
Utrecht University
Department of Information and Computing Sciences

Master Thesis in Artificial Intelligence

The influence of using Adaptive Operator Selection in
a Multiobjective Evolutionary Algorithm Based on

Decomposition

Author
Jordi Verheul (4297369)

First Supervisor
Dr. Ir. D. Thierens

Second Supervisor
Dr. N. A. Alechina

June 2020

Abstract

Recently, a new algorithm has arisen for solving Multiobjective Op-
timization Problems (MOPs), called Multiobjective Evolutionary Al-
gorithms based on Decomposition (MOEA/D). This algorithm decom-
poses a MOP into a number of single optimization subproblems and
optimizes them simultaneously using an evolutionary process. Adapt-
ive Operator Selection (AOS) mechanisms are added to MOEA/D to
improve this evolutionary process by choosing the right mutation oper-
ators from a pool to be applied at the reproduction phase. This thesis
provides an overview of existing MOEAs, AOS mechanisms and the
combination of these two. Also, a new AOS mechanism is proposed. It
combines a fitness-rate-rank based (FRR) credit assignment from ex-
isting research with a probability based operator selection mechanism
that uses tournament selection. Unlike existing AOS methods using
FRR, the selection probabilities of the operators are solely based on
the relative order of the estimated rewards. The purpose of this is
to improve the balance between the exploration and exploitation of
the operators, and therefore improve the performance. This AOS is
then used within the MOEA/D framework to form a new algorithm:
MOEA/D-FRR-TS. Several experiments were conducted to test the
performance of this algorithm. Results of these experiments show that
there is no significant difference between MOEA/D-FRR-TS and other
probability based AOS + MOEA/D combinations. Furthermore, it is
shown that MOEA/D-FRR-TS using a pool of operators can improve
MOEA/D that uses a single operator.

1

Abbreviations

AOS Adaptive Operator Selection

AP Adaptive Pursuit

AUC Area Under Curve

DE Differential Evolution

DMAB Dynamic Multi-Armed Bandit

EA Evolutionary Algorithm

EVB Extreme Value Based

FIR Fitness Improvement Rates

FRR Fitness-Rate-Ranked Based

GD Generational Distance

HV Hypervolume

IBEA Indicator-Based Evolutionary Algorithm

IGD Inverted Generational Distance

MAB Multi-Armed Bandit

MOEA Multi-Objective Evolutionary Algorithm

MOEA/D MOEA based on Decomposition

MOEA/D-DRA MOEA/D with Dynamical Resource Allocation

MOP Multi-objective Optimization Problem

PF Pareto front

PM Probability Matching

2

PS Pareto set

SADE Self-Adaptive Differential Evolution

SlMAB Sliding Multi-Armed Bandit

SOP Single-objective Optimization Problem

SR Sum of Ranks

TS Tournament Selection

UCB Upper Confidence Bound

3

Contents

Abbreviations 2

1 Introduction 6
1.1 Goals . 8
1.2 Outline . 8

2 Background and related work 10
2.1 Multiobjective Optimization Problem 10

2.1.1 Solving a MOP . 10
2.1.2 Non-MOEA based methods 11
2.1.3 MOEAs . 11
2.1.4 Domination-based MOEAs 12
2.1.5 Indicator-based MOEAs 14
2.1.6 Decomposition-based MOEAs 15
2.1.7 Performance indicators 15

2.2 MOEA/D . 18
2.2.1 Decomposition methods 18
2.2.2 MOEA/D algorithm 20
2.2.3 Improvements of MOEA/D 22
2.2.4 Differential Evolution (DE) 23

2.3 Parameter setting . 26
2.4 Adaptive Operator Selection 27

2.4.1 Credit assignment . 28
2.4.2 Fitness-based credit assignment 29
2.4.3 Rank-based credit assignment 32
2.4.4 Operator selection . 37
2.4.5 Bandit-based AOS methods 37
2.4.6 Probability-based AOS methods 41

2.5 Combining MOEA and AOS 43
2.5.1 Comparing MOEA/D and AOS combinations 44
2.5.2 Parameter influence . 47

3 Methods 49
3.1 New algorithm: MOEA/D-FRR-TS 49
3.2 Algorithms pseudo-code . 50
3.3 Software & Framework . 52

4

3.4 Experiments . 52
3.4.1 Experiment 1: Comparison with Adaptive Pursuit and

Probability Matching 52
3.4.2 Experiment 2: Parameter analysis 53
3.4.3 Experiment 3: Pool of operators vs. single operator . . 54
3.4.4 Measurements . 54

4 Results 56
4.1 Experiment 1: Comparison with Adaptive Pursuit and Prob-

ability Matching . 56
4.1.1 Operator Dynamics . 56
4.1.2 Performance . 57

4.2 Experiment 2: Parameter analysis 59
4.2.1 Operator Dynamics . 59
4.2.2 Performance . 63

4.3 Experiment 3: Pool of operators vs. single operator 64
4.3.1 Performance . 64
4.3.2 Pareto Front approximation 64

5 Discussion & Conclusion 67
5.1 Discussion & Future Work . 67
5.2 Conclusion . 68

Appendices 70

A Experiment 1 70

B Experiment 2 73

C Experiment 3 76

5

1 Introduction

Evolutionary Algorithms (EAs) are known for being able to find near-optimal
solutions in hard optimization problems, which are problems with a very large
solution space, and their ability to be applied in a wide range of fields. Due
to the exponential increase of computational power, EAs can become even
more useful, since they will be able to perform the same amount of work in
less time. The idea behind EAs is to mimic the evolution which we know
from biology. It uses the same stochastic mechanisms such as reproduction,
mutation, crossover and selection. An EA starts off with a random initial
population of solutions. Then it will loop through the following steps, which
together are called a generation, until some stopping criteria is met:

1. Selection: the x best solutions from the population are selected (the
parents) according to its fitness

2. Reproduction: these parents will then be mutated and recombined
using variation operators to create new solutions (the offspring)

3. Evaluation: the fitness of the offspring is computed

The solutions in the population at the time that the algorithm has ter-
minated are the best solutions found so far, which are either optimal or
near-optimal, provided that the algorithm has run long enough. [1] gives an
example of an optimization problem that can be solved using an EA. As you
can see, the problem contains a single objective function that needs to be
optimized. In this case, this function needs to be minimized.

Besides the use of EAs in single-objective optimization problems (SOPs),
where only one objective has to be maximized or minimized, are EAs also ap-
plied in the context of multiobjective optimization problems (MOPs). These
algorithms are called multiobjective evolutionary algorithms (MOEAs). In
a MOP, the problem is defined by multiple objective functions, which need
to be optimized simultaneously. Since we don’t know the weights to these
objectives, we can not assign a single value (a fitness) to a solution, whereas
this is the case for SOPs. We can therefore also not compare the solutions
easily by a single value. Here, we can only state that solution x = (x1, . . . , xn)
is better than solution y = (y1, . . . , yn) if (assuming that the problem is a
minimization problem):

1. fi(x) ≤ fi(y) ∀i ∈ {1, 2, ...,m}, and

6

2. fj(x) < fj(y) for at least one j ∈ {1, 2, ...,m}

where fi is the ith objective function. In this case, we say that solution
x dominates solution y. A solution that is not dominated by any other
solution in the objective space is called Pareto optimal. The corresponding
vector containing all objective values belonging to this solution is the Pareto
optimal vector. The set of all Pareto optimal solutions is called the Pareto set
(PS) and the set of all Pareto optimal vectors is called the Pareto front (PF).
All solutions in the PS are not absolutely better than any other solution in
the set, which makes all of them acceptable.

Since in most MOPs, the objectives are contradictory, we can not find a
single solution that minimizes (or maximizes in a maximization problem) all
objectives, i.e. a single optimal solution. However, we can try to approximate
the PF. This is exactly what a MOEA does. By evolving the solutions
through many generations, the MOEA would hopefully find multiple non-
dominated solutions as close to the pareto set as possible. After the pareto
set is found, a decision maker chooses a final solution from this set. Important
to note is that an MOEA has three goals when approximating the pareto set
[2]:

1. Minimizing the distance between the approximated pareto front and
the real pareto front (also known as convergence)

2. Maximizing the quality of distribution of the approximated pareto set
(also known as diversity)

3. Maximizing the size of the approximated pareto set (also known as
coverage)

Many versions of MOEAs have been proposed and investigated through
the years. All these different implementations are using variation operators
to create a more diverse offspring. Although these MOEAs show promising
results, there is a downside. First of all, they often only use one type of vari-
ation operator in their algorithm. However, one operator might be better for
one problem and another for another problem. So, it is probably better to
choose amongst a set of operators and then use the one that performs the
best for the problem we are optimizing. However, this would be a sufficient
method if 1) we are sure that the operator that is used for a problem really
is the best one to use, and 2) the environment is stationary, meaning that

7

the reward distribution1 of the operators is the same at each moment of the
optimization process and does not change. The former would be possible if
there is enough training to learn how every operator performs, however this
can be very computationally expensive. The latter is something we can’t
assume, as mentioned by [3]. An operator might be the best at one point
of the evolutionary process, but another might be better later on. So, even
if we have learned what the best operator for a particular problem is, it is
not robust against changes in the environment in terms of changing oper-
ator rewards. A solution to this is the integration of an Adaptive Operator
Selection (AOS) mechanism into MOEA. An AOS mechanism captures the
performance of the different operators during the process and keeps track of
it. Based on the history of the operators’ performances, the AOS can make
a more proper decision on what operator should be applied at a particular
moment.

1.1 Goals

The first goal of this paper is to give an overview of what MOEAs and
AOS mechanisms exists, as well as the combination of these two. Secondly,
a new AOS mechanism is proposed. Unlike existing mechanisms, it uses
tournament selection to select operators, which is solely based on the relative
order of the estimated rewards. The purpose of this is to improve the balance
between exploration and exploitation of operators, and therefore improve the
performance as well. The new AOS algorithm is combined with a special
version of MOEA, called MOEA based on Decomposition (MOEA/D). An
experimental study is performed to assess the quality of the new algorithm.

1.2 Outline

This paper will be structured as follows. In Section 2, more background is
given about the subject as well as related work. Here, we will elaborate on
MOPs and how different types of MOEAs can be used to solve them. This is
followed by an extensive explanation of a special kind of MOEA that is based
on Decomposition, i.e. MOEA/D. Lastly, it explains what AOS consists of
and how it is combined with MOEA/D. Then in Section 3, a new algorithm
is proposed and an overview is given of the experimental studies that are

1The operator reward distribution represents the performance of the operators.

8

performed. This is followed by an explanation of the results in Section 4.
Finally, Section 5 discusses the results, together with future work and a
conclusion of this thesis.

9

2 Background and related work

In this section, we will look at previous work performed by other research-
ers that can be interesting for this paper. Additionally, more background
knowledge is given about the theory that is used throughout this paper.

2.1 Multiobjective Optimization Problem

In order to talk about different methods and algorithms that are being used
to solve a Multiobjective Optimization Problem (MOP) in this paper and
in other relevant research, it is important to understand what a MOP is
exactly. A MOP consists of multiple conflicting objective functions that
need to be optimized. It will either be minimized or maximized, depending
on the problem. We can define a MOP as follows [4]:

maximize/minimize F (x) = (f1(x), f2(x), ..., fm(x))

subject to x ∈ Ω
(1)

where Ω is the decision space, x = (xi, ..., xn) ∈ Ω is the decision vector and
fi(x) the objective function corresponding to the ith objective. Additionally,
the problem may contain a number of constraints.

As [5] explains, in a single-objective optimization problem (SOP) the goal
is to find the best solution by looking at the objective function that corres-
pond to the problem. Since this objective function has a single value, we
can just maximize or minimize this function to determine the best solution.
However, in MOPs it is not that trivial. Since the problems consists of mul-
tiple (probably) conflicting objectives, we cannot talk about a single optimal
solution. Instead, we can define a Pareto set as mentioned before, containing
all the non-dominated solutions.

2.1.1 Solving a MOP

To find this Pareto set, or at least approximate it, an algorithm needs to be
applied. There are several ways of doing this. Most of them are solved using
evolutionary algorithms, i.e. MOEAs. Nevertheless, there are methods that
use other principles. First, we will take a look at the latter.

10

2.1.2 Non-MOEA based methods

One method that can solve a MOP is with the use of Simulated Annealing
(SA) [6]. SA is an improvement upon local search which aims at avoiding
ending up in local optima. When local search is applied to a MOP, it keeps
track of the Pareto set containing all non-dominated solutions so far. It
starts with an initial solution and can already place this in the Pareto set,
since it is empty and is therefore not dominated by a solution in the set. It
will then create a new solution in the neighborhood of the current solution.
If the solution is an improvement, i.e. it dominates the current solution, it
will replace the current solution. It will also replace that solution in the
Pareto set, since it dominates. If we continue this procedure, the Pareto set
will always end up with only one solution after the algorithm has terminated,
which is the local optimum. This is where SA does the trick: instead of always
rejecting a worse solution from the neighborhood, it sometimes accepts it.
This allows the algorithm to escape the local optimum and find new ones,
possibly new pareto optimal solutions. This way, the full solution space is
explored which leads to a better approximation of the Pareto set. A number
of different implementations where SA is used in multiobjective optimization
algorithms is proposed in [6].

Another non-MOEA based method is Particle Swarm Optimization (PSO)
[7]. In PSO, a population of so called particles is used to approximate the
Pareto set. All these particles have a direction in which they move. It has
some overlap with MOEAs in the way that it uses a population of individuals
(in this context called particles) whose internal values are updated iteratively.
One main difference is that PSO does not select the best particles to create
the next offspring with. Instead, the particles are updated by following the
so called “leaders”. The amount of exploration is hereby dependent on dif-
ference in direction between the leaders and the particular particle. PSO
has become popular due to its simplicity and applicability in a wide range
of fields. [7] gives a comprehensive classification of different PSO-based al-
gorithms for MOPs (MOP-SOs) and corresponding examples.

2.1.3 MOEAs

Despite the existence of some methods that are not based on evolutionary
algorithms as described in the previous section, most methods for solving
MOPs are based on Multi-Objective Evolutionary Algorithms (MOEAs).

11

These algorithms use evolutionary algorithms in the optimization process.
The first concept of MOEA was brought up by Schaffer [8] who found

out that genetic algorithms (GAs), a specific type of EA, can help to optim-
ize a MOP. He implemented this idea into a software system called Vector
Evaluated Genetic Algorithm (VEGA). The idea behind this algorithm is the
same as every other EA: the fittest survive. The best solutions move on to
the next generation and will generate offspring. However, Schaffer already
pointed out a potential problem. Since the selection was done based on dom-
inance, solutions that excel in one objective function have a higher chance of
surviving and end as part of the approximated Pareto set. Solutions which
have values that are less outstanding (but still above average perhaps) might
not survive, but could actually be more of interest. This would be less of a
problem if a utopian solution2 exists, however most of the time that is not
the case.

Partially because of this work, the interest in MOEA grew. Many MOEAs
were invented, including newer version of old algorithms. [2] categorizes
MOEAs into three classes: Domination-based, Indicator-based and Decomposition-
based.

2.1.4 Domination-based MOEAs

To determine which solutions may proceed to the next generation and may
be used to generate offspring, a selection mechanism is needed. To make
these selections, it should be able to compare solutions with each other. A
domination-based MOEA does this be using the pareto dominance relation-
ship we have talked about in the introduction. A solution will then continue
if it dominates its parent.

A problem regarding MOEAs that compare solutions based on domin-
ance, is that two solutions that do not dominate each other are incompar-
able, in principle. In a problem with many objectives, this would happen
very often, leading to many solutions that are evenly “good”. Around the
year 2000, several of these MOEAs were designed with techniques to reduce
this problem. The most well-known and popular were PAES [9], SPEA2
[10] and NSGA-II [11]. When comparing two solutions with each other and
determining which is the best, it does not only look at just both solutions,
but also uses dominance information from solutions of the population. This

2A utopian solution is a solution where all objective values are better than the objective
values of any other solution in the solution space

12

way, the set of all solutions witness a relation that is closer to a total order 3.
SPEA2 is based on its predecessor, SPEA. SPEA introduced the concept of
an archive, which keeps track of the nondominated solutions, i.e. the Pareto
set. This archive can be seen as an external population, besides the regular
population of the EA. In SPEA2, the individuals (solutions) are assigned a
fitness based on both the solutions it dominates and the solutions by which
it is dominated.

PAES also wants to minimize the amount of incomparable solutions. In
PAES, new solutions (the offspring) are generated by mutating current solu-
tions (the parents), also known as local search. Here, if the offspring is an
improvement, i.e. if it dominates its parent, it replaces the parent. However,
if they are not dominated by each other, the offspring will be compared with
the non-dominated solutions from the archive. If it dominates a solution
from this archive, it will become the new parent after all. If not, it still has
the opportunity to become the parent if it resides in a less crowded region of
the objective space than its parent does. This way, PEAS is always able to
create a total order of the solutions.

NSGA-II uses another technique to be able to compare solutions that do
not dominate each other. First, the individuals are split into different classes
where all solutions in the same class are not dominated by any solution in
that same class. To define an order within each class, it uses a measure that
represents the average distance between a solution and the two solutions that
are the closest along each objective.

Even though these algorithms showed good results, they are not suitable
for many-objective optimization. [12] showed that when a problem consists
of many objectives, almost all solutions in a population are non-dominated.
As [13] correctly mentions, these domination-based MOEAs have a hard
time in generating any selection pressure toward the Pareto front, since it
cannot decide which solutions are more promising and therefore useful for
reproduction. On top of that, since all these solutions are nondominated, an
explicit diversity preservation schema is needed to sustain diversity among
the population [2], leading to an increase of the time complexity.

3A total order means that we can compare all pairs of solutions. So, for every two
solutions A and B in the objective space, A is either better than B, worse than B or
evenly good as B.

13

2.1.5 Indicator-based MOEAs

To deal with many-objective optimization problems, a better approach would
be with the use of indicators, also known as Indicator-Based Evolutionary
Algorithms (IBEAs). In IBEAs, additional performance indicators are used
to determine which solution has a better contribution to the Pareto set, and
therefore must be assigned a better fitness. [14] suggests a general IBEA
that compares pairs of solutions with the use of an arbitrary indicator. This
way, any preference information can be adopted in this algorithm through
an indicator. An example of such an indicator that is often used, is the
hypervolume (HV). The HV is calculated for a Pareto set and is equal to
size of the objective space that is dominated by that Pareto set. The idea is
that a Pareto set that has a greater HV, is a better approximated Pareto set.
Hence, if a new solution is generated, it would be seen as an improvement
if the Pareto set with this solution would also give a greater HV. Several
hypervolume-based MOEAs are developed, such as SMS-EMOA [15]. These
algorithms seemed to be good alternatives to dominance based algorithms
such as NSGA-II and SPEA2. An additional advantage is that IBEAs in
general do not require mechanisms that preserve the diversity among solu-
tions in the approximated pareto optimal set. However, they still face some
flaws. The time complexity of these algorithms is exponential in the number
of objectives. So, even though it is able to deal with more than just a few
objectives, it will take a long time. [16] showed how reduction techniques can
be added to a hypervolume-based MOEA in order to reduce this problem.
[17] proposed HypE, a hypervolume-based MOEA that uses Monte Carlo to
approximate the hypervolumes. This approach is faster, since it does not
use, and therefore does not have to calculate, the exact hypervolume values.
Instead, it compares solutions by their rank induced by the hypervolumes.
[18] developed QHV-II, a hypervolume-based MOEA, which uses a divide
and conquer scheme to split the problem of calculating the hypervolume into
smaller subproblems.

Despite of these improvements, the computational costs to calculate the
hypervolumes still grows exponentially with the increase of the number of
objectives. Other indicators that are less computationally expensive have
been tried as well. Examples are the enhanced inverted generational distance
(IGD-NS) [19] and R2 [20] indicators, which are applied in MOEAs in for
example [21] and [22], respectively.

14

2.1.6 Decomposition-based MOEAs

As we have seen with the MOEAs we have talked about so far, the assign-
ment of fitness to solutions in order to compare them has been a major issue.
This is because it is very hard to assign a single value to a solution. In 2007, a
completely new variant of MOEA was proposed, called Multi-Objective Evol-
utionary Algorithm Based on Decomposition (MOEA/D) [23], which would
remove this problem. MOEA/D uses an approach that decomposes the MOP
into several single-objective optimization subproblems. These subproblems
are then solved simultaneously using an evolutionary algorithm. Since these
subproblems are single objective, the solutions can be assigned a single value
and therefore easily be compared. This allows it to be solved by existing
single-objective techniques. Also, it allows us to incorporate Adaptive Oper-
ator Selection (AOS) mechanisms into the algorithm, which will be discussed
later on in this paper. Results show that MOEA/D outperforms other suc-
cessful algorithms, such as NSGA-II. The success of this algorithm is among
the reasons why in this paper we are using it to see how it can be improved.
In section 2.2, we will give a more comprehensive explanation of MOEA/D.

2.1.7 Performance indicators

We have now seen various ways methods and algorithms that can be used to
solve a MOP. If we want to know how well an algorithm performs and how it
compares to other algorithms, we need a way to measure the performance of
its final output. We call these measurements performance indicators. When
working with Single Optimization Problems, we can simply take the solu-
tion that has the best fitness and use this as a measurement of the quality
of the algorithm. This is not possible in MOEAs, since we cannot attach
a single value to a solution. Therefore, we cannot take out one best solu-
tion and compare it to another algorithm’s best solution. What we can do
however, is compare the final set of solutions with the final set of solutions
of another algorithm. In section 2.1.5, we have seen that indicators can be
used to determine how much a new solution contributes to the approximated
Pareto set. It then assigns a fitness to a solution based on this contribution.
There are several ways of comparing approximated Pareto sets of different
algorithms, which allows us to determine the performance of an algorithm.

A well-known performance indicator in MOEAs is the hypervolume (HV)
[23]. The hypervolume represents the area of the objective space that is

15

dominated by at least one solution from the approximated Pareto set. Figure
1 shows an example of a two-objective problem. The blue points form the
approximated PF. The red point is used as the reference point to calculate
the hypervolume. When your goal is to minimize a problem, the larger
hypervolume, the better. The hypervolume measures the convergence of the
approximated PF.

Figure 1: The hypervolume of a two-objective problem denoted by the light blue are

An advantage of HV is that algorithms can be compared without the use
of a reference front. So, even if the real PF is unknown, we can still run the
algorithms, take a reference point and determine which performs best. On
the other hand, since it does not take into account the real PF, we can’t say
anything about how much improvement is left, which might be something
that is desirable.

Another performance indicator is the Generational Distance (GD) indic-
ator [24]. This indicator gives an idea of how ”far” the solutions in the
approximated front are from those of the real PF. Consider S, the approxim-
ated PF and P , the points on the real PF. The GD is calculated as follows:

GD(S, P) =

√∑n
i∈S d(i, P)2

|S|
(2)

16

where d(i, P) is the euclidean distance between point i and the nearest
point in P . The GD measures the convergence of S; the smaller the value,
the better.

[25] made a variation of this, the Inverted Generational Distance (IGD),
by changing up the calculation:

IGD(S, P) =

∑n
i∈P d(i, S)

|P |
(3)

where d(i, S) is the euclidean distance between point i and the nearest
point in S. In contrary to the IG and HV, IGD now measures both conver-
gence and diversity of S, providing that P is large enough. To illustrate this,
look at figure 2. The red and blue points form two different approximated
Pareto Fronts, and the red and blue lines indicate the distance between the
points on the approximated PF and points on the real PF. The GD is used in
Figure 2a and the IGD in Figure 2b. Both sets of points are about equal in
terms of convergence (they all have about the same distance to the real PF).
However, they are not the same in terms of diversity, since the red points are
better scattered then the blue ones. Still, the GD (Figure 2a) of both sets
will be about the same, since all the red and blue lines have about the same
length. So, the GD does not measure diversity. For the IGD on the other
hand, the sum of the distances will be significantly larger and therefore also
the IGD. Thus, the IGD does measure diversity.

(a) GD (b) IGD

Figure 2: The distances between points of the real PF and the approximated PF using
(a) the Generational Distance and (b) the Inverted Generational Distance.

17

2.2 MOEA/D

As argued by [26], a pareto optimal solution to a MOP could be an op-
timal solution of a single-objective optimization problem whose objective
is a weighted aggregation of the all the objectives. This is the rationality
behind MOEA/D. It decomposes the MOP into N single-objective optim-
ization subproblems (SOPs) by aggregating the objectives using different
weight vectors. It maintains a population containing the best solution for
every subproblem found so far. Therefore, the population size is equal to
N . The neighborhood of a solution is defined by the weight vectors of the
solutions. If two weight vectors are close to each other, the corresponding
solutions should also be very similar. Therefore, to generate new offspring, a
parent is combined with several other solutions that has weight vectors close
to the parent’s corresponding weight vector. During the search, an external
population is kept track off to store the non-dominated solutions found during
the search. After the algorithm has terminated, this population is returned
as the approximated Pareto set.

2.2.1 Decomposition methods

Thus, before the MOEA/D algorithm can begin, the problem has to be de-
composed intoN single objective subproblems, with every subproblem having
its own objective function that will be optimized simultaneously. This ob-
jective function is a weighted aggregation of all objectives in the MOP. The
weights that are used are defined as follows. Let λi = (λi1, . . . , λ

i
m), i = 1...N

be the weight vector belonging to the ith subproblem with
∑m

i=1 = 1 and
λji ≥ 0 for all i ∈ {1, . . . ,m}. Then, using these weights, an objective func-
tion is assigned to every subproblem. There are several approaches to do
this. Two well-known are the Weighted Sum and Tchebycheff approaches
[27].

Weighted Sum

When using the weighted sum approach, the following objective function has
to be optimized for the jth subproblem:

gws(x|λj) =
m∑
i=1

λjifi(x) (4)

18

Depending on whether the problem has to be minimized or maximized, the
objective functions have to be minimized or maximized as well, respectively.

Tchebycheff

When using the Tchebycheff approach, the following objective function has
to be minimized (regardless of the type of problem) for the jth subproblem :

gte(x|λj, z∗) = max
1≤i≤m

(λji |fi(x)− z∗i |) (5)

where z∗ = (z∗1 , . . . , z
∗
m) is the reference point. During the search, z∗i corres-

ponds to the best value foud so far for objective fi.

The weighted sum and the Tchebycheff approach are methods that are widely
used in decomposition based MOEAs. However, they each have their own
situations in which they work well. The weighted sum usually gives good
results when the Pareto front of the problem is convex4. However, when the
Pareto front is concave, it will face a problem. To illustrate this, lets take
a look at Figure 3, which has a concave PF. The algorithm has generated
a solution x (the blue dot) that is on or close to the PF. However, when
using the weighted sum approach, every solution in the yellow area is an
improvement over solution x. This means that eventually all N solutions in
the population will converge to points that lay either on the intersection of
the PF with the x-axis or the y-axis. This is undesirable behaviour, since one
of the goals of an MOEA is to maximize the diversity of the solutions in the
approximated Pareto set. With Tchebycheff, this problem will be avoided.
Here, the distance to a reference point is used to determine the fitness of a
solution. This way, the shape of the Pareto front does not matter.

Although tchebycheff is better when working with concave Pareto fronts,
the weighted sum approach is a lot faster, partly because it does not have
to take into account a reference point. This is why [28] came up with an
approach that switches between these two. Here, the algorithm uses the
weighted sum approach for the most part, since it is relatively fast, and
switches to Tchebycheff when a non-convex region of the Pareto front is
detected. The approach does not seem to have good results after all, be-
cause of the difficulty in developing an effective non-convex region detection

4The PF is called convex if the line segment of two points on the PF is in the feasible
area. Otherwise it is called concave.

19

Figure 3: Showing the behaviour of the weighted sum approach in the case of a concave
Pareto front. The yellow area indicating the points that are an improvement over solution
x.

mechanism. However, this research did lead to other ideas. [13] for ex-
ample, proposes an approach in which multiple decomposition methods are
used simultaneously. They showed that this outperformed the use of a single
decomposition method. New decomposition methods have been designed
through the years as well. [29] proposes two new approaches that improve
the performance of decomposition based MOEAs by adjusting the balance
between diversity and convergence, two important goals of an MOEA.

2.2.2 MOEA/D algorithm

After the decomposition method is determined, the actual procedure can
start. The problem that is used can be a minimization or a maximization
problem. In this case, we are using a minimization problem. MOEA/D
maintains the following information during the search:

1. A population of N solutions x1, . . . , xN ∈ Ω where xi is the current
best solution to the ith subproblem

2. FV 1, . . . , FV N , where FV i = F (xi) using equation (1)

20

3. z = (z1, . . . , zm), where zi is the lowest value found so far for objective
fi

4. An external population (EP) where all non-dominated solutions are
stored

MOEA/D is given the following information as input:

1. The MOP

2. A stopping criterion

3. N : the number of subproblems

4. λ1 . . . λN : N weight vectors

5. T : the number of weight vectors in the neighborhood of each weight
vector

The algorithm is as follows:

1. Initialization:

1.1. Initialize z = (z1, . . . , zm), where zi =min(fi(x
1), fi(x

2), ..., fi(x
N))

1.2. Generate initial population x = (x1, . . . , xN)

1.3. Calculate B(i), which are the indices of the weight vectors closest
to vector λi

1.4. Initialize FV i = F (xi)

2. Update:

For i = 1,. . . , N :

2.1. Generate a new solution y in the neighborhood of xi using B(i)

2.2. For every objective j: update zj to fj(y) if fj(y) is an improvement
of zj

2.3. Update neighboring solutions of xi if y is an improvement of the
objective function of the neighbour. In that case, also update the
corresponding FV value.

2.4. Update EP : remove all vectors dominated by F (y) and add F (y)
if no vectors in EP dominate F (y)

21

3. Stopping criteria: if stopping criteria is met, then stop and return
EP . Otherwise go to Update

The advantage of MOEA/D above dominance based MOEAs and indic-
ator based MOEAs is that it can deal with many objects, due to the simplicity
of the fitness evaluation. In fact, the fitness is just a single value as opposed
to a set of objective values. Moreover, diversity along the PF is maintained
automatically. Because of the weight vectors, the solutions evolve in approx-
imately the same direction towards the PF. Choosing evenly spread weight
vectors in the beginning, allows the approximated Pareto set the be diverse
in the end (especially when using the Tchebycheff approach). MOEA/D
also has a lower computational complexity in comparison with for example
NSGA-II, since each subproblem is optimized using only information from its
several neighboring subproblems. [26] showed that MOEA/D outperforms or
performed similarly to alternative algorithms on most test instances.

MOEA/D brought new light in the world of multiobjective problem op-
timization with the use of evolutionary algorithms. The algorithm on its own
already seemed to work quite well. But, more importantly, it showed room
for improvement. That is why after the introduction of MOEA/D in 2007
many new algorithms arose based on this idea, mostly to mitigate the short-
comings. We have seen in section 2.2.1 that MOEA/D can be improved with
the use of an appropriate decomposition method. Nevertheless, MOEA/D
can be enhanced in many other ways. The next will give a summarization of
some of the important algorithms that expanded on MOEA/D.

2.2.3 Improvements of MOEA/D

As we can see in the previous section, new solutions are generated for every
subproblem every iteration. As a matter of fact, every subproblem is treated
equally and given the same amount of computationally effort. However, they
might have different computational difficulties. Therefore, it could make
sense to put different amounts of energy into different problems. This is
the idea behind MOEA/D with Dynamical Resource Allocation (MOEA/D-
DRA) [30]. MOEA/D-DRA divides its computational efforts over the sub-
problems based on their usefulness. During the search process, it keeps track
of an extra vector π = (π1, . . . , πN), where πi is the utility of subproblem i.
This measures how much improvement of the objective function of subprob-
lem i has been caused by xi (the solution belonging to the ith subproblem).

22

The computational efforts are then distributed over the subproblems based
on their utilities. Due to this adaptation, the overall costs can be reduced,
which improves MOEA/D.

[31] tries to improve the original algorithm using a whole different ap-
proach. They designed pMOEA/D, a thread-based parallel version of MOEA/D
that allows the algorithm to be ran on multiple cores on a multi-core pro-
cessor. To do this, the MOEA/D algorithm is adjusted a bit. The iterations
from the main for-loop, i.e. the subproblems, are distributed among the
threads. This way, each thread can work on a part of the population. As
we know from multi-threading, the threads can interfere with each other,
since they share the same memory. Therefore it is necessary that the parts
where global variables are being updated are synchronized, so that the as-
signment from different threads does not intertwine, causing undesirable be-
havior. Results show that a notable time reduction can be achieved using
this parallel version, while the solution quality does not significantly change,
with a few exceptions.

To generate new solutions for a subproblem, MOEA/D uses only inform-
ation from the subproblem’s neighboring subproblems. The neighborhood of
a subproblem is defined by the distance of the weight vectors. The neigh-
borhood size T is important to the performance of the algorithm. In the
original MOEA/D this parameter is fixed and determined from the begin-
ning. However, the neighborhood size that is the best for one problem, might
not be the best for another. Furthermore, within a problem, the optimal size
might change over time as well. [32] addresses that a large T could be used
for solutions that are trapped in locally optimal regions to get out, whereas
a small T is useful for local exploitation. That is why they came up with
ENS-MOEA/D, which uses a pool of different T -values. Every time the
neighborhood of a subproblem is determined, a T -value from the pool will
be selected with a probability based on their performance and used to create
the neighborhood. This way, the neighborhood size can dynamically adapt
to the most appropriate value at a particular moment. Experimental res-
ults showed that ENS-MOEA/D outperformed the original MOEA/D with
different fixed Neighborhood sizes.

2.2.4 Differential Evolution (DE)

Another extension is MOEA/D-DE [18], which is based on differential evolu-
tion (DE). DE [33] is an evolutionary algorithm that instead of creating new

23

offspring from two parents, combines a parent with a weighted difference of
several other individuals of the population to generate a new solution. First,
a mutation occurs with the use of DE mutation operators. These operators
add a weighted difference between two vectors (of the solutions) to the par-
ent, a.k.a. the target vector, to create the mutant vector. The two vectors
are in the neighborhood of the target vector. DE operators often outperform
other genetic operators in single objective optimization. Since in MOEA/D,
a set of single objective functions are being optimized, it make sense to use
an DE operator in MOEA/D. Different DE operators exists, including these
four commonly used ones:

1. DE/rand/1:
vi = xr1 + F ∗ (xr2 − xr3)

2. DE/rand/2:
vi = xr1 + F ∗ (xr2 − xr3) + F ∗ (xr4 − xr5)

3. DE/current-to-rand/2:
vi = xi +K ∗ (xr1 − xi) + F ∗ (xr2 − xr3) + F ∗ (xr4 − xr5)

4. DE/current-to-rand/1:
vi = xi +K ∗ (xr1 − xi) + F ∗ (xr2 − xr3)

where xi = (xi1, . . . , x
i
n) is the ith target vector, vi is the mutant vector and

xr1, xr2, xr3, xr4 and xr5 are different solutions from the neighborhood of xi.
Then, a binomial crossover is used to mix the target vector with the

mutation vector the get the trial vector. Every variable uij from the trial
vector ui = (ui1, . . . , u

i
n) is created as follows:

uij =

{
vij, with probability CR

xij, with probability 1− CR
(6)

In MOEA/D-DE, the DE-rand-1 is used, followed by the crossover from
equation (6).

We can see that the procedure above involves three extra parameters:
F , K and CR. F and K are used to control the influence of the difference
between the two solutions on the mutant vector. CR controls the crossover,
whereas a larger value for CR means that the trial vector is expected to in-
herit more information from the mutant vector and less from the target vec-
tor. To improve the performance of the algorithm, particularly in MOPs with

24

complicated Pareto fronts, MOEA/D-DE also applies a polynomial mutation
to the trial vector with probability pm. The resulting vector is then the new
offspring.

The algorithm is compared with NSGA-II with the same reproduction
operators. It turned out that MOEA/D-DE can outperform NSGA-II-DE.
On top of that, MOEA/D-DE is less sensitive to the hyperparameters (F
and CR), which makes the algorithm more robust.

25

Although all these extended MOEA/D algorithms reduce or completely
remove some of the flaws that the regular MOEA/D entails, there is still an
important issue that has not been addressed yet in this paper. It is about
the application of variation operators in the evolutionary process. In pre-
vious discussed MOEA/D based algorithms, the new offspring is generated
with the use of the same mutation operator during the optimization process,
regardless of the problem or time step. However, this might be a very naive
approach. As [34] addresses, different problems require different paramet-
ers, and therefore different operators, even for the same algorithm. So, it
might be better not to stick to one operator for every problem, but choose
an operator that is the best for the problem in question. However, using
the same mutation operator across the whole process might also not be a
good idea, since different operators might be good at different stages of the
optimization process. For example, in the earlier stages, large mutation steps
might be good for exploration in the search space, while later it might be
better to apply a lot of small mutations in order to fine-tune the suboptimal
solutions [35]. Therefore, it might be a good idea to choose amongst a set
of operators. This can be done with the use of parameter setting. The next
section will explain what this includes and goes deeper into different variants
of parameter setting. The subsequent section will explain how it can be used
to solve the issue described above.

2.3 Parameter setting

As discussed in the previous section, it is important to determine which oper-
ator to apply. This is referred to as parameter setting [30]. Parameter setting
involves the determination of a parameter for an algorithm, such as the right
operator. Parameter setting can be divided into two categories: parameter
tuning and parameter control. Parameter tuning involves the determination
of a parameter prior to running the algorithm. This is mostly done by doing
a few practice runs and experimenting with different values to find suitable
values. Then, the actual run can be performed with these values. However,
this can be very time consuming and computationally expensive. Besides,
this learning would be useless if the problem we are working with is in a
non-stationary environment, meaning that the performance of the operators
change during the optimization process. And since it is intuitively obvious
and proven that in an EA different parameter values might be optimal at
different stages of the process, making it a non-stationary process [35], we

26

cannot really use this type of parameter setting here. This is where para-
meter control comes in place. Instead of determining the values before the
run and maintaining these values along the run, the values are controlled
during the search process. This means that during the run, the parameters
are learned and adjusted to the right values. Different kinds of parameter
control exists:

• Deterministic parameter control: the parameter values are adjus-
ted based on some predefined rules. It does not use any kind of feedback
during the search.

• Self-adaptive parameter control: the parameters are part of the
evolutionary process. As with the solution variables, the parameters
are also altered with the use of variation operators.

• Adaptive parameter control: the parameters use feedback from the
search to update their values.

We have already seen an example of an adaptive parameter control method
in section 2.2.3, that is ENS-MOEA. Here, the neighborhood size is dynam-
ically adapted during the search process. In this paper, we will focus on a
special case of adaptive parameter control, called Adaptive Operator Selec-
tion (AOS). An AOS algorithm keeps track of the performance of an operator
and makes a selection based on those performances. Later on in this paper,
we will see that AOS can be incorporated into MOEA/D to improve its per-
formance. First, we will elaborate more on AOS and see which AOS methods
exists.

2.4 Adaptive Operator Selection

Adaptive Operator Selection (AOS) is a technique used to determine which
variation operator should be used at a certain moment in a MOEA process.
An AOS method can be broken down into two main tasks: Credit assignment
and Operator selection. The former consists of assigning credit to operators
based on their performance to determine their quality, while the latter uses
this quality to select the right operator. An important issue that these two
have to deal with is the so called Exploration vs. Exploitation (EvE) di-
lemma [3]. This dilemma implies that we want to exploit the operators that
previously performed the best as much as possible, while also exploring some

27

worse performing operators as well. This is because the environment can be
expected to be non-stationary. So, operators that perform poorly in the past,
might get better over time. Therefore, it is necessary to try them from time
to time. The balance between this exploitation and exploration is what the
EvE dilemma is concerned with.

Different AOS algorithms exists and can vary in the way these two tasks
are carried out. Some algorithms differ in the way they assign credit to the
operators but have for example the same operator selection, or vice versa.
In general, most credit assignment methods are either fitness-based or rank-
based. In the former, the quality of an operator depends directly on the
fitness improvement between child and parent, while the later defines a rank
first, based on the fitness improvements, and uses these ranks to determine
the credit. The operator selection of an AOS is usually either based on
multiarmed bandit (MAB) or probability based. MAB based methods use
the quality of an operator directly in a deterministic rule to choose the next
operator to be applied. Probability based methods assign a probability based
on these qualities first. Then, an operator is chosen through a roulette wheel-
like process using these probabilities. In sections 2.4.1 and 2.4.4, we will go
through various important and recognized credit assignment and operator
selection methods and their associated characteristics.

2.4.1 Credit assignment

The credit assignment is concerned with how much credit must be assigned to
an operator based on its performance. For every operator, a quality is kept
track of. This value characterizes how “good” an operator is at a certain
moment. In this paper, this value will be denoted with qop,t, representing the
quality of operator a at time t. After an operator has been applied to generate
offspring, a reward is returned. This value represents the performance of the
operator after application, usually the fitness improvement between parent
and child it induced, and will be denoted as rop,t, the reward induced by
operator a at time t. After the reward is obtained, it will be used to update
the quality of the operator. The credit assignment can thus again be broken
down in the two parts: how to measure the impact of an operator application
(the reward) and how to assign credit based on this impact assessments
(the quality). The impact of the operator application is usually measured
as the fitness improvement between the parent and the offspring. In the
following sections, we use this fitness improvement as the reward, unless

28

states otherwise. The way credit is assigned, i.e. how the quality is updated
can be done in various ways.

2.4.2 Fitness-based credit assignment

The most simple and naive design for a credit assignment method is to use
the latest fitness improvement as the quality. However, as [36] also remarks,
the nature of operators is stochastic. This means that operators can be lucky
or unlucky on their last application, giving a bad indication of the overall
performance of an operator. Therefore, only using the latest performance of
an operator to base the quality on, would not be a smart approach.

A better, but still quite naive way is to see the quality of an operator as
the empirical reward (fitness improvement), i.e. the average reward obtained
during the search so far. Therefore, to obtain the current quality of an
operator, the next equation can be used:

qop,t+1 =
rop,t, . . . , rop,1

nop,t

(7)

where nop,t is the number of times that operator i is selected up to and
including time step t. This methods is for example used in the Upper Con-
fidence Bound (UCB) algorithm [37], which chooses the operator with the
maximal quality. We will discuss this important algorithm later on in more
detail. Like [3] explains, this method of using the empirical rewards works
quite well in stationary environments5, since the chances of choosing the
wrong operator6 decreases over time. However, it cannot deal well with
non-stationary processes. We want the empirical reward of an operator to
converge to the average of the real reward distribution as fast as possible
to make a good operator selection afterwards. However, if the rewards dis-
tribution of the operator changes, the empirical reward cannot converge to
this new value quick enough because of all the old obtained (and outdated)
rewards from the past.

A way to reduce this problem is with the use of a window of size W ,
containing the last W rewards. The quality is then calculated by taking the
average over the rewards in this window. The operators’ qualities are now
able to react quicker to changes in the environment, allowing an algorithm

5In a stationary environment, the reward distribution of the operators does not change.
6With “wrong operator” is meant an operator that is not optimal. The fact is that the

goal is to eventually only select the optimal operator.

29

to make a better selection of the right operator. The performance really
depends on the structure of the problem, so a general optimal size does
not exists. However, a size too large prevents it from being able to quickly
adapt to changes in the operator reward distribution, while a size too small
leads to high loss of memory, giving a wrong estimation of the real reward
distribution.

Another way to achieve quicker adjustments to changes in the environ-
ment, is to use the weighted average proposed in [38]. Here, the quality is
updated as follows:

qop,t+1 = qop,t ∗ (1− α) + α ∗ rop,t (8)

As seen in [39], we can rewrite this equation to:

qop,t+1 = qop,t + α(rop,t − qop,t) 0 < α ≤ 1 (9)

where α controls the contribution of the new reward obtained to the value
of the new calculated quality. This means that a larger value for α results in
more importance of the recent rewards and makes it therefore more robust
against abrupt changes in the operator reward distribution. However, a value
too large would give a similar problem as a window size that is too small, since
it would forget old data too fast. With an α too low, it cannot adjust fast
enough, just like a window size too large. Therefore, the weighted average
has a somewhat similar effect as using a window.

A whole different approach is proposed by [40]. It proposes the Extreme
Value Based (EVB) Credit Assignment. The rationale for this approach is
that rare but large fitness improvements obtained by the application of oper-
ators are more important than common and small improvements. Therefore,
it is better to look out for extreme rewards and choose the operator that cur-
rently produces high fitness improvements from time to time. This cannot
be done with the use of the empirical reward as the quality of an operator,
described earlier in this section. Since the average of an operator that gives
rare but large improvements is likely to be 0 after a few utilizations, it will
seldom be selected in the future. In the case of using the instantaneous re-
wards (only the latest fitness improvement) as the quality of an operators,
this problem becomes even worse. EVB however, can do this. For this pur-
pose, it maintains a window of size W for every operator that stores the last
W rewards (fitness improvements) of the operator. The quality of the oper-
ator at a certain time step is equal to the maximum reward in the window.

30

So, let’s say that the the window [rop
1, . . . , rop

W] contain the last W fitness
improvements of operator op, then the quality is calculated as follows:

qop,t = max([rop
1, . . . , rop

W]) (10)

By doing so, the algorithm tends to select operators that produce rare but
high fitness improvements faster and therefore exploits these operators. It
is important to determine the right value for the only parameter W in this
method. If too large, the algorithm will stick to an operator that performed
very well in the past for too long. If it is too small however, operators that
perform very well but rarely, will be ignored or forgotten too fast.

Although these credit assignment methods already improve upon simply
using the instantaneous rewards as the operator quality, there are still a
few drawbacks. The reward of an operator is the raw fitness improvement
between a parent and the offspring that is generated using that operator,
which is then directly used in the calculation of the operator’s quality. How-
ever, as [41] also says, the range of raw fitness improvements varies (1) among
different problems and (2) even during the optimization process. This means
that the hyperparameters (such as the window size) of the AOS method need
to be tuned for every problem separately. An AOS algorithm using this fit-
ness improvement directly in its credit assignment will not be very efficient
when used for a problem that is not the same problem that is used in the
offline tuning of the hyperparameters. And even if the algorithm has been
tuned for the problem, its behavior might not be optimal during the search
process, because the fitness range varies over time. In the beginning of the
process can application of operators lead to much better offspring, compared
to their parents, fitness-wise. This is because the solutions in the population
at the earlier stages have a lot of room left for improvement, whereas later,
the solutions are closer to optimal. This way, the same gain might have
different weights at different moments. Therefore, the use of raw fitness im-
provements to determine the credit might lead to undesirable behavior and
deteriorate the algorithm’s robustness.

To make the credit assignment more robust when using it for different
problems, [42] suggests a normalization scheme. Here, the reward that is
returned is first divided by the maximal reward that has been gathered by
an operator in the current window. Then, the quality is updated according
the credit assignment in question. This way, the rewards will always be

31

between 0 and 1, where a reward of 1 reflects the maximum reward in the
current window.

[43] uses a somewhat similar approach. they determine the reward with
the use of a so-called relative fitness improvement :

ηi =
δ ∗ |pfi − cfi|

cfi
(11)

where δ is the fitness of the best solution in the current population, cfi
the fitness of the offspring solution and pfi the fitness of the parent solution
obtained by operator i. They then investigate how using different methods
described above (average, extreme, normalization) behave in a combination
with an operator selection mechanism.

Even though these normalization methods reduces the problem-dependency
of the algorithm, it does not remove the problem. Furthermore, the algorithm
is not invariant with respect to monotonous transformations of the fitness
function, which is an important property if a robust algorithm wanted ac-
cording to [44]. This invariance includes that the algorithm does not behaves
differently if the problem is transformed in such a way that the fitness func-
tion maintains its ordinal properties (so there is no change in order). An
example would be a problem containing a certain currency that is trans-
formed to the same problem, but with another currency. When the raw
fitness improvements are used directly to update the quality, this invariance
does not hold.

In order to address these issues, several approaches were proposed that
assign credit to the operator based on their ranks, instead of their raw rewards
(fitness improvements). In the next section, a few credit assignment methods
that use this rank-based approach are discussed.

2.4.3 Rank-based credit assignment

As we have seen in the previous section, the credit assignment can update the
operator qualities using the raw fitness improvements directly. This however,
has a large impact on the robustness of the algorithm with respect to fitness
transformations. Therefore, it might be better to use another type of credit
assignment, namely rank-based credit assignment. Here, the reward obtained
from the application of an operator is used the determine a rank. These ranks
reflects how many operator applications lead to a higher fitness improvement
and how much lead to a lower one, usually also within a window. This way,

32

the mechanism relies less on the actual fitness values, but focuses more on the
mutual position. This will in turn eliminate the problem of varying fitness
ranges among different problems and along the search process.

[44] came up with two credit assignments that uses these ranks, namely
the Sum of Ranks (SR) and the Area Under Curve (AUC) methods. They
use windows of size W as well here, corresponding to the last W time steps
that the algorithm looks back. Each slot of the window contains the operator
that is applied, together with its reward. Every slot is then given a rank r
based on this reward. The highest reward gets an r-value of 1, the second
highest an r-value of 2, etc. Then the corresponding rank-value to each
operator application is calculated as follows:

Dr(W − r) (12)

where D is a decaying factor. D allows the higher-ranked rewards to have a
bigger impact on the operators’ quality.

In the SR credit assignment, the quality of an operator i at time step t is
calculated by adding up all the rank-values of i and normalize it by the sum
of all rank-values in the window:

qop,t =

∑
opr=iD

r(W − r)∑W
r=1D

r(W − r)
(13)

AUC is based on the Area Under the Curve paradigm. It starts of
by drawing the Receiving Operator Curve (ROC). This is done as follows.
Consider a list, which is the window W , sorted by the rewards. Then, starting
from the origin, a graph is drawn by moving through the list and adding a
vertical line each time the particular operator is found in the list, a horizontal
one if not, and a diagonal in case of ties. As the name suggests, the operator’s
quality is equal to the area under the curve, normalized by the sum of all
operators’ AUCs.

The length of each segment is dependent of D, that is Dr(W − r). This
makes the value of D very crucial here. The smaller D, the more influence
the higher-ranked rewards have on the operators’ quality. Of course, the
algorithm is also sensitive to the window size W . A large value for W will
lead to a conservative operator selection where the algorithm will stick to the
same operator for a long time, whereas a small value causes the past to be
forgotten quickly. Due to the use of these ranks, both AUC-B and SR-B are
known for their robustness and efficiency against different fitness landscapes

33

Quite recently, [41] proposes another credit assignment that uses rank-
ing instead of raw fitness improvement to update the qualities, called FRR.
Again, it uses a sliding window to allow it to be applied in a dynamic envir-
onment, such as an MOEA. On top of that, it applies a decaying mechanism
to exploit the best operator. It does this by first defining the fitness im-
provement rates (FIR). When an operator i is used at time step t, the FIR
is calculated as follows:

FIRi,t =
rop,t
pfi,t

(14)

where pfi,t is the fitness of the parent and rop,t the fitness improvement. The
FIR value represents the improvement rate of the child, relative to the parent.
Then, the total reward for every operator is calculated, which is the total of
all the FIR values for the operator in the sliding window. This means that
if an operator has not been selected in the current window yet, it receives
a TotalReward of 0. The operators are then ranked by their TotalReward
value. A decaying factor D ∈ [0, 1] is used to calculate the decayed reward:

Decayi = Dranki ∗ TotalRewardi (15)

where ranki is the rank of operator i. Here, the parameter D can be used
to control the exploration/exploitation of the algorithm. We can see that a
smaller D-value increases the chance of the best operators to be selected and
therefore boosts the exploitation. Finally, the quality of operator i at time
step t is calculated in a normalized manner:

qop,t =
Decayi∑K
j=1Decayj

(16)

Overall are rank-based mechanisms, such as AUC, SR and FRR, con-
sidered to be robust algorithms with respect to its hyper-parameters, since
they are not dependent directly on the raw fitness improvements. They have
shown to be very efficient, while also being very robust to many situations
and different problems [36].

According to [45], the fitness improvement is not the only indicator to
the progress of evolution. Therefore, they proposed Compass, an AOS in
which the credit assignment is done by taking into account both the fitness
improvement and population diversity. Here, the quality is a weighted sum
of these two. To do this, for every operator, the average fitness improvements
(∆Q) and average population diversity (∆D) over the last τ applications is

34

recorded, along with the average execution time of the operator applications.
The normalized values of these measures represent a point on a graph, one
axis being the ∆Q and the other being the ∆D. Then a plane is defined by
an angle Θ. The points/vectors (on∗t) and plane (c) are shown in Figure 4.
We can divide this graph in four squares. Since the fitness and diversity are
somewhat opposite goals, most of the points will lay in the top left square
(an increase of the fitness and a decrease of the diversity) and in the bottom
right square (and increase of the diversity and a decrease of the fitness). The
quality of an operator is then calculated as the shortest distance between the
point and the plane, divided by the average execution time. The latter is to
reward faster operators.

Figure 4: Compass: points on∗t and an angle Θ are used to define the quality of an oper-
ator. ∆Q denotes the average fitness improvements and ∆ denotes the average population
diversity [45].

These qualities are then mapped to a probability and, using these prob-
abilities, an operator will be selected in a probabilistic way. This is called
Probability Matching and will be discussed in section 2.4.6. The angle Θ can
be used to attach more weight to the fitness improvement or the population
diversity. If more weight is attached to the average fitness improvement, the
algorithm will favor the operators that produce offspring with a higher fitness
and therefore lead to more exploitation. On the other hand, if more weight
is attached to the population diversity, more exploration will be induced. An
interesting observation is done by [45]. Consider an angle which gives equal
importance to both ∆Q and ∆D. In the early stages of the EA, the diversity
is high, but the solutions’ fitness is low. So, most operators tend to be loc-
ated in quadrant II. After some time, the (local) optima will be approached,

35

which leads to lower fitness improvements. The points that are still in the
II -quadrant correspond to the exploitative operators and will move towards
0 (the x-axis). Eventually, the fitness improvements become scarce, while
the exploration operators still generate solutions that improve the diversity.
So, the exploration operators will eventually be favored over the exploitative
ones. This results in a search that shifts away from the optimum. This is
something to keep in mind when one wants to understand the behaviour of
the operators and algorithm.

Until now, we have talked about credit assignments which use the raw
fitness improvements as the reward, and are used to update the quality of the
operator either directly or by defining a rank. However, there are other ways
to do this, like in Self-adaptive Differential Evolution (SADE) described in
[46]. In SADE, the qualities are updated with the use of so called success and
failure memories. It is called a success if an operator is applied and it leads
to a fitness improvement, whereas a failure is when the application leads to a
decrease of fitness. At every time step t, for every operator op the number of
successes and failures are recorded, resp. denoted as nsop,t and nfop,t. Again,
a window of size W is used to let the algorithm forget old data. The quality
of an operator op at time step t is calculated as follows:

qop,t =

∑t
t=t−W nsop,t∑t

t=t−W nsop,g +
∑t

t=t−W nfop,g
+ ε (17)

Basically, the quality here can be regarded as the success rate of the
operator in terms of how often the operator generates offspring that are an
improvement over their parents. Epsilon ε is used to avoid qualities of 0.
This way, an operator that has not been successful in the previous W time
steps, will still receive a small quality, allowing it to have a chance of being
selected in the future. Afterwards, an operator’s probability is computed as
the proportion of the operator’s quality to the sum of all qualities:

pop,t =
qop,t∑K
=1 qop,t

(18)

The larger the success rate relative to the others, the larger the probability
of the operator being used to generate new solutions. [46] incorporated this
approach in a differential evolution (DE) algorithm, where every iteration
for every solution an mutation operator is selected among a pool of four DE
mutation operators.

36

We have now seen various ways of assigning credit to operators. In these
methods, different ways of measuring the operators’ performance and differ-
ent ways of using this measure to update the operator’s current quality are
used. After these updates, the next part of the AOS comes in action: the
operator selection. In the next section, we will go through several operator
selection methods and their properties.

2.4.4 Operator selection

After the qualities of the operators are updated by the credit assignment,
the operator selection will select an operator based on these values. In the
literature, this is done in various ways, but these methods can be divided into
two categories. One is based on the so-called Multi-Armed Bandit (MAB)
framework and uses the quality directly together with and exploration term
to deterministically choose amongst a set of operators. AOS methods that
use this type of operator selection will be referred to as bandit-based methods
and will be explained further in section 2.4.5. The other way is to use the
qualities to attach a probability to the operators and choose amongst them
by a roulette wheel-like process. These approaches will be referred to as
probability-based methods and we will go deeper into this subject in section
2.4.6.

2.4.5 Bandit-based AOS methods

Bandit-based AOS methods are based on the Multi-Armed Bandit (MAB)
Problem paradigm. Here, the operators are regarded as a set of arms of
slot machines, each having an unknown reward distribution. The goal is
to maximize the cumulative reward during the process. By modelling the
rewards that the arms give during the process, the best arm (operator) can
be chosen at each moment in time. Many algorithms based on this idea have
been invented. One of the first attempts is the Upper Confidence Bound
(UCB) algorithm [37]. The credit assignment credits its operators by the
empirical reward, i.e. the average reward obtained during the search so far.
At time t, UCB selects the operator with the maximal quality q. Since
this would fully exploit the best performing operator so far without any
exploration of other operators, UCB adds a confidence interval (the square
root term):

37

arg max
op=1...K

qop,t + C

√
2 log

∑K
j=1 nj,t

nop,t

 (19)

where K is the number of operators and nop,t the number of times that
operator i is selected up to and including time step t. The confidence interval
depends on nop,t in such a way that the operator selection will favor an
operator with the same quality but has been selected less often. Parameter
C is used to determine the weight of the confidence interval and therefore
controls the exploration. A larger value of C will lead to more exploration
and a smaller value to more exploitation. Unfortunately, UCB is not usable in
a dynamic environment, since the qualities, which are the empirical rewards,
have difficulty adjusting to a shifting reward distribution. To make UCB
suitable for dynamic processes, such as MOEAs, several extensions of UCB
have been proposed.

One of the first contributions that build upon UCB is the Dynamic Multi-
Armed Bandit (DMAB) algorithm [47]. DMAB adds a change-point test
to UCB. This test, called the Page-Hinkley (PH) test [48], detects when a
change in the operator reward distribution has taken place. If so, DMAB
will restart UCB. This will reset the empirical reward of the operators (as
well as ni,t), making it possible again for the empirical rewards to converge
rapidly to the right values again. It uses two extra hyperparameters (on top
of the hyperparameter C of the UCB algorithm):

• λλλ: controls the trade-off between false alarms and unnoticed changes.

• δδδ: makes the test more robust against slowly varying environments.

The algorithm was tested against two other state of the art AOS meth-
ods at that time, Adaptive Pursuit and Probability Matching, which we will
discussed in the next section. It performed very well against these and per-
formed even better when using boolean rewards instead of real value rewards.

[34] builds on this idea. This algorithm, called Ex-DMAB, also uses the
PH test to restart UCB when a change in the reward distribution of an
operator has been spotted. However, the credit assignment is different. It
uses the Extreme Value Based (EVB) Credit Assignment described in section
2.4.1 to assign the right credit to the operators.

Although these algorithms give good results in some ad hoc scenarios,
there are drawbacks. First of all, the HP test will only detect a change if the

38

change is sudden and abrupt. However, the reward of the operators often
swifts slowly, letting the change go unnoticed. Moreover, when the test is
triggered, the memory of the algorithm will be reset and has to be recreated
by the exploration again. Useful information could be lost this way.

This leads to another method that uses UCB as a basis, called the Sliding
Multi-Armed Bandit (SlMAB) algorithm [3]. To avoid the problems DMAB
is facing, SlMAB uses only a part of the history to calculate the operator’s
quality in the first place. It makes uses of a window size W , referring to the
number of steps it looks back. The quality of an operator i at time step t is
calculated as follows:

qop,t+1 = qop,t
W

W + (t− ti)
+ rop,t

1

nop,t + 1
(20)

where ti is the last time step that operator i has been applied and ni,t is the
frequency of the application of operator i up to time step t.

The application frequency of operator i is updated as follows:

nop,t+1 = nop,t

(
W

W + (t− ti)
+

1

nop,t + 1

)
(21)

If we look at equation 20, we can see that, besides the reward, the quality
of an operator depends on three extra values: the window size W , ti and
ni,t. We already know that the window size is used to make sure that the
algorithm does not use data that is outdated. ti is used to determine the
number of steps since the last application of the operator (t − ti). It makes
sure that if an operator has not been applied for a long time, the new quality
moves slightly more to the direction of the new obtained reward then if
the operator has just been applied a couple of time steps ago. This way, the
qualities can adjust more rapidly to the real reward distributions. Lastly, the
frequency ni,t is used to preserve the exploration and exploitation trade-off.
If an operator i is applied often, ni,t will be large, which means that the new
obtained reward will have a lower contribution to the calculation of the new
quality. However, if an operator hasn’t been applied much in the last W time
steps, the quality will be increased more. After the new quality is calculated,
the operator selection from regular UCB is used (equation 19). SlMAB makes
sure that if an operator is applied very often, ni,t converges quickly to W and
the qualities accurately reflect the real reward distribution. An additional

39

advantage of SlMAB over DMAB (and Ex-DMAB) is that whereas DMAB
has three hyperparameters (C, λ and δ) , SlMAB only has two (C and W),
making it easier to tune the algorithm.

Although SlMAB already improved on a few aspects as described above,
the bandit-based methods discussed so far still contain a major drawback.
This has to do with the credit assignment. As discussed earlier in 2.4.1,
using the raw fitness improvement between the parent and offspring can be
disadvantageous for the robustness of the algorithm. Instead, it would be
better to use rank-based credit assignment methods. This is why in [41] a
bandit-based AOS algorithm is proposed which uses the FRR credit assign-
ment, called fitness-rate-rank-based multiarmed bandit (FRRMAB). To select
an operator, the UCB selection is used once more. A small difference here
is that ni,t is now the number of times operator i is selected in the sliding
window at time step t, instead of during the whole run so far.

Two new AOS methods where proposed based on the idea of FRRMAB,
called UCB-tuned and UCB-V [49]. They use the exact same credit assign-
ment as FRRMAB. For the operator selection, the UCB selection procedure
is used with an addition. It also uses the quality and a confidence interval
to select an operator. However, the confidence interval does not only depend
on the number of times the operator is used, but also on the variance of the
operators’ rewards. This way, the confidence interval will get tighter in order
to reduce the application of suboptimal operators. For UCB-tuned, at time
t, the operator is selected that maximizes this equation:

arg max
op=1...K

qop,t + C

√
2 log

∑K
j=1 nj,t

nop,t

∗min(
1

4
, Vop)

 (22)

with

Vop = σ2
op + C

√
2 log

∑K
j=1 nj,t

nop,t

(23)

where σ2
op is the variance and ni,t is the number of times that operator op

has been applied. For UCB-V, this equation has to be maximized:

arg max
op=1...K

qop,t + C

√
2 log

∑K
j=1 nj,t ∗ σ2

op

nop,t

+ 3 ∗
∑K

j=1 nj,t

nop,t

 (24)

40

The use of the variance of the operators’ rewards would lead to a better
exploration versus exploitation trade-off, which makes it more robust than
the original FRRMAB, according to [49].

The bandit-based methods described above all use the same operator
selection or a variant of this as the one used in the original UCB algorithm.
They choose the operator with the best quality currently, including some
confidence interval. Therefore, they all have a deterministic way of choosing
an operator. Another way is to attach a probability to every operator based
on the qualities and use these probabilities to chose amongst a set of operators
in a stochastic way. In the next section, we will examine these methods
further.

2.4.6 Probability-based AOS methods

In the previous section we have seen how AOS methods based on the Multi-
Bandit paradigm work and what their properties are. A whole different type
of AOS is probability based AOS. In a probability based AOS method, a
probability is attached to each operator and a roulette wheel-like process
is used to select an operator to be applied. This is different from bandit-
based algorithms, since they select an operator based on a deterministic rule
(equation 19), whereas in probability based AOS algorithms the selection
process is stochastic. Therefore the goal is to maximize the expected value of
the cumulative reward. The probabilities are based on the operators’ qualities
and the qualities are calculated using a credit assignment method described
in section 2.4.1. Now, two well-known probability based AOS methods will
be discussed: Probability Matching and Adaptive Pursuit.

Probability Matching

[50] introduces Probability Matching (PM), a way to select an operator every
iteration by assigning probabilities to the them. After calculating the qual-
ity using the weighted average (equation 8), bandit-based AOS algorithms
would use the calculated qualities directly in the operator selection from UCB
(equation 19). However, probability based methods assign a probability to
the operators first and hence does PM. [50] calculates this probability as the
proportion of the operator’s quality to the sum of all qualities:

pop,t =
qop,t∑K
j=1 qj,t

(25)

41

It might seem that when the right value for α in equation 8 is chosen,
the algorithm is able to adjust its operator probabilities in an appropriate
manner. However, there is a danger here. If an operator’s quality approaches
0, its probability will approach 0 as well. It will therefore hardly ever be
chosen, preventing the probabilities to adapt fast enough in a non-stationary
environment. Let alone if the probability reaches 0, whereupon the operator
will never be selected again in the future. This is why [39] proposed an
adapted version for this probability assessment. It uses a minimal value
pmin:

pop,t+1 = pmin + (1−K ∗ pmin)
qop,t∑K
j=1 qj,t

0 < pmin < 1 (26)

where K is the number of operators. The pmin ensures that the operators
retain a minimal probability. This way, when an operator does not receive
(much) reward for a long time, its quality converges to 0 and its probability
of being selected converges to pmin, allowing the operator to be chosen still
in the future.

Adaptive Pursuit

In the previous section, we have seen how PM can adapt to changes in a
non-stationary environment. Still, this method leads to some behavior that
is not optimal. As [39] shows, the closer the operators’ rewards are, the closer
the probabilities are as well. However, our goal is to maximize the expected
value of the cumulative reward, which will be obtained by maximizing the
probability of the operator with the best quality, while applying the others
with a probability of pmin. This is not the case for PM. Therefore, Adaptive
Pursuit (AP) is proposed by [39], which should be better at maximizing this
expected value of the cumulative reward.

The idea of AP is that is pursued the operator with the best quality
at the moment. This is done by increasing the probability of this operator
and decrease the probability of the others. Initially, the probabilities of all
operators are set to 1/K. Just like PM, it uses the weighted average credit
assignment to update the qualities. Then, the operator with the best quality
is selected, let’s call this operator op∗. The probability of operator op∗ is
updated as follows:

pop∗,t+1 = pop∗,t + β(pmax − pop∗,t) 0 < β ≤ 1 (27)

42

while the other probabilities are updated as follows:

∀op 6= op : pop,t+1 = pop,t + β(pmin − pop,t) 0 < β ≤ 1 (28)

where pmax = 1 − pmin ∗ (K − 1) and β the learning rate. As we can
see, if an operator is the best one repeatedly, the corresponding probability
converges to pmax. On the other hand, the other operators will converge to
pmin. The learning rate β determines how fast this convergence takes place.
Because the current best operator is now pursued at a certain rate, we can
on the one hand exploit the operator that is performing the best, while also
being able to quickly adapt if another operator becomes the superior.

2.5 Combining MOEA and AOS

The previous sections showed how MOEAs, in particular MOEA/Ds, can be
used to solve a MOP and what research is done in this field. Next, we talked
about how AOS works and which different approaches there are. We have
seen that these AOS methods can, in some way, adapt to changes in the
reward distribution. Thus, it can be used in non-stationary environments,
such as MOEAs. This is also what we are going to investigate in this paper.
In this paper, MOEA/D will be enhanced by incorporating an AOS method.
Section 3 will explain in detail how this is done. The use of adaptive operator
selection mechanisms in multiobjective optimization is not new. Several AOS
methods have been integrated in an MOEA, usually to see what the impact is
on the performance. In this section we will give a few examples of literature
where algorithms are proposed that use this combination.

The SaDE algorithm discussed in the previous section uses the fitness im-
provements to determine whether the application of an operator is a success
or a failure. Since in a problem with multiple objectives, solutions cannot
be compared by a single fitness value, SaDE is only suitable for SOPs. This
is fine if we want to use it in combination with MOEA/D, since MOEA/D
consists of a bunch of single-objective functions to be optimized. However,
if we want to make it fit into a dominated-based MOEA for example, the
evaluation criteria for inferior solutions needs to be changed. Because of
that, SaDE is extended to deal with multi-objective problems, i.e. MOSaDE
[51]. In MOSaDE two solutions are compared by their pareto dominance,
and in case they do not dominate each other, the least crowded solution is
superior. Then, if the offspring is better than its parent, the operator prob-
abilities are updated just like in SaDE. MOSaDE is even further extended to

43

OW-MOSaDE [52]. They claim that different objective functions may pos-
sess different properties. Therefore, instead of learning one set of operator
probabilities, it keeps track of a set of probabilities for every objective.

As explained earlier, an AOS can easily be combined with MOEA/D,
because of the set of single objective functions that it is decomposed into.
These single objective functions are defined by a single value (fitness) which
can be used be the AOS to determine the impact of an operator. There
are broadly three main literature where AOSs are combined with MOEA/D
([41], [49], [53]) and we will focus on these in this section. First, we will see
how these algorithms perform with and without AOS. Then, we will compare
the different AOS methods used in combination with MOEA/D. And lastly,
the influence of different problems and parameter settings will be discussed.

2.5.1 Comparing MOEA/D and AOS combinations

An example of a successful algorithm that combined an AOS method with
MOEA/D is MOEA/D-FRRMAB [41]. Here, the AOS method FRRMAB is
incorporated into MOEA/D-DRA. From section 2.4.5, we know that FRRMAB
uses a credit assignment that converts fitness improvements to a rank and
subsequently transforms this rank to a quality using a decaying mechan-
ism. This quality is then used by the UCB operator selection (equation 19)
to select the operator that will be applied. MOEA/D-FRRMAB was com-
pared with other well-known MOEA/D based algorithms that do not use an
AOS: MOEA/D-DE, MOEA/D-DRA & ENS-MOEA/D. It turns out that
MOEA/D-FFRMAB outperforms these algorithms in most testcases based
on the IGD and IH performance indicators. ENS-MOEA/D uses just like
MOEA/D-FRRMAB an adaptive parameter approach. Instead of record-
ing the performances of the operators and in this way adaptively choose
among the operators, it makes the neighborhood size flexible during the
search process. We could therefore conclude that it is more profitable to im-
prove MOEA/D on its operator selection then putting effort into letting the
algorithm find the right neighborhood size during the search. Of course, this
is the case for the problems and parameter setting that where used in this
study. We don’t know how this will differ if we try other parameter values and
use the algorithm for other problems, for example problems with many ob-
jectives (more than just three). Moreover, the CPU time of ENS-MOEA/D
is also much higher than MOEA/D-FRRMAB. Since both MOEA/D-DE
and MOEA/D-DRA are faster than MOEA/D-FRRMAB, it is clear that

44

the good performance of the latter comes at the expense of the computation
time. This makes sense, since it needs to do significantly more calculations
in its adaptive operator selection.

Besides comparing MOEA/D-FRRMAB with famous MOEA/D algorithms
that do not use any adaptive operator selection, it is also compared with
MOEA/D algorithms that use other AOS methods. To do this, they re-
placed the operator selection method from FRRMAB with the operator se-
lection of Probability Matching (PM) and Adaptive Pursuit (AP). These two
algorithms still use the same credit assignment as FRRMAB, namely FRR,
but selects an operator using either PM or AP. They also tested the com-
bination of MOEA/D with SRMAB as AOS. In SRMAB, the Sum of Rank
credit assignment is used, together with the operator selection from UCB
(eq. 19). Again, in an extensive experiment, it turned out that MOEA/D-
FRRMAB outperforms its fellow algorithms. SRMAB also performed quite
well, ending up second in this pool of algorithms. From these results, it
seems that bandit-based methods are better overall than probability based
methods. As mentioned by [41], this would be caused by the theoretically
sound way of balancing exploration and exploitation, the main dilemma of
AOS algorithms.

The probability based AOS methods AP and PM are also studied in com-
bination with MOEA/D by [53]. However, their focus was on the influence of
using different ways of measuring the impact of an operator, i.e. ways of con-
structing the reward. This was done using the relative fitness improvements
from [43] (eq. 11). Four different ways are investigated:

• AvgAbs: the average relative fitness improvement

• AvgNorm: the average normalized relative fitness improvement

• ExtAbs: the extreme relative fitness improvement

• ExtNorm: the extreme normalized relative fitness improvement

In all these methods, the window size is exactly one generation, i.e. the
population size N.

Then, these four are combined with AP and PM, resulting in eight dif-
ferent algorithms and see which one performed the best. It turned out that,
with the investigated parameters, most algorithms using Probability Match-
ing scored higher than when Adaptive pursuit is used. One strong argument

45

that this paper gives is that this is because of the fact that with AP, it is
not possible to apply multiple operators frequently in a short period of the
search process, since AP can only exploit one operator at the time. However,
in a MOEA/D, different subproblems have different characteristics, which
means that one operator performs very well for one subproblem and another
for another subproblem. We might therefore want to attach a high probabil-
ity to multiple operators. Since PM selects its operators using probabilities
proportional to their qualities, it is able to select multiple operators with
a relative high probability compared to operators with a probability Pmin.
Amongst the four different algorithms using PM, the one using the extreme
absolute reward approach performed best. This combination of ExtAbs with
PM and MOEA/D, called ADEMO/D, is compare with other powerful mul-
tiobjective optimization algorithms, including MOEA/D-DRA, NSGA-II and
ENS-MOEA/D. ADEMO/D was by far the best performing algorithm if we
measure the quality of Pareto sets with Unary Epsilon, Hypervolume and
the R indicator. Also, the IGD value is investigated. It turned out that
ADEMO/D performed well when applied to two objective problems when
looking at the IGD. However, the problems with three objectives seem to be
difficult for ADEMO/D. In most cases, the other algorithms perform bet-
ter. They argue that this makes sense, since the other algorithms (except
for NSGA-II) are able put its computational effort into subproblems that
are more profitable, with the use of Dynamical Resource Allocation (DRA),
explained in 2.2.3. ADEMO/D lacks this ability and therefore wastes more
effort on solutions that are less improvable.

[49] also tested the FRRMAB variations, UCB-tuned and UCB-V (sec-
tion 2.4.5), in combination with MOEA/D. UCB-tuned and UCB-V use the
UCB operator selection, just like FRRMAB. However, it also integrates the
variance of the operators’ rewards into the confidence interval of this cal-
culation. It turned out that UCB-tuned was the best, among UCB-V and
FRRMAB when combined with MOEA/D and the metrics IGD and Hyper-
volume are considered. The better performance of MOEA/D-UCB-tuned can
be explained by the fact that it focuses more on the exploitation than the
other algorithms, thanks to its unlimited influence of the variance. We could
therefore conclude that the use of variance in an bandit-based algorithm is
advantageous and that it is better to keep this variance influence unlimited
w.r.t. the performance.

46

2.5.2 Parameter influence

In the previous section, we have summarized important research in the field
of combining MOEAs and AOS methods. It is proven that in many cases,
the use of an AOS can significantly improve the performance of MOEA/D.
In order to make an AOS method work well in these environments, it is
important that the right values for the parameters used in these methods
are chosen. This is why [53] also studies the influence of these parameters
to the performance of the eight different algorithms that were tested. The
parameters of PM and AP (pmin, α and β) are studied, as well as the para-
meters that are used by the Differential Evolution (CR and F). Again, the
IGD performance indicator is used to do the comparison. It turned out that
for both PM and AP with the use of the extreme absolute reward approach,
they are indifferent of what parameter values for pmin, α & β are used. The
only exception is when the pmin is set to 0.00. This is because when pmin =
0.00, the operator will not be selected and therefore not be selected ever in
the future. This is clearly a detrimental behaviour when applied in a non-
stationary environment. Looking at the parameters for the DE mutation
operators (CR and F), it turned out that default values given by [18] are the
optimal values in most test instances. Exceptions are when problems that
contain parabolic or convex properties. Here, it showed that a low value for
CR leads to better IGD values.

[41] also studied the sensitivity of the parameter values for their algorithm
MOEA/D-FRRMAB. They combined different values for the scaling factor
C, sliding window W and decaying factor D. All these configurations where
then tested on two problems UF3 and UF7 [54] and two performance metrics
were measured: the hypervolume and IGD value. Then, for each problem
and performance metric, the best configuration was selected and compared
with the other configurations using the Wilcoxon rank sum test. As it turned
out that, in these four cases, about 50 % of the configurations were signi-
ficantly worse than the best configuration. Only on UF7, in terms of the
hypervolume, the best configuration only outperforms a small percentage of
the other configurations. However, in the other cases, it significantly matters
what the parameter values are, which makes MOEA/D-FRRMAB sensitive
to the parameters.

Despite the fact that AOS mechanisms can easily be integrated into
MOEA/D, little research has been done in the field combining these two.

47

Of the research that exists, [41] provided a significant part of it, as described
earlier on in this section. Among other things, they tested their new credit
assignment mechanism, FRR, with both the Adaptive Pursuit and Probab-
ility Matching operator selection mechanisms. However, both of these face
drawbacks. AP can only pursue one operator at the time. However, in a
MOEA/D it might be optimal to exploit more than one operator by apply-
ing multiple operators frequently in a certain time period. PM is the other
extreme, which selects an operator purely in a proportional manner. This
may cause too little room for exploitation of the best operator. It might be
better to see if a method exists whose behaviour is somewhat in between.
Therefore, we propose a new operator selection mechanism based on Tour-
nament Selection. This mechanism will be explained further in section 3.

48

3 Methods

The method section is structured as follows. First, the new proposed al-
gorithm will be explained, including the pseudo-code. Then, we will shortly
comment on the implementation for the experiments. Lastly, we will elabor-
ate on the experiments that were done.

3.1 New algorithm: MOEA/D-FRR-TS

As explained in the previous chapter, we have implemented a new algorithm
based on Tournament Selection, which we call MOEA/D-FRR-TS. We have
used MOEA/D-DRA [30], an improved version of MOEA/D that won the
CEC 2009 MOEA competition. This version has two differences with normal
MOEA/D, which we explained in section 2.2. Firstly, it divides its computa-
tional efforts in a more clever manner in order to improve the performance.
This is explained in more detail in section 2.2.3. Additionally, instead of
using a external population to keep track of the non-dominated solutions,
the current population after termination is used as the approximated pareto
set.

[41] build their AOS method, FRRMAB, on top of MOEA/D-DRA to
improve the algorithm’s performance. This AOS method consists of a fitness-
rate-rank-based (FRR) credit assignment method that uses the fitness im-
provement rates obtained by the operators together with a decaying method
(this is explained in section 2.4). For the operator selection, the default
UCB [37] algorithm is used. They also combine their FRR credit assignment
method with the Adaptive Pursuit [39] and Probability Matching [55] oper-
ator selections. We have also used this FRR credit assignment, but instead
use a different approach for the operator selection. This approach is based
on Tournament Selection (TS). Tournament selection is normally used in
the selection process in evolutionary algorithms. Here, we have used it to
select an operator. First, a number of operators are selected from the pool
of operators at random. Then, the operator from this selection with the best
quality will be used for application. The number of operators that are selec-
ted from the pool is known as the tournament size and can be used to control
the exploitation and exploration of the operators. This is also known as the
selection pressure. A tournament size of 1 is equal to choosing an operator
at random from the operator pool without taking into account the quality.
Therefore, it will fully explore without any exploitation. If the tournament

49

size is equal to the operator pool size, it will always select the operator with
the best quality. This means that there is no exploration and that it will
always fully exploit the best operator. If a value is used that is somewhere
in between, it balances the exploration and exploitation. Where AP focuses
more on the exploitation and PM more on the exploration of operators, TS
does something in between. In this investigation, we have tried different
tournament sizes and see how it compares to the implementations using AP
and PM. Section 3.4 will elaborate on this.

3.2 Algorithms pseudo-code

The pseudo-code that is used in this research can be found in Algorithms
1, 2 and 3 in [41]. However, the operator selection algorithm (Algorithm 2
in [41]) is different here. The new procedures for Adaptive Pursuit (AP),
Probability Matching (PM) & Tournament Selection (TS) can be found in
Algorithms 1, 2 and 3, respectively.

Algorithm 1 The AP operator selection mechanism

/* Before MOEA/D-FRR-AP starts, the probability pop is set to 1/K for
every operator op, where K is the nr. of operators*/

1: if Not all operators have been selected yet then
2: op = uniformly randomly select an operator from the operators pool
3: else
4: op∗ = argmax

op∈pool
(qop)

5: pmax = 1− (K − 1)pmin

6: pop∗ = pop∗ + β(pmax − pop∗)
7: ∀op 6= op∗ : pop = pop + β(pmin − pop)
8: op = choose operator using roulette wheel-like process using probab-

ilities p
9: end if

50

Algorithm 2 The PM operator selection mechanism

1: if Not all operators have been selected yet then
2: op = uniformly randomly select an operator from the operators pool
3: else
4: for each op in pool do
5: pop = pmin + (1−K × pmin)× qop∑K

i=1 qi
(K = nr. of operators)

6: end for
7: op = choose operator using roulette wheel-like process using probab-

ilities p
8: end if

Algorithm 3 The TS operator selection mechanism

1: if Not all operators have been selected yet then
2: op = uniformly randomly select an operator from the operators pool
3: else
4: ops = select k (tournament size) operators from the pool at random
5: op = argmax

op∈ops
(qop)

6: end if

The pool consists of these four DE mutation operators:

1. DE/rand/1:
vi = xr1 + F ∗ (xr2 − xr3)

2. DE/rand/2:
vi = xr1 + F ∗ (xr2 − xr3) + F ∗ (xr4 − xr5)

3. DE/current-to-rand/1:
vi = xi +K ∗ (xr1 − xi) + F ∗ (xr2 − xr3)

4. DE/current-to-rand/2:
vi = xi +K ∗ (xr1 − xi) + F ∗ (xr2 − xr3) + F ∗ (xr4 − xr5)

Here xi = (xi1, . . . , x
i
n) is the ith target vector, which is the solution that is

currently being mutated. vi is the mutant vector and xr1, xr2, xr3, xr4 and
xr5 are random solutions from the neighborhood of xi.

51

3.3 Software & Framework

For this research, we have used the jMetalPy framework (python) as a basis.
This was convenient, as the MOEA/D-DRA algorithm was already imple-
mented here, which is used to add the AOS mechanisms to. We then im-
plemented the FRR credit assignment and the operator selection mechan-
isms: Adaptive Pursuit, Probability Matching & Tournament Selection. In
jMetalPy, experiments could be run within this framework using the Exper-
iment class. We also added some more code that could help to get more
insight, such as the ability the keep track of the operators that were used
by the AOS algorithms. The problems that were used to test the algorithms
on, we have implemented ourselves. Lastly, we have written multiple unit
tests for the algorithms and problems to minimize the risk of errors in the
implementations.

3.4 Experiments

In order to see the impact of this new algorithm, we have done a num-
ber of experimental studies. First, we have compared the three algorithms
(MOEA/D-FRR-TS, MOEA/D-FRR-AP and MOEA/D-FRR-PM) with each
other using default parameter values. Then, a parameter analysis on MOEA/D-
FRR-TS is performed to see if the algorithm is sensitive to different parameter
values. Lastly, the use of a pool operator is compared with using a single
operator. The results of the experiments can be found in the appendices at
the end of this document.

3.4.1 Experiment 1: Comparison with Adaptive Pursuit and Prob-
ability Matching

We started off with comparing the new MOEA/D-FRR-TS with MOEA/D-
FRR-AP and MOEA/D-FRR-PM from [41]. To do this, we ran these three
algorithms 30 times on four unconstrained MOP problems: UF2, UF4, UF5
and UF8 from [54]. We have chosen these problems, since they have different
characteristics that we can investigate, such as varying Pareto Fronts and
a different number of objectives. These characteristics are given in table
1. Due to the fact that they are different in nature, we could see whether
the impact of different algorithms is also dependent of the kind of problems
that it is given. For this study, we use the same parameter values as [41]

52

Problem Nr. of variables Nr. of objectives Pareto front
UF2 30 2 Convex
UF4 30 2 Concave
UF5 30 2 Linear, 21 points
UF8 30 3 Concave

Table 1: Characteristics of the investigated problems

uses for their experimental studies. Additionally, in MOEA/D-FRR-TS the
tournament size will be set to 2. The results of this study will be discussed
in section 4.1.

3.4.2 Experiment 2: Parameter analysis

We also wanted to see what happens if we change the parameters used in
the adaptive operator selection part of the algorithm. The three control
parameters of the AOS are the window size W , the tournament size S and
the decaying factor D. In the last subsection of this method section, we
explain that we are interested in the performance of the algorithms, but
also in the dynamics of the operator selection. For the latter, a single run
of MOEA/D-FRR-TS is performed using all different combinations of the
following values for the three control parameters:

1. The tournament size S: 2 & 3

2. The window size W : 0.05*N , 2*N & 4*N 7

3. The decaying factor D: 0.1 & 1.0

We used values that are far apart from each other on purpose, so that we
can see how the operator selection is affected. Hereby, we will focus on the
UF2 problem. The operator selection dynamics might differ from problem to
problem, but the points that will be discussed in this experiment, will apply
for every problem.

As will be explained in the results section, it turned out that MOEA/D-
FRR-TS is unaffected by the decaying factor. Therefore, to measure the

7Note that the window size depends on the population size N . Since N is 600 for
two-objective problems, the window sizes are 30, 1200 and 3000 here.

53

performance of using different parameter values, a parameter analysis is per-
formed using varying values for S: 2 & 3 and W : 0.1*N , 0.5*N & N 8,
where we consider (S=2, W=0.5*N) as the default setting, The decaying
factor remains 1.0 and the rest of the parameter values stay the same as in
[41]. The algorithms are than run 30 times on the UF2 and UF4 problems.
The results of this study will be discussed in section 4.2.

3.4.3 Experiment 3: Pool of operators vs. single operator

Lastly, it might be interesting to see if it is advantageous to use a pool of
operators instead of just a single one. Therefore, we compared MOEA/D-
FRR-TS using the pool of four DE mutation operators with four equivalent
algorithms that uses only one of those four operators. Again, we ran those
five algorithms 30 times on the UF2, UF4, UF5 and UF8 problems. The
results of this study will be discussed in section 4.3.

3.4.4 Measurements

To be able to compare the algorithms, we used two performance indicators:
the hypervolume (HV) and the inverted generational distance (IGD). These
are both explained further in section 2.1.7. Briefly, the HV indicates the area
that is dominated by the approximated pareto set (PS). The larger this value
is, the better the PS. The IGD corresponds to how close the approximated
PS is to the real PS. The closer this value to 0, the closer the approxim-
ated PS is to the real PS. Additionally, we also looked at the running time
of the algorithms to compare their efficiency. To check whether of not one
algorithm is actually significantly different from another, we have used an
unpaired two samples t-test at a significance level of 0.05. In the first experi-
ment, we have checked whether MOEA/D-FRR-AP and MOEA/D-FRR-PM
perform significantly worse, equal or better than the new MOEA/D-FRR-TS
algorithm. In the second experiment, the variants using other parameter val-
ues are tested on their significance with MOEA/D-FRR-TS using the default
values. In the last experiment, we have investigated the significance of the
single operator variants with using a pool of operators. These are all tested
on both the HV and IGD.

8Note that the window size depends on the population size N . Since N is 600 for
two-objective problems, the window sizes are 60, 300 and 600 here.

54

Besides comparing the algorithms on their performance in terms of the
hypervolume or the IGD, we were also interested in the dynamics of the
operator selection. To get a better understanding of how the AOS mech-
anisms select the operators during the search process, we kept track of the
chosen operators. Since the algorithm terminated after 300.000 evaluations,
the number of times that an operator is selected during the whole process is
300.000 as well. We divide this process into 50 phases, with each phase con-
taining 300.000/50 = 6.000 evaluations/operator selections. The number of
times every operator is selected during a phase is plotted against the phases.
We call this the trajectory of the AOS of a specific algorithm. It might
be interesting to see how the trajectories differ for different algorithms. In
experiment 3, the algorithms using a single operator select the same oper-
ator every time. Therefore, we are not interested in the operator selection
trajectories and will not discuss them in that experiment. Instead, we have
plotted the approximated PF and the real PF. This way, we can examine
if different algorithms generate different kind of Pareto fronts and how this
differs among various problems.

55

4 Results

4.1 Experiment 1: Comparison with Adaptive Pursuit
and Probability Matching

4.1.1 Operator Dynamics

In Figure 9 the trajectories of UF2, UF4, UF5 and UF8 are plotted for
MOEA/D-FRR-AP, MOEA/D-FRR-PM, MOEA/D-FRR-TS. First of all,
AP seems to have some clear alternating phases in which one operator is
dominating. In Figure 9j for example, in the first few phases, DE/current-
to-rand/2 is mostly used. Then it is followed up by a number of phases where
DE/current-to-rand/1 dominates, with occasionally DE/rand/1 in between.
This is not really the case for PM and TS. Here, it is mostly one operator
that is used the most during the whole process. Especially on UF2 and UF8,
where this is the case for DE/current-to-rand/1.

Also, AP has constant minima and maxima, whereas for PM and TS,
this varies from problem to problem. This can be explained by the fact that
PM maps the qualities of the operators to a probability in a proportional
manner. So, the higher the quality of an operator, the higher the probability
of it being selected (and vice versa). Therefore, depending on the problem,
the trajectories of the operators might be close together or further away. AP
however, pushes the best operator towards a maximum probability (pmax)
and the other operators towards a minimum probability (pmin). In this ex-
periment, these values for pmin and pmax are 0.1 and 0.7, respectively. Since
β in equations 27 and 28 is quite high (0.8), the probabilities are quite close
to 0.1 and 0.7 as well. These probabilities corresponds to 0.1*6000 = 600 and
0.7*6000 = 4200 usages per phase. If we look at the minima and maxima of
AP in figure 9, we can see that they are indeed close to 600 and 4200.

For UF2 and UF8, we can see that the trajectories of TS also tend to
stick to certain values. The best operator fluctuates between 2000 and 2500,
while the worst one ranges between about 500 and 1000. The others fluctuate
around 1500 and they take turns in being the most used. This has to do with
the fact that in MOEA/D-FRR-TS, the probability of choosing an operator
is independent from the actual value of the quality. We will further explain
this in section 3.4.2 (Parameter analysis).

Lastly, it is noticeable that for UF4 (and for UF5 a little bit as well), the
trajectories of the graphs of all three algorithms are more intertwined than

56

for the other problems. Whereas with the other problems, DE/current-to-
rand/1 seemed to be the best most of time, this is not that case for UF4.
This indicates that this problem has certain characteristics such that during
its optimization, less strong preferences are given to certain operators.

4.1.2 Performance

The box plots of the peformance of AP, PM and TS are given in Figures 10
(based on HV) and 11 (based on IGD). From these results, we can quickly
conclude that, for the four concerned problems, there is no significant differ-
ence between AP and TS or PM and TS on the IGD and HV performance
indicators. This indicates that these problems are not sensitive to the three
tested probability based AOS types. In the next section, we will investigate
whether or not they are sensitive to different parameter values.

However, there is something noteworthy about UF5. Looking at the IGD
(Figure 11c), we can see a couple of outliers around 0.70. To get a better
insight of what is happening here, we plotted the approximated PFs and PSs
of this outlier together with that of 2 other runs in Figure 5. It turns out that
the solutions of this outlier (run 3) have converged to a single point in the
variable space (Figure 5b). This point correspond to (1,0) in the objective
space (Figure 5a), which is also a point on the real PF. The other two runs
consist of chunks of points that each either vary in x2 (and not in x3) or in
x3 (and not in x2). We know that x2 is used in the calculation of f2 and x3

in the calculation of f3. This is why the PF consists of a couple of vertical
and horizontal strips of points.

It sounds pleasant that run 3 was able to produce solutions that were
very close to optimal. However, all points of the approximated PS converged
to this single optimal solution. So, there is absolutely no diversity. Even
though runs 1 and 2 contain solutions that are not as close to a solution
from the real PS as run 3 has, they do have a much better diversity. This is
why runs 1 and 2 have a better IGD and HV, making them more desirable.

The average running times of the three algorithms for UF2, UF4, UF5
and UF8 are also plotted in Table 3. No significance is found, except for
UF8, where AP is significantly faster than both PM and TS. In all cases, AP
is faster than PM. This indicates that the probability updating approach of
PM takes up more time than AP, at least in this implementation. The actual
values of these running times should be taken with a grain of salt, since they
are really dependent on the implementation and programming language.

57

(a)

(b)

Figure 5: The approximated PFs (a) and PSs (b) of three independent runs

58

4.2 Experiment 2: Parameter analysis

4.2.1 Operator Dynamics

As we said earlier, we are interested to see how the operator selection dynam-
ics looks like. Especially in a parameter analysis, where we are evaluating
different parameter values, we can expect the operator selection to be differ-
ent among the parameter settings. The trajectories of MOEA/D-FRR-TS
using different combinations of parameter values on problem UF2 are plot-
ted in Figure 12. The influence of the three control parameters will now be
discussed.

The window size

First of all, we will take a look at the difference of using various window sizes.
To start off, the smaller the window size, the closer together the trajectories
of the operators are. Take Figure 12c for example. In the first few phases,
the best operator (DE/current-to-rand/1) has usages of about 1800 while
the worst operator (DE/rand/2) has about 1200, a difference of 600. On
the other hand, in Figure 12g this is resp. 2500 and 400, a difference of
2100. Presumably, this is because the smaller the window size, the closer the
algorithm is to choosing its operators at random. To illustrate this, you first
need to be aware of fact that with tournament selection, the probabilities
of selecting a particular operator is solely based on the tournament size and
its rank (in terms of quality). They are independent of the actual value of
the quality. Therefore, we have created table 2 that shows the probabilities
given a tournament size and rank.

59

Tournament Size Rank Probability Nr. of usages (phase = 6000)
2 1 7/16 2625
2 2 5/16 1875
2 3 3/16 1125
2 4 1/16 375
3 1 37/64 3469
3 2 18/64 1687
3 3 8/64 750
3 4 1/64 94

Table 2: The probabilities and number of usages of selecting an operator in a pool of
four operators given a rank and tournament size. An operator with the best quality has a
rank of 1, the second best a rank of 2, etc.

Now consider MOEA/D-FRR-TS using a pool of operators with window
size 1 and tournament size 2. At every moment in time, the operator selection
will be based solely on the previous operator application, because of the
window size of 1. Therefore, the corresponding operator will automatically
have the best quality. From Table 2 we can tell that this operator has a
probability of 7/16 to be selected next. The other operators have an equal
probability of being chosen, namely (9/16)/3 = 3/16. These probabilities
hold for every operator. This means that there is no competition between
operators at any point; the one that is applied in the previous time slot, will
be applied with a fixed probability for the next one. To prove this, we have
run the MOEA/D-FRR-TS algorithm using a window size of 1 and plotted
the trajectories in Figure 6 on UF2. It is clear that they have more or less
the same amount of usages.

60

Figure 6: The operator usage trajectory when a window size of 1 is used.

If a large window is used however, the operator’s quality is based on many
observations. Therefore, it is less likely for operators to catch up with each
other, and if they do, the new obtained order of qualities remain for a longer
time.

Also, you can see that the trajectories when using large window sizes
tend to stick to certain values. In Figure 12k for example, these values are
at about 2600, 1800, 1200 and 400. These correspond with the values from
table 2 (tournament size of 2). So. the smaller the window size, the more
it resembles choosing operators at random. If the windows gets bigger, the
more operator usages will stick to fixed values.

In addition to this, the trajectories belonging to implementations that
use smaller windows tend to converge to the same value. This might be
explained by the fact that in the beginning of the evolutionary process, there
is more room for improvement. So, the difference between better and worse
performing operators gets larger, resulting in more widely separated usages.
Later on in the process, many new generated solutions will be worse than the
solution it is compared with. The applications will often receive no credit
whereby good operators cannot excel as much. To check whether or not the
trajectories indeed converge more towards the same value, we have run the
algorithm for 4.000.000 evaluations and plotted this in Figure 7. As we can
see from the figure, the graphs indeed converge to the same value, namely
20.000, which makes sense. Since, the number of phases are 50, the number of
operator selections per phase is 4.000.000/50 = 80.000. And since there are

61

4 operators used here, the number of usages per operator would be 80.000/4
= 20.000. We can notice that there are some bumps here and then where
the number of usages of the best operator suddenly starts increasing for a
few phases. The usages of the worst one decreases here. Presumably, the
algorithm got out of some local optimum at those points of time and found a
bunch of new improved solutions with the use of the DE/current-to-rand/1
operator.

Figure 7: The operator usage trajectory after running FRR-TS on UF2 for 4 million
evaluations

Tournament size

Just like with using different window sizes, the tournament size influences the
range between the trajectories. Whereas in the first few phases of Figure 12c
the difference is about 600, in Figure 12d this is equal to circa 1100. This can
be explained by the fact that a larger tournament size leads to more extreme
probabilities. Let’s look at Table 2 again. When changing the tournament
size from 2 to 3, the probabilities of the best operator (rank 1) is increased
by more than 30 percent, while the other operators have a decreasing prob-
ability. Especially the worst performing operator’s probability drops down
dramatically, namely from 1/16 to 1/64.

62

Decaying factor

We also analyzed the effect of using different decaying factors towards the
operator usages. However, by looking at the graphs in Figure 12, we did not
found any significant differences. If we think about it, this actually makes
sense. The tournament selection that is used in MOEA/D-FRR-TS selects its
operators based solely on their rankings, so the actual difference in qualities
between the operators does not matter. If operator a has a better quality
than operator b, no matter how much decaying is applied, a’s quality will
always remain better than b’s. For AP and PM, the decaying factor would
matter. The probability of selecting an operator is (partly) proportional to
the quality. Thus, increasing the decaying factor would increase the selection
probability and therefore the exploitance of the best operator.

4.2.2 Performance

The parameter settings are also compared on their performance. As we
concluded from the previous section, the decaying factor has no influence
on the actual behaviour of the algorithm. Therefore, we will ignore this
parameter in this section and leave it at the default value of 1.0. We consider
the following parameter setting as default: W=300, S=2. The parameter
values were tested on problems UF2 and UF4 and the results are plotted as
box plots in Figure 13. From these results, we can conclude that there is no
significant difference between any parameter setting that is tested and the
default parameter setting, except for (S=3, W=600), which is significantly
worse on the IGD. We can see that the IGD is already quite close to 0,
indicating that an improvement might be difficult to achieve. On the other
hand, MOEA/D-FRR-TS using other parameter settings do not perform
much worse either. Apparently, UF2 and UF4 are not that sensitive to these
parameters when using MOEA/D-FRR-TS.

Table 4 shows us the running times of the different parameter values,
tested on UF2 and UF4. It is clear that a larger window size leads to an
increase of running time. This is due to the fact that every time it calculates
the quality of an operator, it needs to loop through the whole window. Of
course, this depends on the implementation and it might be possible to do
this in a more elegant way, such that the computational time is independent
of the window size. It seems that a larger tournament size also raises the
running time. Except for a few extra insignificant executions the algorithm

63

has to perform, we could not find a clear reason for this.

4.3 Experiment 3: Pool of operators vs. single oper-
ator

4.3.1 Performance

In Figures 14 and 15, box plots are given for the comparison of MOEA/D-
FRR-TS using a pool of operators and MOEA/D using only a single operator
from the pool. We can see that for problems UF2, UF4 and UF5, DE/current-
to-rand/1 is significantly worse compared to using a pool in terms of both the
HV and IGD. It is also the worst among all the single-operator algorithms.
For the three-objective problem UF8, this is the case for DE/rand/2. These
findings correspond with the results from Figure 6 and 7 in [41]. For UF8,
DE/rand/1 is significantly worse than the pool variant as well for both IGD
and HV. When looking only at the IGD on UF2, the pool variant also sig-
nificantly outperforms DE/rand/1 and DE/rand/2. Lastly, we can see that
there are cases in which a single operator performs significantly better than
the pool variant. This applies to DE/rand/1 in UF5 and DE/rand/2 in UF4
and UF5.

4.3.2 Pareto Front approximation

We also plotted the approximated PFs of the 30 runs of each algorithm that
were performed in Figure 16. Starting with UF2, they all perform quite
well in terms of PF approximation; we cannot even see the real PF (the
blue line) anymore. However, all algorithms seem to have some difficulty in
approximating the real PF at the bottom right. This could be caused by what
[18] addresses about the F5 problem (which is the same as UF2) they tested
their algorithms on. According to them, this could have to do with the weight
vectors. The weight vectors that are used (and in our experiments as well)
are evenly spread along the PF. This means that the optimal solutions to
each subproblem belonging to two neighboring weight vectors will be close on
the PF (the objective space). However, this does not always mean that they
are close in the variable space as well. Figure 8 shows the optimal solutions
of 50 subproblems that are evenly spread along the PF. As you can see, as
x1 approaches 1, the solutions are not that close anymore. This means that
combining two of these neighboring solutions to generate a new solutions is

64

not that useful and as [18] describes it: ”makes little sense”. As they suggest,
another weight vector initialization could improve the approximation of PFs
in problems like UF2.

Figure 8: Distribution of the optimal solutions of 50 subproblems with evenly spread
weight vectors in x1 - x2 - x3 space [18]

Going back to our results, we can conclude that not every algorithm is
affected just as much by this problem. Especially DE/current-to-rand/1 and
DE/rand/1 seem to have struggles, whereas the others are doing a lot better.
As [41] points out, DE/*/2 operators have two random-to-random terms,
while DE/*/1 operators only have one. This means that DE/*/2 operators
can do more exploration, which could be how these operators partially avoid
the problem described above.

In Fig. 16 we can also see that for UF4 and UF5, DE/current-to-rand/1
has points that are further from the real PF than the others. Furthermore,
for UF4, the points of DE/rand/2 are clearly the closest to the real PF,
indicating that this operator performed the best. These findings for UF2
and UF4 match the results from earlier (Figs. 14 and 15).

Lastly, if we take UF8, it is noticeable that all the plots have a gap in
top right corner that contain few points, indicating a flaw in the diversity of
the approximated PF. However, the gap of DE/rand/2 is significantly larger
than that of the others and contains more points bunched up in the direction
of the corners of the PF. This means that this operator is less diverse than
the others. This matches the fact that DE/rand/2 also performs the worst in

65

terms of IGD, as discussed earlier. DE/rand/1 also performed significantly
worse, however this is not that clear from the plots in Figure 16. This is
likely because of the fact that the differences are less significant.

We also wanted to know if there is a link between the performance of the
pool variant and the amount of improvement that is left on average of all
the approximated PFs. Therefore, table 5 shows per problem which single
operator variants perform better, worse, or equal to MOEA/D-FRR-TS using
a pool of operators. The problems are sorted on how much IGD improvement
is left on average, with UF5 having the most improvement left. We can see
straight away that less improvement leads to a better performance of the pool
compared to the others. A reason for this could be that for a problem like
UF2, for which the algorithms can produce PFs close to optimal, it needs
different operators to reach those last small improvements. An algorithm
using a single operator is perhaps not able to reach certain solutions which
a set of multiple operators can.

To conclude, these results indicate that MOEA/D-FRR-TS using a pool
of operators is not superior on all test cases. Also, there is no single operator
variant that performs the best on all problems. For example, DE/rand/2
does perform significantly better on UF4, but is the worst on UF8. Fur-
thermore, DE/current-to-rand/2 is the only single operator variant that per-
formed equally to the pool for all test cases.

66

5 Discussion & Conclusion

5.1 Discussion & Future Work

We have now seen the results of three experiments regarding the performance
of MOEA/D-FRR-TS. These lead to a few points of discussion. In this
section, we will work these out, as well as providing possible improvements
and future work.

To start off, from the trajectories of the first experiment we have con-
cluded that one operator (DE/current-to-rand/1) dominates during the pro-
cesses of UF2 and UF8. This leads to the expectation that in Experiment
3, MOEA/D using this operator is also superior to the others for these two
problems. The results from Experiment 3 show that for UF8 DE/current-
to-rand/1 indeed performs better than the other single operator variants.
However, this is not the case for UF2. Here, it is even significantly worse
than all the other ones. The fact that it is outperformed by the pool variant,
can be explained. It could be that during the process DE/current-to-rand/1
is constantly the better operator, but other operators might be necessary to
find solutions that could not be reached by using only DE/current-to-rand/1.
However, it is hard to say why all the single operator variants perform better.

Furthermore, we have concluded that all four tested problems are not
sensitive to what type of operator selection is used (AP, PM or TS). Among
the problems, UF2 and UF4 are also not sensitive to the parameter settings
that were tested for MOEA/D-FRR-TS. For UF2, we have seen that little
improvement is left, indicating the easiness of this problem. One could argue
that therefore, it does not really matter which operator selection is used, since
it finds a good PF approximation anyways. However, the approximations for
the other problems are much further from optimal. And yet, the operator
selection makes no difference. It could be that for other problems (or using
other operator selections) there is significance in the type of operator selection
that is used.

Nevertheless, our results show that it does matter which operators are
used. It could therefore be interesting to do more research in the use of dif-
ferent operators. Perhaps trying different combinations of certain operators,
or experiment with other types of operators. For example, operators that
mutate a solution using the best operator from the current population, such
as DE/best/* and DE/current-to-best/* [56]. According to [46], these types
of operators have a higher chance of getting stuck at local optima, but also

67

have a higher convergence speed. So, instead of using a maximum amount of
evaluations as termination criteria, we could check when the algorithms using
different operators reach a certain hypervolume. We could then investigate
how fast they actually converge.

Overall, the research in this paper can be pursued by more extensive test-
ing, such as using more problems. Problems with other characteristics could
be used, such as those having more objectives, different amounts of variables
or other Pareto fronts. Also, constrained problems could be tested as well,
such as those from [54]. As [57] denotes, constrained problems introduce
other types of Pareto fronts, such as disconnected Pareto fronts. This leads
to difficulties in the PF approximation and might give a better picture of the
strength of an algorithm, which opens up more possibilities to determine the
difference between various algorithms. Furthermore, the parameter analysis
could be more exhaustive. Instead of only trying out different parameter
settings for the control parameters of the operator selection, parameters of
MOEA/D and the credit assignment (FRR) could be alternated too. On top
of that, if more operators are added to the pool, larger values for the window
size and tournament size could be tried as well.

5.2 Conclusion

This paper has given an overview of existing Adaptive Operator Selection
(AOS) mechanisms and how these are applied to Multi-Objective Evolution-
ary Algorithms. Also, a new algorithm is proposed, called MOEA/D-FRR-
TS. This algorithm chooses mutation operators from a pool of operators
using an operator selection that is based on tournament selection. First, this
new algorithm was compared to two other algorithms using another operator
selection mechanism based on Adaptive Pursuit (MOEA/D-FRR-AP) and
Probability Matching (MOEA/D-FRR-PM). Then, a parameter analysis of
the control parameters was performed. Finally, the algorithm was compared
with MOEA/D that uses just a single operator for the reproduction. Results
clearly show different behaviour in the operator selection among the various
algorithms. Nevertheless, no significance was found between MOEA/D-FRR-
AP or MOEA/D-FRR-PM and MOEA/D-FRR-TS, nor between the differ-
ent parameter settings. The results did show that using MOEA/D-FRR-TS
with a pool of operators can improve MOEA/D that uses just a single oper-
ator, depending on the problem. This indicates that more research in using
other types of operators might be worth it. Furthermore, the studies in this

68

paper include a limited set of problems that were used to test the algorithms.
Therefore, it could be interesting to see what happens if other problems were
used, especially with different characteristics.

69

Appendices

A Experiment 1

(a) UF2 - AP (b) UF2 - PM (c) UF2 - TS

(d) UF4 - AP (e) UF4 - PM (f) UF4 - TS

(g) UF5 - AP (h) UF5 - PM (i) UF5 - TS

(j) UF8 - AP (k) UF8 - PM (l) UF8 - TS

Figure 9: The operator selection trajectories of MOEA/D-FRR-AP, MOEA/D-FRR-PM
& MOEA/D-FRR-TS. DE/rand/1 (), DE/rand/2 (), DE/current-to-rand/1 (),
DE/current-to-rand/2 ().

70

(a) UF2 (b) UF4

(c) UF5 (d) UF8

Figure 10: Box plots of the performances of MOEA/D-FRR-AP, MOEA/D-FRR-PM
& MOEA/D-FRR-TS based on the HV. Both MOEA/D-FRR-AP and MOEA/D-FRR-
PM are compared with MOEA/D-FRR-TS using an unpaired two samples t-test with a
significance level of 0.05. Significance is notated with a ’+’ or a ’-’ above the algorithm if
it is significantly better or worse than MOEA/D-FRR-TS, resp.

71

(a) UF2 (b) UF4

(c) UF5 (d) UF8

Figure 11: Box plots of the performances of MOEA/D-FRR-AP, MOEA/D-FRR-PM
& MOEA/D-FRR-TS based on the IGD. Both MOEA/D-FRR-AP and MOEA/D-FRR-
PM are compared with MOEA/D-FRR-TS using an unpaired two samples t-test with a
significance level of 0.05. Significance is notated with a ’+’ or a ’-’ above the algorithm if
it is significantly better or worse than MOEA/D-FRR-TS, resp.

Algorithm UF2 UF4 UF5 UF8
MOEA/D-FRR-AP 523 521 525 831
MOEA/D-FRR-PM 532 529 539 856
MOEA/D-FRR-TS 529 525 522 853

Table 3: The average running time of MOEA/D-FRR-TS, MOEA/D-FRR-AP &
MOEA/D-FRR-PM

72

B Experiment 2

(a) S=2, W=30, D=0.1 (b) S=3, W=30, D=0.1

(c) S=2, W=30, D=1.0 (d) S=3, W=30, D=1.0

(e) S=2, W=1200, D=0.1 (f) S=3, W=1200, D=0.1

Figure 12: The operator selection trajectories of MOEA/D-FRR-TS using different
parameter settings for the tournament size (S), the window size (W) and the decaying
factor (D) on UF2. DE/rand/1 (), DE/rand/2 (), DE/current-to-rand/1 (),
DE/current-to-rand/2 ().

73

(g) S=2, W=1200, D=1.0 (h) S=3, W=1200, D=1.0

(i) S=2, W=3000, D=0.1 (j) S=3, W=3000, D=0.1

(k) S=2, W=3000, D=1.0 (l) S=3, W=3000, D=1.0

Figure 12: The operator selection trajectories of MOEA/D-FRR-TS using different
parameter settings for the tournament size (S), the window size (W) and the decaying
factor (D) on UF2. DE/rand/1 (), DE/rand/2 (), DE/current-to-rand/1 (),
DE/current-to-rand/2 () (cont.)

74

(a) UF2 - HV (b) UF2 - IGD

(c) UF4 - HV (d) UF4 - IGD

Figure 13: Box plots of the performance of MOEA/D-FRR-TS using different values
for the tournament size (S) and the window size (W). Tested on UF2 & UF4, using the
Hypervolume (a & c) and the IGD (b & d). An unpaired two samples t-test is performed
using a significance level of 0.05 between MOEA/D-FRR-TS using different parameter
values and the default parameter values (S=2, W=300). Significance is notated with a
’+’ or a ’-’ above the algorithm if it is significantly better or worse than the default, resp.

Tournament size Window size Time UF2 Time UF4
2 60 488 478
2 300 544 532
2 600 614 601
3 60 507 474
3 300 557 530
3 600 631 595

Table 4: The average running time of MOEA/D-FRR-TS with different parameter values
for the Window Size and Tournament Size on UF2 and UF4

75

C Experiment 3

(a) UF2 (b) UF4

(c) UF5 (d) UF8

Figure 14: Box plots of the performance of MOEA/D-FRR-TS using single operators vs.
a pool with all four based on the HV. An unpaired two samples t-test is performed using a
significance level of 0.05 between each of the single variants and MOEA/D-FRR-TS using
a pool. Significance is notated with a ’+’ or a ’-’ above the algorithm if it is significantly
better or worse than MOEA/D-FRR-TS, resp.

76

(a) UF2 (b) UF4

(c) UF5 (d) UF8

Figure 15: Box plots of the performance of MOEA/D-FRR-TS using single operators vs.
a pool with all four based on the IGD. An unpaired two samples t-test is performed using a
significance level of 0.05 between each of the single variants and MOEA/D-FRR-TS using
a pool. Significance is notated with a ’+’ or a ’-’ above the algorithm if it is significantly
better or worse than MOEA/D-FRR-TS, resp.

77

(a) UF2 - All four (b) UF2 - DE/current-to-
rand/1

(c) UF2 - DE/current-to-
rand/2

(d) UF2 - DE/rand/1 (e) UF2 - DE/rand/2

(f) UF4 - All four (g) UF4 - DE/current-to-
rand/1

(h) UF4 - DE/current-to-
rand/2

(i) UF4 - DE/rand/1 (j) UF4 - DE/rand/2

Figure 16: All the 30 approximated PFs of using a pool of operators and each of the
single operators for problem UF2 & UF4.

78

(k) UF5 - All four (l) UF5 - DE/current-to-
rand/1

(m) UF5 - DE/current-to-
rand/2

(n) UF5 - DE/rand/1 (o) UF5 - DE/rand/2

(p) UF8 - All four (q) UF8 - DE/current-to-
rand/1

(r) UF8 - DE/current-to-
rand/2

(s) UF8 - DE/rand/1 (t) UF8 - DE/rand/2

Figure 16: All the 30 approximated PFs of using a pool of operators and each of the
single operators for problem UF5 & UF8 (cont.)

79

Better than pool Not significant Worse than pool

UF5
DE/rand/1
DE/rand/2

DE/current-to-rand/2 DE/current-to-rand/1

UF4 DE/rand/2
DE/current-to-rand/2
DE/rand/1

DE/current-to-rand/1

UF8 -
DE/current-to-rand/1
DE/current-to-rand/2

DE/rand/1
DE/rand/2

UF2 - DE/current-to-rand/2
DE/current-to-rand/1
DE/rand/1
DE/rand/2

Table 5: The problems sorted on how much improvement is left in terms of IGD (UF5
has the most improvement left) and which single operator variants perform worse, better
or equal than MOEA/D-FRR-TS using a pool of operators.

80

References

[1] K. Deb, “Multi-Objective Optimization Using Evolutionary Algorithms
: An Introduction”, in Multi-objective evolutionary optimisation for
product design and manufacturing, 2011, pp. 3–34.

[2] A. Trivedi, D. Srinivasan, K. Sanyal and A. Ghosh, “A survey of mul-
tiobjective evolutionary algorithms based on decomposition”, IEEE
Transactions on Evolutionary Computation, vol. 21, no. 3, pp. 440–
462, Jun. 2016.

[3] Á. Fialho, L. da Costa, M. Schoenauer and M. Sebag, “Analyzing
bandit-based adaptive operator selection mechanisms”, Annals of Math-
ematics and Artificial Intelligence, vol. 60, no. 1-2, pp. 25–64, 2010.

[4] A. Zhou, B.-y. Qu, H. Li, S.-z. Zhao and P. Nagaratnam, “Multiobject-
ive evolutionary algorithms : A survey of the state of the art”, Swarm
and Evolutionary Computation, vol. 1, no. 1, pp. 32–49, 2011.

[5] D. Savic, “Single-objective vs. multiobjective optimisation for integ-
rated decision support”, Proceedings of the First Biennial Meeting of
the International Environmental Modelling and Software Society, vol. 1,
pp. 7–12, 2002.

[6] B. Suman and P. Kumar, “A survey of simulated annealing as a tool
for single and multiobjective optimization”, Journal of the Operational
Research Society, vol. 57, no. 10, pp. 1143–1160, 2006.

[7] C. A. Coello and M. Reyes-Sierra, “Multi-Objective Particle Swarm
Optimizers: A Survey of the State-of-the-Art”, International Journal
of Computational Intelligence Research, vol. 2, no. 3, pp. 287–308, 2006.

[8] J. D. Schaffer, “Multiple Objective Optimization with Vector Eval-
uated Genetic Algorithms.”, Genetic Algorithms and Their Applica-
tions: Proceedings of the First International Conference on Genetic
Algorithms, pp. 93–100, 1985.

[9] J. D. Knowles and D. W. Corne, “Approximating the nondominated
front using the Pareto Archived Evolution Strategy.”, Evolutionary
computation, vol. 8, no. 2, pp. 149–172, 2000.

[10] E. Zitzler, M. Laumanns and L. Thiele, “SPEA2: Improving the strength
pareto evolutionary algorithm”, TIK-report, vol. 103, 2001.

81

[11] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, “A fast and elit-
ist multiobjective genetic algorithm: NSGA-II”, IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[12] K. Ikeda, H. Kita and S. Kobayashi, “Failure of Pareto-based MOEAs:
Does non-dominated really mean near to optimal?”, Proceedings of the
2001 Congress on Evolutionary Computation, vol. 2, pp. 957–962, 2001.

[13] H. Lshibuchi, Y. Sakane, N. Tsukamoto and Y. Nojima, “Simultan-
eous use of different scalarizing functions in MOEA/D”, Proceedings of
the 12th Annual Genetic and Evolutionary Computation Conference,
GECCO ’10, pp. 519–526, 2010.

[14] E. Zitzler and S. Künzli, “Indicator-based selection in multiobjective
search”, International Conference on Parallel Problem Solving from
Nature, pp. 832–842, 2004.

[15] M. Emmerich, N. Beume and B. Naujoks, “An EMO algorithm using
the hypervolume measure as selection criterion”, International Confer-
ence on Evolutionary Multi-Criterion Optimization, vol. 3410, pp. 62–
76, 2005.

[16] D. Brockhoff and E. Zitzler, “Improving Hypervolume-based Multiob-
jective Evolutionary”, Evolutionary Computation, pp. 2086–2093, 2007.

[17] J. Bader and E. Zitzler, “HypE: An algorithm for fast hypervolume-
based many-objective optimization”, Evolutionary Computation, vol. 19,
no. 1, pp. 45–76, 2011.

[18] H. Li and and Q. Zhang, “Multiobjective Optimization Problems With
Complicated Pareto Sets, MOEA/D and NSGA-II”, IEEE Transac-
tions on Evolutionary Computatione, vol. 13, no. 2, p. 1138, 2009.

[19] Y. Tian, X. Zhang, R. Cheng and Y. Jin, “A multi-objective evolu-
tionary algorithm based on an enhanced inverted generational distance
metric”, in 2016 IEEE Congress on Evolutionary Computation (CEC),
IEEE, 2016, pp. 5222–5229.

[20] M. P. Hansen and A. Jaszkiewicz, “Evaluating the quality of approxim-
ations to the non-dominated set”, IMM Technical Report IMM-REP-
1998-7, p. 31, 1998.

82

[21] Y. Tian, R. Cheng, X. Zhang, F. Cheng and Y. Jin, “An Indicator-
Based Multiobjective Evolutionary Algorithm with Reference Point
Adaptation for Better Versatility”, IEEE Transactions on Evolutionary
Computation, vol. 22, no. 4, pp. 609–622, 2018.

[22] D. H. Phan and J. Suzuki, R2-IBEA: R2 indicator based evolutionary
algorithm for multiobjective optimization. 2013, pp. 1836–1845.

[23] E. Zitzler and L. Thiele, “Multiobjective Evolutionary Algorithms : A
Comparative Case Study”, IEEE Transactions on Evolutionary Com-
putation, vol. 3, no. September, pp. 257–271, 1998.

[24] D. Van Veldhuizen, “Multiobjective evolutionary algorithms: classific-
ations, analyses, and new innovations”, AIR FORCE INST OF TECH
WRIGHT-PATTERSONAFB OH SCHOOL OF ENGINEERING, 1999.

[25] P. A. Bosman and D. Thierens, “The balance between proximity and
diversity in multiobjective evolutionary algorithms”, IEEE Transac-
tions on Evolutionary Computation, vol. 7, no. 2, pp. 174–188, 2003.

[26] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary al-
gorithm based on decomposition”, IEEE Transactions on Evolutionary
Computation, vol. 11, no. 6, pp. 712–731, Dec. 2007.

[27] K. Miettinen, Nonlinear multiobjective optimization. Springer Science
& Business Media, 2012, vol. 12.

[28] H. Ishibuchi, Y. Sakane, N. Tsukamoto and Y. Nojima, “Adaptation
of scalarizing functions in MOEA/D: An adaptive scalarizing function-
based multiobjective evolutionary algorithm”, International Confer-
ence on Evolutionary Multi-Criterion Optimization, pp. 438–452, 2009.

[29] S. Jiang, S. Yang, Y. Wang and X. Liu, “Scalarizing Functions in
Decomposition-Based Multiobjective Evolutionary Algorithms”, IEEE
Transactions on Evolutionary Computation, vol. 22, no. 2, pp. 296–313,
2018.

[30] Q. Zhang, W. Liu and H. Li, “The performance of a new version
of MOEA/D on CEC09 unconstrained MOP test instances”, in 2009
IEEE Congress on Evolutionary Computation, CEC 2009, 2009, pp. 203–
208.

83

[31] A. Nebro and J. Durillo, “A Study of the Parallelization of the Multi-
Objective Metaheuristic MOEA/D”, International Conference on Learn-
ing and Intelligent Optimization, vol. 6073, no. January, pp. 303–317,
2010.

[32] S. Z. Zhao, P. N. Suganthan and Q. Zhang, “Decomposition-based mul-
tiobjective evolutionary algorithm with an ensemble of neighborhood
sizes”, IEEE Transactions on Evolutionary Computation, vol. 16, no. 3,
pp. 442–446, 2012.

[33] R. Storn and K. Price, “Differential Evolution – A Simple and Efficient
Heuristic for Global Optimization over Continuous Spaces”, Journal of
global optimization, vol. 11, no. 4, pp. 341–359, 1997.

[34] Á. Fialho, L. Da Costa, M. Schoenauer and M. Sebag, “Dynamic multi-
armed bandits and extreme value-based rewards for adaptive oper-
ator selection in evolutionary algorithms”, International Conference
on Learning and Intelligent Optimization, pp. 176–190, 2009.

[35] F. G. Lobo, C. F. Lima and Z. Michalewicz, Parameter Setting in
Evolutionary Algorithms. 2007, vol. 54.

[36] Á. Fialho, “Adaptive Operator Selection for Optimization”, Université
Paris Sud, 2010.

[37] P. Auer, “Finite-time Analysis of the Multiarmed Bandit Problem”,
Machine learning, vol. 47, no. 2-3, pp. 235–256, 2002.

[38] F. G. Lobo and D. E. Goldberg, “Decision making in a hybrid genetic
algorithm”, in Proceedings of the IEEE Conference on Evolutionary
Computation, ICEC, 1997, pp. 121–125.

[39] D. Thierens, “An adaptive pursuit strategy for allocating operator
probabilities”, Proceedings of the 7th annual conference on Genetic and
evolutionary computation, pp. 1539–1546, 2005.

[40] Á. Fialho, L. Da Costa, M. Schoenauer and M. Sebag, “Extreme value
based adaptive operator selection”, in International Conference on Par-
allel Problem Solving from Nature, 2008, pp. 175–184.

[41] K. Li, A. Fialho, S. Kwong and Q. Zhang, “Adaptive operator selec-
tion with bandits for a multiobjective evolutionary algorithm based
on decomposition”, IEEE Transactions on Evolutionary Computation,
vol. 18, no. 1, pp. 114–130, Feb. 2014.

84

[42] Á. Fialho, M. Schoenauer and M. Sebag, “Analysis of adaptive operator
selection techniques on the Royal Road and Long K-Path problems”,
Proceedings of the 11th Annual Genetic and Evolutionary Computation
Conference, GECCO-2009, pp. 779–786, 2009.

[43] W. Gong, A. Fialho and Z. Cai, “Adaptive strategy selection in dif-
ferential evolution”, in Proceedings of the 12th Annual Genetic and
Evolutionary Computation Conference, GECCO ’10, 2010, pp. 409–
416.

[44] Á. Fialho, M. Schoenauer, M. Sebag, Á. Fialho, M. Schoenauer, M. Se-
bag, T. C.-b. Adaptive, Á. Fialho, M. Schoenauer and M. Sebag, “To-
ward Comparison-based Adaptive Operator Selection”, Proceedings of
the 12th annual conference on Genetic and evolutionary computation,
pp. 767–774, 2010.

[45] J. Maturana and F. Saubion, “A compass to guide genetic algorithms”,
International Conference on Parallel Problem Solving from Nature,
vol. 5199 LNCS, pp. 256–265, 2008.

[46] A. K. Qin, V. L. Huang and P. N. Suganthan, “Differential evolu-
tion algorithm with strategy adaptation for global numerical optimiza-
tion”, IEEE Transactions on Evolutionary Computation, vol. 13, no. 2,
pp. 398–417, 2009.

[47] L. D. Costa, Á. Fialho, M. Schoenauer, M. Sebag, L. D. Costa, Á.
Fialho, M. Schoenauer, M. Sebag, A. Operator, L. Dacosta, Á. Fialho,
M. Schoenauer, M. Sebag and O. Cedex, “Adaptive Operator Selec-
tion with Dynamic Multi-Armed Bandits”, Proceedings of the 10th an-
nual conference on Genetic and evolutionary computation, pp. 913–920,
2008.

[48] D. Hinkley, “Inference About The Change-point From Cumulative Sum
Tests”, Biometrika, vol. 58, no. 3, pp. 509–523, 1971.

[49] Goncalves, Almeida and Pozo, “Upper Confidence Bound (UCB) Al-
gorithms for Adaptive Operator Selection in MOEA/D”, International
Conference on Evolutionary Multi-Criterion Optimization, pp. 411–
425, 2015.

[50] H. J. C. Barbosa and A. Medeiros-e-Sá, “On Adaptive Operator Prob-
abilities in Real Coded Genetic Algorithms”, XX Intl. Conf. of the
Chilean Computer Science Society, 2000.

85

[51] V. Huang, A. Qin, P. Suganthan and M. Tasgetiren, “Multi-objective
Optimization based on Self-adaptive Differential Evolution Algorithm”,
2007 IEEE Congress on Evolutionary Computation, pp. 3601–3608,
2007.

[52] V. L. Huang, S. Z. Zhao, R. Mallipeddi and P. N. Suganthan, “Multi-
objective optimization using self-adaptive differential evolution algorithm”,
2009 IEEE Congress on Evolutionary Computation, CEC 2009, pp. 190–
194, 2009.

[53] S. M. Venske, R. A. Gonçalves and M. R. Delgado, “ADEMO / D :
Multiobjective optimization by an adaptive differential evolution al-
gorithm”, Neurocomputing, vol. 127, pp. 65–77, 2014.

[54] Q. Zhang, A. Zhou, S. Zhao, P. N. Suganthan and W. Liu, “Multiob-
jective optimization Test Instances for the CEC 2009 Special Session
and Competition”, University of Essex, Colchester, UK and Nanyang
technological University, Singapore, special session on performance as-
sessment of multi-objective optimization algorithms, technical report,
vol. 264, pp. 1–30, 2008.

[55] D. E. Goldberg, “Probability Matching, the Magnitude of Reinforce-
ment, and Classifier System Bidding”, Machine Learning, vol. 5, no. 4,
pp. 407–425, 1990.

[56] R. Storn, “On the usage of differential evolution for function optimiz-
ation”, Biennial Conference of the North American Fuzzy Information
Processing Society - NAFIPS, no. May, pp. 519–523, 1996.

[57] K. Li, K. Deb, Q. Zhang and S. Kwong, “An evolutionary many-
objective optimization algorithm based on dominance and decomposi-
tion”, IEEE Transactions on Evolutionary Computation, vol. 19, no. 5,
pp. 694–716, 2015.

86

	Abbreviations
	Introduction
	Goals
	Outline

	Background and related work
	Multiobjective Optimization Problem
	Solving a MOP
	Non-MOEA based methods
	MOEAs
	Domination-based MOEAs
	Indicator-based MOEAs
	Decomposition-based MOEAs
	Performance indicators

	MOEA/D
	Decomposition methods
	MOEA/D algorithm
	Improvements of MOEA/D
	Differential Evolution (DE)

	Parameter setting
	Adaptive Operator Selection
	Credit assignment
	Fitness-based credit assignment
	Rank-based credit assignment
	Operator selection
	Bandit-based AOS methods
	Probability-based AOS methods

	Combining MOEA and AOS
	Comparing MOEA/D and AOS combinations
	Parameter influence

	Methods
	New algorithm: MOEA/D-FRR-TS
	Algorithms pseudo-code
	Software & Framework
	Experiments
	Experiment 1: Comparison with Adaptive Pursuit and Probability Matching
	Experiment 2: Parameter analysis
	Experiment 3: Pool of operators vs. single operator
	Measurements

	Results
	Experiment 1: Comparison with Adaptive Pursuit and Probability Matching
	Operator Dynamics
	Performance

	Experiment 2: Parameter analysis
	Operator Dynamics
	Performance

	Experiment 3: Pool of operators vs. single operator
	Performance
	Pareto Front approximation

	Discussion & Conclusion
	Discussion & Future Work
	Conclusion

	Appendices
	Experiment 1
	Experiment 2
	Experiment 3

