering cases the size of
Sul Goiano or larger, the NSGA-II-MOLA is currently not able to compete
with IPLS-MOLA.

FIGURE 9.30: Convergence of IPLS-MOLA and NSGA-II-
MOLA for Sul Goiano

In a final attempt to improve the performance of the NSGA-II-MOLA algo-
rithm, a few more experiments were conducted in which the initial map of

186 Chapter 9. Results & Discussion

Sul Goiano was included in the initial population. In previous runs, the ini-
tial population only contained mutated versions of the initial solution. How-
ever, as the algorithm seems to have difficulties effectively optimizing the
compactness, addition of the relatively compact initial map to the initial pop-
ulation might aid in the optimization process. Therefore, NSGA-II-MOLA
was run 5 more times on the Sul Goiano with the same parameter settings as
before, but with the (repaired) Sul Goaino map added directly to the popula-
tion. The resulting hypervolumes and final population statistics can be found
in Table H.17 and H.18. A comparison between the hypervolumes is shown
in Figure 9.31. As can be seen, the algorithm now starts off with a higher hy-
pervolume than before. However, as more populations pass, the difference
in hypervolume for NSGA-II-MOLA with and without the initial map in the
population decreases. One might expect the hypervolume of the initial popu-
lation with the initial map to be higher; however, repairing the initial solution
(with the current settings) still decreases the compactness of the initial solu-
tion to around 6200. For more details on the convergence, view Figure H.1 in
Appendix H. Eventually, the final average hypervolume obtained when run-
ning NSGA-II-MOLA with the initial population is 1.06454×1011, which is
slightly larger than the average hypervolume of 1.06433×1011 obtained when
ran without it. A two-tailed independent sample t-test on the hypervolumes
results in a p-value of 0.920744. Also, comparing the compactness values only
returns a p-value of 0.940949, with 0.87641 for the potential yield values. As
all are above 0.05, we can state that running NSGA-II-MOLA with and with-
out the initial map in the initial population does not significantly influence
the solution quality. It is expected that the same holds for the larger Brazil
and Mesoregion 4 case. As so, this experiment will not be executed with the
other case studies as well.

0 30 60 90 120 150

0.60

0.70

0.80

0.90

1.00

1.10

·1011

Running Time (min)

H
yp

er
vo

lu
m

e

With Initial Map
Without Initial Map

FIGURE 9.31: Hypervolume versus Running Time for NSGA-
II-MOLA with and without the Initial Map of Sol Goiano in

the Initial Population

Finally, one of the solutions of the final population of NSGA-II-MOLA is
shown in Figure 9.32. Compared to solutions of NSGA-II-MOLA for larger
cases, the solution is relatively compact, with a few scattered clustered. Pos-
sibly, this size allowed the local search operators (mutations) to cope better

9.5. RQ IV: NSGA-II Comparison 187

with disruptive operations. As expected, a PLS-MOLA solution is still the
most compact (Figure 9.22), followed up by an IPLS-MOLA solution (Figure
9.25).

FIGURE 9.32: Sul Goiano with NSGA-II-MOLA

188

Chapter 10

Conclusions

Multi-objective land-use allocation (MOLA) is a spatial optimization prob-
lem in which different land-use types need to be allocated to a set of land
units, subjecting to multiple objectives and constraints. MOLA can be found
in many research domains and fields of applications, such as urban plan-
ning and sustainable societal growth and development. MOLA is a com-
binatorial optimization problem that can have a significantly large solution
space. It is considered to be an NP-hard problem. Over the previous decades,
multiple techniques have been applied to solve MOLA problems. Earlier at-
tempts tried to rephrase the MOLA problem into a single-objective optimiza-
tion problem, whereas later more popular techniques apply multi-objective
search heuristics to approximate the complete Pareto front in one execution.
The currently most applied technique, is the multi-objective genetic algo-
rithm NSGA-II.

However, the NSGA-II algorithm has multiple drawbacks. Designing effi-
cient crossover operators for MOLA can be difficult, and the disruptive op-
erators currently being used can require many repair operations to maintain
valid offsprings. Also, resulting solutions can deviate significantly from the
current land-use situation, which is not always desired. Searching in the
neighborhood of the current situation can be enforced with an extra objec-
tive, but doing so decreases the optimization efficiency of the other objectives
(as we will discuss later). As so, an alternative multi-objective algorithm was
proposed for the optimization of MOLA problems; Pareto Local Search (PLS).
In PLS, an archive of solutions is constantly improved, by exploring the so-
lutions’ neighborhoods. With effective operators, this could lead to a more
controlled search with less constraint violations as in NSGA-II. Whereas PLS
can be used for finding local optima near the current situation, Iterated PLS
(IPLS) can be used for a global search in the whole search space. In IPLS,
solutions are perturbed to escape local optima and find land-use allocations
strongly deviating from the status quo as well.

Throughout this research, a modular PLS and IPLS algorithm have been de-
signed for MOLA, referred to as PLS-MOLA and IPLS-MOLA. The algo-
rithms are designed to specifically fit the MOLA problem, exploiting the ef-
ficiency of incremental constraint checking and objective value calculation.
Besides, a new data structure has been designed for storing MOLA solutions.
The structure stores adjustments to the initial map only, preventing the need
of duplicating complete solutions to reduce the memory requirements. Fur-
thermore, three problem dependent local search operators (LS-KRCM, LS-
KRBM and LS-KRPM) and two repair operators (LR-KRCM and LR-KRBM)
were set up. The operators extend operators of previous research by exploit-
ing domain specific knowledge and are compatible with the proposed data
structure. Finally, a modified version of the currently often used NSGA-II

Chapter 10. Conclusions 189

algorithm, referred to as NSGA-II-MOLA, was set up. This modular version
also supports the proposed data structure and is able to implement the search
and repair operators discussed above.

In order to examine the PLS-MOLA, IPLS-MOLA and NSGA-II-MOLA al-
gorithm, a realistic and topical MOLA problem case has been set up. The
problem case was based upon the research of Hilst, Verstegen, Woltjer, et al.,
2018, which examined direct and indirect land-use changes resulting from the
increasing food, feed and biofuel production in Brazil. Understanding land-
use change dynamics resulting from this production, could give insight in the
negative effects and sustainability issues that might occur. By converting the
case to an optimizable MOLA problem, we could discover how these nega-
tive effects can be avoided or minimized in the future. The Brazil problem
case contains 278472 dynamic cells, 12 land-use types, one allocation ranges
constraint, and three objectives; compactness maximization, potential yield
maximization and carbon stock maximization. Eventually, one smaller sub-
case called Centre West of 63827 dynamic cells and one much smaller subcase
called Sul Goiano of 5229 cells was set up. With the last one still being sig-
nificantly larger than most MOLA cases optimized in previous research, the
problem cases can be considered as relatively large MOLA problems.

RQ1 The first research question comprised how the PLS algorithm could
most efficiently be applied to MOLA. In order to answer this question, six
subquestions were formulated that examine the efficiency of different com-
ponents, operators criteria and data structures regarding the PLS algorithm.
The efficiency is hereby measured in the hypervolume obtained after a cer-
tain running time. In case the objectives are being maximized, a higher hy-
pervolume indicates a higher quality Pareto front. In order to answer these
questions, several experiments have been conducted. All experiments exam-
ining the efficiency of a single parameter or operator were obtained by run-
ning PLS-MOLA on Brazil for 5 minutes while measuring the hypervolume.
Finally, the complexity of some components was examined by measuring the
running time to complete 1000 iterations. The results of the six subquestions
together give an indication of how PLS can be set up for MOLA most effi-
ciently.

RQ1.1 The first subquestion concerned the design of a more efficient data
structure for MOLA than naively storing the land-use type of each cell in the
map. Therefore, the so-called ’initial’ and ’derived’ solutions were designed;
the initial solution stores the land-use type of all cells (naively), whereas the
derived solution only stores the adjustments made to an initial solution that
it refers to. As some cells in the search space never change, their cell type is
now never stored twice, thus decreasing the redundancy. The number of up-
dated cells is always below or equal to the total number of cells on the map,
and so this structure will always require less or equal memory space per so-
lution than when stored naively. The PLS algorithm can now store the initial
map as an initial solution, and all other solutions generated throughout the
optimization process as derived solutions based upon this initial solution. No
experiments have been conducted to examine the exact memory space being
used throughout the optimization process.

RQ1.2 The second subquestion questioned the influence of the allocation

190 Chapter 10. Conclusions

range size on the running time of PLS-MOLA. The allocation range size is the
distance between the lower and upper bound of the number of cells to which
a type should be allocated. In order to examine this influence, PLS-MOLA
was run on Brazil given different rang sizes for the same number of itera-
tions. The results show that a smaller range size results in a longer running
time to complete the same number of iterations. A larger range results in less
constraint violations (and so repair operations), which decreases the running
time necessary for an iteration. However, this also decreases the accuracy
with which a user is able to determine to how many cells each land-use type
is allocated. Eventually, it is up to the user to decide what is a suitable trade-
off between accuracy and running time for the given situation.

RQ1.3 The third subquestion questioned how to set up an efficient selection
strategy. The selection strategy is responsible for what solution is chosen next
from the archive, of which the neighborhood will be explored. Therefore,
two selection operators where compared; S-R, which randomly selects a so-
lution from the archive, and S-CD, which selects the solution with the highest
crowding distance. A higher crowding distance indicates a less extensively
explored neighborhood, and is therefore preferred. However, calculating the
crowding distances also asks for more operations to be executed. Eventually,
there was no significant difference in the hypervolumes (efficiency) resulting
from a PLS-MOLA optimization on Brazil using either S-R, S-CD or both.

RQ1.4 The fourth subquestion questioned how to set up an efficient explo-
ration strategy. The exploration strategy is responsible for the exploration
of the neighborhood of a solution. First of all, three local search operators
have been designed and compared; LS-KRCM, which alters a random cell,
LS-KRBM, which alters a random boundary cell, and LS-KRPM, which alters
a random patch of 7 cells. Using only LS-KRBM or a combination of all three
operators resulted in the highest hypervolumes, with no significant differ-
ence. However, as the combination of all three operators is expected to de-
liver more diverse solutions, one might prefer this set over solely LS-KRBM.
Next, the Exploration KT value was examined, which states the number of
types competing in the tournament that decides what type the selected cell
or patch should become. The one resulting in the highest objective value of
one (random) objective is applied. Eventually, the Exploration KT parame-
ter did not significantly influence the resulting hypervolumes. Finally, the
Exploration N parameter was examined, which states the number of solu-
tions explored per neighborhood exploration. The results show an exponen-
tial reduction in hypervolume as the Exploration N decreases. However, as
we are only examining the first 5 minutes of running time, improved solu-
tions are still found easily and so it is indeed efficient to continue to the next
iteration fast. However, with longer running times, a different result is ex-
pected as low Exploration N values might not be sufficient for the algorithm
to find improvements in time. More research using longer running times
would therefore be advised to expose this behavior as well. Concluding, low
Exploration N values are efficient in the first phase of the optimization algo-
rithm, but more research is required to examine its late time efficiency as well.

RQ1.5 The fifth subquestion questioned how to set up an efficient reparation
strategy. The reparation strategy is responsible for repairing solutions that vi-
olate the problem constraints. First of all, two repair operators were designed

Chapter 10. Conclusions 191

and compared; LR-KRCM, which repairs a solution by altering cells, and LR-
KRBM, which repairs a solution by altering boundary cells. No significant
difference was detected in the hypervolumes obtained from running PLS-
MOLA on Brazil when using either LR-KRCM, LR-KRBM or both. Again,
as the combination of both operators is expected to deliver more diverse so-
lutions, one might prefer using both instead of one. Next, the influence of
the Reparation KC parameter was examined. The Reparation KC parame-
ter states the number of (boundary) cells competing in the tournament of
one repair operation, in which the cell resulting in the highest value of one
(random) objective wins. The results show that the function describing the
hypervolume of the repaired initial solution versus the Reparation KC value
has a logarithmic form, in which the increase in hypervolume is smaller with
higher Reparation KC values. However, the reparation time of the initial so-
lution also rises linearly with the Reparation KC value. As so, a trade-off
will have to be made by the user between reparation quality and reparation
time. Thereafter, the Reparation BT parameter was examined. If set to true,
the search operators always choose the best type (considering one random
objective) for a cell or patch (in case multiple types can be applied). Else, this
type will be chosen at random. In case the Reparation BT parameter was set
to true, the hypervolume resulting from running PLS-MOLA on Brazil was
significantly higher than when set to false. This shows that a competition
between types has a positive effect on the eventual quality, although more
operations are required. Finally, the Allow Repair parameter was examined,
which states whether PLS-MOLA should immediately discard invalid solu-
tions that are found (and keep on searching for new ones until a valid one
is found) or allow the reparation of invalid solutions. The experiments show
that allowing reparations, meaning Allow Repair is set to true, results in sig-
nificantly higher hypervolumes.

RQ1.6 The sixth and final subquestion questioned what acceptance criteria
result in the most efficient optimization process. First of all, the NDS criterion
was examined, which states that a new solution may only be added to the
archive if it dominates the current solution being explored. Results show, that
when this criterion is used, the hypervolume is significantly higher. How-
ever, it also shows the number of solutions in the archive is significantly less.
This can especially bring difficulties at later stages of the optimization pro-
cess, when it becomes more difficult to find improvements. As so, the choice
of whether the NDS criterion should be used is a trade-off between a faster
increasing hypervolume and a larger and more diverse archive (increasing
the chance of finding improvements in later stages). The second and final
criterion being examined, is the maximum archive size. This criterion states
the maximum number of solutions the archive may contain, and makes the
archive drop the solution(s) with the lowest crowding distance in case it is vi-
olated. No significant differences were found in the hypervolumes obtained
when using different maximum archive sizes.

RQ2 The second research question comprises the relation between the num-
ber of objectives and the efficiency of PLS for MOLA. As discussed before,
three objectives were set up for the Brazil case. For examining RQ1, the prob-
lem was optimized with only compactness and potential yield maximization
as the objectives. For this research question, the effects of including carbon
stock maximization among these objectives was examined as well. First of

192 Chapter 10. Conclusions

all, the average number of solutions in the archive was significantly larger.
After 1000 iterations, the PLS-MOLA archive contained (on average) 15.0 so-
lutions when maximizing compactness and potential yield and 1135.4 solu-
tions when carbon stock maximization was added as well. This significant
increase is caused due to the fact that a solution is less often dominated with
three (real valued) objectives. In later stages the archive can expand even
faster, possibly resulting in high memory demands. A maximum archive size
could be used to prevent this from happening. Next, the hypervolumes of
only compactness and potential yield were compared (neglecting the carbon
stock values). When optimizing only these two objective, the hypervolume
obtained from running PLS-MOLA on Brazil was significantly larger than
with the addition of a third objective. This was expected, as on average more
focus is paid to each objective individually by the local search operators. As
so, the user should always ask whether the addition of an extra objective
is worth this decrease in optimization quality. When optimizing more than
three objectives, this decrease is expected to be even higher. As will be dis-
cussed in Chapter 11, it could therefore be interesting to look at alternative
strategies to include more objectives without increasing the total number of
objectives being optimized simultaneously. Finally, an interesting observa-
tion showed that the running time to complete 1000 iterations is significantly
shorter when carbon stock maximization is added to the objectives. This is
caused by the fact, that when optimizing the potential yield, more repair op-
erations are required (on average). As local search operators optimize the
potential yield more often when optimizing only two objectives, the even-
tual number of reparations required is higher and so is the running time. As
so, when estimating the influence of an objective on the running time, one
should not only look at the costs of calculating and updating the objective
itself.

RQ3 The third research question asks how the local PLS algorithm can ef-
ficiently be processed into a global IPLS algorithm for MOLA. As the IPLS
algorithm iteratively calls the PLS algorithm, the answer to RQ 1 is essen-
tial for an efficient IPLS implementation as well. In order to further optimize
the global IPLS algorithm, an effective perturbation size needs to be found.
If the perturbation size is too small, the IPLS algorithm will not be able to
escape a local optimum. If the perturbation size is too large, the perturbed
solution loses a lot up to all of its valuable information. An efficient perturba-
tion size will differ per problem case, and therefore this will be examined for
each case separately. However, for the Brazil and Centre West case, the PLS-
MOLA algorithm did not find (approximate) a local optimum in 2.5 hours.
As the search space is extremely large, longer running times or better hard-
ware would be required, which was out of the scope of this research. As so,
the IPLS-MOLA algorithm has only been applied to and optimized for the
smaller Sul Goiano case. A perturbation size of 25%, 50% and 75% were ex-
amined, which state the percentage of dynamic cells that are given a random
land-use type. The results show, that a perturbation size of 25% resulted in a
significantly higher final hypervolumes (than both 50% and 75%) for the Sul
Goiano case. As the final hypervolume seems to increase with smaller per-
turbation sizes, it might be interesting to examine perturbation sizes of below
25% for the Sul Goiano case in the future as well.

RQ4 The final research question comprises how the performance of the (I)PLS

Chapter 10. Conclusions 193

algorithm compares to the performance of NSGA-II algorithm when applied
to MOLA. In order to do so, a modular NSGA-II algorithm was designed,
called NSGA-II-MOLA. This modality allows the algorithm to combine com-
ponents and operators found most effective in either this or previous re-
search. As so, the crossover operators and initialization procedure are based
upon previous research, whereas the repair and local search operators are
based upon this research. This includes the possibility to reuse the param-
eter settings found most effective for RQ 1. Finally, the NSGA-II-MOLA al-
gorithm also exploits the same data structure for MOLA as used in (I)PLS-
MOLA. In this manner, the performance of the NSGA-II algorithm for MOLA
was optimized for as far as possible within the scope of this research.

At first, the performance of NSGA-II-MOLA was compared to the perfor-
mance of PLS-MOLA for the Brazil case (278472 dynamic cells) and Centre
West case (63827 dynamic cells) case. Each algorithm was run for 2.5 hours on
each case for five times, of which the interim and final populations/archives
were stored. The solutions resulting from NSGA-II-MOLA improved the po-
tential yield value of Brazil on average with 27.7%, while decreasing the com-
pactness with 15.6%. Solutions of PLS-MOLA improved the potential yield
value with 39.9% and the compactness on average with 3.2%. The second case
showed similar results, with NSGA-II-MOLA improving the potential yield
with 34% while decreasing the compactness with 14.2% and PLS-MOLA im-
proving the potential yield with 51.9% and compactness with 7.8% (all on av-
erage). In both cases, all solutions in the final archive of PLS-MOLA dominate
the final population of NSGA-II-MOLA. The results imply, that the crossover
operators of NSGA-II-MOLA do not allow for an efficient exploration of the
relatively large search space. The disruptive C-XTD operator can cause large
changes, which could again require a large number of repair operations to
fix the resulting offsprings. Especially the compactness of the offsprings does
not seem to improve effectively. The current amount of local search is also
not able to compensate for this loss. Designing crossover operator that better
preserve the fit genes without causing many violations, might help NSGA-
II-MOLA to overcome these difficulties. Also, the amount of local search
could be increased, although this should not be essential for realizing an ef-
fective optimization process. The local PLS-MOLA algorithm on the other
hand, continuously seems to succeed in improving both the potential yield
and compactness of the solutions in the archive. The local search operators
effectively find new higher quality neighboring solutions, causing a steady
process that incrementally improves the average solution quality. No local
optima were found (approximated) in the 2.5 hours running time, due to the
large search spaces. Overall, the PLS-MOLA algorithm clearly outperforms
the NSGA-II-MOLA algorithm in terms of solution quality, proving to be the
better option for MOLA problems the size of Centre West or Brazil.

Finally, the performance of NSGA-II-MOLA was compared to the perfor-
mance of IPLS-MOLA for the Sul Goiano case. This case only contained 5229
dynamic cells, which was small enough for PLS-MOLA to reach (approx-
imate) a local optima within 2.5 hours. Again, five runs of 2.5 hour with
IPLS-MOLA (with the perturbation size set to 25%) and NSGA-II-MOLA
were performed. The resulting population of the NSGA-II-MOLA showed

194 Chapter 10. Conclusions

an average increase in the potential yield of Sul Goiano of 86.4% and an in-
crease in compactness of 4.5%. NSGA-II-MOLA is now finally able to im-
prove upon the compactness of the initial solution. Also, the global NSGA-II-
MOLA algorithm improves upon the potential yield of local optimum found
by PLS-MOLA. However, when the global IPLS-MOLA is run for the same
amount of time, the NSGA-II-MOLA algorithm is still outperformed. The re-
sulting archive of IPLS-MOLA showed an average increase in potential yield
of 97.2% and an increase in compactness of 14.6%. Again, all solutions of
NSGA-II-MOLA were being dominated by the final archive. In an attempt
to improve upon the optimization efficiency of NSGA-II-MOLA, five more
runs were performed in which the (repaired) initial map was added directly
to the initial population. However, this resulted in no significant improve-
ments in the final hypervolume obtained after 2.5 hours. Therefore, even for
smaller cases as Sul Goaino, PLS-MOLA is proven to be the best performing
algorithm in terms of solution quality. Finally, the user might desire to only
search for solutions that are similar to the current situation, to for instance
examine how the current situation can be expended best. Optionally, this can
be enforced with an extra objective and constraint, but as shown for RQ 3
adding more objectives is generally undesirable. However, when we look at
the solutions resulting from PLS-MOLA, IPLS-MOLA and NSGA-II-MOLA,
the solutions of PLS-MOLA algorithm already automatically show a lot of
resemblance with the current situation (as is expected with a local search al-
gorithm). Therefore, PLS-MOLA can be an efficient option (obviating the
need of more objectives and constraints) when optimizing solutions similar
to the current situation only is desired.

Research Goal The overall goal of this exploratory research project was to
examine the potential of PLS in the MOLA domain. One of the biggest chal-
lenges that current MOLA techniques are facing, is to obtain a high scalabil-
ity. This also applies to the currently most used MOLA technique, namely
NSGA-II, of which the current crossover operators have difficulties in ex-
changing genes efficiently without causing many constraint violations. The
PLS algorithm was presumed not to have this issue, as taking small local
steps in the search space can more easily be done without any constraint vi-
olations, decreasing the need of repair operations and so increasing the effi-
ciency and scalability. Therefore, the overarching research question "Is PLS an
efficient algorithm for MOLA?" was set up. In order to answer this research
question, PLS needed to be adapted to and optimized for MOLA and the effi-
ciency needed to be compared to current state-of-the-art algorithm(s). In case
the efficiency is equal to or higher than the efficiency of those algorithms, the
PLS algorithm will be considered as ’efficient’ for MOLA. Therefore, RQ 1
to 4 were set up and PLS-MOLA and IPLS-MOLA were implemented, opti-
mized and compared to NSGA-II. The algorithms were applied to three topi-
cal MOLA problems of a relatively large size and run for 2.5 hours to optimize
two different objectives. The results show that the solutions of (I)PLS-MOLA
dominate the solutions of NSGA-II in all cases, meaning that the obtained
hypervolumes are larger at all time. Given the current running times, (I)PLS
therefore proves to be more efficient than NSGA-II for all three MOLA cases.
The suspicion that PLS would be able to optimize MOLA problems more
efficiently than NSGA-II, therefore seems to be confirmed. Taking smaller
and more controllable steps in the enormous search space of these MOLA

Chapter 10. Conclusions 195

problems can indeed lead to a more efficient approach than applying dis-
ruptive crossover operators that more easily violate the problem constraints.
Especially for larger cases, (I)PLS brings significant improvements in solu-
tion quality, and so proves to be an interesting option for future MOLA op-
timization systems. To come back to the overarching research question; PLS
shows to be an efficient algorithm for MOLA compared to current state-of-
the-art MOLA techniques. Although its behavior has not yet been examined
in smaller cases, the results in cases the size of Sul Goiano and larger are
promising. However, this was only an exploratory research project and more
research will be required to further examine and exploit the possibilities of
this technique. This will be discussed in more detail in Chapter 11.

Limitations Although the results indicate that PLS is an efficient optimiza-
tion technique for MOLA, there are still several limitations and questions
that remain unanswered. Part of these form the basis of the recommended
research directions that will be proposed in Chapter 11. First of all, regarding
the PLS algorithm, the influence of the termination criteria of the neighbor-
hood exploration (Exploration N parameter) on the approximation quality is
unknown. A low Exploration N value speeds up the convergence but could
result in a lower final approximation quality due to the PLS algorithm termi-
nating more easily. One way to overcome this issue, is by introducing a differ-
ent criterion as will be suggested in Chapter 11. Secondly, a new data struc-
ture was designed for the PLS algorithm to reduce the amount of memory
space required to store a MOLA solution. This decrease in required memory
space was substantiated with reasoning, but the actual reduction in memory
space (over time) is yet unknown. Next, when looking at the NSGA-II al-
gorithm that has been applied to MOLA, not all operators and parameters
have been optimized. The algorithm implements multiple components and
operators that have proven to be efficient in previous and current research,
but still there were several parameters (for instance the population size and
composition of the initial population) that were out of the scope of this re-
search to optimize. Currently, it is unknown to what extent an optimization
of NSGA-II would improve upon its performance. Finally, the experiments
were applied to one MOLA case (and two subcases) only. As we would like
to gain insight in how the efficiency of PLS relates to NSGA-II and other tech-
niques in general, it will be necessary to examine the algorithms given other
cases and compared to other algorithms as well. This includes case studies of
a smaller size than the Sul Goiano case. Also, the running time and hardware
used, could be increased to gain insight in later optimization stages as well.
In Chapter 11, several of these limitations will be translated into potential
future research directions.

196

Chapter 11

Recommendations

In this research, the first steps have been made in the exploration of the pos-
sibilities of PLS and IPLS for MOLA. Previously to this research, the PLS
algorithm had not yet been applied to this optimization problem. As so, the
first version of a PLS algorithm for MOLA has been designed, optimized and
compared to a current state-of-the-art MOLA technique. The results show
that PLS is able to bring multiple advantages and proves to be an interesting
future research direction. Especially for large sized MOLA problems and op-
timizations in which it is desired that the optimized solution does not deviate
too much from the current situation, PLS can bring significant value. In order
to fully exploit its potential, more future research will be required. For exam-
ple, to get more insight in the behavior of PLS when applied to smaller study
cases or executed for longer running times. In this chapter, seven future re-
search directions will be outlined that are considered to be interesting based
on the results of this research. A direction is considered as interesting, in case
it is expected to give new valuable insights or improvements for either PLS,
IPLS or NSGA-II for MOLA.

Exploration Criteria. The first research direction concerns a possible en-
hancement of PLS and IPLS. In Chapter 9.2.4, the exploration strategy of PLS
was examined for the answering of RQ 1C. One aspect of the exploration
strategy is the termination criterion used for the neighborhood exploration.
Currently, this termination criterion was provided with the Exploration N
parameter, which comprised the number of neighborhood solutions to be ex-
plored after which the neighborhood exploration ends. The results (Table
G.7 and Figure 9.5) of Run 35 to 41, showed an increase in hypervolume as
the Exploration N decreases. For the first 5 minutes, this is indeed the case,
as ’improved’ solutions are still easy to find in a neighborhood. A low Ex-
ploration N causes the algorithm to quickly move on to the next iteration,
eventually resulting in a higher hypervolume. However, later on in the opti-
mization process, improvements are harder to find. As so, a low Exploration
N could result in an earlier termination of the algorithm when no better so-
lutions are found in time. As so, the Exploration N is a trade-off between
optimization speed at the start of the process and the ability to find improve-
ments in later stages. This is undesirable and can be avoided, by simply using
the number of solutions added to the archive as the termination criterion. For
instance, when for set to 10, the neighborhood exploration of a solution will
terminate when 10 new neighbor solutions have been added to the archive.
This will result in both a fast convergence at the start, and the ability to con-
tinue on improving in later stages. Therefore, implementing this termination
criterion and examining its influence on the convergence speed and quality
could be an interesting future research direction. Note, that the Exploration
N criterion is still necessary in order to terminate the algorithm when a local
optimum is found or closely approximated.

Chapter 11. Recommendations 197

Adaptive Procedures. The current PLS algorithm implements a selection
procedure, search procedure and repair procedure (Chapter 7). These pro-
cedures are responsible for selecting what corresponding operators will be
chosen and applied next. For example, when the search procedure is called, it
selects and applies one operator from the set of search operators that was pro-
vided to the algorithm. The selection and repair procedure do the same for
selection and reparation operators. Currently, the procedures chose the next
operator to be used at random. As so, each operator has an even chance of
being chosen. However, in some cases it might be more efficient to select one
operator more often than another operator. First of all, this can vary through-
out the optimization process; one operator can be efficient in the starting
phase, whereas another operator is more efficient in later stages. Secondly,
this can vary per problem; some operators might be effective on the map of
Brazil, whereas others are more efficient when used on Sul Goiano. In order
to overcome this ’problem’, adaptive procedures could be implemented. The
procedures could take note of how efficient each operator (during each part
of the process) is, and continuously adapt the chance of each operator to be
selected based on this efficiency. Doing so, could allow the user to pass on
a diverse set of operators to the algorithm, which decides by itself which of
these will be used most. As so, examining the efficiency of operators manu-
ally, as was done in Chapter 9.2.4, would become redundant. Implementing
these adaptive procedures and examining their effectiveness, could therefore
be an interesting future research direction.

Memory Optimization. In order to efficiently store MOLA solutions, a new
data structure was designed. The data structure was described in Chapter
7.2.2 and worked as follows; a solution was either an ’initial’ solution, con-
taining the land-use type of each cell on the map, or a ’derived’ solution,
which refers to an initial solution and only stores the adjustments made. As
so, it is not necessary to duplicate solutions each time a local search operator
is applied. In this manner, the amount of storage necessary to save all solu-
tions in the archive (and the time to create new solutions) is reduced. The
current implementation of PLS-MOLA keeps on creating new derived solu-
tions throughout the optimization process, all based on the initial solution of
the initial map. However, the total number of adjustments made to the initial
solution increases over time. In later stages, derived solutions can therefore
still become relatively large. At some point in time, it might therefore be
beneficial to store all similarities between the derived solutions in the initial
solution. Meaning, that when all derived solutions in the archive have the
same land-use type allocation to a certain cell, this type can be stored in the
initial solution and removed from all derived solutions. As it is likely that the
derived solutions will show some similarities in later stages, this could de-
crease the redundancy among those solutions and bring down the required
memory space. Especially for large problems and PLS-MOLA runs with long
running times, this might make a difference. Implementing and researching
when and how this storage procedure could best be executed, could therefore
be an interesting future research direction.

Problem Scalability. In this research, three case studies for MOLA were set
up and examined. The largest case study was Brazil with 278472 dynamic
cells. The Centre West case was the second largest, covering 22.9% of Brazil,

198 Chapter 11. Recommendations

and Sul Goiano was the smallest, covering only 1.9% of Brazil. Most case
studies used in previous research, including all ten cases discussed in Chap-
ter 3.6.1, are still of a smaller size than Sul Goiano. With the algorithms ran
on Brazil and its sub cases, a general impression was given of the scalability
of PLS, IPLS and NSGA-II for MOLA. In those relatively large cases, the PLS
and IPLS algorithm seem to be the most efficient. This could be expected,
as the PLS-MOLA and IPLS-MOLA algorithms have been built with scalabil-
ity in mind. However, the current research does not provide any insight in
the behavior of these algorithms when run on cases smaller than Sul Goiano.
It is expected that the IPLS-MOLA algorithm will still outperform NSGA-II,
as the advantages of the algorithm compared to NSGA-II remain. However,
their relative differences in performance might decrease as, for instance, the
decrease in compactness caused by the crossover operators can more easily
be covered up with the use of local search. Furthermore, the application of
IPLS-MOLA to smaller and more often used problem cases, would allow for
a comparison with the results obtained in other researches. As so, examin-
ing PLS-MOLA and IPLS-MOLA given smaller cases would be an interesting
future research direction to get a better understanding of these algorithms’
behavior in smaller search spaces as well.

Increasing Resources. The current research project only had a limited amount
of resources available, both in terms of time and hardware. First of all, the ex-
periments were run up to a maximum of 2.5 hours, due to the relatively short
time available to execute all experiments. Unfortunately, the PLS algorithm
did not reach an optimum within 2.5 hours on the Brazil and Centre West
case, making these cases not eligible for IPLS in this research. Increasing
the running times up to a time that would allow PLS to reach an optimum at
least once (and preferably more often), would make it possible to run IPLS on
these cases as well. Although the PLS algorithm did already outperform the
NSGA-II algorithm in both cases, meaning IPLS will do so as well, it would
still be interesting to gain insight in the convergence of IPLS for these larger
cases. Besides increasing the resources in terms of time, it is also possible
to improve upon the hardware being used. Currently, the experiments were
performed on a Microsoft Surface Pro 7 of which the technical specifications
are listed in Chapter 8.4. Improving upon the specifications of the hardware,
could allow the algorithms to perform the same tasks in a shorter timespan.
Also interesting, is that the algorithms execute the exploration of a neighbor-
hood or creation of offsprings in parallel, as was discussed in Chapter 7.5).
In some cases, these tasks can be executed on a graphics card, which can sig-
nificantly enhance the performance. By increasing the running time and/or
improving the hardware, the algorithms will be able to converge beyond the
stages reached in this research. As it is likely that more resources will also be
available when these techniques are eventually applied to MOLA problems,
for example by land-use planners, examining these aspects in future research
can provide more insight in what can actually be expected and obtained.

Combining Objectives. The second research question examined the scalabil-
ity of PLS-MOLA regarding the number of objectives being optimized. The
majority of the experiments that were executed throughout this research, in-
volved two objectives; compactness and potential yield maximization. These
objectives were regarded as the most practical objectives, and so formed the

Chapter 11. Recommendations 199

basis of the experimental setup. In Chapter 9.3, the effects of adding the car-
bon stock maximization objective to this set of objectives was examined. First
of all, when optimizing three objectives instead of two, the archive size in-
creased significantly. Especially when optimizing large MOLA cases, such
as Brazil, this might lead to a large increase in the required amount of mem-
ory space. Secondly, the optimization quality of the individual objectives
decreased, as the focus of the local search operators had to be divided. It is
therefore advised to keep the number of objectives being optimized as low as
possible. In case it is still desired to optimize three or more objectives at once,
the user could perform several tricks to do so without further increasing the
number of objectives being optimized simultaneously. The first possibility
is to combine multiple objectives into one. For example, by adding up the
objective values in case they fit together. The number of objectives will not
be increased, while the algorithm will still take both objectives (although not
separately) in account. Another option, is to execute and combine multiple
runs. For example, Brazil could first be optimized on compactness and yield,
of which a resulting solution is than used as the input of a run that optimizes
compactness and carbon. However, it is currently unclear how the optimiza-
tion quality would be influenced by either one of these tricks. As it is not
uncommon that there are more than two objectives to be optimized in real
cases, this would make an interesting future research direction. Finally, ob-
jectives can also be combined while already being optimized to enhance the
overall performance. For example, by giving different priorities (multiplica-
tion factors) to the potential yield values of different land-use types, more
compactness can be created. The potential yield is often higher in certain
areas, and so it will now become more optimal to fill these areas with high
priority land-use types only. Especially for algorithms that have difficulties
with optimizing compactness, such as NSGA-II, this could be a valuable fu-
ture research direction.

Enhancing NSGA-II-MOLA. Finally, the NSGA-II-MOLA algorithm was set
up, combining different strategies and operators that have proven to be ef-
ficient in this and previous research. However, it was out of the scope of
this research to optimize NSGA-II-MOLA in the same manner as was done
with PLS-MOLA. This includes, examining what parameters would result in
the most optimal results (hypervolumes) concerning either one of the cases.
As so, the influence of the population size or composition of the initial pop-
ulation on the performance are currently unknown. Furthermore, the cur-
rent crossover operators are not designed to be applied to large cases such as
Brazil. Previous researches, in which these operators were designed, only ap-
plied them to cases smaller than Sul Goiano. Possibly, more efficient crossover
operators could be created, that are also able to efficiently exchange fit genes
when applied to large case studies such as Brazil. Finally, the amount of lo-
cal search applied during the NSGA-II optimization process can have a huge
influence on the convergence of the algorithm. Currently, a small amount of
local search was applied to each new offsprings and during the reparation
phases. By increasing the amount of local search, the algorithm might be
able to perform better in terms of compactness, which was currently one of
the main challenges of the algorithm when applied to large cases. Therefore,
in the search to the most efficient algorithm for MOLA, a further improved
NSGA-II-MOLA algorithm could still be an interesting option.

200 Chapter 11. Recommendations

In summary, seven interesting future research directions have been recom-
mended. The first four recommend directions involving possible improve-
ments for the PLS-MOLA. The fifth and sixth recommend researching the
application of the algorithm to other sized cases or with more resources avail-
able. The final direction involves several research possibilities for further im-
proving the NSGA-II-MOLA algorithm. The research was performed in co-
operation with the Energy and Resources group of Utrecht University, which
will continue with this research hereafter.

201

Bibliography

Abraham, A. and L. Jain (2005). “Evolutionary multiobjective optimization”.
Evolutionary Multiobjective Optimization. Springer, pp. 1–6.

Aerts, Jeroen, Marjan Van Herwijnen, Ron Janssen, and Theodor Stewart (2005).
“Evaluating spatial design techniques for solving land-use allocation prob-
lems”. Journal of Environmental Planning and Management 48.1, pp. 121–142.

Aerts, Jeroen CJH, Erwin Eisinger, Gerard BM Heuvelink, and Theodor J
Stewart (2003). “Using linear integer programming for multi-site land-use
allocation”. Geographical analysis 35.2, pp. 148–169.

Aerts, Jeroen CJH, Marjan van Herwijnen, and Theodor J Stewart (2003). “Us-
ing simulated annealing and spatial goal programming for solving a multi
site land use allocation problem”. International Conference on Evolutionary
Multi-Criterion Optimization. Springer, pp. 448–463.

Aerts, Jeroen CJH and Gerard BM Heuvelink (2002). “Using simulated an-
nealing for resource allocation”. International Journal of Geographical Infor-
mation Science 16.6, pp. 571–587.

Amine, Khalil (2019). “Multiobjective Simulated Annealing: Principles and
Algorithm Variants”. Advances in Operations Research 2019.

Angel, Eric, Evripidis Bampis, and Laurent Gourvés (2004). “Approximating
the Pareto curve with local search for the bicriteria TSP (1, 2) problem”.
Theoretical Computer Science 310.1-3, pp. 135–146.

Cabrera-Guerrero, Guillermo, Andrew J Mason, Andrea Raith, and Matthias
Ehrgott (2018). “Pareto local search algorithms for the multi-objective beam
angle optimisation problem”. Journal of Heuristics 24.2, pp. 205–238.

Cao, Kai, Michael Batty, Bo Huang, Yan Liu, Le Yu, and Jiongfeng Chen
(2011). “Spatial multi-objective land use optimization: extensions to the
non-dominated sorting genetic algorithm-II”. International Journal of Geo-
graphical Information Science 25.12, pp. 1949–1969.

Cao, Kai, Bo Huang, Shaowen Wang, and Hui Lin (2012). “Sustainable land
use optimization using Boundary-based Fast Genetic Algorithm”. Com-
puters, Environment and Urban Systems 36.3, pp. 257–269.

Cao, Kai and Xinyue Ye (2013). “Coarse-grained parallel genetic algorithm
applied to a vector based land use allocation optimization problem: the
case study of Tongzhou Newtown, Beijing, China”. Stochastic Environmen-
tal Research and Risk Assessment 27.5, pp. 1133–1142.

Czyzżak, Piotr and Adrezej Jaszkiewicz (1998). “Pareto simulated anneal-
ing—a metaheuristic technique for multiple-objective combinatorial op-
timization”. Journal of Multi-Criteria Decision Analysis 7.1, pp. 34–47.

202 Bibliography

Datta, D., K. Deb, C. Fonseca, F. Lobo, P. Condado, and J. Seixas (2007). “Multi-
objective evolutionary algorithm for land-use management problem”. In-
ternational Journal of Computational Intelligence Research 3.4, pp. 371–384.

Deb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan (2002).
“A fast and elitist multiobjective genetic algorithm: NSGA-II”. IEEE trans-
actions on evolutionary computation 6.2, pp. 182–197.

Drugan, Madalina M and Dirk Thierens (2010). “Path-guided mutation for
stochastic Pareto local search algorithms”. International Conference on Par-
allel Problem Solving from Nature. Springer, pp. 485–495.

Drugan, Mădălina M and Dirk Thierens (2012). “Stochastic Pareto local search:
Pareto neighbourhood exploration and perturbation strategies”. Journal of
Heuristics 18.5, pp. 727–766.

Dubois-Lacoste, Jérémie, Manuel López-Ibáñez, and Thomas Stützle (2015).
“Anytime pareto local search”. European journal of operational research 243.2,
pp. 369–385.

Duh, Jiunn-Der and Daniel G Brown (2007). “Knowledge-informed Pareto
simulated annealing for multi-objective spatial allocation”. Computers, En-
vironment and Urban Systems 31.3, pp. 253–281.

Flavell, RB (1976). “A new goal programming formulation”. Omega 4.6, pp. 731–
732.

Geiger, Martin Josef (2008). “Foundations of the Pareto iterated local search
metaheuristic”. arXiv preprint arXiv:0809.0406.

Geiger, Martin Josef (2011). “Decision support for multi-objective flow shop
scheduling by the Pareto iterated local search methodology”. Computers
& industrial engineering 61.3, pp. 805–812.

Heydari, Majeed and Amir Yousefli (2017). “A new optimization model for
market basket analysis with allocation considerations: A genetic algo-
rithm solution approach”. Management & Marketing 12.1, pp. 1–11.

Hilst, Floor van der, Judith A Verstegen, Geert Woltjer, Edward MW Smeets,
and Andre PC Faaij (2018). “Mapping land use changes resulting from
biofuel production and the effect of mitigation measures”. GCB Bioenergy
10.11, pp. 804–824.

Huang, Kangning, Xiaoping Liu, Xia Li, Jiayong Liang, and Shenjing He (2013).
“An improved artificial immune system for seeking the Pareto front of
land-use allocation problem in large areas”. International Journal of Geo-
graphical Information Science 27.5, pp. 922–946.

Li, X. and L. Parrott (2016). “An improved Genetic Algorithm for spatial opti-
mization of multi-objective and multi-site land use allocation”. Computers,
Environment and urban systems 59, pp. 184–194.

Liu, Xiaoping, Xia Li, Xun Shi, Kangning Huang, and Yilun Liu (2012). “A
multi-type ant colony optimization (MACO) method for optimal land use
allocation in large areas”. International Journal of Geographical Information
Science 26.7, pp. 1325–1343.

Bibliography 203

Liu, Yaolin, Jinjin Peng, Limin Jiao, and Yanfang Liu (2016). “PSOLA: A heuris-
tic land-use allocation model using patch-level operations and knowledge-
informed rules”. PloS one 11.6, e0157728.

Martinelli, Luiz A, Rosamond Naylor, Peter M Vitousek, and Paulo Moutinho
(2010). “Agriculture in Brazil: impacts, costs, and opportunities for a sus-
tainable future”. Current Opinion in Environmental Sustainability 2.5-6, pp. 431–
438.

Masoomi, Zohreh, Mohammad Sadi Mesgari, and Majid Hamrah (2013). “Al-
location of urban land uses by Multi-Objective Particle Swarm Optimiza-
tion algorithm”. International Journal of Geographical Information Science 27.3,
pp. 542–566.

Masoumi, Zohreh, Jamshid Maleki, Mohammad Sadi Mesgari, and Ali Man-
sourian (2017). “Using an evolutionary algorithm in multiobjective geo-
graphic analysis for land use allocation and decision supporting”. Geo-
graphical Analysis 49.1, pp. 58–83.

Matthews, Keith B, Susan Craw, Stewart Elder, Alan R Sibbald, and Iain
MacKenzie (2000). “Applying genetic algorithms to multi-objective land
use planning”. Proceedings of the 2nd annual conference on genetic and evolu-
tionary computation. Morgan Kaufmann Publishers Inc., pp. 613–620.

M.C. Roberts, A.S. Dizier and J. Vaughan (2012). “Multiobjective optimiza-
tion: portfolio optimization based on goal programming methods”.

Microsoft (2019a). “Microsoft Surface Pro 7”. URL: https://www.microsoft.
com/en-us/p/surface-pro-7/8n17j0m5zzqs.

Microsoft (2019b). “.NET Framework 4.8”. URL: https://dotnet.microsoft.
com/download/dotnet-framework/net48.

Mohammadi, Mahmoud, Mahin Nastaran, and Alireza Sahebgharani (2016).
“Development, application, and comparison of hybrid meta-heuristics for
urban land-use allocation optimization: Tabu search, genetic, GRASP, and
simulated annealing algorithms”. Computers, Environment and Urban Sys-
tems 60, pp. 23–36.

Nebro, A. J. (2015). “jMetal.NET”. URL: http://jmetalnet.sourceforge.
net/.

Paquete, Luis, Marco Chiarandini, and Thomas Stützle (2004). “Pareto lo-
cal optimum sets in the biobjective traveling salesman problem: An ex-
perimental study”. Metaheuristics for multiobjective optimisation. Springer,
pp. 177–199.

Porta, Juan, Jorge Parapar, Ramon Doallo, Francisco F Rivera, Inés Santé, and
Rafael Crecente (2013). “High performance genetic algorithm for land use
planning”. Computers, Environment and Urban Systems 37, pp. 45–58.

Santé-Riveira, Inés, Marcos Boullón-Magán, Rafael Crecente-Maseda, and David
Miranda-Barrós (2008). “Algorithm based on simulated annealing for land-
use allocation”. Computers & Geosciences 34.3, pp. 259–268.

https://www.microsoft.com/en-us/p/surface-pro-7/8n17j0m5zzqs
https://www.microsoft.com/en-us/p/surface-pro-7/8n17j0m5zzqs
https://dotnet.microsoft.com/download/dotnet-framework/net48
https://dotnet.microsoft.com/download/dotnet-framework/net48
http://jmetalnet.sourceforge.net/
http://jmetalnet.sourceforge.net/

204 Bibliography

Schwaab, Jonas, Kalyanmoy Deb, Erik Goodman, Sven Lautenbach, Maarten
J van Strien, and Adrienne Grêt-Regamey (2018). “Improving the perfor-
mance of genetic algorithms for land-use allocation problems”. Interna-
tional Journal of Geographical Information Science 32.5, pp. 907–930.

Sharma, Sunil Kumar (2005). “A comparison of combinatory methods and
GIS based MOLA (IDRISI R©) for solving multi-objective land use assess-
ment and allocation problems”.

Song, Mingjie and Dongmei Chen (2018). “An improved knowledge-informed
NSGA-II for multi-objective land allocation (MOLA)”. Geo-spatial Informa-
tion Science 21.4, pp. 273–287.

Stewart, Theodor J, Ron Janssen, and Marjan van Herwijnen (2004). “A ge-
netic algorithm approach to multiobjective land use planning”. Computers
& Operations Research 31.14, pp. 2293–2313.

Strauch, Michael, Anna F Cord, Carola Pätzold, Sven Lautenbach, Andrea
Kaim, Christian Schweitzer, Ralf Seppelt, and Martin Volk (2019). “Con-
straints in multi-objective optimization of land use allocation–Repair or
penalize?” Environmental Modelling & Software 118, pp. 241–251.

Verstegen, Judith A, Floor van der Hilst, Geert Woltjer, Derek Karssenberg,
Steven M de Jong, and André PC Faaij (2016). “What can and can’t we say
about indirect land-use change in Brazil using an integrated economic–
land-use change model?” Gcb Bioenergy 8.3, pp. 561–578.

Walter, Arnaldo, Marcelo Valadares Galdos, Fabio Vale Scarpare, Manoel Regis
Lima Verde Leal, Joaquim Eugênio Abel Seabra, Marcelo Pereira da Cunha,
Michelle Cristina Araujo Picoli, and Camila Ortolan Fernandes de Oliveira
(2014). “Brazilian sugarcane ethanol: developments so far and challenges
for the future”. Wiley Interdisciplinary Reviews: Energy and Environment 3.1,
pp. 70–92.

Whitley, Darrell (1994). “A genetic algorithm tutorial”. Statistics and comput-
ing 4.2, pp. 65–85.

Wicke, Birka, Pita Verweij, Hans van Meijl, Detlef P van Vuuren, and Andre
PC Faaij (2012). “Indirect land use change: review of existing models and
strategies for mitigation”. Biofuels 3.1, pp. 87–100.

Zitzler, E., K. Deb, L. Thiele, C. Coello, C. Coello, and D. Corne (2001). Evo-
lutionary Multi-criterion Optimization. 1993. Springer Science & Business
Media.

205

Appendix A

Metadata Initialization

A.1 MD-I

Algorithm 31 InitializeMD-I(s)

1: input: a solution s with:
2: an array f (s) for each s ∈ A with obj. values . MD I
3:
4: for all objective o ∈ O do
5: f (s)[o] := fo(s)
6: end for
7:
8: output: s

Algorithm 32 UpdateMD-I(s, U)

1: input: a solution s with:
2: an array f (s) for each s ∈ A with obj. values . MD I
3: a set U containing the updates for s . Definition 6.2.6
4:
5: for all objective o ∈ O do
6: f (s)[o] += fo(s,U) . Appendix A
7: end for
8:
9: output: s

A.2 MD-III

Algorithm 33 InitializeMD-III(s)

1: input: a solution s with:
2: an array n(s) with the number of cells per type . MD-III
3:
4: for all land-use type t ∈ T do
5: n(s)[t] = 0
6: end for
7:
8: for all cell c in solution s do
9: n(s)[type(c)] += 1

10: end for
11:
12: output: s

206 Appendix A. Metadata Initialization

Algorithm 34 UpdateMD-III(s, U)

1: input: a solution s with:
2: an array n(s) with the number of cells per type . MD-III
3: a set U containing the updates for s . Definition 6.2.6
4:
5: for all cell c ∈ U do
6: n(s)[type(s[c])] -= 1
7: n(s)[type(c)] += 1
8: end for
9:

10: output: s

207

Appendix B

Incremental Objective Functions

B.1 Development Costs

Algorithm 35 fcost(s, U)

1: input: a solution s
2: a set U containing the updates for s . Definition 6.2.6
3:
4: ∆ fcost = 0
5: for all cell c ∈ U do
6: (x, y) := c
7: told := type(c) in s
8: tnew := type(c) in U
9: ∆ fcost -= Cxytold . Equation (3.9)

10: ∆ fcost += Cxytnew

11: end for
12:
13: output: ∆ fcost

208 Appendix B. Incremental Objective Functions

B.2 Compactness

Algorithm 36 fcomp(s, U)

1: input: a solution s
2: a set U containing the updates for s . Definition 6.2.6
3:
4: s′ := s
5: for all cell c ∈ C do
6: type(s′[c]) := type(c)
7: end for
8:
9: ∆ fcomp = 0

10: C ′ := ∅
11: for all cell c ∈ C do
12: for all cell c′ ∈ (N (c) ∪ c) do
13: if c′ 6∈ C ′ then
14: (x, y) := c′

15: ∆ fcomp -= ∑x+1
m=x−1 ∑

y+1
n=y−1

Neigmn
8 in s . Equation (3.13)

16: ∆ fcomp += ∑x+1
m=x−1 ∑

y+1
n=y−1

Neigmn
8 in s′

17: end if
18: end for
19: end for
20:
21: output: ∆ fcomp

209

Appendix C

Incremental Constraint Validation

C.1 Allocation Ranges

Algorithm 37 Validate-I(s)

1: input: a solution s with the following metadata:
2: an array n(s) with the number of cells per type . MD-III
3:
4: T ′ := {t ∈ T | !static(t) }
5: for all land-use type t ∈ T do
6: if n(s)[t] < Lt or n(s)[t] > Ut then
7: output: f alse
8: end if
9: end for

10:
11: output: true

210

Appendix D

Optimized CD Calculation

D.1 CD-PLS

Algorithm 38 CD-PLS(s, A)

1: input: a solution s
2: an archive A with:
3: an array f (s) for each s ∈ A with obj. values . MD I
4: an array v(A) with all s ∈ A sorted per obj. value . MD II
5:
6:
7: v′ := v(A)
8: if s is not included in v(A) then
9: v′ := insert s in v′[o] for all objectives o ∈ O using array f (s)

10: end if
11:
12: l := |A|
13: cd := 0
14: for all objective o ∈ O do
15: i := position of s in v′[o]
16: smin := v′[o][0]
17: smax := v′[o][l]
18: if s == smin then
19: ssuc := v′[o][1]
20: cd += 2(fo(ssuc)− fo(s))

fo(smax)− fo(smin)

21: else if s == smax then
22: sprec := v′[o][l − 1]

23: cd += 2(fo(s)− fo(sprec))

fo(smax)− fo(smin)

24: else
25: sprec := v′[o][i− 1]
26: ssuc := v′[o][i + 1]
27: cd += fo(ssuc)− fo(sprec)

fo(smax)− fo(smin)

28: end if
29: end for
30:
31: output: cd

211

Appendix E

Implementation Structures

E.1 Other Framework Structures

FIGURE E.1: UML Class: jMetal.NET

FIGURE E.2: UML Class: IOHandler

212 Appendix E. Implementation Structures

FIGURE E.3: UML Class: SolutionExtensions

FIGURE E.4: UML Class: Logger

FIGURE E.5: UML Class: GeneralUtils

FIGURE E.6: UML CLass: RandomUtils

E.2. NSGA-II Framework Extensions 213

FIGURE E.7: UML Class: Validator

E.2 NSGA-II Framework Extensions

FIGURE E.8: UML Class: IOHandlerExtensions

FIGURE E.9: UML Class: LoggerExtensions

FIGURE E.10: UML Class: Validator

214

Appendix F

Implementation Statistics

F.1 Framework and (I)PLS-MOLA

TABLE F.1: Implementation Statistics MOLA Framework,
PLS-MOLA and IPLS-MOLA

Class Maintainabi-
lity Index

Cyclomatic
Complexity

Depth of In-
heritance

Class Cou-
pling

Lines of
Exec. Code

Program 57 1 1 10 16
IPLS 49 16 1 36 45
PLS 54 20 1 15 48
Archive 62 37 1 16 80
DerivedSolution 81 15 2 6 21
InitialSolution 86 15 2 13 16
Solution 88 25 1 9 17
GeneralUtils 79 7 1 5 11
jMetalNET 63 22 1 3 48
RandomUtils 84 3 1 3 7
SolutionExtensions 65 31 1 6 51
Validator 53 37 1 4 25
IOHandler 55 51 1 40 176
Logger 65 37 1 22 87
Constraint 100 3 1 1 0
Objective 100 4 1 3 0
Problem 73 10 1 16 24
AllocationRanges 80 13 2 6 12
Carbon 74 8 2 6 10
Compactness 68 10 2 8 17
Yield 74 8 2 6 10
Settings 76 75 3 7 152
RepairOperator 91 4 1 5 3
RepairProcedure 69 8 1 7 10
LR_BRBM 52 17 2 16 34
LR_BRCM 54 14 2 15 30
SearchOperator 96 4 1 3 1
SearchProcedure 90 2 1 4 2
LS_KRBM 60 10 2 11 20
LS_KRCM 60 7 2 11 21
LS_KRPM 59 10 2 10 20
SelectionOperator 100 3 1 2 0
SelectionProcedure 81 2 1 7 4
S_CD 74 4 2 4 9
S_R 90 2 2 4 2
Total: 72 535 3 112 1029

F.2. NSGA-II-MOLA 215

F.2 NSGA-II-MOLA

TABLE F.2: Implementation Statistics MOLA Framework Ex-
tensions and NSGA-II-MOLA

Class Maintainability
Index

Cyclomatic
Complexity

Depth of
Inheritance

Class Cou-
pling

Lines of
Executable
code

Program 44 1 1 15 35
NSGA_II 43 18 1 41 69
CrossoverOperator 100 3 1 3 0
CrossoverProcedure 89 2 1 5 2
C_XBC 63 10 2 12 17
C_XTD 66 8 2 12 10
Population 61 54 1 23 108
Validator 51 24 1 2 14
InitializationProcedure 54 26 1 31 72
IOHandlerExtensions 41 5 1 26 39
LoggerExtensions 48 13 1 18 42
MutationProcedure 87 3 1 5 3
Settings 76 69 3 7 140
TournamentProcedure 53 8 1 16 16
Total 62 244 3 114 567

216

Appendix G

Run Results

G.1 Run 1 - 6

TABLE G.1: Running Times (ms) of Run 1 - 6

Run 1 2 3 4 5 6
612818 541494 552159 522693 520271 341399
658485 612181 586219 532129 542986 447047
718856 618968 605981 549064 545162 429192
693430 606166 539557 626541 598672 404151
628616 555639 539380 594669 456044 412843

x 662441.0 586889.6 564659.2 565019.2 532627.0 406926.4
s 44060.17 35628.71 34107.74 44135.82 51584.89 40130.94

G.2 Run 7 - 9

TABLE G.2: Hypervolumes (×1014) of Run 7 - 9

Run 7 8 9
3.67628 3.70711 3.69615
3.69518 3.70287 3.70080
3.69067 3.70000 3.69000
3.70496 3.70391 3.68679
3.69882 3.70131 3.70013

x 3.69318 3.70380 3.69550
s 0.01080 0.00212 0.00569

G.3 Run 10 - 12

TABLE G.3: Running Times (ms) of Run 10 - 12

Run 10 11 12
460796 558406 554747
534483 589476 547417
493112 530039 538714
525245 548134 539442
516490 581331 541976

x 506025.2 561477.2 544459.2
s 29585.43 24258.71 6683.298

G.4. Run 13 - 19 217

G.4 Run 13 - 19

TABLE G.4: Hypervolumes (×1014) of Run 13 - 19

Run 13 14 15 16 17 18 19
3.66453 3.69898 3.68220 3.67555 3.68887 3.68463 3.69517
3.67414 3.69135 3.68060 3.68703 3.68027 3.69549 3.68932
3.67091 3.69342 3.68560 3.68147 3.68270 3.68607 3.69265
3.67232 3.70131 3.67386 3.67566 3.68502 3.69098 3.68072
3.67206 3.69749 3.68007 3.67440 3.68457 3.68287 3.69689

x 3.67079 3.69651 3.68046 3.67882 3.68429 3.68801 3.69095
s 0.00369 0.00407 0.00428 0.00535 0.00317 0.00516 0.00639

G.5 Run 20 - 26

TABLE G.5: Running Times (ms) of Run 20 - 26

Run 20 21 22 23 24 25 26
263369 148592 1217627 226263 805715 731474 560349
249341 139496 1262131 226574 843405 724253 627410
233406 162518 1241599 212111 813393 722654 609634
234753 173797 1231391 277736 874342 712305 575992
247439 178492 1256876 268304 857270 713691 568142

x 245661.6 160579.0 1241924.8 242197.6 838825.0 720875.4 588305.4
s 12241.80 16488.87 18257.047 28929.80 29007.37 7936.770 28826.30

G.6 Run 27 - 34

TABLE G.6: Hypervolumes (×1014) of Run 27 - 34

Run 27 28 29 30 31 32 33 34
3.69700 3.69817 3.68848 3.68567 3.68924 3.69389 3.68651 3.69409
3.68784 3.69173 3.68752 3.68584 3.68699 3.69197 3.69085 3.68571
3.68558 3.68816 3.69706 3.68351 3.68852 3.68481 3.68589 3.69000
3.69739 3.68309 3.68393 3.68923 3.69316 3.68043 3.69464 3.69298
3.69010 3.68731 3.67844 3.68910 3.68794 3.69530 3.69110 3.70000

x 3.69158 3.68969 3.68709 3.68667 3.68917 3.68928 3.68980 3.69256
s 0.00537 0.00565 0.00683 0.00246 0.00238 0.00639 0.00362 0.00528

G.7 Run 35 - 41

TABLE G.7: Hypervolumes (×1014) of Run 35 - 41

Run 35 36 37 38 39 40 41
3.72840 3.71972 3.72212 3.68567 3.67059 3.66194 3.66187
3.75186 3.73230 3.70819 3.68584 3.66986 3.66370 3.65749
3.74185 3.73757 3.71642 3.68351 3.67125 3.66555 3.66107
3.74149 3.73066 3.71856 3.68923 3.66787 3.66171 3.65959
3.74360 3.73616 3.70604 3.68910 3.67006 3.67159 3.65663

x 3.74144 3.73128 3.71427 3.68667 3.66993 3.66490 3.65933
s 0.00842 0.00704 0.00688 0.00246 0.00127 0.00405 0.00225

218 Appendix G. Run Results

G.8 Run 42 - 44

TABLE G.8: Hypervolumes (×1014) of Run 42 - 44

Run 42 43 44
3.65037 3.70398 3.70169
3.64676 3.70038 3.68617
3.64862 3.69550 3.69821
3.65461 3.69138 3.69977
3.64992 3.70093 3.69511

x 3.65006 3.69843 3.69619
s 0.00291 0.00498 0.00610

G.9 Run 45 - 47

TABLE G.9: Running Times (ms) of Run 45 - 47

Run 45 46 47
319935 909833 717052
355946 960027 715959
377232 958610 714303
392560 985532 709244
288681 958997 716486

x 346870.8 954599.8 714608.8
s 42436.00 27503.36 3169.808

G.10 Run 48 - 53

TABLE G.10: Hypervolumes (×1014) of Run 48 - 53

Run 48 49 50 51 52 53
3.42550 3.64936 3.72998 3.74577 3.75611 3.75788
3.42318 3.64736 3.72932 3.74386 3.75518 3.75937
3.42313 3.64743 3.72760 3.74387 3.75775 3.76014
3.41928 3.64814 3.73193 3.74265 3.75704 3.75818
3.42301 3.64877 3.72684 3.74371 3.75459 3.76034

x 3.42282 3.64821 3.72913 3.74397 3.75613 3.75918
s 0.00224 0.00086 0.00201 0.00113 0.00130 0.00111

TABLE G.11: Running Times (ms) of Run 48 - 53

Run 48 49 50 51 52 53
38738 48673 106542 174526 389476 779389
39172 49868 102794 174040 385934 770601
41865 48394 103263 172481 375868 778981
41172 46516 103809 175024 383598 776255
41131 46736 103086 177376 382478 773838

x 40415.6 48037.4 103898.8 174689.4 383470.8 775812.8
s 1373.46 1404.51 1523.158 1778.709 5023.300 3677.123

G.11. Run 54 - 55 219

G.11 Run 54 - 55

TABLE G.12: Hypervolumes (×1014) of Run 54 - 55

Run 54 55
3.62052 3.68638
3.62803 3.68621
3.62268 3.68967
3.62993 3.68656
3.62183 3.68070

x 3.62460 3.68590
s 0.00413 0.00324

G.12 Run 56 - 57

TABLE G.13: Hypervolumes (×1014) of Run 56 - 57

Run 56 57
3.67149 3.69020
3.67661 3.69106
3.67750 3.68697
3.67435 3.69327
3.67200 3.67716

x 3.67439 3.68773
s 0.00268 0.00633

G.13 Run 58 - 59

TABLE G.14: Hypervolumes (×1014) of Run 56 - 57

Run 58 59
3.68997 3.72251
3.68855 3.71682
3.68791 3.72038
3.68586 3.71652
3.68771 3.71714

x 3.68800 3.71867
s 0.00149 0.00265

TABLE G.15: Archive Size of Run 58 - 59

Run 58 59
12 6
13 2
22 3
8 3
34 6

x 17.8 4.0
s 10.4 1.9

220 Appendix G. Run Results

G.14 Run 60 - 66

TABLE G.16: Hypervolumes (×1014) of Run 60 - 66

Run 60 61 62 63 64 65 66
3.69349 3.68469 3.68954 3.69706 3.68105 3.69221 3.69606
3.68622 3.68177 3.69454 3.68584 3.69664 3.69370 3.68703
3.68558 3.68431 3.68354 3.69415 3.68850 3.68566 3.69946
3.68149 3.67208 3.68838 3.68595 3.68540 3.69047 3.69587
3.68887 3.68147 3.67580 3.68850 3.67706 3.68541 3.68863

x 3.68713 3.68086 3.68636 3.69030 3.68573 3.68949 3.69341
s 0.00443 0.00640 0.00635 0.00506 0.00748 0.00379 0.00532

G.15 Run 67 - 68

TABLE G.17: Running Times (ms) of Run 67 - 68

Run 67 68
840222 433504
826591 397779
883274 407299
785946 431945
844288 457952

x 836064.2 425695.8
s 35054.45 23760.64

TABLE G.18: Archive Size of Run 67 - 68

Run 67 68
12 1029
11 802
11 1105
18 1371
23 1370

x 15.0 1135.4
s 5.34 241.84

G.16 Run 69 - 70

TABLE G.19: Hypervolumes (×1014) of Run 69 - 70

Run 69 70
3.68825 3.57297
3.68692 3.56567
3.69048 3.57500
3.69413 3.57451
3.69277 3.57138

x 3.69051 3.57191
s 0.00301 0.00377

221

Appendix H

Performance Results

H.1 PLS

TABLE H.1: Hypervolumes (×1014) of PLS-MOLA for Brazil

Min Run 1 Run 2 Run 3 Run 4 Run 5 x s
0 3.74277 3.74301 3.74297 3.74463 3.73978 3.74263 0.00176
15 3.88728 3.92236 3.90136 3.93725 3.89635 3.90892 0.02041
30 3.98476 4.03549 4.01359 4.02978 4.00017 4.01276 0.02091
45 4.05618 4.09208 4.07458 4.09635 4.06857 4.07755 0.01666
60 4.12195 4.14342 4.13562 4.14625 4.13745 4.13694 0.00943
75 4.16424 4.18114 4.17024 4.18726 4.17152 4.17488 0.00920
90 4.19452 4.21194 4.20145 4.21726 4.20736 4.20651 0.00888
105 4.22151 4.23267 4.22847 4.23645 4.23023 4.22987 0.00555
120 4.24463 4.25007 4.24857 4.25734 4.25362 4.25085 0.00486
135 4.26412 4.27111 4.27002 4.27827 4.28015 4.27273 0.00652
150 4.27912 4.28925 4.28445 4.29014 4.29327 4.28725 0.00553

TABLE H.2: Results of PLS-MOLA for Brazil

Result Run 1 Run 2 Run 3 Run 4 Run 5 x s
Max. Comp. (×105) 6.9487 6.9862 7.0056 7.0164 6.9460 6.9806 0.0322
Avg. Comp. (×105) 6.9486 6.9643 6.9875 7.0032 6.9458 6.9699 0.0249
Min. Comp. (×105) 6.9485 6.9424 6.9684 6.9873 6.9456 6.9584 0.0191
Max. Yield (×108) 6.1478 6.1790 6.1839 6.1859 6.1751 6.1744 0.0154
Avg. Yield (×108) 6.1475 6.1784 6.1834 6.1854 6.1747 6.1739 0.0153
Min. Yield (×108) 6.1472 6.1780 6.1830 6.1850 6.1743 6.1735 0.0153

TABLE H.3: Hypervolumes (×1013) of PLS-MOLA for Centre
West

Min Run 1 Run 2 Run 3 Run 4 Run 5 x s
0 2.03672 2.03185 2.03831 2.03425 2.03655 2.03554 0.00252
15 2.14253 2.13447 2.13057 2.12734 2.14123 2.13523 0.00659
30 2.17492 2.17325 2.17342 2.16659 2.17342 2.17232 0.00327
45 2.19530 2.19789 2.20302 2.19802 2.19230 2.19731 0.00395
60 2.22666 2.21354 2.22596 2.21574 2.23666 2.22371 0.00933
75 2.23982 2.23014 2.24505 2.24213 2.24006 2.23944 0.00561
90 2.24596 2.24358 2.25203 2.25005 2.24674 2.24767 0.00336
105 2.24978 2.25826 2.25712 2.25622 2.25538 2.25535 0.00329
120 2.25662 2.26706 2.26112 2.26202 2.26002 2.26137 0.00378
135 2.26342 2.27746 2.26971 2.26641 2.26442 2.26828 0.00566
150 2.27242 2.28626 2.28012 2.27151 2.27443 2.27695 0.00619

222 Appendix H. Performance Results

TABLE H.4: Results of PLS-MOLA for Centre West

Result Run 1 Run 2 Run 3 Run 4 Run 5 x s
Max. Comp. (×105) 1.2520 1.2525 1.2503 1.2519 1.2542 1.2522 0.0016
Avg. Comp. (×105) 1.2520 1.2520 1.2501 1.2519 1.2541 1.2520 0.0017
Min. Comp. (×105) 1.2519 1.2518 1.2498 1.2519 1.2540 1.2519 0.0017
Max. Yield (×108) 1.8220 1.8484 1.8130 1.8200 1.8454 1.8317 0.0179
Avg. Yield (×108) 1.8220 1.8434 1.8124 1.8200 1.8453 1.8303 0.0166
Min. Yield (×108) 1.8218 1.8432 1.8121 1.8200 1.8451 1.8301 0.0165

TABLE H.5: Hypervolumes (×1011) of PLS-MOLA for Sul
Goiano

Min Run 1 Run 2 Run 3 Run 4 Run 5 x s
0 0.87892 0.88970 0.88542 0.87467 0.88438 0.88262 0.00587
15 1.12045 1.11755 1.13005 1.11952 1.12641 1.12280 0.00523
30 1.14871 1.15689 1.15539 1.14812 1.15593 1.15301 0.00423
45 1.17549 1.17505 1.17609 1.17294 1.17849 1.17561 0.00200
60 - 1.18921 1.18801 - - 1.18861 0.08453
75 - - - - - - -

TABLE H.6: Results of PLS-MOLA for Sul Goiano

Result Run 1 Run 2 Run 3 Run 4 Run 5 x s
Max. Comp. (×103) 7.7368 7.8108 7.7798 7.8738 7.8363 7.8075 0.0524
Avg. Comp. (×103) 7.7170 7.8078 7.7721 7.8703 7.8323 7.7999 0.0585
Min. Comp. (×103) 7.6978 7.8058 7.7618 7.8638 7.8248 7.7908 0.0636
Max. Yield (×107) 1.4300 1.4400 1.4289 1.4762 1.4633 1.4477 0.0211
Avg. Yield (×107) 1.4300 1.4400 1.4282 1.4756 1.4625 1.4472 0.0209
Min. Yield (×107) 1.4200 1.4400 1.4269 1.4746 1.4615 1.4446 0.0230

H.2 IPLS

TABLE H.7: Hypervolumes (×1011) of IPLS-MOLA for Sul
Goiano with Perturbation Size = 25

Min Run 1 Run 2 Run 3 Run 4 Run 5 x s
0 0.88513 0.88894 0.88754 0.87043 0.88936 0.88428 0.00792
30 1.16152 1.15524 1.15754 1.16017 1.16156 1.15921 0.00275
60 1.18278 1.19050 1.19204 1.18954 1.18834 1.18864 0.00354
90 1.20540 1.20667 1.21326 1.20843 1.21738 1.21023 0.00499
120 1.22769 1.20954 1.22946 1.21537 1.22269 1.22095 0.00840
150 1.23114 1.21792 1.23962 1.22683 1.22986 1.22907 0.00785

H.3. NSGA-II 223

TABLE H.8: Hypervolumes (×1011) of IPLS-MOLA for Sul
Goiano with Perturbation Size = 50

Min Run 1 Run 2 Run 3 Run 4 Run 5 x s
0 0.887052 0.882119 0.885246 0.884233 0.886714 0.88507 0.00200
30 1.13030 1.13912 1.13542 1.13245 1.08653 1.12476 0.02163
60 1.18649 1.19493 1.18532 1.18367 1.19608 1.18930 0.00577
90 1.20649 1.21237 1.20489 1.20730 1.21459 1.20913 0.00414
120 1.22470 1.21251 1.20850 1.21652 1.20067 1.21258 0.00896
150 1.22470 1.22164 1.21542 1.21862 1.21206 1.21849 0.00498

TABLE H.9: Hypervolumes (×1011) of IPLS-MOLA for Sul
Goiano with Perturbation Size = 75

Min Run 1 Run 2 Run 3 Run 4 Run 5 x s
0 0.88209 0.88314 0.88256 0.88164 0.88433 0.88275 0.00104
30 1.12855 1.12278 1.13067 1.12432 1.12264 1.12579 0.00363
60 1.20182 1.20033 1.20396 1.19543 1.20023 1.20035 0.00314
90 1.20413 1.20137 1.21515 1.19948 1.20406 1.20484 0.00609
120 1.21720 1.21308 1.22057 1.20679 1.20969 1.21347 0.00555
150 1.21720 1.21311 1.23013 1.20743 1.20969 1.21551 0.00897

TABLE H.10: Results of IPLS-MOLA for Sul Goiano with Per-
turbation Size = 25

Result Run 1 Run 2 Run 3 Run 4 Run 5 x s
Max. Comp. (×103) 7.7828 7.7388 7.7885 7.7686 7.7813 7.7720 0.0199
Avg. Comp. (×103) 7.7466 7.7134 7.7528 7.7355 7.7415 7.7380 0.0151
Min. Comp. (×103) 7.6683 7.6953 7.6724 7.6743 7.6588 7.6738 0.0134
Max. Yield (×107) 1.5800 1.5700 1.5880 1.5770 1.5810 1.5792 0.0065
Avg. Yield (×107) 1.5800 1.5400 1.5840 1.5650 1.5740 1.5686 0.0175
Min. Yield (×107) 1.5800 1.4100 1.5800 1.5430 1.5680 1.5362 0.0721

H.3 NSGA-II

TABLE H.11: Hypervolumes (×1014) of NSGA-II-MOLA for
Brazil

Min Run 1 Run 2 Run 3 Run 4 Run 5 x s
0 2.93041 2.93386 2.94021 2.93862 2.92872 2.93436 0.00500
30 3.05841 3.03664 3.04894 3.04321 3.03325 3.04409 0.01003
60 3.06146 3.03881 3.07081 3.06726 3.03561 3.05479 0.01643
90 3.07554 3.06346 3.08636 3.07234 3.06026 3.07159 0.10354
120 3.07648 3.07274 3.09031 3.07644 3.06857 3.07691 0.00817
150 3.09147 3.07846 3.10064 3.08236 3.07428 3.08544 0.01061

224 Appendix H. Performance Results

TABLE H.12: Results of NSGA-II-MOLA for Brazil

Result Run 1 Run 2 Run 3 Run 4 Run 5 x s
Max. Comp. (×105) 5.7619 5.7620 5.7654 5.7603 5.7590 5.7618 0.0024
Avg. Comp. (×105) 5.7021 5.6985 5.7062 5.7003 5.6937 5.7001 0.0046
Min. Comp. (×105) 5.5072 5.5608 5.5096 5.5692 5.5284 5.5351 0.0287
Max. Yield (×108) 5.3696 5.3473 5.3705 5.3582 5.3385 5.3568 0.0139
Avg. Yield (×108) 5.1743 5.1704 5.1768 5.1724 5.1689 5.1726 0.0031
Min. Yield (×108) 5.0837 5.0865 5.0857 5.0858 5.0832 5.0850 0.0014

TABLE H.13: Hypervolumes (×1013) of NSGA-II-MOLA for
Centre West

Min Run 1 Run 2 Run 3 Run 4 Run 5 x s
0 1.48025 1.47751 1.46861 1.48641 1.46891 1.47634 0.00763
30 1.55192 1.53855 1.53485 1.54035 1.52678 1.53849 0.00914
60 1.60356 1.57429 1.56939 1.57666 1.57234 1.57925 0.01385
90 1.63777 1.61111 1.60453 1.62471 1.62234 1.62009 0.01286
120 1.66623 1.63644 1.62565 1.64832 1.63789 1.64291 0.01531
150 1.69605 1.65941 1.63831 1.67022 1.64932 1.66266 0.02210

TABLE H.14: Results of NSGA-II-MOLA for Centre West

Result Run 1 Run 2 Run 3 Run 4 Run 5 x s
Max. Comp. (×105) 1.0094 1.0038 0.9973 1.0033 0.9992 1.0026 0.0047
Avg. Comp. (×105) 1.0020 0.9965 0.9927 0.9972 0.9939 0.9964 0.0036
Min. Comp. (×105) 0.9905 0.9848 0.9804 0.9884 0.9823 0.9854 0.0042
Max. Yield (×108) 1.6808 1.6537 1.6329 1.6714 1.6418 1.6561 0.0200
Avg. Yield (×108) 1.6425 1.6154 1.5967 1.6314 1.6003 1.6173 0.0197
Min. Yield (×108) 1.5944 1.5718 1.5439 1.5862 1.5646 1.5722 0.0197

TABLE H.15: Hypervolumes (×1011) of NSGA-II-MOLA for
Sul Goiano

Min Run 1 Run 2 Run 3 Run 4 Run 5 x s
0 0.61271 0.61337 0.61186 0.61353 0.61294 0.61288 0.00066
30 0.97119 0.97386 0.96897 0.97604 0.97235 0.97248 0.00267
60 1.00737 1.02092 0.99899 1.02874 0.99985 1.01117 0.01318
90 1.02895 1.03607 1.02634 1.04017 1.02454 1.03121 0.00666
120 1.05469 1.05697 1.05348 1.05863 1.05323 1.05540 0.00233
150 1.06485 1.06619 1.05942 1.06736 1.06384 1.06433 0.00305

TABLE H.16: Results of NSGA-II-MOLA for Sul Goiano

Result Run 1 Run 2 Run 3 Run 4 Run 5 x s
Max. Comp. (×103) 7.0963 7.1503 7.0738 7.1633 7.0950 7.1157 0.0388
Avg. Comp. (×103) 7.0324 7.0912 7.0194 7.1042 7.0275 7.0549 0.0396
Min. Comp. (×103) 6.9633 7.0053 6.9633 7.0118 6.9428 6.9773 0.0298
Max. Yield (×107) 1.5000 1.4900 1.4810 1.4960 1.4920 1.4918 0.0072
Avg. Yield (×107) 1.4900 1.4800 1.4750 1.4910 1.4800 1.4832 0.0070
Min. Yield (×107) 1.4700 1.4700 1.4730 1.4750 1.4680 1.4712 0.0028

H.3. NSGA-II 225

TABLE H.17: Hypervolumes (×1011) of NSGA-II-MOLA for
Sul Goiano with Initial Map in Initial Population

Min Run 1 Run 2 Run 3 Run 4 Run 5 x s
0 0.64723 0.64992 0.65068 0.64723 0.65164 0.64934 0.00202
30 0.97170 0.98818 0.99115 0.96732 0.99564 0.98280 0.01251
60 1.01529 1.02553 1.02743 1.01276 1.03524 1.02325 0.00922
90 1.03790 1.04292 1.04375 1.03562 1.04625 1.04129 0.00439
120 1.05527 1.05632 1.05714 1.05496 1.05874 1.05649 0.00153
150 1.06265 1.0661 1.06635 1.05993 1.06764 1.06454 0.00317

TABLE H.18: Results of NSGA-II-MOLA for Sul Goiano with
Initial Map in Initial Population

Result Run 1 Run 2 Run 3 Run 4 Run 5 x s
Max. Comp. (×103) 7.0873 7.1053 7.1498 7.0773 7.1595 7.1158 0.0370
Avg. Comp. (×103) 7.0246 7.0439 7.0862 7.0235 7.1058 7.0568 0.0373
Min. Comp. (×103) 6.9223 6.9503 7.0095 6.9718 7.0143 6.9736 0.0391
Max. Yield (×107) 1.5010 1.4987 1.4960 1.4830 1.4940 1.4945 0.0070
Avg. Yield (×107) 1.4900 1.4908 1.4830 1.4710 1.4850 1.4840 0.0080
Min. Yield (×107) 1.4680 1.4780 1.4740 1.4750 1.4775 1.4745 0.0040

FIGURE H.1: Convergence of IPLS-MOLA and NSGA-II-
MOLA with the Initial Map of Sul Goiano in the Initial Popu-

lation

	Abstract
	Preface
	Introduction
	Introduction
	Problem Description
	Research Questions
	Contribution & Relevance
	Research Outline

	Preliminaries
	Multi-Objective Land-Use Allocation
	Problem Context
	Problem Definition
	Problem Objectives
	Minimizing Development Costs
	Maximizing Suitability
	Maximizing Compactness
	Maximizing Accessibility
	Maximizing Compatibility

	Optimization Approaches
	A Priori
	A Posteriori

	Problem Representations
	Grid Representation
	Quad-Tree Representation
	Polygon Vector Representation
	Patch Vector Representation
	Multi-Dimensional Representation

	Example Case Studies
	Overview Case Studies
	Case 1: Jisperveld, The Netherlands
	Case 2: Tongzhou New Town, China

	Previous Research
	Linear Programming
	Local Search Heuristics
	Simulated Annealing
	Pareto Simulated Annealing
	Tabu Search

	Genetic Algorithms
	Introduction to Genetic Algorithms
	Genetic Algorithms and MOLA
	Step 1: Representation
	Step 2: Initialization
	Step 3: Selection
	Step 4: Crossover
	Step 5: Mutation
	Single-Objective GAs for MOLA
	Multi-Objective GAs for MOLA

	Pareto Local Search
	Definition
	Variants
	Multi-Restart Pareto Local Search
	Iterated Pareto Local Search
	Genetic Pareto Local Search

	Components
	Selection Procedures
	Acceptance Criteria
	Neighborhood Exploration

	Anytime Behavior

	Pareto Local Search for MOLA
	Introduction
	Algorithm Setup
	Problem Specification
	Problem Representation
	Data Structures

	Algorithm Definitions
	Algorithm I: PLS-MOLA
	Algorithm II: IPLS-MOLA

	Selection Procedure
	Selection Operators
	Operator I: S-R
	Operator II: S-CD

	Neighborhood Exploration
	Strategy I: T-NE-BPI
	Strategy II: T-NE-FPI

	Search Procedure
	Search Operators
	Operator I: LS-KRCM
	Operator II: LS-KRPM
	Operator III: LS-KRBM

	Reparation Procedure
	Repair Operators
	Repair Operator: LR-KCRM
	Repair Operator: LR-KBRM

	Acceptance Criteria
	Criterion I: AC-ND
	Criterion II: AC-NDS
	Criterion III: AC-CD

	Updating Procedures
	Solution Updating
	Archive Updating

	Validating Procedure
	Perturbation Procedure

	Implementation
	Setup
	Framework
	Problem Setup
	Solution Storage
	Other Features

	Algorithms
	PLS-MOLA
	IPLS-MOLA
	NSGA-II-MOLA

	Parameters
	Concurrency

	Experimentation
	Experimental Setup
	Problem Case: Brazil
	Problem Context
	Problem Definition
	Objectives
	Compactness
	Potential Yield
	Carbon Stock

	Constraints
	Allocation Ranges

	Subcases
	Centre West
	Sul Goiano

	Resources

	Test Cases
	Test Setup
	Test Case I: Allocation Ranges
	Test Case II: Selection Operators
	Test Case III: Search Operators
	Test Case IV: Reparation Operators
	Test Case V: Acceptance Criteria
	Test Case VI: Objectives
	Test Case VII: IPLS Optimization
	Test Case VIII: NSGA-II Comparison

	Materials

	Results & Discussion
	General
	RQ I: PLS Optimization
	Data Structure
	Allocation Range Size
	Selection Strategy
	Exploration Strategy
	Reparation Strategy
	Acceptance Criteria

	RQ II: PLS Objective Scalability
	RQ III: IPLS Optimization
	RQ IV: NSGA-II Comparison

	Conclusions
	Recommendations
	Bibliography
	Metadata Initialization
	MD-I
	MD-III

	Incremental Objective Functions
	Development Costs
	Compactness

	Incremental Constraint Validation
	Allocation Ranges

	Optimized CD Calculation
	CD-PLS

	Implementation Structures
	Other Framework Structures
	NSGA-II Framework Extensions

	Implementation Statistics
	Framework and (I)PLS-MOLA
	NSGA-II-MOLA

	Run Results
	Run 1 - 6
	Run 7 - 9
	Run 10 - 12
	Run 13 - 19
	Run 20 - 26
	Run 27 - 34
	Run 35 - 41
	Run 42 - 44
	Run 45 - 47
	Run 48 - 53
	Run 54 - 55
	Run 56 - 57
	Run 58 - 59
	Run 60 - 66
	Run 67 - 68
	Run 69 - 70

	Performance Results
	PLS
	IPLS
	NSGA-II

