
Exact Exponential-Time and Treewidth-Based Algorithms for

Defence-like Domination Problems

Mats Veldhuizen
Utrecht University

ICA-3971740

July 7, 2020

Abstract

Defence-like domination problems are variants to Dominating Set, where the goal is to defend a
graph against attacks using guards. This is done by moving guards along edges in our graph in a response
to these attacks. In this thesis we will define our own general definition of defence-like domination
problems and present exact exponential-time and treewidth-based algorithms for a selection of these
problems. Specifically we present an O∗(4n) time algorithm for k-Turn Defensive Domination, which
is a problem newly introduced in this thesis. Next we present treewidth-based algorithms for Roman
Domination, Weak Roman Domination and Secure Domination. These are all problems that have
been studied extensively. For Roman Domination we present an O∗(3t) time algorithm for graphs of
treewidth t. This is an improvement on the current literature. For Weak Roman Domination and
Secure Domination we present an O∗(9t) time and O∗(8t) time algorithm respectively for graphs of
treewidth t. To our knowledge these results are the first treewidth-based algorithms for these problems.

1 Introduction

We will construct exact exponential-time and treewidth-based algorithms for a series of defence-like dom-
ination problems. Defence-like domination problems are variants of Dominating Set in which we try to
defend a graph from a sequence of attacks. These problems originate from Roman Domination, where
the goal is to defend the roman empire using as few legions as possible. In this thesis we will introduce
the notion of defence-like domination problems and extensively study some of them, looking into exact
exponential-time and treewidth-based algorithms. The definitions of defence-like domination problems are
generalisations of Weak Roman Domination, introduced by Henning et al. [10]. This problem in turn
originates from Roman Domination, introduced by Cockayne et al. [6], where Roman Domination is a
variant of Dominating Set.

For Dominating Set the currently best known exact exponential-time algorithms are the results from
Iwata [11]. These results are an O∗(1.4864n) time algorithm using polynomial space and an O∗(1.4689n) time
algorithm using exponential space. There also exists a treewidth algorithm for Dominating Set running
in O∗(3t) time (for graphs of treewidth t), by van Rooij et al. [21].

Roman Domination is a variant of Dominating Set, where the rules are inspired by a decree from
emperor Constantine of the roman empire. These rules state that a vertex can protect itself when it has
1 legion present and it can protect itself and all its neighbours when it has 2 legions present. This is
because Constantine required any city to have 2 legions present in order to allow one of these legions to
move to a nearby city. For Roman Domination there also exist exact exponential-time algorithms. The
best known exact exponential-time algorithms are an O∗(1.5673n) time algorithm using polynomial space
and an O∗(1.5014n) time algorithm using exponential space, by Shi et al. [17]. These results are actually
just applying the results from Nederlof et al. [14] to this problem. An algorithm similar to the treewidth
algorithm for Dominating Set can also be applied to Roman Domination with some adjustments, yielding
an O∗(3t) time algorithm. This algorithm is presented in this thesis. This is an improvement on the results

1

from Fernau [8] and Peng et al. [15]. These are 2 independent results that both yielded an O∗(5t) time
treewidth algorithm for Roman Domination.

Weak Roman Domination is inspired by Roman Domination, but it relaxes the strict rules of the
decree from Constantine. This is done in the following way. In Weak Roman Domination we allow legions
to move to neighbouring vertices when this does not result in an undefended vertex, where an undefended
vertex is defined as a vertex for which the closed neighbourhood does not contain any vertex with 1 or more
legions. This means that a vertex that only has a single legion on it can protect neighbouring vertices, but
only if it can safely move to these neighbours. For Weak Roman Domination there exists an O∗(2n) time
algorithm using exponential space and an O∗(2.2279n) time algorithm using polynomial space by Chapelle
et al. [5], however to our knowledge no treewidth algorithm exists yet. We note that even though Roman
Domination and Weak Roman Domination use legions, we will be using guards. This is because the term
legion comes from the roman background of this problem and we will be generalising this. This means that
for readability we will always refer to these legions as guards even in the context of Roman Domination
and Weak Roman Domination.

Another problem that relates closely to Weak Roman Domination is Secure Domination, introduced
by Cockayne et al. [7]. Secure Domination is essentially Weak Roman Domination, with the exception
that we cannot place 2 guards on one vertex, but at most 1. For this problem there exists a branching
algorithm by Burger et al. [4] for which the run time is O∗(2n−s−r), where s and r are the number of
support vertices and redundant vertices of the graph respectively, as well as a binary programming algorithm
by Burger [3]. This last result has recently been improved by Burdett et al. [1].

2 Preliminary Definitions

In this thesis we use a number of definitions from [5]. These definitions greatly improve readability and
therefore we introduce them here. Let G = (V,E) a graph and f : V → N a function. We will call such a
function a guard assignment. We say that a vertex v ∈ V is secured if f(v) ≥ 1, and unsecured otherwise.
Similarly, a vertex v ∈ V is said to be defended if there exists a u ∈ N [v] such that f(u) ≥ 1. Otherwise,
v is said to be undefended. We note that we use N [v] to refer to the closed neighbourhood of v and N(v)
to refer to the open neighbourhood of v (i.e. N [v] = N(v) ∪ {v}). We use the function fu→v to refer to the
function that is created by moving a guard from u to v and this function is defined as follows.

fu→v(w) =


f(w) + 1 if w = v

f(w)− 1 if w = u

f(w) otherwise

Definition 2.1. (Safely-Defended Vertex). Let v ∈ V be any vertex and f be a guard assignment. We
say that v is safely defended under f if one of the following holds:

• v is secured, i.e. f(v) ≥ 1;

• or, ∃u ∈ N(v) : f(u) ≥ 2;

• or, ∃u ∈ N(v) : f(u) = 1 and the vertices undefended under fu→v are the same as the ones undefended
under f , i.e., fu→v creates no new undefended vertex.

If v is unsecured, but safely defended (i.e. one of the last 2 conditions hold), then we say that the vertex u
safely defends v, or v is safely defended by u, or u is the safe defender of v.

If v is defended but not safely defended, we say that v is non-safely defended. We will refer to these
definitions often in the rest of this thesis.

For completeness sake we will also include the notion of weakly defended vertices. This definition is less
important than the other definitions, but it is used in the literature. When a vertex v is non-safely defended,
we know that v is unsecured and for every secured neighbour u of v, f(u) = 1 and fu→v contains at least
one undefended vertex w ∈ N(u). We will refer to such a vertex w as being weakly defended by u or simply
weakly defended. Note that a vertex that is weakly defended has exactly one secured neighbour.

2

2.1 Problem Definitions

We will now give the complete problem definitions for the graph problems discussed in Section 1. These are
all known problems that are discussed in this thesis. We start with the definition of Dominating Set.

Dominating Set:
Input: An undirected graph G = (V,E).

Output: The minimum size of a dominating set, denoted by γ(G).

A dominating set is a set D ⊆ V such that for every vertex v ∈ V there exists a vertex u ∈ D, such that
v ∈ N [u].

Next we give the definition of Roman Domination. In the following we define the cost κ of any function
f : V → N by κ =

∑
v∈V f(v).

Roman Domination:
Input: An undirected graph G = (V,E).

Output: The minimum cost of a roman domination function f , denoted by γr(G).

A roman domination function (rd-function for short) is a function f : V → {0, 1, 2} for which every
vertex v ∈ V is either secured (i.e. f(v) ≥ 1) or there exists a u ∈ N(v), such that f(u) = 2.

Next we can define Weak Roman Domination and Secure Domination. We follow the definition of
Weak Roman Domination from Chapelle et al. [5].

Weak Roman Domination:
Input: An undirected graph G = (V,E).

Output: The minimum cost of a weak roman domination function f , denoted by γw(G).

A weak roman domination function (wrd-function for short) is a function f : V → {0, 1, 2} for which
every vertex v ∈ V is either secured or there exists a u ∈ N(v), such that f(u) ≥ 1 and in fu→v every vertex
is defended. Notice that a guard assignment f is a wrd-function if and only if every vertex v ∈ V is safely
defended under f and thus there are no weakly defended vertices.

Secure Domination:
Input: An undirected graph G = (V,E).

Output: The minimum cost of a secure domination function f , denoted by γs(G).

A secure domination function (sd-function for short) is a function f : V → {0, 1} for which the same
conditions must hold as for a wrd-function. The only difference between an sd-function and a wrd-function
is that in an sd-function a vertex can have at most one guard. This means that again every vertex v ∈ V is
either secured or there exists a u ∈ N(v), such that f(u) ≥ 1 and in fu→v every vertex is defended.

3 Defence-Like Domination Problems

We will now give our definition of defence-like domination problems. To achieve this definition we will gen-
eralise the definition of Weak Roman Domination in every reasonable way (e.g. the number of guards
allowed on a vertex, or the number of guards that are allowed to move during an attack). The resulting
definition will be our definition of defence-like domination problems. This general definition will encapsulate
several known variants. In the rest of this section we will first give our general definition defence-like dom-
ination problems (Section 3.1). We will follow this by more concrete definitions of the possible variants in
Section 3.2. First we will look at variants with different defence strategies in Section 3.2.1. All of these strate-
gies have been defined in earlier works, but to our knowledge no attempts at either exact exponential-time

3

or treewidth algorithms have been made for these variants. Next we will introduce a number of parameters,
which will lead us to our parameterized problem variants (Section 3.2.2). To our knowledge the only in-
stances of our parameterized problem variants that have been studied are Weak Roman Domination and
Secure Domination, as well as a-Attack Defensive Domination (under the name k-Weak Roman
Domination) by Burger et al. [2]. Furthermore a variant in which the number of turns is infinite has been
studied more widely as Eternal Domination [9]. However to our knowledge this problem is not in NP,
since checking a solution means checking an infinite number of possible moves. Therefore we have chosen to
not include this problem into our parameterized variants.

3.1 Definition of Defence-Like Domination

In this section we will give our general definition of defence-like domination problems. In Section 3.2.2 we
will use this definition to define a number of more concrete parameterized variants, which will be the variants
we will study in this thesis. In order to give this general definition consider the following general setting.

For a graph G = (V,E), a guard assignment or guard function is a function f : V → {0, 1, ..., c} where,
for every v ∈ V , the value of f(v) is defined as the number of guards on vertex v. As stated before the guards
serve the same purpose as the legions in Weak Roman Domination, but with a much less Roman name.
The capacity c is the maximum number of guards that can be assigned to a single vertex. An attack sequence
is defined as A = {A0, A1, ..., Ak}, where Ai ⊆ V for all 0 ≤ i ≤ k. Here Ai represents the set of vertices that
are under attack at turn i. We will define the maximum attack size of sequence A by a = max0≤i≤k{|Ai|}.

A step is defined by an edge e = {u, v} ∈ E and represents a single guard g moving from u to v. We
say that guard g has moved one step along edge e. This results in a new guard assignment fu→v as defined
before. During an attack we can move, for a given size h and number of steps s, a subset of our guards of
size at most h, at most s steps each in order to defend our graph G. A collection of moves that satisfies
these two restrictions is called a valid collection of moves.

We say that f can defend A0, if there exists a valid collection of moves that generates a new assignment
f0, from f , such that ∀u ∈ A0 : f0(u) ≥ 1. Inductively we say that f can defend Ai+1 if f can defend Ai and
there exists a valid collection of moves generating fi+1, from fi, such that ∀u ∈ Ai+1 : fi+1(u) ≥ 1. We call
f a defence-like domination function (dld-function for short), if f can defend every attack in the sequence
A, for every possible sequence A.

The cost of a dld-function is defined as κ =
∑
v∈V f(v). The cost represents the number of guards needed

for the assignment. Defence-like domination problems are then defined as follows. We have as input a graph
G = (V,E) and as output we require a dld-function f of minimum cost.

3.2 Variants

In this thesis we will present a number of variants of defence-like domination problems. In particular we
will present some variants with different defence strategies (Section 3.2.1) as well as introduce a couple of
parameterized variants (Section 3.2.2).

3.2.1 Strategies

In our general definition of defence-like domination problems (Section 3.1), we talk about moving guards to
defend vertices from attack sequences. However, which guards to move and which vertices will be attacked,
after we have chosen our guard assignment, is not yet discussed. In this section we will present 3 different
problem variants, that handle this. We say that we have an attacking strategist. He or she constructs the
attack sequence. We also have a defending strategist. He or she decides at every attack which guards to
move in order to defend this attack. We will always assume the defending strategists to be perfect, i.e. he
or she will always make the best choice based on the information available. According to [13] there are
two problem variants regarding the way the attacking strategist chooses and reveals the attack sequence for
defence-like domination problems.

1. Offline: In the offline version the entire attack sequence is chosen and revealed beforehand. The
defending strategist can use its knowledge of the entire sequence to find a sequence of moves to defend
against this.

4

2. Online: In the online version the attack sequence is chosen but not revealed beforehand and the
defending strategist has to move the guards based only on its knowledge of the current attack.

There is also a third option in which the attacking strategist does not choose the attack sequence beforehand
but chooses its next attack based on the result of the previous attacks. In our case this is exactly the same
as the online variant, since our assignment of guards has to be able to defend every possible attack sequence
as also stated in [13]. This gives us two different strategic variants for defence-like domination problems.

So far we have been assuming that we have a perfect defending strategist that can make the best decisions
in the defence against attacks. If we drop this requirement we get the third and last strategic variant,
described in [2].

3. Foolproof: In the foolproof variant we require the assignment of guards to be such that at every
attack any successful defensive move will result in a successful defence of the entire sequence. In other
words it doesn’t matter which defensive choices we make at every attack, because each defensive choice
is just as effective.

Unless explicitly stated the reader may always assume we are referring to the online variant of a problem.

3.2.2 Parameters

In Section 3.1 we gave a general definition for defence-like domination problems. In doing so we defined a
number of parameters. These are the following.

• The number of turns, k.

• The maximum attack size, a.

• The number of guards that are allowed to move each turn, h.

• The maximum number of guards per vertex, c.

• The maximum number of steps per guard, s.

Using these parameters we can define the variants we will study. We will always assume the capacity c
to be infinite and the rest of these parameters to be 1 unless stated otherwise. e.g. k-Turn Defensive
Domination would be a variant in which c is infinite, so f : V → N, k is the parameter that can vary and
a, t and s are all equal to 1. This results in the following list of parameterized problem variants.

• k-Turn Defensive Domination

• a-Attack Defensive Domination

• t-Move Defensive Domination

• c-Capacitated Defensive Domination

• s-Step Defensive Domination

Using these definitions we see that we can refer to Weak Roman Domination as simply Defensive
Domination. This is because even though Defensive Domination would allow any number of guards on a
vertex, having more than 2 guards would not improve the assignment. Following the same logic Dominating
Set will be 0-Turn Defensive Domination and Secure Domination is 1-Capacitated Defensive
Domination. Roman Domination is not part of this definition, because with Roman Domination a
vertex that has only one guard is not allowed to defend a neighbouring vertex. Furthermore Eternal
Domination could be referred to as ∞-Turn Defensive Domination. We note that we can also use
this definition to create a problem variant with more than one parameter, e.g. 2-Turn 1-Capacitated
Defensive Domination.

5

4 k-Turn Defensive Domination

In the rest of this thesis we will focus on the k-Turn Defensive Domination problem. We will give
an exact exponential-time algorithm for k-Turn Defensive Domination, that runs in O∗(4n) time, in
Section 4.3. After this we give an O∗(3t) time treewidth algorithm for Roman Domination, for graphs
of treewidth t, in Section 6. This is followed by an O∗(9t) time treewidth algorithm for Weak Roman
Domination (or Defensive Domination), for graphs of treewidth t, in Section 7. This algorithm can
easily be transformed into an O∗(8t) time treewidth algorithm for Secure Domination (or 1-Capacitated
Defensive Domination).

4.1 Problem Definitions

Since we will focus on k-Turn Defensive Domination and k-Turn 1-Capacitated Defensive Dom-
ination in the rest of this thesis, we will first give a complete problem definition for both these problems.
These definitions are the same as the definition in 3.1, but stripped down to only include the parameter k.

k-Turn Defensive Domination:
Input: An undirected graph G = (V,E).

Output: The minimum cost of a k-turn defensive domination function f , denoted by γk(G).

A k-turn defensive domination function (k-tdd-function) can again be defined inductively in the following
way. A 1-tdd-function is the same as a wrd-function. A k-tdd-function is then a function f : V → N for which
every vertex v ∈ V is defended and for every vertex v ∈ V for which f(v) = 0 there exists a u ∈ N(v), such
that f(u) ≥ 1 and fu→v is a (k−1)-turn defensive domination function. This inductive definition guarantees
that f is a k-tdd-function if and only if f can defend against any attack sequence A = {a0, a1, ..., ak}, where
ai ∈ V is a single vertex.

k-Turn 1-Capacitated Defensive Domination:
Input: An undirected graph G = (V,E).

Output: The minimum cost of a k-turn 1-capacitated defensive domination function f , denoted by
γkc(G).

A k-turn 1-capacitated defensive domination function (k-tcdd-function) can again be defined inductively
in the following way. A 1-tcdd-function is the same as a sd-function. A k-tcdd-function is then a function
f : V → {0, 1} for which every vertex v ∈ V is defended and for every vertex v ∈ V for which f(v) = 0
there exists a u ∈ N(v), such that f(u) ≥ 1 and fu→v is a (k − 1)-turn 1-capacitated defensive domination
function. This inductive definition guarantees that f is a k-tcdd-function if and only if f can defend against
any attack sequence A = {a0, a1, ..., ak}, where ai ∈ V is a single vertex.

4.2 NP-Completeness

Roman Domination is known to be NP-complete. This is stated in [6], with a reference to private commu-
nication from McRae. Weak Roman Domination is also known to be NP-complete, as proven by Henning
et al. [10]. The same proof also holds for Secure Domination. For our k-turn variants we will give a
modified version of this proof to show that these are also NP-complete for fixed k. Before we give this proof
we first need the following lemma.

Lemma 4.1. Let P = {v1, v2, ..., v2k+2} be a path on 2k+ 2 vertices. Let us use this path as an input graph
to either k-Turn Defensive Domination or k-Turn 1-Capacitated Defensive Domination. Let
Q = {{v1, v2}, {v3, v4}, ...{v2k+1, v2k+2}}, be a partitioning of P in pairs. For any optimal k-tdd-function or
k-tcdd-function f , the following holds: ∀q ∈ Q :

∑
v∈q f(v) = 1. In other words, any optimal solution will

always have exactly one guard on one of the 2 vertices of each element from Q. We will call such a function
f a pairwise guard assignment.

6

Proof. We first note that any pairwise guard assignment f is always both a k-tdd-function and a k-tcdd-
function. This is because for every such f every vertex is defended. Either it is secured or it has a secured
neighbour, namely the other half of the corresponding pair in Q. We can use this assignment to defend
against any number of attacks since moving a guard from one vertex in an element of Q to the other vertex
in this element, will again result in a pairwise guard assignment, which means that every vertex is still
defended. Any such assignment is also optimal, because of the following reasons. Firstly placing more than
one guard on a single vertex could only make its neighbouring vertices more safely defended. Since there are
2 such neighbours, we would use at least 2 guards to defend 3 vertices, while now we only use 1 guard per 2
vertices (note that our path has an even amount of vertices). This means that we can only get an optimal
solution by placing at most one guard on each vertex. Secondly placing guards on fewer vertices would
always result in at least two guards g and g′ having to guard 3 vertices, in stead of 2 vertices per guard. This
means that using k− 1 attacks we could force every other guard to move to exactly the position we want it,
leaving the last move to force g or g′ to move to one of its neighbours leaving the other undefended.

Theorem 4.2. k-Turn Defensive Domination and k-Turn 1-Capacitated Defensive Domination
are NP-complete for every fixed k.

Proof. Let H = (VH , EH) be a graph. For every fixed k it is easy to see that both k-Turn Defensive
Domination and k-Turn 1-Capacitated Defensive Domination are in NP. This is because for k-
Turn Defensive Domination any optimal solution would never have more than k guards on a single
vertex. Furthermore we can guess in polynomial time at either a function f : VH → {0, 1, ..., k} or a function
f : VH → {0, 1} and verify whether this is a solution. This can be done by simply checking all possible attack
sequences and all possible defensive moves against these. This approach would take O(nk) time. Next we
give a polynomial time reduction from Dominating Set to both k-Turn Defensive Domination and
k-Turn 1-Capacitated Defensive Domination.

Let G = (VG, EG) be the input graph for Dominating Set. We construct a graph H by adding a path
of length 2k + 2 to every vertex of G. This can again be done in polynomial time. We will now show that
γk(H) = γkc(H) = γ(G) + (k + 1)|VG|, which concludes our proof.

Let f : VH → {0, 1, ..., k} be a k-tdd-function (or a k-tcdd-function) of minimum cost, v ∈ VG ⊂ VH a
vertex and Pv = {v, v1, v2, ..., v2k+2} the path of length 2k + 2 added to v. We know from Lemma 4.1 that
any optimal solution on a path of length 2k + 2 is always a pairwise guard assignment. The path Pv \ {v}
is only connected to the rest of the graph through vertex v. This means that the vertices in Pv \ {v} need
at least k + 1 vertices in any k-tdd-function or k-tcdd-function.

Now suppose that
∑
u∈Pv

f(u) = k+ 1. This means that we know that the guard assignment in Pv \ {v}
is a pairwise guard assignment and f(v) = 0. This also means that if the first attack in the sequence is at
vertex v2, the guard that is at either v1 or v2 will have to be at v2 after this attack. This would mean that
v would be undefended after this attack unless there is a secured vertex w in the neighbourhood of v.

On the other hand suppose that
∑
u∈Pv

f(u) ≥ k + 2, then we may assume that f(v) ≥ 1 and we still
have a pairwise guard assignment for the vertices in Pv \ {v}. This is because any extra guard placed on
the vertices in Pv \ {v}, would be more effective on vertex v. This means that the set of vertices defined
by S = {u ∈ VG | f(u) ≥ 1} (the set of secured vertices) is a dominating set of G. Therefore γ(G) ≤ |S|.
Furthermore if v ∈ S then

∑
u∈Pv

f(u) ≥ k + 2, while if v 6∈ S then
∑
u∈Pv

f(u) = k + 1. This means that
γk(H) ≥ (k+ 2)|S|+ (k+ 1)(|VG| − |S|) = |S|+ (k+ 1)|VG| ≥ γ(G) + (k+ 1)|VG|. The exact same equation
holds for γkc(H).

On the other hand, let D be a minimum dominating set. Let f ′ : VH → {0, 1} be the function defined
as follows. For every vertex v ∈ VG we place one guard on every odd vertex (v1, v3, ..., v2k+1) for every path
Pv. Also if v ∈ D we also place one guard on v and otherwise we place no guard on v. This function f ′ is
both a k-tdd-function and a k-tcdd-function, since any unsecured vertex in VG is defended by a neighbour
in VG and after the first attack every vertex v ∈ VG is defended by its path Pv for the rest of the attacks.
Also any vertex not in VG is defended for any number of attacks as shown in Lemma 4.1. This means
that γk(H) ≤ |D| + (k + 1)VG = γ(G) + (k + 1)VG. The same again holds for γkc(H). This means that
γk(H) = γkc(H) = γ(G) + (k + 1)|VG|, which is what we wanted to prove and thus this completes our
proof.

7

4.3 Exact Exponential-Time Algorithm

In this section we will present an O∗(4n) time algorithm for k-turn defensive domination. This result
is based on the following observation.

Lemma 4.3. Any instance of any defence-like domination problem as defined in this thesis has a solution
of cost at most n.

Proof. This can be done by simply placing a guard at every vertex in the graph G = (V,E). This gives
us the guard assignment f , defined by ∀v ∈ V : f(v) = 1. The cost of this guard assignment is n, since
κ =

∑
v∈V f(v) =

∑
v∈V 1 = |V | = n. At every possible attack we can always choose to not move any

guards. This will always result, at turn i, in an assignment fi where fi(v) = 1 for each v ∈ V , since this
is the assignment we started with. This also means that fi(u) ≥ 1 for all u ∈ Ai for all i ≤ k. Therefore,
according to our definition of defence-like domination problems, this is a solution to defence-like domination
problem.

This result tells us that we will never have to consider solutions that have a cost higher than n, since
in those cases we already have a better solution. For our algorithm we will be enumerating every possible
solution of cost at most n. We will do so using compositions.

Definition 4.4. (Composition). A composition of an integer n is an ordered sequence of strictly positive
integers that sum to n. An l-composition is a composition of length exactly l.

It is a standard result in combinatorics that for any pair of integers n and l there are
(
n−1
l−1
)

different
l-compositions of n [18]. This leads us to the following result.

Lemma 4.5. There are
(
2n
n

)
different possible guard assignments of cost at most n.

Proof. We will index the vertices of our graph as V = {v1, v2, ..., vn}. Next we will consider every possible
(n + 1)-composition of 2n + 1. For every possible composition C = {c0, c1, ..., cn} we can construct a
corresponding guard assignment. We say that f(vi) = ci − 1. We know that ci ≥ 1 for all 0 ≤ i ≤ n, since
they are strictly positive integers. Also, since we consider every possible way to sum n+ 1 such integers to
2n+ 1, we know that

∑n
i=0(ci − 1) = n. In other words every ci is at least 1 and we consider every possible

way to distribute the remaining n over these n + 1 integers. We use c0 to indicate that we don’t use these
guards, thus this technique results in every possible guard assignment using at most n guards. Since there
are

(
2n
n

)
different (n + 1)-composition of 2n + 1, there are also

(
2n
n

)
different possible guard assignments of

cost at most n.

Finally we can combine these 2 results into the following algorithm.

Theorem 4.6. There exists an O∗(4n) time algorithm, using polynomial space, for every variant of De-
fensive Domination, for which we can check a solution in polynomial time.

Proof. Because of Lemma 4.3, we know that we only need to consider assignments of cost at most n. Also,
because of Lemma 4.5 we know that there are only

(
2n
n

)
possible assignments of cost at most n. So we can

enumerate all these possible assignments in O∗(
(
2n
n

)
) time. We know that

(
x
x/2

)
≤ 2x, since

(
x
x/2

)
is equal

to the number of subsets of size x/2 of a collection of size x and the total number of subsets of a collection
of size m is equal to 2m. Therefore

(
2n
n

)
≤ 22n = 4n. This means that we can enumerate every possible

assignment in O∗(4n) time. Since we can check each assignment in polynomial time, we can find the optimal
solution in O∗(4n) time. This approach uses polynomial space, since we do not store anything other than
the current optimal solution.

For k-Turn Defensive Domination checking a solution will take O(nk) time. We can improve on this
in the following way.

Theorem 4.7. There exists an O(4nmk) time algorithm, using O(4n) space, for k-Turn Defensive
Domination.

8

Proof. For this algorithm we will create a table, A0, which we will index with every possible assignment of
cost at most n. Following the same logic as in Theorem 4.6 we know that we can achieve this in O(4n)
time and that this table will take up O(4n) space. For each of these assignments we store a Boolean value
indicating whether they are a 0-tdd-function or not (i.e. we set A0(f) = True if f is a 0-tdd-function and
A0(f) = False otherwise). Then we enumerate for i = 1 until k:

Create a new table Ai and drop table Ai−2 if it exists. Enumerate every possible assignment f of cost
at most n, check for every vertex v if it is secured or if we can move a guard from a neighbour, u, to this
vertex, such that Ai−1(fu→v) = True. If this is the case we set Ai(f) = True, else we set Ai(f) = False.

For any assignment f , Ak(f) will always indicate whether f is an k-tdd-function. We will prove this
with induction. First we know that we initialise A0 such that A0(f) will always indicate whether f is an
0-tdd-function. Next we assume that for every assignment f , Ai(f) will always indicate whether f is an
i-tdd-function. Following the algorithm we can see that we will set Ai+1(f) = True if and only if f is an
(i + 1)-tdd-function. This is because we only set this entry to True if and only if there exists, for every
possible attack, a move from an i-tdd-function that defends against this. This means that for any assignment
f , Ak(f) will always indicate whether f is an k-tdd-function. This means that after running this algorithm
we can simply enumerate Ak to find the optimal solution.

This algorithm runs in O(4nmk) time, because our tables have size O(4nmk) and we create k copies of
this table. When filling these copies we first check if each entry is a 0-tdd-function. We can check this in
O(m) time, because we have to check for each vertex all of its neighbours. This means that we look at each
edge at most twice. Then, for each step in the algorithm, we again have to check for each vertex all of its
neighbours. This again takes O(m) time. Since at step i we only need to store Ai and Ai−1 we know that
this algorithm uses O(4n) space.

Since k-Turn 1-Capacitated Defensive Domination has only O(2n) possible assignments we also
know the following.

Corollary 4.7.1. There exists an O(2nmk) time algorithm, using O(2n) space, for k-Turn 1-Capacitated
Defensive Domination.

5 Treewidth Algorithms

The rest of this thesis will be focused on treewidth algorithms for instances of k-Turn Defensive Domi-
nation. We will begin by defining treewidth and tree decompositions in Section 5.1 and follow this by an
explanation of how we can use this to construct a dynamic programming algorithm in Section 5.2.

5.1 Treewidth and Tree Decompositions

Treewidth and tree decompositions were introduced by Robertson and Seymour [16] and are defined as
follows.

Definition 5.1. (Tree Decomposition). Given a graph G = (V,E), a tree decomposition of G is a tree
T , in which each node x ∈ T has an associated set of vertices Xx ⊆ V (called a bag) such that

⋃
x∈T Xx = V

and the following properties hold.

1. For every edge (u, v) ∈ E, there exists a bag Xx, such that (u, v) ∈ Xx.

2. For every vertex v ∈ V , the bags containing v form a connected subtree, i.e., if v ∈ Xx and v ∈ Xy,
then v ∈ Xz for all nodes z on the path from node x to node y in T .

The width of a tree decomposition T is defined as maxx∈T {|Xx|} − 1. The treewidth of a graph G is the
minimum width over all possible tree decompositions of G.

In order to construct a dynamic programming algorithm over a tree decomposition it is usually the best
option to do this on nice tree decompositions, which were introduced by Kloks [12]. The definition presented
below is from van Rooij [21] and differs slightly from the definition by Kloks.

Definition 5.2. (Nice Tree Decomposition). A nice tree decomposition is a tree decomposition T that
has an assigned root node ρ ∈ T , with Xρ = ∅ and every node x ∈ T is of one of the following types.

9

Leaf node x is a leaf of T with Xx = ∅.

Introduce node x is an internal node of T with one child node y and Xx = Xy ∪ {v}, for some
v 6∈ Xy. The node is said to introduce the vertex v.

Forget node x is an internal node of T with one child node y and Xx = Xy \ {v}, for some
v ∈ Xy. The node is said to forget the vertex v.

Join node x is an internal node of T with two child nodes l and r and Xx = Xl = Xr.

The reason why nice tree decompositions are often used in algorithms is because they add a structure
to tree decompositions, which is very useful for constructing dynamic programming algorithm. Also given a
tree decomposition of O(n) nodes, we can find a nice tree decomposition of equal width and O(n) nodes in
O(n) time [12].

5.2 Dynamic Programming on Tree Decompositions

We will explain how we can use these definitions to construct a dynamic programming algorithm on tree
decompositions. For a more extensive and mathematical introduction see for example van Rooij [20]. In
this thesis we will focus on using this approach to solve the counting variant of computational problems.
In Section 2.1 and Section 4.1 we gave the minimisation variant of the relevant problems. In the counting
variant the goal is no longer to find the cost of the minimum solution. The goal is to find, for each value
0 ≤ κ ≤ N , the number of solutions of cost exactly κ, where N is the largest viable cost of any solution. It
is easy to see that by solving this problem we also solve the minimisation problem as we can simply loop
through each κ until we find the first non zero entry.

Given a nice tree decomposition T , we define for each node x ∈ T : Tx as the subtree of T rooted at x
and Gx = (Vx, Ex) as the subgraph of G, where Vx =

⋃
y∈Tx

Xy and Ex is the subset of edges from E that
have both endpoints in Vx, i.e. Ex = {(u, v) ∈ E | u ∈ Vx∧ v ∈ Vx}. We note that following these definitions
we can see that T = Tr and G = Gr. Using the definition of a tree decomposition we can also see that Xx

is a separator separating Vx \Xx from V \ Vx in G, i.e., there are no edges in E that have an endpoint in
Vx \Xx and an endpoint in V \ Vx. Any graph we can obtain by adding any number of vertices and edges
to Gx, with the restriction that any edges we add can only have at most one endpoint in the bag Xx and no
endpoints in Vx \Xx is called an extension of Gx. In particular G is an extension of Gx.

In our treewidth-based algorithms we will assume that we have a graph problem that we are trying to
solve P on a graph G and are given a nice tree decomposition T of G. We assume that a solution of P is
a function f that maps V to any specific domain. We will construct a dynamic programming algorithm on
T in a bottom up fashion. To do so, we will need to define a partial solution of P on Gx, where a partial
solution on Gx is any function f , defined on the domain Vx, for which there exists an extension of Gx that
turns f into a valid solution of P. If y is a child node of x in T , then Gx is an extension of Gy. This means
that if we apply a partial solution for Gx on Gy we still have a partial solution. This means that if we know
every partial solution for every child node of x, we can use this to compute every partial solution for node x.

We don’t need to store every partial solution for every node, since the only vertices in node x for which
the neighbourhood can increase in an extension, are the vertices in the bag Xx. We will therefore define a
colouring of a bag Xx as a function c : Xx → S, where S is a set of states that, for every vertex v ∈ Xx,
encodes information about v and its neighbourhood (and every possible neighbourhood under an extension).
S is also called a state set, and is specific to the problem P. If we can effectively encode the necessary
information in our state set, we do not need to store every possible partial solution for any node x. It will
then suffice to only store for every possible colouring c of Xx, the number of partial solutions of each cost
0 ≤ κ ≤ N , where N is the largest viable cost of a solution to P on G. We will call the table in which we
store this information for each node a memoisation table. Note that using this technique we can compute
this memoisation table for every node of T in a bottom up fashion. The size of the memoisation table will
be O∗(|S||Xx|), which means that we expect such an algorithm to run in O∗(|S|t) time, where t is the width
of T . Also note that, since the bag Xr is empty and G = Gr, every partial solution on Gr is a solution on
G. Therefore the memoisation table of r stores the number of solutions of P on G for each cost 0 ≤ κ ≤ N ,
so an algorithm applying this technique will solve the counting problem of P.

10

6 Treewidth Algorithm for Roman Domination

In order to best illustrate the concepts from Section 5.2, we will give an O∗(3t) time algorithm for Roman
Domination. To our knowledge this is a new result, but the algorithm is very similar to the algorithm for
Dominating Set, by van Rooij et al. [21]. This algorithm can almost directly be applied to this problem
yielding an O∗(4t) time algorithm, but with an additional observation we get an O∗(3t) time algorithm.
We note that Roman Domination is not included in our definition of defence-like domination problems.
However the algorithm is relatively easy to follow, so it is an ideal start to get familiarised with treewidth
algorithms for defence-like domination problems. In the rest of this section we present a treewidth algorithm
that solves the counting variant of Roman Domination, as explained in Section 5.2. This means that the
problem we are trying to solve is the following. Given a (nice) tree decomposition of graph G = (V,E) of
width t, find the number of rd-functions of each cost 0 ≤ κ ≤ n. Recall that an rd-function is a function
f : V → {0, 1, 2}, such that for every v ∈ V either f(v) ≥ 1 or ∃u ∈ N(v) : f(u) = 2. Also note that just as
with any instance of defence-like domination, simply putting a guard on every vertex is a solution, so we do
not need to consider solutions of size larger than n.

6.1 States

As discussed in Section 5.2 we will need to define a state set S for this problem. This state set will allow
us to index the memoisation tables Ax for every x ∈ T . These are tables that store, for every colouring
c : Xx → S and each cost κ, the number of partial solutions of cost exactly κ that satisfy the colouring c.
We will slightly abuse notation when referring to colourings. We will use a colouring c to refer to both the
function that maps Xx to S, as well as the set of states that Xx is mapped to. This allows us to use the
notation c× {s} to indicate that we extend the colouring with a vertex v, for which c(v) = s. Any entry in
Ax is denoted by Ax(c, κ), which represents the number of partial solutions of cost exactly κ that satisfy the
colouring c.

The state set that we will use for this algorithm is the following.

S = {2, 00, 0?}

In this state set we first have the state 2. This state is very straightforward. For a vertex v that has state 2,
we know f(v) = 2. If a vertex v has state 00 or 0?, this means that f(v) = 0 (or f(v) = 1 as we will explain
later). The subscript is used to store extra information about these vertices. A vertex of state 00 has no
neighbours for which f(v) = 2. A vertex of state 0? may have a neighbour for which f(v) = 2, but it is not
required. This means that, looking at the definition of a rd-function, a vertex of state 00 is not allowed in
a solution, but a vertex of state 0? might be. We note that the states 00 and 0?, might not be the most
straightforward choice. This choice is an optimisation and it suffices to count solutions. We also note that
we do not have a state to explicitly indicate that f(v) = 1. This is another optimisation. Because we know
that any vertex that does not have a neighbour with 2 guards must have 1 guard itself, we can simply count
a vertex of state 00 as a vertex with one guard when we forget this vertex.

6.2 Algorithm

We will show, for each type of node, that we can compute the table Ax.

LEAF NODE:

Let x be a leaf node in T . In the leaf nodes we only have empty bags and therefore the only possible colouring
is ∅ with cost 0.

Ax(∅, κ) =

{
1 if κ = 0

0 otherwise

11

INTRODUCE NODE:

Let x be an introduce node in T with child node y that introduces the vertex v, and c ∈ SXy . In an introduce
node we will construct the result table Ax. We can do this in the following way. We consider every possible
state our newly introduced vertex v could have. Then for each of these possibilities we will compute, for every
possible valid colouring of the rest of the vertices, the new entry in Ax. This results, for each possibility, in
a slice of the new table Ax. When we have computed every slice we can join these together to form table
Ax. Below we show how to compute each slice of Ax, for every possible state in S.

Ax(c× {2}, κ) =


0 if ∃u ∈ N(v) : c(u) = 00

0 if κ ≤ 1

Ay(c, κ− 2) otherwise

Ax(c× {00}, κ) =

{
0 if ∃u ∈ N(v) : c(u) = 2

Ay(c, κ) otherwise

Ax(c× {0?}, κ) = Ay(c, κ)

Since for state 0? we are indifferent to the types of neighbours it has, we can just directly copy Ay into this
slice. For states 00 and 2 we need to make sure that they are never neighbouring each other, since that is
not allowed in a solution. So in any configuration where they are neighbours we set the number of solutions,
Ax(c, κ), to 0. For the state 2 we also have to make sure that we increase the cost by 2.

FORGET NODE:

Let x be a forget node in T with child node y that forgets the vertex v, and c ∈ SXy . To compute the result
table for the forget node we essentially do the same as for the introduce node, but in reverse. We split our
table Ay up in slices for each of the possible states and then sum these slices together to form the new table
Ax. This can be done using the following equation, where we define Ay(c× {00},−1) to be 0.

Ax(c, κ) = Ay(c× {2}, κ) +Ay(c× {0?}, κ)−Ay(c× {00}, κ) +Ay(c× {00}, κ− 1)

We have to make sure that we only count assignments in which v is either secured or has a neighbour of
state 2. This is because in a solution every unsecured vertex has a neighbour of state 2. If we make sure
to only count these assignments, then in the root node (where we have forgotten every vertex) we will have
exactly counted the solutions. We note that by simply summing every slice where c(v) ∈ {2, 0?}, we get
every possible assignment for v. Removing the slice where c(v) = 00 from this leaves us with only those
assignments where f(v) = 2 or ∃u ∈ N(v) : f(v) = 2. Then we add the slice where c(v) = 00 with cost κ−1,
since we will count such a vertex v as a vertex for which f(v) = 1.

6.3 JOIN NODE:

× 2 0? 00

2 2
0? 0?
00 00

Table 1: The join table for Roman Domination.

Let x be a join node in T with child nodes l, r. Recall that the bags of each of these 3 nodes is the same,
Xr = Xl = Xx. In a join node, like in the other types of nodes, we are trying to compute a memoisation
table Ax. In order to do so we need to sum entries from Al and Ar together to form a new table. For each
entry in Ax we need to sum over those entries Al(c

l, κ) and Ar(c
r, κ) that could have created this entry

Ax(c, κ). We note that to compute one such entry we need to add the entries from the memoisation tables
from Al and Ar that have colourings that agree with the colouring of the entry we are trying to compute.

12

In this case this is fairly straightforward since a vertex of state 2 in the resulting colouring has to have
had state 2 in both the left and the right sub tree. The same is also true for all the other states. We can
encode this information in a join table. A join table is a table in which we show for every combination of
states from the left and right sub tree, what the resulting state in the resulting sub tree would be. Using
the states set S this turns in to a diagonal join table as shown in 1.

A diagonal join table means that we can simply multiply entries from Al and Ar together that have the
same colouring and have costs that agree. This gives us the following equation.

Ax(c, κ) =
∑

κl+κr=κ+2#2(c)

Al(c, κl) ·Ar(c, κr)

We use the notation #2 here to indicate the number of vertices in the colouring of state 2. The sum is like
this because in κl + κr we count the vertices in the bag twice.

If we follow this algorithm, then, for the root node ρ, Aρ will contain the number of solutions for every
cost κ. Finally we note that every computation listed here can be done in polynomial time and we do each
computation a polynomial amount of times for each entry in our memoisation table. Since our memoisation
table is size O(3t), the running time of this algorithm is O∗(3t).

7 Treewidth Algorithm for Weak Roman Domination

In this section we will give an O∗(9t) algorithm for Weak Roman Domination (Defensive Domina-
tion) for graphs of treewidth t. This algorithm can very easily be turned into an O∗(8t) algorithm for
Secure Domination (1-Capacitated Defensive Domination), by simply removing the value 2 from
this algorithm. Our approach and notation is based on Chapter 11 from van Rooij [21].

7.1 Unique Defenders

In order to work towards a treewidth algorithm that solves the counting variant of Weak Roman Domi-
nation we start by introducing the notion of a unique defender. Intuitively a unique defender is the unique
guard that defends a group of vertices.

Definition 7.1. (Unique Defender). Let f be a guard assignment, G = (V,E) a graph and v ∈ V an
unsecured vertex. If

∑
w∈N(v) f(w) = 1, then there exists only one secured vertex u ∈ N(v) and f(u) = 1. If

this is the case we say that u is the unique defender of v, denoted by UD(v) = u. Otherwise we say that the
unique defender of v does not exist, or UD(v) is undefined. We also say that if UD(v) = u, then v is uniquely
defended by u, u uniquely defends v, v is uniquely defended and u is a unique defender.

Definition 7.2. (Unique Defender Set). Let f be a guard assignment, G = (V,E) a graph and v ∈ V a
vertex, for which f(v) = 1. We denote the unique defender set of v by SUD(v), where SUD(v) is the set of all
vertices uniquely defended by v.

Note that if a vertex v has an empty unique defender set then v is also not a unique defender. Also note
that, since any uniquely defended vertex has exactly one secured neighbour, these unique defender sets are
disjoint.

Using these definitions we can characterise wrd-functions in some more local conditions. To do this we
need the following 2 lemmas.

Lemma 7.3. Let f be a guard assignment and G = (V,E) a graph. If f is a weak roman domination
function, then for every vertex v ∈ V , for which f(v) = 1, SUD(v) is a clique.

Proof. Assume that there exists a vertex v ∈ V , for which f(v) = 1 and SUD(v) is not a clique. From
Definitions 7.1 and 7.2 we know that every vertex in SUD(v) is in the neighbourhood of v. Also since SUD(v)
is not a clique, there have to be at least 2 distinct vertices u,w ∈ SUD(v), for which (u,w) /∈ E. Because u
and w are both uniquely defended by v, both of these vertices are not safely defended (Definition 2.1), since
fv→u leaves w undefended and vice versa. In other words u is weakly defended by v and vice versa. This
means that f is not a weak roman domination function.

13

Lemma 7.4. Let f be a guard assignment and G = (V,E) a graph. f is a wrd-function if and only if every
unique defender set is a clique and for every unsecured vertex v ∈ V one of the following conditions is met.

1. v is uniquely defended, i.e., v is part of a unique defender set.

2. v is not uniquely defended and v has a secured neighbour that is not a unique defender.

3. v is not uniquely defended, and all secured neighbours of v are unique defenders, and for at least one
secured neighbour u we have SUD(u) ⊂ N(v).

Proof. The if part:
For every vertex v ∈ V the following holds. v is either secured or unsecured. If v is secured it is also

safely defended (Definition 2.1).
If v is unsecured then one of the 3 conditions is met. For all 3 cases we will show that there exists a

secured neighbour u of v, such that fu→v does not create an undefended vertex. First we note that the only
vertices that can become undefended by fu→v are those vertices in N(u) \ v.

• If Condition 1 is met then v is part of a unique defender set and v has a unique defender u = UD(v),
so u is the only secured neighbour of v. For all w ∈ N(u) \ v the following holds. We know that
if w 6∈ SUD(u) there exists a secured vertex w′ ∈ N(w) \ u, since u is not the unique defender of w.
This means that w is still defended by fu→v. We also know that SUD(u) is a clique, since every unique
defender set is a clique. This means that if w ∈ SUD(u), then w is defended by fu→v, because w is a
neighbour of v. Therefore v is safely defended.

• If Condition 2 is met then v has a secured neighbour u that is not a unique defender. This means that
either f(u) = 2, which means that v is safely defended, or we know that for all w ∈ N(u) \ v there
exists a secured vertex w′ ∈ N(w) \u, since u is not a unique defender. Therefore all these vertices are
still defended by fu→v, so v is safely defended.

• If Condition 3 is met, then v has a secured neighbour u that is a unique defender and SUD(u) ⊂ N(v).
Following the same arguments as for Condition 1 we can see that all w ∈ N(u) \ v are still defended
by fu→v. We repeat these arguments here for completeness. We know that if w 6∈ SUD(u) there exists
a secured vertex w′ ∈ N(w) \ u, since u is not the unique defender of w. This means that w is still
defended by fu→v. We also know that SUD(u) is completely in the neighbourhood of v. This means
that if w ∈ SUD(u), then w is defended by fu→v, because w is a neighbour of v. This means that v is
safely defended.

The only if part:
According to Lemma 7.3 every unique defender set is a clique, if f is a wrd-function. This proves the

first part. For the second part we assume f is a wrd-function and there exists an unsecured vertex v ∈ V
for which none of the conditions hold. This means that v is not part of a unique defender set and one of the
following is true.

1. v has no secured neighbours.

2. v has a set of secured neighbours U and all u ∈ U are unique defenders, with SUD(u) 6⊂ N(v)

If the first case is true, v has no secured neighbours, so it is not defended, so f cannot be a wrd-function. If
the second case is true, then for all u ∈ U there exists a vertex w ∈ SUD(u) that is not in N(v). This means
that fu→v will not defend w, so v is weakly defended by u and v is not safely defended. Therefore f cannot
be a wrd-function.

For any guard assignment f : V → {2, 1, 0}, the vertices which are unique defenders (and uniquely
defended) are uniquely defined and can be easily identified. This means that for every such f , there exists
a unique g : V → {2, 1, 1UD, 0, 0UD} in which every vertex labelled 1UD is a unique defender and every vertex
labelled 1 is not (and every vertex labelled 0UD is uniquely defended and every vertex labelled 0 is not).
We will call such a function where the vertices are correctly labelled a valid guard assignment or if this
assignment happens to be a solution a valid wrd-function.

14

LetXx be a bag andGx = (Vx, Ex) its corresponding subgraph. Because a vertex can be a unique defender
in one extension and not a unique defender in another (and the same for uniquely defended vertices), we use
the function g : Vx → {2, 1, 1UD, 0, 0UD} for our partial guard assignments. We will call g a valid partial guard
assignment, if and only if there exists an extension in which every vertex labelled 1UD is a unique defender,
every vertex labelled 1 is not, every vertex labelled 0UD is uniquely defended and every vertex labelled 0 is
not.

Lemma 7.5. Let Let Xx be a bag, Gx = (Vx, Ex) its corresponding subgraph and g : Vx → {2, 1, 1UD, 0, 0UD}
a partial guard assignment. g is a valid partial guard assignment if and only if for every vertex v ∈ Vx the
following conditions are met.

• If g(v) = 1UD, then v ∈ Xx or v has a neighbour, u, for which g(u) = 0UD.

• If g(v) = 1, then for every unsecured neighbour u of v, g(u) = 0.

• If g(v) = 0UD, then v has no secured neighbours and v ∈ Xx, or v has exactly one secured neighbour u
and g(u) = 1UD.

• If g(v) = 0, then v ∈ Xx or v has a neighbour u for which g(u) = 2 or v has more than one secured
neighbour or v has no secured neighbours.

Proof. Recall that g is a valid partial guard assignment, if and only if there exists an extension in which
every vertex is correctly labelled. This means that we must prove the following. There exists an extension
in which every vertex is correctly labelled, if and only if the conditions of this lemma are met.

The if part:
Let g be a partial guard assignment for which all of the conditions are met. We now consider the following

extension H with guard assignment g′. For every vertex v ∈ Vx we set g′(v) = g(v). For every vertex v ∈ Xx

for which g(v) = 1UD, we add a new vertex u (and an edge {u, v}) to H and we set g′(u) = 0UD. For every
vertex v ∈ Xx that has no secured neighbours and for which g(v) = 0UD, we add a new vertex u (and an edge
{u, v}) to H and we set g′(u) = 1UD. For every vertex v ∈ Xx that has exactly one secured neighbour and
for which g(v) = 0, we add a new vertex u (and an edge {u, v}) to H and we set g′(u) = 2.

In this extension H every vertex is correctly labelled by g′, so there exists an extension on Gx in which
every vertex is correctly labelled by g, thus g is a valid partial guard assignment.

The only if part:
Let g be a valid partial guard assignment. We will now show for each condition that if it is not met, we

have a contradiction.

• If g(v) = 1UD, v 6∈ Xx and v has no neighbour u for which g(u) = 0UD, then there exists no extension in
which v has a neighbour u for which g′(u) = 0UD. This means that there exists no extension in which
v is correctly labelled.

• If g(v) = 1 and there exists a neighbour u of v for which g(u) = 0UD, then either v is the unique defender
of u and v is not correctly labelled or u is not uniquely defended and u is not correctly labelled. This
means that there exists no extension in which every vertex is correctly labelled.

• If g(v) = 0UD and v has more than one secured neighbour, then v is not correctly labelled. If v has
exactly one secured neighbour u and g(u) 6= 1UD, then either v or u is not correctly labelled again. if v
has no secured neighbours and v 6∈ Xx, then there exists no extension in which v has a neighbour w for
which g(w) = 1UD. This again means that there exists no extension in which every vertex is correctly
labelled.

• If g(v) = 0, v 6∈ Xx, v has no neighbours u for which g(u) = 2 and v has exactly one secured neighbour,
then by definition v is uniquely defended in every extension. This means that there exists no extension
in which v is correctly labelled.

15

Let Xx be a bag, Gx = (Vx, Ex) its corresponding subgraph and g : Vx → {2, 1, 1UD, 0, 0UD} a valid partial
guard assignment. We can now define the unique defender set of a vertex v by SUD(v) = {u ∈ Xx ∩N(v) |
g(u) = 0UD}. A valid partial guard assignment is a valid partial wrd-function if and only if there exists an
extension for which this partial guard assignment can be turned into a valid wrd-function. Note that if we
consider every possible valid partial wrd-function and their extensions, we will consider exactly the same
wrd-functions as we would using f , since for every possible extension there exists exactly one valid guard
assignment g for every guard assignment f .

Lemma 7.6. Let Xx be a bag, Gx = (Vx, Ex) its corresponding subgraph and g : Vx → {2, 1, 1UD, 0, 0UD} a
valid partial guard assignment. g is a valid partial wrd-function if and only if every unique defender set is a
clique and for every unsecured vertex v ∈ Vx \Xx one of the following conditions is met.

1. g(v) = 0UD, i.e., v is uniquely defended.

2. g(v) = 0 and v has a neighbour u for which g(u) ∈ {2, 1}.

3. g(v) = 0, and for all secured neighbours u of v: g(u) = 1UD, and for at least one secured neighbour u′

we have SUD(u
′) ⊂ N(v).

Proof. We consider the following extension H with guard assignment g′. For every vertex v ∈ Vx for which
g(v) = 1UD we do the following. If v is not a unique defender (i.e. SUD(v) = ∅), then we add a new vertex
w′ in the extension for which we set g′(w′) = 0UD and add an edge between v and w′. Next we add a new
vertex w′′, for which we set g(w′′) = 1UD for each u ∈ Xx, for which g(u) = 0UD that does not have a secured
neighbour and we add an edge between this w′′ and u in our extension. Lastly we add a vertex w in our
extension for which we set g′(w) = 2 and we add an edge between w and every vertex u′ ∈ Xx, for which
g(u) = 0.

We note that for H and g′, the following holds. g′ is a wrd-function if and only if g is a valid partial
wrd-function. Also, every unique defender set in Gx is a clique and for every unsecured vertex in Vx \Xx

one of the conditions is met if and only if every unique defender set in H is a clique and for every unsecured
vertex in H one of the conditions from Lemma 7.4 is met. This means that we can apply Lemma 7.4, which
proves this lemma.

Using Lemma 7.6 we can start constructing a dynamic programming algorithm for weak roman domina-
tion. We will describe an algorithm that solves the counting variant of this problem as explained in Section
5.2. The problem we are trying to solve is therefore the following. Given a (nice) tree decomposition of a
graph G of width t, find the number of wrd-functions of each cost κ, for 0 ≤ κ ≤ n. Recall that the cost of a
wrd-function f is defined as the total number of guards in this assignment, or

∑
v∈V f(v). Also recall that

according to Lemma 4.3 any variant of Defensive Domination has a solution of cost at most n, therefore
it is sufficient to only consider solutions of costs smaller than or equal to n.

The algorithm we present will traverse the tree decomposition in a bottom up fashion, making sure that
at each node x we store the number of valid partial solutions g : Vx → {2, 1, 1UD, 0, 0UD} of each cost κ (where
the label 1UD will have cost 1), for every colouring c. We will store this number in our memoisation table as
Ax(c, κ). To keep track of valid partial solutions we need to keep track of 2 things. First we have to keep
track of the unique defender sets. Second we have to keep track of the unsecured vertices in our partial
solution and what kind of secured neighbours they have. In particular we need to make sure that every
unique defender set is always a clique and that for every vertex in Vx \Xx one of the conditions is met, so
that Lemma 7.6 holds. In order to keep track of this we will need to define a suitable state set with which
we can create a colouring of our vertices in the bag for a partial solution as explained in Section 5.2.

7.2 States

Let Xx be a bag, Gx = (Vx, Ex) its corresponding subgraph and g : Vx → {2, 1, 1UD, 0, 0UD} a valid partial
guard assignment. To make sure that every unique defender set is always a clique, we introduce the notion of
active and inactive unique defender sets. Let v be a secured vertex. If v ∈ Xx and SUD(v) ⊂ Xx we will call
this set an active unique defender set of v, defined by SaUD(x, c, v) = {u ∈ Xx ∩ N(v) | c(u) = 0UD}. When
v 6∈ Xx, or when SUD(v) 6⊂ Xx we will use the states 0−UD and 1−UD to represent this. We will call the part of the

16

unique defender set that is still in the bag an inactive unique defender set of v, with state 1−UD, defined by
SiUD(x, c, v) = {u ∈ Xx ∩N(v) | c(u) = 0−UD}. We can then refer to the active and inactive unique defender of
a vertex u, by aUD(v) and iUD(v) respectively. We will once again say that these functions are undefined if
the specific unique defender does not exist. If we enforce the active unique defender set to always be a clique
and we do not add any vertices to an inactive unique defender set over the course of our algorithm, we can
ensure that every unique defender set is always a clique. However, to simplify the algorithm a little bit, we
can delay the requirement of active unique defender sets being cliques. If we simply enforce these sets to be
a clique when they turn inactive (i.e. when we forget a part of them) we know that they have to have been a
clique all along. This means that we will knowingly store some configurations that are not partial solutions
in our memoisation table, because we will eliminate them later in the algorithm.

Using the states we have introduced thus far (2, 1, 1UD, 1
−
UD, 0UD, 0

−
UD) we can ensure that every unique

defender set will always be a clique and we can check whether Condition 1 or 3 of Lemma 7.6 is met. We
can, however, not yet check if Condition 2 is met for a vertex v, for which g(v) = 0. To do this we need 4
more states. These states will encode the number of neighbours a vertex has, so that we can use it to see
whether Condition 2 has been met. The first state 00 means that our vertex has no secured neighbours.
Next, the state 0 means that our vertex has any number of secured neighbours, but all of them are unique
defenders. Then we have the state 01, which means that our vertex has exactly one secured neighbour that
is a unique defender and this neighbour is still in the bag. The state 0−1 means that our vertex has exactly
one secured neighbour that is a unique defender and this neighbour is no longer in the bag. This distinction
between 01 and 0−1 is only important in the join node of the treewidth algorithm. Lastly we have the state 0,
which means that Condition 2 (or 3) of Lemma 7.6 is met for this vertex. One can imagine that using these 4
states we can count the number of (unique defender) neighbours a vertex has, to check whether Condition 2
is met. Using all of this we can finally define all of our states. We say that a vertex v ∈ Xx has the following
state if the description holds.

2 g(v) = 2.

1 g(v) = 1, and thus v is not a unique defender.

1UD g(v) = 1UD and SUD(v) ⊂ Xx.

1−UD g(v) = 1UD and SUD(v) 6⊂ Xx.

0UD g(v) = 0UD and SUD(u) ∪ {u} ⊆ Xx, where u is the unique defender of v.

0−UD g(v) = 0UD and SUD(u) ∪ {u} 6⊆ Xx, where u is the unique defender of v.

0 g(v) = 0 and for v either Condition 2 or Condition 3 of Lemma 7.6 is met.

0 g(v) = 0 and for v none of the conditions of Lemma 7.6 are met and ∃u ∈ N(v) : g(u) = 1UD.

01 g(v) = 0 and for v Condition 3 of Lemma 7.6 is not met and v does not have a unique defender,
but v does have exactly one secured neighbour u, for which g(u) = 1 and u ∈ Xx.

0−1 g(v) = 0 and for v Condition 3 of Lemma 7.6 is not met and v does not have a unique defender,
but v does have exactly one secured neighbour u, for which g(u) = 1 and u 6∈ Xx.

00 g(v) = 0 and all neighbours of v are unsecured, i.e. ∀u ∈ N(v) : g(u) = 0.

7.3 State Sets

The states defined in the previous section yield our original state set as follows.

S0 = {2, 1, 1UD, 1−UD, 0, 0, 01, 0−1 , 00, 0UD, 0
−
UD}

We can use this state set to define a colouring c0 : Xx → S0. We will again slightly abuse notation when
referring to such colourings. We will use a colouring ci to refer to both the function that maps Xx to Si,
as well as the set of states that Xx is mapped to. This allows us to use the notation ci × {s} to indicate

17

that we extend the colouring with a vertex v, for which ci(v) = s. We note that this state set has 11 states
which would, in a naive algorithm, result in an algorithm with a running time of at least O∗(11t). It is,
however, possible to determine whether a vertex has state 01, state 0−1 or state 0UD, by looking at the state
of its neighbours in the bag. This is because a vertex of state 01 or state 0UD, will need to have a neighbour
of state 1 or state 1UD respectively and a vertex of state 0−1 cannot have any secured neighbour. This means
that our memoisation table containing values for every possible colouring using state set S0 will always be
sparse and contain O∗(9t) elements. This also means that we can replace these 3 states by a single state,
resulting in a state set of size 9. We will denote this new state by 〈010−1 0UD〉, indicating that a vertex in this
state represents a vertex that has one of the 3 states 01, 0−1 or 0UD. This results in our main state set, which
we will use to store partial solutions.

SM = {2, 1, 1UD, 1−UD, 0, 0, 〈010−1 0UD〉, 00, 0−UD}

In our algorithm we use colourings of the form cM : Xx → SM for entries in our memoisation table, Ax(cM, κ).
We can transform this table to a table using colourings of the form c0 : Xx → S0 and back using the
following transformations. We apply these transformations for a fixed κ and they can be repeated for each
required κ. For these transformations we enforce some (arbitrary) order on the vertices in our bag Xx. These
transformations then work in |Xx| steps.

S0 → SM :
In the transformation from state set S0 to SM we say that, at step i, the first |Xx| − i vertices in our bag

are still being mapped to a state in S0, while the last i− 1 vertices use the new state set SM. At this step we
change, for the i-th vertex v, the state set it uses. We will therefore need to compute for every state in SM
the entry of Ax, where v has state SM. However, if v has a state in {2, 1, 1UD, 1−UD, 0, 0, 00, 0−UD}, then we don’t
need to compute a new value, since these states are present in both sets. If v has state 〈010−1 0UD〉 we apply
the following transformation.

Ax(c0 × {〈010−1 0UD〉} × cM, κ) =
∑

s∈{01,0−1 ,0UD}

Ax(c0 × {s} × cM, κ)

Since we consider for every vertex in the bag every possible state in SM and we can compute the intermediate
results in polynomial time, this transformation can be done in O∗(9t) time.

SM → S0 :
The other way around we need to apply the following transformations.

Ax(cM × {0UD} × c0) = Ax(cM × {〈010−1 0UD〉} × c0, κ) if ∃u ∈ N(v) : c0 × cM(u) = 1UD

Ax(cM × {01} × c0) = Ax(cM × {〈010−1 0UD〉} × c0, κ) if ∃u ∈ N(v) : c0 × cM(u) = 1

Ax(cM × {0−1 } × c0) = Ax(cM × {〈010−1 0UD〉} × c0, κ) otherwise

In this case we compute entries using state set S0. Since this state set has 11 states we cannot simply
compute the entry for every possible colouring using this state set. We will do this by once again considering
for every vertex in the bag every possible state in SM and filling the corresponding value in the correct entry
using state set S0. This means that we can do this transformation in O∗(9t) time as well.

In the first part of this algorithm we will use a couple of different state sets to allow us to achieve our
running time. For three of the cases in an introduce node we need different state sets. These state sets
S2, S1 and S1UD are for when we introduce a vertex of state 2, 1 and 1UD respectively. For state set S2 we
will replace state 0 with state 〈00010−1 00〉, while keeping the rest of the states the same. This gives us the
following state set.

S2 = {2, 1, 1UD, 1−UD, 〈00010−1 00〉, 0, 01, 0−1 , 00, 0UD, 0
−
UD}

In this new state set the state 〈00010−1 00〉 represents a vertex that is in one of the following states of the
original state set {0, 0, 01, 0−1 , 00}. We can therefore apply the following transformations to transform from
S0 to S2 and back again.

18

S0 → S2

Ax(c0 × {〈00010−1 00〉} × c2, κ) =
∑

s∈{0,0,01,0−1 ,00}

Ax(c0 × {s} × c2, κ)

S2 → S0

Ax(c2 × {0} × c0, κ) = Ax(c2 × {〈00010−1 00〉} × c0, κ)−
∑

s∈{0,01,0−1 ,00}

Ax(c2 × {s} × c0, κ)

We note that state set S2 has 11 states, just like state set S0. However, since a table using S0 is sparse and
in S2 we replace state 0, which did not play a role in the sparsity of S0, we know that S2 is also sparse.
When performing the transformations above, we can make sure that we only do this for the valid entries in
the table using S0. Therefore we know that we can compute the sparse table using S2 in O∗(9t) time. The
other way around we can use the same logic.

For state set S1 we will replace the state 0 with the state 〈00010−1 〉. This yields the following state set.

S1 = {2, 1, 1UD, 1−UD, 〈00010−1 〉, 0, 01, 0
−
1 , 00, 0UD, 0

−
UD}

The new state 〈00010−1 〉 represents a vertex with a state in {0, 0, 01, 0−1 } in the original state set. For this
state set we will use the following transformations to transform from and to the original state set.

S0 → S1

Ax(c0 × {〈00010−1 〉} × c1, κ) =
∑

s∈{0,0,01,0−1 }

Ax(c0 × {s} × c1, κ)

S1 → S0

Ax(c0 × {0} × c1, κ) = Ax(c0 × {〈00010−1 〉} × c1, κ)−
∑

s∈{0,01,0−1 }

Ax(c0 × {s} × c1, κ)

Using the same logic as for state set S2, we can see that state set S1 is also sparse and thus these transfor-
mations can be done in O∗(9t) time.

For state set S1UD we will replace the state 0 with the state 〈000〉 and state 0 with state 〈001〉. This yields
the following state set.

S1UD = {2, 1, 1UD, 1−UD, 〈001〉, 〈000〉, 01, 0−1 , 00, 0UD, 0
−
UD}

The new state 〈000〉 represents a vertex that is in state 0 or state 00 in the original state set. The new state
〈001〉 represents a vertex that is in state 0 or state 01 in the original state set. For this state set we will use
the following transformations to transform from and to the original state set.

S0 → S1UD

Ax(c0 × {〈000〉} × c1UD , κ) = Ax(c0 × {0} × c1UD , κ) +Ax(c0 × {00} × c1UD , κ)

Ax(c0 × {〈001〉} × c1UD , κ) = Ax(c0 × {0} × c1UD , κ) +Ax(c0 × {01} × c1UD , κ)

S1UD
→ S0

Ax(c1UD × {0} × c0, κ) = Ax(c1UD × {〈000〉} × c0, κ)−Ax(c1UD × {00} × c0, κ)

Ax(c1UD × {0} × c0, κ) = Ax(c1UD × {〈001〉} × c0, κ)−Ax(c1UD × {01} × c0, κ)

Again using the same logic as for state set S2, we can see that state set S1UD is also sparse and thus these
transformations can be done in O∗(9t) time.

19

These 3 state sets conclude the extra sets needed in the introduce nodes. In the forget nodes we need one
more state set. In this state set we replace the state 0 with the state 〈00〉. This leaves us with the following
state set.

SF = {2, 1, 1UD, 1−UD, 〈00〉, 0, 01, 0−1 , 00, 0UD, 0
−
UD}

The new state 〈00〉 represents a vertex that is in state 0 or state 0 in the original state set. We can use the
following transformations to transform from and to the original state set.

S0 → SF

Ax(c0 × {〈00〉} × cF, κ) = Ax(c0 × {0} × cF, κ) +Ax(c0 × {0} × cF, κ)

SF → S0

Ax(cF × {0} × c0, κ) = Ax(cF × {〈00〉} × c0, κ)−Ax(cF × {0} × c0, κ)

Once again we can use the same logic as for state set S2, to see that state set SF is also sparse and thus these
transformations can be done in O∗(9t) time.

7.4 Pathwidth Algorithm

Before we give the treewidth algorithm for Weak Roman Domination, we will start with a pathwidth
algorithm. This is an algorithm that works on a path decomposition in stead of a tree decomposition. A nice
path decomposition is essentially a nice tree decomposition without join nodes. Below we give a pathwidth
algorithm that given a (nice) path decomposition of width at most t solves the counting problem for Weak
Roman Domination in O∗(9t) time (or the counting problem for Secure Domination in O∗(8t) time).

We will show, for each type of node, that we can compute the table Ax, using state set SM. Here Ax(cM, κ)
represents the number of partial solutions to Weak Roman Domination of cost exactly κ satisfying the
colouring cM.

LEAF NODE:

Let x be a leaf node in T . In the leaf nodes we only have empty bags and therefore the only possible colouring
is ∅ with cost 0.

Ax(∅, κ) =

{
1 if κ = 0

0 otherwise

INTRODUCE NODE:

Let x be an introduce node in T with child node y that introduces the vertex v, and cM ∈ SM
Xy . In an

introduce node we will first transform all our entries in the table Ay from state set SM to S0. Note that the
resulting table will be a sparse table with O(9t) entries. We will now start building up the result table Ax
using state set S0. We will compute every valid entry in Ax the same way as we did in the algorithm for
Roman Domination. For the introduced vertex v we will consider every possible state it can have. For
each of these possibilities we will compute for every possible valid colouring of the rest of the vertices the
new entry in Ax. This results in a slice of the new table Ax. For every possible state v can have, using state
set S0, we compute the corresponding slice of Ax. After we have computed all the slices of Ax we can join
all these slices together into our complete table Ax and then transform this table back to using state set SM.
Below we show how to compute each slice of Ax, for every possible state in S0.

When c0(v) = 2, to guarantee our running time, we have to first transform Ay to state set S2 before we
compute Ax. After the transformation to S2 we can compute Ax in the following way.

20

Ax(c2 × {2}, κ) =


0 if ∃u ∈ N(v) : c2(u) ∈ {0, 01, 0−1 , 00, 0UD, 0

−
UD}

0 if κ ≤ 1

Ay(c2, κ− 2) otherwise

After this we transform this slice of Ax back to the original state set.
When the new vertex of state 2 is neighbouring a vertex with a state in {0, 01, 0−1 , 00, 0UD, 0

−
UD}, then

Ax(c0, κ) must be 0. Since all of these states cannot exist neighbouring a vertex of state 2. We can however
place our vertex next to some of these states if we transform these states to state 0. We do not allow placing
a vertex of state 2 next to a vertex of state 0UD or 0−UD, since we decided beforehand that these vertices had to
be uniquely defended. The rest of the states in the list we will transform to state 0, when placing a vertex of
state 2 next to it. This is done implicitly by the state transformations between S0 and S2. When we trans-
form from S0 to S2, we gather all of these states together in the state 〈00010−1 00〉. During the computation
of this slice of Ax we disallow the states {0, 01, 0−1 , 00} to exist in the neighbourhood of v. Therefore, when
we transform back to S0, every colouring with a vertex of state 〈00010−1 00〉 in the neighbourhood of v will
be counted as if this vertex has state 0.

When c0(v) = 1 we will do this in the same way. First we transform Ay to state set S1 and then use the
following to compute Ax.

Ax(c1 × {1}, κ) =


0 if ∃u ∈ N(v) : c1(u) ∈ {0, 0−1 , 00, 0UD, 0

−
UD}

0 if κ = 0

Ay(c′1, κ− 1) otherwise

Where c′1 is defined by:

• ∀u ∈ Xy \N(v) : c′1(u) = c1(u)

• ∀u ∈ Xy ∩N(v) :
c1(u) ∈ {2, 1, 1UD, 1−UD, 〈00010−1 〉} and c′1(u) = c1(u),
or c1(u) = 01 and c′1(u) = 00

Afterwards we transform this slice of Ax back to use S0.
When we add a vertex of state 1 it is easy to see that any neighbouring vertex with a state in {2, 1, 1UD, 1−UD, 0}

will not be affected. However vertices of states 01, 0−1 or 0 will turn into a vertex of state 0, because with
this extra neighbour of state 1 Condition 2 of Lemma 7.6 is met (this is again done implicitly by the trans-
formations). A vertex of state 00 will turn into state 01, since this new vertex will be its only neighbour with
a state in {2, 1, 1UD, 1−UD}. Neighbours of state 0UD or 0−UD are again not allowed by definition.

When c0(v) = 1UD we will do this in the same way. First we transform Ay to state set S1UD and then use
the following to compute Ax.

Ax(c1UD × {1UD}, κ) =



0 if ∃u ∈ N(v) : c1UD(u) ∈ {0−UD, 01, 0−1 , 00}
0 if ∃u ∈ N(v) : c1UD(u) = 0UD

and ∃w ∈ N(u) \ {v} : c1UD(w) = 1UD

0 if κ = 0

Ay(c1UD , κ− 1) otherwise

Afterwards we transform this slice of Ax back to use S0.
We will always allow the introduction of a vertex of state 1UD even if this vertex does not yet have a

neighbour of state 0UD. We will enforce this in the forget node. This makes it so that we will consider every
possible unique defender set. We will also allow any active unique defender set to exist in the bag even if

21

it is not a clique, since we will also enforce this in the forget node for simplicity. In the introduce node
we only enforce every uniquely defended vertex to have at most one secured neighbour. Furthermore any
neighbour with a state in {2, 1, 1UD, 1−UD, 0, 0, 0UD} will not be affected and a neighbour of state 01 will turn into
state 0 and a neighbour of state 00 will turn into state 0 (again this is done implicitly by the transformations).

For the rest of the cases we do not need any additional transformations so we will just list the rest of
the computations below. We use the notation ∃! here to indicate that there must exist a unique element for
which the conditions hold.

Ax(c0 × {1−UD}, κ) = 0

Ax(c0 × {0}, κ) =


Ay(c0, κ) if ∃u ∈ N(v) : c0(u) = 2

Ay(c0, κ) if ∃u,w ∈ N(v) : c0(u) = 1 ∧ c0(w) ∈ {1, 1UD, 1−UD}
0 otherwise

Ax(c0 × {0}, κ) =


0 if ∃u ∈ N(v) : c0(u) ∈ {1, 2}
Ay(c0, κ) if ∃u ∈ N(v) : c0(u) ∈ {1UD, 1−UD}
0 otherwise

Ax(c0 × {01}, κ) =


0 if ∃u ∈ N(v) : c0(u) ∈ {2, 1UD, 1−UD}
Ay(c0, κ) if ∃!u ∈ N(v) : c0(u) = 1

0 otherwise

Ax(c0 × {0−1 }, κ) = 0

Ax(c0 × {00}, κ) =

{
0 if ∃u ∈ N(v) : c0(u) ∈ {2, 1, 1UD, 1−UD}
Ay(c0, κ) otherwise

Ax(c0 × {0UD}, κ) =


Ay(c0, κ) if ∃!u ∈ N(v) : c0(u) = 1UD

and ∀w ∈ N(v) \ {u} : c0(w) /∈ {2, 1, 1−UD}
Ay(c0, κ) if ∀u ∈ N(v) : c0(u) /∈ {2, 1, 1UD, 1−UD}
0 otherwise

Ax(c0 × {0−UD}, κ) = 0

For all of the rules above it is fairly easy to see that these are correct when looking at the definitions of
the states. The only one that is more complex is when we introduce a vertex of state 0UD. In this case we
need to make sure that we only introduce it when it has at most one secured neighbour and this neighbour
is state 1UD.

FORGET NODE:

Let x be a forget node in T with child node y that forgets the vertex v, and cM ∈ SMXy . For simplicity we
once again transform Ay to use state set S0. After this we compute Ax as described below and transform
this table back to use state set SM.

In a forget node we need to make sure that we only forget vertices in those states that are allowed in a
valid solution. The states that we can simply forget without any extra work are {2, 1, 1−UD, 0, 0−UD}, since these
vertices are either secured or one of the conditions from Lemma 7.6 is met. Furthermore we can also forget
states 0UD and 1UD. However since these states represent active unique defenders and active unique defender
sets we have to check whether the set is a clique and mark the remainder as inactive when we forget these.
We also have to check whether the unique defender set of a vertex with state 1UD is not empty, because
this would mean that we count a non-unique defender as a unique defender, meaning that we would count
solutions multiple times. Furthermore we have to check whether Condition 3 of Lemma 7.6 is met for some
neighbouring vertices when we forget a vertex of state 0UD or 1UD. Lastly we can also forget a vertex of state

22

0, but only if for this vertex Condition 3 of Lemma 7.6 is met. If this is the case we have to choose one of
its secured neighbours for which the unique defender set is in the neighbourhood of v and mark this set as
inactive. When we mark this set as inactive we again have to check whether Condition 3 of Lemma 7.6 is
met for some neighbouring vertices.

This all means that we can compute Ax using the following equation.

Ax(c0, κ) =
∑

s∈{2,1,1−UD,1UD,0,0,0
−
UD,0UD}

a(c0, κ, s)

Where a is defined differently for each s as we will define below. What we do here is essentially the same as
for the introduce nodes but in reverse. We first split up our table in slices based on the state of v and then
we compute Ax by adding these slices together. We will now list for every slice of Ay how to compute the
corresponding part of the sum.

If s ∈ {2, 1, 1−UD, 0, 0−UD} then

a(c0, κ, s) = Ay(c0 × {s}, κ)

For all of the other cases we need to transform the slice of Ay to use state set SF before we can do the
computation to guarantee our running time. After we have done the computation we can transform the
result back to use state set S0 and add this to our result. Below we will list the computations in SF.

If s = 1UD then let U = SiUD(y, cF, v) in

a(cF, κ, 1UD) =


0 if U is not a clique

0 if |U | = 0

0 if ∃u ∈ Xy : cF(u) = 0 ∧ ∀w′ ∈ U ∪ {v} : w′ ∈ N(u)

Ay(c′F × {1UD}, κ) otherwise

Where c′F is defined by:

• ∀u ∈ Xy \ U : c′F(u) = cF(u)

• ∀u ∈ U : c′F(u) = 0UD

If s = 0UD then let w = iUD(v) and U = SiUD(y, cF, w) in

a(cF, κ, 0UD) =



0 if w is undefined

0 if U is not a clique

0 if ∃u ∈ U : u 6∈ N(v)

0 if ∃u ∈ Xy : cF(u) = 0 ∧ ∀w′ ∈ U ∪ {v, w} : w′ ∈ N(u)

Ay(c′F × {0UD}, κ) otherwise

Where c′F is defined by:

• ∀u ∈ Xy \ (U ∪ {w}) : c′F(u) = cF(u)

• ∀u ∈ U : c′F(u) = 0UD

• c′F(w) = 1UD

23

If s = 0 then we have to consider every neighbouring inactive unique defender set, because each of these
could have been turned inactive by forgetting v. Therefore we have to take a sum over all neighbouring
inactive unique defenders. We can do this in the following way.

a(cF, κ, 0) =
∑

w∈N(v)∩Xy

a′(cF, κ, 0, w), where

let U = SiUD(y, cF, w) in

a′(cF, κ, 0, w) =



0 if cF(w) 6= 1−UD
0 if U is not a clique

0 if |U | = 0

0 if ∃u ∈ U : u 6∈ N(v)

0 if ∃u ∈ Xy : cF(u) = 0 ∧ ∀w′ ∈ U ∪ {w} : w′ ∈ N(u)

Ay(c′F × {0UD}, κ) otherwise

Where c′F is defined by:

• ∀u ∈ Xy \ (U ∪ {w}) : c′F(u) = cF(u)

• ∀u ∈ U : c′F(u) = 0UD

• c′F(w) = 1UD

To compute Ax in the forget node we take a sum over O(t) elements for each of the O∗(9t) elements in
Ax. This means that we can compute this in O∗(9t) time.

We note that one could argue that we should also transform vertices of state 01 to state 0−1 when we
forget the neighbouring vertex of state 1. This is, however, not necessary since we will transform vertices in
both these states to the state 〈010−1 0UD〉, when we transform back to state set SM. This means that it does
not matter if we do this extra transformation from state 01 to state 0−1 , since the result we will store will
remain the same (and correct).

Following this algorithm we again know that, for the root node ρ, Aρ will contain the number of solutions
for every cost κ. Finally we note that following this algorithm we consider every valid guard assignment
g : V → {2, 1, 1UD, 0, 0UD} exactly once. This means that, because every valid solution g corresponds to
exactly one solution f : V → {2, 1, 0}, we find each of these exactly once. This means that the algorithm
above solves the counting problem of Weak Roman Domination in O∗(9t) time.

7.5 Treewidth Algorithm

To transform our pathwidth algorithm into a treewidth algorithm we only need to consider the join node.
In this section we will explain what we need to do in this join node and how we can do this in O∗(9t) time.

JOIN NODE:

7.5.1 Join Table

Let x be a join node in T with child nodes l, r. Recall that the bags of each of these 3 nodes is the same,
Xr = Xl = Xx. Recall from our algorithm for Roman Domination, that in a join node, like in the other
types of nodes, we are trying to compute a memoisation table Ax. We will repeat what we stated there to
refresh what we are trying to do. In order to compute Ax we need to sum entries from Al and Ar together
to form a new table. For each entry in Ax we need to sum over those entries Al(c

l
M, κ) and Ar(c

r
M, κ) that

could have created this entry Ax(cM, κ). We note that to compute one such entry we need to add the entries
from the memoisation tables from Al and Ar that have colourings that agree with the colouring of the entry
we are trying to compute. This means that for every vertex in the bag the colourings clM and crM need to
agree with cM. For example: if a vertex v has cM(v) = 2, then we know that both clM(v) = 2 and crM(v) = 2.
This is because any vertex that has 2 guards will always have had 2 guards (i.e. there are no computations

24

× 2 1 1UD 1−UD 0UD 0−UD 00 0 0−1 01 0

2 2
1 1

1UD 1UD 1−UD
1−UD 1−UD
0UD 0UD 0−UD
0−UD 0−UD
00 00 0 0−1 0
0 0 0 0 0

0−1 0−1 0 0 0
01 01 0
0 0 0 0 0 0

Table 2: The join table using the original state set.

in either the introduce or forget nodes that change the number of guards on a vertex). This is also true for
any vertex that has 1 or 0 guards, this vertex should have 1 or 0 guards, respectively, in all of the 3 nodes.
This also means that

∑
v∈Xx

f(v) =
∑
v∈Xl

f(v) =
∑
v∈Xr

f(v) and thus that the cost of the vertices in the
bag must be equal between all of the 3 nodes.

We note that if a vertex v has cM(v) = 1, then we also know that both clM(v) = 1 and crM(v) = 1, since a
vertex that is not a unique defender may never have been a unique defender over the course of the algorithm.
This is because we consider partial solutions of the form g : Vx → {2, 1, 1UD, 0, 0UD} and we therefore explicitly
decide which vertices are unique defenders. If we consider a vertex, v that has cM(v) = 1UD the same is still
true (both clM(v) = 1UD and crM(v) = 1UD). However if we consider a vertex v for which cM(v) = 1−UD, then we
know that it is not possible that both clM(v) = 1−UD and crM(v) = 1−UD. This is because this would mean that, in
both the left and the right sub tree, at least one vertex of the corresponding unique defender set has been
forgotten. This means that these 2 forgotten vertices cannot have an edge between them, which means that
this unique defender set cannot be a clique. Therefore we know that, for v, clM(v) = 1UD and crM(v) = 1−UD or
clM(v) = 1−UD and crM(v) = 1UD. We can create a table for every possible combination of states, from the left and
right sub tree, for a vertex and then fill this with the state this would result in in the resulting colouring.
This will again give us a join table and the table for this algorithm is shown in Table 2 using state set S0.

We can see, in this table, that for example a vertex v for which c0(v) = 0−1 in the left bag and c0(v) = 0
in the right bag, must have c0(v) = 0 in the resulting bag. This is because this vertex has a neighbour of
state 1UD in the right sub tree and a vertex of state 1 in the left sub tree. An empty square in this table
means that these 2 states cannot be joined. For all of the entries in this table it is fairly easily checked that
they are indeed correct. We do want to pay a little extra attention to the unique defender sets.

As we discussed before we can join 2 active unique defender sets (states 0UD and 1UD), but not 2 inactive
unique defender sets (states 0−UD and 1−UD). Since we always turn the entire unique defender set from active to
inactive at once (and thus a vertex of state 1UD cannot have a neighbour of state 0−UD) we know the following.
When we follow our join table we will always join 2 active unique defender sets (into an active unique
defender set) or one active unique defender set and one inactive unique defender set (into an inactive unique
defender set). When in one of the 2 colourings a unique defender set is inactive we know that this set is a
clique in all 3 bags, because the bags are all the same. When a unique defender set is active in both bags
it does not have to be a clique yet, because we will enforce this when we turn this set inactive later in the
algorithm.

We could directly use this join table to compute the resulting memoisation table in our join node.
However, this would mean that we need to consider O∗(27t) possible combinations between the left and the
right bag (27 is the number of non empty squares in the join table). This would mean that the running time
of our algorithm will be similar. This is something we want to avoid. We note that in an optimal scenario
our join table would be diagonal, since then the number of non empty squares is equal to the number of
states. In our case we also want to be able to do the join using 2 states less than the original state set,
because the original state set has 11 states. This means that we would ideally want to do the join using a
state set like SM, while also fixing the problem of the non diagonal join table.

25

× 1UD 1−UD

1UD 1UD 1−UD
1−UD 1−UD

× 00 0 0−1 01 0

00 00 0 0−1 0
0 0 0 0 0

0−1 0−1 0 0 0
01 01 0
0 0 0 0 0 0

× 0UD 0−UD

0UD 0UD 0−UD
0−UD 0−UD

Table 3: The 3 parts of the join table that need to be optimised.

7.5.2 Improved Method

We will solve the problems presented in the previous section in the following way. When we take a closer
look at the join table, we can see that there are 3 separate parts that are not yet diagonal. These 3 parts
are placed side by side in Table 3. We will diagonalize all 3 of these parts using indexation techniques. The
indexation techniques presented here are a combination of the techniques used for Perfect Matching and
σ-ρ-Domination in Chapter 11 of [19].

The idea behind these techniques is best explained using the left most table from Table 3. What we do to
perform this part of the join is transform our memoisation table to use a state set with the state 1−UD replaced
by the state 〈1UD1−UD〉. This new state represents a vertex that is either in state 1UD or in state 1−UD. When
we join 2 vertices of this state together the resulting vertex has been created from one of 4 combinations of
states from the left and right sub tree, namely 1UD1UD, 1UD1

−
UD, 1−UD1UD or 1−UD1

−
UD. If we would then transform

back to our main state set we would subtract all the solutions where this vertex has state 1UD, which can only
be created by the combination 1UD1UD in the left and right sub tree. This would almost give us a result that
agrees with the left most table from Table 3, except that we now also count the combination 1−UD1

−
UD. This is

the problem we solve with the indexation technique. Before we perform our first transformation we count,
for every colouring in our memoisation table, the number of vertices of state 1−UD and index this colouring
with this number. This allows us to perform the join and then extract those entries in the resulting table
for which the number of vertices of state 1−UD is exactly equal to the number of vertices of state 1−UD in the
left sub tree plus the number of vertices of state 1−UD in the right sub tree. This eliminates the possibility
of counting the combination 1−UD1

−
UD, since this would mean that the sum of the counts between the left and

right sub tree is larger than the count in the resulting tree. For the right most table in 3, the technique
is exactly the same. For the middle table the idea is still the same, but the execution is now a little more
complex. We show that our technique gives a result that agrees with the entire join table in Section 7.5.3.
We do that in a similar fashion as we did here for states 1UD and 1−UD.

We will now present the state sets, computations and indexation techniques needed to compute the join
node in O∗(9t) time. First we introduce the state set in which we need to compute the join. This state set
is the following.

S4 = {2, 1, 1UD, 〈1UD1−UD〉, 〈0UD0−UD〉, 00, 〈000〉, 〈00010−1 0UD〉, 〈000010−1 0〉}
This state set has 9 states, where the new states represent vertices that have one of a number of states
from the original state set, similar to the state sets used in the introduce and forget nodes. For now we will
assume that we can transform from state set SM to S4 in O∗(9t) time using transformations similar to how
we handled the other state sets in the introduce and forget nodes. The actual transformations are listed in
Section 7.5.4.

Next we will present our indexes. Let y ∈ {l, r} and let Ay be the memoisation tables using state set SM.
We will expand our tables Ay and index them by 3 indexes, namely i1, i0 and j. Indexes i1 and i0 represent
the number of vertices in Xy, with states 1−UD and 0−UD respectively. The index j will represent the number of
vertices of state 0−1 that have been transformed to state 〈00010−1 0UD〉 later on. The indexes i1 and i0 serve to
diagonalize the left most and right most table from Table 3 respectively. The index j serves to diagonalize
the middle table. The indexed tables are computed as follows.

A′y(cM, κ, i
1, i0, j) =

{
Ay(cM, κ) if #1−UD

(cM) = i1 and #0−UD
(cM) = i0 and j = 0

0 otherwise

Here we use the # notation to indicate the number of vertices of the specific state in the bag. We initialise

26

the index j to be 0 for every entry in our tables. We will use this, in our transformations, to count the
number of vertices in state 0−1 that are transformed to 〈00010−1 0UD〉. The resulting tables A′y are O(k3) times
as large as the original tables, but these indexed tables allow us to compute any entry in the joined table
A′x in O(nk3) time, which means that we can compute the entire joined table A′x in O∗(9t) time.

In order to compute this joined table we first need to transform our tables A′y to use state set S4 (during
which we index our table correctly with j). We will then compute the joined table A′x from A′l and A′r using
the following formula.

A′x(c4, κ, i
1, i0, j) =

∑
κl+κr=κ+#1∗ (c4)+2#2(c4)

 ∑
i0=i0l +i

0
r

∑
i1=i1l +i

1
r

∑
j=jl+jr

A′l(c4, κl, i
1
l , i

0
l , jl) ·A′r(c4, κr, i1r, i0r, jr)


Here we again use the # notation introduced earlier, with a similar meaning. However here #1∗(c) represents
the number of vertices with a state in {1, 〈1UD1−UD〉}. We use the first sum here to make sure that we count
those solutions that have a cost that agrees with our result, keeping in mind that with κl + κr we count the
vertices in the bag twice. During these computations we make sure that the indexes in the resulting table
A′x are always a sum of the indexes from our tables A′y. We do this because we know that the number of

vertices of state 1−UD in the resulting colouring has to be equal to the number of vertices of state 1−UD in the
left colouring plus the number of vertices of state 1−UD in the right colouring. This is because a vertex of state
1−UD can only be created by a vertex of the same state in one of the 2 colourings, but a vertex of state 1UD in
the other. The same argument also holds for the other indexes.

This means that the table A′x now contains all the correct entries we need to construct our final table
Ax. It is however not using the correct state set for us to extract the final table. We will therefore start to
transform our state set back to our main state set. Before we do this, however, we need one last intermediate
state set, to allow us to correctly do the extraction. In this state set we transform all of the states from
state set S4 back to states from state set SM except for the state 〈000010−1 0〉, which we keep the same. The
resulting state set is the following.

S5 = {2, 1, 1UD, 1−UD, 0−UD, 00, 0, 〈010−1 0UD〉, 〈000010−1 0〉}

This state set again has 9 states, where the new states represent vertices that have one of a number of states
from the original state set. For now we will again assume that we can transform from state set S4 to S5 and
from S5 to SM in O∗(9t) time using transformations similar to how we handled the other state sets in the
introduce and forget nodes. These transformations are again listed in Section 7.5.4.

After transforming A′x to use state set S5 we can extract the final table Ax. To do this we simply take all
those values that are indexed correctly according to the number of vertices of each state in the corresponding
colouring. This gives us the following equation.

Ax(c5, κ) = A′x(c5, κ,#1−UD
(c5),#0−UD

(c5),#0−1
(c5))

We again use the # notation here. The functions #1−UD
(c5) and #0−UD

(c5) are the same as defined earlier.

The function #0−1
(c5) is defined a little different, since we are counting the number of occurrences of a state

from a different state set as the one our colouring is using. We can still define this since we can differentiate
between these states based on the neighbours in the following way.

#0−1
(c5) =

∑
v∈Xx

{
1 if c5(v) = 〈010−1 0UD〉 and ∀u ∈ N(v) ∩Xx : c5(u) /∈ {1, 1UD}
0 otherwise

After we have extracted the table Ax all that is left to do is transform this table back to use state set SM,
which is something that we can do in O∗(9t) time as shown in Section 7.5.4. In Section 7.5.3 we will show
that the result we get with this approach is the same as the result that simply using the join table would
have gotten us. If we add this approach for the join node to our pathwidth algorithm we once again know
that the root node will contain for every cost the number of solutions.

27

0000 0−1 00 0100 0UD00
000−1 0−1 0−1 010−1 0UD0

−
1

0001 0−1 01 0101 0UD01
000UD 0−1 0UD 010UD 0UD0UD

0000 0−1 00
000−1 0−1 0−1

0101
0UD0UD

0−1 00
000−1

0101
0UD0UD

Table 4: All possible combinations of states from the left and right sub tree in state set S0 that can result in state
〈00010−

1 0UD〉 in the join. On the left we have every possible combination, in the middle we have all possible combinations
that remain after removing the first 10 and on the right we have all combinations that remain after transforming to
〈010−

1 0UD〉.

0000 000
000 00

000
000 00

Table 5: All possible combinations of states from the left and right sub tree in state set S0 that can result in state
〈000〉 in the join. On the left we have every possible combination and on the right we have all combinations that
remain after transforming to 0.

7.5.3 Correctness

In the join node we first introduce a number of states that represent several states from the original state
set. Next we just directly join the colourings that are the same in state set S4. By doing so we actually join
all possible combinations of the represented states from the original state set. We will now show that doing
this, combined with the indexing techniques and transformations back to SM, will agree with the result of
Table 2. First, we look at the state set in which we compute the join, S4. This set has 4 states that have a
direct correspondence to a state in S0. This means that these states will just be joined one on one. These
states are 2, 1, 1UD and 00. Looking at Table 2 we see that this is the result we want for these states.

Next we have the state 〈00010−1 0UD〉. This is one of the most complex parts of the join. In the left and
right sub tree a vertex in this state represents a vertex in one of the states 00, 01, 0−1 and 0UD from state set
S0. This means that a vertex that has this state after the join can be created from one of the 16 combinations
between states from the left and right sub tree shown in Table 4. From these 16 combinations we can directly
eliminate 10, because we join the states 1 and 1UD one on one. In other words we require Xl and Xr to have
exactly the same vertices with these states. This means that for example the combination 01, 00 cannot
happen. This combination tells us that we have a vertex that has exactly one neighbours of state 1 in the
left sub tree, but this same vertex has no such neighbours in the right sub tree. This is not possible. Using
this same logic we can eliminate these 10 combinations 0100, 0UD00, 010−1 , 0UD0

−
1 , 0001, 0−1 01, 0UD01, 000UD,

0−1 0UD and 010UD. This leaves us with the second table in Table 4. From these combinations we subtract the
combination 0000 when we transform to state set S5 and finally we only extract the values where sum of
the number of vertices of state 0−1 between the left and the right sub tree that have been transformed to
〈010−1 0UD〉 is the same as the number of vertices of state 0−1 in the resulting colouring. This means that a
vertex of state 0−1 cannot have been created by state 0−1 in both the left and the right sub tree, because then
this sum would be higher than this number. This also means that a vertex of state 〈010−1 0UD〉 cannot have
been created by state 0−1 in both the left and the right sub tree. This leaves us with only the combinations
in the right most table in Table 4. These are also exactly the combinations we want, looking at Table 2.

Next we look at the state 〈000〉. For this state we show every possible combination in the left table of
Table 5. From this we simply subtract the combination 0000 when we transform to state set S5, directly
resulting in the right table.

Then we have the states 〈0UD0−UD〉 and 〈1UD1−UD〉. Both of these are handled the same way. We subtract the
combinations 0UD0UD and 1UD1UD when we transform to state set S4. Afterwards we extract only those values
where the numbers of vertices of states 0−UD and 1−UD in the resulting colouring are equal to the sum of these
numbers in the colourings of the left and right sub tree. This eliminates the combinations 0−UD0

−
UD and 1−UD1

−
UD.

The resulting possible combinations again agree with Table 2.
Lastly we have the state 〈000010−1 0〉. In Table 7 on the left we see all possible combinations that can

create a vertex of state 〈000010−1 0〉. As shown before there are some combinations in this table that can
never happen, namely 0100, 010, 010−1 , 0001, 001, 0−1 01. So we can remove these from the table. When we

28

0UD0UD 0UD0
−
UD

0−UD0UD 0−UD0
−
UD

0UD0
−
UD

0−UD0UD

1UD1UD 1UD1
−
UD

1−UD1UD 1−UD1
−
UD

1UD1
−
UD

1−UD1UD

Table 6: All possible combinations of states from the left and right sub tree in state set S0 that can result in state
〈0UD0

−
UD〉 and state 〈1UD1

−
UD〉 in the join respectively. Each of the 2 pairs of tables shows on the left every possible

combination and on the right all combinations that remain after transforming.

0000 00 0−1 00 0100 000
000 00 0−1 0 010 00
000−1 00−1 0−1 0−1 010−1 00−1
0001 001 0−1 01 0101 001
000 00 0−1 0 010 00

000
0−1 0 00

00−1 0−1 0−1 00−1
001

000 00 0−1 0 010 00

Table 7: All possible combinations of states from the left and right sub tree in state set S0 that can result in state
〈000010−

1 0〉 in the join. On the left we have every possible combination and on the right we have all combinations
that remain after transforming to state 0.

transform this state to state 0 we subtract the states 00, 0, 01 and 0−1 . Removing all the combinations that
are represented by these states we are left with the right table in Table 7. This table again agrees with Table
2.

7.5.4 Transformations

In this section we will list all of the transformations we need to perform when computing the join node. To
transform from and to state set S4 we need an intermediate state set. We will call this state set S4̂, defined
as follows.

S4̂ = {2, 1, 1UD, 1−UD, 〈0UD0−UD〉, 00, 〈000〉, 〈00010−1 0UD〉, 〈000010−1 0〉}

This state set is almost the same as state set S4, with the exception that the state 〈1UD1−UD〉 is replaced by
the original state 1−UD. We need this state set because during our transformations we need to check whether
a vertex has a neighbour of state 1UD and if we also have a state that represents a vertex of either state 1UD
or state 1−UD, this is not well defined.

The first transformation we will show now is the transformation from state set SM to state set S4. We
can do this transformation by first transforming to the intermediate state set S4̂ and then on to state set S4.
We will do so using the following list of computations. Where v is the vertex currently being transformed.
To concisely define this transformation we will use the following function.

a1(s) =



A′y(cM × {s} × c4̂, κ, i1, i0, j) if s ∈ SM
A′y(cM × {〈010−1 0UD〉} × c4̂, κ, i1, i0, j) if s = 0UD and ∃u ∈ N(v) ∩Xy : cM × c4̂(u) = 1UD

A′y(cM × {〈010−1 0UD〉} × c4̂, κ, i1, i0, j) if s = 01 and ∃u ∈ N(v) ∩Xy : cM × c4̂(u) = 1

A′y(cM × {〈010−1 0UD〉} × c4̂, κ, i1, i0, j) if s = 0−1 and ∀u ∈ N(v) ∩Xy : cM × c4̂(u) /∈ {1, 1UD}
0 otherwise

SM → S4̂ :
A′y(cM × {〈0UD0−UD〉} × c4̂, κ, i1, i0, j) = a1(0−UD) + a1(0UD)

A′y(cM × {〈000〉} × c4̂, κ, i1, i0, j) = a1(00) + a1(0)

A′y(cM × {〈00010−1 0UD〉} × c4̂, κ, i1, i0, j) = a1(00) + a1(01) + a1(0UD)

A′y(cM × {〈00010−1 0UD〉} × c4̂, κ, i1, i0, j + 1) = a1(0−1)

A′y(cM × {〈000010−1 0〉} × c4̂, κ, i1, i0, j) =
∑
s∈{00,0,0,01,0−1 }

a1(s)

S4̂ → S4 :
A′y(c4̂ × {〈1UD1

−
UD〉} × c4, κ, i1, i0, j) = A′y(c4̂ × {1

−
UD} × c4, κ, i1, i0, j) +A′y(c4̂ × {1UD} × c4, κ, i1, i0, j)

This transformation is a lot more extensive than the transformations for the introduce and forget nodes, but

29

essentially it works in the same way. Using this transformation we can compute every entry in our resulting
table in polynomial time, meaning that we can do the entire transformation in O∗(9t) time.

Next we will show the transformation from state set S4 to state set S5. For this transformation we again
first transform to the intermediate state set S4̂ and then on to state set S5. We can do this transformation
using the computations listed below. For this transformation we again define a function, a2, for conciseness.

a2(s) =


A′x(c4̂ × {s} × c5, κ, i1, i0, j) if s ∈ S4

A′x(c4̂ × {〈00010−1 0UD〉} × c5, κ, i1, i0, j) if s = 0UD and ∃u ∈ N(v) ∩Xx : c4̂ × c5(u) = 1UD

0 otherwise

S4 → S4̂ :
A′x(c4 × {1−UD} × c4̂, κ, i1, i0, j) = A′x(c4 × {〈1UD1−UD〉} × c4̂, κ, i1, i0, j)−A′x(c4 × {1UD} × c4̂, κ, i1, i0, j)

S4̂ → S5 :
A′x(c4̂ × {0

−
UD} × c5, κ, i1, i0, j) = a2(〈0UD0−UD〉)− a2(0UD)

A′x(c4̂ × {0} × c5, κ, i1, i0, j) = a2(〈000〉)− a2(00)
A′x(c4̂ × {〈010−1 0UD〉} × c5, κ, i1, i0, j) = a2(〈00010−1 0UD〉)− a2(00)

Again, using this transformation we can compute every entry in our resulting table in polynomial time,
meaning that we can do the entire transformation in O∗(9t) time.

This only leaves the last transformation from state set S5 to state set SM. For this transformation we do
not need an intermediate state set, but we will define a function, a3, for conciseness.

a3(s) =


Ax(c5 × {s} × cM, κ) if s ∈ S5

Ax(c5 × {〈010−1 0UD〉} × cM, κ) if s = 01 and ∃u ∈ N(v) ∩Xx : c5 × cM(u) = 1

Ax(c5 × {〈010−1 0UD〉} × cM, κ) if s = 0−1 and ∀u ∈ N(v) ∩Xx : c5 × cM(u) /∈ {1, 1UD}
0 otherwise

S5 → SM :
Ax(c5 × {0} × cM, κ) = a3(〈000010−1 0〉)−

∑
s∈{00,0,01,0−1 }

a3(s)

Again, using this transformation we can compute every entry in our resulting table in polynomial time,
meaning that we can do the entire transformation in O∗(9t) time.

This concludes our treewidth algorithm for Weak Roman Domination. We once again note that this
algorithm would also work for Secure Domination in O∗(8t) time, by simply removing the state 2.

References

[1] R. Burdett and M. Haythorpe. An improved binary programming formulation for the secure domination
problem. ArXiv, 2019, arXiv:1911.02198.

[2] A. P. Burger, E. J. Cockayne, W. R. Gründlingh, C. M. Mynhardt, J. H. van Vuuren, and W. Winter-
bach. Infinite order domination in graphs. Journal of Combinatorial Mathematics and Combinatorial
Computing, 50:179–194, 2004.

[3] A. P. Burger, A. P. De Villiers, and J. H. van Vuuren. A binary programming approach towards
achieving effective graph protection. In ORSSA, pages 19–30, 2013.

[4] A. P. Burger, A. P. De Villiers, and J. H. Van Vuuren. Two algorithms for secure graph domination.
Journal of Combinatorial Mathematics and Combinatorial Computing, 85:321–339, 2013.

[5] M. Chapelle, M. Cochefert, J. F. Couturier, D. Kratsch, R. Letourneur, M. Liedloff, and A. Perez.
Exact algorithms for weak Roman domination. Discrete Applied Mathematics, 248:79–92, 2018.

[6] E. J. Cockayne, P. A. Dreyer, S. M. Hedetniemi, and S. T. Hedetniemi. Roman domination in graphs.
Discrete Mathematics, 278(1-3):11–22, 2004.

30

[7] E. J. Cockayne, P. J. P. Grobler, W. R. Grundlingh, J. Munganga, and J. H. van Vuuren. Protection
of a Graph. Utilitas Mathematica, 67:19–32, 2005.

[8] H. Fernau. Roman domination: a parameterized perspective. International Journal of Computer Math-
ematics, 85(1):25–38, 2008.

[9] W. Goddard, S. M. Hedetniemi, and S. T. Hedetniemi. Eternal Security in Graphs. Journal of Combi-
natorial Mathematics and Combinatorial Computing, 52:1–12, 2005.

[10] M. A. Henning and S. T. Hedetniemi. Defending the Roman Empire - A new strategy. Discrete
Mathematics, 266(1-3):239–251, 2003.

[11] Y. Iwata. A Faster Algorithm for Dominating Set Analyzed by the Potential Method. In D. Marx and
P. Rossmanith, editors, Parameterized and Exact Computation, pages 41–54, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg.

[12] T. Kloks. Treewidth: computations and approximations, volume 842. Springer Science & Business
Media, 1994.

[13] W. F. Klostermeyer and C. M. Mynhardt. Protecting a graph with mobile guards. Applicable Analysis
and Discrete Mathematics, 10(1):1–29, 2016.

[14] J. Nederlof and J. M. M. van Rooij. Inclusion/Exclusion Branching for Partial Dominating Set and Set
Splitting. In V. Raman and S. Saurabh, editors, Parameterized and Exact Computation, pages 204–215,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[15] S.-L. Peng and Y.-H. Tsai. Roman domination on graphs of bounded treewidth. In Proceedings of the
24th Workshop on Combinatorial Mathematics and Computation Theory, pages 128–131, 2007.

[16] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. Journal of
Algorithms, 7(3):309–322, 1986.

[17] Z. Shi and K. M. Koh. Counting the Number of Minimum Roman Dominating Functions of a Graph.
ArXiv, 2014, 1403.1019.

[18] A. Tripathi. Six Ways to Count the Number of Integer Compositions. Crux mathematicorum, 39(2):84–
88, 2013.

[19] J. M. M. van. Rooij. Exact Exponential-Time Algorithms for Domination Problems in Graphs. PhD
thesis, University Utrecht, 2011.

[20] J. M. M. van Rooij. Fast algorithms for join operations on tree decompositions. In F. V. Fomin,
S. Kratsch, and E. J. van Leeuwen, editors, Treewidth, Kernels, and Algorithms: Essays Dedicated
to Hans L. Bodlaender on the Occasion of His 60th Birthday, pages 262–297. Springer International
Publishing, Cham, 2020.

[21] J. M. M. van Rooij, H. L. Bodlaender, and P. Rossmanith. Dynamic Programming on Tree Decomposi-
tions Using Generalised Fast Subset Convolution. In A. Fiat and P. Sanders, editors, Algorithms - ESA
2009, pages 566–577, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

31

