
A Parallel 2k Kernel for the Cluster
Editing Problem

Frank Boogaard

Master Thesis, ICA-5727731

Supervisor: Prof. Dr. H.L. Bodlaender

Utrecht University
Department of Information and Computing Sciences

July 14, 2020

Abstract

The Cluster Editing problem asks us to edit a graph and turn it into a disjoint union
of cliques. We are allowed to both add and remove any edges from the graph to achieve
this. The goal is to make as few edits as possible. We will present a parallel version of a 2k
Cluster Editing kernel by Cheng and Meng [6]. Our parallel version will use O(n log n)
parallel time and O(mn) work. We will show that the rules of the kernel can be applied in
parallel without conflicts. Unfortunately this does not guarantee that we apply the rules a
constant number of times. There exist certain graphs that still require us to apply the rules
a linear number of times. We also provide an implementation of the parallel kernel on a
GPU. Our implementation can reduce graphs with a few million edges in just a few seconds.
We will show that the rules are applied a constant number of times in practice. One feature
of our implementation is that after each rule application we will use the same amount of
memory or less, even when we add edges to the graph.

1

Contents

1 Introduction 3

2 Relevance 3

3 Definitions and Notation 4

4 Related Work and the Sequential Kernel by Chen and Meng 5

5 The Parallel Kernel 8

6 Finding Critical Cliques in Parallel 9
6.1 Theoretical Algorithms for Finding Critical Cliques in Parallel 9

6.1.1 Updating the Critical Cliques . 11
6.2 Practical Implementation for Finding Critical Cliques in Parallel 12

6.2.1 Parallel Radix Sort . 13

7 Calculating the Editing Degree 14
7.1 Sequentially Calculating the Editing Degree . 15
7.2 Calculating the Editing Degree in Parallel . 16

8 Applying the Rules in Parallel 17
8.1 Finding Edits in Parallel . 17

8.1.1 Rule 1 . 18
8.1.2 Rule 2 . 19
8.1.3 Rule 3 and 4 . 22
8.1.4 Rule 5 . 23

8.2 Editing the Graph in Parallel . 23

9 Complexity of the kernel 24

10 Results 26

11 Conclusions 29

2

1 Introduction

Cluster Editing is a well known Fixed Parameter Tractable (FPT) problem. It has mainly
been studied in the sequential setting. No research has been done yet that specifically focussed
on parallel algorithms for the Cluster Editing problem. In this thesis we will present a
parallel kernel for the Cluster Editing problem of size 2k. Our kernel is based on the
sequential 2k kernel by Cheng and Meng [6], which uses O(mn) time. We turned it into a
parallel kernel that uses O(n log n) time and O(mn) work. We show that you can apply as many
rules as possible at once without conflicts. Unfortunately there are however still situations were
we have to apply the rules O(n) times, but this happens rarely in practice. We implemented
our algorithm on a GPU. Our machine can reduce graphs with a few million edges in just a few
seconds. One feature of our implementation is that it does not add any edges to memory. Even
when the kernel tells us to add many edges to the graph, we will use less memory after each
rule application.

The 2k kernel by Cheng and Meng [6] uses critical cliques and their editing degree to reduce
the graph. The kernel looks at groups of vertices that almost form a disjoint clique. It uses
the editing degree to find these critical cliques. The original kernel by Cheng and Meng [6]
recalculates the critical cliques each time after a rule application. We came up with a way to
update the critical cliques instead. This makes the kernel more efficient in practice. Existing
algorithms for finding critical cliques are mostly theoretical algorithms that do not work very
well in practice. By updating instead of recalculating we can use a theoretically less efficient
algorithm that works well in practice for finding the initial critical cliques.

We will first discuss the relevance of the Cluster Editing problem in Section 2. Section
3 will discuss all definitions and notations we use throughout this thesis. In Section 4 we will
discuss related work and we will explain the sequential kernel of Cheng and Meng [6] in more
detail. We give a short overview of the parallel kernel in Section 5. Algorithms for finding
critical cliques will be discussed in Section 6. Section 7 will describe how we can efficiently
calculate the editing degrees. We prove in Section 8 that all rules can be applied in parallel and
in Section 9 we will discuss the complexity of the parallel kernel. We discuss the results of our
implementation in Section 10 and conclude our work in Section 11.

2 Relevance

The Cluster Editing problem is defined as follows. Given: an undirected graph G = (V,E)
and an integer k. Question: Can we transform G, by inserting and deleting at most k edges,
into a graph that consists of a disjoint union of cliques? The smallest value for k for which this
is possible is called the Cluster Edit Distance.

Cluster Editing is a problem that is used in many areas of research. It can for example be
used to fix inconsistencies in research data. In order to make research data consistent, we want
to edit as few things as possible. Biologists use Cluster Editing to cluster gene expression
data for tissue classification or to cluster biological entities such as proteins [22, 23]. It is also
used for gene regulatory network analysis [10].

Cluster Editing can also be used in the field of phylogenetics [8]. Here we are interested
in constructing a tree showing the evolutionary relationships of different species. The tree is
constructed by looking at the similarities and dissimilarities between the biological entities. We
identify the different species by finding clusters in the biological data. These species then form
the leafs of the phylogenetic tree.

In the context of machine learning Cluster Editing is also called Correlation Clus-
tering. Here we want to classify the data in an optimum number of clusters. Unlike other
clustering algorithms, we however do not know the amount of clusters we are looking for. We
are given a weighted graph that encodes the relation between the entities. Similar entities are

3

connected with a positive weighted edge. If two entities are dissimilar, they are connected
with a negative weighted edge. We then want to maximize the sum of positive weighted edges
within a cluster plus the absolute value of the sum of the negative edges between the clusters.
Correlation Clustering can for example be used for classifying webpages or documents [1].

3 Definitions and Notation

In order to make our figures more clear we decided to simplify them. We draw two types of
edges. If an edge is connected to two vertices then it just connects these two edges. If and edge
hovers between two groups of vertices then it represents all the edges between those groups.
All vertices of the group are connected to all vertices of the other group. See Figure 1 for an
example.

Figure 1: Example of how we illustrate graphs. This is a complete graph. The floating edge
denotes that all edges between the vertices on the left and the vertices on the right are there.

We will be parallelizing a Cluster Editing kernel that uses critical cliques and their
editing degree to reduce the graph. A critical clique is a maximal set of fully connected vertices
with the same neighbors. The editing degree of a critical clique will tell us how many edits we
need in order to turn the critical clique and its neighbors into a disjoint clique. We will be using
the same definition for critical cliques and their editing degree as Cheng and Meng [6].

Definition 1. A critical clique K in a graph G is a clique such that for all vertices v and w in
K, N(v) \K = N(w) \K and K is maximal under this condition.

Definition 2. Let K be a critical clique in a graph G and let v ∈ N(K). The editing degree
pK(v) of v with respect to K is defined to be the number of vertex pairs {v, w1}, where w1 ∈
N(K) \ {v} and w1 /∈ N(v), plus the number of edges [v, w2], where w2 /∈ K ∪N(K).

Every vertex in a graph belongs to a unique critical clique. We can thus construct a critical
clique graph Gc for a graph G where the vertices of Gc correspond to the critical cliques. An
edge is present in Gc if the union of the two critical cliques form a larger clique in G. In Figure
2 we illustrate a graph and its corresponding critical clique graph. We have also calculated the
editing degree for each critical clique in Figure 2.

In our algorithm we use the augmented neighborhood of a vertex to find critical cliques in a
graph. The augmented neighborhood is defined as follows:

Definition 3. The augmented neighborhood of a vertex v is the set N(v) ∪ {v}.

A kernelization algorithm is based on the repeated application of a number of rules. Each
rule is applied to a graph G and integer k and emits a smaller graph G′ and possibly also a
smaller integer k′. All rules are safe which means that G can be turned into a cluster graph with
at most k edits if and only if G′ can be turned into a cluster graph with at most k′ edits. Each
rule of Cheng and Meng’s kernel is given a critical clique K as an additional input. These rules
are given in Section 4 and will be numbered. For now we would like to introduce r-applicable
critical cliques.

Definition 4. A critical clique K is r-applicable if Rule r can be applied to K.

4

Figure 2: Example of a critical clique graph. On the left you can see the original graph and on
the right the corresponding critical clique graph. Note that missing edges in N(K) are counted
twice when we calculate pK .

We will use the following notations regarding graphs, critical cliques and editing degrees:

Notation Meaning

n The number of vertices in the graph.

m The number of edges in the graph.

d(v) The degree of a vertex v.

k The parameter of our FPT problem. We are allowed to do at most k edits.

kopt The Cluster Edit Distance (the smallest value of k that gives us a solution).

K The set of vertices in a critical clique.

N(K) The set of vertices that are a neighbor of critical clique K.

N2(K) The set of vertices adjacent to any vertex in N(K) (excluding K).

pK(v) The editing degree of vertex v with respect to critical clique K.

pK
∑

v∈N(K) pK(v). The total editing degree of critical clique K.

pv(w) The editing degree of vertex w with respect to the critical clique vertex v is in.

4 Related Work and the Sequential Kernel by Chen and Meng

Downey and Fellows [12] introduced the notion of Fixed Parameter Tractability (FPT). Consider
a parameterized problem Q ⊆ Σ∗ × N. Q is parameter tractable if there exists an algorithm
that can decide for a given input (x, k) ∈ Σ∗ × N whether (x, k) ∈ Q in time O(f(k) · nO(1)).
Here n is the size of the input x, k is called the parameter and f is a computable function.
FPT algorithms are always polynomial in n, but they can be exponential in k. The parameter
k usually tells us something about the size of the solution. For the k-Vertex Cover problem
we are for example only interested in vertex covers of size at most k.

5

A kernel K is a polynomial computable function that reduces the problem instance to an
equivalent instance of size sK(k). sK can be any computable function. The original input has
a solution if and only if the reduced instance also has a solution. A problem is FPT if and only
if it has a kernel. Because the size of the problem only depends on k after the kernelization, we
can exhaustively search the remaining input for a solution.

In this section we will give a short overview of existing sequential kernels for the Cluster
Editing problem. We will explain the 4k kernel by Guo [16] and the 2k kernel by Cheng and
Meng [6] in more detail, because our parallel kernel is based on their ideas.

(Non-)Common neighbors: 2k2 + k
Gramm et al. [15] were the first to give a kernel for the Cluster Editing problem. Their

kernel has a size of 2k2 +k vertices and 2k3 +k2 edges. It runs in O(n3) time. The kernel looks
at the amount of common and non-common neighbors of two vertices. If the two endpoints
of an edge have more than k non-common neighbors, then we will only find a solution if we
remove that edge from the graph. Similarly if a pair of not connected vertices have more than k
common neighbors, then we will only find a solution if we create an edge between those vertices.

Crown Decomposition: 24k
Fellows et al. [14] were the first to come up with a linear kernel for the Cluster Editing

problem. Given a solution of the Cluster Editing problem, we can classify the vertices into
three types. Type A vertices have at least one neighboring edge addition in the solution. Type
B vertices are not of type A and have at least one neighboring edge deletion in the solution.
The remaining vertices are of type C. Fellows et al. [14] noted that if a clique of the solution
has enough vertices of type C, then a reduction rule might apply. As it turns out we can use
cluster crown decompositions to do just this.

A cluster crown decomposition of a graph G = (V,E) partitions V in four disjoint subsets
(C,H,N,X). C is a cluster in the graph and all vertices in C are adjacent to all vertices in
H. H is a cut-set of the graph (there are no edges between C and V \ H). N is the set of
vertices that are adjacent to the vertices in H (excluding vertices in C). And X contains all
other vertices.

Fellows et al. [14] used a 4-approximation algorithm for the Cluster Editing problem
to find a cluster crown decomposition. Picking vertices of type C from a single clique in the
solution will give you the C partition. Vertices of type A and B within that same clique will
form the H partition. From there you can easily deduce the vertices that are part of partition
N and X as well.

The kernel only has one rule given a cluster crown decomposition (C,H,N,X) of the graph:

1. If |C| ≥ |H| + |N | − 1, then remove C and H from the graph and set k′ = k − e − f .
Here e denotes the number of edges needed to turn C ∪H into a clique and f denotes the
number of edges between H and N .

Fellows et al. [14] show that this kernel has a size of 24k by using the fact that the 4-
approximation algorithm has at most 8k vertices of type A or B. The number of vertices in a
H or N partition is then at most 8k. Which means that if the reduction rule does not apply,
the number of vertices in a C partition is less than 16k. The graph therefore has a size smaller
than 16k + 8k = 24k. Later Fellows et al. [13] found a way to calculate the cluster crown
decompositions in polynomial time. This resulted in a 6k kernel.

Critical Cliques: 4k
Guo [16] came up with a kernel of size 4k. The kernel is based on the idea of critical

cliques. Critical cliques are similar to the cluster crown decompositions: a critical clique K (see
Definition 1) is a clique and all vertices in this clique have the same neighbors. K has to be
maximal under this condition.

6

The set of unaffected vertices contained in a single clique of the optimal solution forms a
critical clique in the original graph (the type C vertices of the 6k kernel). This suggest that
working with critical cliques might be easier than working with the input graph. This also means
that we can use the critical clique graph as a weighted input for FPT algorithms, because we
will never edit an edge within a critical clique (the definition of a type C vertex).

Guo [16] showed that the number of vertices in a critical clique graph is bounded by 4kopt,
where kopt is the smallest value for k for which we will find a solution. This means that just
calculating the critical clique graph already gives us a generalized kernel of size 4k when we
can use a weighted FPT algorithm for the Cluster Editing problem. Fortunately Böcker [4]
designed a fast algorithm for the Weighted Cluster Editing problem which is also currently
the fastest algorithm for the Cluster Editing problem. However when Guo designed the 4k
kernel, such a weighted algorithm did not exist yet. In order to obtain a 4k kernel for the
regular Cluster Editing problem Guo [16] designed the following set of rules:

1. Remove all vertices that are part of an isolated critical clique from the input graph.

2. If |K| > |N(K)|+ |N2(K)|, then remove K ∪N(K) from the graph and reduce k by the
amount of graph edits you need to turn K ∪N(K) into a disjoint clique.

Applying these first two rules will yield a kernel of size 6k [16]. The first two rules are
essentially the same as the rules for the 6k kernel we discussed previously.

3. Suppose |K| ≥ |N(K)| and let K ′ be a neighboring critical clique of K. If the set of edges
between K ′ and N2(K) is not empty, and the number of edges between K ′ and N2(K)
plus the number of edges between K ′ and N(K) is smaller than |K| · |K ′|, then we can
remove all the edges between K ′ and N2(K) and decrease k accordingly.

4. If |K| ≥ |N(K)| and N2(K) = ∅, then remove the vertices in N(K) from the input graph
and decrease k by the number of edges needed to turn K ∪N(K) into a disjoint clique.

Combining Rule 1 with Rule 3 and 4 will yield a kernel of size 4k [16].

Critical Cliques: 2k
Chen and Meng [6] came up with the smallest known Cluster Editing kernel to date.

It has a size of 2k and a complexity of O(mn). It also uses the concept of critical cliques. In
addition, this kernel uses the editing degree (see Definition 2) of the critical cliques to improve
on the bound of the 4k kernel by Guo [16]. We will be parallelizing this 2k kernel.

The editing degree pK(v) is equal to the amount of edges we have to add in order to connect
v with all vertices in N(K) plus the amount of edges we have to remove in order to disconnect
v from all vertices that are not in K ∪N(K). The editing degree of a critical clique K is then
defined as follows: pK =

∑
v∈N(K) pK(v). Note that with this definition pK counts all edges

that have to be added to the graph twice.
The 2k kernel has the following 5 rules:

Rule 1. If |K| > k, then turn K ∪N(K) into a disjoint clique, remove it from the graph and
adjust k accordingly.

Rule 2. If |K| ≥ |N(K)| and |K|+ |N(K)| > pK , then turn K ∪N(K) into a disjoint clique,
remove it from the graph and adjust k accordingly.

Rule 3. If |K| < |N(K)| and |K|+ |N(K)| > pK , and if there is no vertex in N2(K) which is
adjacent to more than (|K|+ |N(K)|)/2 vertices in N(K), then turn K ∪N(K) into a disjoint
clique, remove it from the graph and adjust k accordingly.

7

Rule 4. If |K| < |N(K)| and |K|+ |N(K)| > pK , and if there is a vertex u ∈ N2(K) which is
adjacent to more than (|K|+ |N(K)|)/2 vertices in N(K), then make K ∪N(K) a clique and
remove the edges between N(K) and N2(K) \ {u}. Decrease k accordingly.

Rule 5. If |K| < |N(K)| and |K| + |N(K)| > pK , and Rule 1-4 can not be applied, then call
the Pendulum algorithm on K.

The Pendulum algorithm mentioned in Rule 5 is also a reduction algorithm. Cheng and
Meng showed that when Rules 1-4 can not be applied anymore, N2(K) will contain a single
vertex when |K|+ |N(K)| > pK . The reduction rules of the Pendulum algorithm uses this fact.
The Pendulum algorithm has two rules:

1. If |K| ≥ |N(K)|, then turn K ∪N(K) into a disjoint clique and adjust k accordingly.

2. If |K| < |N(K)|, then choose |K| vertices from N(K) and remove them together with K
from the graph. Decrease k by |K|.

Since N2(K) contains only a single vertex, we know that when we can apply the first rule of
the Pendulum algorithm, we could also apply Rule 2. We will thus only need the second rule
of the Pendulum algorithm.

With these rules we iterate at most O(n + k) times, because the rules reduce the number
of vertices by at least one or reduce k by at least one. Each iteration we have to calculate a
critical clique graph, which is linear in the number of edges [19] as we will discuss in Section 6.
This results in a time complexity of O(mn).

The editing degrees of the critical cliques can change each time we apply a rule. Cheng and
Meng [6] however do not give us much detail on how we can calculate and update the editing
degree efficiently. In Section 7 we will further explain how the editing degree can be calculated
to fit the time complexity of O(mn).

Later Cao and Chen [5] came up with an improved 2k kernel. They managed to obtain a
running time of O(n2) by using graph edge-cuts.

5 The Parallel Kernel

The goal of our parallel kernel is to apply as many rules at once. Each time we want to apply a
Rule r, we look for all r-applicable critical cliques in the graph and apply Rule r to all of them
at once. In this way we have to recalculate the critical cliques and editing degrees less often.
In order to further improve the speed of the kernel we decided to update the critical cliques
and editing degrees instead of recalculating them. This way we will avoid recalculating editing
degrees of critical cliques of which we already know that they will stay the same. Another
benefit is that we can theoretically get away with using a less efficient algorithm for the initial
critical clique graph construction.

Algorithm 1 describes our kernel. We first sort the neighbors of all vertices in the graph,
because it will make finding critical cliques easier and it will also help with updating the editing
degrees. We then find all the critical cliques in the graph. The next step is to calculate the
editing degrees. Then we keep looping over all the rules. After each rule application we will
update the critical cliques and their editing degrees.

Rule 2, 3 and 4 are very similar to each other and could be applied at once. We will go into
more detail on this in Section 8. We however chose to apply Rule 2 separately from Rules 3 and
4, because Rule 2 is much faster on its own. For Rule 3 and 4 we need to do some additional
calculations that are not needed for Rule 2. On a graph with 4900 vertices and almost 3 million
edges Rule 2 will take roughly 0.08 seconds whereas Rule 3 and 4 take roughly 0.49 seconds.
We hope that by first applying Rule 2 we can already remove some edges and vertices from the
graph, which can make the calculations of Rule 3 and 4 faster as well.

8

Algorithm 1: The Parallel Kernel

Input: (G): An undirected graph G
Output: All edits for the 2k kernel.

1 G.SortNeighbors();
2 G.FindCriticalCliques();
3 G.CalculateEditingDegree();
4 while true do
5 for i = 1; i <= 5; i + + do
6 if i == 5 && no-edits-from-rule1-4 then
7 G.ApplyRule(5);
8 else
9 G.ApplyRule(i);

10 end
11 G.UpdateEditingDegree();
12 G.UpdateCriticalCliques();
13 if G.empty || !G.rule-can-be-applied then
14 return;
15 end

16 end

17 end

6 Finding Critical Cliques in Parallel

In this section we will discuss how you can efficiently find critical cliques in parallel. We will first
discuss our theoretical results in Section 6.1. In Section 6.2 we will focus on practical aspects
of finding critical cliques in parallel.

6.1 Theoretical Algorithms for Finding Critical Cliques in Parallel

Critical cliques are closely related to modular decompositions. A modular decomposition parti-
tions the vertices of an undirected graph G = (V,E) in modules. All vertices within a module
S ⊂ V have the same set of neighbors. That is ∀v ∈ S : N(S) = N(v) \ S. A module is a bit
more flexible than a critical clique, because it also allows vertices within a module to not be
connected to each other. There are three types of modules: Type I modules are modules that
also form a clique, Type II modules are modules that are connected, but not of Type I and Type
III modules are independent sets with the same neighbors. We are only interested in the Type
I modules, because they are the same as the critical cliques we are looking for.

Hsu and Ma [19] gave an O(n+m) algorithm for modular decomposition (and thus also for
finding critical cliques). In order to find Type I modules the algorithm partitions the graph by
using the augmented neighborhood (see Definition 3) of the vertices. If there is a partition with
more than one vertex after ordering the vertices, then we have found a Type I module (and
thus also a critical clique). This ordering we found of the vertices based on their augmented
neighbors is also called a lexicographical ordering.

A lot of research has been done on how to find modular decompositions in linear sequential
time [21, 17, 19]. Parallel modular decomposition however is a less well studied topic. Elias
Dahlhaus [7] is one of the few who published a parallel algorithm for modular decomposition.
The algorithm is based on a divide an conquer strategy and uses O(log2 n) parallel time with
O(n + m) processors on a CRCW-PRAM. This algorithm performs O(log2 n · (m + n)) work.
The algorithm is however rather complicated and has a lot of different cases, so it might not be
the best algorithm to use in practice.

9

Finding lexicographical orderings in parallel is a broader studied subject. Lexicographical
ordering also has many applications. Sorting strings is an example of finding a lexicographical
ordering that is used in many areas. Theoretical work of Hagerup [18] shows that a sequence
of strings with s characters in total can be sorted in O(log s/ log log s) parallel time using
O(s log log s) operations. Hagerup’s algorithm combines pairs of adjacent characters in order
to achieve this complexity. We can use Hagerup’s algorithm to find a lexicographical ordering
of the vertices based on their augmented neighborhood. Each edge occurs in the augmented
neighborhood of two vertices, so s will be equal to n + 2m in our case. We get a complexity
of O(log (n + m)/ log log (n + m)) parallel time with O((n + m) log log (n + m)) work. This is
already an improvement compared to Dahlhaus’s [7] algorithm.

We now only have to find a way to extract the critical cliques from the lexicographical
ordering in parallel. We know that vertices with the same neighbors will be next to each other
in this ordering. Algorithm 2 describes how you can find critical cliques in parallel given a
lexicographical ordering of the vertices based on their augmented neighborhood. The algorithm
works as follows: for each vertex vi in the ordering we will compare the augmented neighborhood
with the vertex that is placed before vi in the ordering: vi−1. First we will check whether the
degree of vi and vi−1 are the same. If this is not the case, then we set a flag for vertex vi to 1.
For all vertices that do not have a flag that equals 1 after this step, we will do the following: the
ith neighbor of vi will be assigned to check whether it is the same as the ith neighbor of vi−1.
If this is not the case, then we set a flag for vertex vi to 1. Now all vertices with a different
augmented neighborhood than the vertex before it in the ordering will have a flag with value 1.
All other vertices will have a flag with value 0. Flagging all the vertices will take O(1) parallel
time with O(n+m) work. We can now calculate a prefix sum in parallel of these flag values to
get the index of the critical clique for each vertex. A prefix sum can be calculated in O(log n)
parallel time and O(n) work.

Algorithm 2: Find Critical Cliques in Parallel

Input: (V, A): V are the vertices in the graph, and A contains the augmented
neighborhood for each vertex.

Output: All critical cliques in the graph.
1 A = ParallelNeighborSort(A); // Sort the augmented neighborhood for each vertex.
2 O = ParallelVertexSort(V, A); // Find the lexicographical ordering of the vertices.
3 N; // Array filled with n zeros.
4 do in parallel
5 v = O[i];
6 w = O[i - 1];
7 if d(v) == d(w) then
8 do in parallel
9 // Check whether the j-th neighbor is different for v and w.

10 if A[v][j] ! = A[w][j] then
11 N[v] = 1;
12 end

13 end

14 else
15 N[v] = 1;
16 end

17 end
18 return CalcPrefixSum(N);

Theorem 1. All critical cliques in a graph can be found in O(log (n + m)) parallel time with

10

O((n + m) log log (n + m)) work.

Proof. We can use Algorithm 2 to find all the critical cliques. Sorting the augmented neighbor-
hood of each vertex can be done in O(log (n + m)) parallel time and O(n + m) work using a
parallel radix sort algorithm. Setting the flags for all the vertices takes O(1) time and O(n+m)
work. A prefix sum can be calculated in O(log n) parallel time and O(n) work. If we then
use Hagerup’s [18] algorithm to find the lexicographical ordering of the vertices, we get a total
complexity of O(log (n + m)) parallel time with O((n + m) log log (n + m)) work for finding all
critical cliques.

6.1.1 Updating the Critical Cliques

The critical clique graph can change every time we remove or add edges to the graph. Cheng
and Meng [6] decided to construct a new critical clique graph after each rule application. It is
however also possible to update the critical cliques based on the edits. We designed a method
to update the critical cliques in O(1) parallel time and O(m) work. From a theoretical point of
view this does not directly improve the complexity of the kernel. In the worst case, we have to
apply the rules O(n) times as we will explain in Section 9, so we still use O(mn) work. However,
this does allow us to use a theoretically less efficient algorithm to construct the initial critical
clique graph. As long as this algorithm uses O(mn) work or better, the total complexity of
finding and updating the critical clique graph remains O(mn). From a practical point of view
updating the critical clique graph is better than reconstructing it every iteration. We will do
significantly less work when only a small portion of the graph is edited after applying a rule.

Rule 4 is the only rule that does not immediately remove the edited critical clique from the
graph. Let K be a critical clique that is 4-applicable. We can easily figure out what the critical
cliques will be for the vertices in K ∪N(K) after applying Rule 4. These vertices either have
the same neighbors as the vertices in K, or they are connected to an additional vertex u. By
looking at the degree of each vertex in N(K) after applying Rule 4 we can easily decide which
of the two is the case and update their critical cliques accordingly.

Lemma 1 (Lemma 2.2 in [6]). Let K be a critical clique. For any vertex v in N(K), pK(v) ≥ 1.

In order to update the critical cliques for the other vertices in the graph we have to do more
work. The editing degree between two connected vertices tell us something about whether they
have the same neighbors or not. Let (v, w) be an edge in the graph. By Lemma 1 we know
that v and w must be in the same critical clique if pv(w) = 0. We will use this observation to
update the critical cliques. If the editing degree of an edge (v, w) becomes zero after applying
a rule, then we will merge the two critical cliques of v and w. For now we will assume that the
editing degree is already being updated. In Section 7.2 we will explain how we will be doing
this exactly.

Consider the situation in Figure 3. Rule 2 is applied to vertex f and g, which resulted
in some edits. The dashed edges and vertices are removed from the graph in Figure 3. The
vertices a, b and c all have the same neighbors after editing the graph. The editing degree
between those vertices thus all became 0. We will choose the critical clique with the smallest
identifier to become the new critical clique identifier of a, b and c. In order to do this we can
not just simply look at the edges with an editing degree of zero and then change the critical
clique of both endpoint to the smallest critical clique identifier. In the example of Figure 3 we
can then end up assigning different identifiers to the vertices. Algorithm 3 describes how we
will update the critical cliques based on the editing degrees. In the first step we will look at
all the edges that have an editing degree of zero and that are not already in the same critical
clique. We will set a flag for the vertex with the biggest critical clique identifier. After this step
the only vertices without a flag will be those with the smallest critical clique identifiers. In the
next step of the algorithm we only consider edges with and editing degree of zero where one of

11

Figure 3: Example of an edited graph where we have to assign new critical clique identifiers
to vertex a, b and c. We have to make sure that they will all get the same identifier. Dashed
lines denote vertices and edges that are removed from the graph.

the two endpoint does not have a flag. For these edges we can safely change the critical cliques
identifiers. It is not hard to see that this will take O(1) parallel time and O(m) work

Algorithm 3: Update Critical Cliques

Input: (C, P, E): C contains a critical clique id for each vertex, P contains the editing
degree values between the critical cliques, and E is the set of edges.

Output: Updated set of critical clique identifiers for each vertex.
1 do in parallel
2 (v, w) = E[i]; // Get the edge.
3 int cc1 = C[v]; // Critical clique identifiers.
4 int cc2 = C[w];
5 if cc1 6= cc2 && P [cc1, cc2] == 0 then
6 VertFlags[cc1 < cc2 ? w : v] = 1;
7 end

8 end
9 do in parallel

10 (v, w) = E[i]; // Get the edge.
11 int cc1 = C[v];
12 int cc2 = C[w];
13 if cc1 6= cc2 && P [cc1, cc2] == 0 then
14 if !V ertF lags[v] then
15 C[w] = C[v];
16 end
17 if !V ertF lags[w] then
18 C[v] = C[w];
19 end

20 end

21 end
22 return C ;

6.2 Practical Implementation for Finding Critical Cliques in Parallel

The algorithms of Hagerup [18] and Dahlhaus [7] both are not the best algorithms you can use
in practice. As we already mentioned Dahlhaus’s algorithm has a lot of cases, which makes it
not very suited to use in practice. Bingmann et al. [2] noticed that Hagerup’s [18] algorithm is
sub-optimal compared to sequential cases unless D = O(s) = O(S). Here D is a lower bound
on the execution time of sequential string sorting, s is the number of strings and S is the total
length of the strings. For our inputs we can not always guarantee that this is the case. If we
use a graph as input that is very close to a complete graph, then O(S) = O(s2).

12

Fortunately a substantial amount of practical research has been done on finding lexicograph-
ical orderings in parallel. Bingmann et al. [2] for example implemented various parallel sorting
algorithms such as multikey quicksort and radix sort as well as a parallel string sample sort
algorithm. Davidson and et al. [9] specifically focussed on parallel string sorting algorithms
that run on a GPU. Davidson et al. [9] based their approach on a parallel merge sort algorithm.
Later Deshpande and Narayanan [11] came up with a faster implementation based on a paral-
lel radix sort algorithm. Their algorithm was also specifically designed for a GPU. According
to Deshpande and Narayanan [11] their radix sort approach scales better with large data sets
compared to the work of Daviddson et al. [9].

We could not find a direct comparison of the algorithms of Bingmann et al. [2] and the
algorithm of Deshpande and Narayanan [11]. We decided to use the algorithm of Deshpande
and Narayanan [11], because it is specifically designed for the GPU.

Deshpande and Narayanan’s [11] algorithm works as follows: for each vertex we load the
first two (or more if possible) neighbors in a single integer. We then sort this list of integers
using a parallel radix sort algorithm. The next step is to filter out all vertices that are already
sorted correctly. After the filter step we load two (or more) new neighbors in a single integer for
the vertices that are not filtered out. We repeat these steps until all vertices are sorted. There
are two ways we can know that a vertex is in its correct spot: it either has no more neighbors,
or it is the only item in its radix sort bucket. Deshpande and Narayanan [11] use a library for
the parallel radix sort, so they have to find out themselves whether a vertex is the only item in
a bucket. They do this by storing an additional segment-id for the values that they are sorting.
All steps in their algorithm that you have to do to update these segment-id are not needed
when you implement your own parallel radix sort algorithm.

We added an extra first sorting round to the algorithm where we first sort all the vertices
based on their degree before we start looking at the neighbors. This way we hope that we can
filter out vertices earlier when they have a lot of common neighbors, but a different degree.

In our case Deshpande and Narayanan’s [11] algorithm will use O(n log n) parallel time with
O(n2) work in the worst case. This happens when the graph is a complete graph. In this case
we can never filter out a vertex so we will be sorting n elements n times. However, as the input
graph gets less connected, the algorithm will finish more quickly. If we combine this algorithm
with Algorithm 3 then we get a total complexity of O(n + n log n) time and O(n2 + mn) work
for finding and updating the critical cliques.

6.2.1 Parallel Radix Sort

Deshpande and Narayanan [11] used a fast radix sort library to do their radix sorts. We decided
to implement our own parallel radix sort algorithm, so that we can do some problem specific
optimizations. In this Section we will discuss the radix sort algorithm we implemented. In
our implementation we made sure that we can easily see whether a vertex is already sorted
correctly. On top of that our radix sort implementation allows us to directly calculate the size
of the critical cliques and set the flags of Algorithm 2 in O(1) parallel time with O(n) work. An
existing parallel radix sort library will not give us such freedom.

Our radix-sort implementation is based on the ideas of Blelloch [3]. As input we are given
an array with values that are encoded with w bits. The radix sort algorithm will iterate w
times. In iteration i we will place the values in a bucket based on the i-th bit. We do this by
calculating a prefix sum. First we will calculate a prefix sum for all values where the i-th bit
is 1. We will place these values first in the bucket. The values of the prefix sum will tell us
directly where to place the values in the bucket. Let x be the number of values where the i-th
bit is 1. We will also calculate a prefix sum for the values where the i-th bit is 0 and place them
in the bucket starting at index x. We can then split the bucket in two: one bucket from index
zero to index x and a bucket from index x until the end. We then sort each bucket separately
and in parallel in the next iteration.

13

We will store the values in one array. For each element in this array we store two additional
values. One value that tells us at which index the bucket starts for this element, we will call this
the min-index. We store another value that tells us where the buckets ends for this element,
we will call this the max-index. Whenever we split a bucket in two, these values are updated.
When we are done sorting we can use the min- and max-index to find out how big the buckets
are. When we are using Deshpande and Narayanan’s [11] algorithm to sort the vertices, these
sizes will directly tell us how big the critical cliques are. After each iteration of Deshpande
and Narayanan’s [11] algorithm we can also use the min- and max-index values to determine
whether a vertex is already sorted correctly. The position of a vertex inside a bucket of size 1
will namely never change.

We optimized our implementation by using the faster local memory of the GPU. The GPU
splits the work into different work-groups. A work-group has a certain number of threads that
perform the same calculations. Each work-group will be responsible for calculating the prefix
sum of a certain part of the array. Within a work-group we can use the faster local memory of
the GPU to calculate the prefix sum of the sub-array. We then have to combine the results of
all work-groups to find the total prefix sum. We can recursively do this by again calculating
a prefix sum over the values we get from each work-group. When sorting the vertices with
Deshpande and Narayanan’s algorithm it however turned out that combining the local prefix
sum in a quadratic manner was faster in practice. By picking a bigger work size, we make sure
that we have to combine less local prefix sum results. It is then faster to loop over the prefix
sums of the work groups to combine the results. Graphs we use as input have at most 5000
vertices. We found that using a work-group size of 256 was optimal for our machine. We then
have to combine at most 5000

256 ≈ 19 results of the work groups for each work group. This of
course only happens at the start. Once the buckets get smaller and fit inside a work group,
then we do not have to combine anything.

With further optimizations we merged the min- and max-index values in a single integer.
The first 16 bits of this integer tell us how far left we have to go in the array to find the min
value and the last 16 bits tell us how far right we have to go to find the max value. This safes
us 1 memory access for each value we are sorting and thus also results in potentially less cache
misses. We also merged the calculation of the two prefix sums by calculating them in the same
integer at once. The first 16 bits will contain the sum of the 1 bits prefix sum and the last 16
bits will contain the prefix sum of the 0 bits. This does mean that we can not have an input
graph with more than 216 vertices. None of our input graphs come close to this many vertices,
so we decided that this would be a fair assumption to make.

One problem with our implementation is that we move all our data in global memory in
each round. Memory accesses for placing the values in their new location are random. Random
memory accesses patterns are not efficient, because there will be a lot cache misses. Another
term for moving the elements in an array like this is scattering. Satish et al. [20] addressed this
problem of Blelloch’s [3] way of doing a radix sort. In order to further improve our radix sort
we could have used the ideas of Satish et al [20].

7 Calculating the Editing Degree

The editing degree of the critical cliques can change when we apply the rules. We thus have
to keep the editing degree values updated. Cheng and Meng [6] however do not give us much
detail on how we can calculate and update the editing degree in O(mn) time. We will therefore
first explain how you can calculate and update the editing degree sequentially in Section 7.1.
In Section 7.2 we will discuss how you can parallelize these calculations.

14

Figure 4: Example of how we will be updating the editing degrees. Dashed lines denote edges
that are removed from the graph. We will decrease the editing degree by one for each uncommon
neighbor of the vertex that is being removed. x is an uncommon neighbor of w and z, so we
decrease its editing degree by 2. y is only an uncommon neighbor of z, so we decrease its editing
degree by 1.

7.1 Sequentially Calculating the Editing Degree

The editing degree of vertex v with respect to vertex w, pw(v), is the same as the number of
uncommon neighbors of v and w. We namely have to connect v with all neighbors of w, for this
we need |N(w) \ N(v)| edits. We also need |N(v) \ N(w)| edits to remove the edges that are
connected to v, but not to w. For the total editing degree we are thus summing over the amount
of uncommon neighbors in the graph. You can calculate the amount of uncommon neighbors if
you know the amount of common neighbors of two vertices. Calculating the editing degrees in a
graph is thus related to counting triangles in a graph. It is known that triangle counting can not
be faster than O(m

2
3), because there exists a graph that has this many triangles. This means

that calculating the editing degrees of the graph is also bounded by O(m
2
3). The complexity of

the kernel will thus not be O(mn) anymore if we recalculate the editing degrees each time we
apply a rule. Cheng and Meng [6] do not tell us how we can deal with this problem.

We found that one way to deal with this problem is to update the editing degree after each
rule application. We first calculate the editing degrees of the graph in O(mn) time and then
we can update the editing degree in O(n) for each edge removal. This will give us a total
complexity of O(mn + kn) = O(mn), which fits the complexity of the kernel.

For Rules 1-3 it is easy to update the editing degree. For these three rules we create a disjoint
clique and then remove it from the graph. The only edits that will affect the editing degree of
a vertex that remains in the graph are thus edge deletions. Updating the editing degree works
as follows: for each edge that we remove from the graph, we look at the symmetric difference
of the two neighbor lists. This can be done in O(n), because the neighbor-lists of the vertices
are sorted. Let v be the vertex that stays in the graph and let w be the vertex that will be
removed from the graph. If we find a neighbor of v that is not connected to w, then we will
lower the editing degree of that edge by one. Figure 4 illustrates this further. A neighbor of v
only has to be updated if it is an uncommon neighbor of v and w. If a neighbor q is a common
neighbor of v and w, then (q, w) will also always be removed from the graph. Otherwise w will
not be in a disjoint clique. The number of uncommon neighbors between v and q will thus not
change, so we do not have to update their editing degree.

In order to calculate the editing degree of a critical clique, we choose a vertex in the critical
clique and we sum over the editing degrees with its neighbors.0 If an edge is removed, then its
editing degree will not be counted anymore for the vertex. This mean that we can ignore the
change in editing degree caused by neighbors connected to w but not to v.

Updating the editing degree after applying Rule 4 is harder. Let K be a 4-applicable critical
clique and let u be the vertex that is connected to (|K| + |N(K)|)/2 vertices in N(K). For
Rule 4 we no not immediately remove K ∪N(K) from the graph, so we also have to update the

15

Figure 5: Example of how we will be updating the editing degree for Rule 4. K ∪N(K) just
got turned into a clique. S is the set of vertices connected to u. The dashed lines denotes
an edge that got removed from the graph and all numbers denote what will happen to the
editing degree of that edge. The editing degree of the edges between u and S will be equal to
(|K|+ |N(K)| − |S|) + d(u)− |S|, which is in this case equal to 3.

editing degree of K and N(K) as well. On top of that we now also have to deal with edges that
are added to the graph. We will update the editing degrees for K and N(K) as follows: the
editing degree of the edges between the vertices in K ∪N(K) all depend on u. Let S ⊆ N(K)
be the set for vertices connected to u. We will set the editing degree of the edges that have one
endpoint in S and one endpoint not in S to 1. The editing degree of all other edges between
the vertices in K ∪ N(K) will be 0. For the edges between u and S we know that we need
|K|+ |N(K)| − |S| edits to connect u with all the neighbors of the vertex. And on top of that
we need to remove d(u)− |S| edges that are connected to u, but not to the vertex. The editing
degree of the edges between u and S will thus be equal to (|K|+ |N(K)| − |S|) + d(u)− |S|.

What now remains is the editing degree of the edges between u and N(u) \ S. The editing
degree of these edges will only change if the other endpoint had a common neighbor in N(K).
For this we will add an exception in our updating algorithm for updating the editing degrees.
Let (v, w) be an edge that is removed from the graph where v ∈ N(K). If u is a common
neighbor of v and w, then we increase the editing degree of (u,w) by one. In all other cases we
still only decrement the editing degree for uncommon neighbors only. In Figure 5 we give an
example of how all the editing degrees change for Rule 4.

7.2 Calculating the Editing Degree in Parallel

In order to calculate the initial editing degrees we simply loop over all neighbors of an edge
and count the number of uncommon neighbors. We can do this because the neighbor lists are
sorted. This will take O(n) parallel time and O(mn) work. In order to make it more efficient
in our implementation we calculate the editing degree in the critical clique graph. For this you
have to count the sizes of the uncommon neighboring critical cliques. So instead of counting 1
for each uncommon neighbor, we count the size of the uncommon neighboring critical clique.

We know that the critical clique graph contains at most 4kopt vertices [16]. In the worst
case the number of edges in the critical clique graph is O(k2). This is the case in a complete
bipartite graph. All vertices in the complete bipartite graph will be in a different critical clique
and all edges will thus also be present in the critical clique graph. Finding the editing degrees
can thus be done in O(k) time with O(k3) work given the critical clique graph. Or if m < k2

then we do it with O(km) work.
The editing degree of an edge is a symmetric property. For an edge (u, v) we have that

pu(v) = pv(u). We can use this to do only half of the work. We do not have to calculate both
editing degrees separately.

16

The biggest problem when parallelizing the algorithm for updating the editing degrees is
that two edits can update the editing degree of the same edge at the same time. This also
happens in Figure 4, pv(x) gets updated by two edits: (w, v) and (v, z). We can circumvent this
problem by only considering one edit at a time. Let (u, v) be an edge that gets removed from
the graph. Here u will be the vertex that gets removed from the graph and v is the vertex that
stays in the graph. For all critical cliques we will check in parallel whether they are connected
to v, but not to u. If that is the case then we decrement the editing degree between that critical
clique and the critical clique of v. If we can check whether two vertices are connected in O(1)
time, then this will result in a total running time of O(k) with O(k2) work.

In our implementation we instead used atomic decrements to implement this. An atomic
decrement makes sure that a value is decremented in one clock cycle. If multiple atomic decre-
ments are called on the same value at the same time, then the decrements will happen after each
other. You will always end up with the correct value. Whenever two atomic decrements happen
at the same time, your program will slow down a bit. However for us it turned out that this
time loss was minimal. In return we get to process multiple edits at the same time. In parallel
we loop over the neighbors for each edit in O(n) parallel time and use an atomic decrement
if needed. This approach uses O(kn) work. With this approach we also do not need to be
able to tell whether two vertices are connected in O(1) time, which makes the implementation
easier. We can improve the complexity of this approach by only calculating and updating the
editing degrees between the critical cliques and not between every vertex. This will result in a
complexity O(k) parallel time and O(k2) work.

8 Applying the Rules in Parallel

We want to apply as many rules as possible simultaneously. In the sequential version of the
kernel we have to construct a critical clique graph or update it each time we apply a rule. Even
when there is more than one r-applicable critical cliques in the graph, the sequential algorithm
reconstructs the critical clique graph after each rule application. In this section we will look at
how we can apply more than one rule at the same time without conflicts.

All rules edit a critical clique and their neighbors. When there is no overlap in the neighbor
sets of two (or more) r-applicable critical cliques, then we can safely apply the rules at the
same time. More formally we want that (K1 ∪N(K1))∩ (K2 ∪N(K2)) = ∅ for two r-applicable
critical cliques K1 and K2. If this is the case for all r-applicable critical cliques, then we know
that we can apply the rules safely in parallel. In Section 8.1 we will show that this is always the
case for Rule 1 and 5. For Rules 2-4 there are one or two exceptions that we can work around.

In Section 8.2 we will discuss how we can apply the edits in parallel. One of the problems
there is that it is not straight forward to add edges to the graph in parallel.

8.1 Finding Edits in Parallel

Rules 1-4 all tell us to turn K ∪N(K) into a disjoint clique when a certain condition holds for
K. We first have to find all critical cliques for which the condition holds. Then we have to find
all the edits that we have to do in order to turn K ∪N(K) into a disjoint clique.

For Rule 1 we have to find all the critical cliques that are bigger than k. We can check in
O(1) parallel time and O(k) work whether this is the case for all critical cliques. Let K be a
critical clique with |K| > k. In order to find the edits we will mark all vertices in K and N(K)
with the unique identifier of K. We can then go over all edges in the graph in parallel and
set a flag when two endpoints of an edge have a different mark. Now all edges that should be
removed from the graph will have a flag. This takes O(1) parallel time and O(m) work. Edges
that should be added to the graph can easily be deduced from the fact that we are turning
K ∪N(K) into a disjoint clique, so we will just emit the vertices in K to signal this to the user.

17

Algorithm 4 generalizes this approach for Rules 1-4. We will use the output of Algorithm 4 in
Section 8.2 where will we discuss how we can apply these edits.

Algorithm 4: Find Edits in Parallel

Input: (C, G, r): G is the graph and C contains a critical clique id for each vertex. r
denotes the rule for which we want to find the edits.

Output: Flags for all edges that should be removed from the graph and flags for all
critical cliques that should be turned into disjoint cliques with their
neighbors.

1 do in parallel
2 CCFlags[i] = CheckRule(i, r); // Check whether a rule applies for critical clique i.
3 end
4 do in parallel
5 (v, w) = E[i]; // Get the edge.
6 if CCFlags[C[v]] then
7 VertexMarks[w] = C[v]; // Mark w with the critical clique id of v.
8 end
9 if CCFlags[C[w]] then

10 VertexMarks[v] = C[w]; // Mark v with the critical clique id of w.
11 end

12 end
13 do in parallel
14 (v, w) = E[i]; // Get the edge.
15 EdgeFlag[i] = VertexMarks[v] != VertexMarks[w];

16 end
17 return (EdgeFlags, CCFlags);

8.1.1 Rule 1

Suppose that a critical clique containing vertex v and w is adjacent to two critical cliques: K1

and K2. Algorithm 4 will not work when K1 and K2 are both r-applicable critical cliques. v
and w will both be marked with K1 and K2 by two different processors, so we do not know for
sure which mark they will get. If v ends up with a mark for K1 and w ends up with a mark for
K2 then the edge between v and w will be flagged to be removed. In this case our algorithm
made a mistake. (v, w) should never be removed from the graph, because it is an edge within
a critical clique. In order to avoid this situation we have to show that a vertex v can only be
adjacent to a single r-applicable critical clique. Theorem 2 tells us that we can safely apply
Rule 1 in parallel with our algorithm.

Theorem 2. A vertex v can only be connected to at most one critical clique with a size larger
than k.

Proof. Consider a critical clique K1 with |K1| > k and a vertex v ∈ N(K1). Assume that v
is adjacent to another critical clique K2 with |K2| > k. We have to turn K1 ∪ N(K1) into a
disjoint clique according to Rule 1.

If K2 6⊂ N(K1) then we have to remove all edges between v and K2 from the graph. This
will result in more than k edits, because |K2| > k. We will thus never find a solution when
K2 6⊂ N(K1).

Now consider the other case: K2 ⊆ N(K1). By definition of a critical clique, we know
that K1 has at least one different neighboring critical clique compared to K2. There either
is a critical clique that is connected to K2 and not to K1. In which case we have to remove

18

Figure 6: Situation in Theorem 4. K1 and K2 are not connected and both have w as a
neighbor. |K| + |N(K)| >

∑
v∈N(K) pK(v) holds for both critical cliques. K1 and K2 can not

have any other neighbors without violating Theorem 3.

those edges from the graph, resulting in more than k edits. Or there is a critical clique that is
connected to K1, but not to K2. In which case we have to add more than k edges in order to
connect it to K2. We will thus never find a solution when K2 ⊆ N(K1).

Because we need more than k edits in both cases, we can conclude that Theorem 2 holds.

8.1.2 Rule 2

For Rules 2-4 we need to show that a vertex v can only be adjacent to exactly one critical clique
with |K| + |N(K)| >

∑
v∈N(K) pK(v). However, it turns out that a vertex can be adjacent to

more than one critical clique for which this condition holds in two cases:

1. If a vertex is the only neighbor of two critical clique that have the same size, then |K|+
|N(K)| >

∑
v∈N(K) pK(v) holds for both critical cliques (see Figure 6).

2. If a vertex is adjacent to two critical cliques that are also adjacent to each other. It is not
always the case here, but it is possible. See Figure 2 for an example. Critical clique 1 and
critical clique 2 are connected and they both satisfy |K|+ |N(K)| >

∑
v∈N(K) pK(v).

We will first show that apart from these two exceptions a vertex v can not be adjacent to
more than one critical clique with |K| + |N(K)| >

∑
v∈N(K) pK(v). We will then explain how

we can still apply the rules for these two exceptions in parallel.
Cheng and Meng already showed that Theorem 3 holds in their proof of Corollary 2.5 in [6].

We will briefly repeat the proof here, because Corollary 2.5 in [6] also assumes that K ≥ N(K),
which is not needed for us. We need Theorem 3 to prove Theorem 4. Theorem 3 tells us that
the editing degree of a vertex with respect to a critical clique can not be too large.

Theorem 3. If |K|+ |N(K)| >
∑

v∈N(K) pK(v), then for all v ∈ N(K) : pK(v) ≤ |K|.

Proof. Cheng and Meng [6] already showed this in their proof for Corollary 2.5. We will repeat
it here briefly:

19

pK(v) =
∑

u∈N(K)

pK(u) −
∑

u∈N(K)\{v}

pK(u)

≤
∑

u∈N(K)

pK(u) − (|N(K)| − 1) (Lemma 1 : pK(u) ≥ 1)

≤ (|K|+ |N(K)| − 1) − (|N(K)| − 1) (|K|+ |N(K)| >
∑

v∈N(K)

pK(v))

= |K|

Theorem 4. A vertex w can be adjacent to at most one critical clique with |K| + |N(K)| >∑
v∈N(K) pK(v), unless w is the only neighbor of two different critical cliques or the neighboring

critical cliques are neighbors of each other.

Proof. Consider a vertex w and a critical clique K1 with w ∈ N(K1) and |K1| + |N(K1)| >∑
v∈N(K1)

pK1(v). Consider another critical clique K2 also with w ∈ N(K2) and |K2| +
|N(K2)| >

∑
v∈N(K2)

pK2(v).
Assume that K1 and K2 are not adjacent. By Theorem 3, we know that pK1(w) ≤ |K1|.

We know that pK1(w) is at least |K2|, because K1 and K2 are not adjacent. Therefore we can
conclude that |K2| ≤ |K1|. Via the same reasoning we know that pK2(w) ≥ |K1|, so |K1| ≤ |K2|.
When we combine these two inequalities, we get that |K1| = |K2|.

We will now show that w is the only neighbor of K1 and K2. Suppose there is another
neighbor v. Without loss of generality we will assume that it is connected to K1. Consider the
following two cases:

• v is connected to w: pK2(w) will become bigger than |K2| in this case, which is not allowed
according to Theorem 3.

• v is not connected to w: pK1(w) will become bigger than |K1| in this case. This is also
not allowed according to Theorem 3.

From this we can conclude that v can not exist, and thus that w is the only neighbor of K1 and
K2.

Let K1 be a critical clique that is adjacent to all neighbors of another critical clique: K2.
This situation implies that |K| ≥ |N(K)| can only hold for one of the two critical cliques:

• If |K2| > |K1|, then we have that |K1| < |N(K1)| (because K2 ⊂ N(K1)).

• If |K2| < |K1| we have that |K2| < |N(K2)| (because K1 ⊆ N(K2)).

• If |K1| = |K2|, then we also have that |K1| < |N(K1)|, because K1 needs to have at least
one neighbor that is different from K2.

This means that a vertex can only be adjacent to one critical clique with |K| + |N(K)| >∑
v∈N(K) pK(v) and K ≥ N(K) according to Theorem 5. Theorem 4 and 5 thus tell us that we

can safely apply Rule 2 in parallel unless a vertex is the only neighbor of two critical cliques of
the same size. Figure 7 shows the situation in Theorem 5. We will show that x1 or x2 must be
zero which means that either K1 or K2 is connected to all neighbors of the other.

Theorem 5. Consider two critical cliques K1 and K2 where |K| + |N(K)| >
∑

v∈N(K) pK(v)
holds for both critical cliques. If K2 ⊂ N(K1), then one of the two critical cliques is connected
to all neighbors of the other.

20

Figure 7: Situation in Theorem 5. K1 and K2 are neighbors and |K| + |N(K)| >∑
v∈N(K) pK(v) holds for both critical cliques. x1 is the number of vertices connected to K1,

but not to K2. x2 is the number of vertices connected to K2, but not to K1. y is the number
of vertices connected to both K1 and K2.

Proof. Let x1 = |N(K1) \N(K2)|, x2 = |N(K2) \N(K1)| and y = |N(K1) ∩N(K2)|. We can
now define the sizes of the critical cliques plus their neighbors as follows for K1 and K2:

|K1|+ |N(K1)| = |K1|+ |K2|+ x1 + y (1)

|K2|+ |N(K2)| = |K2|+ |K1|+ x2 + y (2)

For the total editing degree of both critical cliques we can now also deduce a minimal value. For
every vertex in N(K1) \N(K2) the editing degree of K1 increases with 2|K2|. Additionally for
every vertex in N(K2) \N(K1) the editing degree of K1 increases with at least 1. Finally the
editing degree increases by at least one for every vertex in N(K1) ∩ N(K2) (Lemma 1). This
yields the following lower bounds for the editing degrees for K1 and K2:∑

v∈N(K1)

pK1(v) ≥ y + 2x1 · |K2|+ x2 (3)

∑
v∈N(K2)

pK2(v) ≥ y + 2x2 · |K1|+ x1 (4)

Since the editing degree should be smaller than |K|+ |N(K)| for both critical cliques, we get:

y + 2x1 · |K2|+ x2 < |K1|+ |K2|+ x1 + y (5)

y + 2x2 · |K1|+ x1 < |K2|+ |K1|+ x2 + y (6)

Adding these inequalities together gives us the following inequality:

2x1 · |K2|+ 2x2 · |K1| + x2 + x1 + y < 2|K2|+ 2|K1| + x2 + x1 + y (7)

2x1 · |K2|+ 2x2 · |K1| < 2|K2|+ 2|K1| (8)

This implies that either x2 = 0 or x1 = 0 because one of the two must be at least 1 in order for
K1 and K2 to be different critical cliques.

Without loss of generality we will assume that x1 ≥ 1 and x2 = 0. It now directly follows
from equations 1 and 2 that |K1| > |K2|, so |K2| < |N(K2)|.

The only exception for Rule 2 is thus when a vertex w is the only neighbor of two critical
cliques for which Rule 2 applies. Let K1 and K2 be such critical cliques. We can work around
this situation by making sure that we either remove all edges between K1 and w or all edges
between K2 and w. Algorithm 4 already does this for us. w will be marked with either K1 or
with K2. Because w is the only neighbor of K1 and K2 there will not be any edges that are
faultily removed.

21

8.1.3 Rule 3 and 4

Theorem 4 tells us that we can safely apply Rules 3 and 4 in parallel under two conditions:

• The input should not contain a (sub)graph that consists of two identical critical cliques
(K1 and K2) connected by a single vertex w.

• We can not have two neighboring critical cliques with |K|+ |N(K)| >
∑

v∈N(K) pK(v).

We do not have to worry about the first condition, because both Rule 3 and 4 require that
|K| < |N(K)| which is not the case in that situation.

In order to work around the second condition we can use Theorem 5. When two neighboring
critical cliques both satisfy |K| + |N(K)| >

∑
v∈N(K) pK(v), then one of then is connected to

all neighbors of the other. This means that when there are multiple (two or more) neighboring
critical cliques with |K| + |N(K)| >

∑
v∈N(K) pK(v) then there is exactly one of them that

is adjacent to all neighbors of the others. Additionally we know that this will be the largest
critical clique.

As an extra step for Algorithm 4 we thus need to make sure that when a critical clique is 3-
or 4-applicable and it has a neighboring critical clique that is also 3- or 4-applicable, we only
set the flags if it is the largest critical clique. For this we will add an extra step after Line 3 in
Algorithm 4. We will look at all edges in the critical clique graph in parallel. If for a critical
clique edge (K1,K2) both K1 and K2 are 3- or 4-applicable then we remove the flag of the
smallest critical clique. This can be done in O(1) parallel time with O(m) work.

For Rule 3 it is always the best option to pick the largest critical clique. It will always result
in more vertices that we can remove from the graph, because it is adjacent to all neighbors of
the other neighboring 3- or 4-applicable critical cliques. For Rule 4 however we do not remove
the vertices from the graph. It might therefore be better to apply Rule 3 first on a neighboring
3-applicable critical clique, so that we can remove the vertices earlier. However, Theorem 6 tells
us that the largest critical clique is never 4-applicable. This means that by picking the largest
critical clique we will always remove the maximum number of vertices from the graph.

Theorem 6. Let K1 and K2 be two adjacent critical cliques that both satisfy |K| + |N(K)| >∑
v∈N(K) pK(v). If |K1| > |K2| then K1 can not be 4-applicable.

Proof. By Theorem 5 we already know that K1 is adjacent to all neighbors of K2. Let x denote
the number of vertices connected to K1, but not to K2 and let y denote the number of vertices
connected to both K1 and K2. We know that the editing degree of K2 is at least y, because
all common neighbors of K1 and K2 must be connected to at least one other critical clique.
Otherwise these vertices would be in the same critical clique as K2. Additionally we need to
remove x|K1| edges for the editing degree of K2. We thus have that:

|K2|+ |K1|+ y > pK2 > x|K1|+ y (9)

Because |K1| > |K2| this implies that x = 1. For the editing degree of K1 we need to add
2x(K2 + y) edges. If we use the fact that x = 1 we have that:

|K1| + |K2| + x + y > 2x(|K2| + y) (10)

|K1| + |K2| + 1 + y > 2|K2| + 2y (11)

|K1| + 1 > |K2| + y (12)

Because |K2| ≥ 1 we now know that |K1| > y. In combination with the fact that x = 1
this means that a vertex u can be connected to at most |K1| neighbors of K1. u can thus
never be connected to more than (|K1| + |N(K1)|)/2 neighbors of K1, so K1 can never be
4-applicable.

22

For Rules 3 and 4 we also have to check whether there is a vertex u that is connected to
more than (|K|+ |N(K)|)/2 neighbors of K. We can find these type of vertices in the following
way: first we sort the neighbors of all vertices based on their critical clique mark. If we use the
parallel radix sort algorithm we discussed in Section 6.2.1, then we can directly see how many
times a mark occurs from the min- and max-values. From there we can easily flag a critical
clique if this count exceeds (|K| + |N(K)|)/2. This last step can be done in O(1) time with
O(m) work. Sorting will cost us O(log n) time and O(m) work.

An alternative for finding the u vertex is to go over the neighbors of each 3- or 4-applicable
critical clique. We will have an array of size k for each critical clique that we will use to count
the occurrences of the neighbors. We will look at all critical cliques that are not marked with
their own identifier. Lets say that a critical clique c1 is marked with critical clique c2. We will
go over the neighbors of c1 and add one to the correct index in the array of c2. For this we
will use an atomic increment. If at any point the count of a vertex exceeds (|K| + |N(K)|)/2
for c2, then we found our u vertex. It turns out that using the atomic increments is a faster
method than using the radix sort in practice. However, it has a runtime of O(n) with O(kn)
work, which is worse than the radix sort approach.

8.1.4 Rule 5

Rule 5 also tells us to also look at critical cliques that have |K| < |N(K)| and |K|+ |N(K)| >∑
v∈N(K) pK(v). Using the fact that we will only use Rule 5 when the other rules can not be

applied, we know that N2(K) only contains a single vertex. Cheng and Meng already showed
this in [6]. We also know that K ∪N(K) forms a complete sub-graph for a 5-applicable critical
clique, because otherwise we could have applied Rule 3 or 4. It is then not hard to see that
there will never be two adjacent 5-applicable critical cliques. We can thus also apply Rule 5
safely in parallel.

In order to find the edits for Rule 5 we have to select |K| vertices from N(K). We choose to
always pick the first |K| vertices from N(K). In parallel we do this by flagging the vertices in
N(K) if their location in the adjacency list is smaller than |K|. We already know that K and
N(K) form a complete sub graph. So we only have to remove the edges between the selected
vertices and N2(K). We will therefore flag all edges that are connected to a selected vertex and
a vertex in N2(K). This all can easily be done in O(1) parallel time with O(m) work.

8.2 Editing the Graph in Parallel

For Rules 1-3 we remove K and N(K) from the graph after we turned it into a disjoint clique.
In our internal representation of the graph we thus do not have to add any edges. Just emitting
that an edge is added is enough. For Rules 1-3 we can therefore simply remove all edges and
vertices from memory that are connected to a r-applicable critical clique.

For Rule 4 however we can not immediately remove K and N(K) from the graph. We
thus have to actually add edges to our graph. This imposes some problems. How do we for
example know where we place the new edge in memory? We have to avoid conflicts between
two processors that want to add an edge to the same vertex. A processor that adds an edge to
the end of an adjacency list has to be sure that it is the only one that is placing an edge there.
Otherwise it can possibly override the added edge of another processor.

We would also have to allocate memory for edges that we will maybe add to the graph, but
how many space should we allocate so that all edits will fit? The best we can do is allocate
twice the number of edges that are in the input graph. If we add more than d(v) neighbors
to a vertex v, then it would be better to just remove all the edges connected to v. We will
therefore never find a solution where we add more than d(v) neighbors to v. From a practical
point of view it might not be ideal to allocate twice as much memory as we need. Most of the

23

allocated space will never be used, because we will add at most k edges to the graph and we
will be allocating O(m) more memory.

We came up with a way of adding edges to the graph without using additional memory. In
fact after applying a rule we will always use less memory than we did before the rule application.
We will use the concept of twin vertices in order to do this. Twin vertices are vertices with
the same neighbors. In the literature there are two types of twin vertices. True twins and false
twins. True twins are connected to each other and false twins are not connected to each other.
Twins are also related to modular decomposition (see Section 6). True twins are vertices that
you can find in a Type I module. False twins can be found in Type II and Type III modules.
We are only interested in true twins. True twins have the same set of neighbors, so we can use
the adjacency list of only one of the two vertices to store the connections of both vertices. For
all vertices in the graph we will have a pointer to an adjacency list. By letting twin vertices
point to the same neighbor list we will use less memory.

When we apply a rule we have to turn K ∪ N(K) into a disjoint clique. This means that
all vertices in K ∪N(K) will get the same set of neighbors, they all become true twins of each
other. We also already know what neighbor set they will all get. Namely the same set as one of
the vertices in K. We can thus adjust the pointers of the neighbor-lists of all vertices in N(K)
to an adjacency list of a vertex in K. After we do this K ∪N(K) will be a disjoint clique.

For Rule 4 however this is a bit more complicated. We can not remove the connections
between N(K) and the vertex u. With Theorem 7 we show that there exists a vertex w ∈ N(K)
which connected to all other vertices in N(K) and also connected to u. This means that we can
adjust the pointers of all vertices in N(K) that are connected to u to the adjacency list of w.
The pointers of all other vertices in N(K) will still be changed to the adjacency list of a vertex
in K.

Theorem 7. If |K| < |N(K)| and |K| + |N(K)| >
∑

v∈N(K) pK(v) and there exists a vertex
u ∈ N2(K) with |N(u)∩N(K)| > (|K|+|N(K)|)/2, then there is at least one vertex in v ∈ N(K)
with K ∪N(K) ∪ {u} ⊆ N(v).

Proof. Let S ⊆ N(K) be the set of vertices that is connected to u. Note that |S| > (|K| +
|N(K)|)/2. If there does not exist a vertex in S that is connected to all vertices in N(K), then
the editing degree will be at least 2 for every vertex in S. We need one edit to remove the
connection with u and we need at least one edge addition to connect the vertex with all vertices
in N(K). This will add up to at least 2 |K|+|N(K)|

2 = |K| + |N(K)| edits. This contradicts the
fact that |K|+ |N(K)| >

∑
v∈N(K) pK(v).

All vertices that now share an adjacency list are vertices within the same critical clique.
Vertices that are connected to u form a critical clique and the rest of the vertices in K ∪N(K)
also form a critical clique. From [16] and [6] we already know that edges within a critical clique
will never be removed from the graph. Vertices that share an adjacency list will thus always
stay vertices with the same neighbors lists. Which means that we can safely do this.

The old adjacency lists of the vertices that now point another adjacency list can be removed
from memory. A 4-applicable critical clique always has at least two neighbors, because Rule
4 requires that |K| < |N(K)|. This means that we we will always adjust at least one pointer.
Each time after we apply Rule 4 we will thus use less memory.

9 Complexity of the kernel

Our algorithm will not just apply one rule at the time. It will apply as many rules as possible
in parallel. This means that we do not always have to update the critical cliques n times.
In practice it might even happen that we only have to update the critical cliques a constant

24

Figure 8: Example of a graph that only allows us to apply one rule at a time. Rule 2 can be
applied to only the right (or left) most critical clique. If we remove it from we graph we can
again apply Rule 2 only to the right (or left) most critical clique.

Figure 9: Example of a graph that only allows us to apply one rule at a time. Rule 2 can be
applied to only the left most critical clique of size 15. If we remove it from we graph we can
again apply Rule 2 only to the left most critical clique. Each time we remove the critical clique
and his neighbor we have to update 1

2n editing degrees.

number of times. In this case we can thus end up with a total amount of work equal to
O((n + m) log log (n + m)) when we use Hagerup’s [18] algorithm to find the critical cliques.

There are however still situations where we can only apply one rule each iteration. Consider
the graph in Figure 8. We create a chain-like graph of alternating critical cliques of size 3 and 1.
In this graph we can only apply Rule 2 on the left most and the right most critical clique. We
can make this chain as long as we want. Each time we can thus apply Rule 2 twice and remove
8 vertices from the graph. We will thus iterate n

8 times. This shows that our algorithm does
not always iterate a constant number of times. However the number edges we have to look at in
order to update the critical cliques or editing degrees are not O(m) in this case. Removing an
edge can only change the critical clique of an adjacent vertex and its neighbors. In the example
of Figure 8 we have to look at at most 8 vertices in order to update the critical cliques. This
could still mean that we can get away with a constant amount of work for each rule application.

Figure 9 shows a graph where we also apply the rules O(n) times. Each iteration we can
only remove one of the critical cliques of size 15. Unlike the graph in Figure 8 however we also
need O(n) work to update the editing degrees of the vertices in the top part of the graph. For
this example we could use the kernel of Gramm et al. [15] which we briefly discussed in Section
4 to get rid of the vertices at the top first.

Our parallel algorithm uses O(n log n) parallel time and O(mn) work in total. This is mainly
due to the fact that there are still situations where the rules are applied O(n) times. The most
expensive step for applying the rules is finding the u vertex for Rule 3 and 4 which takes O(log n)
parallel time. The total parallel time could definitely be lower if we figure out a way to always
apply the rules a constant number of times. Unfortunately we were unable to adjust the kernel
to make sure this always happens. If we had figured this out then it would also have been
beneficial to look at faster methods for calculating and updating the editing degrees. Right now
the total parallel run time for this is O(k).

25

10 Results

The bio-informatics department of the Friedrich-Schiller University Jena gathered evaluation
data from different works that focussed on the cluster editing problem. The data sets can
be found on their website: https://bio.informatik.uni-jena.de/data/#cluster_editing_
data. We also used these data sets to evaluate our implementation. In total these data sets
have multiple gigabytes of input graphs. It contains graphs with up to 5000 vertices and 11
million edges. Most of the data is randomly generated.

We decided to only look at graphs with more than 500 vertices. All graphs with less than
500 vertices all take roughly the same amount of time, so they are not very interesting to look
at. Most of the graphs contain less than 4 million edges. Only 77 input graphs contain more
than 4 million edges. We decided to look at these 77 graphs separately from the rest of the
data.

The machine we gathered our results on has the following specifications: CPU: Intel (R)
Core (TM) i7-6700HQ @ 2.60 GHz, GPU: GeForce GTX 960 M. We used a lightweight Linux
distribution (Manjaro XFCE) as our operating system.

In Figure 10 we show the running time of each part of our algorithm for graphs with less
than 4 million edges. You can clearly see two linear trends when we are sorting the neighbors
of the vertices. If the neighbors in a graph are already close to being sorted, then the neighbors
sort takes a significantly less amount of time. This seems also to be the case for the critical
clique graph construction. When the vertices in the graph are already close to being sorted,
then the critical clique graph construction finishes faster.

Figure 10 also shows the time our algorithm takes to apply the rules. Again there seem to
be two different trends. The time it takes to update of the critical clique graph and the editing
degrees are included in the time it takes to apply the rules. If a rule tells us to edit the graph,
then the rule applications take significantly more time.

The bottleneck for our algorithm currently is the calculation of the editing degree. In Figure
10 you can clearly see spikes in the runtime for certain graphs. We suspect that the structure
of these graphs causes these spikes in runtime. These spikes mostly also matches the spikes in
the total runtime, which can be seen in Figure 11.

The structure of the critical clique graph has an impact on the calculations for the editing
degree. If the critical clique graph is very similar to the original graph then it will take more
time to calculate the editing degrees. In order to see whether this would explain the spikes in
runtime, we plotted the edges in the critical clique graph against the runtime in Figure 12 You
can see that this does not fully explain the spikes in runtime. There are still spikes visible and
our algorithm is even relatively fast for the biggest critical clique graph.

The spikes could also have something to do with how a GPU works. We already briefly spoke
about this in Section 6.2. A GPU divides the work into work-groups. Only a limited number
of work-groups can be active at the same time and within a work-group the same calculations
are always performed at the same time. This means that if you loop over an array in your
GPU code, all processors in the work-group have to perform the same amount of iterations.
The entire work-group will be done after the last thread is done with all its iterations. A new
work-group can only start after that happens. In our case this means that if we are unlucky
and all vertices with a high degree end up in a different work-group, we will use considerably
more time compared to when all high degree vertices are processed in the same work group.
One possible way to help the GPU with this is to sort the critical clique graph based on the
degrees before calculating the editing degree. Unfortunately this was not very easy to do with
our current implementation.

In Figure 13 we show the total runtime of all input graphs with more than 4 million edges.
Here we can also see spikes in the runtime as well. You can clearly see that the calculation
of the editing degree takes the most time. The construction of the critical clique graph takes

26

https://bio.informatik.uni-jena.de/data/#cluster_editing_data
https://bio.informatik.uni-jena.de/data/#cluster_editing_data

Figure 10: The runtime of different parts of our kernel. Upper left figure shows the runtime
of sorting all neighbors in the graph. Upper right figure shows the time it takes to find the
critical cliques. The bottom left figure shows the time we spend applying the rules. The time
for updating the critical cliques and the editing degree is also included. Finally we show how
much time it takes to calculate the editing degree in the bottom right figure.

27

Figure 11: Total runtime of the parallel kernel vs the number of edges in the input graph.

Figure 12: All the runtimes for the different parts of our algorithm for bigger graphs versus
the amount of edges in the critical clique graph.

28

Figure 13: All the runtimes for the different parts of our algorithm for bigger graphs.

relatively less time. Figure 13 also clearly shows that whenever one part of our algorithm uses
more time, other parts take more time as well. This makes us believe that it is indeed the
structure of that particular graph that makes our algorithm run slower.

In Figure 14 we show the time our algorithm takes for each rule. You can clearly see that
Rule 3 and 4 take the most amount of time. Rule 1 and Rule 2 use roughly the same amount
of time. This is as expected, because the complexity of their implementations are very similar.
Rule 5 takes the least amount of time. This is because Rule 5 is only applied when the others
can not be applied anymore. Figure 15 shows how the rules compare to each other for the bigger
graphs. Here you can clearly see that Rule 3 and 4 take the most amount of time.

In Figure 16 we show the distribution of how many times the rules are applied. Here we
only considered the input graphs that gave us at least one edit. We count a rule application if
we check whether a rule applies, not just when we actually find edits. The maximum amount of
rule applications is just thirteen, but in most cases the rules are applied less than eight times.
Eight rule applications correspond to checking each rule twice. This confirms our suspicion that
the rules are applied only a constant number of times in practice. This means that in practice
our algorithm should use O(n) time instead of O(n log n) time.

11 Conclusions

We created a parallel version of Cheng and Meng’s [6] 2k kernel for the Cluster Editing
problem. We showed that all rules can be applied in parallel without conflicts and that by doing
so we always remove the maximum amount of vertices from the graph after a rule application.
We also improved parts of the original kernel by coming up with a way to update the critical
cliques and the editing degree instead of recalculating them after each rule application. We also
implemented an efficient way to find critical cliques in a graph, which could also be used to find
type I modules for modular decomposition. For our implementation of our kernel we showed

29

Figure 14: The amount of time we spend per rule. Top left figure shows Rule 1. Top right
figure shows Rule 2. Bottom left figure shows Rule 3 and 4. Bottom right figure shows Rule 1.

30

Figure 15: Times spend on applying the rules for bigger graphs.

Figure 16: Distribution of the amount of rule applications for graphs where we found at least
one edit.

31

that the rules are applied a constant number of times in practice and that the total runtime
scales linearly with the number of edges in the graph. Our implementation also guarantees that
after each rule application we use the same amount of memory or less, even when we add edges
to the graph.

There are still ways our algorithm could be improved. From a theoretical point of view
you could still look further at finding ways to ensure that the rules are only applied a constant
number of times. From a practical point of view our implementation could still be improved
as well. Mainly the calculations of the editing degree could be done faster. For this you could
look at more efficient triangle counting algorithms as we explained in Section 7. Although we
tried to optimize our implementation as much as possible, we do believe that there are still a
number of ways to improve the speed.

References

[1] Nikhil Bansal, Avrim Blum, and Shuchi Chawla. “Correlation clustering”. In: Machine
Learning 56.1-3 (2004), pp. 89–113. doi: 10.1023/B:MACH.0000033116.57574.95. url:
https://doi.org/10.1023/B:MACH.0000033116.57574.95.

[2] Timo Bingmann, Andreas Eberle, and Peter Sanders. “Engineering Parallel String Sort-
ing”. In: Algorithmica 77.1 (2017), pp. 235–286. doi: 10.1007/s00453-015-0071-1. url:
https://doi.org/10.1007/s00453-015-0071-1.

[3] Guy E. Blelloch. Vector Models for Data-Parallel Computing. MIT Press, 1990. isbn:
0-262-02313-X.

[4] Sebastian Böcker. “A golden ratio parameterized algorithm for Cluster Editing”. In: J.
Discrete Algorithms 16 (2012), pp. 79–89. doi: 10.1016/j.jda.2012.04.005. url:
https://doi.org/10.1016/j.jda.2012.04.005.

[5] Yixin Cao and Jianer Chen. “Cluster Editing: Kernelization based on edge cuts”. In:
Algorithmica 64.1 (2012), pp. 152–169. doi: 10.1007/s00453-011-9595-1. url: https:
//doi.org/10.1007/s00453-011-9595-1.

[6] Jianer Chen and Jie Meng. “A 2k kernel for the cluster editing problem”. In: J. Comput.
Syst. Sci. 78.1 (2012), pp. 211–220. doi: 10.1016/j.jcss.2011.04.001. url: https:
//doi.org/10.1016/j.jcss.2011.04.001.

[7] Elias Dahlhaus. “Efficient parallel modular decomposition (Extended Abstract)”. In: Graph-
Theoretic Concepts in Computer Science, 21st International Workshop, WG ’95, Aachen,
Germany, June 20-22, 1995, Proceedings. 1995, pp. 290–302. doi: 10.1007/3- 540-

60618-1_83. url: https://doi.org/10.1007/3-540-60618-1%5C_83.

[8] Peter Damaschke. “Parameterized enumeration, transversals, and imperfect phylogeny
reconstruction”. In: Theor. Comput. Sci. 351.3 (2006), pp. 337–350. doi: 10.1016/j.
tcs.2005.10.004. url: https://doi.org/10.1016/j.tcs.2005.10.004.

[9] Andrew Davidson, David Tarjan, Michael Garland, and John D. Owens. “Efficient parallel
merge sort for fixed and variable length keys”. In: Proceedings of Innovative Parallel
Computing (InPar 12). 2012. doi: 10.1109/InPar.2012.6339592.

[10] Frank K. H. A. Dehne, Michael A. Langston, Xuemei Luo, Sylvain Pitre, Peter Shaw,
and Yun Zhang. “The Cluster Editing problem: Implementations and experiments”. In:
Parameterized and Exact Computation, Second International Workshop, IWPEC 2006,
Zürich, Switzerland, September 13-15, 2006, Proceedings. 2006, pp. 13–24. doi: 10.1007/
11847250_2. url: https://doi.org/10.1007/11847250%5C_2.

32

https://doi.org/10.1023/B:MACH.0000033116.57574.95
https://doi.org/10.1023/B:MACH.0000033116.57574.95
https://doi.org/10.1007/s00453-015-0071-1
https://doi.org/10.1007/s00453-015-0071-1
https://doi.org/10.1016/j.jda.2012.04.005
https://doi.org/10.1016/j.jda.2012.04.005
https://doi.org/10.1007/s00453-011-9595-1
https://doi.org/10.1007/s00453-011-9595-1
https://doi.org/10.1007/s00453-011-9595-1
https://doi.org/10.1016/j.jcss.2011.04.001
https://doi.org/10.1016/j.jcss.2011.04.001
https://doi.org/10.1016/j.jcss.2011.04.001
https://doi.org/10.1007/3-540-60618-1_83
https://doi.org/10.1007/3-540-60618-1_83
https://doi.org/10.1007/3-540-60618-1%5C_83
https://doi.org/10.1016/j.tcs.2005.10.004
https://doi.org/10.1016/j.tcs.2005.10.004
https://doi.org/10.1016/j.tcs.2005.10.004
https://doi.org/10.1109/InPar.2012.6339592
https://doi.org/10.1007/11847250_2
https://doi.org/10.1007/11847250_2
https://doi.org/10.1007/11847250%5C_2

[11] Aditya Deshpande and P. J. Narayanan. “Can GPUs sort strings efficiently?” In: 20th
Annual International Conference on High Performance Computing, HiPC 2013, Ben-
galuru (Bangalore), Karnataka, India, December 18-21, 2013. 2013, pp. 305–313. doi:
10.1109/HiPC.2013.6799129. url: https://doi.org/10.1109/HiPC.2013.6799129.

[12] Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Springer-Verlag,
1999.

[13] Michael R. Fellows, Michael A. Langston, Frances A. Rosamond, and Peter Shaw. “Effi-
cient parameterized preprocessing for Cluster Editing”. In: Fundamentals of Computation
Theory, 16th International Symposium, FCT 2007, Budapest, Hungary, August 27-30,
2007, Proceedings. 2007, pp. 312–321. doi: 10.1007/978-3-540-74240-1_27. url:
https://doi.org/10.1007/978-3-540-74240-1%5C_27.

[14] Michael Fellows, Michael Langston, Frances Rosamond, and Peter Shaw. “Polynomial-
time linear kernelization for Cluster Editing”. In: Fundamentals of Computation Theory,
16th International Symposium, FCT 2007, Budapest, Hungary, August 27-30, 2007, Pro-
ceedings. 2007.

[15] Jens Gramm, Jiong Guo, Falk Hüffner, and Rolf Niedermeier. “Graph-Modeled data clus-
tering: Fixed-Parameter algorithms for Clique Generation”. In: Algorithms and Complex-
ity, 5th Italian Conference, CIAC 2003, Rome, Italy, May 28-30, 2003, Proceedings. 2003,
pp. 108–119. doi: 10.1007/3-540-44849-7_17. url: https://doi.org/10.1007/3-
540-44849-7%5C_17.

[16] Jiong Guo. “A more effective linear kernelization for cluster editing”. In: Theor. Comput.
Sci. 410.8-10 (2009), pp. 718–726. doi: 10.1016/j.tcs.2008.10.021. url: https:
//doi.org/10.1016/j.tcs.2008.10.021.

[17] Michel Habib, Fabien de Montgolfier, and Christophe Paul. “A simple linear-time modular
decomposition algorithm for graphs, using order extension”. In: Algorithm Theory - SWAT
2004, 9th Scandinavian Workshop on Algorithm Theory, Humlebaek, Denmark, July 8-
10, 2004, Proceedings. 2004, pp. 187–198. doi: 10.1007/978-3-540-27810-8_17. url:
https://doi.org/10.1007/978-3-540-27810-8%5C_17.

[18] Torben Hagerup. “Optimal parallel string algorithms: sorting, merging and computing
the minimum”. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory
of Computing, 23-25 May 1994, Montréal, Québec, Canada. 1994, pp. 382–391. doi: 10.
1145/195058.195202. url: https://doi.org/10.1145/195058.195202.

[19] Wen-Lian Hsu and Tze-Heng Ma. “Substitution decomposition on chordal graphs and ap-
plications”. In: ISA ’91 Algorithms, 2nd International Symposium on Algorithms, Taipei,
Republic of China, December 16-18, 1991, Proceedings. 1991, pp. 52–60. doi: 10.1007/3-
540-54945-5_49. url: https://doi.org/10.1007/3-540-54945-5%5C_49.

[20] Nadathur Satish, Mark J. Harris, and Michael Garland. “Designing efficient sorting al-
gorithms for manycore GPUs”. In: 23rd IEEE International Symposium on Parallel and
Distributed Processing, IPDPS 2009, Rome, Italy, May 23-29, 2009. 2009, pp. 1–10. doi:
10.1109/IPDPS.2009.5161005. url: https://doi.org/10.1109/IPDPS.2009.5161005.

[21] Marc Tedder, Derek G. Corneil, Michel Habib, and Christophe Paul. “Simpler linear-time
modular decomposition via recursive factorizing Permutations”. In: Automata, Languages
and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, July
7-11, 2008, Proceedings, Part I: Tack A: Algorithms, Automata, Complexity, and Games.
2008, pp. 634–645. doi: 10.1007/978-3-540-70575-8_52. url: https://doi.org/10.
1007/978-3-540-70575-8%5C_52.

33

https://doi.org/10.1109/HiPC.2013.6799129
https://doi.org/10.1109/HiPC.2013.6799129
https://doi.org/10.1007/978-3-540-74240-1_27
https://doi.org/10.1007/978-3-540-74240-1%5C_27
https://doi.org/10.1007/3-540-44849-7_17
https://doi.org/10.1007/3-540-44849-7%5C_17
https://doi.org/10.1007/3-540-44849-7%5C_17
https://doi.org/10.1016/j.tcs.2008.10.021
https://doi.org/10.1016/j.tcs.2008.10.021
https://doi.org/10.1016/j.tcs.2008.10.021
https://doi.org/10.1007/978-3-540-27810-8_17
https://doi.org/10.1007/978-3-540-27810-8%5C_17
https://doi.org/10.1145/195058.195202
https://doi.org/10.1145/195058.195202
https://doi.org/10.1145/195058.195202
https://doi.org/10.1007/3-540-54945-5_49
https://doi.org/10.1007/3-540-54945-5_49
https://doi.org/10.1007/3-540-54945-5%5C_49
https://doi.org/10.1109/IPDPS.2009.5161005
https://doi.org/10.1109/IPDPS.2009.5161005
https://doi.org/10.1007/978-3-540-70575-8_52
https://doi.org/10.1007/978-3-540-70575-8%5C_52
https://doi.org/10.1007/978-3-540-70575-8%5C_52

[22] Tobias Wittkop, Sita Saunders, Sven Rahmann, Mario Albrecht, John Morris, Sebastian
Böcker, Jens Stoye, and Jan Baumbach. “Partitioning biological data with transitivity
clustering”. In: Nature Methods 7 (June 2010), pp. 419–20. doi: 10.1038/nmeth0610-
419.

[23] Tobias Wittkop, Anke Truss, Mario Albrecht, Sebastian Böcker, and Jan Baumbach.
“Comprehensive cluster analysis with Transitivity Clustering”. In: Nature protocols 6 (Feb.
2011), pp. 285–95. doi: 10.1038/nprot.2010.197.

34

https://doi.org/10.1038/nmeth0610-419
https://doi.org/10.1038/nmeth0610-419
https://doi.org/10.1038/nprot.2010.197

	Introduction
	Relevance
	Definitions and Notation
	Related Work and the Sequential Kernel by Chen and Meng
	The Parallel Kernel
	Finding Critical Cliques in Parallel
	Theoretical Algorithms for Finding Critical Cliques in Parallel
	Updating the Critical Cliques

	Practical Implementation for Finding Critical Cliques in Parallel
	Parallel Radix Sort

	Calculating the Editing Degree
	Sequentially Calculating the Editing Degree
	Calculating the Editing Degree in Parallel

	Applying the Rules in Parallel
	Finding Edits in Parallel
	Rule 1
	Rule 2
	Rule 3 and 4
	Rule 5

	Editing the Graph in Parallel

	Complexity of the kernel
	Results
	Conclusions

