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Abstract

Random graphs are probability spaces having graphs obeying predefined constraints as events. Sam-
pling from such a space can be a challenge because of non-trivial dependencies that graph constraints may
impose. An exotic observation that has been made in various random graphs is that small changes in the
constraints may impose dramatic changes in the graph structure – the phenomenon that is referred to as
the phase transition. One example of such a small change is gradual removal of the edges (or vertices),
also known as percolation. This work brings the notion of directionality to random graphs with a given
degree sequence, by studying two aspects: 1) algorithmic construction of such random graphs and 2)
percolation processes on vertices and edges.

For undirected graphs, the percolation threshold for existence of the giant component (a component
whose size scales linearly in the total number of vertices) is derived by Jason [1] and Fountoulakis [2] who
both built upon earlier results of Molloy and Reed [3] about the existence of a giant component. We derive
the percolation threshold for the existence of a giant strongly connected component for edge and vertex
percolation by extending the results of Fountoulakis for undirected graphs and combining them with the
Cooper and Frieze’s [4] existence criteria. By building on the results of Bayati, Kim and Saberi [5], we
then develop an algorithm that generates directed random graphs almost uniformly with runtime close
to linear in the number of edges. Finally, we illustrate the theoretical results with numerical simulations.
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1. INTRODUCTION

1 Introduction

Random graphs are probability spaces having graphs obeying predefined constraints as events. It has been
observed that a small change in these constraints, may impose dramatic changes in the graph structure. This
phenomenon is referred to as the phase transition. One example of such a small change is gradual removal of
the edges or vertices, also known as percolation. The study of percolation in random graphs dates back to the
1960’s. In this decade Erdős and Rényi [6] studied random graphs on n vertices where each of the possible
n(n−1)

2 edges is present with probability p. This is equivalent to removing every edge of the complete graph
on n vertices with probability 1− p, i.e. applying bond percolation to the complete graph with percolation
probability p. The dramatic change in the graph structure observed in this model is the appearance of a
giant component. A giant component is a connected component whose size scales linearly with the number
of vertices. Erdős and Rényi determined the critical value pc such that for all p > pc the graph with high
probability contains a giant component and for p < pc it does not. For this reason pc is called the percolation
threshold.

One can also study the percolation threshold for emergence of a giant component in random undirected
graphs with a given degree distribution. Fountoulakis [2] and Jason [1] studied this question independently
using different techniques. What their techniques have in common is that they both rely upon Molloy and
Reed’s theorem [3, 7]. This theorem indicates whether an undirected random graph with a given degree dis-
tribution contains a giant component and how large it is. There are many variations on the work of Molloy
and Reed, proving the theorem under slightly different conditions or using a new technique, see for exam-
ple [8–10]. Determining the percolation threshold for random graphs with a given degree distribution is more
than a theoretical tool. It has many applications, such as the resilience of networks under breakdowns [11],
and the spread of diseases in epidemics [12, 13]. In some applications the networks are better modelled using
directed graphs instead of undirected ones.

In this work we will study percolation in random directed graphs with a given degree distribution. Our
main contribution is a proof for the percolation threshold for emergence of the giant strongly connected
component (GSCC). This is achieved by extending the results of Fountoulakis for undirected graphs and
combining them with the Cooper and Frieze’s existence criteria [4].

Besides investigating percolation, we also propose a new algorithm for constructing random directed graphs
with a given degree sequence. We then use this algorithm to illustrate the theoretical results on the perco-
lation threshold with numerical simulations. Being able to sample graphs numerically gives access to rich
information about such graphs, as the samples may be further analysed with graph algorithms. For example,
by using our construction algorithm one may numerically investigate the diameter, cycles, spectral properties,
etc. in random directed graphs.

Sampling from a random graph model can be a challenge because of non-trivial dependencies that graph
constrains may impose. There are several algorithms for generation of random directed graphs with a given
degree distribution. Examples are the repeated configuration model and Markov Chain Monte Carlo algo-
rithms. The repeated configuration model allows to draw graphs uniformly at random, however its runtime
is unknown and numerical experiments show that this procedure is not practical even for very small graphs.
Indeed, the number of configurations inducing a simple graph with a given degree sequence is unknown. A
more popular algorithm to generate simple digraphs uses a Markov Chain [14]. For a general introduction on
Markov Chain algorithms, we refer the interested reader to [15]. This algorithm randomises a given graph by
swapping edges and reorienting cycles while preserving the degree sequence. Generating the initial graph is
not difficult in practice. For example, the Havel-Hakimi algorithm constructs a deterministic simple digraph
obeying a given degree sequence [16]. The problem is that for a general degree sequence the mixing time of
the Markov chain is unknown. This means that it is not known when the graph is sufficiently independent
from the initial guess, i.e. when the algorithm has achieved a uniformly random graph. Additionally for
those degree sequences that do have a bound on the mixing time, this bound often appears to be a high
degree polynomial in n [14].
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1. INTRODUCTION

Neither the repeated configuration model nor the Markov Chain approach is an ideal way to uniformly
generate random graphs obeying a given degree sequence. In this work we build an algorithm that will
almost uniformly generate random simple directed graphs obeying a given degree sequence with a expected
runtime near-linear in m. Our algorithm is a generalisation of an algorithm by Bayati, Kim and Saberi [5] for
undirected graphs. While our algorithm does not provide exact uniformity, it is a good trade-off if asymptotic
uniformity of the graphs suffices as well.

The rest of the thesis is structured as follows. Before we present the main results concerning the perco-
lation threshold for the GSCC and the construction algorithm for directed random graphs, we first explain
the preliminaries. In Section 2 random directed graphs with a given degree distribution are defined. In
this section, we also explain the configuration model, which is a method to generate random multigraphs
obeying a given degree sequence. This model will be used in Sections 3, 4 and 5. Then we discuss the results
from Cooper and Frieze [4] on the existence of the GSCC in Section 3. At this point we are ready to study
percolation. After defining the site and bond percolation processes, our main result regarding percolation
is stated in Section 4. The proof of this result is given in the same section, which concludes our theoretical
study of percolation. In the second part of the thesis, the focus shifts to the algorithmic construction of
random directed graphs with a given degree sequence. Our new algorithm for constructing random directed
graphs with a given degree sequence, which is an extension of the work from Bayati, Kim and Saberi [5]
to the directed case, can be found in Section 5. This includes a proof that this algorithm generates graphs
distributed up to a factor of 1± o(1) of uniformity and the runtime analysis. Combining the algorithm from
Section 5 with the results from Section 4, we illustrate the theory with numerical simulations in Section 6.
We consider random graphs obeying two simple degree distribution with a small and constant maximum
degree. Both types of percolation are investigated. Our work is concluded in Section 7 with a summary of
the results and ideas for further research.
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2. RANDOM DIRECTED GRAPHS WITH A GIVEN DEGREE DISTRIBUTION

2 Random directed graphs with a given degree distribution

The goal of this section is to define random directed graphs with a given degree distribution. In Section 2.1
basic properties of graphs and notation is discussed. These allow us to define degree sequences and degree
arrays in Section 2.2. Section 2.3 discusses the directed configuration model, which is a theoretical model for
a random directed graph obeying a given degree sequence. This model will be useful in the later sections
where we investigate the behaviour of random graphs.

2.1 Basic notation for graphs

A directed graph Gn consists of a set of vertices V and a set of edges E ⊂ V × V , where n is the number of
vertices in the graph, i.e. |V | = n. Unless stated otherwise by a graph we mean a directed graph or digraph.
The graph is assumed to have m edges, i.e. |E| = m. The number of vertices and the number of edges are
natural numbers, denoted by N. We also use N0 = {0, 1, 2, . . .} for the set of all nonnegative integers. In a
directed graph, each edge has a direction. Given an edge (u, v) ∈ E, we call u its source and v its target. We
can only move along an edge from its source to its target. In many applications a graph can only contain
one copy of an edge (u, v) and there are no edges from a vertex to itself, also called self-loops. Such a graph
is called a simple graph. If a graph contains multiple copies of an edge, also called multiedges, or self-loops
or both, it is called a multigraph. In general, when we say a graph, we mean a simple directed graph. To
emphasise this difference, a simple graph with n vertices is denoted by Gn, while G̃n stands for a multigraph
on the same amount of vertices.

Given a vertex v ∈ V, its in-degree indicates the number of edges in Gn with v as target, i.e.

d−v = |{(u, v) ∈ E}| .

The out-degree indicates the number of edges with v as source and is thus defined as

d+
v = |{(v, w) ∈ E}| .

Another quantity of a graph that will be of interest later, is its the maximum degree dmax := max{d+
max, d

−
max},

where d+
max = maxv∈V d

+
v and d−max = maxv∈V d

−
v . The in- and the out-degree of every vertex in the graph

together form the degree sequence,

~dn :=

(
dn,−

dn,+

)
=

(
d−1 , d

−
2 , . . . , d

−
n

d+
1 , d

+
2 , . . . , d

+
n

)
. (2.1)

Given a graph its degree sequence is uniquely defined, for example, by adopting a lexicographic order. How-
ever, given a degree sequence ~dn, there might be multiple graphs all obeying it. Denote the set of all

multigraphs obeying degree sequence ~dn by G ~dn . Given a degree sequence ~dn, one may define a ’model’

according to which a graph is chosen uniformly at random from G ~dn . Such a model can be viewed as a

graph-valued alternative to the uniform random variable. A random simple graph that obeys a given degree
sequence will be denoted by G ~dn . A random multigraph obeying the same degree sequence will be denoted

by G̃ ~dn .

Our goal is to study limiting behaviour of sequences of random graphs with a given degree sequence. To
study this we consider random graphs with a given degree distribution. The degree distribution is a bivariate
probability distribution on the non-negative integers, prescribing the probability that a uniformly at random
chosen vertex has degree (j, k), i.e. it has in-degree j and out-degree k. For every n ∈ N, we draw a degree

sequence ~dn from the bivariate degree distribution, and uniformly choose a simple element from G ~dn . All

degree sequences in such a progression are collected together into a degree array, denoted as
(
~dn
)∞
n=1

. All

graphs in such a progression are collected together into a graph array, denoted by
(
G ~dn

)∞
n=1

. There is a

slight issue with this definition. When choosing degree sequence ~dn at random, there is no guarantee that

3



2. RANDOM DIRECTED GRAPHS WITH A GIVEN DEGREE DISTRIBUTION

there is a graph that corresponds to it, as it could happen that G ~dn = ∅. Also to be able to study the limiting

behaviour, the degree array
(
~dn
)∞
n=1

must satisfy some constraints. Therefore we will restrict sampling of

the degree sequences, by introducing a notion of a graphical degree sequence and a feasible degree array.

2.2 Graphical degree sequences & feasible degree arrays

The first concern is that G ~dn might be empty, which we avoid by constraining the degree sequence to be valid.

Definition 2.1. A degree sequence ~dn is valid if for all i ∈ {1, 2, . . . , n}, d−i , d
+
i ∈ N0 and

m :=

n∑
i=1

d−i =

n∑
i=1

d+
i . (2.2)

A graph obeying this degree sequence has m edges.

These constraints follow naturally from the definitions of the in- and out-degree of a vertex. Since the sum of
the in-degrees equals the sum of the out-degrees, it will always be possible to draw edges such that the graph
obeys the desired degree sequence if self-loops and multi-edges are allowed. Thus, so long as multigraphs are
of concern, set G ~dn is non-empty for any valid degree sequence.

If there is a simple graph obeying a degree sequence, it is called graphical. As we are interested in the
behaviour of simple graph, we will consider graphical degree sequences. The following theorem allows to
determine whether a degree sequence is graphical or not. It is a generalization of the Erdős-Gallai theorem
for undirected graphs (see for example, [17]).

Theorem 2.2 (Fulkerson). [18, Theorem 4] Let ~dn be a valid degree sequence. Define ~dn to be a ordering

of ~dn such that d+
i ≥ d+

i+1 and d−i ≥ d−i+1 if d+
i = d+

i+1 for all i ∈ {1, 2, . . . , n − 1}. This is called a positive

lexicographical ordering. Furthermore define ~dn to be a ordering of ~dn such that d−i ≥ d
−
i+1 and d+

i ≥ d
+
i+1 if

d−i = d−i+1. Then the degree sequence is graphical, i.e. can be represented by a simple graph, if and only if for
all k ∈ {1, 2, . . . , n}:

k∑
i=1

min[d−i , k − 1] +

n∑
i=k+1

min[d−i , k] ≥
k∑
i=1

d+
i (2.3)

and

k∑
i=1

min[d+
i , k − 1] +

n∑
i=k+1

min[d+
i , k] ≥

k∑
i=1

d−i . (2.4)

In Section 2.1 we indicated that a degree array is drawn from a given degree distribution. For all j, k ≥ 0
denote the number of vertices with degree (j, k) by

Nj,k (n) =
∣∣{i ∈ Vn|d−i = j, d+

i = k}
∣∣ . (2.5)

Here the subscript n of the vertex set, indicates that it consists of n elements. The requirement that the
degree sequences of the array are drawn from a bivariate probability distribution is equivalent to requiring

that limn→∞
Nj,k(n)

n converges to this distribution for all j, k ≥ 0. We will show that

lim
n→∞

P
[
G ~dn ∈ A

(
~dn
)]

= 1,

where A
(
~dn
)

is the set of all multigraphs, which obey the degree sequence ~dn while also satisfying a desired

property, to be specified later. If the limit exists for a given property, then we say that the random graph
has this property with high probability (w.h.p) or asymptotically almost surely (a.a.s.). Our primary goal is
to study connected components, for which we rely on some stronger assumptions on the degree distribution
as formalized by the following definition:

4



2. RANDOM DIRECTED GRAPHS WITH A GIVEN DEGREE DISTRIBUTION

Definition 2.3. A degree array
(
~dn
)∞
n=1

is called feasible if for any n ∈ N, ~dn is graphical and there exists

a bivariate probability distribution (pj,k)
∞
j,k=0 that is independent of n and its first moment are equal, i.e.

∞∑
j,k=0

jpj,k =

∞∑
j,k=0

kpj,k. (2.6)

For this probability distribution the following equations must hold:

(i) for every j, k ≥ 0, limn→∞
Nj,k(n)

n = pj,k;

(ii) limn→∞
∑∞
j,k=0

jNj,k(n)
n =

∑∞
j,k=0 jpj,k ∈ (0,∞);

(iii) limn→∞
∑∞
j,k=0

jkNj,k(n)
n =

∑∞
j,k=0 jkpj,k ∈ (0,∞);

(iv) limn→∞
∑∞
j,k=0

j2Nj,k(n)
n =

∑∞
j,k=0 j

2pj,k ∈ (0,∞);

(v) limn→∞
∑∞
j,k=0

k2Nj,k(n)
n =

∑∞
j,k=0 k

2pj,k ∈ (0,∞).

From equation (2.2) there follows that

∞∑
j,k=0

kNj,k (n) =

n∑
i=1

d+
i =

n∑
i=1

d−i =

∞∑
j,k=0

jNj,k (n) .

One may thus write

lim
n→∞

∞∑
j,k=0

jNj,k (n)

n
= lim
n→∞

∞∑
j,k=0

kNj,k (n)

n
,

assuming that these limits exist. As this value is required to converge to the first moments of (pj,k)
∞
j,k=0, it

is necessary for the probability distribution to satisfy equation (2.6).

The probability distribution (pj,k)
∞
j,k=0 will be called the degree distribution of the degree array; its proba-

bility generating function is given by:

g (x, y) =

∞∑
j,k=0

pj,kx
jyk. (2.7)

The moments of the degree distribution are defined as:

µil =

∞∑
j,k=0

jiklpj,k. (2.8)

Equation (2.6) implies that the first moments of the distribution are equal, hence we will write

µ := µ10 = µ01. (2.9)

2.3 Directed configuration model

To study the behaviour of random graphs obeying a feasible degree array, they must be generated. Generat-
ing simple graphs obeying a given degree sequence is difficult. If the model is allowed to generate multigraphs
as well, the configuration model can be used. The configuration model, first introduced by [19] and refined
in [20], is a model for generating undirected graphs with a given degree sequence. Later it has been extended

5
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Figure 1: An illustration of the configuration model for the degree sequence ~dn =

(
0 2 1 1 2
2 1 1 1 1

)
. On the

left we see the stubs of all vertices. In-stubs are blue, out-stubs red. On the right a configuration is shown.
Two stubs are matched if they lie on the same edge. This also shows the resulting graph.

to the case of directed graphs [4], which is called the directed configuration model. In this section, we in-
troduce the directed configuration model and show that this model can be used to study the behaviour of
simple graphs, despite the fact that it generates multigraphs.

Consider a given valid degree sequence ~dn. The aim is to generate a random multigraph obeying it. For each
vertex i ∈ V it is known how many in-coming and out-going edges it should have. The only freedom left
is to define where these edges come from and go to. The configuration model determines this by uniformly
choosing a random configuration.

Definition 2.4. Let a valid degree sequence ~dn be given. For all i ∈ {1, 2, . . . , n} define a set W−i with d−i
elements and a set W+

i containing d+
i elements. Define W− = ∪i∈{1,2,...,n}W−i and W+ = ∪i∈{1,2,...,n}W+

i .
Then a configuration is a random perfect bipartite matching of W− and W+. A perfect bipartite matching is
a set of tuples (a, b) such that each tuple contains one element from W− and one from W+ and all elements
of W− and W+ appear in exactly one tuple.

Now the question is how does a configuration determine the edges of a graph?
For i ∈ {1, 2, . . . , n} an element of W−i is called an in-stub of i. Similarly an element of W+

i is an out-stub of
i. These stubs play the role of half-edges. An in-stub of i can be regarded as an edge with i as target and no
source. Similarly an out-stub is an edge with i as source and no target. Matching an in-stub with an out-stub
leads to an edge. The configuration prescribes such a matching for all stubs. In this way, a configurationM
defines a multigraph G̃ ~dn with vertices V = {1, 2, . . . , n} and edges

E = {(i, j) | (a, b) ∈M, a ∈W+
i , b ∈W

−
j }. (2.10)

The resulting multigraph will satisfy the degree sequence ~dn, as each vertex has |W−i | incoming edges and
|W+

i | outgoing edges. This process is illustrated in Figure 1.

The configuration model generates a multigraph G̃ ~dn by choosing a uniformly random configuration, and

therefore, a multigraph as described by equation (2.10). One may now ask what is the probability that the
configuration model will generate a specific multigraph G̃ ~dn?

The same graph can be generated by multiple configurations. To see this take a, a′ ∈ W+
i , b ∈ W−j and

c ∈W−k . Consider a matchingM with (a, b), (a′, c) ∈M and defineM′ =M\((a, b), (a′, c))∪((a′, b), (a, c)).
Then the multigraph induced byM is the same as the one induced byM′. Since the configuration is chosen
uniformly at random, the probability that the configuration model generates G̃ ~dn depends on the number of

configurations that induces this multigraph. Let CMn

(
~dn
)

be the random variable for the outcome of the

configuration model. The following proposition determines this probability.

6



2. RANDOM DIRECTED GRAPHS WITH A GIVEN DEGREE DISTRIBUTION

Proposition 2.5. Consider a multigraph G̃ ~dn obeying the degree sequence ~dn. For all pairs i, j ∈ V let xij
denote the number of copies of the edge (i, j) in the graph. Then there holds

P
[
CMn

(
~dn
)

= G̃ ~dn

]
=

1

m!

∏n
i=1 d

−
i !
∏n
i=1 d

+
i !∏

1≤i,j≤n xij !
. (2.11)

Proof. This proposition and its proof are adapted for directed graphs from [21, Proposition 7.4] written for
the undirected case. First the number of different configurations is determined. This equals the number of
perfect bipartite matchings between W− and W+. For each element of W− a match is chosen in W+. Each
element of W− chooses a match amongst the unmatched elements of W+. The first element of W− has m
choices for its match. Then the second element can choose its match from the remaining m− 1 unmatched
elements of W+. Continuing in this fashion, we find m! different perfect matchings. Thus there are m!
different configurations. As the configuration is chosen uniformly at random, this implies that

P
[
CMn

(
~dn
)

= G̃ ~dn

]
=

1

m!
N
(
G̃ ~dn

)
,

with N
(
G̃ ~dn

)
the number of different configurations M inducing the graph G̃ ~dn . From equation (2.10) it

follows that the exact matching of the stubs does not matter. As long as an element of W+
i is matched to an

element of W−j , the graph gets an edge (i, j). In other words permuting the stub labels leads to a different

configuration that induces the same multigraph. There are
∏n
i=1 d

−
i !
∏n
i=1 d

+
i ! such permutations. However

some permutations lead to the same matching M. For a, a′ ∈ W+
i and b, b′ ∈ W−j with (a, b), (a′, b′) ∈ M,

any permutation swapping a with a′ and b with b′ leads to the exact same matching. We have to compensate
for this by a factor xij ! for all edges. This leads to

N
(
G̃ ~dn

)
=

∏n
i=1 d

−
i !
∏n
i=1 d

+
i !∏

1≤i,j≤n xij !
,

completing the proof.

So, despite the fact that the configuration model generates uniformly random configurations, it does not
generate uniformly random multigraphs. That being said, it does generate all simple graphs with equal prob-
ability. To see this remark that xij is 0, 1 for every pair i, j in a simple graph. Therefore, conditional on the
event that configuration model generates a simple graph, a uniformly random simple element of G ~dn is chosen.

The configuration model allows us to sample a random element of G ~dn . Surprisingly, it can be shown that

results on uniformly random configurations and their induced multigraphs can be transferred to uniformly

generated simple graphs. Let A
(
~dn
)

be the set of all multigraphs, which obey the degree sequence ~dn while

also satisfying a desired property, to be specified later. The goal of the remainder of this section is to show
that

lim
n→∞

P
[
G̃ ~dn ∈ A

(
~dn
)]

= 1,

implies that

lim
n→∞

P
[
G̃ ~dn ∈ A

(
~dn
)
| G̃ ~dn is simple

]
= 1.

The first step is showing that the probability that the configuration model generates a simple graph is
bounded away from zero.

Theorem 2.6. [22, Theorem 4.3] Let
(
~dn
)∞
n=1

be a feasible degree array with dmax = O (
√
n). Then the

probability that the configuration model generates a simple graph is asymptotically

e−
µ11
µ −

(µ20−µ)(µ02−µ)
µ > 0.
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2. RANDOM DIRECTED GRAPHS WITH A GIVEN DEGREE DISTRIBUTION

Proof. The proof of the Theorem follows from the proof [22, Theorem 4.3] which is based on [22, Proposition
4.2]. The main difference is that in [22] the in-degree of a vertex is independent of its out-degree, i.e. the
bivariate degree distribution is the product of two univariate distributions. It is enough to replace Condition
4.1 and Lemma 5.2 from Ref. [22] with the requirement of a feasible degree array obeying dmax = O (

√
n) to

generalise the proof to the case of an arbitrary bivariate degree distribution.

Lemma 2.7. Let
(
~dn
)∞
n=1

be a feasible degree array with dmax = O (
√
n) and let A

(
~dn
)

be a set of multi-

graphs, all obeying the degree sequence ~dn. If for a random multigraph G̃ ~dn generated by the configuration

model there holds

lim
n→∞

P
[
G̃ ~dn ∈ A

(
~dn
)]

= 0,

then it is also true that

lim
n→∞

P
[
G̃ ~dn ∈ A

(
~dn
)
| G̃ ~dn is simple

]
= 0.

Proof. By Bayes’rule

P
[
G̃ ~dn ∈ A

(
~dn
)
| G̃ ~dn is simple

]
≤

P
[
G̃ ~dn ∈ A

(
~dn
)]

P
[
G̃ ~dn is simple

] . (2.12)

Because we have a feasible degree array with dmax = O (
√
n), Theorem 2.6 assures that

P
[
G̃ ~dn is simple

]
= (1 + o(1)) e−

µ11
µ −

(µ20−µ)(µ02−µ)
µ .

Hence

lim
n→∞

inf P
[
G̃ ~dn is simple

]
> 0.

This completes the proof as the numerator in equation (2.12) converges to zero.

Corollary 2.8. Let
(
~dn
)∞
n=1

be a feasible degree array with dmax = O (
√
n). Take A

(
~dn
)

to be a set of multi-

graphs, all obeying the degree sequence ~dn. Let G̃ ~dn be a random multigraph generated by the configuration

model. If there holds

lim
n→∞

P
[
G̃ ~dn ∈ A

(
~dn
)]

= 1,

then it is also true that

lim
n→∞

P
[
G̃ ~dn ∈ A

(
~dn
)
| G̃ ~dn is simple

]
= 1.

Proof. Let V
(
~dn
)

denote the set of all multigraphs on n vertices obeying the degree sequence ~dn and define

A
(
~dn
)

= V
(
~dn
)
\ A

(
~dn
)
.

As there holds that G̃ ~dn ∈ V
(
~dn
)

by definition and limn→∞ P
[
G̃ ~dn ∈ A

(
~dn
)]

= 1 by assumption, the law

of total probability implies limn→∞ P
[
G̃ ~dn ∈ A

(
~dn
)]

= 0. Then Lemma 2.7 implies that

lim
n→∞

P
[
G̃ ~dn ∈ A

(
~dn
)
| G̃ ~dn is simple

]
= 0.

Again using that A
(
~dn
)
∪A

(
~dn
)

is the set of all multigraphs obeying the given degree sequence, the claim

follows.
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3. EXISTENCE OF A GIANT STRONGLY CONNECTED COMPONENT IN A
DIRECTED GRAPH

3 Existence of a giant strongly connected component in a directed
graph

The goal is to study the influence of percolation on the existence of a giant strongly connected component
in random directed graphs obeying a given degree array. In Section 2, it is explained how to generate such
random graphs using the configuration model. However this does not provide sufficient knowledge to fully
study percolation as we are limited to small systems that are computationally tractable. Plus, the existence
of the GSCC in the random graphs itself must be studied first. The goal of this section is to give some
preliminary definitions and to introduce the findings of Cooper and Frieze [4] regarding the existence of
a giant strongly connected component. In Section 3.1 we will define the GSCC. Here we will also define
the strongly connected component. To study the strongly connected component, the notion of in- and out-
components are used. Hence we decided to explain all the notions of a connected component in a directed
graph in this section. Once the definition of the GSCC is understood, its existence criteria is given, in the
form of a theorem by Cooper and Frieze [4]. Additionally it regards the existence of giant in-component and
giant out-component. This theorem can be regarded as the directed analogue of the theorem from Molloy
and Reed for undirected graphs [3, 7].

3.1 Types of connected components in a directed graph

A connected component of a graph is a set of vertices that is connected to each other. Two vertices are
connected if there is a path between them. This allows to define a connected component as a maximal subset
C of the vertices such that there is a path between any pair of vertices u, v ∈ C. Here maximal means that
no vertex can be added to C without destroying the property that all vertices are connected by a path. In a
directed graph each edge has a direction. Hence we can defined two types of paths in a directed graph, those
that respect the direction of the edges and those that ignoring the directionality.

Definition 3.1. Consider a directed graph Gn. Any two v1, vk ∈ V are connected by:

• a directed path, if there exist distinct vertices v2, v3, . . . , vk−1 ∈ V such that for all i ∈ {2, 3, . . . , k}
(vi−1, vi) ∈ E. This is called a directed v1 − vk path.

• an undirected path, if there exist distinct vertices v2, v3, . . . , vk−1 ∈ V such that for all i ∈ {2, 3, . . . , k}
either (vi−1, vi) ∈ E or (vi, vi−1) ∈ E. This is called an undirected v1 − vk path.

An undirected path discards the direction of the edges. Thus defining a type of connected component based
on undirected paths, leads to the same subsets of the vertices as the connected components when treating
the graph as an undirected one.

Definition 3.2. Consider a directed graph Gn. The weakly connected components of Gn are the maximal
subsets of V such that between any pair of vertices there exits an undirected path.

In an analogous way a connected component can be defined based on directed paths.

Definition 3.3. (Strongly connected component) Consider a directed graph Gn. The strongly connected
components of Gn are the maximal subsets of V such that between any pair of vertices u, v directed u − v
and v − u paths exist simultaneously.

Each each vertex is an element of exactly one weakly and one strongly connected component. This allows us
to denote the weakly and strongly connected component containing v by respectively WCC (v) and SCC (v).
By definition there holds SCC (v) ⊂WCC (v). Both, the strongly and weakly connected components partition
the vertices of the graph. We want to study the strongly connected components of a random graph. Instead
of studying these components directly, their characterization in terms of in-components and out-components
is used.

Definition 3.4. Consider a directed graph Gn and take v ∈ V . Then

• thein-component of v, denoted by In (v), consists of v itself and all vertices u ∈ V such that a directed
u− v path exists;

9
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• the out-component of v, denoted by Out (v), consists of v itself and all vertices w ∈ V for which a
directed v − w path exists.

Unlike the strong and the weak components, these components are defined based on a specific vertex. From
this definition we also note that u ∈ In (v) does not imply In (u) = In (v). The same observation holds for the
out-component as well. This means that these types of components do not partition the vertices of the graph.
Furthermore we note that In (v) ,Out (v) ⊃ SCC (v) and In (v) ,Out (v) ⊂WCC (v). These components allow
to characterize the strongly connected component in the following way.

Lemma 3.5. Consider a directed graph Gn. For any v ∈ V there holds In (v) ∩Out (v) = SCC (v).

Proof. To prove that In (v)∩Out (v) = SCC (v), it suffices to show SCC (v) ⊂ In (v)∩Out (v) and SCC (v) ⊃
In (v) ∩ Out (v). Take u ∈ SCC (v). By definition of the strongly connected component this implies that
directed u − v and v − u paths exist. Hence u ∈ In (v) and u ∈ Out (v), which shows that SCC (v) ⊂
In (v)∩Out (v). Next take u ∈ In (v)∩Out (v). This implies that directed u− v and v−u paths exist. For u
to be an element of SCC (v) it must also hold that for any w ∈ SCC (v) directed w−u and u−w paths exist.
Because w ∈ SCC (v), directed v − w and w − v paths are present in Gn. This implies existence of a u− w
path by concatenation of the u−v and v−w paths. Similarly the w−u path can be formed by concatenating
the w − v path with the v − u path. Thus u ∈ SCC (v), which shows that SCC (v) ⊃ In (v) ∩Out (v).

For any type of connected component introduced above, a corresponding giant connected component can be
defined. As a giant component is a component of which the size scales linearly in the number of vertices, it
is defined for a graph array (Gn)

∞
n=1 rather than for just one graph. We will not consider the giant weakly

connected component in this work. For completeness we do introduce its definition.
Let CW1 (Gn) be the largest weakly connected component of Gn.

Definition 3.6. The graph array (Gn)
∞
n=1 contains a giant weakly connected component(GWCC) if

lim
n→∞

|CW1 (Gn)|
n

:= cwcc > 0. (3.1)

Denoting the largest strongly connected component of Gn by CS1 (Gn), also the notion of a giant strongly
connected component can be defined.

Definition 3.7. The graph array (Gn)
∞
n=1 contains a giant strongly connected component(GSCC) if

lim
n→∞

|CS1
(
G ~dn

)
|

n
:= cscc > 0. (3.2)

The values cwcc and cscc are the size of the GWCC respectively GSCC. Here by size we mean the fraction of
the vertices contained by the component. As the in-component and out-component are defined based on a
vertex, there giants are defined differently.

Definition 3.8. The graph array (Gn)
∞
n=1 contains a giant in-component (GIN) if for a uniformly random

vertex v

lim
n→∞

|In (v)|
n

:= cin > 0. (3.3)

Definition 3.9. The graph array (Gn)
∞
n=1 contains a giant out-component (GOUT) if for a uniformly random

vertex v

lim
n→∞

|Out (v)|
n

:= cout > 0. (3.4)
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v

v

w

v

w u

Figure 2: An illustration of the construction of the out-component of v by the directed configuration model.
In-stubs are displayed in blue, out-stubs in red.

3.2 Existence of GIN, GOUT & GSCC

The goal of this section is to introduce a theorem by Cooper and Frieze that describes whether a random

graph array
(
G ~dn

)∞
n=1

obeying a given proper degree array
(
~dn
)∞
n=1

w.h.p. contains a GSCC [4]. Instead of

directly stating the theorem, we first give the intuitive ’proof’ of this theorem. This also allows us to explain
where the values used in the theorem come from. But first we define a proper degree array.

Definition 3.10. A degree array
(
~dn
)∞
n=1

is proper if it is feasible and additionally satisfies

1. dmax ≤ n1/12

ln(n) ;

2. ρ = max
(∑∞

j,k=0
j2kNj,k(n)

µn ,
∑∞
j,k=0

jk2Nj,k(n)
µn

)
= o(dmax).

Cooper and Frieze show that the out-component of each vertex either contains O
(
d2

max ln(n)
)

vertices or

w.h.p. contains a+
0 n vertices, for some yet unknown constant a+

0 . Similarly they show that the in-component
of each vertex either contains O

(
d2

max ln(n)
)

vertices or w.h.p. contains a−0 n vertices, for some yet unknown

constant a−0 . Denote the set of all vertices with out-component of size a+
0 n by L+ and the set of all vertices

with in-component of size a−0 n by L−. Lemma 3.5 implies that a strongly connected component is the inter-
section of the in-component and the out-component of some vertex. Thus a vertex v must be in L+ and L−

to be in the GSCC, if the GSCC exists. First, we will heuristically investigate the probability that a random
vertex is in L+ (respectively L−) by investigating the out-components (in-components) of a random graph.

To investigate the out-component of the random graphs, we take a proper degree array
(
~dn
)∞
n=1

and denote

its underlying degree distribution by (pj,k)
∞
j,k=0. In Section 2.3 we showed that results on multigraphs induced

by uniformly random configurations can be transferred to uniformly random simple graphs. Thus we will
consider multigraphs generated by the configuration model. As discussed in Section 2.3, the configuration
model generates a uniformly random configuration of W− and W+. This gives us the freedom to construct
the configuration in such a way that first the out-component of a vertex v is constructed. How can we do
this? Pick a vertex v of which we wish to construct its out-component. Choose any out-stub of v and match
it to a uniformly random unmatched in-stub. Suppose this in-stub is an element of W−w . This implies that we
add w to Out (v). Now also the out-stubs of w can enlarge the out-component of v. Hence at the next step,
we take any unmatched out-stub from the set W+

v ∪W+
w and match it to a uniformly random unmatched

in-stub. This process is illustrated in Figure 2. It continues until all out-stubs of ∪w∈Out(v)W
+
w are matched.

At that point the out-component of v is completed. Randomly match the remaining unmatched in-stubs
with the unmatched out-stubs to complete the configuration.

The construction of the out-component of v, as described above, is similar to a Galton-Watson branch-
ing process. A Galton-Watson branching process is a discrete time process. It starts with one individual. At
each time-step a random living individual generates an integer amount of off-spring and dies. The amount
of off-spring generated is governed by the off-spring distribution Z(k). Such a process either continues on
indefinitely, i.e. at each time-step at least one individual remains alive, or it becomes extinct at some point,
i.e. at some time-step all individuals are dead. Let ρ be the probability that the branching process becomes
extinct at some point.
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Lemma 3.11. Consider a Galton-Watson branching process with offspring distribution Z(k). The extinction
probability ρ of this process is

• 1 if E [Z(k)] < 1;

• the unique solution in [0, 1) to the equation x =
∑∞
k=0 P [Z(k) = k]xk if E [Z(k)] > 1.

The parallel between a Galton-Watson branching process and the construction of the out-component arises
when identifying an individual with an unmatched out-stub. An unmatched out-stub ’dies’ when it is matched
to a random in-stub b. The amount of off-spring it generates, equals d+

w , where w is the vertex such that
b ∈ W−w . There is one exception: in case w was already an element of Out (v), the amount of off-spring is
zero. This means that the off-spring distribution is approximately

(
p+
k

)∞
k=0

, with p+
k the probability that by

following a uniformly random chosen in-stub, we find a vertex with out-degree k. This latter probability is
given by

p+
k =

∞∑
j=0

j

µ
pj,k. (3.5)

Here the division by µ ensures that the probability distribution is normalized. We expect that v ∈ L+ if
the corresponding Galton-Watson branching with off-spring distribution

(
p+
k

)∞
k=0

becomes extinct. Applying
Lemma 3.11 to the distribution, we find that this only can happen if

∞∑
k=0

kp+
k =

∑∞
k=0

∑∞
j=0 jkpj,k

µ
=
µ11

µ
> 1.

Thus we expect that L+ is empty unless µ11

µ > 1. In the case µ11

µ > 1, the probability that the branching

process does not become extinct is η+, where 1− η+ is the unique solution in [0, 1) to

(
1− η+

)
=

∞∑
k=0

p+
k

(
1− η+

)k
. (3.6)

Recall that the Galton-Watson process always starts with one individual. However the generation of the
out-component of v starts with d+

v out-stubs. Assuming that each out-stub of v generates a disjoint subset of
Out (v), this can be regarded as d+

v independent copies of the branching process. This collection of processes
terminates if and only if all of the individual branching processes become extinct. Therefore the probability
that the process corresponding to the generation of the out-component of v becomes extinct is(

1− η+
)d+
v .

Thus for a random vertex v the probability that v ∈ L+ is approximately ζ+, where 1− ζ+ is given by

(
1− ζ+

)
=

∞∑
j=0

∞∑
k=0

pj,k
(
1− η+

)k
. (3.7)

There is nothing special about the out-component in the above reasoning. The same idea can be applied
to the in-component, but with a different off-spring distribution. In this case we need to probability that
following a uniformly random chosen out-stub, we find a vertex with out-degree j, i.e.

p−j =

∞∑
k=0

k

µ
pj,k. (3.8)

A Galton-Watson branching process with off-spring distribution
(
p−j
)∞
j=0

has an extinction probability smaller

than 1 if

∞∑
j=0

jp−j =

∑∞
k=0

∑∞
j=0 jkpj,k

µ
=
µ11

µ
> 1.
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Note that this is the same condition as for the off-spring distribution of the out-component. In other words L+

and L− are expected to become non-empty under the same conditions. The probability that this branching
process does not become extinct is η−, where 1− η− is the unique solution in [0, 1) to

(
1− η−

)
=

∞∑
j=0

p−j
(
1− η−

)j
. (3.9)

Thus we expect a random vertex v to be in L− with probability ζ−, with 1− ζ− defined by

(
1− ζ−

)
=

∞∑
j=0

∞∑
k=0

pj,k
(
1− η−

)j
. (3.10)

Using these probabilities for a random vertex to be in L− or L+ and Lemma 3.5, we determine heuristically
whether a giant strongly connected component is present in the graph. For a vertex v ∈ L− and a vertex
u ∈ L+ it is very likely that there exists an edge from a vertex In (u) to one in Out (v), i.e. v ∈ In (u) and
u ∈ Out (v). Thus if u, v ∈ L− and u, v ∈ L+, it is likely that u and v are in each others in-component
and out-component. By Lemma 3.5 this implies that u and v lie in the same strongly connected component.
Hence we expect a GSCC consisting of the vertices L+∩L−. This set is expected to be non-empty if µ11

µ > 1.

To determine the probability for a random vertex to be in L+∩L−, i.e. to approximate the size of the GSCC,
define

ψ =

∞∑
j=0

∞∑
k=0

pj,k
(
1− η−

)j (
1− η+

)k
. (3.11)

This approximates the probability that the branching process corresponding to the generation of the in-
component and the out-component both become extinct. Hence the probability that both process continue
on indefinitely can be approximated by

c = ζ+ + ζ− + ψ − 1. (3.12)

The above intuitive idea is rigorously proven by Cooper and Frieze for proper degree arrays.

Theorem 3.12 (Existence of a GIN, GOUT and GSCC ). [4, Theorem 1 and 2] Consider a proper degree

array
(
~dn
)∞
n=1

. Take a uniformly random sequence of simple graphs
(
G ~dn

)∞
n=1

obeying this degree array.

Then the following statements hold.

1. If µ11

µ < 1, with high probability the size of the in-component and the out-component of each vertex is

O
(
d2

max ln(n)
)
.

2. If µ11

µ > 1 and p+
0 , p

−
0 > 0, with high probability

• There are ζ+n vertices with an out-component containing ζ−n vertices;

• There are ζ−n vertices with an in-component containing ζ+n vertices;

• There is a unique giant strongly connected component with vertex set L+∩L− of size (ζ+ + ζ− + ψ − 1)n.

Note that in case µ11

µ < 1, the theorem only regards the size of the in-components and out-components.
Applying Lemma 3.5 it follows that the size of the strongly connected component to which a vertex belongs
is upper bounded by the minimum of the size of its in-component and out-component. Hence the fact that
w.h.p. the in-component and the out-component do not scale linear in n for any vertex, implies that w.h.p.
no GSCC is present. Furthermore we remark in case µ11

µ > 1 and p+
0 , p

−
0 > 0 the theorem assures that a

GIN and GOUT exist w.h.p. This criterium for the existence of a GSCC is used in Section 4 to study the
influence of percolation on the structure of a directed random graph.
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4 Percolation in directed graphs

Having defined the notion of a random graph with a given degree distribution in Section 2 and studied the
existence of a giant strongly connected component in Section 3, we are ready to study percolation theoretically.
This section introduces our new result in the form of a theorem determining the percolation threshold for the
existence of a giant strongly connected component for bond and site percolation. This is proven by extending
Fountoulakis’ method [2] for determining the percolation threshold in undirected graphs to directed ones and
combining it with Theorem 3.12 [4]. Section 4.1 states our theorem and all the necessary notations. The
remainder of the section presents the proof of the theorem, which is split into two parts: the proof for bond
percolation, see Section 4.3, and for site percolation, see Section 4.4. Before the proof is split, Section 4.2
gives some auxiliary definitions and theorems used in the proof for both types of percolation.

4.1 Percolation threshold for GSCC

Percolation is a random process on a graph Gn removing its edges. We consider two types of percolation:

• Bond percolation Fix a value π ∈ (0, 1). Each edge of Gn is removed independently of the other edges
with probability 1− π.

• Site percolation Fix a value π ∈ (0, 1). For each vertex of Gn all the edges incident to this vertex are
removed with probability 1 − π, independently of the other vertices. If this happens we say that the
vertex is made isolated. Such a vertex may also be referred to as a deleted vertex.

The value π is called the percolation probability. Applying percolation to a graph leads to a random subgraph
on the same vertices. Let Gn be the graph to which percolation is applied with percolation probability π,
then the subgraph that remains after percolation is denoted by Gπn. The context will indicate which type of
percolation is performed.

Whenever one studies percolation on a graph, a certain property of the graph is investigated as a func-
tion of π. We look at the influence of percolation on the existence of a giant strongly connected component
in random graphs obeying a proper degree array. In Section 3 we saw that these giant components are only
defined for a graph array. Hence we look at the effect percolation has on a limiting behaviour of uniformly

random graph array
(
G ~dn

)∞
n=1

obeying a proper degree array
(
~dn
)∞
n=1

. This results in a percolated graph

array denoted by
(
Gπ~dn

)∞
n=1

. The main goal is to determine the percolation threshold πc. This is the value

of the percolation probability π such that:

• For π > πc, the array of percolated graphs
(
Gπ~dn

)∞
n=1

w.h.p. contains a giant strongly connected

component.

• For π < πc, the array of percolated graphs
(
Gπ~dn

)∞
n=1

w.h.p does not contain a giant strongly connected

component.

More formally it is defined as

πc = sup

π ∈ [0, 1]
∣∣ lim
n→∞

P


∣∣∣CS1 (Gπ~dn)∣∣∣

n
= 0

 = 0

 . (4.1)

Here the probability is taken with respect to a sequence of probability spaces indexed by n ∈ N. Given n
this probability space contains the graphs that can remain after applying the type of percolation of choice
with percolation probability π to any graph obeying ~dn. The probability assigned to each graph equals

the probability that it remains after applying percolation to a uniformly random graph obeying ~dn. This
definition does not specify the type of percolation applied. As both types of percolation might have different
percolation thresholds, they will be denoted by πbond

c and πsite
c .
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Our main result concerning percolation in a random directed simple graphs with a given degree array is
the following theorem.

Theorem 4.1. Let
(
~dn
)∞
n=1

be a proper degree array for which µ11 > µ and p−0 , p
+
0 > 0. Then the percolation

threshold for the existence of a giant strongly connected component is given by

πbond
c = πsite

c =
µ

µ11
. (4.2)

Moreover for π < πbond
c there is an unique value cbond, defined by equation (4.31), such that

lim
n→∞

P


∣∣∣CS1 (Gπ~dn)∣∣∣

n
= cbond

 = 1.

Similarly for π > πsite
c there is an unique value csite, defined by equation (4.54), such that

lim
n→∞

P


∣∣∣CS1 (Gπ~dn)∣∣∣

n
= csite

 = 1.

This theorem excludes proper degree arrays with µ > µ11 as for these degree arrays the percolation threshold
is not defined. Recall that Theorem 3.12 states that a random graph obeying a proper degree sequence with
µ > µ11 w.h.p. does not contain a giant strongly connected component. Since percolation only removes edges
from the graph, it can only decrease the size of the strongly connected components. Thus if the original graph
array w.h.p. does not contain a GSCC, the same holds for the percolated graph array. By definition of the
percolation threshold, equation (4.1), this shows that the percolation threshold is not defined for these degree
arrays.

Our Theorem 4.1 can be regarded as the directed analogue of Theorem 1.1 [2]. Theorem 1.1 determines
the percolation threshold for the existence of a giant connected component in undirected graphs for bond
and site percolation. We base the proof of our theorem on Fountoulakis’ proof of Theorem 1.1 [2]. The idea
of this proof is as follows. First, show that conditional on the degree sequence after percolation, a uniformly
random configuration remains. Using this fact, the degree distribution after percolation is determined. After
showing that additional requirements are fulfilled, this allows to apply Molloy and Reed’s theorem for the
existence of a giant component in a random graph with given degree array [3] to the percolated configuration.
Applying this theorem to the degree array after percolation, allows to determine the percolation threshold.

The proof of Theorem 4.1 adopts a similar path as described above, with the theorem of Molloy and Reed
being replaced by Theorem 3.12 by Cooper and Frieze [4]. This implies that we need to show that the degree
array remains proper after percolation. Also in the entire proof some changes are made to make it suitable
for directed graphs.

4.2 Preliminaries for the proof of Theorem 4.1

Before we proof Theorem 4.1 separately for bond and site percolation, in this section we introduce auxil-
iary definitions and theorems used in these proofs. Theorem 4.1 gives the percolation threshold for simple
graphs. In the proof we consider uniformly random configurations and their induced multigraph obeying a

proper degree array
(
~dn
)∞
n=1

instead of simple graphs. The results on these multigraphs can be transferred

to the simple graphs using Corollary 4.1 and a variant thereof, as for any proper degree array there holds

dmax ≤ n1/12

ln(n) = O (
√
n). This means that Theorem 3.12 is applied to configurations and their induced

multigraphs rather than simple graphs. As the proof of this theorem also uses configurations rather than
simple graphs this is not a problem, despite the fact that Theorem 3.12 is stated for uniformly random simple
graphs [4].
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4. PERCOLATION IN DIRECTED GRAPHS

To work with percolated configurations, we need additional notation. Like in Section 2.3, let W− and

W+ denote the set of stubs inducing the degree sequence ~dn. Here by inducing the degree sequence ~dn, we

mean that any configuration on W− and W+ leads to a multigraph obeying ~dn. Define ~dn
′

to be the random

variable for the degree sequence after percolation. Furthermore by ~dnπ we denote a possible degree sequence

after percolation. So ~dnπ is a value that the random variable ~dn
′

can take. Percolation removes edges in a
graph, thus in a configuration it removes in-stubs together with the out-stubs they are matched to. Let W−,π

and W+,π denote the in-stubs and out-stubs surviving percolation. Conditional on ~dn
′

= ~dnπ these stubs are

in one-to-one correspondence with W−~dnπ
and W+

~dnπ
. Here W−~dnπ

and W+
~dnπ

denote the set of stubs inducing the

degree sequence ~dnπ . The one-to-one correspondence follows from the fact that all vertices have the same

amount of in-stubs (respectively out-stubs) in W−,π(W+,π ) as in W−~dnπ
(W+

~dnπ
). Thus any mapping sending an

in-stub of i of W−,π to an in-stub of i in W−~dnπ
and an out-stub of i of W+,π to an out-stub of i in W+

~dnπ
induces

a bijection. Let us fix such a bijection. This induces a one-to-one correspondence between the configuration

on (W−,π ,W+,π ) and the configuration on

(
W−~dnπ

,W+
~dnπ

)
. This one-to-one correspondence will be important

later in the proof.

The goal is to prove that the percolation threshold is given by equation (4.2). However, the degree ar-
ray after percolation is a random variable. This requires the definition of the probability space for the degree
array after percolation. This is closely related to the sequence probability spaces over which the probability
in equation (4.2) is taken. Recall that we consider percolation applied to a random graph array obeying the

degree sequence
(
~dn
)∞
n=1

. For the proof we let this be a random multigraph array. Let Dn be the proba-

bility space containing all degree sequences ~dnπ that can be obtained by applying percolation to a random

configuration on (W−,W+). The probability assigned to each ~dnπ is the probability that it is induced by

(W−,π ,W+,π ). The probability space for the degree array
(
~dnπ

)∞
n=1

is the product space D =
∏∞
n=1Dn with

product measure ν.

This section is concluded with stating several concentration results that will be used in the proof of Theorem
4.1 for bond and site percolation. Concentration inequalities are important as we deal with two sources
of randomness: the initial multigraph is random and percolation randomly removes edges. Hence we will
encounter many random variables. It is often useful to restrict their values to a bounded interval with high
probability. Concentration inequalities allow to determine such intervals. The first concentration inequality
that is used, is Hoeffding’s inequality.

Theorem 4.2. (Hoeffding’s inequality)[23] Let X1, X2, . . . , Xn be independent random variables. Suppose
that ai ≤ Xi ≤ bi for all i ∈ {1, 2, . . . , n} and define ci = bi − ai. Furthermore define Sn =

∑n
i=1Xi. Then

there holds

P [|Sn − E [Sn]| > t] ≤ 2 exp

(
− 2t2∑n

i=1 c
2
i

)
. (4.3)

The second concentration inequality is a corollary of a theorem by McDiarmid.

Theorem 4.3. [24, Theorem 7.4] Let (V, d) be a finite metric space. Suppose there exists a sequence
P0,P1, . . . ,Ps of increasingly refined partitions with P0 the trivial partition consisting of V and Ps the
partition where each element of V is a partition element on its own. Take a sequence of positive inte-
gers c0, c1, . . . , cs such that for all k ∈ {1, 2, . . . , s} and any A,B ∈ Pk with C satisfying A,B ⊂ C ∈ Pk−1

there exists a bijection φ : A → B with d (x, φ(x)) ≤ ck for all x ∈ A. Let the function f : V → R satisfy
|f(x)− f(y)| ≤ d(x, y) for all x, y,∈ V . Then for X uniformly distributed over V and any t > 0 there holds

P [|f(X)− E [f(X)]| > t] ≤ 2 exp

(
− 2t2∑s

k=0 c
2
k

)
.

This theorem allows to show the following concentration inequality, that will prove to be useful in Sections
4.3 and 4.4.
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4. PERCOLATION IN DIRECTED GRAPHS

Corollary 4.4. Consider two finite sets A0 and A1 of sizes |A0| = a0 and |A1| = a1. Define S =
∪i∈{0,1}{(x, i) | x ∈ Ai}. A subset of S containing b0 elements with i = 0 and b1 elements with i = 1
is called a (b0, b1)-subset of S. Define V as the space of all (b0, b1)-subsets of S. Let f : V → R be a function
such that for any B,B′ ∈ V there holds |f (B) − f (B′)| ≤ |B4B′|. Here B4B′ denotes the symmetric
difference, i.e. B4B′ = (B ∪B′) \ (B ∩B′). Then for X distributed uniformly over V and any t > 0 there
holds

P [|f(X)− E [f(X)]| > t] ≤ 2 exp

(
− t2

8(b0 + b1)

)
. (4.4)

Proof. Consider a (b0, b1)-subset of S. Assign each element a unique number in the set {1, 2, . . . , b0+b1}, such
that for all elements with i = 0 this number is smaller than b0+1. Note that this implies that for each element
with i = 1 its number is larger than b0. A (b0, b1)-subset of S with such a numbering is called a (b0, b1)-
ordering of S. Define W to be the set of all (b0, b1)-orderings of S. The function f : V → R can be extended
to a function f : W → R by regarding each (b0, b1)-ordering as (b0, b1)-subset. This extension respects the
relation |f(x) − f(y)| ≤ x4y, i.e. it holds for x, y ∈ W as well. This is true since for any two orderings
x, y their symmetric difference as (b0, b1)-orderings is bounded from bellow by their symmetric difference as
(b0, b1)-subsets. The next step in proving equation (4.4) is applying Theorem 4.3 to the metric space (W,4).

We will now define a sequence of refined parti-
tions on W using the notion of an i-prefix. An
i-prefix determines the first i elements of an or-
dering. This allows for all k ∈ {0, 1, . . . , b0 + b1}
to construct the partition Pk by defining its ele-
ments to be the sets of orderings with the same
k-prefix. Now the partition P0 is the trivial par-
tition consisting of W. As each (b0, b1)-ordering
has b0 + b1 elements, Pb0+b1 will be the partition
where each element is a single ordering. Next the
values ck need to be determined. Take B,D ∈ Pk
with C satisfying B,D ⊂ C ∈ Pk−1. This implies
that any ordering in B has the same k− 1-prefix
as an ordering in D. Furthermore these orderings
must differ at the kth element. The remaining
b0 + b1 − k elements can be any element that is
not present in the k-prefix that lead to a valid
ordering. Denote the kth element of any ordering
in B by aB,k. Similarly let aD,k denote the kth

element of any ordering in D. Define the bijec-
tion φ : B → D by taking x ∈ B and mapping its
kth element to aD,k. If x contains aD,k at some
position l > k, map the lth element of x to aB,k.
All the other elements are unchanged by the bi-
jection. By definition this is an element of D.
This bijection is illustrated in figure 3.

1. (a, 0)

2. (e, 0)

3. (d, 0)

4. (g, 0)

5. (α, 1)

6. (γ, 1)

1. (a, 0)

2. (g, 0)

3. (d, 0)

4. (e, 0)

5. (α, 1)

6. (γ, 1)

x ∈ B φ(x) ∈ D

2-prefix

aD,2

aB,2

Figure 3: The definition of the bijection φ : B →
D. A 2-prefix is highlighted in red. The elements
aB,2 and aD,2 are indicated in green. The bijec-
tion itself is displayed in blue.

According to definition of φ for any x ∈ B we have |x4φ(x)| ≤ 4. Thus we may take ck = 4 for all
k ∈ {1, 2, . . . , b0 + b1}. Applying Theorem 4.3 we find that for distributing X uniformly random over W and
any t > 0 there holds

P [|f(X)− E [f(X)]| > t] ≤ 2 exp

(
− t2

8(b0 + b1)

)
.

Remark that each element in V gives rise to b0! + b1! different orderings. All these orderings have the same
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4. PERCOLATION IN DIRECTED GRAPHS

value under f . Thus the probability that f(X) = c does not change when we take X to be a uniformly
random element of V instead of W . Together with the above equation, this proves the claim.

4.3 Bond percolation

This section is devoted to proving Theorem 4.1 for bond percolation. This proof is based on [2, Section 3]. It
is divided into three steps. First, it will be shown that conditional on the degree sequence after percolation,
each configuration on W−~dnπ

and W+
~dnπ

is equally likely, see Section 4.3.1. In Section 4.3.2, we determine the

limit of the expected number of vertices with degree (j, k) after percolation. Combining these results, the
proof can be completed by showing that an element of D is ν a.s. proper, which allows us to apply Theorem
3.12, see Section 4.3.3.

4.3.1 A percolated configuration is a uniformly random configuration

Consider a uniformly random configuration on (W−,W+). Bond percolation randomly removes matches
from this configuration. A configuration on (W−,π ,W+,π ) remains. It will now be shown that conditional on
the degree sequence after percolation, a uniformly random configuration on (W−,π ,W+,π ) arises. The proof
is split into two lemma’s. Our lemma’s are the directed analogues of Lemma 3.1 and 3.2 [2] for undirected
graphs. The first step is showing that conditional on the number of edges after percolation, the surviving
stubs are chosen uniformly at random.

Lemma 4.5. Suppose that l of the m edges survive bond percolation applied to a uniformly random configu-
ration M on (W−,W+) . Then the surviving stubs W−,π ⊂W− and W+,π ⊂W+ are uniformly distributed
amongst all pairs of subsets of W− and W+ of size l.

Proof. As l edges survive percolation, there holds |W−,π | = |W+,π | = l. The probability that W−,π ⊂ W−

and W+,π ⊂W+ are the stubs surviving percolation equals the probability that all points in W−,π have their
match in W+,π and that exactly these l matches survive percolation. Since the graph contains m matches
of which l survive percolation, the probability exactly those l matches remain is 1

(ml )
.

It is left to investigate the probability that all stubs in W−,π have their match in W+,π . This implies that
M must decompose into a perfect bipartite matching of W−,π with W+,π and a perfect bipartite matching
of W− \W−,π with W+ \W+,π . Between two sets of size l there are l! perfect bipartite matchings, hence
the probability thatM decomposes as desired, is l!(m− l)!/m!. Thus the probability that (W−,π ,W+,π ) are
the stubs surviving percolation is

l! (m− l)!
m!

1(
m
l

) =
1(
m
l

)2 .
This is the probability that W−,π is a uniformly random subset of size l of W− and that W+,π is a uniformly
random subset of W+ of size l.

Using this lemma, the desired statement can be shown.

Lemma 4.6. Apply bond percolation to a uniformly random configuration on (W−,W+) obeying the degree

sequence ~dn. Conditional on having degree sequence ~dnπ after bond percolation, i.e. ~dn
′

= ~dnπ , all configurations

of W−~dnπ
with W+

~dnπ
are equally likely.

Proof. The goal is to show that all configurations on W−~dnπ
and W+

~dnπ
have equal probability to arise after

percolation, given that ~dn
′

= ~dnπ . This implies that for any perfect bipartite matchingMπ of W−~dnπ
with W+

~dnπ

there must hold

P
[
Mπ | ~dn

′
= ~dnπ

]
=

1

l!
.
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4. PERCOLATION IN DIRECTED GRAPHS

Here l denotes the sum of the in-degrees of ~dnπ . First, rewrite this probability using P
[
|W−,π | = l

∣∣∣ ~dn′ = ~dnπ

]
=

1 and the law of total probability to obtain

P
[
Mπ | ~dn

′
= ~dnπ

]
= P

[
Mπ

∣∣∣ |W−,π | = l, ~dn
′

= ~dnπ

]
.

Applying Bayes’ formula to the right hand side of the previous equation gives

P
[
Mπ | ~dn

′
= ~dnπ

]
=

P
[
Mπ ∩ ~dn

′
= ~dnπ

∣∣∣ |W−,π | = l
]

P
[
~dn
′

= ~dnπ

∣∣∣W−,π | = l
] . (4.5)

It will now be shown that this expression equals 1
l! . First determine the value of P

[
~dn
′

= ~dnπ

∣∣∣W−,π | = l
]
.

Define S( ~dnπ) to be the collection of pairs of subsets of (W−,W+) that induce the degree sequence ~dnπ .

Recalling that |W−,π | = |W+,π |, we see that for any pair of subsets in S( ~dnπ), both sets must contain l
elements. In combination with Lemma 4.5 this implies

P
[
~dn
′

= ~dnπ

∣∣∣ |W−,π | = l
]

=
|S( ~dnπ)|(
m
l

)2 .

Next we consider P
[
Mπ ∩ ~dn

′
= ~dnπ

∣∣∣ |W−,π | = l
]
. Assume that (W−,π ,W+,π ) are the stubs surviving

percolation and that (W−,π ,W+,π ) ∈ S( ~dnπ). We want the probability that the configuration on these

stubs induces the configuration Mπ on

(
W−~dnπ

,W+
~dnπ

)
. As we fixed a bijection between (W−,π ,W+,π ) and(

W−~dnπ
,W+

~dnπ

)
, exactly one configuration of (W−,π ,W+,π ) induces the configuration Mπ on

(
W−~dnπ

,W+
~dnπ

)
.

This determines the configuration on (W−,π ,W+,π ). However we are free to choose the configuration on

(W− \W−,π ,W+ \W+,π ). Thus assuming that (W−,π ,W+,π ) ∈ S( ~dnπ), the probability that it induces the
configuration Mπ on (W−,π ,W+,π ) is

(m− l)!
m!

.

As Lemma 4.5 states that the remaining stubs after percolation are chosen uniformly random conditional on
the number of matches surviving, there follows

P
[
Mπ ∩ ~dn

′
= ~dnπ

∣∣∣ |W−,π | = l
]

=
(m− l)!
m!

|S( ~dnπ)|(
m
l

) .

Plugging our findings back in equation (4.5), we obtain

P
[
Mπ | ~dn

′
= ~dnπ

]
=

(
m
l

)(
m
l

)
|S( ~dnπ)|

(m− l)!
m!

|S( ~dnπ)|(
m
l

)
=

(
m

l

)
(m− l)!
m!

=
1

l!
.

4.3.2 The expected number of vertices with degree (j, k) after bond percolation

The next step in the proof of Theorem 4.1 for bond percolation is showing that the limit

lim
n→∞

E
[
Nπ
j,k (n)

]
n

:= pbond
j,k (4.6)
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exists and determining its value for all 0 ≤ j, k < ∞. Here Nπ
j,k (n) denotes the number of vertices in the

percolated graph or configuration with in-degree j and out-degree k, i.e. with degree (j, k). In Section 4.3.3

we show that ν a.s.
(
pbond
j,k

)∞
j,k=0

is the degree distribution of the percolated graph. Bearing this in mind,

the distribution
(
pbond
j,k

)∞
j,k=0

is used to determine an educated guess for πbond
c at the end of this section.

First the limit of equation (4.6) is shown to exist and the value of pbond
j,k is determined.

For all values of (j, k) with j > dmax or k > dmax or both the limit of equation (4.6) is easily evaluated.
Under these condition, the graph does not contain a vertex of degree (j, k) before applying bond percolation
by definition of dmax. As percolation only decreases the degree of the vertices, this implies that Nπ

j,k (n) = 0.

Thus also for the expected number of vertices of degree (j, k) there holds E
[
Nπ
j,k (n)

]
= 0. Hence the limit

of equation (4.6) is

lim
n→∞

E
[
Nπ
j,k (n)

]
n

= lim
n→∞

0

n
= 0 := pbond

j,k . (4.7)

In case j, k ≤ dmax it requires more work to show the existence of the limit in equation (4.6). Since equation
(4.6) is the directed analogue of equation (3.3) of Fountoulakis [2] we adapt the corresponding proof from
this reference. Remark that

E
[
Nπ
j,k (n)

]
=

m∑
l=0

E
[
Nπ
j,k (n)

∣∣∣ |W−,π | = l
]
P
[
|W−,π | = l

]
. (4.8)

This conditional expectation of Nπ
j,k (n) in turn can be written as

E
[
Nπ
j,k (n)

∣∣∣ |W−,π | = l
]

=

dmax∑
d−=j

dmax∑
d+=k

Nd−,d+ (n)P
[
vertex of degree (d−, d+) has new degree (j, k)

∣∣|W−,π | = l
]
.

Here (d−, d+) is the degree of the vertex before percolation and (j, k) is its degree after percolation. This
requires us to determine the probability P [vertex of degree (d−, d+) has new degree (j, k) ||W−,π | = l]. As
Lemma 4.5 implies that the surviving stubs are chosen uniformly at random conditional on the size of W−,π ,
there holds

P
[
vertex of degree (d−, d+) has new degree (j, k)

∣∣|W−,π | = l
]

=

(
d−

j

)(m−d−
l−j

)(
m
l

) (
d+

k

)(m−d+

l−k
)(

m
l

) .

This value can be further approximated for l ∈ I :=
[
mπ − ln(n)

√
n,mπ + ln(n)

√
(n)
]
. As the edges are

removed independently of each other, the size of W−,π is the sum of m independent Bernoulli variables, each
having expectation π. Applying Theorem 4.2 yields

P
[
||W−,π | −mπ| > ln(n)

√
n
]
≤ exp

[
−Ω(ln2(n))

]
. (4.9)

This implies that P [l /∈ I] = o
(

1
n3

)
. Fountoulakis [2] shows that for dmax ≤ n1/9 and l ∈ I there holds(

2m−d
2l−j

)(
2m
2k

) = πj(1− π)d−j
(

1 +O
(

ln(n)

n7/18

))
.

As we consider proper degree arrays there holds dmax ≤ n1/12

ln(n) . Since n1/12

ln(n) < n1/9 for all n ≥ 3, we can use

the same argument of Fountoulakis to show that

P
[
vertex of degree (d−, d+) has new degree (j, k) | |W−,π | = l

]
=

(
d−

j

)(
d+

k

)
πj+k (1− π)

d−+d+−j−k
(

1 +O
(

ln(n)

n7/18

))
,
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uniformly for all d−, d+ ≤ dmax and l ∈ I. This allows to determine E
[
Nπ
j,k (n) ||W−,π | = l

]
for all l ∈ I. In

combination with equation (4.8), P [l /∈ I] = o
(

1
n3

)
and the fact that Nπ

j,k (n) ≤ n, this yields

E
[
Nπ
j,k (n)

]
=

(
1 +O

(
ln(n)

n7/18

)) dmax∑
d−=j

dmax∑
d+=k

(
d−

j

)(
d+

k

)
πj+k (1− π)

d−+d+−j−k
+ o

(
1

n3

)
, (4.10)

using same argument as for E [D′i(n)] in [2, p. 344]. With this approximation of E
[
Nπ
j,k (n)

]
, we can show

that the limit of equation (4.6) exists. This requires for all ε > 0 the existence of κ (ε) and N (ε) such that
for all n > N

1

n

(dmax,dmax)∑
(d−,d+)=(0,0)

d−≥κ+1 or d+≥κ+1

Nd−,d+ (n)

(
d−

j

)(
d+

k

)
πj+k (1− π)

d−+d+−j−k ≤ 1

n

(dmax,dmax)∑
(d−,d+)=(0,0)

d−≥κ+1 or d+≥κ+1

Nd−,d+ (n) < ε. (4.11)

The left inequality holds by the binomial theorem, which implies that
∑d−

j=0

(
d−

j

)
πj(1−π)d

−−j =
∑d+

k=0

(
d+

k

)
πk(1−

π)d
+−k = 1, yielding for all j ≤ d−, k ≤ d+ that

(
d−

j

)(
d+

k

)
pj+k (1− p)d

−+d+−j−k ≤ 1. The right inequality

holds since limn→∞
Nj,k(n)

n = pj,k for j, k ≥ 0, which follows from the degree array being proper. Combining
equations (4.10) and (4.11) the limit in equation (4.6) can be shown to exists in analogy to the proof of [2,
eqaution (3.3)]. Not only does this show the existence of the limit, it will also determine its value:

pbond
j,k = lim

n→∞

E
[
Nπ
j,k (n)

]
n

=

∞∑
d−=j

∞∑
d+=k

pd−,d+

(
d−

j

)(
d+

k

)
πj+k (1− π)

d−−j+d+−k
. (4.12)

Thus the desired limit is evaluated. It is expected that
(
pbond
j,k

)∞
j,k=0

will be the degree distribution of the

percolated graph. In Section 4.3.3 this will be shown that this holds ν a.s. However this implies that(
pbond
j,k

)∞
j,k=0

must obey equation (2.6) and be normalized. The normalization follows from the binomial

theorem and that fact that (pj,k)
∞
j,k=0 is normalized:

∞∑
j=0

∞∑
k=0

∞∑
d−=j

∞∑
d+=k

pd−,d+

(
d−

j

)(
d+

k

)
πj+k (1− π)

d−−j+d+−k

=

∞∑
d−=0

∞∑
d+=0

pd−,d+

d−∑
j=0

(
d−

j

)
πj (1− π)

d−−j
d+∑
k=0

(
d+

k

)
πk (1− π)

d+−k

=

∞∑
d−=0

∞∑
d+=0

pd−,d+ = 1.

Next it is shown that
(
pbond
j,k

)∞
j,k=0

obeys equation (2.6). Besides the binomial theorem this derivation also

uses the equation

n∑
k=0

(
n

k

)
kxkyn−k = xn(x+ y)n−1,
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which can be obtained by applying x d
dx to the binomial theorem. We find

∞∑
j=0

∞∑
k=0

jpbond
j,k =

∞∑
j=0

j

∞∑
k=0

∞∑
d−=j

(
d−

j

)
πj (1− π)

d−−j
∞∑

d+=k

(
d+

k

)
πk (1− π)

d+−k
pd−,d+

=

∞∑
d−=0

∞∑
d+=0

pd−,d+

d−∑
j=0

j

(
d−

j

)
πj (1− π)

d−−j
d+∑
k=0

(
d+

k

)
πk (1− π)

d+−k

= π

∞∑
d−=0

∞∑
d+=0

d−pd,d+ .

A symmetric argument shows that

∞∑
j=0

∞∑
k=0

kpbond
j,k = π

∞∑
d−=0

∞∑
d+=0

d+pd,d+ .

This proves that

∞∑
j=0

∞∑
k=0

jpbond
j,k =

∞∑
j=0

∞∑
k=0

kpbond
j,k = πµ := µπ,bond, (4.13)

as (pj,k)
∞
j,k=0 satisfies equation (2.6). Thus

(
pbond
j,k

)∞
j,k=0

indeed is normalized and satisfies equation (2.6).

As we expect that
(
pbond
j,k

)∞
j,k=0

will be the degree distribution of the percolated graph, we expect from

Theorem 3 the percolation threshold will be the value of π such that

∞∑
j,k=0

jkpbond
j,k =

∞∑
j,k=0

jpbond
j,k . (4.14)

Denote this value by π̂bond. We will now determine this value. Recall that we just showed

∞∑
j,k=0

jpbond
j,k = πµ.

In the same way, we find that

∞∑
j,k=0

jkpbond
j,k = π2

∞∑
d−=0

∞∑
d+=0

d−d+pd−,d+ := µπ,bond
11 . (4.15)

Plugging this into equation 4.14 yields

π̂bond =

∑∞
d−=0

∑∞
d+=0 d

−pd,d+∑∞
d−=0

∑∞
d+=0 d

−d+pd,d+

=
µ

µ11
.

It remains to prove that π̂bond = πbond
c and to determine cbond.

4.3.3 Determining πbond
c and cbond

The equality π̂bond = πbond
c can be shown by applying Theorem 3.12 to the percolated multigraph array(

G̃π~dn

)∞
n=1

. This also allows us to determine the value of cbond and hence to prove Theorem 4.1 for bond

percolation. The percolated multigraph array
(
G̃π~dn

)∞
n=1

is obtained by applying bond percolation to a multi-

graph array obeying the degree array
(
~dn
)∞
n=1

, which is generated using the directed configuration model.
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4. PERCOLATION IN DIRECTED GRAPHS

To apply Theorem 3.12, we must show that
(
G̃π~dn

)∞
n=1

is a random multigraph array obeying a proper degree

array. Lemma 4.6 implies that G̃π~dn
is multigraph arising from a uniformly random configuration obeying

the degree sequence ~dnπ conditional on ~dnπ being the degree sequence after percolation. Thus conditional on(
~dnπ

)∞
n=1

being proper and the degree array after percolation, Theorem 3.12 can be applied to
(
G̃π~dn

)∞
n=1

.

This requires
(
~dnπ

)∞
n=1

to be proper. It will be shown that an element of D is ν a.s. proper. Hence Theorem

4.1 may be applied to almost all degree arrays
(
~dnπ

)∞
n=1

to determine πbond
c and cbond for random multigraphs.

A variant of Lemma 2.7 is then applied to show that the same holds for a percolated graph array
(
Gπ~dn

)∞
n=1

that arises from applying percolation to a uniformly random simple graph array obeying
(
~dn
)∞
n=1

. In the

remainder of this section, we formalize the above argument. This is based on the proof of Theorem 1.1 [2, p.
345− 348 ]. The first step is showing that each element of D is ν a.s. proper.

Definition 3.10 implies that each proper degree array must be feasible . For any
(
~dnπ

)∞
n=1

∈ D that is

feasible, it can be easily shown that it is proper as well, using the fact that
(
~dn
)∞
n=1

is proper. So we will

first prove that any
(
~dnπ

)∞
n=1
∈ D is ν a.s. feasible. By Definition 2.3 a degree array

(
~dnπ

)∞
n=1

is feasible

if
(
Nπj,k(n)

n

)∞
j,k=0

and its first, first mixed and second moments converge to those of a bivariate distribution

obeying equation (2.6). As we consider multigraphs at this point, for now we replace the constraint of each

degree sequence being graphical with each degree sequence being valid. That each ~dnπ is valid, is a direct

consequence from the fact that ~dn is valid, which holds as
(
~dn
)∞
n=1

is proper. We may swap these conditions

as Theorem 3.12 holds for a proper degree arrays where each degree sequence is valid as well [4]. When
conditioning on the graph before percolation being simple later on in the proof, we implicitly replace valid by
graphical. At that point the degree sequence ~dnπ will be graphical, as applying percolation to a simple graph

must result in another simple graph. Now we will show that ν a.s.
(
Nπj,k(n)

n

)∞
j,k=0

and its first, first mixed

and second moments converge to
(
pbond
j,k

)∞
j,k=0

and its corresponding moments. The first step is showing that

ν a.s.

lim
n→∞

Nπ
j,k (n)

n
= pbond

j,k , (4.16)

for all j, k ≥ 0. This is shown using the technique Fountoulakis applies [2, p. 346− 347]. By [25, Lemma 6.8]
it suffices to prove that ε > 0

∞∑
n=1

P
[∣∣∣∣Nπ

j,k (n)

n
− pbond

j,k

∣∣∣∣ > ε

]
<∞, (4.17)

to show equation (4.16). By definition of pbond
j,k for any fixed ε > 0 there is an N such that for all n > N∣∣∣∣∣∣

E
[
Nπ
j,k (n)

]
n

− pbond
j,k

∣∣∣∣∣∣ < ε

2
.

This implies

P
[∣∣∣∣Nπ

j,k (n)

n
− pbond

j,k

∣∣∣∣ > ε

]
≤ P

∣∣∣∣∣∣N
π
j,k (n)

n
−

E
[
Nπ
j,k (n)

]
n

∣∣∣∣∣∣ > ε

2

 .
To determine this latter probability, recall Lemma 4.5. This states that conditional on |W−,π | = l, the stubs
surviving percolation (W−,π ,W+,π ) are uniformly distributed amongst all pairs of subsets of (W−,W+)

23



4. PERCOLATION IN DIRECTED GRAPHS

of size l. The value Nπ
j,k (n) is a function of W−,π ∪W+,π . Furthermore for two sets W−,π ∪W+,π and

W−,π
′ ∪W+,π ′ their values of Nπ

j,k (n) differ by at most the number of elements in the symmetric difference

of W−,π ∪W+,π and W−,π
′ ∪W+,π ′. This implies that for A0 = W−, A1 = W+, b0 = b1 = l and Nπ

j,k (n) as
function f the requirements of Corollary 4.4 are fulfilled. Applying this Corollary yields

P
[∣∣∣Nπ

j,k (n)− E
[
Nπ
j,k (n)

]∣∣∣ > nε

2
| |W−,π | = l

]
≤ 2 exp

(
ε2n2

64l2

)
.

If l ∈ I, this probability is o
(

1
n3

)
. By equation (4.9) the probability that l /∈ I is o

(
1
n3

)
. Combining these

observations we find

P
[∣∣∣Nπ

j,k (n)− E
[
Nπ
j,k (n)

]∣∣∣ > nε
]

= o

(
1

n3

)
. (4.18)

For any ε > 0 this shows equation (4.17), which in turn proves that the limit in equation (4.16) holds ν a.s.

It remains to show that the first, first mixed and second moments of
(
Nπj,k(n)

n

)∞
j,k=0

converge ν a.s. to those

of
(
pbond
j,k

)∞
j,k=0

, to prove that
(
~dnπ

)∞
n=1

is ν a.s. feasible . All these moments can be shown to converge ν a.s.

using the same argument, which is based on the proof Fountoulakis uses for equation (3.5) [2]. First we inves-
tigate the convergence of the first moments. In Section 4.3.2 we saw that

∑∞
j,k=0 jp

bond
j,k =

∑∞
j,k=0 kp

bond
j,k . As

any edge must begin at one vertex and end at another, there also holds
∑∞
j,k=0 jN

π
j,k (n) =

∑∞
j,k=0 kN

π
j,k (n).

This implies that we can restrict ourself to showing that

lim
n→∞

Q′n := lim
n→∞

∑∞
j,k=0 jN

π
j,k (n)

n
(4.19)

ν a.s. exists and equals

Q =

∞∑
j,k=0

jpbond
j,k = πµ,

to show that both first moments converge. To determine the limit in equation (4.19) define

Xκ,n =
1

n

κ∑
j=0

κ∑
k=0

jNπ
j,k (n) .

Remark that there holds Xκ,n ≤ Q′n. Since
(
~dn
)∞
n=1

is a proper degree array, for all ε > 0 there exists

κ̃ (ε) , N (ε) such that for all κ > κ̃ and n > N

1

n

(dmax,dmax)∑
(d−,d+)=(0,0)

d−>κ or d+>κ

jNj,k (n) < ε. (4.20)

Thus for κ > κ̃ there holds Xκ,n ≤ Q′n ≤ Xκ,n + ε. This implies that if ν a.s.

lim
n→∞

Xκ,n =

κ∑
j=0

κ∑
k=0

jpbond
j,k := X̃κ, (4.21)

then limn→∞Q′n = Q ν a.s. as well [2, (3.5)]. Thus the goal is to prove equation (4.21). Applying Lemma
6.8 [25] we can show that this limit ν a.s. holds, if for any ε > 0 there holds

∞∑
n=1

P
[∣∣∣Xκ,n − X̃κ

∣∣∣ > ε
]
<∞. (4.22)
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4. PERCOLATION IN DIRECTED GRAPHS

We show this analogous to the proof of equation (4.17). By the definition of Xκ,n, X̃κ and pbond
j,k , for all ε > 0

exists an Ñ such that for all n > Ñ ∣∣∣E [Xκ,n]− X̃κ

∣∣∣ < ε

2
.

Combing this with the reverse triangle inequality, we find for any ε > 0

P
[∣∣∣Xκ,n − X̃κ

∣∣∣ > ε
]
≤ P

[
|Xκ,n − E [Xκ,n]| > ε

2

]
.

Remark that

|Xκ,n − E [Xκ,n]| = 1

n

κ∑
j=0

κ∑
k=0

j
(
Nπ
j,k (n)− E

[
Nπ
j,k (n)

])
. (4.23)

This implies that for ε′ = ε
2
∑
j≤κ j

there holds

P
[
|Xκ,n − E [Xκ,n]| > ε

2

]
≤

∑
j≤κ,k≤κ

P
[

1

n
|Nπ

j,k (n)− E
[
Nπ
j,k (n)

]
| > ε′

]
.

Using equation (4.18) we find

P
[
|Xκ,n − E [Xκ,n]| > ε

2

]
≤

∑
j≤κ,k≤κ

o

(
1

n3

)
≤ o

(
1

n2 7
9

)
.

Here we used the fact that dmax = O
(
n1/9

)
and that for j > dmax or k > dmax or both, there holds

Nπ
j,k (n) = E

[
Nπ
j,k (n)

]
= 0. This shows equation (4.22) and hence proves that Q′n converges ν a.s. to Q.

By redefining Q′n, Q,Xκ,n, X̃κ the same can be shown to hold for the first mixed moment and the second
moments. This also requires to new definition of ε′. Defining

ε′′ = min

{
ε

2
,

ε

2
∑
j≤κ j

,
ε

2
∑
j≤κ,k≤κ jk

,
ε

2
∑
j≤κ j

2
,

ε

2
∑
k≤κ k

2

}
,

we can show that all the moments of interest and the distribution itself converge simultaneously ν a.s. for an

element of D. Thus we have shown that
(
~dnπ

)∞
n=1

is ν a.s. feasible. To show that
(
~dnπ

)∞
n=1

is ν a.s. proper, we

show for each
(
~dnπ

)∞
n=1
∈ D, which is feasible, that dπmax ≤ n1/12

ln(n) and ρπ = max

{∑∞
j,k=0 j

2kNπj,k(n)

µπn ,
∑∞
j,k=0 jk

2Nπj,k(n)

µπn

}
=

o
(
n1/12

ln(n)

)
. Here dπmax is the maximum degree of the percolated degree sequence. By Definition 3.10 this suf-

fices to show that
(
~dnπ

)∞
n=1

is proper. Remark that we here used the feasibility of the degree array to define

ρ. As
(
~dn
)∞
n=1

is proper, there holds dmax ≤ n1/12

ln(n) . Percolation can only decrease the in-degree and the

out-degree of a vertex, implying dπmax ≤ dmax. Together these observations show that dπmax ≤ n1/12

ln(n) for any(
~dnπ

)∞
n=1

∈ D. It remains to show ρπ = o
(
n1/12

ln(n)

)
. First investigate the summation

∑∞
j,k=0 j

2kNπ
j,k (n)

(respectively
∑∞
j,k=0 jk

2Nπ
j,k (n)). Each vertex of degree (j, k) contributes j2k(jk2) to the summation. As

the in-degree and the out-degree can only decrease due to percolation, this implies

∞∑
j,k=0

j2kNπ
j,k (n) ≤

∞∑
j,k=0

j2kNj,k (n) and

∞∑
j,k=0

jk2Nπ
j,k (n) ≤

∞∑
j,k=0

jk2Nj,k (n) .

Equation (4.13) gives that µπ,bond = πµ. Recall that π is constant, i.e. it is assigned a fixed value before the

percolation is applied. These observations together with the fact that
(
~dn
)∞
n=1

is proper imply

ρπ ≤ max

{∑∞
j,k=0 j

2kNj,k (n)

πµn
,

∑∞
j,k=0 jk

2Nj,k (n)

πµn

}
=
ρ

π
= o

(
n1/12

ln(n)

)
.
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Thus any
(
~dnπ

)∞
n=1
∈ D is ν a.s. proper. Let E ⊂ D be the event over which the degree array is proper. As

any element of D is ν a.s. proper, there holds ν (E) = 1.

To complete the proof, we follow the idea of Fountoulakis [2, p. 347 − 348]. In place of [2, Theorem

2.1] we use Theorem 3.12. For any
(
~dnπ

)∞
n=1
∈ E we may apply Theorem 3.12 to a sequence of random

multigraphs
(
G̃π~dn

)∞
n=1

arising from uniformly random configurations. Recall that Lemma 4.6 implies that

this is the case for all n if we condition on ~dn
′

= ~dnπ . Fix
(
~dn
)∞
n=1
∈ E and apply Theorem 3.12 to

(
G̃π~dn

)∞
n=1

.

We will distinguish two cases based on the value of π: π < π̂bond and π > π̂bond. Recall that π̂bond = µ
µ11

.

First consider the case π < π̂bond. Define Aε
(
~dnπ

)
to be the set of all multigraphs obeying ~dnπ for which the

largest strongly connected component contains no more than εn vertices for ε ∈ (0, 1). As
µπ11

µπ = π µ11

µ < 1,

Theorem 3.12 implies for all ε:

lim
n→∞

P
[
G̃π~dn

∈ Aε
(
~dnπ

)
| ~dn
′

= ~dnπ

]
= 1. (4.24)

Next consider π > π̂bond. Define Bε
(
~dnπ

)
to be the set of all graphs whose largest strongly connected

component contains εn vertices for ε ∈ (0, 1). As
µπ11

µπ = π µ11

µ > 1 Theorem 3.12 implies that there exists an

unique ε such that

lim
n→∞

P
[
G̃π~dn

∈ Bε
(
~dnπ

)
| ~dn
′

= ~dnπ

]
= 1.

Not only does the theorem imply existence of such of ε, it also determines this value. This value is the

equivalent of (ζ+ + ζ− + ψ − 1) for the degree distribution
(
pbond
j,k

)∞
j,k=0

. We will express this value in terms

of (pj,k)
∞
j,k=0. This requires us to determine the probability that a uniformly random in-stub is attached to

a vertex of out-degree k in the percolated graph. In analogy to equation (3.5) this is

p+,bond
k =

1

µπ,bond

∞∑
j=0

jpbond
j,k =

1

πµ

∞∑
d+=k

∞∑
d−=0

pd−,d+

d−∑
j=0

j

(
d−

j

)
πj (1− π)

d−−j
(
d+

k

)
πk (1− π)

d+−k

=
π

πµ

∞∑
d+=k

∞∑
d−=0

d−pd−,d+

(
d+

k

)
πk (1− π)

d+−k
=

∞∑
d+=k

p+
d+

(
d+

k

)
πk (1− π)

d+−k
.

(4.25)

Similarly the probability that a uniformly random out-stub is attached to a vertex of in-degree j in the
percolated graph becomes

p−,bond
j =

∞∑
d−=j

p−d−

(
d−

j

)
πj (1− π)

d−−j
. (4.26)

The distributions
(
p−,bond
j

)∞
j=0

and
(
p+,bond
j

)∞
j=0

both have expected value π µ11

µ > 1. As p−0 , p
+
0 > 0 there

also holds p−,bond
0 , p+,bond

0 > 0. Hence the generating functions of these probability distributions will have
unique fixed points, x = f(x), that lie in the interval (0, 1) [4, Lemma 1]. These are denoted by

(
1− η−,bond

)
and

(
1− η+,bond

)
and given by

(
1− η−,bond

)
=

∞∑
j=0

p−,bond
j

(
1− η−,bond

)j
=

∞∑
d−=0

p−d−

d−∑
j=0

(
d−

j

)
πj (1− π)

d−−j (
1− η−,bond

)j
=

∞∑
d−=0

p−d−
(
π
(
1− η−,bond

)
+ 1− π

)d− (4.27)
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and

(
1− η+,bond

)
=

∞∑
d+=0

p+
d+

(
π
(
1− η+,bond

)
+ 1− π

)d+

. (4.28)

Using η− and η+ we can determine the analogues of ζ+, ζ− and ψ for the degree distribution
(
pbond
j,k

)∞
j,k=0

.

Following the equations (3.10), (3.7) and (3.11) these are defined by

(
1− ζ−,bond

)
=

∞∑
j,k=0

pbond
j,k

(
1− η−,bond

)j
,
(
1− ζ+,bond

)
=

∞∑
j,k=0

pbond
j,k

(
1− η+,bond

)k
(4.29)

and

ψbond =

∞∑
j,k=0

pbond
j,k

(
1− η−,bond

)j (
1− η+,bond

)k
. (4.30)

Now we can define

cbond = ζ−,bond + ζ+,bond + ψbond − 1. (4.31)

This is the unique value of ε such that

lim
n→∞

P
[
G̃π~dn

∈ Bcbond

(
~dnπ

)
| ~dnπ = ~dn

′]
= 1, (4.32)

by Theorem 3.12.

Equations (4.32) and (4.24) almost prove Theorem 4.1. There are two minor issues that can be easily

resolved. First of all the theorem is stated for a percolated multigraph array
(
G̃π~dn

)∞
n=1

without conditioning

on the degree array of percolated graphs. As ν (E) = 1, the argument of Fountoulakis [2, p. 348 ] can be
applied to show that:

• limn→∞ P
[
G̃π~dn

∈ Aε
(
~dnπ

)]
= 1 for all ε ∈ (0, 1) if π < π̂bond;

• limn→∞ P
[
G̃π~dn

∈ Bcbond

(
~dnπ

)]
= 1 and limn→∞ P

[
G̃π~dn

∈ Bε
(
~dnπ

)]
= 0 for all ε ∈ (0, 1), ε 6= cbond if

π > π̂bond.

The last problem is that we are interested percolation on uniformly random simple graphs instead of random
multigraphs. Replace the the graph G̃ ~dn in Lemma 2.7 and Corollary 2.8 by the graph G̃π~dn

and condition

on the graph to which percolation is applied (G ~dn) being simple. This yields slightly different variants of the

lemma and corollary that do not require the additional changes to the proof. Now applying this variant of
Corollary 2.8 to the above limits, we derive that

• limn→∞ P
[
Gπ~dn

∈ Aε
(
~dnπ

)]
= 1 for all ε ∈ (0, 1) if π < π̂bond;

• limn→∞ P
[
Gπ~dn

∈ Bcbond

(
~dnπ

)]
= 1 and limn→∞ P

[
Gπ~dn

∈ Bε
(
~dnπ

)]
= 0 for all ε ∈ (0, 1), ε 6= cbond if

π > π̂bond,

completing the proof of Theorem 4.1 for the case of bond percolation.
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4.4 Site percolation

It remains to prove Theorem 4.1 for site percolation. This proof has the same structure as for bond perco-
lation. Hence for parts of the proof, we will refer back to Section 4.3. Like in the case of bond percolation,
the proof is split into different parts. First in Section 4.4.1 we show that applying site percolation to a
uniformly random configuration leads to another uniformly random if we condition on the degree sequence
after percolation, like in the case of bond percolation. The next step is determining the limit of the expected
number of vertices with degree (j, k) after site percolation, see Section 4.3.2. Combining the results from
these sections with elements from Section 4.3, the proof Theorem 4.1 for site percolation is completed in
Section 4.4.3. Our proof of Theorem 4.1 for site percolation is based [2, Section 4]. We will conclude this
section by introducing notation that is used throughout the proof.

Site percolation randomly deletes vertices. Recall from Section 4.1 that deleting a vertex means that we
remove all edges adjacent to this vertex. In the setting of the configuration model this implies that all stubs
attached to a deleted vertex are removed. Denote these stubs by (W−,r,W+,r ). As site percolation removes
any edges adjacent to a vertex, also the match of any stub in (W−,r,W+,r ) will be removed. A stub in
(W−,r,W+,r ) can have its match in the same set, as it might happen that both endpoints of one edge are
deleted. Let (W−,m,W+,m) contain all the matches of stubs in (W−,r,W+,r ) that are not connected to a
deleted vertex. Thus W−,r ∪W−,m (respectively W+,r ∪W+,m) are all in-stubs (out-stubs) removed by site
percolation. The stubs that survive percolation are still denoted by (W−,π ,W+,π ). Remark that this implies

W− = W−,π ∪W−,r ∪W−,m and W+ = W+,π ∪W+,r ∪W+,m . (4.33)

These definitions of (W−,r,W+,r ) and (W−,m,W+,m) will be important throughout the proof.

4.4.1 A percolated configuration is a uniformly random configuration

Like in the case of bond percolation, conditional on ~dnπ being the degree sequence after percolation, applying
site percolation to a uniformly random configuration on (W−,W+) leads to a uniformly random configuration

obeying ~dnπ . Due to the different nature of site percolation, this requires another proof then in Section 4.3.1.
First it will be shown in Lemma 4.7 that conditional on the stubs that are removed by site percolation, the
matching on the surviving stubs is uniformly random.

Lemma 4.7. Apply site percolation to a uniformly random configuration M on (W−,W+). Conditional on
the elements of (W−,r,W+,r ) and (W−,m,W+,m), each configuration on (W−,π ,W+,π ) is equally likely.

Proof. By equation (4.33) conditioning on the elements of (W−,r,W+,r ) and (W−,m,W+,m), also determines
the elements of (W−,π ,W+,π ). Choosing the elements of (W−,r,W+,r ) and (W−,m,W+,m) furthermore
implies that the configuration M is the union of a configuration on (W−,r ∪W−,m,W+,r ∪W−,m) with
one on (W−,π ,W+,π ). As M is a uniformly random configuration obeying this split and the elements of
(W−,π ,W+,π ) are fixed, the configuration on (W−,π ,W+,π ) will be a uniformly random one.

This lemma allows us to prove that conditional on the degree sequence after percolation, a uniformly random
configuration remains.

Lemma 4.8. Apply site percolation to a uniformly random configuration on (W−,W+). Conditional on

~dn
′

= ~dnπ , any configuration on

(
W−~dnπ

,W+
~dnπ

)
is equally likely.

Proof. Define l = |W−,π | and let S( ~dnπ) contain all sets of surviving stubs (W−,π ,W+,π ) that induce the

degrees sequence ~dnπ . Fix a matching Mπ of

(
W−~dnπ

,W+
~dnπ

)
. Then it holds that

P
[
Mπ

∣∣∣ ~dn′ = ~dnπ

]
=

∑
(A,B)∈S( ~dnπ )

P
[
Mπ

∣∣∣ ~dn′ = ~dnπ ,
(
W−,π ,W+,π

)
= (A,B)

]
P
[(
W−,π ,W+,π

)
= (A,B) | ~dn

′
= ~dnπ

]
.
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Remark that P
[
Mπ

∣∣∣ ~dn′ = ~dnπ , (W
−,π ,W+,π ) = (A,B)

]
= P [Mπ |(W−,π ,W+,π ) = (A,B)] as (A,B) ∈ S( ~dnπ)

implies that (W−,π ,W+,π ) must induce the degree sequence ~dnπ . Lemma 4.7 and the bijection between

(W−,π ,W+,π ) and

(
W−~dnπ

,W+
~dnπ

)
together imply P [Mπ |(W−,π ,W+,π ) = (A,B)] = 1

l! . Combining these

observations with the fact that
∑

(A,B)∈S( ~dnπ ) P
[
(W−,π ,W+,π ) = (A,B) | ~dn

′
= ~dnπ

]
= 1 by definition of S( ~dnπ),

we obtain

P
[
Mπ

∣∣∣ ~dn′ = ~dnπ

]
=

1

l!

∑
(A,B)∈S( ~dnπ )

P
[(
W−,π ,W+,π

)
= (A,B) | ~dn

′
= ~dnπ

]
=

1

l!
,

completing the proof.

4.4.2 The expected number of vertices with degree (j, k) after site percolation

The next step in the proof of Theorem 4.1 for site percolation is showing that the limit

lim
n→∞

E
[
Nπ
j,k (n)

]
n

:= psite
j,k , (4.34)

exists and determining its value for all 0 ≤ j, k <∞, in analogy to the case of bond percolation. This requires

us to first show existence of this limit and to determine the value of psite
j,k . Based on

(
psite
j,k

)∞
j,k=0

, a value π̂site

can be determined analogously to π̂bond. In Section 4.4.3 π̂site is shown to be the percolation threshold for
site percolation.

First we consider the limit for all degrees (j, k) where the in-degree j or the out-degree k or both are
larger than dmax. By definition of dmax this implies Nj,k (n) = 0. As percolation does not increase degree of
a vertex, there holds Nπ

j,k (n) = 0 as well. Thus for these degrees (j, k) we find

lim
n→∞

E
[
Nπ
j,k (n)

]
n

= 0 = psite
j,k .

Next consider the limit of equation (4.34) for degrees (j, k) with 0 ≤ j, k ≤ dmax. This derivation is based

on [2, Section 4]. This requires us to bound the value of E
[
Nπ
j,k (n)

]
. Like in the case of bond percolation,

we investigate this value by splitting it into the probability that a vertex of degree (d−, d+) has degree (j, k)
after site percolation and the number of vertices with degree (d−, d+) before percolation. Deleted vertices are
treated separately from the others. Let Nπ,r

d−,d+ (n) denote the number of vertices of degree (d−, d+) before

percolation, that are not deleted. Thus Nd−,d+ (n) − Nπ,r
d−,d+ (n) equals the number of vertices of degree

(d−, d+) that are deleted. As each vertex is deleted with probability 1 − π independently of other vertices,
there holds

E
[
Nπ,r
d−,d+ (n)

]
= πNd−,d+ (n) . (4.35)

This implies that E
[
Nd−,d+ (n)−Nπ,r

d−,d+ (n)
]

= (1− π)Nd−,d+ (n). A deleted vertex will have degree (0, 0)

after percolation with probability 1. Let Pj,k (d−, d+) be the probability that vertex of degree (d−, d+), which
is not deleted, has degree (j, k) after percolation. Then we find for (j, k) = (0, 0)

E
[
Nπ

0,0 (n)
]

=

dmax∑
d−=0

dmax∑
d+=0

(1− π)Nd−,d+ (n) + πP0,0

(
d−, d+

)
Nd−,d+ (n) (4.36)

and else

E
[
Nπ
j,k (n)

]
=

dmax∑
d−=j

dmax∑
d+=k

πPj,k
(
d−, d+

)
Nd−,d+ (n) . (4.37)
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The next step is determining Pj,k (d−, d+). Define s− = |W−,π ∪W−,m|, s+ = |W+,π ∪W+,m |, r− = |W−,m|
and r+ = |W+,m |. Note that there must hold s−−r− = s+−r+ as s−−r− = |W−,π |, s+−r+ = |W+,π | and
the remaining configuration on (W−,π ,W+,π ) forms a directed graph. Let Pj,k (d−, d+, s−, s+, r−, r+) denote
the probability Pj,k (d−, d+) conditional on the values s−, s+, r−, r+. We will now determine this conditional
probability. Site percolation combines the independent random processes of deleting vertices and creating a
uniformly random configuration on (W−,W+). As these processes are independent, we may first determine
the elements of (W−,r,W+,r ) and then randomly create a configuration on (W−,W+). Thus conditional
on the value r−(respectively r+), each subset of W− \W−,r(W+ \W+,r ) of this size is equally likely to be
W−,m(W+,m). This implies

Pj,k
(
d−, d+, r−, r+, s−, s+

)
=

(
d−

d− − j

)(
d+

d+ − k

)( s−−d−
r−−d−+j

)(
s−

r−

) (
s+−d+

r+−d++k

)(
s+

r+

) . (4.38)

To approximate this probability we will show that with high probability s−, s+ and r−, r+ lie in some bounded
interval. This enables us to determine Pj,k (d−, d+, r−, r+, s−, s+) for s−, s+, r−, r+ in these intervals. First
consider s− and s+. Combining equation (4.35) with the linearity of expectation, we obtain

E
[
s−
]

=

dmax∑
d−=0

dmax∑
d+=0

πd−Nπ,r
d−,d+ (n) = mπ and E

[
s+
]

=

dmax∑
d−=0

dmax∑
d+=0

πd+Nπ,r
d−,d+ (n) = mπ.

Using dmax ≤ n1/9 and Hoeffding’s inequality we also find

P
[∣∣s− − E

[
s−
]∣∣ > n2/3 ln(n)

]
≤ e−Ω(ln2(n)) and P

[∣∣s+ − E
[
s+
]∣∣ > n2/3 ln(n)

]
≤ e−Ω(ln2(n)). (4.39)

This implies that

s−, s+ ∈ I ′ :=
[
mπ − n2/3 ln(n),mπ + n2/3 ln(n)

]
with probability 1− e−Ω(ln2(n)). The following Lemma specifies such an interval for r− and r+. This Lemma
is the directed equivalent of [2, Lemma 4.1].

Lemma 4.9. Conditional on s−, s+ ∈ I ′, there holds r− ∈ I :=
[
mπ(1− π)− n2/3 ln2(n),mπ(1− π) + n2/3 ln(n)2

]
with probability 1− e−Ω(ln2(n)). Also r+ ∈ I with probability 1− e−Ω(ln2(n)).

Proof. This proof is adapted from the proof of [2, Lemma 4.1]. Since the proof for r+ is identical to the
one for r− up to switching the roles of in-stubs and out-stubs, only the proof for r− is presented. As an
uniformly random configuration on (W−,W+) is considered, the probability that any in-stub is matched to

an out-stub in W+,r is m−s+
m = (1− π)

(
1 +O

(
n−1/3 ln(n)

))
as s−, s+ ∈ I ′. Since r− equals the number of

in-stubs in W− \W−,r with a match in W+,r , this implies

E
[
r−
]

= s−
m− s+

m
= mπ (1− π)

(
1 +O

(
n2/3 ln(n)

))
.

To complete the proof, we will now show that

P
[
|r− − E

[
r−
]
| > n2/3 ln2(n)

]
≤ e−Ω(ln2(n)).

This is realized by applying Theorem 4.3 to the space of configurations on (W−,W+) with the symmetric
difference as metric. The value of r− plays the role of the function f . To partition this space, order the
in-stubs of W−. Define an i-prefix to be the first i in-stubs together with their match. An element of the
partition Pk consists of all configurations with the same k-prefix for all k ∈ {0, 1, . . . ,m}. For any A,B ∈ Pk
such that A,B ⊂ C ∈ Pk−1 a bijection φ : A→ B can be defined. Denote the kth pair of a configuration in
A by (x, yA) and the kth pair of a configuration in B by (x, yB). Then φ mapsM∈ A to the configuration in
B with (x, yA) replaced by (x, yB) and with yA the match of the in-stub inM matched to yB . By definition
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of φ it follows that |M − φ(M)| = 4 := ck for all k ∈ {1, 2, . . . ,m}. As the value of r− also changes by at
most the symmetric difference of the two matchings, Theorem 4.3 implies

P
[
|r− − E

[
r−
]
| > n2/3 ln2(n)

]
≤ 2 exp

(
n4/3 ln2(n)

2m

)
= e−Ω(ln2(n)),

as m ≤ ndmax ≤ n10/9.

Fountoulakis [2, Section 4] shows that for dmax ≤ n1/9 there holds uniformly for r ∈ I and s ∈ I ′:(
d

d− i

)( s−d
r−d+i

)(
s
r

) =

(
d

d− i

)
(1− π)

d−i
πi
(

1 +O
(

ln2(n)

n1/3

))
.

Applying this to equation 4.38 implies that uniformly for all s−, s+ ∈ I ′ and r−, r+ ∈ I there holds

Pj,k
(
d−, d+, r−, r+, s−, s+

)
=

(
d−

d− − j

)(
d+

d+ − k

)
πd
−+d+−j−k (1− π)

j+k

(
1 +O

(
ln2(n)

n1/3

))
.

However we yet know nothing about this probability if one or more of the conditions s−, s+ ∈ I ′, r−, r+ ∈ I
is violated. Instead of determining the probability in this case, we show that it is unlikely that one or more
these conditions are violated. Instead of bounding the probability P [s− /∈ I ′ or s+ /∈ I ′ or r− /∈ I or r+ /∈ I], a

condition on Nπ,r
d−,d+ (n) is added. This allows to bound the value of E

[
Nπ
j,k (n)

]
. Theorem 4.2 implies that

P
[
Nπ,r
d−,d+ (n)− E

[
Nπ,r
d+,d− (n)

]
| >
√
n ln(n)

]
< e−Ω(ln2(n)). (4.40)

In combination with equation (4.35) this implies that

Nπ,r
d−,d+ (n) ∈ I ′′(d−, d+) =

[
max

{
πNd−,d+ (n)−

√
n ln(n), 0

}
, πNd−,d+ (n) +

√
n ln(n)

]
,

with probability 1− e−Ω(ln2(n)). Together with equation (4.39) and Lemma 4.9 there follows:

P
[
s− /∈ I ′ or s+ /∈ I ′ or r− /∈ I or r+ /∈ I orNπ,r

d−,d+ (n) /∈ I ′′
(
d−, d+

)]
≤P
[
s− /∈ I ′

]
+ P

[
s+ /∈ I ′

]
+ P

[
r− /∈ I

]
+ P

[
r+ /∈ I

]
+ P

[
Nπ,r
d−,d+ (n) /∈ I ′′

(
d−, d+

)]
=o

(
1

n3

)
+ P

[
r− /∈ I

]
+ P

[
r+ /∈ I

]
.

By the law of total probability P [r− /∈ I] equals

P
[
r− /∈ I|s− ∈ I ′, s+ ∈ I ′

]
P
[
s− ∈ I ′, s+ ∈ I ′

]
+ P

[
r− /∈ I|s− /∈ I ′, s+ ∈ I ′

]
P
[
s− /∈ I ′, s+ ∈ I ′

]
+P
[
r− /∈ I|s− ∈ I ′, s+ /∈ I ′

]
P
[
s− ∈ I ′, s+ /∈ I ′

]
+ P

[
r− /∈ I|s− /∈ I ′, s+ /∈ I ′

]
P
[
s− /∈ I ′, s+ /∈ I ′

]
= o

(
1

n3

)
.

Similarly it is shown that P [r+ /∈ I] = o
(

1
n3

)
. Thus there holds

P
[
s− /∈ I ′ or s+ /∈ I ′ or r− /∈ I or r+ /∈ I orNπ,r

d−,d+ (n) /∈ I ′′
(
d−, d+

)]
= o

(
1

n3

)
. (4.41)

This allows to determine a lower and upper bound for the value E
[
Nπ
j,k (n)

]
. As Nπ,r

d−,d+ (n) ≤ Nd−,d+ (n)

and
(
~dn
)∞
n=1

is proper, for all ε > 0 there exist κ (ε) and N (ε) such that for all n > N :

(dmax,dmax)∑
(d−,d+)=(0,0)

d−≥κ+1 or d+≥κ+1

Pj,k
(
d−, d+

)
Nπ,r
d−,d+ (n) ≤

(dmax,dmax)∑
(d−,d+)=(0,0)

d−≥κ+1 or d+≥κ+1

Nd−,d+ (n) ≤ εn. (4.42)
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In combination with equation (4.37) this implies for (j, k) 6= (0, 0)

κ∑
d−=j

κ∑
d+=k

Pj,k
(
d−, d+

)
Nπ,r
d−,d+ (n) ≤ E

[
Nπ
j,k (n)

]
≤

κ∑
d−=j

κ∑
d+=k

Pj,k
(
d−, d+

)
Nπ,r
d−,d+ (n) + εn. (4.43)

Using equation (4.41) on the left-hand side of the above equation we find

E
[
Nπ
j,k (n)

]
≥

κ∑
d−=j

κ∑
d+=k

∑
r̃−∈I′

∑
r̃+∈I′

∑
s̃−∈I

∑
s̃+∈I

∑
d̃d−,d+∈I′′(d−,d+)

d̃d−,d+Pj,k
(
d−, d+, r̃−, r̃+, s̃−, s̃+

)
· P
[
r− = r̃−, r+ = r̃+, s− = s̃−, s+ = s̃+, Nπ,r

d−,d+ (n) = d̃d−,d+

]
+ o

(
1

n2

)
.

As equation (4.40) implies that
∑
d̃d−,d+∈I′′(d−,d+) d̃d−,d+P

[
Nπ,r
d−,d+ (n) = d̃d−,d+

]
= E

[
Nπ,r
d−,d+ (n)

]
+ o

(
1
n2

)
,

following [2] we end up with the expression

E
[
Nπ
j,k (n)

]
≥ π

κ∑
d−=j

κ∑
d+=k

Nd−,d+ (n)

(
d−

d− − j

)(
d+

d+ − k

)
πd
−+d+−j−k (1− π)

j+k

(
1 +O

(
ln2(n)

n1/3

))
+ o

(
1

n2

)
.

(4.44)

In a similar fashion we can show, using the right-hand side of equation (4.43):

E
[
Nπ
j,k (n)

]
≤ π

κ∑
d−=j

κ∑
d+=k

Nd−,d+ (n)

(
d−

d− − j

)(
d+

d+ − k

)
πd
−+d+−j−k (1− π)

j+k

(
1 +O

(
ln2(n)

n1/3

))
+ εn+ o

(
1

n2

)
.

(4.45)

From this it can be shown, see [2, p. 353], that

lim
n→∞

E
[
Nπ
j,k (n)

]
n

= π

∞∑
d−=j

∞∑
d+=k

pd−,d+

(
d−

j

)(
d+

k

)
πj+k (1− π)

d−−j+d+−k
= psite

j,k . (4.46)

For (j, k) = (0, 0), we need to use equation (4.36) instead of equation (4.37). That Nπ,r
d−,d+ (n) ≤ Nd−,d+ (n)

and
(
~dn
)∞
n=1

is proper also implies that: for all ε > 0 there exist κ (ε) and N (ε) such that for all n > N

(dmax,dmax)∑
(d−,d+)=(0,0)

d−≥κ+1 or d+≥κ+1

(
Nd−,d+ (n)−Nπ,r

d−,d+ (n)
)
≤

(dmax,dmax)∑
(d−,d+)=(0,0)

d−≥κ+1 or d+≥κ+1

Nd−,d+ (n) ≤ εn.

Thus the equivalent of (4.43) for (j, k) = (0, 0) becomes

κ∑
d−=0

κ∑
d+=0

[(
Nd−,d+ (n)−Nπ,r

d−,d+ (n)
)

+ P0,0

(
d−, d+

)
Nπ,r
d−,d+ (n)

]
≤ E

[
Nπ

0,0 (n)
]
≤

κ∑
d−=0

κ∑
d+=0

[(
Nd−,d+ (n)−Nπ,r

d−,d+ (n)
)

+ P0,0

(
d−, d+

)
Nπ,r
d−,d+ (n)

]
+ 2εn.

The same argument as for (j, k) 6= (0, 0) can be applied to obtain:

lim
n→∞

E
[
Nπ

0,0 (n)
]

n
= (1− π) + π

∞∑
d−=j

∞∑
d+=k

pd−,d+

(
d−

j

)(
d+

k

)
πj+k (1− π)

d−−j+d+−k
= psite

0,0 . (4.47)
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Comparing equations (4.46) and (4.47) with equation (4.12) we find:

psite
j,k =

{
πpbond

j,k , (j, k) 6= (0, 0),

πpbond
0,0 + 1− π, (j, k) = (0, 0).

(4.48)

Exploiting this connection between
(
psite
j,k

)∞
j,k=0

and
(
pbond
j,k

)∞
j,k=0

, we find that
(
psite
j,k

)∞
j,k=0

is normalized as

∞∑
j=0

∞∑
k=0

psite
j,k = 1− π + π

∞∑
j=0

∞∑
k=0

pbond
j,k = 1.

Exploiting equation (4.48) further, we find that

µπ,site = πµπ,bond = π2µ and µπ,site11 = πµπ,bond
11 = π3µ11. (4.49)

This link between the two distribution also implies that
(
psite
j,k

)∞
j,k=0

satisfies equation (2.6).

It is left to determine π̂site. As we expect the percolated graph to obey the degree distribution
(
psite
j,k

)∞
j,k=0

,

from Theorem 3 we expect that the percolation threshold is the value of π such that

∞∑
j,k=0

jkpsite
j,k =

∞∑
j,k=0

jpsite
j,k . (4.50)

Denote this value by π̂site. Combing equations (4.50) and (4.49) we find

π̂site2

µ = π̂site3

µ11.

From this we find π̂site = µ
µ11

= π̂bond. So we expect that the percolation thresholds for site and bond
percolation are equal. This can be explained by remarking that the expected degree distribution after site
percolation is a rescaled version the degree distribution after bond percolation, expect for (0, 0). Hence one
expects a GSCC to appear under the same conditions, although it is expected to contain fewer vertices for
site percolation.

4.4.3 Determining πsite
c and csite

To prove Theorem 4.1 for site percolation, it remains to show that πsite
c = π̂site and to determine csite. This

is done similar to the proof of Theorem 4.1 for bond percolation in Section 4.3.3. Because of the similarity
between these proofs, we only explain the changes that are made in Section 4.3.3 to convert it into the proof
for site percolation.

It is obvious that we need to replace pbond
j,k by psite

j,k . Where Lemma 4.6 is used in Section 4.3.3, replace it by
Lemma 4.8. As Lemma 4.8 proves the exact same statement for site percolation as Lemma 4.6 for bond per-
colation, swapping these lemma’s does not require additional changes. Furthermore equation (4.22) requires
a different proof. For this we follow [2, p. 354]. Conditional on a certain realization of (W−,r,W+,r ) and the
values s−, s+ ∈ I ′, r−, r+ ∈ I, the value of Nπ

j,k (n) is determined by the random choice of (W−,m,W+,m).

By changing one element of (W−,m,W+,m) the value of Nπ
j,k (n) changes by at most 2. Thus Corollary 4.4

can be applied to obtain

P
[
|Nπ

j,k (n)− E
[
Nπ
j,k (n)

]
| >
√
n ln2(n) | s−, s+, r−, r+,

(
W−,r,W+,r

)]
≤ 2 exp

(
n ln2(n)(

m(1− π)π + n2/3 ln2(n)
)) = exp

(
−Ω

(
ln2(n)

))
.
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Using Lemma 4.9 and equation (4.39) there follows

P
[
|Nπ

j,k (n)− E
[
Nπ
j,k (n)

]
| >
√
n ln2(n)

]
= o

(
1

n3

)
.

As κ is bounded this completes the proof of equation (4.22).

The last change we need, is induced by the fact that Theorem 3.12 is now applied to a proper degree

array with
(
psite
j,k

)∞
j,k=0

as degree distribution instead of
(
pbond
j,k

)∞
j,k=0

. Hence π̂bond and cbond must be re-

placed by π̂site and csite. In Section 4.4.2 we already found that π̂site = µ
µ11

. Thus it remains to determine

csite. This value is derived identical to cbond, expect for replacing
(
pbond
j,k

)∞
j,k=0

by
(
psite
j,k

)∞
j,k=0

. This implies

that we first need to determine the probability that a uniformly random out-stub (respectively in-stub) is
attached to a vertex with in-degree j (out-degree k) in the configuration after applying site percolation. In
analogy to equations (4.26) and (4.25) these probability are given by

p−,sitej =

∞∑
k=0

k

µπ,site
psite
j,k =

∞∑
d−=j

p−d−

(
d−

j

)
πj (1− π)

d−−j
and p+,site

k =

∞∑
d+=k

p+
d+

(
d+

k

)
πk (1− π)

d+−k
.

(4.51)

Note that p−,sitej = p−,bond
j and p+,site

k = p+,bond
k . While this might seem surprising, there is a logical

explanation. A vertex of degree (0, 0) does not play any role in this distribution, as it will never be en-
countered by following a uniformly random in-stub or out-stub. Equation (4.48) implies that for all other

degrees there holds psite
j,k = πpbond

j,k . Hence after normalization the value of p−,sitej (respectively p+,site
k ) equals

p−,bond
j (p+,bond

k ) for all j (k). Since these distributions are equal, there also holds η−,bond = η−,site and

η+,bond = η+,site, i.e. they are also given by equations (4.27) and (4.28). The difference between the two
types of percolation arises in the definitions of ζ−,site, ζ+,site and ψsite. These are given by(

1− ζ−,site
)

=

∞∑
j,k=0

psite
j,k

(
1− η−,site

)j
,
(
1− ζ+,site

)
=

∞∑
j,k=0

psite
j,k

(
1− η+,site

)k
(4.52)

and

ψsite =

∞∑
j,k=0

psite
j,k

(
1− η−,site

)j (
1− η+,site

)k
. (4.53)

Applying equation (4.48) and the fact η−,bond = η−,site and η+,bond = η+,site and recalling equations (4.29)
and (4.30), the above equations become(

1− ζ−,site
)

= π

∞∑
j,k=0

pbond
j,k

(
1− η−,bond

)j
+ 1− π = π

(
1− ζ−,bond

)
+ 1− π,

(
1− ζ+,site

)
= π

∞∑
j,k=0

pbond
j,k

(
1− η+,bond

)k
+ 1− π = π

(
1− ζ+,bond

)
+ 1− π and

ψsite = π

∞∑
j,k=0

pbond
j,k

(
1− η−,site

)j (
1− η+,site

)k
+ (1− π) = πψbond + 1− π.

Following Theorem 3.12 and exploiting the above equations, we find

csite = ζ−,site + ζ+,site + ψsite − 1 = π
(
ζ−,bond + ζ+,bond + ψbond − 1

)
= πcbond. (4.54)

This relation between csite and cbond also can be intuitively explained, again using equation (4.48). The main
difference in the distributions is in vertices with degree (0, 0). A vertex of degree (0, 0) forms its own strongly
connected component. Hence these vertices are not in the GSCC. As psite

j,k = πpbond
j,k and psite

0,0 = πpbond
j,k +1−π,

hence we could already have predicted that csite = πcbond. This is the last change that needs to be made to
Section 4.3.3 to complete the proof of Theorem 4.1 for site percolation. This completes the proof of Theorem
4.1.
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5 Numerical construction of random directed graphs

In the previous section we have proven Theorem 4.1, which determines the percolation threshold for graphs
in the asymptotic limit. We want to illustrate this theorem with numerical simulations. This requires us
to uniformly sample simple directed graphs obeying a given degree sequence. Additionally, being able to
sample such graphs numerically gives access to much richer information about them, as such samples may be
further analysed with graph algorithms. For example, to investigate diameter, cycles, spectral properties, etc.

A first guess might be to use the configuration model to generate the desired graphs. Theoretically this
works. One can keep repeatedly drawing a uniformly random configuration, until it induces a simple graph.
This is called the repeated configuration model. However, as already mentioned in Section 1, numerical
experiments show that this procedure is not practical even for very small graphs. A more popular algorithm
to generate simple graphs uses a Markov Chain [14]. However for most degree sequences it is not known when
the graph is sufficiently independent from the initial guess, i.e. when the algorithm has achieved a uniformly
random graph. Additionally for those degree sequences for which it is known, this bound often appears to
be a high degree polynomial in n [14].

Neither the repeated configuration model nor the Markov Chain approach is an ideal way to uniformly
generate random graphs obeying a given degree sequence. In this work we build an algorithm that will
almost uniformly generate random simple directed graphs obeying a given degree sequence with expected
runtime near-linear in m. Our algorithm is a generalisation of an algorithm by Bayati, Kim and Saberi [5] for
undirected graphs. While our algorithm cannot be used if the graphs must be distributed exactly uniformly,
it is a good trade-off between speed and uniformity if almost uniform generation of the graphs suffices. We
explain the algorithm in Section 5.1. After presenting it, we prove the claims about its performance. The
proof that this algorithm generates graphs distributed within up to a factor of 1 ± o(1) of uniformity is
presented in Section 5.2 and is based on [5, Section 7]. Our algorithm might fail to construct a graph, but it
is shown that this happens only with probability o(1) in Section 5.3, following [5, Section 5]. This section is
completed with a runtime analysis of the algorithm, see Section 5.4, which is based on [5, Section 6].

5.1 The algorithm

The algorithm is based on the configuration model. Generating a uniformly random configuration is not an
issue. The problem is that a random configuration might induce a multigraph, which we do not desire. This
problem can be remedied by the following procedure: A configuration is generated by sequentially matching a
random in-stub to a random out-stub. A match between a given in-stub and out-stub is rejected if this match
leads to a self-loop or multi-edge. Then the resulting configuration induces a simple graph. This constraint
on accepting the matches, might make it impossible to finish a configuration, for example, if only one in-stub
and one out-stub of the same vertex remain. In this case, we reject the partial configuration and start from
scratch again. Note that the rejection of specific matches destroys the uniformity of the generated graphs.
To cancel out the non-uniformity bias, we accept each admissible match between an in- and an out-stub with
a cleverly chosen probability, which will slightly repair the uniformity. The resulting generated graphs can
be then assured to be within 1± o(1) of uniformity. The pseudo-code of our algorithm is shown in Algorithm
1, which is based on [5, Procedure A] for the undirected graphs.

Recall that for each vertex i, the degree sequence prescribes its in-degree d−i and its out-degree d+
i . The

residual in-degree d̂−i (respectively out-degree d̂+
i ) of the vertex i is the number of unmatched in-stubs(out-

stubs) of this vertex. The edges are added to E in the loop at line 5. On each step of the loop, one edge is

chosen and added to E. When for all ordered pairs (i, j) such that i 6= j, (i, j) /∈ E there holds d̂+
i = 0 or

d̂−j = 0 or both no edge can be added to E and the algorithm terminates. If the algorithm terminates before
m edges have been added to E, it has failed to construct a simple graph obeying the desired degree sequence.
Hence it outputs a failure. Else the algorithm returns a simple graph obeying the degree sequence ~dn. In
the loop at line 5 also a value P is computed. Assuming that the algorithm does not return a failure, P is
the probability that the algorithm generates the edges of the graph G ~dn in the order it has just constructed

them. That the order in which the edges are constructed matters, follows from the fact that the probability
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Algorithm 1: generating simple directed graphs obeying a given degree array

input : ~dn a graphical degree array

output: G ~dn = (V,E) a digraph obeying ~dn and N an estimation for the number of simple digraphs

obeying ~dn or a failure
1 V = {1, 2, . . . n}// set of vertices

2 d̂ = ~dn// residual degree

3 E = ∅// set of edges

4 P = 1 // probability of generating this ordering

5 while edges can be added to E do

6 Pick i, j ∈ V with probability Pij proportional to d̂+
i d̂
−
j

(
1− d+

i d
−
j

2m

)
amongst all ordered pairs

(i, j) with i 6= j and (i, j) /∈ E ;

7 Add (i, j) to E, decrease d̂+
i and d̂−j by 1 and set P = P · Pij ;

8 if |E| = m then
9 Output G ~dn = (V,E), N = 1

m!P

10 else
11 return failure

Pij depends on the elements of E. It will be shown that asymptotically each ordering of a set of m edges is
generated with the same probability. Hence the probability that the algorithm generates the graph G ~dn is

asymptotically m!P . As we will show that each graph is generated within a factor of 1± o(1) of uniformity,
1

m!P is an approximation to the number of simple graphs obeying the degree sequence.

This algorithm can be shown to have the following favourable properties.

Theorem 5.1. Suppose we are given a graphical degree sequence ~dn, for which there exists τ > 0 such that
dmax = O

(
m1/4−τ). Then Algorithm 1 terminates successfully with probability 1− o(1) and has an expected

runtime of O (mdmax). Furthermore any graph G ~dn is generated with a probability within factor 1 ± o(1) of

uniformity.

The remainder of this section is covered by the proof of Theorem 5.1, which is split into three parts: the
uniformity of the generated graphs, the failure probability of the algorithm and its runtime.

5.2 The probability that Algorithm 1 generates a graph G ~dn

This section is devoted to proving that Algorithm 1 generates any graph G ~dn with a probability within

1± o(1) of the uniform probability. This is realized by proving the following Theorem.

Theorem 5.2. Take a graphical degree sequence ~dn with dmax = O
(
m1/4−τ) for some τ > 0. Let G ~dn be a

random simple graph obeying this degree sequence. Then Algorithm 1 generates G ~dn with probability

[1 + o(1)]

(
m!∏m−1

r=0 (m− r)2

n∏
i=1

d+
i !

n∏
i=1

d−i ! e

∑n
i=1 d

−
i
d
+
i

m −
∑n
i=1(d

−
i

)2+(d
+
i

)2

2m +
∑n
i=1(d

−
i

)2
∑n
i=1(d

+
i

)2

4m2 + 1
2

)
.

This a generalisation of [5, Lemma 1] to directed graphs, and our proof is guided by the proof of this lemma.
The proof is split into four steps. The first step is determining the probability that the algorithm generates
a graph G ~dn , see Section 5.2.1. This section reduces the proof of Theorem 5.2 to showing that equations

(5.4) and (5.3) hold. Equation (5.4) is proven in Section 5.2.3 and equation (5.3) in Section 5.2.4. In order
to show that these equations hold, first ψr must be defined in Section 5.2.2.
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5.2.1 Analysing the probability of generating a given graph G ~dn

Fix a simple directed graph G ~dn that obeys the degree sequence ~dn. The goal is to determine the proba-

bility that Algorithm 1 outputs G ~dn on input of ~dn. Denote this probability by PA(G ~dn). Let R(G ~dn) ={
M|GM = G ~dn

}
be the set of all configurations on (W−,W+) that induce the graph G ~dn . Since the output

of Algorithm 1 is also a configuration, there holds

PA(G ~dn) =
∑

M∈R(G ~dn
)

PA (M) .

Recall from Section 2.3 that any two configurations inducing the same graph, differ only in the labelling of
the stubs. As the algorithm ignores the label of a stub, each configuration in R(G ~dn) is generated with equal

probability. Note that the probability to match an out-stub of i to an in-stub of j depends on the partial
constructed configuration. Hence the order in which the matches are chosen, influences the probability of
generating a configuration M. Take a configuration M ∈ R(G ~dn) and define S (M) to be all the orderings

in which the configuration can be created. Because the configuration already determines the match for each
in-stub, an ordering ofM can be thought of as a prescription which in-stub gets matched first, which second,
etc. As M contains m in-stubs, there are m! different orderings constructing the configuration M. This
implies that

PA(G ~dn) =

n∏
i=1

d−i !

n∏
i=1

d+
i !

∑
N∈S(M)

PA (N ) .

So we need to investigate PA (N ). Identifying a match between an in-stub with an out-stub by an edge,
we can write N = {e1, e2, . . . , em}. Note that any other element in S (M) can be obtained by permuting
the elements of N . If the algorithm has constructed the first r elements of N , it is said to be at step
r ∈ {0, 1, . . . ,m−1}. Step m does not exists, as the algorithm terminates immediately after constructing the

mth edge. Let d−i
(r)

(respectively d+
i

(r)
) denote the number of unmatched in-stubs (out-stubs) of the vertex

i at step r. Define

Er :=
{

(i, j) | i, j ∈ V, d+
i

(r)
> 0, d−j

(r)
> 0, i 6= j, (i, j) /∈ {e1, e2 . . . , er}

}
.

This is the set of all edges that can be added to the ordering at step r. It will also be referred to as the set of
all eligible edges or pairs at step r. This notation allows to write the probability of generating the ordering
N as

PA(N ) =

m−1∏
r=0

P [er+1|e1, . . . , er] ,

for

P [er+1 = (i, j)|e1, . . . , er] =
1− d+

i d
−
j

2m∑
(u,v)∈Er d

+
u

(r)
d−v

(r)
(

1− d+
u d
−
v

2m

) .
Here we slightly abuse the notation as this is the conditional probability that a given out-stub of i is matched
with a given in-stub of j, rather than the conditional probability that the edge (i, j) is created. Now the
probability that the algorithm generates the graph G ~dn can be written as

PA(G ~dn) =

n∏
i=1

d−i !

n∏
i=1

d+
i !

∏
(i,j)∈G ~dn

(
1−

d+
i d
−
j

2m

) ∑
N∈S(M)

m−1∏
r=0

1

(m− r)2 −Ψr(N )
, (5.1)
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where

Ψr (N ) =
∑

(u,v)/∈Er

d+
u

(r)
d−v

(r)
+

∑
(u,v)∈Er

d+
u

(r)
d−v

(r) d+
u d
−
v

2m
. (5.2)

Recall that the goal is to prove Theorem 5.2. Suppose we manage to show that

∑
N∈S(M)

m−1∏
r=0

1

(m− r)2 −Ψr(N )
= [1 + o(1)]m!

m−1∏
r=0

1

(m− r)2 − ψr
, (5.3)

and

m−1∏
r=0

1

(m− r)2 − ψr
= [1 + o(1)]

m−1∏
r=0

1

(m− r)2
e

∑n
i=1 d

−
i
d
+
i

m −
∑n
i=1(d

−
i

)2+(d
+
i

)2

2m +
∑n
i=1(d

−
i

)2
∑n
i=1(d

+
i

)2

4m2 +

∑
(i,j)∈G ~dn

d
+
i
d
−
j

2m + 1
2 ,

(5.4)

hold for some quantity ψr, to be defined in section 5.2.2. For now think of it as the expected value of Ψr(N ).

Combining these two equations with equation (5.1) and using that 1− x = e−x+O(x2) we find

PA(G ~dn) = [1 + o(1)]m!

n∏
i=1

d−i !

n∏
i=1

d+
i !

m−1∏
r=0

1

(m− r)2 e

∑n
i=1 d

−
i
d
+
i

m −
∑n
i=1(d

−
i

)2+(d
+
i

)2

2m +
∑n
i=1(d

−
i

)2
∑n
i=1(d

+
i

)2

4m2 + 1
2 .

This is exactly the statement of Theorem 5.2. Thus proving equations (5.3) and (5.4) suffices to show
Theorem 5.2.

5.2.2 Defining the value ψr

Before equations (5.3) and (5.4) can be shown to hold, ψr must be defined. This is closely related to the
expected value of Ψr (N ). For ease of notation, abbreviate Ψr (N ) by Ψr whenever N follows from the
context. For further analysis we require to write

Ψr = ∆r + Λr,

with

∆r =
∑

(u,v)/∈Er

d+
u

(r)
d−v

(r)
and Λr =

∑
(u,v)∈Er

d+
u

(r)
d−v

(r) d+
u d
−
v

2m
. (5.5)

Note that ∆r counts the number of unsuitable pairs, i.e. the number of pairs of the unmatched in-stubs with
out-stubs that induce a self-loop or multi-edge. In the sequel we refer to a combination of an unmatched
in-stub and an unmatched out-stub as a pair. To simplify the analysis of ∆r and Λr, they are also written
as the sum of multiple quantities. As ∆r counts the number of unsuitable pairs, it is necessary to split this
quantity up into the number pairs creating a self-loop

∆1
r =

n∑
i=1

d−i
(r)
d+
i

(r)
, (5.6)

and the number of pairs creating a multi-edge

∆2
r = ∆r −∆1

r. (5.7)

This implies ∆r = ∆1
r +∆2

r. Note that ∆2
r counts the number of pairs leading to a double edge, as we assume

that {e1, e2, . . . , er} does not contain a multi-edge.
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The quantity Λr is split up into two terms, to remove the summation over (u, v) ∈ Er. The reason for
this representation will become apparent once expected value of Λr is determined. We write Λr as:

Λr =
Λ1
r
+

Λ1
r
− − Λ2

r

4m
− Λ3

r

2m
, (5.8)

with

Λ1
r
+

=

n∑
i=1

d+
i

(r)
d+
i , Λ1

r
−

=

n∑
i=1

d−i
(r)
d−i , (5.9)

Λ2
r =

n∑
i=1

d+
i

(r)
d+
i d
−
i

(r)
d−i and (5.10)

Λ3
r =

∑
(u,v)/∈Er
u6=v

d+
u

(r)
d−v

(r)
d+
u d
−
v . (5.11)

Some of these quantities have simple bounds, which will be important in Section 5.2.4.

Lemma 5.3. For all 0 ≤ r ≤ m− 1 there holds

(i) ∆r ≤ (m− r)d2
max;

(ii) Λ1
r
+ ≤ dmax(m− r), Λ1

r
− ≤ dmax(m− r);

(iii) Λr ≤ d2
max

2m (m− r)2.

Proof. (i) At step r, there are m−r unmatched in-stubs left. Each unmatched in-stub can form a self-loop
by connecting to an unmatched out-stub of the same vertex. The number of unmatched out-stubs at
each vertex is upper bounded by dmax, hence ∆1

r ≤ (m − r)dmax. The vertex to which an unmatched
in-stub belongs has at most dmax − 1 incoming edges. The target of such an edge has at most dmax − 1
unmatched out-stubs left. Thus the number of out-stubs an unmatched in-stub can be paired with
to create a double edge is at most (dmax − 1)

2
. Hence ∆2

r ≤ (m − r)(dmax − 1)2. This implies that
∆r = ∆1

r + ∆2
r ≤ (m− r)d2

max.

(ii) By definition there holds Λ1
r
+

=
∑n
i=1 d

+
i

(r)
d+
i . As

∑n
i=1 d

+
i

(r)
= m − r and d+

i ≤ dmax for all i, this

implies Λ1
r
+ ≤ dmax(m− r). In a similar way it is shown that Λ1

r
− ≤ dmax(m− r).

(iii) By definition there holds Λr =
∑

(u,v)∈Er d
+
u

(r)
d−v

(r) d+
u d
−
v

2m ≤ d2
max

2m

∑
(u,v)∈Er d

+
u

(r)
d−v

(r)
. As

∑n
i=1 d

+
u

(r)
=

m− r and d−v ≤ (m− r) for all v, the claim follows.

Next we determine the expected value of Ψr. The value Ψr depends on the first r edges in an ordering N .
Let Nr denote these first r edges of the ordering. The subgraph of G ~dn containing exactly those r edges is

denoted by GNr . Taking the expected value of Ψr over all orderings inducing the same configuration, GNr
turns into a random subgraph of G ~dn with exactly r edges. A random subgraph of G ~dn containing r edges

is closely related to a subgraph of G ~dn where each edge is present with probability pr = r
m . Denote such a

random subgraph by Gpr . In the Gpr model we can determine the expected value of Ψr, denoted by Epr (Ψr),

by determining the expected values of ∆1
r,∆

2
r,Λ

1
r
+
,Λ1

r
−
,Λ2

r and Λ3
r.

Lemma 5.4. For each 0 ≤ r ≤ m− 1 the following equations hold

(i) Epr
[
∆1
r

]
= (m−r)2

m2

∑n
i=1 d

+
i d
−
i ;

(ii) Epr
[
∆2
r

]
= r(m−r)2

m3

∑
(i,j)∈G ~dn

(d+
i − 1)(d−j − 1);

(iii) Epr
[
Λ1
r
−

Λ1
r
+
]

= (m−r)2

m2

∑n
i=1(d−i )2

∑n
i=1(d+

i )2 + r(m−r)
m2

∑
(i,j)∈G ~dn

d+
i d
−
j ;
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(iv) Epr
[
Λ2
r

]
= (m−r)2

m2

∑n
i=1(d−i )2(d+

i )2;

(v) Epr
[
Λ3
r

]
= r(m−r)2

m3

∑
(i,j)∈G ~dn

d+
i (d+

i − 1)d−j (d−j − 1).

Proof. (i) The value d+
i

(r)
equals the number of edges (i, •) ∈ G ~dn such that (i, •) /∈ Gpr . As pr = r

m

this implies Epr
[
d±i

(r)
]

= d±i
m−r
m . As G ~dn is simple, it contains no self-loops. This implies that

d−i
(r)

and d+
i

(r)
are independent. Using the fact that ∆1

r =
∑n
i=1 d

−
i

(r)
d+
i

(r)
, we find that Epr

[
∆1
r

]
=

(m−r)2

m2

∑n
i=1 d

+
i d
−
i .

(ii) The value ∆2
r counts the number of pairs leading to a double edge. Pick a random (i, j) ∈ G ~dn . To form

an extra copy of this edge at step r, this edge must be present in Gpr , which happens with probability
pr. A double edge can be created by any pair of edges (i, k), (l, j) that are in G ~dn but not in Gpr .

Instead of adding these edges, the edges (i, j) and (l, k) can be created. The number of combinations

of l and k that exist, is (d+
i

(r)− 1)(d−j
(r)− 1). Taking the expected value of this value, summing it over

all edges of G ~dn and multiplying it by the probability pr that (i, j) ∈ Gpr , the claimed expected value

of ∆2
r follows.

(iii) Remark that Λ1
r
−

Λ1
r
+

=
∑n
j=1

∑n
i=1 d

+
i

(r)
d−j

(r)
d+
i d
−
j , which implies

Epr
[
Λ1
r
−

Λ1
r
+
]

=

n∑
j=1

n∑
i=1

Epr
[
d+
i

(r)
d−j

(r)
]
d+
i d
−
j .

The random variables d+
i

(r)
and d−j

(r)
are independent, unless (i, j) ∈ G ~dn . To see this recall that

d+
i

(r)
(respectively d−j

(r)
) is the sum of d+

i ( d−j ) independent Bernoulli variables representing the out-
stubs(in-stubs). If (i, j) ∈ G ~dn one fixed in-stub of j is to form an edge with a fixed out-stub of i.

This implies that those two Bernoulli variables always need to take on the same value. Denote these

Bernoulli variables by d+
ij

and d−ji . Now that we have characterised the dependence between d+
i

(r)
and

d−j
(r)

, we are ready to determine Epr
[
d+
i

(r)
d−j

(r)
]

= Epr
[
d+
i

(r)
]
Epr

[
d−j

(r)
]

+ Cov
(
d+
i

(r)
d−j

(r)
)

. As

already explained in (i) Epr
[
d+
i

(r)
]
E
[
d−j

(r)
]

= (m−r)2

m2 d+
i d
−
j . For the covariance there holds

Cov
(
d+
i

(r)
d−j

(r)
)

=

0 if (i, j) /∈ G ~dn

Cov
(
d+
ij
d−ji

)
if (i, j) ∈ G ~dn

.

The covariance of any random variable X and a Bernoulli variable Y with expectation p∗ equals
Cov (X,Y ) = (E [X|Y = 1]− E [X|Y = 0]) p∗(1 − p∗). Applying this to X = d+

ij
and Y = d−ji , their

covariance becomes r(m−r)
m2 . Thus there holds

Epr
[
d+
i

(r)
d−j

(r)
]

=

{
(m−r)2

m2 d+
i d
−
j if (i, j) /∈ G ~dn

(m−r)2

m2 d+
i d
−
j + r(m−r)

m2 if (i, j) ∈ G ~dn

.

Plugging this back into the expression for Epr
[
Λ1
r
−

Λ1
r
+
]

the desired equation follows.

(iv) Recall that Λ2
r =

∑n
i=1 d

−
i

(r)
d+
i

(r)
d−i d

+
i . In the proof of (i) we already explained that Epr

[
d−i

(r)
d+
i

(r)
]

=

d+
i d
−
i

(m−r)2

m2 . Hence Epr
[
Λ2
r

]
= (m−r)2

m2

∑n
i=1 d

−
i

2
d+
i

2
.

(v) From equation (5.11) it follows that Λ3
r =

∑
(i,j)/∈Er,i6=j d

+
i d
−
j d

+
i

(r)
d−j

(r)
. Realizing that ∆2

r =
∑

(i,j)/∈Er,i6=j d
+
i

(r)
d−j

(r)

we can use the proof of (ii). This implies each edge (i, j) ∈ G ~dn contributes (m−r)2

m2

rd+
i (d+

i −1)d−j (d−j −1)

m

to the sum, proving the claim.
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The value of ψr is an approximation to the value of Epr (Ψr). For the approximation the following relations
are used

•
∑n
i=1

(
d−i
)s

=
∑

(i,j)∈G ~dn

(
d−i
)s−1

= O
(
mds−1

max

)
;

•
∑n
i=1

(
d+
i

)t
=
∑

(i,j)∈G ~dn

(
d+
i

)t−1
= O

(
mdt−1

max

)
;

•
∑n
i=1

(
d−i
)s (

d−i
)t

=
∑

(i,j)∈G ~dn

(
d−i
)s−1 (

d+
i

)t
= O

(
mds+t−1

max

)
.

Combing this with Lemma 5.4 we find

Epr

[
Λ1
r
−

Λ1
r
+

4m

]
=

(m− r)2

4m3

n∑
i=1

(d−i )2
n∑
i=1

(d+
i )2 + (m− r)2O

(
rd2

max

(m− r)m2

)
,

Epr
[

Λ2
r

4m

]
= (m− r)2O

(
d3

max

m2

)
and Epr

[
Λ3
r

2m

]
= (m− r)2O

(
r
d4

max

m3

)
.

This allows to define ψr.

Lemma 5.5. For all 0 ≤ r ≤ m− 1 there holds

ψr = (m− r)2

∑n
i=1 d

−
i d

+
i

m2
+
r
∑

(i,j)∈G ~dn

(
d+
i − 1

) (
d−j − 1

)
m3

+

∑n
i=1(d−i )2

∑n
i=1(d+

i )2

4m3
+ ξr

 , (5.12)

with ξr = O
(
d3

max

m2 +
rd2

max

(m−r)m2 +
rd4

max

m3

)
.

The following upper bound on ψr will be useful in Sections 5.2.3 and 5.2.4.

Lemma 5.6. For each 0 ≤ r ≤ m− 1 the quantity ψr is upper bounded by O
(

(m− r)2 d
2
max

m

)
.

Proof. Combing equation (5.12) with the relation
∑n
i=1

(
d−i
)s (

d−i
)t

=
∑

(i,j)∈G ~dn

(
d−i
)s−1 (

d+
i

)t
= O

(
mds+t−1

max

)
we find

ψr = (m− r)2O
(
dmax

m
+
rd2

max

m2
+
d2

max

4m
+

rd2
max

(m− r)m2
+
d3

max

m3
+
rd4

max

m3

)
.

The fact that r ≤ m implies r
m < 1 and r

(m−r)m < 1. Combing this with d2
max = o(m) and the previous

equation, one obtains

ψr = (m− r)2O
(
d2

max

m

)
.

5.2.3 Proving equation (5.4)

With help of Lemma’s 5.5 and 5.6 we are now ready to prove equation (5.4). We start by multiplying equation

(5.4) by
∏m−1
r=0 (m− r)2. This leads to

m−1∏
r=0

(m− r)2

(m− r)2 − ψr
=

m−1∏
r=0

(
1 +

ψr
(m− r)2 − ψr

)
.
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Applying Lemma 5.5 to the numerator and Lemma 5.6 to the denominator we find

=

m−1∏
r=0

1 +

∑n
i=1 d

−
i d

+
i

m2 +
r
∑

(i,j)∈G ~dn
(d+
i −1)(d−j −1)

m3 +
∑n
i=1(d−i )2∑n

i=1(d+
i )2

4m3 + ξr

1−O
(
d2

max

m

)
= exp

m−1∑
r=0

ln

1 +

∑n
i=1 d

−
i d

+
i

m2 +
r
∑

(i,j)∈G ~dn
(d+
i −1)(d−j −1)

m3 +
∑n
i=1(d−i )2∑n

i=1(d+
i )2

4m3 + ξr

1−O
(
d2

max

m

)

 .

Using 1
1−x = 1 + x+O

(
x2
)

and O
(
d2

max

m

)
= O

(
1

m1/2+2τ

)
, we obtain

= exp

m−1∑
r=0

ln

1 +

∑n
i=1 d

−
i d

+
i

m2
+
r
∑

(i,j)∈G ~dn

(
d+
i − 1

) (
d−j − 1

)
m3

+

∑n
i=1(d−i )2

∑n
i=1(d+

i )2

4m3
+ ξr

 .
Invoking ln(1 + x) = x−O(x2) leads to

= exp

m−1∑
r=0

∑n
i=1 d

−
i d

+
i

m2
+
r
∑

(i,j)∈G ~dn

(
d+
i − 1

) (
d−j − 1

)
m3

+

∑n
i=1(d−i )2

∑n
i=1(d+

i )2

4m3
+O

(
d4

max

m2
+
rd4

max

m3
+

rd2
max

(m− r)m2

)
= exp

∑n
i=1 d

−
i d

+
i

m
+ (m− 1)

∑
(i,j)∈G ~dn

(
d+
i − 1

) (
d−j − 1

)
2m2

+

∑n
i=1(d−i )2

∑n
i=1(d+

i )2

4m2
+O

(
d4

max

m
+
d2

max

m
ln(m)

)
= exp

∑n
i=1 d

−
i d

+
i

m
+

∑
(i,j)∈G ~dn

(
d+
i − 1

) (
d−j − 1

)
2m

+

∑n
i=1(d−i )2

∑n
i=1(d+

i )2

4m2
+ o(1)


= exp

∑n
i=1 d

−
i d

+
i

m
−
∑n
i=1(d−i )2 +

∑n
i=1(d+

i )2

2m
+

∑n
i=1(d−i )2

∑n
i=1(d+

i )2

4m2
+

∑
(i,j)∈G ~dn

d+
i d
−
j

2m
+

1

2
+ o(1)

 .
Thus we have shown that there holds

m−1∏
r=0

(m− r)2

(m− r)2 − ψr
= [1 + o(1)]

exp

∑n
i=1 d

−
i d

+
i

m
−
∑n
i=1(d−i )2 +

∑n
i=1(d+

i )2

2m
+

∑n
i=1(d−i )2

∑n
i=1(d+

i )2

4m2
+

∑
(i,j)∈G ~dn

d+
i d
−
j

2m
+

1

2

 ,
which proves equation (5.4).

5.2.4 Proving equation (5.3)

It remains to show equation (5.3) to prove Theorem 5.2. Defining

f (N ) =

m−1∏
r=0

(m− r)2 − ψr
(m− r)2 −Ψr

, (5.13)

equation (5.3) becomes equivalent to

E [f (N )] = 1 + o(1), (5.14)

which we will show instead.
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5.2.4.1 Partitioning S (M)

In order to show equation (5.14), the set of orderings S (M) is partitioned. Using this partition, we determine
E [f (N )]. The partition is constructed in four steps:

1. For a small number 0 ≤ τ ≤ 1
3 , such that dmax = O

(
m1/4−τ), define

S∗ (M) =
{
N ∈ S (M) |Ψr (N )− ψr ≤

(
1− τ

4

)
(m− r)2

,∀ 0 ≤ r ≤ m− 1
}
. (5.15)

Let S (M) \ S∗ (M) be the first element of the partition.

2. Take as second element of the partition

A =
{
N ∈ S∗ (M) |Ψr (N )− ψr > Tr

(
ln(n)1+δ

)
,∀ 0 ≤ r ≤ m− 1

}
. (5.16)

The family of functions Tr will be defined by equation (5.24). The quantity δ is a small positive
constant, take 0 < δ < 0.1.

3. The next element of the partition must be a subset of S∗ (M) \ A. This will be

B =
{
N ∈ S∗ (M) \ A|∃0 ≤ r ≤ m− 1 such thatm− r ≤ ln(n)1+2δ and Ψr (N ) > 1

}
. (5.17)

4. To complete the partition, define as last element

C = S∗ (M) \ (A ∪ B) . (5.18)

We will show that the following equations hold

E (f (N ) 1A) = o(1); (5.19)

E (f (N ) 1B) = o(1); (5.20)

E (f (N ) 1C) ≤ 1 + o(1); (5.21)

E (f (N ) 1C) ≥ 1− o(1); (5.22)

E
(
f (N ) 1S(M)\S∗(M)

)
= o(1). (5.23)

As

E [f (N )] = E [f (N ) 1A] + E [f (N ) 1B] + E [f (N ) 1C ] + E
[
f (N ) 1S(M)\S∗(M)

]
,

the above equations suffice to prove equation (5.14). It remains to show equations (5.19), (5.20), (5.21),
(5.22) and (5.23). The first step to proving these equations is defining Tr.

5.2.4.2 The family of functions Tr

Define the family of functions Tr : R≥0 → R≥0 indexed by r ∈ {0, 1, . . . ,m− 1} by

Tr (λ) =

{
4βr (λ) + 2 min (γr(λ), νr) ifm− r ≥ λω
λ2

ω2 else
, (5.24)

with

βr (λ) = c
√
λ (md2

maxq
2
r + λ2) (d2

maxqr + λ), (5.25)

γr (λ) = c
√
λ (md2

maxq
3
r + λ3) (d2

maxq
2
r + λ2), (5.26)

νr = 8md2
maxq

3
r . (5.27)

The quantity c is a large positive constant, which will be defined later. Furthermore ω = ln(n)δ and qr = m−r
m .

Recalling the Gpr model from Section 5.2.2, remark that qr = 1 − pr. Thus qr is the probability that an
edge of G ~dn is not present in Gpr . The intuition behind the definition of this family of functions will become

apparent in Section 5.2.4.3.

Define λ0 = ω ln(n) and λi = 2iλ0 for all i ∈ {1, 2, . . . , L}. Here L is the unique integer such that
λL−1 < cdmax ln(n) ≤ λL. The following relation between the values Tr (λi) and Tr (λi−1) holds.
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Lemma 5.7. For all 0 ≤ r ≤ m− 1 and i ∈ {1, 2, . . . , L} there holds

Tr (λi) ≤ 8Tr (λi−1) .

Proof. As the function Tr is defined piece-wise, we distinguish three cases.

1. Suppose m− r < λiω and m− r < λi−1ω.
Then

Tr(λi) =
λ2
i

ω2
=

4λ2
i−1

ω2
<

8λ2
i−1

ω2
= 8Tr(λi−1),

showing that Tr (λi) ≤ 8Tr (λi−1).

2. Suppose m− r < λiω and m− r ≥ λi−1ω.

Then by definition of Tr there holds Tr (λi) =
4λ2
i−1

ω2 and Tr (λi−1) ≥ 4βr (λi−1) ≥ 4cλ2
i−1. Hence we

find Tr (λi) ≤ Tr (λi−1).

3. Suppose m− r ≥ λiω and m− r ≥ λi−1ω.
Then by definition of Tr there holds Tr (λi) = 4βr (λi) + 2 min (γr(λi), νr) and Tr (λi−1) = 4βr (λi−1) +
2 min (γr(λi−1), νr). Both βr (λ) and γr (λ) are the square root of a summation. Each term of the

summation contains no higher power of λ than λ6. As λi = 2λi−1 and
√

26 = 8, this implies that
βr (λi) ≤ 8βr (λi−1) and γr (λi) ≤ 8γr (λi−1). Hence there holds Tr (λi) ≤ 8Tr (λi−1).

This completes the proof, because m− r ≥ λiω and m− r < λi−1ω is impossible as λi > λi−1.

In order to show equations (5.19) and (5.20) we subpartition A and B. Define the chain of subsets
A0 ⊂ A1 ⊂ . . . ⊂ AL ⊂ S∗ (M) by

Ai = {N ∈ S∗ (M) |Ψr (N )− ψr < Tr (λi) ,∀0 ≤ r ≤ m− 1} . (5.28)

To ensure that we cover S∗ (M) entirely, define

A∞ = S∗ (M) \AL = {N ∈ S∗ (M) |∃ 0 ≤ r ≤ m− 1 such that Ψr (N )− ψr ≥ Tr (λL)}. (5.29)

Now equation (5.16) implies that

A = S∗ (M) \A0 = ∪Li=1Ai \Ai−1

⋃
A∞.

Next we partition A0. The goal of this partition is to write B as the union of some smaller sets. As N ∈ A0

for all 0 ≤ r ≤ m− 1 such that r ≥ m− ωλ0 there holds

Ψr (N ) < Tr(λ0) + ψr = ln(n)2 + ψr.

By Lemma 5.6 there holds for all m− 1 ≥ r ≥ m−ωλ0, ψr = o(1). Hence there exists some n0 such that for
all n > n0:

Ψr (N ) < ln(n)2 + 1.

As the goal is to show equation (5.3), we may assume that n > n0. Define K to be the unique integer such
that

2K−1 < ln(n)2 + 1 ≤ 2K . (5.30)

Then for all r ≥ m− ωλ0:

Ψr ≤ 2K .

This allows to define the chain of subsets B0 ⊂ B1 ⊂ . . . ⊂ Bk = A0 by

Bj =
{
N ∈ A0|Ψr (N ) < 2j ,∀r ≥ m− ωλ0

}
. (5.31)
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From equations (5.17) and (5.18) it immediately follows that

B = ∪Ki=1Bi \Bi−1 and C = B0.

These descriptions of A,B and C allow us to show equations (5.19), (5.20), (5.21) and (5.22). In Section
5.2.4.3 we prove equation (5.19). Some results from Section 5.2.4.3 are reused in Sections 5.2.4.4 and 5.2.4.5
to prove equations (5.20), (5.21) and (5.22). The remaining equation (5.23) is shown to hold in Section
5.2.4.6. This requires a different technique than for the other equations, as this concerns all orderings not in
S∗ (M).

5.2.4.3 Proving equation (5.19)

Based on the definition of A in terms of Ai’s and A∞, we now prove equation (5.19). For this we use the
following Lemma’s.

Lemma 5.8. For all 1 ≤ i ≤ L there holds

(a) P [N ∈ Ai \Ai−1] ≤ e−Ω(λi);

(b) For all N ∈ Ai \Ai−1 there holds f(N ) ≤ eo(λi).

Lemma 5.9. For a large enough constant c there holds

(a) P [N ∈ A∞] ≤ e−Ω(cdmax ln(n));

(b) For all N ∈ A∞ there holds f(N ) ≤ e72dmax ln(n).

Together the lemma’s imply

E [f (N ) 1A] =

L∑
i=1

E
[
f (N ) 1Ai\Ai−1

]
+ E [f (N ) 1A∞ ]

≤
L∑
i=1

e−Ω(λi)eo(λi) + e−Ω(cdmax ln(n))e72dmax ln(n) = o(1),

proving equation (5.19). It remains to prove these lemma’s. First we proof Lemma 5.8 (a) and Lemma 5.9
(a). This is done by showing the stronger statement

P
[
N ∈ Aci−1

]
≤ e−Ω(λi),

for all i ∈ {0, 1, . . . , L}. This statement is stronger than the statements of Lemma 5.8 (a) as (Ai \Ai−1) ⊂
(S (M) \Ai−1). This also works for Lemma 5.9 (a) since A∞ ∈ AcL and λL ≥ cdmax ln(n).

By definition of Ai−1 there holds

Aci−1 ⊂ {N ∈ S (M) |∃ 0 ≤ r ≤ m− 1 such that Ψr (N )− ψr > Tr (λi−1)} .

Using Lemma 5.7 we find

Aci−1 ⊂
{
N ∈ S (M) |∃ 0 ≤ r ≤ m− 1 such that Ψr (N )− ψr >

Tr (λi)

8

}
.

This implies that to prove Lemma 5.8 (a) and Lemma 5.9 (a), it suffices to show for all i ∈ {0, 1, . . . , L} and
0 ≤ r ≤ m− 1:

P
[
|Ψr − ψr| ≥

Tr (λi)

8

]
≤ e−Ω(λi). (5.32)

Determining the value of Ψr is a challenge. It is more convenient to work in the Gpr model and determine
Ψpr , because there each edge is present with probability pr. As we remarked in Section 5.2.3 for a random
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N ∈ S (M), the graph GNr is a random subgraph of G ~dn with exactly r edges. Denoting the number of

edges in Gpr by E [Gpr ] we find:

P
[
|Ψr − ψr| ≥

Tr (λi)

8

]
=

P
[
|Ψpr − ψr| ≥

Tr(λi)
8 ∩ |E [Gpr ]| = r

]
P [|E [Gpr ]| = r]

≤
P
[
|Ψpr − ψr| ≥

Tr(λi)
8

]
P [|E [Gpr ]| = r]

.

Bayati, Kim and Saberi have shown the following bound on the probability that the random graph Gpr
contains exactly r edges.

Lemma 5.10. ([5, Lemma 21]) For all 0 ≤ r ≤ m there holds P [|E [Gpr ]| = r] ≥ 1
n .

Using this Lemma we obtain

P
[
|Ψr − ψr| ≥

Tr (λi)

8

]
≤ n · P

[
|Ψpr − ψr| ≥

Tr (λi)

8

]
.

As λi = 2i ln(n)1+δ � ln(n), there holds ne−Ω(λi) = e−Ω(λi)+ln(n) = e−Ω(λi). Hence showing

P
[
|Ψpr − ψr| ≥

Tr (λi)

8

]
≤ e−Ω(λi),

suffices to prove equation (5.32). As Tr is defined piecewise, we use a different proof for r such that m−r ≥ ωλi
than for r m− r < ωλi. Let us first investigate the case m− r < λiω.

Lemma 5.11. For all i ∈ {0, 1, . . . , L} and 0 ≤ r ≤ m− 1 such that m− r < λiω there holds

P
[
Ψpr − ψr ≥

λ2
i

8ω2

]
≤ e−Ω(λi). (5.33)

Proof. Instead of showing the desired inequality, we show the even stronger statement:

P
[
Ψpr ≥

λ2
i

8ω2

]
≤ e−Ω(λi).

Combining the fact that Ψpr ≤
λ2
i

8ω with Ψpr = ∆pr + Λpr we find

∆pr ≥
λ2
i

8ω2
− Λpr .

Using Lemma 5.3 this becomes

∆pr ≥
λ2
i

8ω2
− d2

maxm

2
q2
r .

As mqr = m− r < ωλi and ω4d2
max <

m
5 for large n there holds

∆pr ≥
λ2
i

8ω2
− d2

max

2m
ω2λ2

i ≥ λ2
i

40ω2
.

Let Gqr be the complement of Gpr in G ~dn and define N0(u) := {v ∈ V | (u, v) ∈ Gqr} ∪ {u}. Denote by

d+
Gqr

(u) (respectively d−Gqr (u)) the out-degree (in-degree) of u in Gqr . By definition of ∆pr there holds

∆pr ≤
∑
u∈V

d+
Gqr

(u)
∑

v∈N0(u)

d−Gqr (v).

Combining this with the lower bound on ∆pr just derived, we find

λ2
i

40ω2
≤ ∆pr ≤

∑
u∈V

d+
Gq

(u)
∑

v∈N0(u)

d−Gq (v). (5.34)

We will now show that this equation implies that one of the following statements must hold:
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(a) Gq has more than ω2λi
40 edges;

(b) for some u ∈ V there holds
∑
v∈N0(u) d

−
Gq

(v) ≥ λi
ω4 .

If (a) is violated, there holds
∑
u∈V d

+
Gq

(u) ≤ ω2λi
40 . If (b) is violated, for all u ∈ V there holds

∑
v∈N0(u) d

−
Gq

(v) <
λi
ω4 . Hence if (a) and (b) are both violated, we find

∆pr ≤
∑
u∈V

d+
Gq

(u)
∑

v∈N0(u)

d−Gq (v) <
ω2λi
40

λi
ω4

=
λ2
i

40ω2
.

This violates equation (5.34). Thus it is not possible that (a) and (b) are violated at the same time. This
implies that at least one of the statements holds. Using the proof of [5, Lemma 20], the probability that
statement (a) holds, is upper bounded by e−Ω(λi). This proof is also used to upper bound the probability

that statement (b) holds by e−Ω(λi). As Ψpr ≥
λ2
i

8ω implies that at least one of these statements holds, this
completes the proof.

For m− r ≥ λiω a similar relation is proven.

Lemma 5.12. For all i ∈ {0, 1, . . . , L} and r such that m− r ≥ λiω there holds

P
[
|Ψpr − ψr| ≥

4βr(λi) + 2 min(νr, γr(λi))

8

]
≤ e−Ω(λi). (5.35)

Recall that Ψpr = ∆1
pr + ∆2

pr +
Λ1
pr

+
Λ1
pr

−−Λ2
pr

4m − Λ3
pr

2m and that ψr is of the order of E [Ψpr ], see equation

(5.12). Thus to prove Lemma 5.12, it suffices to concentrate ∆1
pr ,∆

2
pr ,Λ

1
pr

+
Λ1
pr

−
,Λ2

pr and Λ3
pr around their

expected values with probability e−Ω(λi) such that the difference between their sum and the sum of their

expected values is smaller than 4βr(λi)+2 min(νr,γr(λi))
8 . This is shown using Vu’s concentration inequality.

Theorem 5.13. [Vu’s concentration inequality [26]] Consider independent random variables t1, t2, . . . , tn
with arbitrary distribution in [0, 1]. Let Y (t1, t2, . . . , tn) be a polynomial of degree k with coefficients in
(0, 1]. For any multi-set A let ∂AY denote the partial derivative with respect to the variables in A. Define
Ej(Y ) = max|A|≥j E (∂AY ) for all 0 ≤ j ≤ k. Recursively define c1 = 1, d1 = 2, ck = 2

√
k (ck−1 + 1) , dk =

2 (dk−1 + 1). Then for any E0 > E1 > . . . > Ek = 1 and λ fulfilling

i) Ej ≥ Ej (Y );

ii)
Ej
Ej−1

≥ λ+ 4j ln(n) for all 0 ≤ j ≤ k − 1;

there holds

P
[
|Y − E [Y ]| ≥ ck

√
λE0E1

]
≤ dke−λ/4.

Lemma 5.14. For all i ∈ {0, 1, . . . , L} and 0 ≤ r ≤ m− 1 there holds:

(i) P
[∣∣∆1

pr − E
[
∆1
pr

]∣∣ ≥ βr(λi)
8

]
≤ e−Ω(λi);

(ii) P
[∣∣∆2

pr − E
[
∆2
pr

]∣∣ ≥ min(βr(λi)+γr(λi),βr(λi)+νr)
8

]
≤ e−Ω(λi);

(iii) P
[∣∣∣∣Λ1

pr

−
Λ1
pr

+−Λ2
pr

4m − E[Λ1
pr

−
Λ1
pr

+−Λ2
pr ]

4m

∣∣∣∣ ≥ βr(λi)
8

]
≤ e−Ω(λi);

(iv) P
[∣∣∣∣Λ3

pr

2m −
E[Λ3

pr ]
2m

∣∣∣∣ ≥ min(βr(λi)+γr(λi),βr(λi)+νr)
8

]
≤ e−Ω(λi).
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Proof. To prove each of the above equations, we write the quantity as a polynomial and apply Theorem 5.13
to it. This polynomial will be a function of m Bernoulli variables. Each variable te is coupled to an edge
e ∈ G ~dn . If e ∈ Gpr then te is 0, else, i.e if e /∈ Gpr , te = 1. Remark that by definition of Gpr , see Section

5.2.2, there holds E [te] = qr for all e. Also by definition of Gpr , the variables te are independent of each
other.

(i) Recall that ∆1
pr counts the number of pairs creating a self-loop. Each vertex v has d−v in-stubs and d+

v

out-stubs. The number of those out-stubs (respectively in-stubs) that are matched equals the number
of outgoing (incoming edges) for v in Gpr . Thus the number of unmatched in-stubs of vertex v is∑
e=(•,v)∈G ~dn

te. and the number of unmatched out-stubs of v equals
∑
e=(v,•)∈G ~dn

te. The number of

ways to create a self-loop at v is
∑
e=(v,•)∈G ~dn

∑
f=(•,v)∈G ~dn

tetf . Hence we find

∆1
pr =

∑
v∈V

∑
e=(v,•)∈G ~dn

∑
f=(•,v)∈G ~dn

tetf . (5.36)

Vu’s concentration inequality requires us to upper bound the values E0

[
∆1
pr

]
,E1

[
∆1
pr

]
and E2

[
∆1
pr

]
.

First look at the expectation of ∆1
pr . Because G ~dn is simple, for each element of the summation in

equation (5.36) e does not equal f . Thus there holds E[tetf ] = q2
r . The summations over v and e in

equation (5.36), can be replaced by one summation over all edges in G ~dn . For each edge e ∈ G ~dn ,

there are at most dmax edges in G ~dn with the source of e as target. Hence we find E
[
∆1
pr

]
≤ mdmaxq

2
r .

Suppose we take the partial derivative with respect to one variable te for some e = (u, v), then we
obtain

∑
f=(•,u)∈G ~dn

tf +
∑
f=(v,•)∈G ~dn

tf . This is upper bounded by 2dmaxqr. As ∆1
pr is a polynomial

of degree 2 with all coefficients 1, it is clear that E
[
∂te∂tf∆1

pr

]
≤ 1 for all e, f . Thus we find

E0

[
∆1
pr

]
≤ max

(
1, 2dmaxqr,mdmaxq

2
r

)
, E1

[
∆1
pr

]
≤ max (1, 2dmaxqr) and E2

[
∆1
pr

]
≤ 1.

The maximization follows from the definition of Ej(Y ). Define the values

E0 = 9λ2
i + 2mdmaxq

2
r , E1 = 9λi + 2dmaxqr and E2 = 1.

We claim that together with λ = λi, they fulfil the conditions of Theorem 5.13. It is obvious that
E2 ≥ E2

[
∆1
pr

]
. Also E1 ≥ E1

[
∆1
pr

]
as λi ≥ 1 for all n ≥ 3. Furthermore E0 ≥ E0

[
∆1
pr

]
as λi ≥ 1 and

mqr = m − r implies that 2mdmaxq
2
r ≥ 2dmaxqr. This shows the first condition of Theorem 5.13. For

the second condition remark that λi ≥ ln(n) and ln(m) ≤ 2 ln(n) as m ≤ n2. This implies

E1
E2

= E1 ≥ λi + 4 ln(m).

Furthermore there holds

E0
E1

= λi

9λi +
2dmaxmq

2
r

λi

9 + 2dmaxqr
λi

 ≥ λi,
showing that the second condition of Theorem 5.13 is fulfilled as well. Thus we may apply Vu’s
concentration inequality. Applying this we obtain

P
[∣∣∆1

pr − E
[
∆1
pr

]∣∣ ≥ c2√λi (9λi + 2dmaxqr) (9λ2
i + 2mdmaxq2

r)

]
≤ e−Ω(λi).

As for a > b there holds P
[∣∣∆1

pr − E
[
∆1
pr

]∣∣ ≥ a] ≤ P
[∣∣∆1

pr − E
[
∆1
pr

]∣∣ ≥ b], taking the value of c in
equation (5.25) larger than 8 · 9c2, this completes the proof.

(ii) Recall that ∆2
pr counts the number of pairs that create an edge already present in Gpr , i.e a double

edge. Pairing an out-stub of u with an in-stub of v only creates a double edge if (u, v) ∈ Gpr , i.e. if for
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e = (u, v), te = 1. Recalling the expressions for the number of unmatched in-stubs and out-stubs at a
vertex v from the proof of (i) and defining

Q =
{

(e, f, g)|e, f, g ∈ G ~dn , e 6= f, f 6= g, e 6= g, f = (u, v) for someu, v ∈ V, e = (u, •), g = (•, v)
}
,

we find
∆2
pr =

∑
(e,f,g)∈Q

tetg(1− tf ) =
∑

(e,f,g)∈Q

tetg −
∑

e,f,g∈Q

tetgtf = Y1 − Y2.

Vu’s inequality will be applied to Y1 and Y2 separately. Let us first look at Y1. To upper bound the
expected value of Y1, we need an upper bound on the size of Q. Given f , the source of e and the target
of g are fixed. Hence there are at most d2

max triples in Q with a fixed edge f . As f may be any edge,
|Q| ≤ md2

max. Together with E [tetg] = q2
r this implies E [Y1] ≤ md2

maxq
2
r . Suppose we differentiate Y1

with respect to tẽ. Then we obtain the expression∑
(e,f,g)∈Q
e=ẽ

tg +
∑

(e,f,g)∈Q
g=ẽ

te.

As ∑
(e,f,g)∈Q
e=ẽ

1 ≤ d2
max and

∑
(e,f,g)∈Q
g=ẽ

1 ≤ d2
max,

this implies E [∂tẽY1] ≤ 2d2
maxqr. Since Y1 is a polynomial of degree 2 with all coefficients equal to 1,

any second derivative can be at most 1. Together these observations imply

E0 [Y1] ≤ max
(
1, 2d2

maxqr,md
2
maxq

2
r

)
, E1 [Y1] ≤ max

(
1, 2d2

maxqr
)

and E2 [Y1] ≤ 1.

Similar to (i) it can be shown that λ = λi and

E0 = 9λ2
i + 2md2

maxq
2
r , E1 = 9λi + 2d2

maxqr and E2 = 1,

fulfil the conditions of Theorem 5.13. Applying Vu’s inequality and assuming c ≥ 8 · 9c2, we obtain

P
[
|Y1 − E [Y1]| ≥ βr(λi)

8

]
≤ e−Ω(λi).

Moving on to Y2, we see that E [Y2] ≤ md2
maxq

3
r as |Q| ≤ md2

max and E [tetf tg] = q3
r . Differentiating Y2

to with respect tẽ, we obtain ∑
(e,f,g)∈Q
e=ẽ

tf tg +
∑

(e,f,g)∈Q
f=ẽ

tetg +
∑

(e,f,g)∈Q
g=ẽ

tetf .

This implies that E [∂tẽY1] ≤ 3d2
maxqr. Differentiating Y2 to with respect tẽ and tf̃ for ẽ 6= f̃ , we obtain∑

(e,f,g)∈Q
e=ẽ
f=f̃

tg +
∑

(e,f,g)∈Q
e=ẽ
g=f̃

tf +
∑

(e,f,g)∈Q
f=ẽ

g=f̃

te +
∑

(e,f,g)∈Q
f=ẽ

e=f̃

tg +
∑

(e,f,g)∈Q
g=ẽ

e=f̃

tf +
∑

(e,f,g)∈Q
g=ẽ

f=f̃

te.

In each summation only one edge is left to choose. As the source, the target or both are fixed for this
edge, each summation is upper bounded by dmaxqr. By definition of Q there follows that at most two

of the summations are non-zero, implying E
[
∂tẽ∂tf̃Y2

]
≤ 2dmaxqr. As Y2 is a polynomial of degree 3

and all its coefficients are 1, any third order partial derivative of Y2 can be at most 1. Summarizing we
find

E0 [Y2] ≤ max
(
1, 2dmaxqr, 3d

2
maxq

2
r ,md

2
maxq

3
r

)
, E1 [Y2] ≤ max

(
1, 2dmaxqr, 3d

2
maxq

2
r

)
,

E [Y2] ≤ max (1, 2dmaxqr) and E3 [Y2] ≤ 1.
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Vu’s inequality can be applied to Y2 using λ = λi and

E0 = 85λ3
i + 3md2

maxq
3
r , E1 = 85λ2

i + 3d2
maxq

2
r , E2 = 17λi + 2dmaxqr and E3 = 1,

which implies

P
[
|Y2 − E [Y2]| ≥ 85c3

√
λi (λ2

i + d2
maxq

2
r) (λ3

i +md2
maxq

3
r)

]
≤ e−Ω(λi).

If we choose c large enough, this implies that

P
[∣∣∆2

pr − E
[
∆2
pr

]∣∣ ≥ βr(λi) + γr(λi)

8

]
≤ e−Ω(λi).

Next remark that∣∣∆2
pr − E

[
∆2
pr

]∣∣ = |Y1 − Y2 − E [Y1] + E [Y2]| ≤ |Y1 − E [Y1]|+ E [Y2]

≤ |Y1 − E [Y1]|+md2
maxq

3
r = |Y1 − E [Y1]|+ νr

8
.

This implies that there also holds

P
[∣∣∆2

pr − E
[
∆2
pr

]∣∣ ≥ βr(λi) + νr
8

]
≤ e−Ω(λi),

completing the proof.

(iii) To prove that P
[∣∣∣∣Λ1

pr

−
Λ1
pr

+−Λ2
pr

4m − E[Λ1
pr

−
Λ1
pr

+−Λ2
pr ]

4m

∣∣∣∣ ≥ βr(λi)
8

]
≤ e−Ω(λi), Vu’s inequality is applied to

Λ1
pr

+
Λ1
pr

−

d2
max

and
Λ2
pr

d2
max

separately. The structure is almost identical to the proofs of (i) and (ii). First

consider

Λ1
pr

+
Λ1
pr

−

d2
max

=

∑n
i=1 d

−
i

(r)
d−i
∑n
i=1 d

+
i

(r)
d+
i

d2
max

=

 ∑
e=(u,v)∈G ~dn

d−u
dmax

te


 ∑
f=(w,z)∈G ~dn

d+
z

dmax
tf


=

 ∑
e=(u,v)∈G ~dn

d−u d
+
v

d2
max

t2e

+
∑

e=(u,v)∈G ~dn

f=(w,z)∈G ~dn

e 6=f

d−u d
+
z

d2
max

tetf = Z1 + Z2.

Start with Z1. This is a polynomial of degree one, as for a Bernoulli variable there holds t2e = te. Since
its coefficients are at most 1, it is clear that any first order partial derivative of Z1 is upper bounded
by 1. The expected value of Z1 is upper bounded by mqr. This implies

E0 [Z1] ≤ max (1,mqr) and E1 [Z1] ≤ 1.

Hence

E0 = mqr + λi and E1 = 1,

with λ = λi satisfy the constraints of Theorem 5.13. Applying this theorem we find

P
[
|Z1 − E [Z1]| ≥ c1

√
λi (λi +mqr)

]
≤ e−Ω(λi).
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Next consider Z2. This is a sum over all pairs of distinct edges, hence it contains fewer than m2 terms.

Combining this with
d−u d

+
z

d2
max
≤ 1 and E [tetf ] = q2

r , we find E [Z2] ≤ m2q2
r . Taking the partial derivative

with respect to a variable tg and writing g = (i, j) leads to

∑
f=(w,z)∈G ~dn

f 6=g

d−i d
+
z

d2
max

tf +
∑

e=(u,v)∈G ~dn

e6=g

d−u d
+
j

d2
max

te.

Each term of the summations is upper bounded by qr. Each summation contains m − 1 terms. Thus
we find: E

[
∂tgZ2

]
≤ 2mqr. As Z2 is a second order polynomial with coefficients upper bounded by 1,

any second order partial derivative will be at most 1. Combining these observations we find

E0 [Z2] ≤ max
(
1, 2mqr,m

2q2
r

)
, E1 [Z2] ≤ max (1, 2mqr) and E2 [Z2] ≤ 1.

Similar to the proof of (i) it can be shown that λ = λi and

E0 = 9λ2
i + 2m2q2

r , E1 = 9λi + 2mqr and E2 = 1,

satisfy the constraints of Vu’s concentration inequality. Applying this inequality yields

P
[
|Z2 − E [Z2]| ≥ 9c2

√
λi (λi +mqr) (λ2

i +m2q2
r)

]
≤ e−Ω(λi).

As
√
λi (λi +mqr) ≤

√
λi (λi +mqr) (λ2

i +m2q2
r) and

Λ1
pr

+
Λ1
pr

−

4m =
d2

max

4m (Z1 + Z2), we obtain

P

∣∣∣∣∣∣Λ
1
pr

−
Λ1
pr

+

4m
−

E
[
Λ1
pr

−
Λ1
pr

+
]

4m

∣∣∣∣∣∣ ≥ d2
max

m
(9c2 + c1)

√
λi (λi +mqr) (λ2

i +m2q2
r)

 ≤ e−Ω(λi).

Pulling this factor
d2

max

m inside the root and taking c > 8 (c1 + 9c2), we also find

P

∣∣∣∣∣∣Λ
1
pr

−
Λ1
pr

+

4m
−

E
[
Λ1
pr

−
Λ1
pr

+
]

4m

∣∣∣∣∣∣ ≥ c

8

√
λi (λi + d2

maxqr) (λ2
i +md2

maxq
2
r)

 ≤ e−Ω(λi).

Next we look at

Λ2
pr

d2
max

=

n∑
i=1

d−i
(r)
d−i d

+
i

(r)
d+
i

dmax
=

n∑
i=1

d−i d
+
i

d2
max

 ∑
e=(i,•)∈G ~dn

te


 ∑
f=(•,i)∈G ~dn

tf

 .

Note that this is the same expression as for ∆1
pr where the coefficient of each term is replaced by

Λ2
pr

d2
max

.

Hence using the same argument as for (i) we obtain

P

[∣∣∣∣∣Λ2
pr

4m
−

E
[
Λ2
pr

]
4m

∣∣∣∣∣ ≥ 9c2
d2

max

4m

√
λi (λi + qrdmax) (λ2

i +mdmaxq2
r)

]
≤ e−Ω(λi).

Again pulling
d2

max

m inside the square root, we find

P

∣∣∣∣∣∣Λ
1
pr

−
Λ1
pr

+ − Λ2
pr

4m
−

E
[
Λ1
pr

−
Λ1
pr

+ − Λ2
pr

]
4m

∣∣∣∣∣∣ ≥ 9c2

√
λi (λi + d2

maxqr) (λ2
i +md2

maxq
2
r)

 ≤ e−Ω(λi).

As β = c
√
λi (λi + d2

maxqr) (λ2
i +md2

maxq
2
r), this completes the proof if we take c > 8(18c2 + c1).
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(iv) This argument is exactly the same as for (ii), since there holds

Λ3
pr

d2
max

=
∑

(e,f,g)∈Q
e=(u,v)

d+
u d
−
v

d2
max

te (1− tf ) tg.

Hence we obtain

P

[∣∣∣∣∣Λ3
pr

2m
−

E
[
Λ3
pr

]
2m

∣∣∣∣∣ ≥ d2
max

2m

min (βr(λi) + γr(λi), βr(λi) + νr)

8

]
≤ e−Ω(λi).

As
d2

max

m = o(1), this completes the proof.

Combining all equations of Lemma (5.14) we find

P
[
|Ψpr − E [Ψpr ]| ≥

4βr(λi) + 2 min(νr, γr(λi))

8

]
≤ e−Ω(λi),

for all i ∈ {0, 1, . . . , L} and 0 ≤ r ≤ m−1. By definition of ψr this shows equation (5.35) and hence it proves
Lemma 5.12. This completes the proofs of Lemma 5.8 (a) and 5.9 (a).

Next we prove Lemma 5.8 (b) and 5.9 (b). This requires the following Lemma.

Lemma 5.15. For all i ∈ {1, 2, . . . , L} and N ∈ Ai \Ai−1 there holds

m−1∑
r=0

max (Ψr (N )− ψr, 0)

(m− r)2 −Ψr (N )
≤ o (λi) .

Furthermore for all N ∈ A0 there holds

m∑
m−r=λ0ω

max (Ψr (N )− ψr, 0)

(m− r)2 −Ψr (N )
≤ o (1) .

Proof. The first claim follows by changing the summation
∑2m−2
m−r=2 into

∑m
m−r=1 in the proof of Lemma

15(b) [5]. The second claim follows by applying a similar change to the proof of Lemma 18 [5].

First we determine an upper bound on f (N ) for all N ∈ S∗ (M). By definition of S∗ (M) there holds
Ψr (N ) ≤

(
1− τ

4

)
(m− r)2 for all 0 ≤ r ≤ m− 1. This implies

f (N ) =

m−1∏
r=0

(
1 +

Ψr (N )− ψr
(m− r)2 −Ψr (N )

)

≤
m−1∏
r=0

(
1 +

4 max (Ψr (N )− ψr, 0)

τ(m− r)2

)
.

Using the approximation 1 + x ≤ ex this becomes

f (N ) ≤ e
∑m−1
r=0

4 max(Ψr(N)−ψr,0)

τ(m−r)2 . (5.37)

Now take N ∈ Ai \ Ai−1 for some i ∈ {1, 2, . . . , L}. Then we can apply Lemma 5.15 to equation (5.37) to
obtain

f (N ) ≤ eo(λi).
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This completes the proof of Lemma 5.8 (b).

It remains to prove Lemma 5.9 (b). As A∞ ⊂ S∗ (M) there holds

f (N ) ≤
m−d2

max∏
r=0

(
1 +

4 max (Ψr (N )− ψr, 0)

τ(m− r)2

) m−1∏
r=m−d2

max+1

(m− r)2 − ψr
(m− r)2 −Ψr (N )

.

As 0 < Ψr (N ) , ψr < (m− r)2, this implies

f (N ) ≤
(
d4

max

)d2
max

m−d2
max∏

r=0

(
1 +

4Ψr (N )

τ(m− r)2

)
.

By Lemma 5.3 there holds Ψr = ∆r + Λr ≤ (m− r)d2
max +

d2
max

2m (m− r)2 ≤ 2(m− r)d2
max. Inserting this gives

f (N ) ≤
(
d4

max

)d2
max

m−d2
max∏

r=0

(
1 +

8d2
max

τ(m− r)

)
.

As (1 + x) ≤ ex, we find

f (N ) ≤ e4d2
max ln(dmax)+ 8

τ

∑m
i=d2

max

d2
max
i ≤ e4d2

max ln(dmax)+ 8
τ ln(m)− 8

τ ln(d2
max).

Using that τ ≤ 1
3 and m ≤ ndmax, we obtain

f (N ) ≤ e4d2
max ln(dmax)+24 ln(m) ≤ e4d2

max ln(dmax)+24 ln(ndmax)

≤ e24d2
max ln(nd2

max) ≤ e24d2
max ln(n3) = e72d2

max ln(n).

This proves Lemma 5.9 (b). This completes the proofs of Lemma’s 5.8 and 5.9 and hence it completes the
proof of equation (5.19).

5.2.4.4 Proving equation (5.20)

The next step is showing that equation (5.20) holds. To this end, we first prove the following Lemma.

Lemma 5.16. For all 1 ≤ j ≤ K

(a) P [N ∈ Bj \Bj−1] ≤ e−Ω(2j/2 ln(n));

(b) For all N ∈ Bj \Bj−1 it holds that f (N ) ≤ eO(2j).

Proof. (a) The probability that N ∈ Bj \ Bj−1 is upper bounded by the probability that N ∈ Bcj−1 :=
S (M) \Bj−1. Hence if we show that

P
[
N ∈ Bcj

]
≤ e−Ω(2j/2 ln(n)),

the claim is proven. Remark that

Bcj−1 ⊂
{
N ∈ S (M) | ∃ r such thatm− r ≤ ωλ0 and Ψr ≥ 2j−1

}
.

Only those values of r are considered for which m− r ≤ ωλ0. Let P
[
Ψr ≥ 2j−1

]
denote the probability

that Ψr ≥ 2j−1 holds for one arbitrary r such that m− r ≤ ωλ0. Suppose that

P
[
Ψr ≥ 2j−1

]
≤ e−Ω(2j/2 ln(n)).
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As ωλ0 � ln(n)2 this implies that

P
[
N ∈ Bcj−1

]
≤ ln2(n)P

[
Ψr ≥ 2j−1

]
≤ ln2(n)e−Ω(2j/2 ln(n))

= e−Ω(2j/2 ln(n))+2 ln(ln(n)) = e−Ω(2j/2 ln(n)).

Thus it remains to show

P
[
Ψr ≥ 2j−1

]
≤ e−Ω(2j/2 ln(n)),

to complete the proof. Fix an arbitrary r such that m − r < ωλ0. This implies that Ψr ≤ 2j−1. In
combination with Ψr = ∆r + Λr there follows

∆r = Ψr − Λr ≥ 2j−1 − Λr.

Lemma 5.3 implies that

∆r ≥ 2j−1 − d2
maxm

2
q2
r .

As m− r ≤ ωλ0 < 2j−1ωλ0 and d2
maxω

2λ2
0 < m,

∆r ≥ 2j−1 − 2j−1d2
max

2m
ω2λ2

0.

≥ 2j−1 − 2j−1

2
= 2j−2.

The remainder of the proof is the same as in Lemma 5.11, but with equation (5.34) replaced by

2j−2 ≤ ∆pr ≤
∑
u∈V

d+
Gq

(u)
∑

v∈N0(u)

d−Gq (v).

This can be shown to imply that one of the following statements must hold

(a) Gq has more than 2j/2−1 edges;

(b) for some u ∈ V there holds
∑
v∈N0(u) d

−
Gq

(v) ≥ 2j/2−1.

The probability that either of those statements holds, is upper bounded by e−Ω(2j/2 ln(n)). This is proven
using the same argument as in the proof of Lemma 5.11. Since r is arbitrary this shows P

[
Ψr ≥ 2j−1

]
≤

e−Ω(2j/2 ln(n)) for all r such that m− r < ωλ0, completing the proof.

(b) For all 1 ≤ j ≤ K there holds Bj ⊂ S∗ (M). Thus equation (5.37) yields

f (N ) ≤ e
∑m−1
r=0

4 max(Ψr(N)−ψr,0)

τ(m−r)2 ,

for all N ∈ Bj \Bj−1. By definition of Bj , there holds

ωλ0∑
m−r=1

max (Ψr (N )− ψr, 0)

(m− r)2
≤

ωλ0∑
m−r=1

2j

(m− r)2
= O

(
2j
)
.

As Bj ⊂ A0, Lemma 5.15 implies

m∑
m−r=ωλ0

4 max (Ψr (N )− ψr, 0)

τ(m− r)2
= o(1).

Hence for all N ∈ Bj it holds

f (N ) ≤ eO(2j)+o(1) = eO(2j).
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Now we prove equation (5.20). Lemma 5.16 implies that for all Bj \Bj−1

E
[
f (N ) 1Bj\Bj−1

]
≤ e−Ω(2j/2 ln(n))eO(2j).

Recall that j ≤ K. In combination with equation (5.30) this yields 2
j−1

2 ≤ ln(n). Hence there holds

E [f (N ) 1B] =

K∑
j=1

E
[
f (N ) 1Bj\Bj−1

]
≤

K∑
j=1

e−Ω(2j/2 ln(n))eO(2j) = o(1),

proving equation (5.20).

5.2.4.5 Proving equations (5.21) and (5.22)

In this section, we bound the expected value of f (N ) for all N ∈ C. First we derive an upper bound, i.e. we
show equation (5.21). To prove this equation, it suffices to show for all N ∈ C,

f (N ) ≤ 1 + o(1).

As C ⊂ S∗ (M), in analogy to equation (5.37), there holds

f (N ) =

m−1∏
r=0

(
1 +

Ψr (N )− ψr
(m− r)2 −Ψr (N )

)

≤
λ0ω∏

m−r=1

(
1 +

4 max (Ψr (N )− ψr, 0)

τ(m− r)2

)
e
∑m
m−r=λ0ω+1

4 max(Ψr(N)−ψr,0)

τ(m−r)2 .

Because C ⊂ A0, Lemma 5.15 implies

m∑
m−r=λ0ω+1

4 max (Ψr (N )− ψr, 0)

τ(m− r)2
= o(1).

Hence for all N ∈ C,

f (N ) ≤
λ0ω∏

m−r=1

4 max (Ψr (N )− ψr, 0)

τ(m− r)2
eo(1).

By definition of C, Ψr (N ) ≤ 1 for all m− r ≤ ωλ0. Thus we find

f (N ) ≤
λ0ω∏

m−r=1

(
4

τ(m− r)2

)
eo(1)

≤

(
1 +O

(
4λ0ω

τ

λ0ω∏
m−r=1

1

(m− r)2

))
eo(1)

≤ eo(1) (1 + o(1)) = 1 + o(1),

proving equation (5.21).

Next we derive a lower bound on E
[
f (N ) 1S∗(M)

]
. As C ⊂ S∗ (M) this will prove equation (5.22). Take

any ordering N ∈ S∗ (M). Lemma 5.12 implies that

P [|Ψr (N )− ψr| ≥ 4βr (λ0) + 2 min (γr (λ0) , νr)] ≤ e−Ω(λ0) < e− ln(n)1+δ

=

(
1

n

)1+δ

= o(1), (5.38)
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holds for all r such that m−r ≥ ωλ0. Thus the probability that |Ψr (N )− ψr| ≥ 4βr (λ0)+2 min (γr (λ0) , νr)
holds for at least one r is small. Now consider an ordering N ∈ S∗ (M) such that for all r with m− r ≥ ωλ0

there holds

|Ψr (N )− ψr| ≤ 4βr (λ0) + 2 min (γr (λ0) , νr) . (5.39)

Recall that N ∈ S∗ (M) implies Ψr (N ) ≤
(
1− τ

4

)
(m − r)2. Combining this with the definition of f (N ),

we find

f (N ) ≥
m∏

m−r=ωλ3
0

(
1− Ψr (N )− ψr

(m− r)2 −Ψr (N )

) ωλ3
0+1∏

m−r=1

(
1− ψr

(m− r)2 −Ψr (N )

)

≥
m∏

m−r=ωλ3
0+1

(
1− 4

τ

4βr (λ0) + 2 min (γr (λ0) , νr)

(m− r)2

) ωλ3
0∏

m−r=1

(
1− 4

τ

ψr
(m− r)2

)
.

The definition of Tr and Lemma 5.15 imply
∑m
m−r=ωλ3

0+1
4
τ

4βr(λ0)+2 min(γr(λ0),νr)
(m−r)2 = o(1). Combining this

with the approximation 1− x ≥ e−2x for 0 ≤ x ≤ 1
2 , we obtain

f (N ) ≥ e−o(1)

ωλ3
0∏

m−r=1

(
1− 4

τ

ψr
(m− r)2

)
.

To approximate the remaining product, we apply Lemma 5.6. In combination with the approximation
1− x ≥ e−2x and λ3

0ωd
2
max = o(m), we find

f (N ) ≥ e−2o(1) ≥ 1− o(1).

Now for each N ∈ S∗ (M) we have shown that either f (N ) ≥ 1 − o(1) or that its probability is upper
bounded by o(1). Together this completes the proof of equation (5.22). Remark that in fact we have proven

E
[
f (N ) 1S∗(M)

]
≥ 1− o(1).

The proofs of this section together with Section 5.2.4.3 and 5.2.4.4 show the following Corollary.

Corollary 5.17. For sufficiently large c in the definition of λL there holds

E

[
exp

(
1

τ2

m−1∑
r=0

max (Ψr (N )− ψr, 0)

(m− r)2

)]
= 1 + o(1).

This will be used to prove equation (5.23).

5.2.4.6 Proving equation (5.23)

In order to prove equation (5.4), it remains to show equation (5.23). This concerns the expected value of
f (N ) for the orderings in S (M) \S∗ (M). Equation (5.15) implies that for any N ∈ S (M) \S∗ (M), there
exists at least one 0 ≤ r ≤ m− 1 such that the inequality

Ψr (N ) ≤
(

1− τ

4

)
(m− r)2 (5.40)

is violated. This inequality can only be violated for specific values of r. To determine these values, suppose
that the above inequality is violated and investigate what this implies for ∆r. Recalling Ψr = ∆r + Λr and
using Lemma 5.3 to bound Λr, we obtain

∆r > Ψr −
d2

max

2m
(m− r)2.
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As d4
max = o(m), there will be a n0 such that for all n > n0 there holds

d2
max

m < τ
2 . Assuming that n > n0, we

find

∆r > Ψr −
τ

4
(m− r)2.

By violation of equation (5.40) this becomes

∆r >
(

1− τ

2

)
(m− r)2. (5.41)

Lemma 5.3 states that ∆r ≤ (m− r)d2
max. Hence we can deduce that

(m− r)
(

1− τ

2

)
≤ d2

max, implying m− r ≤ 2d2
max

2− τ
.

Thus equation (5.40) can only be violated if m− r ≤ 2d2
max

2−τ . This allows us to partition

S (M) \ S∗ (M) =

2d2
max

2−τ∑
t=1

St (M) ,

with St (M) the set of all orderings N violating equation (5.40) for the first time at r = m − t, i.e. for all
r < m− t equation (5.40) still holds. To prove equation (5.23), it suffices to show that

E [f (M) 1St ] ≤ O
(

1

mtτ

)
(5.42)

for all t ∈ {1, 2, . . . , 2d2
max

2−τ } as
∑∞
t=1

1
mtτ = o(1). Thus the goal is to prove equation (5.42).

By definition of Ψr there holds (m − r)2 − Ψr =
∑

(u,v)∈Er d
+
u

(r)
d−v

(r)
(

1− d+
u d
−
v

2m

)
. As N ∈ S (M),

the algorithm will finish. Hence at step r there must be at least m − r suitable pairs left, implying

(m− r)2 −Ψr ≥ (m− r)
(

1− d2
max

2m

)
. Thus it holds that

(m− r)2

(m− r)2 −Ψr
≤ (m− r)

1− d2
max

2m

= (m− r)
(

1 +O
(
d2

max

2m

))
.

For m− r ≤ 2d2
max

2−τ this becomes

(m− r)2

(m− r)2 −Ψr
≤ m− r + 1,

as
d4

max

m = o(1). Now we find that

m−1∏
r=m−t

(m− r)2 − ψr
(m− r)2 −Ψr

≤
m−1∏
r=m−t

(m− r)2

(m− r)2 −Ψr
≤

m−1∏
r=m−t

m− r + 1 = (t+ 1)! ≤ tt(t+ 1).

For all r < m− t equation (5.40) does hold. Hence analogous to equation (5.37) it can be shown that

m−t∏
r=0

(m− r)2 − ψr
(m− r)2 −Ψr

≤ exp

[
4

τ

m−1∑
r=0

max(Ψr − ψr, 0)

(m− r)2

]
.

Combing these two observations we find

f (N ) 1St = 1St

m−r∏
r=0

(m− r)2 − ψr
(m− r)2 −Ψr

≤ 1St exp

[
4

τ

m−1∑
r=0

max(Ψr − ψr, 0)

(m− r)2

]
tt(t+ 1).
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Next we take the expected value of the above equation and apply Hölder’s inequality to obtain:

E [f (N ) 1St ] ≤ E [1St ]
1−τ E

[
1St exp

[
4

τ2

m−1∑
r=0

max(Ψr − ψr, 0)

(m− r)2

]]τ
tt(t+ 1).

Using Corollary 5.17 this becomes

E [f (N ) 1St ] ≤ E [1St ]
1−τ

[1 + o(1)] tt(t+ 1).

Now to prove equation (5.42), it remains to show

P [N ∈ St]1−τ tt(t+ 1) ≤ [1 + o(1)]
1

mτt
. (5.43)

This requires an upper bound on P [N ∈ St]. To obtain this bound, first we show that if N ∈ St, then GNr
contains a vertex with a special property. The probability of such a vertex existing, is used to upper bound
P [N ∈ St].

Assume that N ∈ St. Define r = m − t and Γ(u) = {v ∈ V |(u, v) ∈ GNr}. By definition of ∆r, this
allows us to write

∆r =
∑
u∈V

d+
u

(r)
∑

v∈Γ(u)∪{u}

d−v
(r)

and (m− r)2 =
∑
u∈V

d+
u

(r)
∑
v∈V

d−v
(r)
.

Because N ∈ St, equation (5.41) must hold. Inserting the above expressions for ∆r and (m − r) into this
equation yields∑

u∈V
d+
u

(r)
∑

v∈Γ(u)∪{u}

d−v
(r)

>
(

1− τ

2

)∑
u∈V

d+
u

(r)
∑
v∈V

d−v
(r)

> (1− τ)
∑
u∈V

d+
u

(r)
∑
v∈V

d−v
(r)
.

This implies that there exists a vertex u ∈ V such that

d+
u

(r)
> 0 and

∑
v∈Γ(u)∪{u}

d−v
(r)

> (1− τ)
∑
v∈V

d−v
(r)

= (1− τ)t. (5.44)

Thus we have shown that if N ∈ St, there must exists a vertex u obeying equation (5.44). Hence the proba-
bility that GNr contains such a vertex u upper bounds P [N ∈ St].

Next we derive an upper bound on the probability that the vertex u obeys equation (5.44). Recall that
GNr contains the first r edges of the ordering N . Adding the remaining t edges of N , creates the graph G ~dn .

Let l denote the number of these t edges with target in Γ(u)∪{u}, then l =
∑
v∈Γ(u)∪{u} d

−
v

(r)
. Furthermore

define k := d+
u − |Γ(u)| = d+

u
(r)

. Equation (5.44) holds if and only if k ≥ 1 and l ≥ (1− τ)t. To upper bound
the probability that u satisfies equation (5.44), we upper bound the probability that k ≥ 1 and l ≥ (1−τ)t for
a random ordering N ∈ S (M). That N is a random element of S (M) implies that the m edges are known,
but their ordering is random. To obtain a fixed value of k, exactly k of the d+

u edges with u as source must
be in N \ Nr. Choosing these edges determines Γ(u). To also obtain the desired value of l, exactly l edges
with target in Γ(u) ∪ {u} must be in N \ Nr. There are

∑
v∈Γ(u)∪{u} (d−v − 1) + d−u edges to choose from,

since for each v ∈ Γ(u) the edge with v as the target and u as the source is already in Nr. The remaining
t− l−k edges not in Nr may be chosen freely amongst all edges that do not have u as a source or an element
of Γ(u) ∪ {u} as target. Thus the probability to get a specific combination of k and l is(

d+
u
k

)(∑
v∈Γ(u)(d

−
v −1)+d−u
l

)(m−d+
u−
∑
v∈Γ(u)∪(d−v −1)−d−u
t−l−k

)(
m
t

) .
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This allows to upper bound the probability that the vertex u satisfies equation (5.44) by

∑
k≥1,l≥(1−τ)t

(
d+
u
k

)(
(d+
u−k+1)dmax

l

)(m−d+
u−
∑
v∈Γ(u)(d

−
v −1)−d−u

t−l−k

)(
m
t

) .

For N ∈ St there needs to be some vertex satisfying equation (5.44). As in the above argument we fixed a
random vertex u, we find:

P [N ∈ St] ≤
∑
u∈V

∑
k≥1,l≥(1−τ)t

(
d+
u
k

)(
(d+
u−k+1)dmax

l

)(m−d+
u−
∑
v∈Γ(u)(d

−
v −1)−d−u

t−l−k

)(
m
t

) .

Remark that
(
m
k

)
≤ mk

k! . Furthermore, as t = O
(
d2

max

)
and O

(
d4

max

)
= o(m) there holds(

m

t

)
= [1 + o(1)]

mt

t!
.

This yields

P [St] ≤
∑
u∈V

∑
k≥1,l≥(1−τ)t

[1 + o(1)]
d+
u
k

((d+
u − k + 1)(dmax))

l
mt−l−kt!

mtk!l!(m− l − k)!

=
∑
u∈V

∑
k≥1,l≥(1−τ)t

[1 + o(1)]

(
d+
u

m

)k (
(d+
u−k+1)dmax

m

)l
t!

k!l!(m− l − k)!
.

Next we approximate the summation over k and l. Since adding t edges completes the ordering:
∑
u∈V d

+
u

(r)
=∑

u∈V d
−
u

(r)
= t. This implies that k ∈ {1, 2, . . . t} and that l is an integer in the interval [(1−τ)t, t]. Thus the

summation consists of at most tτ terms. Remark that as l, k ≤ t = O
(
d2

max

)
= O

(
m1/2

)
,
(
d+
u

m

)
= O

(
1

m3/4

)
and ((d+

u − k + 1)(dmax)) = O
(

1
m1/2

)
, the term inside the summation is maximal for k = 1 and l = (1− τ) t.

This gives

P [St] ≤ [1 + o(1)] τt
∑
u∈V

(
d+
u

m

)(
d+
u dmax

m

)(1−τ)t(
t

tτ

)

≤ [1 + o(1)] 2tt

(
d2

max

m

)(1−τ)t∑
v∈V

(
d+
u

m

)

≤ [1 + o(1)] 2tt

(
d2

max

m

)(1−τ)t

.

Here we used that τ ≤ 1
3 ,
(
m
k

)
≤ 2m and

∑
u∈V d

+
u = m. Plugging this into equation (5.43) yields

P [N ∈ St]1−τ tt(t+ 1) ≤ [1 + o(1)] tt(t+ 1)

(
2tt

(
d2

max

m

)(1−τ)t
)1−τ

.

As t ≤ 2d2
max

2−τ , there holds

P [N ∈ St]1−τ tt(t+ 1) ≤ [1 + o(1)] (t+ 1)t1−τ

(
2 · 21−τ

2− τ
d4−4τ+2τ2

max

m1−2τ+τ2

)t
.

Since τ ≤ 1
3 , for any x ≥ 1, x1−τ ≤ x. Thus we find

P [N ∈ St]1−τ tt(t+ 1) ≤ [1 + o(1)] (t+ 1)t

(
4

2− τ
d4−4τ+2τ2

max

m1−2τ+τ2

)t
.
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Inserting the relation dmax = O
(
m1/4−τ) yields

P [N ∈ St]1−τ tt(t+ 1) ≤ [1 + o(1)] (t+ 1)t

(
4

2− τ
m−3τ+3.5τ2−3τ3

)t
.

Using t = o
(
m1/2

)
and that 4

2−τ is constant whereas m goes to infinity with n

P [N ∈ St]1−τ tt(t+ 1) ≤ [1 + o(1)] o
(
m1/2

)
O
(
m−3τ+3.5τ2−3τ3

)t
= O

(
m−τt

)
.

This completes the proof of equation (5.42) and hence it shows that equation (5.23) holds. This completes
the prove of equation (5.14) and hence shows that equation (5.3). Together with the results from Section
5.2.1, 5.2.3 this completes the proof of Theorem 5.2.

5.3 The probability of failure of Algorithm 1

The next step in proving Theorem 5.1, is showing that Algorithm 1 terminates successfully with probability
1− o(1). We prove the equivalent statement: the probability the algorithm fails is o(1). The proof is based
on [5, Section 5]. The algorithm fails at step s, if every pair of an unmatched in-stub with an unmatched
out-stub is unsuitable, i.e. it creates a self-loop or double edge when the edge corresponding to the pair is
added to GNs . First we investigate for which steps s ∈ {0, 1, . . . ,m − 1} the algorithm can fail. Then we
upper bound the number of vertices that have unmatched stubs left when the algorithm fails. This allows to
determine the probability that the algorithm fails with a given amount of unmatched stubs left. Combining
all these results, we show that the probability the algorithm fails is o(1).

First determine at which steps that algorithm might fail.

Lemma 5.18. If Algorithm 1 fails at step s, then m− s ≤ d2
max.

Proof. At step s, there are (m− s)2 pair of unmatched stubs. If the algorithm fails at step s, all these pairs
are unsuitable. The number of unsuitable pairs at step s is ∆s. By Lemma 5.3 there holds ∆s ≤ d2

max(m−s).
Thus if the algorithm fails at step s, there must hold (m− s)2 ≤ d2

max(m− s).

The number of vertices that have unmatched stubs when the algorithm fails is bounded as well. Suppose a
vertex v ∈ V has unmatched in-stub(s) left when the algorithm fails. Since the number of unmatched in-stubs
equals the number of unmatched out-stubs, this implies that there are also unmatched out-stubs. Because
the algorithm fails, any pair of an unmatched in-stub and an unmatched out-stub induces a double edge or
self-loop. Hence only v and vertices that are the source of an edge with v as target can have unmatched
out-stub(s). As v has at least one unmatched in-stub, there are at most dmax − 1 edges with v as target.
Thus at most dmax vertices have unmatched out-stub(s). By a symmetric argument it is shown that at most
dmax vertices have unmatched in-stub(s) when a failure occurs.

Let A
d−i1

(s)
,...,d−i

k−
(s)
,d+
j1

(s)
,...d+

j
k+

(s) be the event that the algorithm fails at step s with the only the vertices

having unmatched in-stubs being vi1 , . . . , vik− , each having d−il
(s)

unmatched in-stubs, and the only vertices

having unmatched out-stubs being vj1 , . . . , vjk+ , each having d+
jl

(s)
unmatched out-stubs. As k− (respectively

k+) denotes the number of vertices with unmatched in-stubs(out-stubs) left, there holds k−, k+ ≤ dmax . This
allows to write the probability that Algorithm 1 fails as

P [ failure ] =

d2
max∑

m−s=1

max(m−s,dmax)∑
k−=1

max(m−s,dmax)∑
k+=1

n∑
i1,...,ik−=1

n∑
j1,...,jk+=1

P
[
A
d−i1

(s)
,...,d−i

k−
(s)
,d+
j1

(s)
,...d+

j
k+

(s)

]
.

(5.45)
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Here the summation
∑n
i1,...,ik−=1 denotes the sum over all possible subsets B ⊂ {1, 2, . . . , n} of size k− such

that
∑
i∈B d

−
i

(s)
= m− s and

∑
i/∈B d

−
i

(s)
= 0. The goal is to show that P [ failure ] = o(1). To achieve this,

first we determine an upper bound for P
[
A
d−i1

(s)
,...,d−i

k−
(s)
,d+
j1

(s)
,...d+

j
k+

(s)

]
.

Lemma 5.19. The probability of the event A
d−i1

(s)
,...,d−i

k−
(s)
,d+
j1

(s)
,...d+

j
k+

(s) is upper bounded by

eo(1)d2k+k−−2k±

max

∏
i∈K+ d

+
i

d+
i

(s) ∏
i∈K− d

−
i

d−i
(s)

mk+k−−k±mm−smm−s

(
m− s

d−i1
(s)
, . . . , d−ik−

(s)

)(
m− s

d+
j1

(s)
, . . . , d+

jk+

(s)

)
. (5.46)

Proof. For notational convenience define

K− = {i1, i2, . . . ik−} , K+ = {j1, j2, . . . jk+} and K± = K− ∩K+.

When the event A
d−i1

(s)
,...,d−i

k−
(s)
,d+
j1

(s)
,...d+

j
k+

(s) occurs, the algorithm has constructed a partial graph GMs .

This partial graph obeys the degree sequence ~̃dn defined by

d̃−i =

{
d−i if i /∈ K−

d−i − d
−
i

(s)
if i ∈ K−

, d̃−i =

{
d+
i if i /∈ K+

d+
i − d

+
i

(s)
if i ∈ K+

.

The probability of A
d−i1

(s)
,...,d−i

k−
(s)
,d+
j1

(s)
,...d+

j
k+

(s) equals the number of graphs GMs
obeying the degree se-

quence ~̃dn leading to a failure times the probability that the algorithm constructs this partial graph. To

upper bound the number of graphs obeying ~̃dn leading to a failure, note that such a graph must contain the

edge (i, j) for all i ∈ K+, j ∈ K−, i 6= j. Thus a graph obeying ~̃dn leading to a failure, contains a subgraph

obeying the degree sequence dK−,K+

(s)
, which is defined by

d−i
(s)

=


d−i if i /∈ K−

d−i − d
−
1

(s) − k+ if i ∈ K−, i /∈ K+

d−i − d
−
1

(s) − k+ + 1 if i ∈ K−, i ∈ K+

and d+
i

(s)
=


d+
i if i /∈ K+

d+
i − d

+
1

(s) − k− if i ∈ K+, i /∈ K−

d+
i − d

+
1

(s) − k− + 1 if i ∈ K+, i ∈ K−
.

The number of graphs obeying the degree sequence dK−,K+

(s)
upper bounds the number of partial graphs

inducing the event A
d−i1

(s)
,...,d−i

k−
(s)
,d+
j1

(s)
,...d+

j
k+

(s) . Denote by L
(
~dn
)

the space of simple graphs obeying the

degree sequence ~dn. As the uniform distribution on a set S assigns each element a probability of 1
|S| , Theorem

5.2 implies that for any degree sequence d with dmax = O
(
m1/4−τ) there holds

|L (d)| ≤
∏m−1
r=0 (m− r)2

m!
∏n
i=1 d

+
i !
∏n
i=1 d

−
i !
e−

∑n
i=1 d

−
i
d
+
i

m +
∑n
i=1(d

−
i

)2+(d
+
i

)2

2m −
∑n
i=1(d

−
i

)2
∑n
i=1(d

+
i

)2

4m2 − 1
2 +o(1). (5.47)

We want to apply this to the degree sequence dK−,K+

(s)
. A graph obeying this degree sequence has s−k+k−+

k± edges, with k± = |K±|. Thus we must show that dmax = O
(

(s− k−k+ + k±)
1/4−τ

)
. Lemma 5.18 states

that m − s ≤ d2
max, implying m ≤ d2

max + s. Combining this with d4
max = o(m) yields d2

max

(
d2

max − 1
)
≤

s. For dmax > 1 this implies s > 3d2
max. As k+k− ≤ d2

max, we now find m < 2 (s− k−k+ + k±), i.e.
m = O (s− k−k+ + k±). If dmax = 1, then m ≤ s + 1 and k+k− ≤ 1. As the algorithm cannot fail at
the first step, s > 0. This implies that m ≤ 3 (s− k+k− + k±). Now m = O (s− k−k+k±) implies that

dmax = O
(
m1/4−τ) = O

(
(s− k−k+k±)

1/4−τ
)
. Thus we may apply equation (5.47) to dK−,K+

(s)
. This
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yields∣∣∣L(dK−,K+

(s)
)∣∣∣ ≤ (s− k+k− + k±)!∏n

i=1 d
+
i

(s)
!
∏n
i=1 d

−
i

(s)
!

exp

−∑n
i=1 d

−
i

(s)
d+
i

(s)

s− k+k− + k±
+

∑n
i=1

[
(d−i

(s)
)2 + (d+

i

(s)
)2

]
2 (s− k+k− + k±)

−
∑n
i=1(d−i

(s)
)2
∑n
i=1(d+

i

(s)
)2

4 (s− k+k− + k±)
2 − 1

2
+ o(1)

 .

Next the probability PA (GMs) that the algorithm constructs a partial graph GMs is upper bounded. This
will only depend on the degree sequence of the partial graph and not on its edges. Following the derivation
in Sections 5.2.1 and 5.2.3 we find

PA (GMs
) =

∏n
i=1 d

+
i !
∏n
i=1 d

−
i !∏

i∈K+ d
+
i

(s)
!
∏
i∈K− d

−
i

(s)
!

∑
Ns∈S(Ms)

PA (Ns)

=

∏n
i=1 d

+
i !
∏n
i=1 d

−
i !∏

i∈K+ d
+
i

(s)
!
∏
i∈K− d

−
i

(s)
!
s! exp

− ∑
(i,j)∈GMs

d+
i d
−
j

2m
+ o(1)

 s−1∏
r=0

1

(m− r)− ψr (GMs)

=

∏n
i=1 d

+
i !
∏n
i=1 d

−
i !∏

i∈K+ d
+
i

(s)
!
∏
i∈K− d

−
i

(s)
!
s!

s−1∏
r=0

1

(m− r)2
·

exp

(
s
∑n
i=1 d

−
i d

+
i

m2
−
s2
∑n
i=1

[
(d−i )2 + (d+

i )2
]

2m3
+
s
∑n
i=1(d−i )2

∑n
i=1(d+

i )2

4m3
+

s2

2m2
+ o(1)

)
.

The fraction of factorials accounts for the number of different configurations leading to the same graph GMs .

This equals6 the number of permutations of the stub labels. However for i ∈ K− there are only
d−i !

d−i
(s)

!

permutations of the labels of the in-stubs of vi that lead to a different configuration. To see this remark that
changing the label of an in-stub that remains unmatched with another in-stub that remains unmatched does

not change the configuration. By the same argument for i ∈ K+ there are only
d+
i !

d+
i

(s)
!

ways to permute the

labels of the out-stubs of vi.

Now we can determine

P
[
A
d−i1

(s)
,...,d−i

k−
(s)
,d+
j1

(s)
,...d+

j
k+

(s)

]
≤ P [GMs

]
∣∣∣L(d̄(s)

k−,k+

)∣∣∣ .
First we examine the product of the exponents in the approximations of P [GMs ] and

∣∣∣L(d̄(s)
k−,k+

)∣∣∣. Hence

we consider

exp

−∑n
i=1 d

−
i

(s)
d+
i

(s)

s− k+k− + k±
+

∑n
i=1

[
(d−i

(s)
)2 + (d+

i

(s)
)2

]
2 (s− k+k− + k±)

−
∑n
i=1(d−i

(s)
)2
∑n
i=1(d+

i

(s)
)2

4 (s− k+k− + k±)
2 − 1

2
+ o(1)


exp

(
s
∑n
i=1 d

−
i d

+
i

m2
−
s2
∑n
i=1

[
(d−i )2 + (d+

i )2
]

2m3
+
s
∑n
i=1(d−i )2

∑n
i=1(d+

i )2

4m3
+

s2

2m2
+ o(1)

)
= exp

( s
m
O (dmax) +

s

m
O
(
d2

max

)
+ o(1)

)
exp

(
−O (dmax)−O

(
d2

max

)
+ o(1)

)
= exp

[
O
(
d2

max

( s
m
− 1
))]

= exp

[
O
(
d2

max

(
m− d2

max

m
− 1

))]
= exp

[
O
(
d4

max

m

)]
= eo(1).
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Here we used that m > s ≥ m− d2
max. This leads to

P
[
A
d−i1

(s)
,...,d−i

k−
(s)
,d+
j1

(s)
,...d+

j
k+

(s)

]
≤ P [GMs ]

∣∣∣L(d̄(s)
k−,k+

)∣∣∣
≤ eo(1)

∏
i∈K+ d

+
i !
∏
i∈K− d

−
i !
∏
i∈K+,i∈K−

(
d+
i − d

+
i

(s) − k−
)(

d−i − d
−
i

(s) − k+
)

∏
i∈K+

(
d+
i − d

+
i

(s) − k−
)

!d+
i

(s)
!
∏
i∈K−

(
d−i − d

−
i

(s) − k+
)

!d−i
(s)

!

(s− k+k− + k±)!s!(m− s)!(m− s)!
m!m!

≤ eo(1)

∏
i∈K+ d

+
i

d+
i

(s)
+k−∏

i∈K− d
−
i

d−i
(s)

+k+∏
i∈K+,i∈K− d

+
i d
−
i

1∏k+k−−k±+1
j=0 s− j

s!s!

m!m!

(
m− s

d−i1
(s)
, . . . , d−ik−

(s)

)(
m− s

d+
j1

(s)
, . . . , d+

jk+

(s)

)
≤ eo(1)d2k+k−−2k±

max

∏
i∈K+

d+
i

d+
i

(s) ∏
i∈K−

d−i
d−i

(s) 1∏k+k−−k±+1
j=0 s− j

s!s!

m!m!

(
m− s

d−i1
(s)
, . . . , d−ik−

(s)

)(
m− s

d+
j1

(s)
, . . . , d+

jk+

(s)

)
.

To get this upper bound equal to equation (5.46), it remains to bound s!
m! and

∏k+k−−k±+1
j=0 s−j
mk+k−−k± . First look

at s!
m! . Using that m− s = O

(
d2

max

)
, we find

m!

s!
= (s+ 1)(s+ 2) · · · (m− 1)m = mm−s

(
1− 1

m

)(
1− 2

m

)
· · ·
(

1− m− s− 1

m

)
= mm−s

(
1−

m−s−1∏
i=1

i

m
+O

(
(m− s)2 (m− s)2

m2

))

≥ mm−se
−
∑m−s−1
i=1

i
m+O

(
d8
max
m2

)
= mm−se

− (m−s)(m−s−1)
2m +O

(
d8
max
m2

)

= mm−se
−O

(
d4
max
m

)
.

This implies

s!

m!
≤ 1

mm−s e
O
(
d4
max
m

)
=

1

mm−s e
o(1).

Next consider 1∏k+k−−k±+1
j=0 s−j

. Using that m − s ≤ d2
max, k

+, k− ≤ dmax and 0 ≤ k± ≤ min (k−, k+), we

obtain

k+k−−k±+1∏
j=0

s− j ≥
k+k−−k±+1∏

j=0

m− d2
max − j = mk+k−−k±

k+k−−k±+1∏
j=0

(
1− d2

max + j

m

)

= mk+k−−k±

1−
k+k−−k±+1∏

j=1

d2
max + j

m
+O

(
d8

max

m2

)
≥ mk+k−−k±e

− (d2
max+k+k−+k±+1)(d2

max+k+k−+k±+2)

2m +O
(
d8
max
m2

)

= mk+k−−k±e
−O

(
d4
max
m

)
.

This implies

1∏k+k−−k±+1
j=0 s− j

≤ 1

mk+k−−k± e
O
(
d4
max
m

)
=

1

mk+k−−k± e
o(1).

Thus the upper bound on the probability of A
d−i1

(s)
,...,d−i

k−
(s)
,d+
j1

(s)
,...d+

j
k+

(s) becomes

eo(1)d2k+k−−2k±

max

∏
i∈K+ d

+
i

d+
i

(s) ∏
i∈K− d

−
i

d−i
(s)

mk+k−−k±mm−smm−s

(
m− s

d−i1
(s)
, . . . , d−ik−

(s)

)(
m− s

d+
j1

(s)
, . . . , d+

jk+

(s)

)
.
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Combining equation (5.45) with the Lemma 5.19, we are able to show the desired result.

Lemma 5.20. The probability that Algorithm 1 returns a failure is o(1).

Proof. Lemma 5.19 implies that

P
[
A
d−i1

(s)
,...,d−i

k−
(s)
,d+
j1

(s)
,...d+

j
k+

(s)

]
≤ eo(1)d2k+k−−2k±

max

∏
i∈K+ d

+
i

d+
i

(s) ∏
i∈K− d

−
i

d−i
(s)

mk+k−−k±mm−smm−s

(
m− s

d−i1
(s)
, . . . , d−ik−

(s)

)(
m− s

d+
j1

(s)
, . . . , d+

jk+

(s)

)
.

The fraction
(
d2

max

m

)k+k−−k±

is either 1 if k+k− = k± or smaller than
d2

max

m if k+k− 6= k±. As k± ≤
min (k−, k+), k+k− = k± implies that k+ = k− = 1. Together k+ = k− = 1 and the conditions under which
the algorithm can fail imply that K+ = K−. First we consider this case. As K+ = K− = K± = 1 there

holds d−i1
(s)

= d+
i1

(s)
= m− s, hence we find

P
[
A
d−i1

(s)
,d+
i1

(s)

]
≤ eo(1)

d+
i1

m−s
d−i1

m−s

mm−smm−s = o(1).

Next assume that k+k− 6= k±. This implies that
(
d2

max

m

)k+k−−k±

≤ d2
max

m . By definition of the summations∑n
i1,...,ik−=1 and

∑n
j1,...,jk+=1, we can apply the multinomial theorem to obtain

max(m−s,dmax)∑
k−=1

n∑
i1,...,ik−=1

∏
i∈K−

d−i
d−i

(s)
(

m− s
d−i1

(s)
, . . . , d−ik−

(s)

)
=
(
d−1 + . . .+ d−n

)m−s
and

max(m−s,dmax)∑
k+=1

n∑
j1,...,jk+=1

∏
i∈K+

d+
i

d+
i

(s)
(

m− s
d+
j1

(s)
, . . . , d+

jk+

(s)

)
=
(
d+

1 + . . .+ d+
n

)m−s
.

Plugging this into equation (5.45) yields

P [ failure ] ≤ o(1) + eo(1) d
2
max

m

d2
max∑

m−s=1

(
d+

1 + . . . d+
n

)m−s (
d−1 + . . . d−n

)m−s
mm−smm−s

≤ o(1) +
d2

max

m

d2
max∑

m−s=1

1 = o(1) +O
(
d4

max

m

)
= o(1).

This proves the claim of Theorem 5.1 on the probability that Algorithm 1 fails.

5.4 Running time Algorithm 1

All that is left to complete the proof of Theorem 5.1, is to show that the expected running time of Algorithm
1 is O (mdmax). For this we follow [5, Section 6]

Lemma 5.21. Algorithm 1 can be implemented so that its expected running time is O (mdmax) for graphical

degree sequences ~dn with dmax = O
(
m1/4−τ) for some τ > 0.

Proof. Our implementation of Algorithm 1 is based on the implementation that Bayati, Kim and Saberi [5]
use to generate undirected graphs. This implementation in turn is based on Steger and Wormald’ implemen-
tation of their algorithm to generate undirected regular random graphs. For the sake of completeness we
include the entire analysis bellow. Steger and Wormald invented the three phase procedure to pick an edge
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(i, j) at step r with probability proportional to di
(r)dj

(r). Bayati, Kim and Saberi changed the acceptance

criteria so that each edge is accepted with probability proportional to di
(r)dj

(r)
(

1− didj
4m

)
. We change this

acceptance probability to d+
i

(r)
d−j

(r)
(

1− d+
i d
−
j

2m

)
. Also do we change the criteria which determine the phase

of the algorithm.

For notional convenience let E denote the set of edges constructed by the algorithm so far. Let N be
an array containing for each vertex v: the set of vertices w such that (v, w) ∈ E. This array allows to
determine all vertices w for v in time O (dmax). It can be updated in constant time.

In the first phase a random unmatched in-stub and a random unmatched out-stub are selected. Using
the array N it can be checked in O (dmax) whether this is an eligible pair (i.e. if it does not create a self-loop

or double edge when added to E). If eligible, the pair is accepted with probability 1 − d+
i d
−
j

2m and the edge
(i, j) is added to E. Select edges according to this procedure, until the number of unmatched in-stubs (which
equals the number of unmatched out-stubs) drops bellow 2d2

max. This marks the end of phase 1. Checking
if a pair is eligible requires O (dmax) comparisons. Each eligible pair is accepted with probability at least 1

2 .
At most one half of the stub pairs is ineligible. To see this recall that Lemma 5.3 (a) implies that at most
(m − r)d2

max of the (m − r)2 pairs are ineligible. Thus as long as (m − r) > 2d2
max at least half of the stub

pairs is eligible. Hence creating one edge in phase 1 has an expected computational complexity of O (dmax),
making the total expected runtime of this phase O (mdmax).

When phase 1 ends, phase 2 begins. In this phase we select a pair of vertices instead of a pair of stubs.
This requires us to keep track of the vertices which have unmatched in-stubs left and of vertices with un-
matched out-stubs left. These sets are constructed in O (n) and can be updated in constant time. Draw a
uniformly random vertex j from the set of vertices with unmatched in-stubs and a uniformly random vertex i

from the set of vertices with unmatched out-stubs. Accept i (respectively j) with probability
d+
i

(r)

d+
i

(r)

(
d−j

(r)

d−j
(r)

)
.

If both vertices are accepted, it is checked if (i, j) is an eligible edge. This can still be done in O (dmax). If

the edge is eligible, it is accepted with probability 1− d+
i d
−
j

2m . Phase 2 ends when the number of vertices with
unmatched in-stubs or the number of vertices with unmatched out-stubs is less than 2dmax. As every vertex
with unmatched in-stubs(respectively out-stubs) has at most dmax unmatched in-stubs(out-stubs), this as-
sures that the edge is eligible with probability at least 1

2 . An eligible edge is accepted with probability at least
1
2 . To get a pair of accepted vertices an expected number of O

(
d2

max

)
redraws are needed. Thus the construc-

tion of one edge is expected to take O
(
d2

max

)
. As there are only 2d2

max unmatched in-stubs at the start of

phase 2, at most d2
max edges are created in this phase. Thus the expected running time of phase 2 is O

(
d4

max

)
.

Phase 3 is the final phase. At the beginning of this phase, the set of all remaining eligible edges is created.
Denote this set of edges by Ẽ. At the start of phase 3 there are only 2dmax vertices left with unmatched
in-stubs or with unmatched out-stubs. Hence there are at most 2d2

max vertices with unmatched out-stubs or

in-stubs. Thus Ẽ contains no more than 4d3
max edges. For each possible edge it is checked in time O (dmax) if

it does not create a double edge or self-loop. Thus constructing Ẽ takes O
(
d4

max

)
. The rest of phase 3 consist

of picking a random element of Ẽ and accepting it with probability
d+
i

(r)
d−j

(r)

d+
i d
−
j

(
1− d+

i d
−
j

2m

)
. This leads to an

expected number of O
(
d2

max

)
repetitions to accept one edge. If an edge is accepted, it is removed from Ẽ and

the values of d+
i

(r)
and d−j

(r)
are updated. After selecting an element of Ẽ, it must be checked if d+

i

(r)
> 0

and d−j
(r)

> 0. If this is not the case, the edge is not added to E and removed from Ẽ. This continues until

Ẽ is empty or |E| = m. This has expected running time of order O
(
d5

max

)
as there are O

(
d3

max

)
edges that

are expected to be discarded or accepted in O
(
d2

max

)
. Thus the total running time of the algorithm becomes

O (mdmax) +O (n) +O
(
d4

max

)
+O

(
d5

max

)
.

As dmax = O
(
m1/4−τ) this is O (mdmax).

65



5. NUMERICAL CONSTRUCTION OF RANDOM DIRECTED GRAPHS

However we also must compute Pij at each step. Let P
(r)
ij denote the probability that the edge (i, j) is

added to E at step r. There holds:

P
(r)
ij =

d+
i

(r)
d−j

(r)
(

1− d+
i d
−
j

2m

)
(m− r)2 −Ψr (N )

.

The value d+
i

(r)
d−j

(r)
(

1− d+
i d
−
j

2m

)
can be computed in constant time. To determine the denominator of this

value remark that[
(m− r + 1)2 −Ψr+1 (N )

]
−
[
(m− r)2 −Ψr (N )

]
=

∑
(u,v)∈Er+1

d+
u

(r+1)
d−v

(r+1)
(

1− d+
u d
−
v

2m

)
−

∑
(u,v)∈Er

d+
u

(r)
d−v

(r)
(

1− d+
u d
−
v

2m

)

= −d+
i

(r)
d−j

(r)

(
1−

d+
i d
−
j

2m

)
−
∑

(i,v)∈Er
v 6=j

d−v
(r)
(

1− d+
i d
−
v

2m

)
−
∑

(u,j)∈Er
u6=i

d+
u

(r)

(
1−

d+
u d
−
j

2m

)

= −d+
i

(r)
d−j

(r)

(
1−

d+
i d
−
j

2m

)
− 2(m− r) +

d+
i

2m

n∑
k=1

d−k d
−
k

(r)
+
d−j
2m

n∑
k=1

d+
k d

+
k

(r)

+
∑

(i,v)∈GNr

d−v
(r)
(

1− d+
i d
−
v

2m

)
+

∑
(u,j)∈GNr

d+
u

(r)

(
1−

d+
u d
−
j

2m

)
+ d−i

(r)

(
1−

d+
i d
−
j

2m

)
+ d+

j

(r)

(
1−

d+
i d
−
j

2m

)
.

Each of these terms can be updated at each step in O (dmax) operations. This allows us to determine the

value of P
(r)
ij at each step using O (dmax). As the construction of one edge also takes at least O (dmax) in

every phase, this does not change the complexity of the algorithm. The initial value is

Ψ0 (N ) = m2 −
n∑
i=1

d−i d
+
i −

∑n
i=1 d

−
i

2∑n
i=1 d

+
i

2 −
∑n
i=1 d

−
i

2
d+
i

2

2m
,

which can be computed in O (n). As n ≤ m this does not change the order of the expected running time and
hence this completes the proof.

This lemma completes the proof of Theorem 5.1.
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6 Numerical simulations

In this section, we apply the construction algorithm to illustrate Theorem 4.1. Section 6.1 describes the
simulation setup and how we numerically determine the percolation threshold and the size of the GSCC.
Section 6.2 introduces the sample degree distributions for which the simulations are performed. Then, the
results of the simulations are compared with the theory given by Theorem 4.1, which is split into two parts:
the bond and site percolation are discussed in respectively Sections 6.3 and 6.4.

6.1 The simulation

The goal of the simulation is to numerically illustrate Theorem 4.1, which identifies the values πbond
c , πsite

c , cbond

and csite. We start by choosing the value of π and the type of percolation applied (bond/site). Then, we
apply a procedure that generates random graphs obeying a given degree sequence and removes each edge/iso-
lates each vertex with probability 1 − π. By analysing the sizes of strongly connected components of the
percolated graph, we obtain the estimated value of cbond (or csite) as the relative size of the largest strongly

connected component, i.e. 1
n

∣∣∣CS1 (Gπ~dn)∣∣∣. Determining the percolation threshold numerically is a little more

involving, as it requires one to decide whether or not a giant component is present by looking at a finite graph.
Equation (4.1) defines the percolation threshold to be the supremum over all values of π ∈ [0, 1] for which

P
[

1
n

∣∣∣CS1 (Gπ~dn)∣∣∣ = 0
]

converges to zero as n goes to infinity. However the value of 1
n

∣∣∣CS1 (Gπ~dn)∣∣∣ is lower

bounded by 1
n . As the value of n remains finite in the simulation, we cannot rely on this value being zero.

Thus we need another method to numerically determine the percolation threshold. We look at the behaviour
of the size of the second largest strongly connected component. As Theorem 4.1 is proven by applying Theo-
rem 3 to the percolated graph, it will contain w.h.p a unique giant strongly connected component for π > πc
and no giant if π < πc. So the second largest connected component is expected to reach its maximal relative
size at the percolation threshold. If π increases but remains smaller than πc, this value will grow as more edges
lead to larger connected components. However for π > πc a giant component arises by connecting smaller
components into one larger component. Hence the size of the second largest component will decrease. So to
determine the numerical percolation threshold π̃bond (or π̃site), apply percolation for different values of π. The

value of the percolation probability that leads to the largest second largest component will be π̃bond (or π̃site).

It remains to explain the procedure to obtain percolated random graphs obeying a given degree sequence.
Given the degree sequence, Algorithm 1 can be used to (almost) uniformly sample a graph obeying this
degree sequence. Then bond (respectively site) percolation on this graph can be simulated using a random
number generator. Generate a random number in [0, 1] for each edge (vertex) in the graph. If this is smaller
than 1− π, delete the edge (isolate the vertex). The result is the desired percolated graph.
To get more reliable numerical values for πbond

c , πsite
c , cbond and csite, we generate ngraphs simple graphs obey-

ing this degree sequence using Algorithm 1. To each graph we apply the percolation procedure npercolation
times. This leads to ngraphs·npercolation values for the size of the largest and second largest strongly
connected component. The desired numerical values are determined using the average for the size of the
largest and second largest strongly connected component over these ngraphs·npercolation graphs.

Above we considered a graph with a given degree sequence. But Theorem 4.1 regards proper degree ar-
rays converging to some degree distribution (pj,k)

∞
j,k=0. As input for our simulations, we choose the degree

distribution (a bivariate probability mass function) and the number of vertices n. We then draw n elements
from this distribution, representing the in-degree and the out-degree of each vertex. We repeat this process
until we obtain graphical degree sequence. We use the following Theorem to check whether a degree sequence
is graphical.

Theorem 6.1. [27, Theorem 2] Consider a degree sequence ~dn ordered such that for all i ∈ {1, 2, . . . , n− 1}
there holds d−i ≥ d−i+1. Then the degree sequence is graphical if and only if

∑n
i=1 d

−
i =

∑n
i=1 d

+
i and for all
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1 ≤ k ≤ n with d−k > d−k+1 and n = k there holds

k∑
i=1

min
(
d+
i , k − 1

)
+

n∑
i=k+1

min
(
d+
i , k

)
≥

k∑
i=1

d−i .

Note that this reduces the number of equations we need to check with respect to Theorem 2.2. As the results
should be the same for all different proper degree sequences with the same degree distribution, we consider
just one degree sequence for each value of n. This concludes the explanation of the simulation.

6.2 Degree distributions

In this section, we introduce the two sample degree distributions, for which we run simulations to determine
πbond
c , πsite

c , cbond and csite numerically. First, let us consider the uniform degree distribution. Denoting the
maximum degree of this distribution by ∆, its probability mass function is given by

pj,k =

{
1

(∆+1)2−1
if j, k ≤ ∆ and (j, k) 6= (0, 0)

0 else
.

This distribution is constant, expect for exclusion of (0, 0). Remark that this distribution is almost the
product of two univariate uniform distributions on {0, 1, . . . ,∆}, expect for assigning (0, 0) a probability of
0. The first and first mixed moments of this distribution are

µ =

∆∑
j,k=0

jpj,k =
(∆ + 1)

2
∆

2
(

(∆ + 1)
2 − 1

) and µ11 =

∆∑
j,k=0

jkpj,k =
(∆ + 1)

2
∆2

4
(

(∆ + 1)
2 − 1

) .
Theorem 4.1 may only be applied if µ11/µ > 1. As there holds

µ11

µ
=

∆

2
> 1,

this implies that we need to take ∆ > 2. Theorem 4.1 implies that

πbond
c = πsite

c =
2

∆
.

Also the size of the GSCC follows from Theorem 4.1. First consider cbond. This requires the values of η−,bond

and η+,bond, given by equations (4.27) and (4.28). For the uniform degree distribution they are the unique
solutions in (0, 1) to

(
1− η−,bond

)
=

∆∑
j,k=0

pj,k
(
π
(
1− η−,bond

)
+ 1− π

)j
and

(
1− η+,bond

)
=

∆∑
j,k=0

pj,k
(
π
(
1− η+,bond

)
+ 1− π

)k
.

Remark that these equations are in fact the same. Hence it holds that η−,bond = η+,bond. The value of
η−,bond is determined using a numerical solver. From this value, ζ−,bond, ζ+,bond and ψbond are determined
using equations (4.29) and (4.30). In turn these values allow us to determine the value of cbond using equation
(4.31). From the value of cbond, csite can easily be obtained using equation (4.54). The numerical values of
cbond and csite are shown in Sections 6.3 and 6.4 and allow for a direct comparison with the simulation results.

The uniform degree distribution is almost degenerate, i.e. there holds P [d−v = j, d+
v = k] = P [d−v = j]P [d+

v = k]
except for (j, k) = 0. One might argue that a directed graph with a degenerate distribution can be modelled
by an undirected graph with degree distribution P [dv = l] =

∑
j+k=l P [d−v = j, d+

v = k]. To illustrate that
our theorem also applies to non-degenerate degree distributions, we also study a modification of the uniform
degree distribution for ∆ = 4. This modified uniform distribution is not degenerate and the probabilities for
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the total degree, irrespective of edge direction, P [dv = l] =
∑
j+k=l P [d−v = j, d+

v = k] are the same as in the
uniform degree distribution with ∆ = 4. Such a probability mass function is given by

p0,2 =
1

24
, p0,3 =

1

24
, (6.1)

p1,0 =
1

12
, p1,1 =

1

12
, p1,3 =

1

24
, p1,4 =

1

12
, (6.2)

p2,1 =
1

8
, p2,2 =

1

24
, p2,4 =

1

24
, (6.3)

p3,1 =
1

8
, p3,3 =

1

12
, p3,4 =

1

12
, (6.4)

p4,1 =
1

12
, p4,4 =

1

24
. (6.5)

A simple calculation shows that

∞∑
j,k=0

jpj,k =

∞∑
j,k=0

kpj,k = 2.0833 and

∞∑
j,k=0

jkpj,k = 4.4167.

This shows that a random graph obeying this degree distribution w.h.p. will contain a GSCC and hence the
percolation threshold exists. By Theorem 4.1 the percolation threshold equals

πbond
c = πsite

c = 0.4717.

The values of cbond and csite are determined using the same equation as for the uniform degree distribution.
Remark that for the modified degree distribution there holds η−,bond 6= η+,bond.

6.3 Simulating bond percolation

In this section, we present the outcomes of the simulations performed regarding bond percolation. As degree
distribution we use: the uniform distribution for ∆ = 3 and ∆ = 4 and the modified uniform distribution,
as introduced in Section 6.2. Simulations are performed for graphs with 10000 vertices and for graphs with

n = 2, 4, 8, . . . , 2048 vertices. For all values of n, we determine π̃bond and CS1
(
Gπ~dn

)
/n. The goal of the first

simulation is to compare the numerical values for a graph on n = 10000 vertices with the asymptotic theoret-
ical results. As the gap between these values is not too big, we also want to look at the convergence speed.
This is studied using the simulations for n = 2, 4, 8, . . . , 2048. To determine π̃bond we apply the procedure
described in Section 6.1, considering as value for π: all values between πbond

c − 0.15 and πbond
c + 0.15 using

steps of size 0.01. So we consider πbond
c − 0.15, πbond

c − 0.14, . . . , πbond
c + 0.14, πbond

c + 0.15. The numerical
value of cbond is determined for all values of π between 0.45 and 0.95 in steps of 0.50. For all simulations we
use ngraphs= 100 and npercolation= 100.

Before we look at the values regarding percolation, first we look at the additional output of Algorithm
1. Recall from Section 5.1 that the algorithm outputs a sequence of edges describing a graph together with
the probability PN that the algorithm generates precisely this sequence of edges. Equation (5.3) implies
that all orderings leading to the same graph are generated with asymptotically equal probability. Thus the
probability that the algorithm generates a given graph can be approximated by P := m!PN , since there are
m! different orderings for the edges of a graph. For each value of n, we determined the minimum and the
maximum P in the ensemble of 100 different graphs obeying the degree sequence. The logarithm of this value
is shown for the uniform degree distribution with ∆ = 3 in Figure 4a for n = 2, 4, 8, . . . , 2048. We see that
log10 (lnP ) seems to have a linear dependence on log10(n). For small n there is a big discrepancy between
the maximum and the minimum. When n increases, this difference quickly becomes small. Upon a closer
inspection of the values, it turns out that the absolute difference between the maximum and the minimum
decreases slowly, but remains of the same order of magnitude. However, as the value of ln(P ) rapidly de-
creases, this means that the relative difference quickly decreases as well. We expect that this decrease in the
difference is caused by the fact that the algorithm generates graphs within 1±o(1) of uniformity. In principle
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(a) The minimum and maximum value of ln(P ) over 100
graphs are shown as a function of n for the uniform de-
gree distribution with ∆ = 3. For small n there is a big
difference between the minimum and the maximum, but
this quickly becomes invisible with increase of n.
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(b) The minimum value of ln(P ) over 100 graphs is shown
as a function of n for different underlying degree distribu-
tions. The behaviour is roughly the same for all distribu-
tions.

Figure 4: The value P is an approximation to the probability that Algorithm 1 generates a given graph G ~dn .

The minimum value of ln(P ) over 100 graphs is shown as a function of n for different underlying degree
distributions. The behaviour is roughly the same for all distributions.

the same graphs can be created for the remaining two distributions. However, as the difference between the
maximum and minimum shows the same behaviour for these distributions, this will not provide additional
insight. Instead we show the minimum for the three distributions together, see Figure 4b. This allows to
compare the probability for the different degree sequences. This is mainly interesting, with regard to the
approximation N = 1

m!P for the number of simple directed graphs obeying a given degree sequence. In the
figure we see that the uniform distribution with ∆ = 3 is slightly larger, implying that there will be fewer
graphs obeying it than for ∆ = 4 and the modified degree distribution. This is most likely caused by the fact
that a larger degree at each vertex leads to more choices for the neighbours of the vertex.

Now, we turn to percolation. We generate graphs on 10000 vertices. The behaviour of the value
∣∣∣CS2 (Gπ~dn)∣∣∣ /n

for these graphs is shown in Table 1 for the uniform distribution and in Table 2 for the modified uniform
distribution. Here we selected a subinterval of [πbond

c −0.15, πbond
c +0.15] for each distribution that captures

the important behaviour. For all distributions the relative size of the second largest component shows similar
behaviour. First it increases monotonically with π. At some point it reaches a maximum, after which it
monotonically decreases. Recall from Section 6.1 that this is the behaviour we expected. For the uniform
distribution with ∆ = 3 we find π̃bond = 0.71, whereas πbond

c = 2
3 . For ∆ = 4, there holds π̃bond = 0.53, where

πbond
c = 0.5. For modified uniform distribution we find a numerical percolation threshold of π̃bond = 0.50

where πbond
c = 0.4717. This amounts to a difference between the theoretical and numerical values of approx-

imately 0.03 for all distributions. Remark that this does not contradict our theorem, as the theory considers
the asymptotic limit.

Next we compare the value of cbond with the average size of the largest strongly connected component
of the simulated graph. For the uniform distribution the results are shown in Table 3, and for the modified
uniform distribution in Table 4. Remark that for all values of π < πbond

c the theoretical prediction is 0, as
w.h.p. no giant strongly connected component is present. However the numerical value is simply the size of
the largest strongly connected component. As such a component contains at least one vertex, even if no giant
component is present, this value does not become zero. This is an unfair comparison as also theoretically
the largest strongly connected component will contain at least one vertex, but it does not scale linearly in n.
Remark that the numerical value is small in this case, i.e. it contains fewer then 20 vertices. For the values
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Table 1: The average relative size of the second largest strongly connected component after bond percolation
is shown for different values of π. The results are obtained by simulating graphs on 10000 vertices with a
degree sequence drawn from the uniform distribution for ∆ = 3 and ∆ = 4.

(a) The results for ∆ = 3. A maximum is observed
for π = 0.71.

π
∣∣∣CS2 (Gπ~dn)∣∣∣ /n

0.65 4.83e− 04
0.66 6.02e− 04
0.67 7.54e− 04
0.68 9.29e− 04
0.69 1.14e− 03
0.70 1.34e− 03
0.71 1.45e− 03
0.72 1.44e− 03
0.73 1.30e− 03
0.74 1.11e− 03
0.75 9.26e− 04
0.76 7.70e− 04
0.77 6.65e− 04
0.78 5.77e− 04
0.79 5.19e− 04
0.80 4.73e− 04

(b) The results for ∆ = 4. A maximum is observed
for π = 0.53.

π
∣∣∣CS2 (Gπ~dn)∣∣∣ /n

0.45 2.31e− 04
0.46 2.70e− 04
0.47 3.40e− 04
0.48 4.30e− 04
0.49 5.69e− 04
0.50 7.55e− 04
0.51 9.66e− 04
0.52 1.17e− 03
0.53 1.33e− 03
0.54 1.27e− 03
0.55 1.08e− 03
0.56 9.20e− 04
0.57 7.23e− 04
0.58 5.85e− 04
0.59 5.18e− 04
0.60 4.50e− 04

Table 2: The average relative size of the second largest strongly connected component after bond percolation
is shown for different values of π. The results are obtained by simulating graphs on 10000 vertices with a
degree sequence drawn from the modified uniform distribution. A maximum is observed for π = 0.50.

π
∣∣∣CS2 (Gπ~dn)∣∣∣ /n

0.42 2.19e− 04
0.43 2.77e− 04
0.44 3.35e− 04
0.45 4.49e− 04
0.46 6.03e− 04
0.47 8.30e− 04
0.48 1.08e− 03
0.49 1.32e− 03
0.50 1.37e− 03
0.51 1.25e− 03
0.52 1.02e− 03
0.53 7.90e− 04
0.54 6.26e− 04
0.55 5.32e− 04
0.56 4.69e− 04
0.57 4.23e− 04
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Table 3: The average relative size of the largest strongly connected component after bond percolation is
compared with cbond for different values of π. The results are obtained by simulating graphs on 10000
vertices obeying a degree sequence drawn from the uniform distribution for ∆ = 3 and ∆ = 4.

π
∆ = 3 ∆ = 4∣∣∣CS1 (Gπ~dn)∣∣∣ /n cbond

∣∣∣CS1 (Gπ~dn)∣∣∣ /n cbond

0.45 1.79e− 04 0.00e+ 00 5.71e− 04 0.00e+ 00
0.50 2.28e− 04 0.00e+ 00 2.53e− 03 0.00e+ 00
0.55 3.34e− 04 0.00e+ 00 2.75e− 02 3.13e− 02
0.60 5.85e− 04 0.00e+ 00 9.38e− 02 9.66e− 02
0.65 1.58e− 03 0.00e+ 00 1.69e− 01 1.71e− 01
0.70 1.07e− 02 1.15e− 02 2.42e− 01 2.45e− 01
0.75 5.50e− 02 5.76e− 02 3.10e− 01 3.12e− 01
0.80 1.19e− 01 1.20e− 01 3.71e− 01 3.73e− 01
0.85 1.86e− 01 1.86e− 01 4.24e− 01 4.26e− 01
0.90 2.51e− 01 2.51e− 01 4.70e− 01 4.72e− 01
0.95 3.12e− 01 3.11e− 01 5.10e− 01 5.12e− 01

Table 4: The average relative size of the largest strongly connected component after bond percolation is
compared with cbond for different values of π. The results are obtained by simulating graphs on 10000
vertices obeying a degree sequence drawn from the modified uniform distribution.

π
∣∣∣CS1 (Gπ~dn)∣∣∣ /n cbond

0.45 1.09e− 03 0.00e+ 00
0.50 1.24e− 02 1.47e− 02
0.55 8.12e− 02 8.49e− 02
0.60 1.75e− 01 1.77e− 01
0.65 2.71e− 01 2.73e− 01
0.70 3.62e− 01 3.63e− 01
0.75 4.46e− 01 4.45e− 01
0.80 5.21e− 01 5.20e− 01
0.85 5.89e− 01 5.88e− 01
0.90 6.52e− 01 6.51e− 01
0.95 7.11e− 01 7.09e− 01
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(a) The value
∣∣πbond
c − π̃bond

∣∣ is shown as a function of
n for graphs obeying a uniform degree distribution for
∆ = 3, 4.
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(b) The value
∣∣πbond
c − π̃bond

∣∣ is shown as a function of n
for graphs obeying a modified uniform degree distribution.

Figure 5: The behaviour of
∣∣πbond
c − π̃bond

∣∣ is shown for the uniform and modified uniform distribution as a
function of n.

of π > πbond
c , we see that the difference between the theory and the simulation decreases, as π increases.

When cbond reaches values of the order 10−1 the absolute error remains almost constant. A last observation
regarding these results is that for π > πbond

c , the value of cbond is always larger than the average size of largest
SCC for the simulated graphs for the uniform distribution. However for the modified uniform distribution
this is not the case.

The difference between the numerical and theoretical value of cbond is small, especially when π increases.
This raises the question about how fast the numerical values converge to the theoretical ones. To offer some
insight, we perform the same simulations as for n = 10000 for graphs on n = 2, 4, 8, . . . , 2048 vertices using
the same three degree distributions. Instead of the actual values produced by the simulation, we will show
the difference between the numerical and theoretical value as a function of n, since we want to study the
convergence.

First look at the percolation threshold πbond
c . We expect that the difference between π̃bond and πbond

c

decreases, when the number of vertices increases. Recall that this difference was approximately 0.03 for
n = 10000. Hence we do not expect the difference to drop bellow 0.03. Furthermore it is upper bounded by
approximately 0.15 as we run the simulation for π ∈ [0.51, 0.81] for ∆ = 3, for π ∈ [0.35, 0.65] for ∆ = 4 and
for π ∈ [0.32, 0.62] for the modified degree distribution. The results are shown in Figure 5. For the uniform
degree distribution an erratic ”burn-in” regime is observed, followed by eventually decrease of the error for
larger values of n. For the modified uniform distribution we do not observe the erratic behaviour. Instead we
see that the difference remains almost constant, until at n = 128 a decrease sets in. The difference between
the values roughly halves when the number of vertices increases by a power of 2.

Next we look at the relative difference between cbond and the relative size of the largest strongly connected
component in the graph as a function of n. We choose to show the relative difference and not the absolute,
as for different values of π, the order of magnitude of cbond changes. The results are shown in Figure 6. For
all three distributions we see that the relative difference decreases if n increases. Also the agreement between
simulation and theory is better for larger values of π. This is consistent with the behaviour Tables 3 and 4

display. For small values of n the difference is very large. This is mainly due to the fact
∣∣∣CS1 (Gπ~dn)∣∣∣ can only

take values in { 1
n ,

2
n , . . . ,

n
n}. Remark for the values of π close to the percolation threshold that the error

remains fairly large. Another important remark is that we in fact look at a convergence of two intertwined
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(a) The relative difference of cbond and
∣∣∣CS1 (Gπ~dn)∣∣∣ is

shown as a function of n. The degree distribution is a
uniform distribution with ∆ = 3.
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(b) The relative difference of cbond and
∣∣∣CS1 (Gπ~dn)∣∣∣ is

shown as a function of n. The degree distribution is a
uniform distribution with ∆ = 4.
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(c) The relative difference of cbond and
∣∣∣CS1 (Gπ~dn)∣∣∣ is

shown as a function of n. The degree distribution is the
modified uniform distribution.

Figure 6: The relative difference of cbond and
∣∣∣CS1 (Gπ~dn)∣∣∣ is shown as a function of n for multiple values of

π. The actual data points are shown with markers. The lines connecting the markers provide a visual aid to
highlight the trend. For larger values of π, the relative difference is smaller.
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6. NUMERICAL SIMULATIONS

Table 5: The average relative size of the second largest strongly connected component after site percolation
is shown for different values of π. The results are obtained by simulating graphs on 10000 vertices with a
degree sequence drawn from the uniform distribution for ∆ = 3 and ∆ = 4.

(a) The results for ∆ = 3. A maximum is observed
for π = 0.72.

π
∣∣∣CS2 (Gπ~dn)∣∣∣ /n

0.65 4.30e− 04
0.66 5.24e− 04
0.67 6.35e− 04
0.68 7.68e− 04
0.69 9.31e− 04
0.70 1.07e− 03
0.71 1.19e− 03
0.72 1.24e− 03
0.73 1.23e− 03
0.74 1.14e− 03
0.75 1.05e− 03
0.76 8.18e− 04
0.77 7.22e− 04
0.78 6.08e− 04
0.79 5.43e− 04
0.80 4.95e− 04

(b) The results for ∆ = 4. A maximum is observed
for π = 0.54.

π
∣∣∣CS2 (Gπ~dn)∣∣∣ /n

0.45 2.31e− 04
0.46 2.64e− 04
0.47 3.22e− 04
0.48 3.88e− 04
0.49 4.90e− 04
0.50 6.12e− 04
0.51 7.48e− 04
0.52 8.70e− 04
0.53 1.01e− 03
0.54 1.03e− 03
0.55 1.02e− 03
0.56 9.15e− 04
0.57 7.63e− 04
0.58 6.36e− 04
0.59 5.43e− 04
0.60 4.64e− 04

processes. The size of the largest component should converge to cbond with n. However this is true for uni-
formly random generated graphs. Recall that Algorithm 1 generates graphs that are asymptotically drawn
from a uniform distribution. As Theorem 4.1 concerns uniformly random graphs, this also may enlarge the
error for small n.

6.4 Simulating site percolation

In this section, we present the outcomes of the simulations performed regarding site percolation. For site
percolation we have performed the same simulations as for bond percolation, but only for graphs obeying a
uniform degree distribution. The modified degree distribution is omitted here, as we saw in the case of bond
percolation that both distribution show fairly similar results.

First we consider the value of π̃site for the graphs on n = 10000 vertices. The average sizes of the
second largest strongly connected component are shown in Table 5. Again we selected a subinterval of
[πbond
c − 0.15, πbond

c + 0.15] for each distribution that captures the important behaviour of this value. Sim-
ilarly to bond percolation, the value first monotonically increases. Then it reaches its maximum and after
that it monotonically decreases. As numerical percolation threshold we find π̃site = 0.72 for ∆ = 3 and
π̃site = 0.54 for ∆ = 4. As πsite

c = 2
∆ , we find that the numerical percolation threshold is approximately

πsite
c + 0.4. Recalling that πbond

c = πsite
c and comparing with Table 1, we observe an increase of 0.1 in the

difference with respect to bond percolation. Comparing with this table we also see that the general behaviour

of
∣∣∣CS2 (Gπ~dn)∣∣∣ is the same for both types of percolation. However the value of

∣∣∣CS2 (Gπ~dn)∣∣∣ is lower for site

percolation. Equation (4.48) explains this. After site percolation there are more isolated vertices, while for
other degrees the probability is the same up to normalization factor π.

Next we compare the value of csite and the fraction of vertices in the largest connected component of the
simulated graphs. These results are shown in Table 6. Like for bond percolation, csite = 0 implies that no
giant strongly connected component is present. For those values we see that the components in the simulated
graph are very small, i.e. the contain approximately 15 vertices or less. Like for bond percolation, the differ-
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6. NUMERICAL SIMULATIONS

Table 6: The average relative size of the largest strongly connected component after site percolation is
compared with csite for different values of π. The results are obtained by simulating graphs on 10000 vertices
with a degree sequence drawn from the uniform distribution for ∆ = 3 and ∆ = 4. The agreement between
theory and simulation improves when π increases.

π
∆ = 3 ∆ = 4∣∣∣CS1 (Gπ~dn)∣∣∣ /n csite

∣∣∣CS1 (Gπ~dn)∣∣∣ /n csite

0.45 1.80e− 04 0.00e+ 00 5.18e− 04 0.00e+ 00
0.50 2.26e− 04 0.00e+ 00 1.73e− 03 0.00e+ 00
0.55 3.27e− 04 0.00e+ 00 1.22e− 02 1.72e− 02
0.60 5.46e− 04 0.00e+ 00 5.10e− 02 5.80e− 02
0.65 1.33e− 03 0.00e+ 00 1.03e− 01 1.11e− 01
0.70 6.75e− 03 8.07e− 03 1.63e− 01 1.71e− 01
0.75 3.60e− 02 4.32e− 02 2.25e− 01 2.34e− 01
0.80 8.81e− 02 9.57e− 02 2.89e− 01 2.98e− 01
0.85 1.50e− 01 1.58e− 01 3.53e− 01 3.62e− 01
0.90 2.17e− 01 2.26e− 01 4.15e− 01 4.25e− 01
0.95 2.86e− 01 2.96e− 01 4.77e− 01 4.86e− 01

ence between the simulation and the theory decreases, if π increases. Again we observe that the theoretical
value upper bounds the numerical one for bond percolation. However the difference between the theoretical
and numerical value is larger than for bond percolation, see Table 3. We expect that the difference between
both types of percolation can explain this. When applying bond percolation a vertex only looses degree if an
adjacent edge is removed, which happens with probability 1− π. Site percolation can change the degree of a
vertex in two ways: the vertex may be isolated, which happens with probability 1−π or the vertex looses an
adjacent edge because the other vertex of this edge is deleted. We expect that the probability that a vertex
has degree (j, k) after bond percolation converges faster to the asymptotic probability than the probability
that a not deleted vertex has degree (j, k) after site percolation.

Next we look at the convergence diagrams for site percolation. These are constructed using graphs on
n = 2, 4, 8, . . . , 2048 vertices, like in Section 6.3. First consider the percolation threshold. Again for ∆ = 3
we consider π ∈ [0.51, 0.81] and ∆ = 4 π ∈ [0.35, 0.65] in steps of 0.01. The results are shown in Figure
7. For ∆ = 4 we see a very big jump for n = 4 in the graph. We suspect that the degree sequence here is
close to regular, with each vertex having in- and out-degree 3. Remark that as we consider simple graphs
only, n = 4 implies that the in- and out-degree of each vertex is upper bounded by 3. If the degree sequence
is regular with degree 3, between any pair of vertices there is a direct edge in both directions. This means
that a lot of edges need to be removed to get to strongly connected components. Furthermore for ∆ = 4 we
often seem to reach the maximum error that can appear in the simulation. This figure suggest that the error
starts to decrease at n = 256. To be able to conclude this, a simulation over a broader range of π needs to
be performed so that the simulation no longer upper bounds the error. The final error , i.e. for n = 2048 is
larger than in Figure 5. This could be expected from the fact that this is also the case for n = 10000.

Our final simulation regards the relative error between csite and the largest strongly connected component in
the graph as a function of n for multiple values of π. The results are shown in Figure 8. For all combinations
of ∆ and π a rapid decrease is observed for small values of n. Like in Section 6.3, we expect that this is due

to the increase in possible outcomes of the simulation, i.e. the value of
∣∣∣CS2 (Gπ~dn)∣∣∣ can take only n different

values. The further π is from the percolation threshold, the better estimate does csite provide for the largest
component of a simulated finite graph.
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Figure 7: The value
∣∣πsite
c − π̃site

∣∣ as a function of n for graphs with a uniform degree distribution for ∆ = 3, 4.
After fluctuation, a decrease seems to set in at n = 256.
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(a) The relative difference between csite and
∣∣∣CS1 (Gπ~dn)∣∣∣

is shown as a function of n. The degree distribution is a
uniform one with ∆ = 3.
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(b) The relative difference between
∣∣∣|CS1 (Gπ~dn)∣∣∣ and cbond

is shown as a function of n. The degree distribution is a
uniform one with ∆ = 4.

Figure 8: The difference between cbond and
∣∣∣CS1 (Gπ~dn)∣∣∣ is shown as a function of n for multiple values of π.

The solid lines connecting the markers provide a visual aid to highlight the trend. The difference between
the theory and simulation on average decreases with n.
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7. CONCLUSION

7 Conclusion

In this work we investigated bond and site percolation in random directed graphs (digraphs) with a given
degree distribution. The first main result is that, we determined the percolation thresholds for the existence
of a giant strongly connected component in random simple digraphs obeying a proper degree array, as well
as the expression for the size of the giant component. These properties turned out to be the identical for
all proper degree arrays with the same underlying degree distribution. The second main result concerns the
algorithmic construction of random simple digraphs obeying a given degree sequence. We propose a new
algorithm to generate such random digraphs. We show that the algorithm generates all digraphs obeying the
degree sequence with a probability that is asymptotically uniform, namely it is within 1±o(1) of the uniform
distribution. Furthermore we show that the algorithm has an expected runtime near linear in the number of
edges, and fails to construct the graph with probability o(1).

Using our algorithm we numerically simulated bond and site percolation. From these simulations, the numer-
ical percolation threshold and the numerical size of the giant strongly connected component are determined.
Comparing these values with the theoretical results in the asymptotic limit, we find that the size of the giant
component converges faster than the percolation threshold. Also the values for bond percolation seem to
converge faster than for site percolation.

As further work, more thorough numerical simulations regarding percolation can be performed to determine
the convergence speed of the percolation threshold and the size of the giant strongly connected component.
This requires to determine, besides the average values, also the standard deviation of the numerical values of
interest. These simulations can also be performed using different degree distributions, to see if the conver-
gence speed changes if the degree array has an increasing maximum degree dmax.

Our algorithm itself can be used for many different studies. For example, it approximates the number of
simple digraphs obeying a given degree sequence. As determining the number of such digraphs is difficult, it
could be of interest to study whether the approximation of the algorithm can be improved or if an estimation
of the error in this approximation can be determined. Furthermore the algorithm allows to generate random
bipartite or hypergraphs obeying a given degree sequence, as these types of graphs can be modelled by a
digraph. A bipartite graph can be obtained from a directed one by assigning each vertex only a non-zero in-
or out-degree. A hypergraph can be modelled by replacing hyper-edges with labelled vertices, and declaring
the edge direction to point from unlabelled vertices to labelled vertices. In these random graphs it is not
interesting to look at strongly connected components as they will consist of just one vertex.
In this case the existence of a giant weakly connected component is more important, which also is of interest
in a random digraph. Numerically this can be easily studied using our algorithm. On the theoretical side,
the same method we use to determine the percolation for the giant strongly connected component could be
used for the giant weakly connected component. However this requires a result about the existence of a
giant weakly connected component in these random graphs. We expect that such a result can be obtained
by comparing the creation of a weakly connected component with a multi-type Galton-Watson branching
process.
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