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1 Abstract

Toxicology is a field plagued by lack of experimental data and labels, as assess-
ment of chemical toxicity is a time-consuming and costly process, all the while
release of new substances grow in number. This further strengthens the need
for robust screening tools and models for classification. Chemical similarity
screening traditionally include a two-dimensional fingerprint representation of
a chemical sub-structure, in which a distance measure between fingerprints
determines similarity. This approach neglects potential importance ordering
for sub-structures. The novelty of the approach presented in this paper aims to
model so-called persistent, bioaccumulative and toxic(PBT) substances based
on their physical chemical properties, and whether such an approach is an
improvement over related fingerprint based approaches. Aims further include
to inspect whether feature importance match a priori expert expectation, and
whether the results could be improved by application of active machine learning.
Two baseline machine learning models were fit to naive and filtered physical
chemical data in the form of Random Forests and Support Vector Machine. The
best performing model achieved a 94.28%classification accuracy, and was also
able to pick up on existing legal guideline thresholds for substance evaluation.
Further hypothesis of expert feature importance was showed to be true, with
added importance for features previously not considered. Further utilizing a
curious machine learning algorithm named Active Learning, it was shown that
a similar accuracy could be achieved with 40-50% less data used, with a demo
for interactive annotation with a chemical expert that could serve as a cross-
referencing check on expert chemical evaluation. Albeit in need of further
confirming data, the main contribution of this paper is the novel approach
of using physio-chemical data, showing the value of utilizing machine learning
algorithms as a tool for the classification of harmful chemicals.

Key Words: Toxicology, Machine Learning, Chemical Similarity, Random
Forest, Support Vector Machine, Active Learning, PBT substances



2 Introduction

Chemical usage permeates the products we both consume and develop in modern
society, such as agricultural pesticides, plastics, food additives and cosmetics.
However, these same chemicals may carry adverse effects for health and the
environment, and thus require evaluation prior to their usage. Screening potential
toxic chemicals is a time consuming and rigorous process, and at the same time,
more are released on the markets every year. How can artificial intelligence
help speed up the process of classifying new chemicals? Technological advances
have created new opportunities for research in general. First, new measurement
methods and storage technologies have stimulated the collection and availability
of data in general. Second, improved computing power has made it feasible for
machine learning methods to be implemented in practice. These advances are
also important for the field of ‘predictive toxicology’. This predictive work is an
important task within the RIVM, the Dutch national institute which concerns
itself among other things with the evaluation of chemical substances in terms of
their (public) health and environmental effects. The process of evaluation has
always been complicated by a lack of experimental and observational data from
which the effect can be directly inferred(That is, many substances have not been
directly assessed in terms of their health effects.) However, when we assume that
the toxicity of a substance can be predicted well by considering other substances
with similar characteristics, we might be able to support this evaluation with
evidence from data. This is also where the aforementioned advances can play an
important role. More specifically, in recent years increasingly large databases
containing toxicological parameters and endpoints such as a chemical’s environ-
mental fate has become available. It is in the interest of the RIVM to investigate
the value of using new databases and machine learning techniques in the field
of predictive toxicology, both as novel avenues of studying the chemical space
and as added tools for substance evaluation. A further matter of salience is
the legislative nature of the task, where any model that may be used for further
legal justification in a chemical toxicity ruling. Thus, the methods would require
a certain level of transparancy.

The goal in this paper is to investigate the capabilities of using machine
learning for the classification of so-called persistant, bioaccumulative and toxic
(PBT) substances. PBT substances are chemicals that do not easily degrade
in their immediate released environment, or further bioaccumulate in biological
systems such as humans or fish. More information about this can be found
in the related works for the uninitiated reader. The project aims to explore
the following research questions: Is there an added benefit of modelling based
on physio-chemical properties of substances over the more traditionally used
structure-activity analysis and two-dimensional binary fingerprint comparison.
Further, as expert evaluation of chemical substances involve an a priori expecta-
tion of variable importance, does a naive modelling approach match these expect-
ations, and if not, to what extent does ranked feature importance for a machine
learning model deviate from expert ranking? What further modelling options
are well-suited for such a task? Are they explainable? Further, a point of



interest is to inspect the relative impact of persistence and bioaccumulation
features, and to what extent the different PBT criteria play in determining the
outcome of a label. This includes modelling approaches that includes for the
nuance of different labels beyond a binary approach. The notion of similarity
then lies in which way a substance’s relative impact on its environment shares
characteristics with those that are known to be harmful, and those that are
known to be safe. Finally, in a field where experimental data can be lacking or
insufficiently labeled, how can active machine learning be used to increase the
quality of prediction and data sets with selective sampling?

To begin with, a background on both the field of toxicology and concepts of
machine learning will be introduced, as well as the related work done in the field,
as the target audience for this thesis is mixed. The methods to be used for the
paper will then be presented, along with criteria of model evaluation. Further,
the data to be used in the paper will be described, along with the physio-
chemical properties and their explanations for the sake of clarity. Finally, results
will be presented along with a discussion and making remarks for improvement
and limitations before reaching a conclusion on stated research questions.



3 Related work

The following sections include background information on work done within
predictive toxicology, methods used, and a review of literature on the active
learning approach and its intuition.

3.1 Toxicology
3.1.1 Background

The field of toxicology is a scientific field dedicated to the study and evaluation of
substances that have adverse effects on biological systems and the environment.
It carries a staunch overlap with the fields of chemistry, pharmacology and
medicine, with a focus on rigorous study and judgement of said substances and
their toxic effects. This judgement is of a legislative sort, thus within toxicology,
there is a need for robust and quality models for classification of toxic chemicals
that have various affects in biological systems. A matter of salience here is that
chemicals are widely used in the production of products that we frequently use
and permeates our daily lives, which in turn carry effects on the environment,
our health and well being. Within food production alone there is food additives,
pesticides, fertilizers, and further in commercial products like toys, furniture,
plastics and prescriptive drugs. The degree to which how much a chemical
substance can be present in a given product is mediated by law. These laws
are determined by carefully studied evaluations and testing of substances. To
get a sense of scope to the problem, The American Environmental Protection
Agency(EPA) estimate that there is about 2000 new chemicals introduced to
the market each year[40]E|, however only a few of these are processed at a time
under the new Frank R. Lautenberg Chemical Safety for the 21st Century Act
signed in 2016[5], thus rendering the endeavour of evaluating and classifying
chemicals a time-consuming and costly process, all the while being a pressing
matter. The EPA has made this a point of prioritization, and have developed a
research program dedicated to utilize an already existing list of structural classes
and chemical subgroups to be used in future classification and evaluation. The
program is entitled ” ToxCast” [I5]. This problem, however, is not unique to the
United States.

The EU has taken its own regulatory steps in controlling and measuring chemical
usage. Headed by initiatives such as REACH[I7] and CLP[I§] directives under
the EU and European Chemicals Agency(ECHA)[20], European manufacturers
and exporters of chemical substances need to classify and label their chemicals
through strict guidelines. This labeling includes a thorough account of its
environmental effects and its toxic features. Controlling these procedures is no
small task, as the European Chemical Industry Council measure the chemical
industry to be the fourth largest in Europe according to their 2018 industrial
report[I0]. A salient matter is the set of categories that a given substance might

last accessed December 17th, 2019.



fall into. Chemicals denoted as Substances of Very High Concern(SVHC) are
banned under the directives of aforementioned initiatives and are not available
for production or distribution. There are further sub-categories to the substances
that are categorized as SVHC that carries different properties that are of concern.
Some substances have so called CMT properties for short, meaning that they are
carcinogenic, mutagenic, and reprotoxic. They are known to have chronic effects
on health and are often grouped together as they carry similar classifications and
legal action. Further, there are the mentioned PBT substances. An important
note here is that the label of toxic is not necessarily directly derived, rather, it
is something that is concluded based on two other priors, namely how persistent
it is, how bio-accumulative it is, or a combination of the two. Some substances
are thus not consider toxic as they are neither bio-accumulative or persistent,
however a toxic chemical can be non-persistent yet bio-accumulative and vice
versa. If above a certain threshold of persistence or bioaccumulation, substances
can be labeled as PBT/vPvB, or very persistent and very bio-accumulative.
Finally, there are substances that are hormonal disruptors(ED), in that they
may change the hormonal balance in systems that are driven by hormones.
Outcome of significant hormonal disruption may lead to birth defects and adverse
development problems and disorders. This paper is more concerned with PBT
substances and the development of a screening tool for such substances.

3.1.2 Machine Learning in Toxicology

The use of machine learning models in chemistry and toxicology is a growing
toolbox of models and approaches that span a wide variety of techniques, ranging
from molecular drug-target interaction to toxicity classification. These so-called
in silico studies attempt at giving detailed accounts of chemical properties and
interactions on a computational level, whereas historically chemicals have been
studied in wvitro, or in careful and rigorous lab environments. As highlighted in
the book ” Computational Toxicology—A State of the Science Mini Review” [23],
as the field of toxicology gets increasingly acquainted with state-of-the-art model-
ling techniques, one important aspect that computational modelling within
toxicology provides is scale. Scale in directions and breadth of approaches across
biological organization levels, drug-complexities and dosage discrimination to
name a few. These models often end up being informative supplements to a
field that is drive by legislative decision making, thus making effective screening
tools worthwhile in segmenting elements of chemical components for further
scrutiny.

There are numerous in silico models that have been developed, such as the
prediction of complex chemical reactions at the mechanistic level using machine
learning[24], where the authors model chemical interaction on a molecular level
using a two-step machine learning algorithm. There are drug-drug interaction
models that study adverse affects in drug administration, or multi-drug administr-
ation in clinical trials in a world with increasing healthcare costs[l1]. An
overarching goal for these models is to study not only the effects of chemical
compounds in the body, but increase the quality and effectiveness of healthcare



or the safety of chemical use, exemplified further by the prediction of chemical
acute oral toxicity using a variety of classification methods[29]. More recent
applications include state-of-the-art neural nets to model Quantitative Structur-
Activity Relationships(QSAR) - in which the goal is to capture molecular activity
and reactivity in a predictive manner[54] for thousands of data entries.

Not only does the machine learning approach increase the rate and efficiency
of testing, but may also allow for a reduction on the number of tests that need
to be made, and consequently reduce harm on test subjects. A motivating
example here is from the world of cosmetics. People’s eyes or skin are subject
to exposure of chemicals in various ways, and the safety of a chemical is often
studied through testing of animals. One such test is The Draize Eye Test[52].
The Draize test was developed to study effects found in chemicals used in
products like cosmetics, such as eye-irritation or corrosive traces. Testing is done
through the use of rabbits, in which the eyes of the rabbits are subjected to the
chemical being tested to check for adverse outcomes. Not only are the rabbits
subjected to numerous tests, but also repeated tests for chemicals deemed to
be similar to previously studied ones, which in certain instances can amount to
90 repeated rabbit eye tests[51] to determine proper labels for a given cosmetic.
Further, the cost of in vivo tests of chemicals is estimated to exceed 68,000
entries under the REACH legislation, rendering the usefulness of predictive
models stronger. Studies on these substances have been made, in which it was
found a hypothetical estimate of 54 million animals was in demand for extensive
testing of effects over all possible categories ranging from respiratory irritation to
developmental neurotoxicity[37]. The overall cost amounted to a hypothetical
estimate of 9.5 billion euro. Notably, findings like these contributed to the
EU 7" Amendment to the Cosmetic Directive[19], effectively banning animal
testing for new cosmetic ingredients, further adding weight to the need for more
efficient modeling tools.

With this in mind, an initial analysis of publicly available REACH Draize
Eye Irritation test data was made, in which the data dossiers dated from 2008-
2014 were data mined and inspected in 2016[32]. The dossiers contained 9,782
Draize Eye Tests that had been performed on 3,420 unique substances, pointing
to the high amount of repeated tests mentioned earlier. The authors then
assessed the reproducibility of these tests, in which there was 10% estimate
chance of classifying a previously labeled irritant as a non-irritant according
to the relevant classification criteria under the UN GHS system[2]. The most
reproducible tests where outcomes that were labeled as negative at 94% and
severe eye irritants at 73%. Reproducibility was determined by a probability
estimate of one outcome of a Draize test would give the same outcome in a
subsequent Draize test. Having established a notion of reproducibility, the
authors explored whether other classification criteria under the UN GHS could
be used to expand upon the quality of prediction towards eye irritation with
a differently constructed data set. Overall their classification methods had
valuable results that called for further exploration, leading the same authors
to data mine REACH data on skin sensitization from the same time period[31].
The work done in both of these studies accumulated to the development of a



machine learning algorithm for toxicological big data using Read-Across Structure
Activity Relationships(RASAR)[33]. Since the range of possible molecular activity
is so vast, it is hard to establish or derive complex rules for chemical structures
by both human and computational means. Read-across approaches like RASAR
utilizes a pragmatic approach, in which a case-by-case comparison to similar
chemicals is done to determine structural relationships. To construct the RASAR,
they utilized both supervised and unsupervised learning steps. For the unsuperv-
ised step, an exhaustive comparison of the distance between one chemical to
another is done for the entire set. After the similarities have been constructed,
local graphs were made for each component that describes the distance to other
chemicals surrounding the one of particular interest using Jaccard similarity.

The final unsupervised step was to apply an aggregate function to the local
graph to generate feature vectors, and based on these vectors, KNNs would
create n-dimensional vectors based on the number of times n number of labels
would occur in the k closest neighbours. The authors further used these vectors
in a supervised learning step using simple RASAR and random forests with data
fusion, the data fusion being an extension of the simple RASAR by incorporating
more similarity feature vectors to each catalogued compound. Not only did they
include positive similarities, but also analog negative similarity feature vectors,
and general known hazard feature vectors. In the end, both simpler and more
complex models were able to show predictive capability rivaling standardized
animal testing in the REACH set they explored in 2016 of roughly 70-82%-+
balanced accuracies across the different categories in the UN GHS initiative. The
results lend credence towards computational models as a means of both reducing
harm and efficiently determining risk. There were however some caveats, among
them that the specificities, or true false predictions, were lower in the simple
RASAR than they were for repeated animal tests. This was further remedied in
the data fusion model when further feature vectors were included. In addition,
chemicals are not always on equal footing in chemical complexity and variance,
rendering the reproducibility of a given test not independent of the chemical
that was being tested. Chemicals that are soluble may be easier to reproduce
than those that are insoluble in eye irritation tests, which is a further point of
improvement for the future in establishing a framework or rubric of appropriate
testing, however a noteworthy improvement was made.

3.1.3 RIVM screening tool

The notion of chemical similarity may also be used to separately classify sub-
categories of harmful chemicals[50]. Previously mentioned CMT, PBT/vPvB
and ED substances are here the target of consideration, in which a range of
researched similarity measure sets[b3] are paired with a 2D chemical structure
representation. This representation can be described as a binary bit-string, also
called a fingerprint, in which chemical substructures are either given a 1 if it
is present in a given substance, or 0 otherwise. Similarity is again given as an
estimate of structural overlap between substances that carry adverse properties



with known SVHCs. A total of 957 substances were selected from a Dutch list
that is in legislative accordance with SVHC criteria under REACH, the data
partition being 546 SVHCs and 411 non-SVHCs. The criteria for a best model
selection is based on its balanced accuracy for all possible fingerprint-coefficient
pair in the set, which totalled at 112 different measures given the existence of 16
various fingerprint representations and 7 similarity coefficients. The selection of
these coefficients were based on work previously done[46].
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Figure 1: Ezperimental setup of screening tool developed at the RIVM From. [50]

A worry, as expressed by the authors in discussing model performance, was
whether bias would be introduced for smaller substances in their similarity
coefficient with known small SVHC substances. Smaller substances would have
a lot of chemical substructures not present, marked as 0, and thus would carry
a significant amount of overlap with other small substances for the same reason,
rendering substances erroneously as SVHCs. Thus for these substances, when
such bias was detected in a model, an asymmetric similarity coefficient served
as correction for the problem. Further, a couple of stability tests were done on
well-performing models to verify results. The initial check was done by adding
any non-relevant substance pertaining to a particular category as a non-SVHC
substance. For example the ED model, all substances of CMT and PBT/vPvB
that did not show ED characteristics were considered non-ED, and thus added
to the non-SVHC data set, a check that only works for subcategory models. As
a second robustness check, group representation structures were reduced, overall
leading to a reduction in the number of substances for each category. Although
no cross-validation was used in the training process, similarity was determined
by a leave-one-out methodology in comparing one chemical to all other chemicals
with optimized threshold values that exceeded 0.8 on all best-performing models.
Noteworthy is it that the threshold is determined through an optimization
processes of selecting the best pairing of representation and similarity measure.
As such, if a similarity coefficient outputs a 1, the substances, or fingerprints,
are identical, whereas in a scenario where the ouput is 0, a total dissimilarity
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is the case. Results show that for an overrall model including all subcategories,
a variety of fingerprints showed up in the top-performing models albeit with a
recurring similarity coefficient called simple matching(SM):

c+d

- = 1
y c+a+b+d (1)

In this measurement, a denotes that a structure is present in fingerprint X while
not present in fingerprint Y, b the inverse(present in Y, not in X), ¢ present
in both fingerprints and finally d in which it is present in neither of the two.
This is different from a commonly used similarity coefficient called Jaccard-
Tanimoto(JT), which is similar to that of formula (1), only with the removed
term d.

The best performing model was a PubChem fingerprint of bit size 881 with
a SM coeflicient combination. The model was able to identify SVHCs with
a balanced accuracy of 84.6% with a 0.985 similarity threshold, however as
the authors note, not the best combination for identification of sub-groups.
Different couplings provided varying results for the different subgroups, yet all of
them showed a higher balanced accuracy than the general model. For example,
balanced accuracy for the ED set of substances was at 0.99 with FCFP4-SM
coupling. A note to the reader is that different fingerprints are shown to on
average have similar retrieval measures[I6], so the majority of tweaks done to
this model was determining a similarity threshold value. A caveat to the model
performance on the ED category is that 52 ED substances were present in the
set, and are known to be particularly similar in structure, hence the very strong
correlation and predictive performance for these models(all models were above
0.9). Some diversity between groups showed up as well, notably that a MACCS
style fingerprint were better for PBT/vPvB substances. Nevertheless, it was
proven to be an efficient screening tool for the purpose of detecting structural
similarity to known SVHCs.

Work done here naturally is a benchmark for comparison for the findings in
this paper, as it carries a staunch overlap in the data used and is a model that
is utilized by the RIVM.

The research explored above spans across different levels of chemical organization
and abstraction to predict molecular interaction and potential toxicity classifi-
cation. However, nothing out of the literature points towards the use of physical
properties alone to classify potentially harmful substances. The novelty of this
approach aims to be a first step in a direction of scrutinizing chemical substances
from another angle. Labeling chemicals further comes with some modelling
decisions to determine how a chemical by legal standards can be determined. A
comparison of such machine learning algorithms show several methodologies as
applicable for bioassay data commonly used in vivo chemical classification, even
when accounting for noise, feature-selection, feature irrelevance and imbalances
in labeled datal23]. Models frequently used for classification include classical
machine learning models such as a support vector machine(SVM), classification
trees, random forests(RF), k-nearest neighbor(KNN) and naive Bayes(NB). This
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not only informs modelling decisions for the topic of this paper, but further sheds
light on the capabilities of machine learning techniques for the development of
potential screening tools within the field of toxicology.

3.2 Active Learning

The following is a brief overlook of the intuitions that go in to active machine
learning and its use-cases. This is an part so the reader may catch the intuitions
for the related work done. A more in depth description of active learning
specifics can be find in 4.3.

3.2.1 Background

In certain machine learning paradigms, data may lack proper labels or complete
descriptions. This is a problem within data mining, say, where a large business
may have missing or incomplete customer data. The company would nevertheless
like to classify or make predictions on customer behavior. A further example is
within medical data, where we want to suggest a treatment for a patient based
on a narrow subset of features, and we may lack information of other crucial
features that are complex and expensive to compute. Data sets might further
have an imbalance in the amount of labeled experimental data available, which
is a common theme within the field of toxicology described in this paper. As
explored earlier, thousands of chemicals remain unclassified whereas only a tiny
speck is labeled or may have a legislative instruction. This could pose a challenge
when wanting to developing robust models. Active learning is a sub-field of
machine learning partly researched to able to deal with such challenges. Active
machine learning algorithms aim to reduce otherwise tedious labeling costs and
uncertainties by introducing the element of choice from the standpoint of the
algorithm. In other words, the model chooses what data it trains itself on,
and thus may drastically reduce the amount of labeled data needed to acquire
performance that rival other passive algorithms[27][45][42][58]. This curious
approach is a form of semi-supervised learning that consults an oracle, where
the oracle is some domain expert, or human annotator. Consulting an oracle
works as follows; during training for a classification problem, there might be
a specific set of unlabeled instances that are hard to determine a particular
label for. They might be on the border of what the machine perceives to be the
decision boundary, or in a probabilistic sense, a 50/50 case. The idea is to select
for, and label, data points that better relieves 'confusion’ from the viewpoint of
the model or provide the most information.

Figure [2| shows the intuition behind the AL framework. Each data point has
a feature vector denoted 7’ and an appropriate class label y € {1,....,C},
where C' denotes the number of possible classes. The set L of labeled instances
are subsequently filled from the set U of unlabeled instances through optimal
selection of instances, denoted ?Upt. This loop continues under some budget
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or stopping criteria ¢, where ¢ be after an » amount of queries or a specific
incremental improvement threshold for the model.

1: function ACTIVE LEARNING

2 L={}

3 model = init_classifier()

4 while (b=1;b < ;b + +) do

5: x* = active_learning(U, model)
6 y = ask_oracle(x*)

7 U = remove(U, {x*})

8 L = append(L, {x*, y})

9: model = train_classifier(L)

10: End
11:

Figure 2: Active Learning pseudo code[25]

The active learning algorithm further has a strategy of sampling x* from the
instance space and further a query strategy to obtain informative information
about them. In light of this, an overview of commonly used sampling strategies
and query strategies will can be seen in the methods section. First, we examine
some domains of use for active learning.

3.2.2 Related Work

Active learning has a wealth of applicable domain areas, such as a wealth
of natural language processing problems[34], text classification[48] and image
recognition[47]. Intuitively is the idea of nuances that exist to data within
all three domains. Natural language processing and sentiment classification not
only concerns the model from a syntactical standpoint, but further in semantical
interpretation. These aspects can in turn be affected by culture or available
training data, thus active learning can increase the robustness of the models we
create and deploy. A plethora of cases utilize SVMs for classification, in which
the active learning component involves data points being queried on instances
located around the decision boundary. The work done highlights the capability
for modelling that can drastically reduce the amount of labeled data needed for
matching, or better yet improve the performance of so-called passive learning
models for linear separation|[7].

Active learning is further used in more recent deep learning projects, such as
sentiment classification[57], or investigating named entity recognition within
NLP[45], capable of at the very least matching their passive counterparts in
performance with just using 25% of original training data. It has been further
used in applications of sentiment classification, in which subtle language queues
of comments or website reviews are categorized in different temperamental
categories or moods. This is useful for businesses that want to somehow data
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mine areas of improvement through the eyes of the customer. Active learning
also incorporates missing values, or active feature acquisition, for problems
where data might be sparse or incomplete as mentioned earlier[56]. Here the
authors suggests two single-pass operations over the data. First pass tries to
impute missing values, second acquire about ones it is least confident about
classifying. Incremental feature acquisition does this through a batch of misclass-
ified examples, a few important features at a time.

The use of active learning within the field of toxicology is sparse compared
to other domains mentioned, yet present in related fields of pharmacology
and biochemistry. The classification of compound sets for structural activity
relationships can reduce the cost of much needed experimental data and human
expertise by using 10-80% of data that normally would be needed for a passive
learning algorithm[27]. The motivation behind the work was the tedious process
entailed by classifying thousands of compounds used in drug discovery, where in
addition unsupervised clustering methods do not improve the problem. This is
because the clustering methods do not take in to account the user-preferences of
the experimenter. Thus, by using active learning the size of labeled samples are
reduced. One way this paper separates itself from previously mentioned work
is that active learning algorithms have in large parts been applied to binary
classification problems, while here it was used to determine several sub-clusters
as viable options for drug synthesis. To do this, a medicinal chemist compiled
a training set for the model. The authors used uncertainty sampling mentioned
earlier as a sampling strategy for their active learning algorithm on ten unlabeled
substances. This was combined with several SVMs trained on forced binary
classifications across all potential class assignments in the problem space. Thus,
having paired possible forced binary classifications in the larger multi-class set,
they calculate the difference between model m for every k class, where m is the
SVM for class k in the larger set of K possible class assignments.

Further application of active learning in pharmacology found that the active
learning approach lead to a discrovery of novel protein chemotypes that improved
upon structure-activity models[35]. Active learning was here used to obtain
optimal bioactive compounds of protein-protein interaction. This lead the authors
to focus more on the bioassay data that the structure-activity SAR model
compiled for the actively learned data points, effectively increasing drug-target
research efficiency.

As with the area of toxicology in general, application of the the active machine
learning approach on physical chemical properties has not receieved as much
attention, and will further be a novel application in this paper. The overall
pattern however is the findings that qualitative selection of training data can
either improve or equal otherwise data-hungry passive models.
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4 Methods

Modelling methods to be explored in this paper include two baseline models in
the form of Random Forests and SVMs. Depending on the better performing
model, a further active learning approach to that same model will be used to
gauge the added value of an active learning approach, and whether the passive
performance can be equalled or surpassed.

The choice of models further reflect the need for some notion of explainability
and the overall trend seen with related work done within toxicology. As stated
earlier, results could be used in a legislative manner and thus require some
level of explanation, which is why briefly the working intuitions of the models
will be given below. Should the reader want to seek out more information
on machine learning topics, a great start would be ”Artificial Intelligence: A
Modern Approach” by Stuart J. Russell and Peter Norvig[39].

4.1 Random Forest

A common task in machine learning or data mining is to build models for
prediction of a class of an object based on some of its attributes. The use
of the term object can be interpreted loosely here: It could be a customer, a
transaction, an e-mail message, patient or in this case a chemical. Further, the
class of such an object can be a plethora of things, such as:

e spam or not spam in emails
e good or bad credit score of a bank customer

e harmful or not harmful substances

For the sake of clarity, we can follow the example of a credit-scoring model
used by the Classification and Regression Trees(CART) authors[d]. The idea of
the random forest in this case is to fit a model based on customer data, such as
their age, income and marital status. Figure [3| shows a tree fit to credit data
on bank customers from table [77] In the top root node, we see that there’s a
50/50 split between good and bad credit scores. Intuitively, if we were to simply
predict majority class - or any class in this case - we would get 50% of the cases
wrong. This, from the viewpoint of the bank would be a case of malpractice, but
would also be a weak classification model. The goal is to reduce the amount of
errors one makes by finding the best variable that would maximize information
about a class label, and further the best value split point for that variable. The
goal is to reach terminal pure leaf nodes(box shaped figures) where all cases
belong to a single class.

In this case, the first check is on whether an individual has an income larger
or smaller than 36,000 a year. With the data used for this example, 3 such
customers have that income and immediately one could conclude that for any
customer, if their income is above 36,000 then they have a good credit score.
For the remaining 7 customers, more checks need to be performed to evaluate
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Record age married? own house income gender class
1 22 no no 28,000 male bad
2 46 no yes 32,000 female bad
3 24 yes yes 24,000 male bad
4 25 no no 27,000 male bad
5 29 yes yes 32,000 female bad
6 45 yes yes 30,000 female good
7 63 yes yes 58,000 male good
8 36 yes no 52,000 male good
9 23 no yes 40,000 female good
10 50 yes yes 28,000 female good

Table 1: Bank data over 10 customers.

what the most appropriate label is. The reason for this is that for individuals
with an income of lower than 36,000, 5 of these are considered bad whereas two
are considered good. Thus, a further check on age is done and finally on marital
status to correctly classify all cases in the data set.

The quality of a split s in node ¢ is thus defined as the reduction of impurity
a split achieves,

Aifs,t) = i(t) — m(L)i(L) — m(R)i(R) 2)

where 7(L) denotes the proportion of cases sent to the left, and 7(R) the
proportion sent to the right. A standard measure of impurity, and also to
be used in this paper, is the Gini-index. For the two-class case, the formula is
denoted as

i(t) = p(0[t)p(1[t) = p(0[t)(1 — p(0[t)) (3)

Where the multi-class generalization is denoted as,
i(t) = > p(ilt) (1 = p(jlt)) (4)
J

Once a tree model has been fit to the data, new unclassified customers are
”dropped” down the tree to get a label. With a random forest, a large collection
of such classification trees are gathered, where the accumulated vote across all
trees ends up being the final label for an instance.
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Figure 3: Tree built for credit scoring data

Why is this better than a single tree? By constructing several trees and aggregating
on their vote, we reduce overall variance, as single trees are prone to model on
noise and can overfit on our training data. We also introduce the notion of
randomness in two ways. One, the model is trained on bootstrapped samples
of the training data(also called bagging). A bootstrap sample from the training
data is a sample with as many rows as the training set, where each row in
the boostrap sample is selected with replacement from the training rows. A
row may appear multiple times here, however this leads to different trees being
made for different samples of the data, and as such we reduce the variance. A
worry is whether each sample would create identical trees, which would make
bagging redundant, however in a random forest algorithm, the randomness is
taken one step further. The trees are ”decorrelated” in a sense by introducing
the condition that in each split in the tree construction, only a smaller random
subset of columns are considered.

The number of trees we create in a random forest model or the number of
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columns considered at a split is something called hyperparameters, or conditions
for training the model. Subset of columns is often denoted as miry, where the
number of mtry dictates the cardinality of variable consideration.

4.2 Support Vector Machines

The task of a SVM is to identify an optimal two dimensional line of separation
between classes[§]. In a 2 dimensional problem space, the data can be separated
by a single line, however with higher dimensionality we need a higher separating
plane. We want to create an optimal decision boundary in a N-dimensional
space, where N denotes the number of features that differentiate between distinct
classes of objects, much like the example in figure [3] If we look at the example
depicted in figure |4} the leftmost image depicts the number of possible decision
boundaries that can be placed. The downside however is that some of these
boundaries are weaker than others, i.e leave more room for new instances to be
misclassified due to how close certain datapoints are to the decision boundary.
In an SVM, the goal is to mazimize the margin between the closest instances
of each class, depicted in the figure on the right. Here, the instances for either
classes that are the closest to a decision boundary are called the support vectors.
The decision boundary that maximizes the distance between the closes samples
of both classes is the optimal decision boundary. By maximizing the distance,
future classifications can be done with more confidence.

Figure 4: Figure of linearly separable data. Figure on the left shows hypothetical
decision boundary placements in an SVM. Figure on the right shows the
application of using support vectors to create a maximum decision boundary

This decision boundary can be formalized as,

D(z) = szpl(m) +0b (5)
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Where decision boundary D(xz) is found by the sum multiplication over
feature support vector w; for each input data point x plus a bias term. More
generally for the two dimensional case,

wxr+b=0 (6)

where if a data point (x,y) is on the hyperplane, then w *  + b = 0. If the
data point is not on the hyperplane, then w % x + b could be either positive or
negative, or in other words, if it is negative it could be assigned to class 0 and
inversely 1 for positive cases.

Not all problems are separable in two-dimensional space, and further does
not allow for linear separability, like the problem depicted on the left in figure

Data projected to R~2 (nonseparable)

Data in R~ 3 (separable)
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Figure 5: Image showing how non-linear data can be separated by utilizing a
kernel trick to suspend data to a higher dimension for linear separability. Image
from [53].

The solution for this is to suspend the data to a higher dimension to identify
an optimal separating hyperplane, where in a N-dimensional feature space, the
decision boundaries are computed using a kernel trick. Kernel methods allow for
operations done in high-dimensional feature spaces like the project presented in
this paper, without having to explicitly calculating expensive data coordinates.
Instead of computing the coordinates across all feature dimensions, the kernel
method computes the dot product between all pairs of data in the feature space
for every class. The kernel is a similarity function

k(a2 (7)

where ' denotes an unlabeled instance and z; all training instances. Thus,
for a binary classifier using a kernel, the label is denoted as a weighted sum of
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similarities;

§ =0y wiyik(a;, ) (8)
=1

Where [bl denotes the negative or positive label to be given, and w; the
weights of the trained examples. These weights in a binary setting are the
coordinates of input vectors orthogonal to the hyperplane seen in figure |4 The
sign or direction of the vector indicates its class assignment. So for any new input
point p(z), the sign of the dot product between this point and the calculated
support vectors becomes its new class assignment.

Given the nonlinear nature of our problem, a radial basis function will be
used to compute |7} denoted as

) (9)

Where ||z — z |?> denotes a squared Euclidean distance between two feature
vectors and o a cut-off parameter for the Gaussian sphere. Increasing gamma
means increasing the influence of individual training examples, which in turns
affects the contortion and tightness of the decision boundary. This is a subject
for tunable hyperparameters for the model in addition to the cost introduced
to having a soft margin. The maximized decision boundary accounts for 0
samples of misclassifications inside the margin, i.e no instances are allowed
within it. This is also called ”hard margin classification”. This however can lead
to overfitting, as the decision boundary is based on weighted transformations of
the support vectors closest to the line, or in other words a subset of datapoints.
Thus, the goal is to monitor the amount of samples allowed inside the margin
while simultaneously optimizing the fit of our decision boundary by introducing
a reasonable level of slack. The cost parameter C arbitrates what the optimal
value is for variance reduction. With a low value of C, samples within the
margin is not penalized as hard as with higher values of C.

4.3 Active Learning

The following sections is an explanation over frameworks for how an active
learning model picks a substance, and subsequently what strategy is in place
for picking a particular data point for querying.

4.3.1 Sampling Strategy

A wider survey of active learning identifies three main query sampling scenarios[41].
Scenario (i) is called membership query synthesis[6], in which an algorithm may
randomly select from all unlabeled instances in the input space, including the
ability to query information that the machine finds as a point of interest. (ii)
Stream-based selective sampling[I3] amends the previous one by being more
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selective. Stream-based selective sampling regards the acquisition of an unlabeled
instance as cost free, or inexpensive, since it first selectively samples a set
of unlabeled instances, and then individually for each one decides whether to
request a label or discard it. Finally, (iii) involves a pool-based sampling[2§],
in which a larger collection is gathered in a large set that is thought to be
static, though not strictly necessary. From here, there is a measure of quality
of information gained by selecting an instance from this set. The instance that
would garner the most amount of unvertainty reduction is selected from the
pool. The model then retrains and repeats the process until some performance
metric is reached. The main difference between the pool-based and the stream-
based approach is that in the former case, entire sets are under consideration,
where as in the latter case instances are sequentially dealt with.

membership guery synthesis

madel generates
a query de novo

stream-based selective sampling

instance - I
i sample an mmodel decides to
aca of input T§====- ) B e ! C
Sswibution fngiance query or discard —
—
pool-based sampling query is labeled

by the oracle

g

____ sample alarge model selects | |
pooal of instances u the bast query

Figure 6: Overview of the sampling process in an AL framework [{1]]

4.3.2 Query strategies

Having determined a method of sampling, what follows is a query strategy with
a specific goal in mind. By evaluating data points, the goal is to maximize
the yield of information in selecting a specific instance. Most common here is
uncertainty sampling|28]. As the name implies, the intuition here is that the
active learner pays particular interest to instances is the most uncertain about,
and requests further information about them. In a probabilistic sense, if there
is an unlabeled instance that has a posterior probability for a given label of 0.5,
ideally the learner will select this for a query. In other words, the machine will
query instances that it is least confident about labeling, formulated as follows:

Ty o = argmaz 1 — Py(j|x), (10)

21



where X% denotes the best query under a query algorithm A. § = argmax, Py(y|x)
denotes the class with the highest posterior probability in the set. A downside to
this however is that only the label with the highest likelihood is here considered,
leading to a loss of information about other classes. A more general uncertainty
strategy then uses marginal sampling, which takes in to account the posterior
difference between the first- and secondnmost label:

Thy = argmin Py(i1|z) — Pp(2|z), (11)

The final variation that will be explored in this paper is Entropy sampling[44]:

vy = argmaz — Y Py(ys|w)logPs(y|), (12)
1

where y; ranges over all possible labels that can be assigned to an instance.
Entropy is often used in machine learning as a measure of impurity or uncertainty
especially in trees[2I], and known for its ease of implementation for multi-class
problems. This is not to say that the use is limited to classification problems,
however for the purposes of this paper, the application to regression problems
will not be further explored. The use of entropy here is particularly mentioned as
it commonly associated with the models chosen for the problem in this paper.
However, there are other strategies that is worth mentioning for the sake of
completeness.

A further strategy is called 'query-by-committee’[43]. The idea behind the
strategy is that a ’committee’ of models is stored, and instances that garner the
highest amount of disagreement is the ones to be queried. The prerequisite here
is that all models have been trained on the same labeled set, while carrying
competing hypotheses of appropriate labeling. How model disagreement is
quantified has been proposed in two ways, first up is the Vote Entropy[14]

Typ = argmaz — Z %log%, (13)
K3

where as in entropy sampling, V' (y;) ranges over all possible labelings and the
cardinality of votes from a model a given labeling carries. This in a way can be
seen as a ensemble approach to that of[I2] and then through some mathematical
function the notion of disagreement is quantified. Another strategy is to consider
how big of a change is made to the model if we were to know its label, also
called Expected Model Change[42](Settles et al., 2008), where the intuition is
to query instances that have the most influence on the model. Although this
sounds familiar to other strategies, it is frequently applied to gradient-based
learning algorithms. Other strategies worth mentioning is that of Expected Error
Reduction proposed in 2001[38], that introduces the concept of reduction in
generalization error for querying a given instance in the input space, albeit at
a notable computational cost. Finally there is Variance Reduction that aims to
reduce the space of error indirectly by narrowing down the variance of the input
space, and density-weighted methods where much of the yield of information for
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a given query is heavily influenced by the degree it is representative of the rest
of the input space as analysed in[42].

4.4 Experimental approach

The experimental approach in this paper can largely be divided in two. The
first approach is a naive one, where all predictor variables are included in the
set and deemed to be independent variables. The second approach the data
set is filtered, and the dependencies are removed. As noted earlier, some of
these dependencies are linear in their transfor-mation, for example half-life in
soil in equation Dependant variables can be deemed to not give any further
information about the label in such a case, but as seen in equation [I4] some of
these relationships are quite complex and as such have been included for testing.
Data was compiled with no missing values, and further pre-processing included
numerical transformation of predictor variables for conversion from the software
they were derived from.

The methods used in this paper will further be evaluated on separate metrics
than accuracy as it can be deceiving in this case. This is due to the skewed
strong class imbalance in the labeled data set, as one would simply be correct
79.8% time by blindly predicting majority class for each substance. Further, a
repeated k-fold cross-validation approach will be used, in which the model is
trained and subsequently tested on a hold-out set to simulate its capability for
generalization. This is done by separating the training data in to k¥ number of
folds. When the model trains, it trains on the all folds except the one remaining
as a hold-out internal test set. This process is repeated n number of times.
Cross-validation is also used due to the size of the data set. A model is only as
good as the data it is trained on, and when working with smaller data sets one
might not afford creating a separate test set, as for the purpose of this paper is
to analyze the fit of a model and not only its classification capabilities. Thus,
model evaluation is done by inspecting the balanced accuracy of a model, its
receiver operating characteristics and area under the curve(ROC/AUC) metrics,
and finally in the case of the random forests - its out-of-bag score. We further
want to scrutinize samples of decision trees to determine what variable splits
the model performs as described earlier, and inspect its misclassifications.
With this in mind, a 10-fold cross-validation with 3 repeats is used for models
tuned on optimally grid searched hyperparameters - such as the number of trees
or the cost metric C of the SVM. Hyperparameters are simply the conditions
that are in place for model training. Given the skewed distribution of the
data set, the values were centered and scaled for the SVM models so as to
not let larger values ”"dominate” the lower ones. This generally increase the
capability of the model to establish a decision boundary between PBT and non-
PBT substances while losing some level of interpretability. Further, the RF
model was trained on its default settings. This is partly due to the size of the
data set but also to qualitatively explore the model fit beyond classification
performance as explained earlier. Another metric to evaluate model results
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is to inspect the value of Cohen’s Kappa, where we inspect the agreeableness
of the model with the ground truth while taking into account correctness by
chance[12]. In other words, what sort of improvement does the trained model
offer over a model that predicts purely on expected accuracy, which in our case
is 79.8% due to the imbalance of class frequency. Cohen’s kappa is always less
than or equal to 1. Thus, if the kappa statistic is 0, the classifier can safely be
discarded. As a final note, while other results are interesting, the larger focus
will be on scrutinizing the best-performing model while other data can be found
in the Appendix below.
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5 Data

The data to be used is a list of ECHA and REACH evaluated substances of
both concern and non-concern. Such substances include pervasive substances
such as glucose, known used or banned pesticides, insecticides and industrial
filtering chemicals. A total of 1115 such substances with 27 physical properties
have been compiled, where 236 of these are known hazardous SVHCs and the
remainder 881 non-SVHCs. These 27 features are physical properties that
measure each chemicals’ physical manifestation in its released environment and
its lifespan. As mentioned earlier, the general toxicity of a substance is an
induced judgement based on its relative bioaccumulative and persistence levels.
As such, the physical properties calculated is a set of properties measuring both
bioaccumulation and persistence respectively.

The selection criteria for the negative substances(non-PBTs) in the dataset is
data from readily biodegradable tests of substances, meaning they pass the mark
of not being considered persistant. In other words, these chemicals would be
dealt with at a waste water treatment plant and subsequently disappear within
5 days of release in to an aquous environment.

5.1 Chemical property representation

As explored previously in the QSAR approaches and machine learning, a large
body of toxicological classification has been done by analyzing the structural
activity relationships of a given chemical, where among others, two dimensional
transformation of a chemical structure coupled with a semi one-hot encoding is
deployed as features. A distant measure is further used to capture similarity and
arrive at a conclusion. In this project however, this two-dimensional represent-
ation is circumvented by measuring the physical impact of different chemical
structural components directly. Some of these features are further outputs of
experimental degredation models, or combined models of both experimental and
expert-solicited estimates, such as the Biowin models. Finally, table 2| shows a
subset of the physical properties and their description. The full table can be
found in the appendix in table Inspection of the descriptive statistics of the
data is given due to the nature of the task which includes exploratory analysis
of the data and its distribution.

The physical chemical properties are based on work done to develop a new
persistence and bioaccumulation score for a substance[36]. For example, a total
of 6 different Biowin metrics are included in the set that measure persistence
at different levels from 3-4 training sets. As denoted in table [2] this includes
inspection of linear(Biowinl) and non-linear(Biowin2) degradation transformations
at different speeds - i.e slow vs not slow degradation. Biowin3 and Biowin4
are both regression models, however the aim of Biowin4 is to reproduce expert
estimates of environmental half-life of what is called primary degradation, meaning
the time it will take to reduce the concentration of the original chemical substance
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Property Description
Name

kOH (AOPv1.92) | Denotes the rate of atmospheric degradation for a chemical

atmospheric*

t1/2 atmosphere | Denotes the half-life time of a substance found in the air

in hours measured in hours.

VP (mm Hg)* Denotes vapor pressure of a substance, measured in
millimeters of mercury

‘ VP (Pa) ‘ Denotes vapor pressure of a substance, measured in Pascal ‘

Biowinl Denotes the linear model output that predicts slow vs not slow
degradation.

Biowin2 Denotes the non-linear version that predicts slow vs not slow
degradation.

Biowin3 Denotes the estimates of environmental half-life necessary to
mineralize a chemical
“(i.e to turn 50% of the substance in to the ultimate
degradation products - namely water and carbon dioxide

t1/2(water)hrs* Denotes the half-life time of a substance found in water
measured in hours.

*Dependant dependant variables means that is a compount calculation of

variable other physical properties.

An example: 1/2 life in soil = 2* 1/2 in water

Table 2: Sample of predictor variables used for modelling. Includes the name of

the pyshical property and the intuition behind the metric.
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in an environmental area by 50%. This can be due to a simple first transformation
step, where the chemical you begin with is transformed into something else,
i.e. the parent chemical has disappeared. Biowin3 on the other hand tries to
reproduce expert estimate of half-life based on necessary mineralization, i.e the
time it will take to turn 50% of the substance in to the ultimate degradation
products, namely water and carbon dioxide. This measure calculates for more
time however, as it takes in to account long transformation times, but also
differing stages of transformation depending on chemical complexity.

Biowinb and Biowin6 are linear and non-linear versions of a model trying
to predict the outcome of a test called ”"ready biodegradability test”. If a
substance is readily biodegradable, it will quick dissolve and disappear in aquous
environment, and therefore not be deemed as a PBT substance. These predictions
are probability based, which according to software manual used to derive these
properties from The Organisation for Economic Co-operation and Development
(OECD), there the differencial is set at 0.5[4]. If a substance is above 0.5, then
it is deemed readily biodegradable, and not the case otherwise.

An additional set of features is added in the form of a substance’s Long Range
Transport Potential(LRTP). As the name suggests, it describes the potential of
a substance to spread and transfer itself across distance, additionally from one
media to another - such as from air to soil. This is however more of a measure
for so called Persistent Organic Pollutants(POPs). Commonly known POPs
include DDT(dichloro-diphenyl-trichloroethane), a substance that was the first
synthetically developed insecticide from the 1940s [3]. It was quite potent in
combating insect-born human diseases like malaria, but because of its very
persistent and ability to travel long distances, it’s current status remains quite
restricted under the treaty commonly referred to as the Stockholm Convention
on POPs[30]. LRTP measures were originally left out of the PB-score calculation
as overall persistence measures already included persistence in air, as this is also
an element to LRTP and did not change results[36]. However, inclusion of POP
criteria can further be used to be a POP specific scoring metric.

LRTP(CTD) and LRTP(Pov) can be described as a substance’s characteristic
travel distance measured in kilometres, while finally LRTP(TE) measures the
transfer efficiency of a substance across different emission scenarios.

For the sake of clarity, some of the features in the set are noted as dependent,
meaning that they are some alternative representation of a metric - such as
vapor pressure measured in pascal or millimetres of mercury - or that they are
some transformation that involves another property. An example is the half-life
in water metric,

half-life = 7300 % ¢~ 2+ Biowind (14)

water

which measures the half-life in days for a substance. The base value start
at 7300 days(roughly equaling 20 years) multiplied by e to the power of the
constant -2 times its Biowin3 value. However some dependant relationships are
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criteria UNEP/UNECE POP EU PBT EU vPvB
- fresh or estuarine surface water:
t1/2 >40 days

- Marine, fresh,

- Water: t1/2 >2 months . . or estuarine
- Marine surface water:
surface water:

- Soil: t1/2 6 months £1/2 >60 days, t1/2 >60 days

Persistence -Soil, or fresh, or
sediment: 1/2>6 months - ) . - Soil, or marine,
estuarine water sediment: .
‘ £1/2 >120 days fresh or e:ftuanne
- other evidence ¢ water sediment:
- marine sediment: £1/2 >180 days
t1/2 >180 days
- BCF >5000 or log Kow >5
- aquatic organisms -aquatic organisms
Bioaccumulation | -monitoring data BCF >2000 or BCF >5000 or
log Kow >4.5 log Kow >4.5

- Other, e.g. very toxic

Table 3: EU classification and labeling criteria under Directive 67/548/FEC.
All points do not need to be fulfilled for a ruling, one condition will suffice.

stronger than others and much more linear, such as the formula for half-life in
soil:

half-life,,;; = 2 * half-life (15)

water

Here, as the authors note, a factor of two is a conservative estimate, albeit
generally acknowledged that the two measures are connected[36]. The takeaway
here is that dependant variables are some transformation of - or includes - other
feature metrics but that the dependancy is not completely linear in all cases.

Finally, an interesting point of enquiry will be to inspect whether the ensemble
of trees in a random forest model is able to capture legal evaluation guidelines.
These legal thresholds are measured by EU directive 67/548 /EEC. Table[3|shows
the different criteria that can go in to determining POP or PBT status under
EU legislation.

28



5.2 Descriptive statistics

As an initial check on the potential for separability, an examination of the
descriptive statistics for the two classes could be useful. We describe the stats
of the full dataset of 1115 substances. Tables [ and [f] show the same subset of
features described earlier and the descriptive statistics for their class(complete
feature statistics can be found in the appendix). A noteable aspect to the data
is the level of dispersion of values within both classes. In general, the mean
values of degradation rates are higher for non-PBTs compared to that of PBTs,
meaning they disappear at a faster rate than harmful substances in a released
environment. Further, expected half-lives for harmful substances are higher
as they are deemed to be more persistent and bioaccumulative, however if we
inspect the atmospheric half-life, the mean values for non-PBTs are substantially
higher and denotes a mean half-life of roughly 4.38 billion hours, or roughly
460,000 years. This generally means that a chemical released in the atmosphere
will not go away, however due to their other physical characteristics, they do
not pose a threat to other mediums or life-forms such as aquatic species, and
are thus rendered as subjects of not concern. This data is however quite skewed,
and as such the median values are a more robust representation of the central
tendency. If we inspect the median of this same half-life, the median value is
14.9 hours, which is quite a staunch difference.

nonSVHC —— SVHC ------
BIOWIN4 BIOWINS BIOWING
= i
/| g
v ;‘, -
@ | - P
< D
2 2
© Pk
S ] =] P
2 P -
wr_ i 1
(=] o
-
w
o 0
S & y
34 i 2 R L
T T T T T T T T T T T T T
0 1 2 3 4 5 -1 0 1 2 0.0 0.5 1.0

Feature

Figure 7: Feature plot showing a comparison of feature distributions for non-
SVHCs and SVHCs. Features ploted here are Biowin4, Biowind and Biowin.

29



A visual representation of these stats might shed some light on how strong these
differences are. Figure[7]show the distribution for both classes for three different
Biowin models. As mentioned earlier, the Biowin metrics are model outputs
based on several chemical features, thus carrying similarly scaled distrib-utions.
Due to the nature of its derivations, no log transformations were done to the
predictor variables. Figure [§] shows the distribution for two LRTP estimates
and the molecular weight, where the LRTP potential between harmful and non-
harmful substances are quite different. The full distribution for all other features
can be found in the appendix. Although there are stark differences between
non-harmful and harmful substances for some of these features, the nonlinear
nature of label assignment makes it a worthwhile problem. This is due to
the nature of assigned labels, where a non-PBT substance might have highly
persistent characteristics yet still be deemed safe, or vice-versa that a known
PBT substance might not be as bioaccumulative as other substances.
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Figure 8: Feature plot showing the distribution of measures for each class in the
binary approach. Plotted here are LRTP CTD, LRTP TE and MW

Another extension of the level of dispersion to the data is seen in the standard
deviations for the features. As examined with the half-lives, standard deviations
here can extend into the millions atmospheric degradation in known SVHCs.
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Non-PBT mean sd median skew
k OH (AOPv1.92) atmospheric | 5.4322e-11 | 7.6109e-11 | 2.582e-11 | 3.392
t1/2 atmosphere in hours 4.3809e+9 | 1.2988e+11 | 1.4914e+1 | 29.546
VP (mm hg, v1.43) 8.2681e+1 | 1.2400e+3 | 1.0225e-4 | 21.788
Biowinl 5.7096e-1 | 5.7706e-1 0.7005 -2.875
Biowin2 5.9003e-1 | 4.1113e-1 7.925e-1 -04.235
Biowin3 2.5854 6.2096e-1 2.7091 -1.0847
t1/2(water) in hours 2.7179e+3 | 1.0897e+4 | 6.5359e+2 | 10.680
Biowin4 3.5887 3.9292e-1 3.6061 -29.387
Table 4: Descriptive statistics over a sample of wvariables for non-PBT
substances.
PBT mean sd median skew
k OH (AOPv1.92) atmospheric | 1.3433e-11 | 2.9681e-11 7.6e-13 3.974
t1/2 atmosphere in hours 6.1515e+5 | 4.6662e+6 5.0687e+2 | 7.420
VP (mm hg, v1.43) 7.8888 1.145436e+2 | 1.8744e-06 | 15.078
Biowinl -2.3600e-1 | 5.4654e-1 -2.133e-1 -0.590
Biowin2 6.7579%-2 | 2.2946e-1 0 3.306
Biowin3 1.2906 0.7429 1.3066 -0.463
t1/2(water) in hours 7.6248e+4 | 6.4696e+5 1.0084e+4 | 13.613
Biowin4 2.4951 0.5504 2.5299 -0.131

Table 5: Descriptive statistics over a sample of wvariables for known PBT

substances.
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6 Experimental Results Evaluation

6.1 Binary classification

Table [6] shows the comparative performance between naive and filtered results
in both modelling approaches. All models have a balanced accuracy larger
than 90%, with the better-performing model being the naive random forest
approach. Further, sensitivity metrics are high for all models as well, while
lower in specificity. One way to interpret this is that the models overall are
good at identifying the non-PBT class of substances but makes more mistakes
for the PBT class, especially for the SVM models. This can be due to the nature
of SVMs generally being more prone to overfitting when fed an imbalanced
dataset and a skewed data distribution. Omne can further draw attention to
the fact that the misclassifications are higher in direction of the majority class,
where known pbt substances are classified as not harmful at higher rate than
non-pbt substances being considered as pbt.

Naive Random Forest | Filtered Random Forest | Naive SVM | Filtered SVM
Balanced Accuracy 94.28% 94.18% 90% 91%
Sensitivity 0.9943 0.9920 0.99 0.9857
Specificity 0.8894 0.8936 0.81 0.8371
Kappa 0.9136 0.9112 0.8544 0.8092

Table 6: Overview of baseline model performances. The naive random forest
that includes dependent variables is marginally better than the filtered approach.
In totality, the naive approach yields the best results. True positive predictive
statistics is high for all models, while specificity metrics are especially lower for
the SVM models.

In addition, evaluation of the kappa metric does not have a closed form rubric of
evaluation, however relevant literature denotes that between values 0-0.20, there
is slight agreement, values 0.20-0.40 denotes moderate, 0.40-0.60 significant,
0.60-80 good and 0.80-1 near perfect agreement[26]. When taking expected
accuracy in to account the interpretation of improvement could change. For
example, one might consider a kappa value of 85% a lot better if the expected
accuracy is at 50% than at 70%.
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Figure 9: Naive model performance over different hyperparameters of number
of trees and available features for random sampling. Best performanced was
achieved with 2000 trees and 4 miry albeit with marginal differences.

In light of this, both random forest models prove to be significant results with
values marginally exceeding 0.91, where the naive model is indiscriminately
better. As mentioned earlier, the RF models are grid searched across different
number of trees and miry, denoting the number of random available sampled
variables a given tree can access. Standard values for mtry start at the square
root of total number of predictor variables(in this case 5), and search up until
the max. The grid searched naive model can be seen in figure [0] whereas the
filtered model can be seen in figure[I0] Optimal parameters for the naive model
is at 2000 trees and 4 mtry. Albeit marginal differences, increasing the number
of candidate variable samples for the trees leads to a decrease in performance,
which could point to an issue when random sampling allows selection of less
informative variables for tree construction, however this is inconclusive and
could be due to noise. The same optimal number of variables is found for
the filtered forest with optimal number of trees at 1500. This decrease of
performance is however marginal.
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Figure 10: Filtered model performance over different hyperparameters of number
of trees and available features for random sampling.

Specifics related to the SVM models can be found in the Appendix, as further
exploration of the better-performing model will be in focus, however for the
sake of insight figure shows the grid-searched model for the filtered SVM
approach.

Optimal cost parameter for the model is at 5. As explained earlier, the SVM
tries to find the optimally separating hyperplane between classes by maximizing
the margin to the support vectors. A low cost parameter would designate that
the model looks for a larger margin that allows for more misclassifications,
whereas a larger value would seek to narrow the margin to avoid these misclassifi-
cations. For this particular model, some 235 support vectors were used to select
for the optimal decision boundary and a softer margin. A further gamma value ¥
was most optimal at 0.25, where the bias is lowered and the variance is raised.
It further means that the model tries to accomodate its training data which
lowers its ability for generalization Figure [I2] shows this relationship, where a
decision boundary for the SVM is fitted to the octanol water coefficent and the
Biowin4 metric.
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Figure 11: Grid-searched radial SVM for optimal parameters. Best performance

was achieved with cost parameter of 5 and 3 at 0.25
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Figure 12: SVM decision boundary on the octanol water coefficient and the
Biowing metric.  Decision boundary is here designated as a heat map of
classification zones, where 0 denotes a non-PBT assignment and 1 a PBT
assignment.

Here one can visually see the relation between the non-PBT label and higher
values of Biowind, with few exceptions for PBT cases. Substance clusters are
quite distinct, with a substantial portion of non-PBTs hovering in Biowin4
values 3-4 with near 0 value for log Kow.

We can further inspect the confusion matrix based on a 50% probability threshold
of both the the naive and filtered random forest models to qualitatively explore
their table numbering,

Actual Actual
Non-PBT PBT Non-PBT PBT
T Non-PBT 874 2 % “Nou-PBT 872 25
- —
A~ PBT 5 209 & PBT 7 210

where the naive random forest model incorrectly classifies 26 PBT substances
as non-PBTs, and inversely classifies 5 non-PBTs as PBT substances. For
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the filtered approach, the false positive rate is lowered and the false negative
rate decreased. The shape of the results carries marginal difference, potentially
suggesting that the models achieve similar mode fits with few tweaks in favor
of the naive approach.

We can further see this in the ROC curve plotted in figure The ROC
graph shows performance of a classification model at all thresholds, where the
plotted metrics are the sensitivity and specificity thresholds. If our curve was
closer to the diagonal, the more useless the test is.
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Figure 13: ROC curve plotting classification model at different thresholds

Instead of computing all possible classification thresholds found, we inspect the
area under the curve(AUC) which computes the aggregate performance across
all thresholds in the two dimensional space below the curve. The AUC for the
naive model is at 0.987. To illustrate the impact, the AUC metric ranges in
values from 0 to 1. A model that gets every prediction correct has an AUC
value of 1.

Given the nature of the problem, an argument could be made for prioritizing
lower false negative rate, as the potential cost of classifying known toxic chemicals
to be safe is higher than that of classifying substances known to be non-harmful
as harmful. Thus, one could make an argument that the filtered model is the
better model. Partly due to a reduced dimensionality for feature inclusivity, but
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also for having marginally less false negatives. However as table [7] shows, the
nature of these misclassifications not only carry repeated mistakes, but also to
what extent how "wrong” the models are.

Substance Actual | Predicted | Prob non-PBT | Prob PBT
Vinyl Neodecanoate PBT non-PBT 0.92 0.072
Flucythrinate PBT non-PBT 0.78 0.21
Indene PBT non-PBT 0.94 0.05
Methoxychlor PBT non-PBT 0.57 0.42

Table 7: Sample of false negative misclassifications done by the models. Colored
cells that are orange denote misclassifications across two or more models, and
yellow across all models. Probabilities are from the best performing naive
random forest model.

Vinyl Neodecanoate is a substance used as decorative emulsions in substances
like paint. Flucythrinate and Methoxychlor are insecticides, and Indene is a
principally used industrially to create thermoplastic resins. Methoxychlor is
indeed a banned substance under ECHA legislation from 2002[I]. The table
includes probabilities from the naive random forest model assigned to the subst-
ances. At a glance, one can see that the model is quite confident in its assessment
except for the substance Methoxhychlor which is a bit more uncertain. What
seemingly separates these particular substances from the rest? For one, the
average Biowin4 and Biowin3 metrics for the four substances are higher than
both the PBT and non-PBT. Their average Biowind value equals 3.8, while it
is at 2.4 for PBT substances, and 3.59 for non-PBTs. This suggests that the
rate of natural degradation rate according to the Biowin model is higher than
usual. For Biowin3 their average value is at 3.1, while for known PBTs it is
1.29 and 2.59 for non-PBTs. The average molecular weight for these substances
is much lower than both classes, with the heavier chemicals belonging to the
PBT class. This difference is on an even stronger level for BCF BAF values,
where mean PBT values sits at roughly 9100, non-PBTS at 262 and finally this
group at 2.881. As discussed earlier, the relative skewness of the data can affect
performance in this case.

Nevertheless, a further point of interest is the rather high confidence for
classifying Indene as a non-PBT substance and further Naphtalene in the larger
table. Indene and Naphtalene are both on a list of substances of very high
concern in the Netherlands. The criteria for their classification has been due to
them being on a list for poly-aromatic hydrocarbons(i.e more than one aromatic
ring). Both Indene and Naphtalene have 2 such rings, however expert opinion
are in agreement that both of these are indeed not PBT substances. A report
on Naphthalene(whose evaluation can be extended to Indene) from 2018 arrives
at this conclusion [49]. In this particular case, the model may be right in its
conviction, however there are examples where the confidence of the model is to
a certain degree misaligned, as seen with Methoxychlor.

A further argument for the relatively high confidence of the model classification

38



can be seen in figure which is further a reflection of the relative skewness
and high separability of the data. Methoxhychlor here is indeed one of few
substances that the model seem insecure about.
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Figure 14: Vote distribution for the naive random forest model for both
substances deemed to be of concern and non-concern.

It is unclear how large of an impact the inclusion of dependent variables offer
over the model where they are filtered out, nevertheless the shape of these
outputs are marginally different, suggesting an overlap in important variable
ordering.

Figurefurther shows the variable importance for the naive forest model(filtered
variable importance can be found in the appendix). Both a mean decrease
in accuracy and mean decrease in gini impurity is reported to cross-check the
variable importance. This is done to not only have a more robust understanding
of what features are most informative for the model classification, but to manage
limitations related to both metrics, as absolute variable importance can be hard
to determine. For example, molecular weight has a smaller range of values
than the variable for atmospheric half life, thus having fewer candidate splits
and becomes a notable problem for only examining gini impurity. However,
approximations are useful which is why we examine both. For one, mean
decrease in accuracy is an averaged metric over all out-of-bag cross-validated
prediction on permuted variables. An intuitive interpretation is that for a
given variable it is shown the mean number of misclassifications that would
increase if that variable were to be excluded or permutated. We include this
further due to the level of disparity of candidate splits between variables that
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have high variance in range. As such, dropping Biowin4 and BCF BAF would
lead to on average 32 more substances to be misclassified. An even higher
importance is given to the POP-specific long range transport travel efficiency
and characteristic travel distance. This finding is further interesting relating
to the work done on PBT and Pop screening by Rorije, Verbruggen[36], where
Biowin3 was deemed to be of higher importance for persistance evaluation than
Biowin4. Further, LRTP estimates was left out of consideration in this paper,
where here their importance rank high with otherwise hypothesis-confirming
variables.

Mean decrease in gini impurity reflects the much more local function described
earlier, where we determine optimal split variable and subsequently best value
for said variable in a given node that increases purity. High values here indicate
that the variable is useful and tend to split mixed and unclear nodes towards
more pure single class leaf nodes. Again as with the overall accuracy metric
Biowin4, the BCF BAF metric and half time of metabolised substances score
particularly high, with Biowin4 having almost 5 times the amount of impurity
decrease than for example the octanol water coefficient(log koa).

Naive Forest

Irtp_te BIOWIN4

'”F ctd * bef_baf

BIOWIN4 * .

bcf baf . km_halflife *

kM ) BIOWIN2 .

km_halflife Intp te .

log_kaw * BIOWIN3 .

mw * Itp ctd *

log kow * bcf_metabolism *

b metabolism * soil_halflife *

baf_air * water halflife *

BIOWIN2 . BIOWIN1 .

k_oh _ . log kow i

atmosphere_halflife o baf”_air .

bcf max * Ir‘[p_Eov *

BIOWINS . log_kaw .

water halflife o [ _ *

BIOWIN1 * atmosphere_halflife *

BIOWIN3 . max .

BIOWING . BIOWINS .

soil_halflife . BIOWING .

log koa * mw . *

Itp " pov . tmf_pelagic bt

tmf_pelagic * log_koa .

vp_pa . vp_mmhg *

tmi_air . vp_pa *

vp_mmhg . tmf_air .
T T T T T T T T T T
15 20 25 30 35 0 10 20 30 40 50
MeanDecreaseAccuracy MeanDecreaseGini

Figure 15: Variable importance for the naive forest model. Notable importance
lies in the Biowin4 measure,the bioconcentration factor for bioaccumulation
and depuration rate for aquous species. The ordering is related to the relative
decrease of accuracy on cross-validated samples on the left, and Gini impurity
a split on this variable offers over the data on the right.
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While important in overall mean accuracy decrease, POP specific criteria of
transport efficiency and characteristic travel distance does not score as high for
impurity reduction. In fact, it carries similar importance as half lives for soil and
water, which generally is considered not to be a clear indicators during expert
evaluation of PBT status. A caveat to this however is that the importance
for permuted variables of global out-of-bag samples is generally more reliable.
Further variables that does not sufficiently gives us more label information can
be seen in vapor pressure, trophic magnification rate for air-breathing mammals
and octanol air coefficient to name a few.

This ranking further grants insights into what sort of partitions is performed
for decision tree construction that maximize the data partitioning. We can
exemplify this by examining a sample tree construction for the dataset. Figure
shows a sample decision for the naive model.
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Figure 16: Sample tree construction and optimal splits for the naive approach.
In accordance with variable importance, a staunch part of the data is separated
on Biowinj and BCF BAF alone for non-PBT classification. Conversely, values
of Biowing <= 2.8 and LRTP TFE >12 designates the larger portion of PBT

substances.
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The nodes in the tree shows the following ordered information:

e Majority class in the node.
e Probability of classifying positive class(PBT).

e Proportion of data present in the node.

From the root node, a check on Biowind>= 2.8 sends 81% of the data left and
19% of the data right. As reflective of the model variable importance seen in
figure two subsequent splits on BCF BAF of <3324 and <163 makes out
the majority evaluation of non-PBTs, where a 10% portion of the observations
has a larger value for BCF BAF than 163, however with a transport efficiency
lower than 7.5 kilometers. These two leftmost terminal nodes captures the
majority of the data with only 1% and 3% predicted accuracy for being PBT.
The split points that the model identifies as evaluation thresholds between
classes is in close accordance for ordinary classification guidelines seen in figure
Bl The threshold found seem to be located somewhere in between the thresholds
determined for EU PBT and vPvB substances respectively.

Conversely, the rightmost terminal node contains 16% of observations in the
data, however with a probability of PBT membership at 98%, the two splits on
Biowin4 and LRTP TE includes a majority of PBT substances present in our
data set.

6.1.1 Reductionist binary model

In light of the rather strong separation for the data in Biowin measures and
BCF BAF alone, one may wonder how model performance changes if these
were excluded. Although counter to the idea of further improving classification
performance, this is partly done to check the impact of dimensionality reduction,
but also to explore modelling capabilities of non Biowin measures and other
physical properties of PBT classification.
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Figure 17: Cross-validated grid searched model for reductionist approach.
Optimal values were 4 for mtry coupled with 1000 trees.

Grid-searched hyperparameters show optimal performance for 1000 trees and
with variable sampling at 4 again, as with previous models. Furthermore, the
same trend of increasing variance by allowing for higher cardinality of sampling
leads to marginal performance decrease.

If we inspect the confusion matrix for the reduced model, its balanced
accuracy is 93%, which is close to the performance of the benchmark models,
but does not improve upon initial results. A matter of salience further is the
fact that the general shape of the confusion matrix is the same, and that the
increase in rate of false negatives is the most notable difference. This could
further be seen as an argument of the skewness of our data and subsequent ease
of separation for a select few variables, however this is not conclusive.

Actual
non-PBT | PBT | Total
Prediction non-PBT 873 30 903
PBT 7 205 212
Total 880 235 1115

Cohen’s Kappa is further estimated at 0.89 that renders it an improvement over
models for expected accuracy similar to that of both the naive and filtered SVM.
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Further, the reductionist model’s ROC curve can be seen in figure |18 where the
model is still capable of accurately matching model prediction with the ground
truth.
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Figure 18: ROC curve for reductionist model, plotting different thresholds for
sensitivity and specificity for the model. Area under the curve is calculated to
be at 0.983

It can further be interesting to inspect variable importance change when the
model is stripped of otherwise informative metrics for bioconcentration and
persistence. Figure [19]shows this distribution. Here the local impurity decrease
is high for variables previously not considered as important, among others half
life in water and soil. The more global variable importance for permutated
variables for OOB prediction remains high for POP-specific criteria, with soil
and water half-lives are in close proximity of features such as molecular weight,
bioconcentration factor for air-breathing mammals and flat depuration rate for
a substance.
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Figure 19: Variable importance for the reduced model where Biowin measures
and BCF BAF is removed.

Examining sample tree fit to the reduced model further highlights adaptability
to find new optimal splits. This can be seen in figure
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Figure 20: Sample tree fit for reduced data set. 77% of the data can be predicted
to be non-PBT with depuration rate in aquous species of less than 5.1 days.

Depuration rate half-life in aquous species for less than 5 days provides the
largest split on the data, with a predicted accuracy for being non-pbt is achieved
with a subsequent split on bioconcentration factor that is adjusted for metabolism
at less than 195. Conversely, known PBTs intuitively have a higher depuration
rate, and as seen in figure [I6] checks on LRTP efficiency separates the data
further.

Another point of interest is the observation that a large portion of PBTs seem
to have a higher half life than 1738 hours, which roughly translates to around
70 days. To illustrate the high level of persistence of these substances, one can
compare this to table [3] thresholds for both EU PBT and vPvB criteria, which
in exceeds the threshold for vPvB half-life in marine, fresh or estuarine surface
water at 60 days.
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Figure 21: Grid-searched SVM for the reduced model. Optimal hyperparameters
were selected for gamma at 0.1 and cost of 10.

As with the previous results, a reduced model does not improve classification
using SVMs, where in fact performance drops to a balanced accuracy of 86%.
Figure [21] shows the grid-searched model and its optimal parameters. Optimal
parameters in this case is a gamma value of 0.1, which effectively translates to
the model having very low bias towards its training data, but its variance will
be higher for generalization. The further cost for a misclassification is at 10,
meaning that the optimal hyperplane has a hard margin. Further stats relating
to sensitivity is at 0.98, with specificity dropping lower than previous models to
0.74, a further decrease in capability of identifiying PBTs.

6.2 Subclass classification

One hypothesis to test is whether the nuance of labeling PBTs and non-PBTs
has an effect for classification. As stated earlier, a major goal of the project is to
explore avenues for PBT classification that may give insight into the differential
impact of a substance being persistent, bioaccumulative, or a combination of
the two that leads to its toxicity. The fact that there are different thresholds
for substance evaluation is further an argument to support this hypothesis.
Characterization of what a PBT substance is, or what further makes it a vPvB
substance can be thought to carry substantial overlap, as the latter category can
be concluded to be a more persistent or bioaccumulative extension of the former,
thus the binary approach can be said to encapsulate this and not improve upon
classification, however as an avenue of research of PBT and non-PBT evaluation
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boundaries for such categories, it can be a worthwhile endeavour to examine.

The modelling approach is performed in a similar way as the ordinary binary
setting, where a grid-search of optimal hyperparameters is used to obtain optimal
model fit. This further includes conditions from section 6, like the use of cross-
validation. A fit of both naive and filtered models for subclass classification was
performed. There was 6 possible labels in the subclass approach:

e Not P (could be B)
e Not B (could be P))
not PBT

e PBT

PBT/vPvB
e vPvB

Included is the notion that although a substance might not be persistent,
it can be shown to be bioaccumulative and as such be a PBT substance. This
same reasoning applies to non-bioaccumulativity and persistence. Table[8|shows
the full performance across all models.

Naive Random Forest | Filtered Random Forest | Naive SVM | Filtered SVM
Balanced Accuracy 83.1% 83.4% 66% 67%
Cohen’s Kappa 0.73 0.73 0.35 0.39

Table 8: Overview of results across all models for subclass classification.

In terms of classification performance, the best performing model is the filtered
random forest with a balanced accuracy of %83.4, which is marginally better
than its naive counterpart, however both have an evaluated kappa value at 0.73.
For both SVM models, balanced accuracy for the naive and filtered approach is
at 66% and 67% respectively. Cohen’s kappa further designates the models to
have a score of 0.35 and 0.39, rendering the models not too reliable improvements
above models selecting for expected chance. Specifics for these models can be
found in the appendix.

The grid-searched filtered model can be seen in figure 50} Optimal parameters
were selected to be at 1000 trees with 16 available variables for random sampling.
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Figure 22: Grid-searched filtered model for subclass classification. Optimal
parameters where chosen to be at 1000 trees and 12 miry.

We can further inspect the confusion matrix of the filtered model below, where
most of the errors are on either end of the label spectrum. Some 76 substance
designated as either not B or not P substances are predicted to be the counterpart.
Further, the misclassifications are very local to relating label assignments, where
few cases are predicted to be on the other end of the spectrum, such as non B or
non P substances rarily was predicted to be vPvB or egregious PBT substances,
however with some caveats.
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Sensitivity | 0.68 0.80 0.94 0.64 0.42 0.78
Specificity | 0.93 0.93 0.94 0.97 0.97 0.97

Table 9: Sensitivity and Specificity measures for the filtered subclass model.

The model further has high specificity metrics, where it correctly identifies the
true negatives in the set. Sensitivity on the other hand is quite a bit lower,
as reflected by the confusion matrix. We can inspect the ROC curve for the
model that demonstrates the relationship of different thresholds for sensitivity
and specificity in figure 23] Note that this is an averaged curve over all folds
for each class, where the curve is calculated on a one vs all basis, such as
classification for not B versus Not P, Not PBT, PBT, PBT/vPvB, vPvB. This
is performed on every class and averaged.
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Figure 23: ROC curve for the filtered subclass model plotting different thresholds
for sensitivity and specificity trade-offs.

Lowering the threshold for sensitivity increases our true negative detection rate,
whereas if we increase the threshold, a mark of performance decrease starts
at a threshold of around 0.7 sensitivity. Area under the curve is calculated
at 0.81 , denoting that the model is capable of identifying the correct class
assignments, however to a lesser extent than the strict binary approach, leading
to a preliminary conclusion that dividing the problem into its subcategorical
representation does not improve upon the screening model. However, it can
from a research standpoint be interesting to look at the variable importance of
the approach.
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Figure 24: Variable importance for the filtered subclass model.

The global variable importance for the permutated variables for out-of-bag
predictions follow similar importance structure we saw in figure where
metrics for LRTP overall transport efficiency scores high for the local impurity
reduction as well. Further reccurency is found in importance of the Bioconcent-
ration factor and Biowin estimates. Biowind’s overall importance drops lower
in the subclass approach, where exclusion leads to on average some 38 more
misclassifi-cations if excluded. This can be contrasted to LRTP TE exlusion
leading to just over 100 substances. This again could be an indication of the
strong separability of certain features in the set. This can further be examplified
by the heightened impact of molecular weight, which ordinarily might not be
too informative in expert evaluation, albeit an indicator for a potential PBT
label. A sample decision tree of fit for the data can be seen in figure
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Figure 25: sample tree fit for the filtered subclass approach

Denoted are the optimal splits point for the different variables, and final cells
show majority class, probability distribution across classes(in order) and again
proportion of cases that would fall into the chain of variable splits. Major
proportion of non-PBT subcategory labels can be observed to be classified
through splits at LRTP TE, BCF BAF, Biowin6 and Biowin2 metrics. Conversely,
for PBT subclasses the splits that are most informative are biowin4d measures,
MW, Log Kaw and km half-life.

6.3 Added Value of Active Learning

In light of the best performing naive binary model, the question remains whether
one can achieve similar results while allowing for explicit data selection from the
viewpoint of the model. To reiterate, this can be a valuable approach for a field
like toxicology were experimental data and labels are expensive to obtain, or if
they exist, is sparse. This further informs the selection of our query strategy
framework for the model, where a pool-based approach is selected, where we
mask a subset of data for training and put the rest in the unlabeled pool U.
The model trains and selects for new data points Until the performance metric
or budget is met, all the while reporting error progression.
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Figure 26: Overview of the active learning loop with pool-based sampling[22].

The active learning was explored in two ways:

e Automated labeling

e Interactive labeling

In the automated approach, we have the model continue the active learning loop
until it has equaled the error of the binary naive random forest model, whereas
in the interactive approach, the model will select for queries and ask a hand-
picked label based on the properties of the data it is insecure about labeling.
This is done to demo the capabilities of expert analysis and solicitation for a
model-quantified uncertainty for label assignment. The active learner inherited
the hyperparameters of the binary naive model of 1500 trees and 4 available
variables for sampling. An initial training set of 100 substances was selected
for the initial active learning loop. Figure shows the performance for the
initial single learning loop with the different uncertainty sampling strategies,
where the model obtains similar performance to the passive model after some
486 queries, or in other words 47.2% of the total data.
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Figure 27: Performance of the active learning algorithm across uncertainty,
margin and entropy sampling strategies.

Inspecting this graph, one can further see that initially when the training set
is low, subsequent queries and re-training comes with a certain level of noise
and outliers before the error converges. This can be seen in the way the curve
with various frequency oscillates in error early on in the query process. As more
data is acquired for learning, the error stabilizes and converges roughly around
200 obtained labels in this particular case. This relationship can further be
highlighted in the progression curves for the model during the active learning
loop for a single strategy. Figure[32]plots the progression using margin sampling,
where model selects for absolute minimal difference between label candidates.
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Figure 28: Training progression for the active learning algorithm using margin
sampling.

As a test and a proof of concept of the information gain from the active learning
loop, one could hypothesize that by the time the model is finished training, it
has selected for the most difficult instances in the data set, like Methoxychlor
in table [7} One can compile the remaining non-queried substances in U as a
sample test set to verify this being the case. The confusion matrix can be found
below,

Actual
Non-PBT PBT
T Non-PBT 482 0
s}
- PBT 3 103

where the balanced accuracy is at 99%, indicating that the most informative
samples have been included for in the training data. This further includes 103
out of total 236 PBTs, and 485 out of 880 non-PBTs in the overall dataset. The
further misclassifications are all false positives;

e Benzenemethanol, 2,4-Dichloro-
e Benzenemethanesulfonyl chloride
e Dioctyl Sebacate

A salient remark here is that this is by no means representative of a external
validation set, and is a mere highlight of the fact that the approach of selecting
for optimal training information works as intended.
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One can further inspect the feature importance of the active learning model in

figure
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Figure 29: Variable importance for the active learning model with margin
sampling

where as seen with the naive passive model, Biowin4, LRTP TE, LRTP CTD
and BCF BAF measures again make out the four most important features.

The result of the initial test loop however is not too reliable. The reason
for this is the notion of randomness in initial training set allocation. For one,
one can hypothesize that the larger the initial training set is, the less queries
is ultimately needed to achieve the performance of the benchmark. This can
simply be due to the fact that the model starts with more information available
to fit the model, however the queries performed by the model is at any point
in time a reflection of its current training set distribution, thus if by chance
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the initial training set automatically includes for data points that describes the
larger data distribution, one can expect even fewer queries needed. A related
point is that these sets are in turn randomized from the larger data space, and as
such one can not be sure whether the sample drawn is a representative training
set or has an appropriate label distribution.

This was explored by creating an experimental loop of 100 iterations. Within
each iteration, three different forest models are fitted each with their own
uncertainty sampling strategy and performance criteria(the binary benchmark).
Further, the initial training sets for the models in each iteration is randomized
for an appropriate size. The active learning process then starts and the models
train and query until the criteria is met before the next iteration starts. Models
are subsequently reset and their performance data is stored. Initial train sets
are further reinitialized before the next iteration begins. This loop was repeated
for sizes 50, 100, and 150 initial training indices.
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Figure 30: Ezperimental loop performance for average queries needed to equal
the benchmark model across three training set sizes.

Figure [30] shows the overall performance across the different training set sizes
across query strategies, where the mean number of queries and standard deviation
is plotted for a full experimental loop. Figure (a) denotes results for initial train
size of 50, (b) denotes an initial size of 150 and (c) denotes a size of 100. Albeit
with marginal difference, one can conclude that the decrease in initial training
set size leads to an increase in total number of queries. This is highlighted by
the fact that on average difference between (b) and (c), where average number
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of queries is in the range of 300-350 for an initial set of 100, however this drops
to just below 300 when we increase the size of the set to 150.

A further highlight to the impact of the initial set can be seen in the red
deviation bars plotted for each strategy, which denotes the standard deviation
for number of queries that were used to achieve target results. As an example,
for some entropy sampling training sets, the model spent closer to 400 queries
in a loop or down to 250 to achieve target performance for some loop iterations.
As seen in fig[27] progressively adding data leads to noisy oscillation before error
convergence happens. We can plot the experimental loop results as in figure 27]
The idea is to plot the mean error and standard deviation for error progression
throughout the experimental querying process.
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Figure[3I]shows the expanded results of figure[30, where the mean error progression
for the different query strategies is shown on the y axis, and where x indicate
the number of queries done in the given iteration. Standard deviation at every
query index in the experimental loop is further plotted for each strategy. As
seen in figure standard deviations here too show a noisy initial stat for the
querying process for all strategies, which could further point toward the model
acquires data points that are anomalies or outliers based on its current training
set distribution. This error further converges once more data is acquired. This
particular plot further shows the progression for each strategy starting with 50
initial substances, where margin sampling on average needed more queries than
uncertainty and entropy sampling.

The active learning improvement can further be quantified by plotting the
learning curve of a cross-validated random forest model over different training
sets to examine the bias and variance trade-off. In other words, what is the
learning progression for a passive model that slowly increases its training data
against a model that learns on handpicked datapoints from the active learning
procedure. Throughout the process, the trained model is tested on a validation
set for that respective training set size using 10-fold cross-validation.

The active learning training indices were selected based on an initial set
combined with the subsequent queried instances when the model was given a
budget of 500 queries. This can be seen in figure

Passive vs Active Learning Curves

—— Training score
Cross-validation score original set
-- Cross-validation score queried set

ZCIIO 46'0 660 Béo 10-‘00
Training Set Size

Figure 32: Model learning curve for for original training set versus a queried
training set. Shaded polygons indicate the variance range for the models.

A first observation is that for a passive model approach, the increase in training
data does not only mot improve accuracy scores for the model, but leads to
an increase in variance for a training set size of 150. One could expect that
the variance was the same at 150 as it would be at a size of 200, however this
could be due to the additional data added to the set is noisy and does not match
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ultimately what is tried to be predicted. The size of the variance remains rather
large for sizes 250-650 before converging as expected. Conversely, the queried
data set both increase accuracy scores and have lower variance denoted by the
dark-shaded polygon. For the sake of clarity, the training curve that is plotted
is singular here as the training score for both models were the same and thus it
was rendered redundant for the inclusion of both. This further lends credence
to the hypothesis that the valuable data in the overall data set has been selected
for in the queried set.

6.3.1 Interactive Learning demo

As a demo for what is possible, some conceptualization of interactive labeling
was explored. As noted earlier, active learning allows for label acquisition using
a domain expert. This usually would come in a form where the model queries
an instance from the larger pool U in this case and subsequently has the expert
annotate the data point before adding it to its larger training set. This requires
some elaboration on what information an expert would need to make a decision.
The model could for example report the SMILES code for a substance, which
is a structural description in the form of a string. However, the activity of
decoding the descriptors could be industrious and time consuming. Another
way would be to report the CAS registration number which is unique to any
chemical, which would facilitate an easy search in a chemical database, say. This
would further require that experimental data and label exists for the chemical,
which is not a guarantee within the area of toxicology.

The approach attempted for this paper includes the model reporting the
name of the chemical, and subsequent what has earlier been established to be
important features for the model. This is due to the fact that the feature
importance described in the passive approach was in accordance with expert
intuition, and it allows for the required data for appropriate labeling to be
explicitly reported in the graphical user interface. As a demo, figure [33| shows
what this could look like. The initial training set size for this particular model
was at 100 substances.
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Figure 33: Screen grab from Interactive initial learning annotation demo with

an expert, where the model requests labels for data it is unsure about and the
data points’ feature characteristics.

Here the active learning sequence has just started, as the performance graphs
indicate. The first query comes in the form of ’1,3,5-Trichlorobenzene’, an
industrial chemical or termite preparation and insecticide. The model asks
what to label the chemical and supplies its Biowin4, BCF BAF and LRTP-TE
metrics. Based on the metrics, the expert makes a decision and types either the
number 0, 1 or 2. Typing 0 denotes the chemical as a non-PBT, 1 as a PBT and
2 discards the instance from consideration. This leads it to delete the query from
the unlabeled pool, and the sequence continues. This is done to allow for expert
uncertainty, as giving either wrong or right chemical assignment will influence
the classification capabilities of the model, but further the subsequent queries
the framework makes. This is continued until the assigned budget of queries is
fulfilled, however as seen in the more quantified automated approach, having an
expert go through over 400 queried substance is unrealistic. The value lies in
the possibilities of - while being wary of noisy data points - being able to get a
sense of the impact on the larger predictive space by adding a given substance,
and further enables cross-examination of expert opinion.
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7 Discussion

Results presented in this paper lend credence to some of the initially stated
hypotheses. For one, using machine learning with physical chemical properties
to classify harmful substances is shown to be a novel and useful approach in PBT
screening. Further, a cross-validated balanced accuracy of 94.2% for the naive
random forest model is further a testament to the predictive capabilities of the
approach. Indeed, all models presented exceed performance of existing screening
tools for PBT substances by the RIVM[5(], with a balanced accuracy >90%.
However, as seen with the reductionist model in which otherwise important
predictor variables are excluded, performance metrics are quite high at 93%
balanced accuracy. This further leads to the question whether the model fit is
good due to the separability of classes or whether the data used for modelling
purposes is representative of the wider chemical space. For example, known
PBTs in the data set are substances that are known to be particularly egregious
in their toxic affects, while confirmed non-PBTs includes substance on the other
end of the spectrum, like Glucose. This in turn can be reflexive of the rather
stark difference in feature distribution for either class, as the data might be
constructed from the outer edges of either category.

An addendum to this point is if one takes in to account the fact that as
stated earlier, the field is plagued by lack of experimental data and labels,
thus the existing labels for known PBTs are substance that have been selected
for screening based on the assumption that they could be troublesome and
subsequently tested, whereas the known non-PBTs are data from readily biode-
gradable tests, which includes a number of commercially used pesticides. Thus
an argument could be made that the data distribution is indeed representative,
and that the labels themselves need verification. The reason for this is the
nature of the misclassifications performed by the model, in which it ”correctly”
gets the labels wrong for substances like Naphtalene, Indene[49] and according
to expert evaluation Vinyl Neodecanoate. There are however evidence for
the counterclaim, namely that the models gets substances like Methoxychlor
incorrect.

One can further make an argument that the approach in this paper has a
much more narrow area of focus on PBTs than the more generalizable RIVM
tool which utilized the binary fingerprint approach. This per say is not a
limitation, as models like these allow for qualitative exploration of the PBT
space. In other words, two-dimensional structural fingerprints generalizes better
to other substance groups like CMTs and EDs more than modelling on physical
properties does, but nevertheless do not offer a ranked ordering of substructures
for a given outcome, as a substance either has a substructure or it does not. The
approach in this paper not only is a benefit of being an added tool for substance
evaluation, but can further capture additional information that related work on
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fingerprint approaches do not offer. This can be further highlighted by the fact
that model outputs confirmed a priori expectations of RIVM experts but with
added important feature discovery such as POP-specific criteria, or the relative
heightened importance of Biowin4 over Biowin3 metrics, which in earlier reports
were left out or not deemed as important[36]. As seen further with sample tree
fits, variable splits seemed to pick up on European PBT evaluation guidelines,
while saliently noting that the data was not collected based on these same
guidelines.

Results surrounding the active learning improvement remains inconclusive for
classification improvement, but has the added benefit of reducing the data
requirement by active selection of informative training samples, as highlighted
by the difference in learning curves for passive models utilizing sub sampled
training sets of the larger data sphere, and the actively queried set. One can
interpret this as saying that selective acquisition of a data set reduce variance,
but potentially increase the bias. Further, that the selected data can be deemed
to be the most informative data points in the overall data set. The question
however is if the data points are the most informative in terms of covering the
wider chemical space, or whether they are the most informative based purely on
label probability, given the strategies used. An argument for the former is the
fact that the final distribution for the queried set incorporated roughly 45-50%
of either class.

The error progression as seen in figure further does not favor active
learning for model training, as the model selects for noisy data points due to
the notion of quantifying uncertainty. If the characteristics of substance is far
removed from the distribution of the training set that is being quried, one can
potentially expect the model to be sensitive to outliers. As discussed earlier,
the overall representativeness of the data is a discussion point here as well.

Finally, albeit shown as a proof of concept in this paper, active learning
could be used for expert solicitation of substance labels. This comes with a few
assumptions. For one, expert evaluation would need to be sufficiently sturdy,
as the solicited label has an effect on the subsequent performance of the model,
which is a problem as expert evaluation is not always uniform and faultless. A
second assumption is that the information provided for the annotator is sufficient
and complete, and finally that the selected substance for the query is the optimal
selection and derived from an optimal strategy. Assuming these are covered,
then the interative labeling concept can be expanded to explore model change
for data selection, but also questions for why a certain substance is being queried
based on the current membership of the training data used. Albeit inconclusive,
this could be an approach in which outliers are identified and scrutinized further,
and what characteristics these substances have that separates them or make
them "uncertain” for the model.
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7.1 Limitations

In light of the discussion on the data, the size of the training data asserts that
the results need further verification, especially in form of a more robust external
validation set. Although cross-validation was here used due to the cost of setting
aside a large chunk of an already smaller data set, a validation set would include
for substances that do not come from the original training distribution, and
hence would serve as a better evaluation for generalization. The need for results
verification is also due to the lack of comparable benchmarks for comparison in
work done in the field, as most of them are oriented in the previously mentioned
fingerprint and structural-activity approach, which in turn makes the overall
gain of the results over other methods inconclusive.

A further limitation is the width and breadth of applied models for the
subject. Albeit that the binary classification included two benchmarks of compar-
ison, the nature of the strong imbalance of labaled data affects classifiers like
the SVM which are prone to overfitting and class imbalance, as highlighted by
the increased rate of false negatives.

Limitations surrounding the active learning approach can be seen in the
behaviour of query strategies, in which uncertainty, margin and entropy sampling
generally behaves the same way for binary problems. In other words, all three
of them tries to select for samples around a 0.5 probability decision boundary.
As the comparison with random sampling shows, the data distribution of the
training set makes the active learning model sensitive to outliers, albeit optimal
for selecting for informative data points as seen in the plotted learning curves
for validation performance.

Albeit being a demo, the interactive labeling framework lacked proper testing
as experts were not properly available, subsequently leading to formulation of
important information needed discussed in theory only. Further, the ability
to discard substances that are of uncertainty from the viewpoint of an expert
or human annotator can be thought of as an overall loss of information, given
that budgets in interactive settings will be smaller and subsequently making
each query more important in terms of information gain. This however is a
limitation that can be extended to expert opinion in general.

7.2 Future work

Some of the challenges and questions raised by the findings in the paper can
be interesting points of research for the future, both to solve issues left by the
constraints of time, and also to serve as a robustness checks for these findings.
These are some of the ideas that i encountered that would be of use:

1. Studying the impact of experimental class weights for the benchmark
classification models. Adding more data in a field like toxicology undoubtedly
will maintain a certain level of labeled imbalance, thus experimenting with
different class weights can give further weighting towards reduction of false
negatives in a field where classifying otherwise harmful substances as safe
would have more dire consequences than false positives. This coupled
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with an expansion of other classification models, like the Naive Bayes
classifier could strengthen benchmark results and serve as a cross-reference
for variable importance.

. As structural similarity screening largely involves 2D binary bit strings for
representations of chemical features, one could examine what a combination
of both physio-chemical properties and binary bit strings would have for
classification accuracy. A matter of salience would be keeping in mind the
so-called curse of dimensionality, where the number of features we have
exceeds the number of training samples, thus introducing a problem of
modeling on data of higher dimensions that does not match observations
in lower dimensions. Binary bit strings can reach sizes of thousands, thus
by introducing binary fingerprints as a feature set one could explore the
importance of different molecular sub-structures. This in turn can be
optimized by crafting a unary fingerprint that combines different bit string
approaches.

. In light of point 2, one could extend the methods used in this paper to
substance groups like EDs or CMTs, albeit with different feature sets(or
fingerprints) for a machine learning algorithm, and to investigate what
sort of feature engineering could be explored for such a task.

. Further work on active learning can be done to better quantify improvement.
For one, the same model used for training and testing is used for label
acquisition, however one could investigate whether there are models that
are better suited for label acquisition, apart from the random forest approach
used here. In essence, one could separately use a model that obtains a
data set, and subsequently have another model train and test on it. This
can further be expanded under different query strategies and sampling
techniques. For example, quantifiying uncertainty of an substance do not
need to be performed by one model or uncetainty metric, but one could
introduce a query-by-committee (formula framework, where labels that
garner the highest amount of disagreement is the one that ultimately gets
annotated.

. subclass classification of substances in active learning was not further
pursued to the performance of the passive approach, however one could
look into the possibility of utilizing active learning for subclass classification
using a multi-class probabilistic active learning framework(McPAL[25]),
where querying of a substance takes in to account its posterior probability,
the reliability of this posterior and also the expected gain of its selection.

. Finally, it can be interesting from a research perspective to use interactive
substance labeling as a cross-reference test for expert opinion. This can be
done to investigate the accuracy of human annotation, but also quantify
the level of agreement among experts. Factors here can include developing
a proper graphical user interface that allows for a database lookup while
offering the expert to select for columns based on chemical name or structure.
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8 Conclusion

In this thesis, an attempt at exploring the gain of utilizing machine learning
for PBT substance classification was done for the Dutch national institute for
public health and environment. One of the main contributions of the work done
has been the introduction of ranked importance for physio-chemical properties
along with the ability to screen and classify PBT substances on said properties,
all the while honoring the need for explanatory models. These models were two
benchmarks fit on filtered and naive feature inclusion, with a subsequent active
learning improvement for the better-performing model. In the end, the naive
RF model obtained the best results, further showing improvement over existing
screening tools for PBT substances, with an additional capability of identifying
legal guidelines for assessment. Further contribution came in the form of active
learning, in which handpicked data collection based on a notion of uncertainty
sampling managed to reduce variance over a passive model approach, albeit
inconclusive for model training improvement. This approach further introduced
a demo for the potential for expert solicitation, paving the way for qualitatively
examine impact of expert evaluation.

Though further data is needed to solidify the performance of the best performing
model, in conclusion the thesis establishes the gain of adding machine learning
as an added tool for efficient risk assessment beyond predictive ability, and to
further provide width and breadth to the study of substances of high concern.
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10 Appendix

Appendix A Data

Property Name

Description

k OH (AOPv1.92)
atmospheric*

Denotes the rate of atmospheric degradation for a chemical

t1/2 atmosphere in hours

Denotes the half-life time of a substance found in the air measured in hours.

VP (mm Hg)*

Denotes vapor pressure of a substance, measured in millimetres of mercury

| VP (Pa) | Denotes vapor pressure of a substance, measured in Pascal
| Biowinl | Denotes the linear model output that predicts slow vs not slow degradation.
‘ Biowin2 ‘ Denotes the non-linear version that predicts slow vs not slow degradation.
Biowin3 Denotes the estimates of environmental half-life necessary to mineralize a chemical
(i.e to turn 50% of the substance in to the ultimate degradation products - namely water
and carbon dioxide
| t1/2(water)hrs* | Denotes the half-life time of a substance found in water measured in hours.
t1/2(soil)hrs* Denotes the half-life time of a substance found in soil measured in hours.
Biowin4 Denotes regression model prediction on expert estimate of environmental half-lives for
primary degradation
| Biowin5 | Denotes linear model prediction output of the ”ready biodegradability test”
| Biowiné | Denotes non-linear model prediction output of the “readily biodegradability test”
log Kow Denotes octanol water coefficient. Describes the ratio
of the concentration of a substance in an octanol phase
and its concentration in the aqeuous phase. Higher values of
log Kow implies a higher potential to bioaccumulate in living organisms.
(for example fish).
| log Koa | Demotes the octanol air coefficient.
log Kaw Denotes the air-water partition coefficient,

estimated for compounds at 25 degrees

BCF (BCFBAF)*

Denotes the bioconcentration factor, but adjusted for the impact of
the hosts’ metabolism(aquatic species)

BCFmax*

Denotes a bioconcentration factor for a substance to bioaccumulate
in aquatic species

kM halflife (days)*

Denotes the depuration rate or half life of a
substance metabolized in aquatic species, measured in days

| kM | Denotes the flat depuration rate constant of a substance(affects the half life rate)
| BCF(metabolism)* | Denotes the bioconcentration factor, not adjusted for metabolism rate.
TMF air* Denotes the trophic magnification factor, and how substances may accumulate

up the food-chain for air breathing organism, like mammals or birds.

TMF pelagic*

Denotes the trophic magnification factor for pelagic species
(in essence, fish that live neither near the surface or bottom of a body of water)

BAF air* Denotes the bioaccumulation factor for air breathing organisms.
Takes in to account the bioconcentration factor of a substace
adjusted for metabolism and the TMF.

LRTP-Pov Denotes the long range transport potential for a substance measured in days.
Includes for soil, water and air

LRTP-CTD Denotes the long range transport potential for a substance, and its characteristic
travel distance. Includes for soil, water and air.

LRTP-TE Denotes the long range transport potential for a substance,
and its travel efficiency. Includes for soil, water and air.

‘ MW ‘ Molecular weight of a chemical. Calculated directly from its chemical structure

*Dependant variable

dependant variables means that is a D leulation of other ph l properties or different
representation.
An exzample: 1/2 life in soil = 2* 1/2 in water

Table 10: Full table of physical chemical properties used for modelling.
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Appendix B Descriptive statistics

Non-PBT mean sd median min max skew
k OH (AOPv1.92) atmospheric  5.4322e-11  7.6109e-11 2.582¢-11 0 7.38272e-10  3.392
t1/2 atmosphere in hours 4.3809e+9  1.2988e+11 1.4914e+1 5.2159e-1 3.8508e+12  29.546
VP (mm hg, v1.43) 8.268le+1  1.2400e+3  1.0225e-4 0 3.14e+4 21.788
VP (Pa) 1.0996e+4  1.6492e+5 1.36e-2 0 4.1762e+6 21.788
Biowinl 5.7096e-1 5.7706e-1 0.7005 -3.2787e+0 1.7401e+0 -2.875
Biowin2 5.9003e-1 4.1113e-1 7.925¢-1 0 1 -04.235
Biowin3 2.5854 6.2096e-1 2.7091 -1.869e-1 4.2257e+0 -1.0847
t1/2(water) in hours 2.7179e+3  1.0897e+4  6.5359e+2  3.3906e+1 1.8582e+5 10.680
t1/2(soil) in hours 5.4358e+3  2.1794e+4 1.3071e+3  6.78124758575870e+1  3.7165e+5 10.680
Biowin4 3.5887 3.9292e-1 3.6061 1.9534 5.0192 -29.387
Biowinb 3.7521e-1 3.8297e-1 3.866e-1 -1.0966 1.4913 -22.253
Biowin6 3.6991e-1 3.6840e-1 2.361e-1 0 9.984e-1 0.4278
log Kow v1.67 2.8548 2.9785e+4-0 2.62 -1.728e+1 2.432e+1 1.212
log Koa v1.10 1.4528e+1  3.0834e+2 8.334 -9.99e+-2 8.921e+3 27.254
log Kaw -1.5502 6.7567e+1 -5.549 -3.5428e+1 1.00214e+3  10.460
BCF (BCFBAF) v3.00 2.6255e+2  1.0592e+3 1.5848e+1  6.197e-1 1.4454e+4 8.0524
BCFmax 4.7914e+3  1.1601e+4 7.0722e+1 1 4.8216e+4 2.659
kM 1/2 in days v3.00 1.0260e+3  2.4732e+4 2.3252¢-1 7.59e-12 7.1635¢+5 27.809
kM 1.824e+1 3.3758e+1 2.981 9.676e-07 125 2.272
BCF (metabolism) 3.2006e+2  1.1707e+3  2.8345e+1  6.6567e-1 1.9204e+4  10.248
TMF air -7.1528e+4  2.0179e+6 3.6290 -5.9811e+7 9.9088 -29.518
TMF pelagic -7.8306e+4  2.2094e+6 -1.0695 -6.5487e+7 6.0493 -29.518
BAF air 1.2650e+3  4.0955e+3 1.0427e+2  6.6567c-1 4.0738¢+4 6.096
LRTP Pov 3.8064e+2  1.5581e+3 7.3315e+1  2.0095 2.9645e+4 11.134
LRTP CTD 1.6776e+4  8.6295e+4  7.7247e+2  6.269 1.1913e+6  8.875
LRTP TE 3.8918e+1  2.1108e+2 1.0255 1.446e-12 2.7684e+3 8.641
MW 2.3622e+2  1.3178e+2 210.36 27.03 1080.96 1.367

Table 11: Full descriptive statistics of non-PBTs in the dataset. Values have
been reduced to a four decimal representation where applicable for ease of
interpretation.

78



PBT

k OH (AOPv1.92) atmospheric
t1/2 atmosphere in hours

VP (mm hg, v1.43)
VP (Pa)

Biowinl

Biowin2

Biowin3

t1/2(water) in hours
t1/2(soil) in hours
Biowin4

Biowinb

Biowin6

log Kow v1.67

log Koa v1.10

log Kaw

BCF (BCFBAF) v3.00
BCFmax

kM 1/2 in days v3.00
kM

BF (metabolism)
TMF air

TMF pelagic

BAF air

LRTP Pov

LRTP CTD

LRTP TE

MW

mean
1.3433e-11
6.1515e+5
7.8888
1.0492e+3
-2.3600e-1
6.7579¢-2
1.2906
7.6248e+4
1.5249e+5
2.4951
-0.1026
2.7396e-2
6.8017
10.1386
-3.3684
9.1082e+3
2.1662e+4
2.7157e+2
0.2662
7.1837e+3
0.5138
-15.6112
5.5193e+4
1.8185e+6
6.4352e+4
2.2108e+2
4.0016e+2

sd
2.9681e-11
4.6662e+6
1.145436e+2
1.5234e+4
5.4654e-1
2.2946e-1
0.7429
6.4696e+5
1.2939e+-6
0.5504
0.2569
9.5438¢-2
1.9024
3.2016
2.1789
1.3947e+4
1.7719e+4
1.3706e+3
1.2857
8.4802e+3
14.6229
25.3736
7.9812¢+4
1.9579e+7
1.9795e+5
5.8323e+2
1.5707e+2

median
7.6e-13
5.0687e+2
1.8744¢-06
2.493e-4
-2.133e-1
0

1.3066
1.0084¢+4
2.0169e+4
2.5299
-0.0825
8e-04

6.79

9.84
-3.415
4712
2.1365e+4
26.7831
0.02588
3.9536e+3
6.4447
-6.4600
1.7510e+4
1.2111e+3
5.9135e+3
22.5424
3.6492e+2

min

0

1.6999
1.1e-14
1.48e-12
-2.6882e0
0

-2.2058
9.9889%¢+1
1.9977e+2
0.3189
-0.9037

0

1.69
-1.097
-11.025
1.562
3.3323
3.9927e-2
4.105e-05
3.3323
-62.3481
-118.6003
3.3323
12.0010
82.2169
0.0128
1.1616e+2

max
2.26529¢-10
3.5999e+7
1.7541e+3
2.333e+5
1.4604

1

3.6719
9.5443e+6
1.9088e+7
4.6021
0.8004
0.874
12.66
18.428
6.597
7.44e+4
4.8216e4
1.6885e+4
17.36
3.0838e+4
9.9088
6.0457
3.0153e+5
2.1371e+8
1.3499e+-6
5.0405e+3
9.5917e+2

Table 12: Full descriptive stats over PBT substances in the data set.
have been reduced to a three decimal representation where applicable for ease

of interpretation
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skew
3.974
7.420
15.078
15.078
-0.590
3.306
-0.463
13.613
13.613
-0.131
-0.286
5.479
0.246
0.014
0.150
2.855
0.172
9.582
10.806
1.344
-2.475
-1.923
1.601
10.632
4.671
5.154
0.863
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Figure 34: Feature plot showing a subset distribution of features used for
modelling purposes
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Figure 35: Feature plot showing a subset distribution of features used for
modelling purposes
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Figure 36: Feature plot showing a subset distribution of features used for
modelling purposes
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Figure 37: Feature plot showing a subset distribution of features used for
modelling purposes

83



non.SVHC —— SVHC  ------

BCF..BCFBAF v3.00. BCFmax M.halflife. days. BCFBAF .v3.00
S |
L+
; 2
(=]
3
@ o
f=p
< a_|
S |
g L
(=]
o |
- [=]
o 2 _|
= &
o Qo - _ _
R e el bt el b
(=] o
T T T T T T T T T T T T T T
0 20000 40000 60000 BOOOO -20000 0 20000 40000 60000 0e+00 2e+05 4e+05 6e+05
Feature

Figure 38: Feature plot showing a subset distribution of features used for
modelling purposes
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Figure 39: Feature plot showing a subset distribution of features used for
modelling purposes
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Figure 40: Feature plot showing a subset distribution of features used for
modelling purposes
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Appendix C Results

C.1 Binary Classification

Filtered Forest

bcf_baf . BIOWIN4 .

BIOWIN4 . bef_baf .
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mw . log_kaw .

atmosphere_halflife . BIOWIN3 .
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BIOWINS . mw .
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log_koa . vp_pa .

Irtp_pov . log_koa .
T T T T T T T T T T T T 1T
20 30 40 50 60 70 0 20 60 100 140

MeanDecreaseAccuracy

MeanDecreaseGini

Figure 41: Variable importance for the filtered forest model. Notable importance
lies in the Biowin4 measure,the bioconcentration factor for bioaccumulation and
POP specific long range transport potential. The ordering is related to the
relative decrease of Gini impurity a split on this variable offers over the data
and the overall mean accuracy decrease of variable exclusion.

Important variables for the filtered random forest are similar to that of the naive
one in figure [I5] Here too an exclusion of variables like the bioconcentration
factor and the Biowin4d model output would lead to an on average over 70
misclassifications. Further, the mean decrease in gini impurity for Biowin4
measures are significantly higher than other variables, which again points to
the level of separability of the data based on this one variable alone. A sample
decision tree can be seen in figure [77]

On the other end of the scale, variables such as vapor pressure and LRTP for
overall persistency score low in determining the label from the viewpoint of the
model. This is further in tune with what experts deem to be important or non-
important for chemical evaluation, however interestingly is it that the seeming
importance of bioaccumulation metrics being higher than those of persistency.
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This however is only a reflection of the data the models are trained on and as
such should not be evaluated to be a judgement of overall importance between
the two.

Filtered forest
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Figure 42: Vote distribution for the filtered random forest model for both
substances deemed to be of concern and non-concern.

Vote distribution for the cross-validated grid searched filtered model from
figure Compared to the vote distribution for the naive approach in figure
[[4] the votes are much more condensed towards confidence intervals between
0.7-99%.
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Figure 43: A sample decision tree based on the filtered data. In accordance with
its variable importance, the tree’s initial split on Biowing at 2.8 separates a large
magjority of the data.

Looking at a sample decision tree, one can observe in the root node the
majority class, probability of being PBT and proportion of substances that fall
in that node. Naturally, no splits have been made and so the root node contains
all the data. After the first split, 81% of observations are sent to the left branch
with the Biowin4 split at >= 2.8, where out of the 81%, one would make 0.06
error in predicting majority class of non SVHC already. Two further splits on
BFC BAF<3324 and subsequently <163 where 64% of the data falls within
these conditions with 99% probability of being a non-SVHC.

Conversely, 16% of observations are substances with a Biowin4 value higher
than the initial split, and subsequently larger transport efficiency of 12 with
probability of being SVHC at 98%.
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C.1.1 SVM
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Figure 44: Cross-validated grid searched naive SVM model, where optimal cost
value is 2 and gamma value is 0.04

The grid searched filtered SVM model has both less cost for misclassifications
and lesser degree of gamma than its filtered counterpart. The model penalizes
misclassifications to a lesser extent than the filtered model does, implying that
the margin is softer for the filtered approach.

90



C.1.2 Reductionist model

Vote distribution for reduced model
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pbt
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Figure 45: Vote distribution for the reduced model, where the model’s high

confidence for classification at either end of the spectrum for mon-PBT and
PBT.

Figure [77] shows the vote distribution for both classes, where the confidence of
the model remains high albeit having removed variables that highly discriminates
between labels.

Figure 46: Cross-validated grid searched SVM model, where optimal cost is 2
and gamma value of 0.0/
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C.2 Subclass classification
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Figure 47: Grid-searched naive model for subclass classification.
parameters where chosen to be at 1000 trees and 16
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Not B | Not P | Not PBT | PBT | PBT/vPvB | vPvB
Sensitivity 0.66 0.81 0.94 0.63 0.39 0.80
Specificity 0.94 0.93 0.94 0.97 0.97 0.97

Table 13: Sensitivity and Specificity measures for the naive subclass model.

Subclass naive ROC curve
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Figure 48: ROC curve for the naive subclass model, where AUC was calculated

to be at 0.80
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Figure 49: Variable importance for the naive subclass model
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Accuracy (Repeated Cross-Validation)
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Figure 50: Grid-searched filtered model for subclass classification.

parameters where chosen to be at 1000 trees and 12
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C.21 SVM
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Figure 51: Grid-searched filtered subclass SVM model. Optimal gamma found
to be 0.25 and C value of 1.5
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Figure 52: SVM boundary plot for the subclass model for Biowinj and molecular
weight. Notable is the clustered overlap for subcategories of either binary class
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C.3 Subclasses P & B

Further exploration was done on subcategories of persistence and bioaccumulation
separately. This was to explore the potential individual impact of either criteria,
as a combination of the two as explained earlier is determining toxicologial
categorization. A substance might be P but not B, and still be considered to be
PBT. Target variables for persistence includes not P, P and vP, and conversely
not B, B and vB for bioaccumulation. Data sets for either class are here smaller,
as not every substance in the original set had an individual P or B evaluated
label. Thus, some 488 substances were collected for known persistence labels in
the set, and 468 bioaccumulation substances.

C.3.1 Subclass P

The following table is the confusion matrix for subclass P classification with a

balanced accuracy of 89%.
Actual
o

1
+

z oo B
Not-B ] 11 0
p 9 B 23
vP 0 1B KX

Predicted
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Figure 53: ROC plot for sensitivity/specificity thresholds for persistence the
model, where AUC calculated at 0.97
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Figure 54: Grid-searched random forest model for persistence, where optimal
trees found to be 1500 and miry at 11.
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Figure 55: Variable importance for the persistence model showing gini impurity

decrease
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Figure 56: Decision tree sample for persistence model fit.

C.3.2 Subclass B

The following table is the confusion matrix for subclass B classification with a
balanced accuracy of 89.2%.

Actual
[aa]

1
+

Z m %
Not-B I 10 0
B 17 g 2
B0 21 IER

Predicted
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Figure 57: ROC curve for subclass B, where we plot for different thresholds of
sensitivity and specificity tradeoffs. AUC metrics calculated to be 0.97
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Figure 58: Grid-searched random forest model for bioaccumulation classification.
Optimal hyperparameters included 2500 trees and 13 miry.
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Figure 59: Variable importance for bioaccumulation model.
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Decision Tree, Bioaccumulation
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Figure 60: Decision tree sample for bioaccumulation model fit.

C.4 Misclassifications

Table shows a full overview over all misclassifications made by the cross-
validated binary models. As seen earlier in their individual confusion matrices,
model difference can be marginal and as such a lot of misclassifications are
duplicated. It is a point of interest nonetheless to inspect what the nature of
these misclassifications can be and which ones are deemed to be particularly
difficult to label. Colored cells denote;

e (lassified wrong by one model
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CAS number Name Reference Prediction
000067-48-1 (15) Choline chloride non-pbt pbt
003846-71-7 (266) 2-benzotriazol-2-yl-4,6-di-tert-butylphenol bt Hon-pbt
000143-50-0 (274) chlordecone pbt non-pbt
002385-85-5 (288) mirex pbt non-pbt
000118-74-1 (285) hexachlorobenzene pbt non-pbt
000087-68-3 (286) hexachlorobuta-1,3-diene pbt non-pbt
000608-93-5 (291) pentachlorobenzene pbt non-pbt
000129-00-0 (292) pyrene pbt non-pbt
VPvB-56 (350) bt Hon-pbt
004904-61-4 1,5,9 cyclododecatriene pbt non-pbt
vPvB-59 (353) pbt hon-pbt
025637-99-4 (368) 1,3,5,7,9,11-hexabromocyclododecane pbt non-pbt
000087-61-6 (366) 1,2,3-trichlorobenzene pbt non-pbt
000091-57-6 (390) 2-meothylnaphthalene bt mon-pbt
000578-95-0 (397) 9(10H)acridone pbt non-pbt
000083-32-9 (398) acenaphthene pbt non-pbt
000208-96-8 (399) acenaphthylene pbt non-pbt
000260-94-6 (400) acridine pbt non-pbt
000120-12-7 (401) anthracene pbt non-pbt
000225-11-6 (402) benz[aJacridine bt hon-pbt
000225-51-4 (403)benz[clacridine pbt non-pbt
023593-756-1 (404) clotrimazole pbt non-pbt
000294-62-2 (405) cyclododecane pbt non-pbt
051000-52-3 (413) vinyl neodecanoate pbt non-pbt
002104-64-5 (414) O-ethyl O-4-nitrophenyl phenylphosphonothioate pbt hon-pbt
000229-87-8 (415) phenanthridine pbt non-pbt
070124-77-5 (416) flucythrinate bbt non-pbt
000086-73-7 (417) fluorene pbt non-pbt
000335-57-9 (420) hexadecafluoroheptane pbt non-pbt
000095-13-6 (421) indene bt Hon-pbt
000119-65-3 (423) isoquinoline pbt non-pbt
000072-43-5 (424) methoxychlor bt Hon-pbt
000793-24-8 (427) N-1,3-dimethylbutyl-N’-phenyl-p-phenylenediamine pbt non-pbt
000091-20-3 (428) naphthalene pbt hon-pbt
000087-86-5 (432) pentachlorophenol pbt non-pbt
000382-21-8 (433) perfluoroisobutylene pbt non-pbt
124495-18-7 (435) quinoxyfen pbt non-pbt
000056-35-9 (438) bis(tributyltin) oxide pbt non-pbt
000603-35-0 (439) triphenylphosphine bt Hon-pbt
001582-09-8 (440) trifluralin pbt non-pbt
000126-72-7 (441) tris(2,3-dibromopropyl) phosphate bbt non-pbt
PBT-11 pbt non-pbt
013116-53-5 (595) PROPANE, 1,2,2,3-TETRACHLORO- non-pbt pbt
000091-20-3 (631) Naphthalene non-pbt pbt
000879-39-0 (662) 1,2,3,4-Tetrachloro-5-nitrobenzene non-pbt pbt
000126-72-7 (668) TRIS(2,3-DIBROMOPROPYL) PHOSPHATE Hon-pbt bt
085535-84-8 (681) SCCPs pbt non-pbt
000085-01-8 (682) phenanthrene pbt non-pbt
000058-89-9 (683) gamma-HCH, Lindane, Hexachlorocyclohexaan (HCH) pbt non-pbt
000319-84-6 (684) alpha-HCH bbt non-pbt
000319-85-7 (685) beta-HCH pbt non-pbt
000319-86-8 (686) delta-HCH pbt non-pbt
000608-73-1 (687) techn. HCH pbt non-pbt
034482-99-0 (698)Fletazepam pbt non-pbt
001763-23-1 (712) 1-Octanesulfonic acid, 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro- pbt non-pbt
000074-85-1 (846) Bthylene non-pbt pbt
153233-91-1 (847) Etoxazole non-pbt pbt
067306-00-7 (857) Fenpropidin non-pbt bt
139968-49-3 (922) Metaflumizone non-pbt pbt
019666-30-9 (947) Oxadiazon Hon-pbt bt
096489-71-3 (982) Pyridaben non-pbt pbt
179101-81-6 (983) Pyridalyl non-pbt pbt
118134-30-8 (1006) Spiroxamine non-pbt pbt
102851-06-9 (1010) tau-Fluvalinate non-pbt pbt
120068-37-3 (1048) fipronil non-pbt pbt
122453-73-0 (1049) 4-bromo-2-(4-chlorophenyl)-1-ethoxy methyl-5-triflucromethylpyrrole-3-carbonitrile (Chlorfenapyr) | non-pbt bt
122454-29-9 (1050) Tralopyril non-pbt pbt
064359-81-5 (1089) 4,5-Dichloro-2-octylisothiazol-3(2H)-one (4,5-Dichloro-2-octyl-2H-isothiazol-3-one (DCOIT)) non-pbt pbt
080844-07-1 (1109) etofenprox non-pbt bt
082657-04-3 (1110) Bifenthrin non-pbt pbt

Table 14: Owverview of all misclassifications over all four models. Non-colored
rows are chemicals misclassified a single time, orange rows for 2 or more

classifiers and yellow denotes misclassification across all models.
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