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Abstract

Hypergraph partitioning is an important problem with many applications, such as very large
scale integration design and sparse matrix distribution for parallel computation. The data
provided by these applications has become so large, that serial partitioners have trouble
handling these hypergraphs because of memory and/or running time limitations. In this
thesis, a new parallel partitioning method is presented for a distributed-memory architec-
ture. We extend the multilevel framework to a parallel multilevel framework that is used
to recursively bipartition the hypergraph. The parallel coarsening algorithm uses a sam-
pling scheme to reduce communication. The parallel refinement algorithm moves groups of
vertices together, to limit the number of synchronizations. The method was implemented
in a parallel hypergraph partitioner, named PMondriaan, that can partition a hypergraph
into k parts using p processors. Our experiments show that PMondriaan achieves our goal
of memory scalability, while providing state-of-the-art solutions. A reasonable speedup is
achieved with respect to the single processor running times of PMondriaan, but no speedup
is achieved with respect to the Mondriaan partitioner.
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1 | Introduction

Hypergraph partitioning is an important problem in graph theory. A hypergraph H =
(V,E) consists of a set of vertices V and a set of hyperedges E. Each hyperedge is a
subset of the vertices. The goal of hypergraph partitioning is to partition the vertices of
a hypergraph into k parts, such that each part has relatively equal size and the number
of hyperedges that contain vertices belonging to different parts is minimized. This has
many applications, such as very large-scale integration (VLSI) design [1, 2] and matrix
decomposition for parallel computation [3–5]. Hypergraph partitioning is closely related
to graph partitioning. For many applications, using hypergraph models instead of graph
models offers more flexibility. For example, in matrix decomposition for parallel sparse-
matrix vector multiplication (SpMV), a hypergraph-partitioning-based decomposition can
accurately reflect the communication volume requirement [3].

Hypergraph partitioning is a well-studied problem. There are several software packages
available: PaToH [3], hMeTiS [2, 6] and KaHyPar [7, 8] (general purpose), Mondriaan
[4] (sparse matrix partitioning), MLPart [9] (circuit partitioning), UMPa [10] (directed
hypergraph model, multi-objective), kPaToH [11] (multiple constraints, fixed vertices) and
two parallel hypergraph partitioners, Zoltan [12] and Parkway [13]. All of these use the
multilevel framework. This partitioning method consists of three phases: the coarsening,
the initial partitioning, and the uncoarsening phase. In the coarsening phase, the size of
the hypergraph is reduced in a number of steps by grouping vertices. In each step a new
hypergraph is constructed, resulting in a number of layers. The coarsened hypergraph is
partitioned in the initial partitioning phase. Finally, the partitioning is projected back to
the previous layers and refined in the uncoarsening phase.

Different applications provide bigger and bigger inputs for hypergraph partitioners.
These hypergraphs are so big, that traditional serial hypergraph partitioners are not able
to handle them, because of memory or running time limitations [7]. A possible solution to
these problems is the use of parallel computations on a distributed-memory system.

The goal of this thesis was to develop a prototype of a parallel hypergraph partitioner for
a distributed-memory system, that achieves a reasonable speedup and is memory scalable,
while providing state-of-the-art solutions. The successful multilevel framework will be the
foundation of our new parallel partitioner: PMondriaan. PMondriaan achieves our goal of
memory scalability, while providing state-of-the-art solutions. A linear speedup is achieved
with respect to the single processor running times of PMondriaan, but no speedup is achieved
with respect to the Mondriaan partitioner.

This thesis is structured as follows. In Chapter 1, we introduce the problem and some
basic notation. We also discuss related work. In Chapter 2, we discuss the new parallel
partitioning algorithm used in PMondriaan. In Chapter 3, we discuss some implementation
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: A hypergraph with six vertices, v1, v2, v3, v4, v5, and v6, and four hyperedges,
{v1, v2, v3}, {v2, v3}, {v3, v4}, and {v5, v6}.

details. In Chapter 4, we show the results achieved by PMondriaan. Finally, in Chapter 5,
we provide our conclusions.

1.1 Preliminaries

1.1.1 Notation

Before we begin our discussion, let us first fix the notation used throughout this thesis. A
hypergraph H = (V,E) is a generalization of a graph. It consists of a set of vertices (or
nodes) V and a set of hyperedges (or nets) E. Hyperedges connect two or more vertices of
a hypergraph. We identify a hyperedge e by the subset e ⊆ V of vertices it connects. The
size of a hyperedge e ∈ E is defined as |e|. An example of a hypergraph is shown in Figure
1.1. By w(v) ≥ 0 we denote the weight of a vertex v ∈ V and by c(e) ≥ 0 the cost of a
hyperedge e ∈ E. We denote by I(v) the set of hyperedges containing v ∈ V . The degree
d(v) of v is defined as |I(v)|. In applications, often w(v) is set to |I(v)|. We denote the
maximum vertex degree in the hypergraph by ∆(H). We call a vertex v and u adjacent if
there exists a net containing both vertices. By N(v) we denote the set of adjacent vertices
(or neighbors) of v. By L(v) we denote the label of vertex v, that is the part v is assigned
to.

We define the hypergraph partitioning problem as follows: given a hypergraph H =
(V,E) and an integer k, partition the vertices V into k nonempty, mutually disjoint parts
V0, V1, ..., Vk−1 satisfying ∪k−1i=0 Vi = V , such that all parts have relatively equal weight and a
cut metric is minimized. We call P = {V0, ..., Vk−1} a partitioning and V0, ..., Vk−1 its parts.
For k = 2, we also call the problem the hypergraph bipartitioning problem. The weight Wi

of part Vi is the sum of the weights of the vertices it contains. We say that a partitioning
adheres to the balance constraint if

Wi ≤
1

k

k−1∑
j=0

Wj(1 + ε), for i = 0, 1, ..., k − 1, (1.1)

where ε > 0 is the load imbalance parameter. This ε expresses the relative maximum load
imbalance that is allowed.

Under this constraint, we minimize a so-called cut metric. Common choices for a cut
metric are the hyperedge-cut, the sum of external degrees (SOED) and the (λ − 1)-cut
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Figure 1.2: The matrix representing the hypergraph from Figure 1.1 using the row-net
model. The colored elements represent the nonzeros.

metric [6]. Let λi be the number of parts spanned by ei ∈ E. Then the hyperedge-cut
metric minimizes (1.2a), the SOED metric minimizes (1.2b) and the (λ− 1)-cut minimizes
(1.2c):

(a)
∑
i:λi≥2

c(ei), (b)
∑
i:λi≥2

λic(ei), (c)
∑
i:λi≥1

(λi − 1)c(ei). (1.2)

Here, we have generalized the definition of the SOED metric from [6] to account for
hyperedge weights. For hypergraph bipartitioning, the hyperedge-cut and the (λ − 1)-cut
metric result in the same minimization problem.

We can also view a hypergraph as a sparse matrix. We use the row-net model to express
the hypergraph as a matrix. In this model, a row of the matrix represents a hyperedge
(net) and a column a vertex of the hypergraph. For each vj ∈ V and ei ∈ E we have
that aij is 1 if vj ∈ ei and 0 otherwise. An example of such a matrix can be found in
Figure 1.2. We denote by nz (A) the number of nonzero elements in this matrix A. In this
representation, the weights of the vertices and the cost of the hyperedges are given by two
additional vectors. Note that any binary matrix can be transformed into a hypergraph by
reversing this process.

We will use the following notations regarding parallel computing. By p we denote the
total number of active processors. Following common notation in graph theory, we denote
by s the index of the current processor (source) and by t the index of a remote processor
(target). We denote a specific processor by P (s) or P (t). A subscript s is added to a set to
indicate the local subset of that set. For example, we denote the local vertices by Vs. Note
that this is the set of local vertices during the computation, which is generally not equal to
one of the parts V0, ..., Vk−1 of the final partitioning. The local hyperedge set, containing
only the vertices in Vs, we denote by Es. By Hs = (Vs, Es) we denote the local hypergraph.

1.1.2 The BSP model

The bulk-synchronous parallel (BSP) model consists of a computer architecture, a class of
algorithms and a cost function [14]. The computer architecture on which the model is based
is a distributed-memory system, where each identical processing unit has its own memory.
Messages can be sent to and received from other processors through a communication net-
work. BSP algorithms are based on the single program multiple data (SPMD) technique.
This means that all processors execute the same program on different data.

A BSP program consists of a number of computation, communication and/or mixed
supersteps. After each superstep all processors synchronize. The BSP cost function is
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expressed in floating-point operations (flops) and charges a fixed cost of l for each synchro-
nization. The cost of a computation superstep is therefore

Tcomp = w + l, (1.3)

where w is the maximum number of flops performed by any processor in the superstep. The
cost of a communication superstep depends on the maximum number of data words h that
is received or sent by any processor. We call this an h-relation. This amounts to a cost for
a communication superstep of

Tcomm = hg + l. (1.4)
Here, g is a machine-dependent constant expressing the cost of communicating a single data
word. It is the ratio of the communication cost relative to a flop execution.

1.2 Related Work

1.2.1 The multilevel framework
The hypergraph partitioning problem is NP-hard [15], even for bipartitioning. Therefore, in
practice mostly heuristics are used. The most successful heuristic is the multilevel partition-
ing approach [16]. This framework consists of three phases: coarsening, initial partitioning
and uncoarsening. The coarsening phase consists of a number of steps in which the size of the
hypergraph is reduced in such a way that the structure of the hypergraph is preserved. The
hypergraph is often coarsened by contracting similar vertices, for example using a matching
algorithm. When the hypergraph has become sufficiently small, the coarsening stops. In the
initial partitioning phase, the coarsened hypergraph is partitioned. The chosen partitioning
method can be more expensive than the one used to partition the original hypergraph, be-
cause the size of the hypergraph is small. Finally, in the uncoarsening phase, the partitioning
is mapped back to each previous layer and improved, often using an iterative refinement
algorithm. A schematic overview of the multilevel method is shown in Figure 1.3.

Figure 1.3: Schematic overview of the multilevel method. In the coarsening phase, the size
of the hypergraph is reduced such that the structure of the hypergraph is preserved. In the
initial partitioning phase, the coarsened hypergraph is partitioned. Finally, in the uncoars-
ening phase, the partitioning is mapped back to the previous hypergraphs and refined.
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There are two main approaches to create k-way partitionings using the multilevel frame-
work: recursive bipartitioning and direct k-way partitioning. We will first explain these
approaches. In Section 2.2 we discuss the advantages and disadvantages of both, and pro-
vide motivation for our choice to use recursive bipartitioning in our new partitioner.

Recursive bipartitioning

In the recursive bipartitioning method, the set of vertices of the hypergraph is first parti-
tioned into two parts V0 and V1. The induced hypergraphs of V0 and V1, containing only the
vertices in the respective set, are again bipartitioned. We bipartition the resulting hyper-
graphs recursively until we reach the desired number of parts. Because all parts are disjoint,
we now have a partitioning of the entire hypergraph. We use the multilevel approach for
each bipartitioning, so in total we apply the multilevel scheme k−1 times. Note that, when
k is not a power of two, we cannot create a good k-way partitioning by only splitting the
graph into parts of equal weight. To create k-way partitionings when k is not a power of 2,
we need to split the graph into uneven parts at some levels. For example, if we want three
parts, we first bisect the graph into parts of size roughly equal to 1/3 and 2/3 of the total
weight. In the next bisection step, we bipartition only the bigger part corresponding to 2/3,
to obtain three parts of roughly equal weight.

Direct k-way partitioning

In the direct k-way partitioning method, the hypergraph is split directly into k parts in the
initial partitioning phase. This partitioning is later refined in the uncoarsening phase with
more involved refinement algorithms that can cope with k parts.

Coarsening methods

The idea of all coarsening methods is to contract (groups of) vertices that are similar, so the
structure of the hypergraph is preserved, but the size of the hypergraph is reduced. When
we contract two or more vertices v1, ..., vj into a new vertex u, we set w(u) =

∑j
i=1 w(vi)

and I(u) =
⋃j
i=1 I(vi). We can divide most coarsening methods into two categories [17]:

matching-based [3, 4, 9, 11, 12] and clustering-based [3, 6, 13, 18] algorithms. In matching-
based algorithms, we always contract two vertices into one new vertex. In clustering-based
algorithms, a group of more than two vertices is also allowed to form a new vertex. The new
vertex gets assigned a weight equal to the sum of the weights of its children, and is included
in every hyperedge that contains at least one of its children. Most of these methods use
a rating function to determine the similarity of two vertices. Examples of these functions
are the inner product [3], which counts the number of nets two vertices have in common,
and the heavy-edge rating function [7], which adjusts this value for the size of the nets,
emphasizing nets with fever vertices.

Uncoarsening methods

In every step of the uncoarsening phase, the previous partitioning is projected to the next
layer as follows. If two vertices v and u have been contracted into a vertex v′ that has label
L(v′), both v and u will get assigned label L(v′). For contractions of clusterings, all vertices
contracted into v′ get assigned label L(v′). After this, the partitioning is improved using an
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iterative refinement scheme. For some examples of iterative refinement schemes we refer to
[19].

Most iterative refinement schemes are based on the FM method [20], named after Fiduc-
cia and Mattheyses. The original FM heuristic improves a bipartitioning in multiple passes.
A pass starts by computing all gain values, defined as the change in the objective function
when moving a vertex to the other part. The vertex with highest gain, among all moves
that do not violate the balance constraint, is selected. This vertex is moved to the other
part and is locked, so it cannot be moved back later in the pass. Subsequently the relevant
gain values are updated and new vertices are repeatedly selected. This continues until no
vertex can be moved anymore. During the algorithm, the best partitioning encountered is
stored. Finally, the moves that took place after reaching the best partitioning of the pass
are reversed. Because vertices with negative gain can also get moved, this is not necessarily
the last partitioning. Using a specialized data structure and smart gain updates, this can
be implemented such that the computation time of each pass is linear. In practice, the
algorithm usually converges within a few passes, giving a nearly linear algorithm.

1.2.2 Parallel hypergraph partitioners

As discussed before, hypergraph partitioning is a widely studied problem and there are
several partitioners available. In this section, we will take a closer look at the two parallel
hypergraph partitioners, Zoltan [12] and Parkway [13], as these are most relevant to this
project. The parallel partitioners were developed simultaneously. The biggest difference
in the design of Zoltan [12] and Parkway [13] is the used data distribution. Zoltan uses a
so-called Cartesian 2D distribution, while Parkway uses a 1D distribution, as explained in
Section 2.1. Another important distinction is that Zoltan uses recursive bipartitioning, while
Parkway uses the direct k-way partitioning method. In the next sections we will describe
these parallel partitioners in more detail.

Zoltan

The parallel hypergraph partitioner Zoltan was initially released in 2006 [12]. Zoltan uses
a multilevel approach using recursive bipartitioning to obtain k-way partitionings. The
data is distributed using a Cartesian 2D distribution of the matrix corresponding to the
hypergraph.

In the coarsening phase, a parallel inner product matching algorithm is used. The
algorithm consists of multiple rounds. In each round, a set of unmatched local vertices
called candidates is sent to the other processors. Next, the inner products of the local
vertices with the received candidates are computed. Finally, the globally best matches
are computed and communicated. To get the candidates to the correct processors and to
compute the global inner products, both horizontal and vertical communication is necessary.
Here, horizontal and vertical refer to the underlying Cartesian 2D distribution. After the
specified number of rounds, all vertices have been matched and are contracted. Because the
matching requires a lot of communication, this phase is often the most time consuming part
of the entire partitioning algorithm.

In the initial partitioning phase, each processor greedily computes a bipartitioning using
a randomized algorithm. The globally best partitioning is selected. Because the coarsened
hypergraph is relatively small, every processor can hold the entire hypergraph in their local
memory.



1.2. RELATED WORK 7

In the uncoarsening phase, a refinement method based on the FM heuristic is used. First,
the gain values of all vertices are computed. Next, in each processor column a processor is
selected as vertex mover. This vertex mover tries to move each of its vertices to the other
part without violating the balance constraint. When a vertex is moved, only the gain value
of local neighbors are updated. This way, no communication is necessary. Only updating
locally could of course affect the quality of the partitionings, but the authors conclude the
partitionings produced are quite good for a not too large number of processors.

Two approaches to parallel recursion are described in the original paper on Zoltan. The
first method uses all processors to first recursively produce the partitioning of one part of
each bipartitioning. The other method splits the processors into two sets, where the first
set works on one part of the bipartitioning and the other set on the other part. Splitting
the processors is shown to reduce execution time and improved quality, and therefore this
method is used in all experiments.

Experiments with different processor configurations px × py are also discussed. The
configurations with px small seem to work best. From the 1D distributions, px = 1 works a
bit better than py = 1. Using the (λ− 1)-cut metric, the quality of the partitionings found
is similar to those of PaToH. The running times are much shorter in most cases than those
of the next partitioner we discuss in detail: Parkway.

Parkway

Parkway [13] uses a multilevel approach with direct k-way partitioning. The data is dis-
tributed among the processors in a 1D fashion. The vertices are distributed among the
processors by a block distribution. Randomization can be used to improve load balance,
however this could remove a structure from the problem that is actually useful to exploit.
At the start, hyperedges are also allocated consecutively. Later, they are allocated using a
hash function, which has the advantage that duplicates can be found easily. At the start of
each level of the coarsening and uncoarsening, each processor assembles all hyperedges that
are incident to one of its vertices. This results in the duplication of data, but reduces the
amount of communication needed.

In the coarsening phase, a parallel matching based on the First-Choice or the Heavy
Connectivity Clustering algorithm is used [3, 6]. Because each processor has access to all
hyperedges incident to its vertices, it can locally compute matches for its vertices. If the
desired match is located on another processor, a match request is sent to that processor.
These are handled by each processor s by first considering all requests from processors t < s.
In the next step, the request from processors t > s are handled. This way, a vertex cannot
be matched more than once. After this, a load-balancing step is included, to make sure
every processor has the same number of vertices at the start of the next coarsening step.

The initial partitioning phase is similar to that of Zoltan: the best partitioning is selected
from the partitionings computed by all processors separately. In the uncoarsening phase,
a parallel version of greedy k-way refinement [6] is used. Contrary to the serial algorithm,
the parallel algorithm moves sets of vertices simultaneously. Each processor determines
the best move for every vertex that does not violate the balance constraint, and moves
these vertices. To make sure there are not too many conflicting moves, the vertices are
moved in two phases. Moves from higher index parts to lower index parts are performed,
before the other moves. During this process, the balance constraint is maintained through
global communication. This induces more communication, but was chosen because local
constraints limit the exploration of the solution space.
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An additional refinement method is introduced as part of the partitioning process: par-
allel multi-phase refinement. After partitioning the hypergraph, the resulting partitioning
is refined using another multilevel scheme. Only the coarsening phase differs from the pre-
viously described algorithm. In this phase, only matches between vertices in the same part
(on the same processor) are allowed. This means no communication is necessary, leading to
an efficient algorithm.

The parallel greedy k-way algorithm was shown to give reasonable speedups and high
quality partitions on hypergraphs with small maximum hyperedge degrees and/or a high
degree of structural locality. The multi-phase algorithm produced even better partitionings,
but had a significantly larger running time.

1.2.3 Recent advances

In this section we will discuss some interesting recent advances in hypergraph partitioning.

Using n-level coarsening

A hypergraph partitioner called KaHyPar that uses an extreme multilevel scheme, namely
using n levels, with n = |V |, was released in 2016 [7]. This partitioner uses the recursive
bipartitioning approach. Later, the partitioner was used as a basis for the development of
a direct k-way partitioner that uses n levels [8].

We briefly explain the algorithm used in KaHyPar [7]. In each level of the coarsening
phase, only a single pair of vertices is contracted, which results in n levels. The selection
of the vertices to be contracted is based on the heavy-edge rating function. This is scaled
inversely to the product of the vertex weights, to keep the weights in the coarser hypergraph
more uniform. The resulting rating function is:

r(u, v) :=
1

w(u)w(v)

∑
e∈I(u)∩I(v)

c(e)

|e| − 1
. (1.5)

When the coarsened hypergraph has become small enough, the hypergraph is partitioned
using different algorithms and the best partitioning is chosen for uncoarsening. In the
uncoarsening phase, a localised FM search is used. Here, only the area around the just
uncontracted vertices gets refined in each step.

Using efficient data structures and caching, the resulting KaHyPar tool is not much
slower than other tools, such as PaToH and hMetis, and produces better partitionings in
most cases. Parallelizing this framework is definitely not straightforward, as in every step
of (un)coarsening there is not much work to be divided. Furthermore, parallelizing the
optimizations necessary for this approach to be viable, seems to be out of the scope of our
project. Therefore, we will not use this n-level approach in our partitioner.

Label propagation

Label propagation is commonly used for cluster detection in graphs, and recently found a new
application in partitioning large graphs. The PuLP (Partitioning using Label Propagation)
method is a parallel and memory-efficient graph partitioning method [21]. The method was
later adapted to work for hypergraph partitionings [22]. At the same time, other parallel
methods were introduced for partitioning very large graphs [23, 24]. These methods use a
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combination of the multilevel approach and label propagation. In 2017, an updated version
of PuLP was released, called XtraPuLP [25].

The advantage of label propagation is that it has linear time complexity, assuming we
stop after a small constant number of iterations. They are also memory-efficient, in contrast
to most multilevel methods [21].

The algorithm, summarized in Algorithm 1.2.1, works as follows. First, each vertex
v ∈ V is assigned a random label from the set {0, ..., k − 1}. Then, each vertex is visited
in a random order and assigned the label that is most common among its neighbors. This
is repeated until a set number of iterations has been reached, or the labeling has become
stable, meaning all vertices have the label that is most common among their neighbors. This
process results in a partitioning, where a set of vertices with the same label corresponds to
a part in the partitioning. To get partitionings that optimize one or more objectives, the
PuLP method further improves this partitioning. The improvement consists of two steps
for each objective. In the first step, the partitioning is improved using a slightly altered
label propagation algorithm to optimize the desired metric and to conform to the balance
constraints. In the second step, the partitioning is improved even further using another
iterative refinement scheme, such as the FM method. By repeating these steps, we can
optimize the partitioning for multiple objectives.

Algorithm 1.2.1 Basic label propagation. The Random(i, j) function generates an integer
in {i, ..., j} uniformly at random.
Input: Graph G = (V,E), number of labels k, maximum number of iterations I.
Output: Labels L for all vertices.

for all v ∈ V do
L(v)← Random(0, k − 1)

iter := 0
change := True
while iter < I and change do

change ← False
for all v ∈ V do

for i := 0 to k − 1 do
C[i]← 0

for all u ∈ N(v) do
C[L(u)]← C[L(u)] + 1

m← argmax0≤i<k C[i] . The majority label
if m 6= L(v) then

L(v)← m
change ← True

iter ← iter + 1
return L

The medium-grain method

In the medium-grain method [5], a matrix is not partitioned directly by using the row-net or
column-net model, which create 1D distributions. Instead, the matrix A is first translated
to a new matrix B, that is then partitioned using the row-net model. By creating B as
follows, a 1D partitioning of B corresponds to a 2D partitioning of A. This way, we can
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create a 2D partitioning, while keeping the advantages of easy 1D partitioning. To create
this new matrix, the original m × n matrix A is first split into two parts Ar and Ac such
that A = Ar + Ac. Each nonzero element aij is assigned to either its row or column and
put into Ar or Ac respectively. The choice for the row or column is based on the number
of nonzeros in the row and column: the one with the least nonzeros is chosen. The actual
partitioning is performed on the matrix:

B =

[
In ATr
Ac Im

]
, (1.6)

where Ik is the k×k identity matrix. In this method, large nets and vertices of high degree are
split. It follows that average net sizes and vertex degrees are relatively small. The medium-
grain method is an important application of our hypergraph partitioner. Therefore, we will
optimize our partitioner for this use case with low vertex degrees.



2 | Design of the parallel
partitioning algorithm

In our parallel hypergraph partitioner we use a multilevel approach. It was previously
shown that this framework is able to achieve good results [2, 3, 6–8]. Within the multilevel
framework there is still a lot a freedom in making algorithmic choices. For example, we
need to choose how to divide the data over the processors. This choice will affect both
the running time and the involvement of the algorithms. In Section 2.1, we explain our
choice of using a 1D distribution, in which the vertices are divided over the processors.
Also, we need to choose one of the two approaches for creating a k-way partitionings using
a multilevel algorithm: recursive bipartitioning or direct k-way partitioning. Both of these
approaches are viable. In Section 2.2, we will motivate our choice for recursive biparitioning
by discussing the advantages and disadvantages of both approaches. In Section 2.3, the new
parallel bipartitioning algorithm is introduced. We give a general overview of the algorithm
and discuss the coarsening and uncoarsening algorithms used in more detail.

2.1 Data distribution

There are two obvious choices to divide the hypergraph over p processors: a 1D or a 2D dis-
tribution. Here, 1D or 2D refers to the division of the associated sparse matrix, as shown in
Figure 2.1. In a 1D distribution, we can divide the rows/hyperedges or the columns/vertices
over the processors. Parkway [13] uses a combination of these approaches by dividing both
the vertices and the hyperedges over the processors. Penalty is that the hypergraph is stored
twice, however operations such as finding all vertices in a hyperedge are faster. Zoltan [12]
uses a 2D approach instead. The main disadvantage of using a 2D approach is that the
algorithms become more involved. In this approach, horizontal and vertical communication
between processors is necessary, for example when finding a good match for a vertex in the
coarsening phase. An advantage of the 2D approach is that it could improve the running
time [12].

For our new partitioner, we prioritize simplicity over efficiency in this case, so we have
chosen a 1D distribution. This still leaves us with a choice: distributing the vertices or
hyperedges over the processors. In [12], slightly better results were obtained by distributing
the hyperedges instead of the vertices. Again, this would result in more complex algorithms.
As the improvements reported were only small, we have chosen to distribute the vertices
over the processors. Each processor also maintains information on the locally non-empty
nets: the cost, the global size, and the local vertices it contains.

11
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a 1D block distribution b Cartesian 2D distribution

Figure 2.1: A 1D and 2D distribution of a hypergraph over four processors. Here, 1D
and 2D refers to the distribution of the associated sparse matrix, shown in the figures. The
colors and shades represent the processor that owns the element and the squares the nonzero
elements.

In Section 1.2.3, we discussed the medium-grain method, an important application of
our hypergraph partitioner. This method creates a hypergraph with small net sizes and
vertex degrees. Because of this, storing all pins of a vertex on the same processor will not
result in too much load imbalance. This also favors the 1D partitioning approach.

2.2 Recursive bipartitioning versus direct k-way parti-
tioning

Our choice to use recursive bipartitioning (RB) and not direct k-way partitioning, is based
on three main considerations: solution quality, running time and whether the approach
is suitable for parallelization. In this section, we will discuss previous results relating to
these considerations, to support our choice for recursive bipartitioning. With regard to the
solution quality and running time, we will mostly consider the three most used hypergraph
partitioners, PaToH [3], hMeTiS [2, 6] and KaHyPar [7]. All of these include a recursive
and a direct version, which makes them suitable for comparison of the two approaches. The
direct k-way variants of the partitioners are called kPaToH [11], hMeTiS-Kway [6], and
KaHyPar-K [8] respectively.

Solution quality

The oldest of the k-way partitioners is hMeTiS-Kway. In [6], the RB algorithm is compared
to the direct k-way algorithm using the ISPD98 circuit partitioning benchmark suite [26].
They found that hMeTiS-Kway produces solutions of comparable quality for the hyperedge-
cut metric. However, for the SOED metric, the k-way algorithm performs on average 4.8%,
6.8% and 7.6% better for k = 8, 16 and 32. This can be explained by the fact that SOED is a
more global metric than the hyperedge-cut metric, and therefore requires a more global view
of the problem. In [11], PaToH and kPaToH are compared using the (λ − 1)-cut metric.
In the experiments, 12 matrices from the SuiteSparse collection [27], formerly called the
University of Florida Sparse Matrix Collection, are used. Again, the k-way method finds
better solutions, 4.82% on average for k = 32
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More recently, a direct k-way partitioning version of KaHyPar was introduced [8] and
compared to all of the previously mentioned partitioners. The authors used the (λ − 1)-
cut metric. A much larger benchmark set is used, that includes includes hypergraphs from
the ISPD98 circuit partitioning benchmark suite [26], the SuiteSparse collection [27], and
the international SAT Competition 2014 [28]. From preliminary experiments, the authors
conclude that kPaToH performs significantly worse than PaToH, so this partitioner is not
included in additional experiments. They conclude that hMeTiS-Kway performs worse than
hMeTiS, contradicting previous results. A reason for this contradiction could be that the
recursive bipartitioners have been improved over the years, while the k-way partioners have
not. Another reason could be that the original benchmarks sets were too small to draw
any conclusions. A difference is made between hypergraphs with median net size ≥ 3 and
< 3. For the hypergraphs with a lot of small net sizes, both the RB variants KaHyPar and
hMeTiS outperform KaHyPar-K in solution quality, while for the larger median net sizes
it is the other way around. We can conclude that direct k-way partitioning algorithms are
better at handling hypergraphs with many large nets.

Another important aspect related to the solution quality is the balance of the computed
solutions. A benefit of using direct k-way partitioning, it that it is possible to set a stricter
balance constraint. Using recursive bisection, the balance constraint has to be adapted at
each step, so that the final partitioning still adheres to the overall balance constraint. This
limits the solution space.

Running time

We now discuss the conclusions of the papers with regard to running time. In the comparison
between hMeTiS and hMeTiS-Kway [6], the authors found that hMeTiS-Kway is about twice
as fast as hMeTiS. In [11], kPaToH is again faster than PaToH, a speedup of 1.88 is achieved
for k = 32. The recently introduced direct k-way partitioning version of KaHyPar [8], also
finds that the new k-way partitioner is a least 2.5 times faster than the RB version. However,
we note that, while the k-way versions of hMeTiS and KaHyPar are faster than their RB
variants, PaToH still remains the fastest partitioner. This implies that optimization also
has a significant effect on running time.

Parallelization

Finally, we consider the parallelization of both approaches. We discuss the parallelization
of the three phases of the multilevel framework and the approaches as a whole. The first
phase, where the hypergraph is coarsened, is similar for both approaches. The differences
are in the initial partitioning and the uncoarsening phase.

In the initial partitioning phase, the hypergraph is partitioned into either 2 or k parts
in the different methods. However, this phase is always easy to parallelize. Because the
hypergraph is small in this phase, a copy can be made available on each processor and each
processor can compute a partitioning separately. After creating these partitionings, the
best partitioning is selected for the uncoarsening phase. This works for both the recursive
bipartitioning and the direct k-way partitioning method.

The uncoarsening phase is more complex in direct k-way partitioning, because refinement
algorithms for k-way partitionings are more complex. Most of the time, at least k priority
queues are used [8]. Because priority queues have a very global view, this is difficult to
parallelize and might induce a lot of communication.
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Coarsening (%) Uncoarsening (%) Avg. run time
Matrix PaToH kPaToH PaToH kPaToH PaToH kPaToH

language 73.5 45.2 19.1 47.4 12.266 9.721
pre2 84.5 32.1 9.5 59.8 24.406 15.070
hood 86.3 56.8 4.6 27.1 15.693 5.386

Table 2.1: Results presented in [11] of the comparison of percentage breakdown of execution
of PaToH and kPaToH for k = 32 including the average running times, no unit was given
in the paper.

In the direct k-way partitioning method, we only go through each phase once, while in the
recursive bipartitioning method, we have to perform k− 1 bipartitionings, so we go through
each phase k− 1 times. In [11], the time spent by both approaches in the different phases is
measured. The relevant results regarding the time spent in the coarsening and uncoarsening
phase are shown in Table 2.1. We see that the percentage of time spent in the coarsening
phase is much larger for the recursive method than the direct one and the reverse is true
for the uncoarsening phase. This can be explained by the fact that refinement methods are
much more expensive for k-way partitionings than bipartitionings, as previously discussed.
Because the coarsening phase seems better suited for efficient parallelization, this suggests
using recursive bipartitioning might be better for parallelization.

Another important aspect of parallelization is how to split the tasks over the processors.
For recursive bipartitioning there are two main options. One option is to leave the data in
place after a split and first let all processors work on one of the smaller problems and then
continue with the other subproblem. Alternatively, we can split the processors into two
groups and let the first group work on one subproblem and the second on the other. The
disadvantage of this approach is that the data has to be redistributed. On the other hand,
it should result in less communication. In [12], both these approaches are compared. The
authors found that the second option improved both quality of the solution and running
time. This approach can also be used to optimize the distribution of a hypergraph over a
machine that has multiple layers, for example a machine with two nodes that both have four
cores. In this case, the first split can be optimized for different parameters, for example a
larger allowed imbalance, than the later splits. In the direct k-way partitioning method, it
is not possible to split the processors, because during the entire computation a global view
of the problem is required.

2.2.1 Design choice

The direct k-way partitioning method has a lower runtime than recursive bipartitioning, but
this method does not seem to consistently improve solution quality. We have also seen that
RB has difficulty with hypergraphs with many large nets. But, since our partitioner will
mostly be used in the medium-grain method, the size of large nets has already been reduced.
Recursive bipartitioning has an advantage in parallelization: we can split the processors into
groups so we induce less communication. This can also be used to optimize the partitioning
for different machine architectures. Because we think the parallelization of the method and
solution quality are more important than running time, we have chosen to use recursive
bipartitioning.
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2.3 Overview of the parallel bipartitioning algorithm

As discussed before, our parallel bipartitioning method is based on the multilevel frame-
work. We have extended this framework to a parallel multilevel framework. This is shown
schematically in Figure 2.2. At the start of the algorithm, the vertices are distributed over
the processors, as described in Section 2.1. We start with a number of parallel coarsening
steps. We stop coarsening in parallel, when the parallel algorithm can no longer significantly
decrease the size of the hypergraph. When this point is reached, the entire hypergraph is
communicated among all processors, so that every processor has a full copy of the coarsened
hypergraph. Next, each processor coarsens this hypergraph further sequentially, computes
an initial partitioning, and sequentially uncoarsens the partitioning to reverse the local
coarsening. Each processor now has a, potentially different, partitioning of the coarsened
hypergraph. The best of these partitionings is chosen and communicated to all proces-
sors. We then translate this partitioning to the (same) distributed hypergraph. Finally,
the distributed hypergraph is uncoarsened in parallel to find a partitioning of the original
hypergraph. In the Section 2.4, 2.5, and 2.6, we will discuss the three phases of the parallel
multilevel framework in more detail.

Figure 2.2: An overview of the parallel bipartitioning method for two processors. The
yellow shaded areas represent the vertices on processor 0 and the blue shaded areas the
vertices on processor 1. The distributed hypergraph is first coarsened in parallel. When it
is small enough, each processor receives a local copy of the coarsened hypergraph. This is
coarsened further, an initial partitioning is created and the partitioning is uncoarsened up to
the first sequential level. The best partitioning found by any processor is communicated to
all processors and translated to the corresponding partitioning of the distributed coarsened
hypergraph. Finally, the distributed hypergraph is uncoarsened further in parallel.
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2.3.1 Redistribution of the vertices

After every bipartitioning, the vertices need to be redistributed. As discussed before, we
split the processors into two groups, so they can work on separate problems. To divide the
hypergraph evenly over the processors, we introduce a balance parameter η. This η puts
a balance constraint on the distribution of the hypergraph during the computations. The
maximum weight a processor can be assigned after a bipartitioning is:

Wmax =

{
W0

|P0| (1 + η), if s ∈ P0,
W1

|P1| (1 + η), if s ∈ P1.
(2.1)

Here, P0 and P1 are the sets of processors assigned to part 0 and 1 respectively. The number
of processors assigned to the parts depends on the ratio of the previous split. For example,
if the previous bipartitioning used a ratio of 4:5, the processors will also be assigned to the
parts using this ratio.

We want to redistribute the hypergraph over the processors in such a way that processors
in P0 only contain vertices of part 0 and processors in P1 only vertices of part 1. To achieve
this, we first reassign vertices of part 0, and then of part 1. We will discuss the reassignment
of vertices of part 0, the approach for part 1 is similar. By W0,loc we denote the total weight
of all local vertices assigned to part 0. We define the surplus of a processor as the weight
that can still be assigned to that processor. This is negative if a processor has too much
weight assigned to it. For a processor in P0, the surplus is Wmax −W0,loc. A processor in
P1 cannot contain any vertices of part 0, so the surplus is −W0,loc. After communicating
all of these surplusses, each processor can reassign its vertices of part 0.

We use a ring algorithm to reassign the vertices. We start at the next processor, and
assign as many vertices to this processor as possible. We repeatedly go to the next processor
and reassign vertices, until the local surplus is no longer negative. During this process, we
keep track of the rest : the surplus of other processors that still needs to be reassigned first.
When we consider a new processor, we add the surplus of that processor to rest . If rest
is positive after this, meaning that the surplus of all other processors up to this processor
has been reassigned, we can assign local vertices of maximally rest weight to this processor.
The weight we can reassign is also bounded by local weight that still needs to be reassigned,
so we assign min(rest ,−surpluss) weight to this processor. Note that surpluss is negative
while we still have vertices to reassign. Before going to the next processor, we set rest to
min(0, rest), because the other processors can never assign more than their local surplus, so
rest should never be positive.

In this process, we are not very strict in our balance constraint. When reassigning
vertices to another processor, we always reassign at least one vertex, even if the weight of
this vertex is larger than min(rest ,−surpluss). This way, all vertices in part 0 of processors
in P1 always get reassigned to a processor in P0. However, this could have the result that
W0,loc > Wmax for some processor(s) in P0. As the maximum weight can only be exceeded by
the weight of one vertex, we prefer this over using a more complicated algorithm using more
communication. The algorithm to redistribute the vertices of part 0 is shown in Algorithm
2.3.1.



2.3. OVERVIEW OF THE PARALLEL BIPARTITIONING ALGORITHM 17

Algorithm 2.3.1 Parallel redistribution of the vertices of part 0 for processor P (s), with
0 ≤ s < p

Input: Distributed hypergraph H = (V,E), P0, P1 sets of processors assigned to part 0,1.
Output: Redistributed hypergraph H = (V,E), where only P (t) ∈ P0 have vertices of part
0.
function RedistributeHypergraph(H)

if P (s) ∈ P0 then
surpluss := Wmax −W0,loc

else
surpluss := −W0,loc

for t := 0 to p− 1 do
Put surpluss in P (t)

j := 0 . Index of next vertex to be considered
t := (s+ 1) mod p
rest := 0 . Surplus of the other processors to be reassigned
while surpluss < 0 do

rest ← rest + surplust
if surplust > 0 and rest > 0 then

max ← min(rest ,−surpluss)
sent := 0
while sent < max do

while L(vj) 6= 0 do
j ← j + 1

Send vj to P (t)
sent ← sent + w(vj)
Remove vj from H

surpluss ← surpluss + sent

rest ← min(rest , 0)
t← (t+ 1) mod p

Add all received v to H
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2.4 Coarsening

In this section, we describe the coarsening scheme used in our parallel bipartitioning algo-
rithm. We start by briefly discussing our sequential coarsening method, because our parallel
method is based on this. Next, we describe the parallel coarsening scheme in detail.

2.4.1 Sequential coarsening

The coarsening algorithm used in PMondriaan is clustering-based, so groups of vertices are
contracted into a new vertex in each coarsening step. The rating function we use is based
on the default rating function used in Mondriaan [29]. The inner product is scaled by the
net cost, the net size, and the minimum of the degrees of the two vertices. This results in
the rating function

r(u, v) :=
1

min(d(u), d(v))

∑
e∈I(u)∩I(v)

c(e)

|e| − 1
. (2.2)

To make sure that not too many vertices are matched to the same vertex, we set a maximum
cluster size. We now find matches for the vertices greedily. The vertices are visited in a
random order. Initially, each vertex forms a singleton cluster. When an unmatched vertex
v is visited, we first compute r(u, v) for all u adjacent to v. The best match that is not
already part of a full cluster, is computed. Finally, v is matched to this vertex and added to
its cluster. If no such vertex exists, v is not matched. After visiting all vertices, each cluster
is contracted into a vertex in the coarsened hypergraph, as described in Section 1.2.1.

2.4.2 Parallel coarsening

The parallel coarsening algorithm used in PMondriaan is also clustering-based. Most coars-
ening methods consider all neighbors of a vertex for matching. However, in the parallel case
this is quite expensive, as many neighbors might reside on other processors. We therefore
introduce a method based on sampling. In this method only a select group of samples is
considered when finding a match for a vertex. An overview of the algorithm can be found
in Algorithm 2.4.2.

First, ` samples are generated, here ` is the chosen sample size. Each processor generates
`/p samples, which gives ` samples in total. We assume ` is divisible by p, otherwise
pb`/pc samples are used. When creating a partitioning into k > 0 parts, the lower levels in
the recursive bipartitioning use a scaled sample size of p′b`/pc, where p′ is the number of
processors in the current group.

After generating the samples, each processor sends its local samples to all other proces-
sors. These samples are considered for matching by the local vertices. Vertices are only
allowed to match with a sample, not another local vertex. Again, we enforce a similar size
restriction. The algorithm to compute the necessary inner products is shown in Algorithm
2.4.1. In the algorithm, we have not scaled the inner products for simplicity. In reality, the
inner products are scaled using the same rating function as in the sequential coarsening. In
the algorithm, all of the inner products are stored, but in PMondriaan, we only keep track
of the best inner product found so far for each vertex. This way, we reduce the memory
usage of this function by a factor of `.

To enforce a global restriction of cmax on the cluster size, the final clustering is computed
in two phases. In the first phase, each processor requests a match for each vertex v matched
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Algorithm 2.4.1 Inner product using samples
Input: Hypergraph H = (V,E), set of sample vertices S.
Output: ipv(u) contains inner products of v and u for all v ∈ V, u ∈ S.

function InnerProduct(H,S)
Initialize ipv(u)← 0 for all v ∈ V, u ∈ S
for all u ∈ S do

for all e ∈ I(u) do
for all v ∈ e do

ipv(u)← ipv(u) + 1
return ip

to a sample u at the owner of u. A request consists of the index of the processor, the sample
index, the vertex index and the scaled inner product value. In the second phase, each
processor considers the requests for each of its samples and accepts the best cmax samples,
based on the inner product values. We have chosen this two-phase scheme over a scheme
where each processor is only allowed to match cmax/p vertices to each sample, because of
the local structure often present in a hypergraph. Because of this structure, it is possible
that many similar vertices reside on the same processor. These vertices would then not be
allowed to all match the same sample, which would result in a bad coarsening.

Contraction phase

After the matching is computed, the clusters are contracted. A new hypergraph H ′ =
(V ′, E′) is created, where V ′ contains the samples and unmatched vertices and E′ all hy-
peredges containing one of these vertices. Every local sample is contracted with its matches
into a new local vertex. For this contraction, the weights of the vertices and the information
on its nets are needed. For each sample, every processor computes the sum of the weights
of the local vertices matched to the sample. The union of the nets excluding the nets of the
sample is also computed. We do not include the nets of the sample in this set, because the
owner of the sample already has the information on these nets. This information is sent to
the owner of the sample, that can now contract the sample. The owner also stores the ids
and owners of the vertices matched to the sample, so it can send the relevant information
when uncoarsening.

Sample selection

For our scheme, the selection of the samples is very important. Selecting similar samples will
result in bad clusterings. For that reason, we are interested in ways to select these samples
such that there is enough variety in the samples. We only consider this variety locally and
presume this will give enough variation globally. The algorithm for selecting samples should
be very fast, otherwise a parallel global matching would be preferable.

In PMondriaan, two ways of selecting samples are included; one selects the samples
uniformly at random, the other uses a label propagation step. As we have seen in Section
1.2.3, label propagation is a very fast algorithm to find clusters in a hypergraph. We use
this algorithm to find similar vertices in the hypergraph, and then select vertices from dif-
ferent labels, representing clusters in the hypergraph. This results in the following two steps:
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Algorithm 2.4.2 Parallel coarsening for processor P (s), with 0 ≤ s < p

Input: Hypergraph H = (V,E) distributed over p processors, maximum cluster size cmax.
Output: Coarsened hypergraph H ′.

function Coarsen(H)
Ss := SelectSamples(Hs, `/p) . ` is the sample size
for t := 0 to p− 1 do

Send Ss to P (t)

ip := InnerProduct(Hs, S)
for all v ∈ Vs \ Ss do

matchv := argmax (ipv(u) : 0 ≤ u < `)
Add (v, ipv(matchv)) to rmatchv

. Add v to the request list of its match
for i := 0 to `− 1 do

t := bi · p/`c . The owner of the sample
Send the best cmax matches (i, vj , ipvj (i)) in ri to P (t) . Request matches (i, vj)

for i := s · `/p to (s+ 1) · `/p− 1 do . All local samples
for the best cmax received requests (i, vj) do

t := owner of vj . The owner of the request
Add vj to cluster of i
Send (i, vj) to P (t) . Accept the request from P (t)

for i := 0 to `− 1 do
wi := 0 . Total weight of the cluster
Ii := ∅ . Union of the hyperedges of the cluster
for all accepted matches (i, vj) do

wi ← wi + w(vj)
Ii ← Ii ∪ I(vj)

t := bi · p/`c . The owner of the sample
Send wi and Ii to P (t)

V ′s := Ss . Contraction stage
for all unmatched v ∈ Vs do

V ′s ← V ′s ∪ {v}
Create new hypergraph H ′s = (V ′s , E

′
s)

for all received wi, Ii do
w(i)← w(i) + wi
I(i)← I(i) ∪ Ii

Remove free nets from H ′

Merge free vertices of H ′ . Explained in Section 2.4.3
return H ′
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Figure 2.3: The selection of samples using label propagation. To select three samples, we
first do a label propagation with three labels. The resulting labeling is shown by the green,
purple, and blue circles around the vertices. From each group a sample is selected, depicted
by the red vertices.

1. Use label propagation to give each vertex a label in {0, 1, ..., `/p− 1}.

2. For each label, select one vertex with that label uniformly at random to create a list
of `/p samples.

This process is shown in Figure 2.3. The results of the two methods are compared in
Section 4.1.

Stopping criterion

We keep the sample size constant at all coarsening levels. Because of this, the fraction of
vertices that is chosen as a sample will increase. The samples cannot match each other, so
at some point only a small fraction of the vertices will get matched. To avoid this, we stop
coarsening in parallel when there are less than q` vertices left, where q is a constant. We
set q = 3 in PMondriaan by default. We have found that for this value, the hypergraph is
small enough to be communicated, and the parallel coarsening still works well.

Alternatives

Different variations of this coarsening scheme are imaginable. For example, we could also
allow vertices to match with other local vertices. Another possible variation is to only allow
matches with inner product greater than some minimum value, instead of restricting the
cluster size. In future work it would be interesting to explore these variations and determine
the best method.

2.4.3 Merging free vertices
At the end of each coarsening level, we remove all hyperedges e for which |e| ≤ 1. We
call these free hyperedges, as they cannot contribute to the cut size. After removing these
hyperedges, we can easily identify all free vertices, vertices only contained in free nets, as
vertices with degree zero. These vertices can be assigned to any part, without changing the
cut size. Therefore, we can later use them to improve the balance of the partitioning that
is found. To make sure they are not assigned to a part before, we remove them from the
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hypergraph. The vertices that are removed are stored as a separate set in the contraction,
so we can add them to the hypergraph again during the uncoarsening.

Adjusting the maximum weights

During the multilevel bisection, we have to make sure the partitioning adheres to the given
maximum weight for both parts. When removing free vertices from the hypergraph, the
total weight of the hypergraph decreases. However, the maximum weight of both parts does
not change, which gives more freedom when partitioning the vertices. Claim: we can always
make a partitioning this way that still adheres to the maximum weights, when adding the
free vertices.

Proof. We denote by W0,max and W1,max the maximum weights of the parts. By W we
denote the total weight of the hypergraph before removing free vertices. Suppose we have
a set of free vertices F with total weight f . By W0,W1 we denote the weights of the parts
after the partitioning. We know that

W = f +W0 +W1 ≤W0,max +W1,max, (2.3)

otherwise there would be no feasible solution. We also haveW0 ≤W0,max andW1 ≤W1,max.
We now need to bipartition F into sets with weight f0 and f1, such that W0 + f0 ≤W0,max
and W1 + f1 ≤W1,max. We assume that for any f0 ∈ {0, ..., f}, there exists a bipartitioning
of F with weight of part 0 equal to f0. We take f0 = min(f,W0,max−W0) and f1 = f − f0.
It follows that W0 + f0 ≤ W0,max. When f0 = f , clearly W1 + f1 = W1 + 0 ≤ W1,max.
When f0 6= f , we get W1 + f1 = W1 + f − W0,max + W0. Using Equation 2.3 we find
W1 + f1 ≤W1,max, showing that we do not exceed that maximum weight, which proves our
claim.

The assumption that we can bipartition F as in the proof, does not always hold in
practice. In PMondriaan, a different method of bisecting the free vertices is used from the
one in the proof. In practice, this method always succeeds in finding an assignment of
the free vertices that adheres to the balance constraint. In Section 2.6.3, we discuss our
algorithm for assigning the free vertices.

2.5 Initial partitioning

As described before, each processor has its own coarsened hypergraph at the start of the
initial partitioning phase. So, the initial partitioning phase can be performed locally. We run
a biparitioning algorithm on the hypergraph ten times, each time starting from a different
randomly initialized labeling. The best partitioning of the ten found is chosen. Because
the hypergraph is small, partitioning the hypergraph multiple times does not have a large
influence on the overall running time. To partition the hypergraph, we first bisect the
hypergraph using label propagation. We subsequently improve this bipartitioning using the
FM heuristic, see Section 1.2.1.

2.6 Uncoarsening

In this section, we describe the uncoarsening scheme used in PMondriaan. We first give
an overview of the uncoarsening scheme, which is similar for the sequential and parallel
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uncoarsening. Next, we give a more detailed description of the sequential and parallel
refinement schemes. Finally, we discuss the algorithms used for the assignment of free
vertices.

The uncoarsening of a hypergraph H ′ to H consists of three stages. In the first stage, we
assign all vertices of H to the same part as the vertex of H ′ they were contracted into. In the
parallel case, communication is needed here to assign the contracted vertices to the correct
part. In the second stage, we improve the partitioning of H using an iterative refinement
algorithm. The iterative refinement algorithms we use, are based on the FM heuristic [20].
In the final stage, we assign all free vertices of H to a part.

2.6.1 Sequential refinement

The sequential refinement scheme uses the FM heuristic [20]. A general explanation of this
scheme can be found in Section 1.2.1. Here, we will discuss some of the definitions and
data structures in more detail, because they are also needed in our new parallel refinement
scheme.

As described earlier, the FM heuristic proceeds in passes. In each pass, each vertex v is
moved to the complementary part and locked, in an order based on their gain value gainv.
We now explain how to update these gain values efficiently after moving a vertex. To do
this, we need a vector C, containing the number of vertices in part 0 and 1 for each net. By
C0(n) we denote the number of vertices in part 0 in net n. By C1(n), we denote the same
for part 1. We call a net critical, if moving a vertex in the net can change the net from cut
to uncut, or the other way around. A net n is critical if and only if C0(n) or C1(n) is 0 or 1.
Only critical nets influence the gain value of a vertex. We therefore only need to update the
gain values of free vertices that share a net with the moved vertex that is critical before or
after the move. Algorithm 2.6.1 shows how to update all gain values after moving a vertex.

Algorithm 2.6.1 Update of the gain values for the move of vertex v.
Input: Vertex v that is moved from part F to part T .

function UpdateGains(v)
for all e ∈ I(v) do

if CT (e) = 0 then
gainu ← gainu + c(e) for all free u ∈ e

else if CT (e) = 1 then
gainu ← gainu − c(e) for the only u ∈ e with L(u) = T if u is free

CF (e)← CF (e)− 1
CT (e)← CT (e) + 1
if CF (e) = 0 then

gainu ← gainu − c(e) for all free u ∈ e
else if CF (e) = 1 then

gainu ← gainu + c(e) for the only u ∈ e with L(u) = F if u is free

To find the only vertex in a net in part 0 or 1 efficiently, we sort the vertices in each net
so that all vertices in part 0 precede those in part 1. When moving a vertex, we make sure
this order is preserved. This way, we can easily find the desired vertex as the first or last
vertex in a net.
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2.6.2 Parallel refinement
Just like the sequential algorithm, the parallel refinement algorithm proceeds in passes. In
each pass, we try to move all vertices to the other part, in an order based on their gain
values. However, to update the gain values after moving a vertex, communication between
all processors is needed. Communicating after every vertex move is very expensive, and
would result in an almost sequential algorithm with a lot of communication. Therefore,
we choose a different way of updating the gain values; instead of synchronizing after every
move, we allow the local information to become outdated. This way, we can move a group
of vertices together to limit the number of synchronizations.

Using outdated information also has disadvantages. For example, consider a net {u, v},
where u and v reside on different processors. Suppose L(u) = 0 and L(v) = 1, then both
processors might reassign its local vertex, giving no improvement in the cut size. To ensure
this does not happen too often, the number of moves after which we synchronize must be
chosen small enough. Moving a group of vertices can also invalidate the balance constraint.
To make sure we do adhere to the balance constraint after moving a group of vertices, we
let each processor decide redundantly which of the suggested moves can actually take place.
We call everything up to the synchronization of C a round. A round consists of the following
steps:

1. Find best moves: Every processor finds the x best moves based on outdated gain
values and sends these to the other processors.

2. Reject unbalanced moves: Every processor finds the best moves that still adhere
to the global balance constraint redundantly. It rejects all other moves.

3. Reverse rejected moves: All moves that have been rejected are reversed.

4. Update counts: The counts C are updated to the correct values using communica-
tion. Also, the correct cut size is computed.

5. Update gains: The outdated gains are updated using the new C.

Each pass consists of a number of such rounds. At the end of the pass, we again reverse
moves up to the best partitioning found during the pass. Because we only check the cut size
after each round, we can only reverse moves in groups; the same groups that were moved in
the rounds. To make sure the best partitioning is likely found at the end of a round, we only
allow vertices with positive gain to be moved. This diminishes the hill climbing capability
of the algorithm, but increases the probability we can reverse to the best solution found
during the pass. Because we explore the solution space in a different way than the original
FM algorithm, incorporating the hill climbing capability of the algorithm would not have
the same effect in our new approach. When multiple processors move vertices with negative
gain in a round, most of these moves will not contribute to finding a better partitioning
later on. So, even though part of the partitioning might improve because of the negative
moves, the overall partitioning will likely still be worse than the best found so far.

We now describe each of these five steps in more detail.

Find best moves

We find the best moves based on the information present at the start of each round. We
find these moves in a similar way as in the sequential algorithm. When a vertex is moved,
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Owner Gain Balance
P (3) 7 +3
P (2) 5 -2
P (3) 4 -4
P (0) 4 +1
P (1) 3 +5
P (1) 2 +2
P (2) 0 -1
P (0) 0 +1

Table 2.2: Example of rejecting unbalanced moves. Suppose W0,max = W1,max = 20,
W0,prev = 17, and W1,prev = 16. By summing the balance column we find b = +5. This
gives W0 = 17 + 5 > 20. Until we find a balanced partitioning, we reject the positive moves
with least gain, resulting in the rejection of the red moves.

all local information, such as C and the weights of part 0 and 1, is updated. Because other
processors are also moving vertices, this information becomes outdated. The more vertices
each processor moves, the more outdated this information gets. We therefore only allow
processors to move x vertices in each round. We keep track of these moves by storing the
vertex index, the gain achieved (which could be based on outdated information) and the
difference in the weight balance it gives. The gain and balance values of these moves are
sent to all processors, including a tag stating from which processor the move was sent.

Reject unbalanced moves

Each processor now finds the best combination of moves that still adheres to the balance
constraint. The other moves are rejected and reversed. First, we add up all balance changes,
which are negative when a vertex is moved from part 0 to part 1 and positive when it is
moved from 1 to 0. With this total b, we can compute how much weight has to be moved
back and from what part. The current weights of the parts are W0 = W0,prev + b and
W1 = W1,prev− b. If W0 > W0,max, we need to move W0−W0,max weight back to part 1. If
W1 > W1,max, we need to move W1−W1,max weight back to part 0. To do this, we sort the
received moves based on their gain value. We find the moves that have to be rejected by
starting at the worst move, with respect to its gain, and rejecting it if that move is in the
right direction. We also do not reject the move, if this would result in too much imbalance in
the other direction. Note that such a vertex v would need to span the gap between W1 and
W1,max, so have weight w(v) > W1,max−W1. Using thatW0,max+W1,max = (1+ε)(W0+W1)
and W0 > W0,max, we find w(v) > ε(W0 + W1), which is highly unlikely to happen. When
we encounter such a vertex, we mark its processor as done. When a processor is marked
as done, we are not allowed to move any of its vertices back anymore. We do this until we
have reached the weight that had to be reversed. Each processor now knows the moves it
has to reverse. An example of this process is shown in Table 2.2.

Reverse rejected moves

All rejected moves are reversed by each processor. The vertices belonging to these moves
are moved to the complementary part. These vertices are not considered again in the next
round. This way, we still consider each vertex only once in a pass.
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v0 v1 v2 v3 v4
L(v) start round 0 0 0 1 1
L(v) end round 1 1 1 1 1

(a) Parts of vertices at the start and end of the round.

v ∈ e Start round Before update Update After update
P (0) v0, v1 C(e) = (3, 2) C(e) = (1, 4) C(e) = (0, 5)

P (1) v2, v3 C(e) = (3, 2) C(e) = (2, 3)
C ′0(e) = 3− 2− 1 = 0
C ′1(e) = |e| − C ′0(e) = 5

C(e) = (0, 5)

P (2) v4 C(e) = (3, 2) C(e) = (3, 2) C(e) = (0, 5)

(b) The local values of C(e) at different steps of the round.

Table 2.3: Example of updating C(e) for a net e = {v0, v1, v2, v3, v4} spread over three
processors. The parts of the vertices before and after moving can be found in (a). In (b),
the v ∈ e column shows the local vertices in the net for each processor. The next columns
show the local values of C(e) at different times. In the update step, 1 processor computes
the correct counts by adding the difference between the local value and the starting value
of C0(e) to the starting value. The new count is sent to the other processors, so they again
have the correct local value.

Update counts

To update the vector C, we assign each net to a processor using a block distribution. This
way, we can easily find the owner of each net. Each processor is responsible for computing
the correct counts C0 and C1 of its assigned nets. It first sends its local counts for each net
whose counts have changed in this round to the corresponding processor. This processor
now has to compute the correct counts for each net. To do this, each processor stores the
counts of its assigned nets at the start of each round. Now, it can compute the local change
in a net for any processor. Adding up these local changes for a net gives the global change,
which we can use to find the new counts. An example of this computation is given in Table
2.3. During this computation, we also keep track of the cut size of the nets assigned to the
processor. This way, we can easily compute the total cut size by adding all local cut sizes.

Next, all new values of counts that differ from the counts at the start of the round are
sent to all processors. We let each processor store the local counts at the start of each round,
so we can easily find the new counts of all local nets Cnew. For each net e for which no new
count was received, Cnew(e) is set to the count as it was at the start of the round, otherwise,
Cnew(e) is set to the received value.

Update gains

The gain values of the vertices need to be updated efficiently. To do this, we compare the
local count values to the correct values for each net. We only need to update the gain values
for vertices in nets that are critical before or after the update. All other changes in counts
of a net do not influence the gain value of its vertices. There are 8 such cases, in which we
(possibly) need to adjust the gain of some vertices. We denote by Cloc the local (outdated)
counts and by Cnew the updated counts of a net. For each net e there are four cases relating
to the counts of part 0, and four similar cases for part 1. The algorithm to update the
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outdated gain values is shown in Algorithm 2.6.2.

Algorithm 2.6.2 Update outdated gain values with new C

Input: The local outdated counts Cloc and the correct new counts Cnew.
Output: The gain values are modified in place to reflect the new counts.

function UpdateOutdatedGains(Cloc, Cnew)
for all e ∈ E do

for i ∈ {0, 1} do
if Ci,new(e) = 0 and Ci,loc(e) > 0 then . Case 1

gainv ← gainv − c(e) for all v ∈ e
else if Ci,new(e) = 1 and Ci,loc(e) > 1 then . Case 2

gainv ← gainv + c(e) for the only v ∈ e with L(v) = i

if Ci,new(e) > 0 and Ci,loc(e) = 0 then . Case 3
gainv ← gainv + c(e) for all v ∈ e

else if Ci,new(e) > 1 and Ci,loc(e) = 1 then . Case 4
gainv ← gainv − c(e) for the only v ∈ e with L(v) = i

In case 2 and 4, it could be that there is actually no local vertex in the net for which the
condition holds. In this case, we do not need to do anything. Because the vertices in a net
are sorted, we can check this by looking at the part of the first or last vertex respectively.
If it is equal to the part we are looking for, we have found the vertex to update, otherwise,
there is no local vertex in that part.

2.6.3 Assigning free vertices

After each uncoarsening step, each of the free vertices is assigned to a part. We first discuss
how we assign free vertices in the sequential case, and then explain how we use a similar
method in the parallel case.

The algorithm to assign a free vertex to a part is shown in Algorithm 2.6.3. To assign
a vertex, we first check whether assigning it to one of the parts would violate the balance
constraint. If this is the case, the vertex is assigned to the complementary part. If not, the
vertex is assigned to the part that has the smallest ratio between its current and maximum
weight. By considering the ratio instead of the largest difference between the current and
maximum weight, we make sure the split comes closer to the desired ratio. Finally, if these
ratios are equal, the vertex is randomly assigned to a part.

In the case where we have a distributed hypergraph, we use a similar approach. We start
by computing the optimal weight to assign to part 0: f∗0 . This is the free weight we assign
to part 0 such that if f0 = f∗0 , then W0,new/W0,max ≈ W1,new/W1,max. Let f be the global
free weight and f0, f1 the free weights assigned to part 0 and 1. Then, W0,new = W0 + f0
and W1,new = W1 + f − f0. Solving W0,new/W0,max = W1,new/W1,max for f0 using these
equations, we find the following expression for f∗0 :

f∗0 =
W1W0,max −W0W1,max + fW0,max

W0,max +W1,max
. (2.4)

We compute f by communicating the local free weights. To assign the free weight, we
go through all processors and assign its entire free weight to part zero, until this would
assign more weight to part 0 than f∗0 . Suppose this happens for processor P (t), then for all



28 CHAPTER 2. DESIGN OF THE PARALLEL PARTITIONING ALGORITHM

Algorithm 2.6.3 Assign a free vertex to a part
Input: Free vertex v, weight of the parts W0,W1, maximum weight of the parts
W0,max,W1,max.

Output: The part L(v) that v is assigned to.
function AssignFreeVertex(v)

if W0 + w(v) > W0,max then
L(v)← 1

else if W1 + w(v) > W1,max then
L(v)← 0

else if W0W1,max < W1W0,max then
L(v)← 0

else if W0W1,max > W1W0,max then
L(v)← 1

else
L(v)← Random(0,1)

return L(v)

Figure 2.4: Parallel assignment of free vertices using four processors. The green weight is
assigned to part 0, the purple to part 1.

0 ≤ i < t all free vertices of P (i) are assigned to part 0, and for t < j < p all free vertices of
P (j) are assigned to part 1. An example of this procedure is given in Figure 2.4. P (t) can
now compute W0 and W1 after this assignment. With these adjusted weights, it uses the
sequential algorithm to assign its vertices. This can give a slightly different weight to part
0 than f∗0 , so finally P (t) sends the new W0 and W1 to all other processors.
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We have implemented the algorithm of Chapter 2 in a new parallel hypergraph partitioner
called PMondriaan1. It can partition a hypergraph into k parts using p processors. Hyper-
graph partitioning is the engine of the Mondriaan sparse matrix partitioner [4]. Therefore,
a parallel 2D sparse matrix partitioner can be built that uses the PMondriaan hypergraph
partitioner, for example by using the medium-grain method, hence the name PMondriaan.
Over the years, many options were added to Mondriaan to investigate their benefits. For
PMondriaan, we integrated the options that have proven to work best. This way, we build
on the concepts used in the Mondriaan partitioner.

PMondriaan was created in the C++ programming language, using the Bulk software
library [30]. Bulk is an interface for writing BSP programs in the C++ language. Using
Bulk, we were able to write PMondriaan for distributed-memory, shared-memory, and hybrid
systems simultaneously. In this section we will discuss some importantant implementation
details. First, in Section 3.1, we highlight important aspects for the use of PMondriaan,
such as the options included in the partitioner. In Section 3.2, we discuss some important
(new) features of Bulk used by PMondriaan. Finally, in Section 3.3, we analyze the memory
scalability of PMondriaan. Later, in Section 4.4, we validate this using the results found
experimentally.

In this section, we will use a monospace font to indicate C++ code and symbols.

3.1 Use of PMondriaan

As discussed before, PMondriaan works for distributed-memory, shared-memory, and hybrid
systems. Building the PMondriaan library creates both a thread version, for shared-memory
systems, and an MPI version, for distributed-memory and hybrid systems, of the PMondri-
aan program as Run_PMondriaan_thread and Run_PMondriaan_mpi. Of course, the MPI
version is only created if MPI is available on the system.

PMondriaan is designed to be able to handle very large hypergraphs. Therefore, all data
is stored using long or size_t, which are implemented on most recent systems as 64-bit
(un)signed integers.

3.1.1 Input

A number of options and parameters are available to run PMondriaan. These can be set in
the defaults.toml file, or passed as command line arguments in the program call. Input

1Source code available at https://github.com/SdeBerg/PMondriaan
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Option Possible values

Metric cutnet
lambda_minus_one*

Bipartitioning random
multilevel*

Sampling method random*
label_propagation

Vertex weight one
degree*

Table 3.1: Program options included in PMondriaan. The vertex weight option either sets
all vertex weights to one, or to their degree. The options with a * are the default options.

given via the command line overrules the settings in the defaults file. The program options
can be found in Table 3.1. Two possible metrics are included in PMondriaan: the hyperedge-
cut metric and the (λ − 1)-cut metric. When the hyperedge-cut metric is used, a global
communication step is added after each split, where information on the cut nets is sent
to all other processors, and these nets are removed from the hypergraph. The random
bipartitioning option is only meant for debugging. It randomly assigns vertices to the parts
under the given balance constraint. As seen in Table 3.1, there are only two options to set
the vertex weights: all vertex weights are set to 1 or to their degree. All net costs are always
set to one. However, PMondriaan can handle any integer weights and costs. In a future
version, use of custom weights and costs could therefore be implemented easily.

Table 3.2 shows the parameters needed to run PMondriaan and their default values.
The sample size and maximum cluster size need to be adjusted to the matrix at hand,
because the values of these parameters greatly influence the coarsening phase. Choosing
these values too small will result in a slow coarsening process. Choosing the sample size too
large will slow down the program and start the sequential coarsening too early. Choosing
the cluster size too large will result in a bad coarsening. A sample size of 1-2% of the
vertices in combination with a cluster size between 20 and 50 usually works well. In Section
4.1 elaborate on this by performing a number of experiments.
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Input parameter Default Description

p - Number of processors used
k - Number of parts to split into
file - Path to file of hypergraph in MatrixMarket

format
eps 0.03 Balance constraint of the partitioning
eta 0.03 Balance constraint during computation
sample_size 10000 Global sample size
max_cluster_size 50 Maximum cluster size
lp_max_iter 25 Maximum number of iterations in label

propagation
coarsening_nrvertices 200 Number of vertices at which we stop coars-

ening
coarsening_max_rounds 128 Maximum number of coarsening rounds
KLFM_max_passes 25 Maximum number of passes in FM
KLFM_max_no_gain_moves 200 Maximum number of successive no-gain

moves in sequential FM
KLFM_par_send_moves 20 Number of moves sent before synchroniza-

tion in parallel FM

Table 3.2: The parameters needed to run PMondriaan. These can be defined in the defaults
file or passed as command line arguments to the program. The variables that do not have
a default value always need to be adapted for the specific problem.

3.1.2 Output

After partitioning the hypergraph, the resulting partitioning is written to a file and some
information on the partitioning is printed. The distributed hypergraph graph is stored using
an adapted Matrix Market format, similar to the one used in Mondriaan [4]. The structure
of the format is as follows:

%%MatrixMarket distributed-matrix coordinate pattern general
m n nnz k
Kstart[0] (this should be 0)

...
...
...
Kstart[k] (this should be nnz)
A.i[0] A.j[0]
...
...
...
A.i[nnz-1] A.j[nnz-1]

Here, Kstart contains the start indices of the parts. For example, the first Kstart[1]
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nonzeros are assigned to part 0. Contrary to the format used in Mondriaan, we do not
include the values of the nonzeros. These values are not used during computation and are
therefore not stored when reading the original matrix. Because our format is similar to
that used by Mondriaan, the tool MondriaanStats can also be used for the analysis of the
results produced by our partitioner. The cut size and load balance of the partitioning are
also printed at the end of the run of PMondriaan, but can later always be found using
MondriaanStats.

3.2 Bulk

Bulk [30] is an interface for writing BSP programs in the C++ language. It uses features
of C++17 for safe memory use and more code reuse. To write programs for distributed-
memory, shared-memory and hybrid systems simultaneously, Bulk can use both a thread
and an MPI backend. Because Bulk is a relatively new library, some new features were
included in Bulk 2.0.0 for the development of PMondriaan. Changes were also contracted
to Bulk upstream. In this section, we focus on the aspects of Bulk that are relevant to
PMondriaan and highlight the newly added features. In particular, we discuss the methods
of communication between processors.

At the start of the SPMD section, a bulk::world object is obtained, that can be used to
communicate with the other processors. Within this world, each processor can be identified
by its rank, similar to our s. After the first bisection in our partitioner, the processors are
split into two groups. In the subsequent bisections, only communication within the subgroup
of processors is needed. To facilitate this, a new feature was introduced in Bulk: a function
to split a world into a number of new (smaller) worlds. The world::split function takes
the group number of the processor as input and returns a new world including all processors
in the same group. The rank of a processor in such a new world is based on the order of
the processors in the old world. Because of this new feature, we were able to write the code
for the bipartitioning in a very general way with a bulk::world object as input.

Communication methods

There are a number of ways to communicate with other processors through a bulk::world.
The most used method of communication in PMondriaan is by using a bulk::queue. This
is used to send a message to a specified processor. After creating a queue, a message sent in
that queuemust always contain the same number of arguments. The template parameters of
the queue specify the types of these arguments. For example, a queue is used in PMondriaan
to send the best partitioning found after the sequential uncoarsening phase to all processors.
In this case, we need to send the index and the label of each vertex to the other processors,
so we create a bulk::queue<long, long>.

Another way of communicating is using a bulk::var, which is a distributed object with
an image on each processor. The image is readable and writable from remote processors. A
var is, for example, used in PMondriaan to identify the processor that has found the best
partitioning after the sequential uncoarsening. Each processor sets its local image of a var
to the cut value it has found, and finds the best cut by reading all remote values.

One more way of communicating is using a bulk::coarray. This models distributed
data as a 2-dimensional array, where the first dimension is over the processors, and the
second over the local array indices. The local size of the array can differ for each processor.
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The local values are again readable and writable from other processors. In PMondriaan a
coarray is, for example, used to compute the global weights of all parts of the partitioning.
A coarray of local size k is created and each local value is set to the local weight of that
part. By reading the remote values, we can find the global weights of the parts.

Bulk also includes a way to perform operations on a var or coarray. The bulk::foldl
function performs a left-fold over a distributed variable using a given function. In Bulk
2.0.0, some standard functions were also added, such as bulk::sum and bulk::max. To
accommodate for the use of a coarray as described in the previous paragraph, a new
function bulk::foldl_each was also included. For each local index, this function performs
a left-fold over all remote elements at the same index.

3.3 Memory scalability

In this section we will analyse the memory usage of the different components of PMondriaan.
We will express the memory use in terms of the local number of vertices |Vs|, hyperedges
|Es|, and nonzeros |nz (As)|, where As is the associated matrix of the local hypergraph.
Storing for each vertex the hyperedges containing the vertex and for each hyperedge the
vertices it contains corresponds to compressed row storage (CRS) and compressed column
storage (CCS) of As. We will also use |Hs| to denote the size of the local hypergraph, so
the memory used to store the local hypergraph. We analyse the memory use of a single
processor, because our partitioner was developed for a distributed-memory system.

First, we discuss how the local sizes relate to the size of the entire hypergraph. Because
we use a block distribution of the vertices, we have |Vs| ≈ |V |/p at the start of the program.
However, this does not imply that |nz (As)| ≈ |nz (A)|/p. In practice, most matrices have
a structure where the nonzeros are evenly distributed over blocks of columns, so this is
not a problem. In future work, this could be improved by redistributing vertices such that
|nz (As)| ≈ |nz (A)|/p, by using a variation on Algorithm 2.3.1. After the first bisection, in
the case that w(v) = d(v), we do have that |nz (As)| ≈ |nz (A)|/p, as the weight is then
evenly spread over the processors. The local number of hyperedges also depends on the
structure of the hypergraph. Only nets that contain a local vertex are stored. This could
be |E| nets, but in practice this is generally O(|E|/p). So, all of these scale inversely to the
number of processors used.

3.3.1 Recursive bipartitioning

After each bipartitioning, only the hypergraph itself, including the labels assigned so far,
is stored. Then, the vertices are redistributed, but the total number of vertices does not
change. So, we do not use any additional memory. During the bipartitioning, we do allocate
additional memory. The first bipartitioning is the largest, and therefore uses the most
memory. From now on we will consider only this first bipartitioning.

At each level of the multilevel bipartitioning scheme, a (smaller) hypergraph is stored.
The number of vertices should always be at least halved after each coarsening. This can be
achieved by choosing the right values for the sample size and the maximum cluster size. If
we assume the size is halved at each level, we only need
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times |Hs| memory to store all these hypergraphs. Again, the first level is the most memory
invasive. In the next sections, we discuss the memory use of the parallel coarsening and
uncoarsening phase at the top level.

Coarsening

In the coarsening phase, we first select `/p local samples. In the random sample selection
method, no memory is allocated except for storing the `/p samples. In the label propagation
sample selection method, storing the counts of vertices in all parts for each net requires
O((`/p)|Es|) memory. However, this memory is freed again right after selecting the samples.
These samples and their nets are subsequently shared among all processors. For each sample
v, we need to store d(v) net indices, requiring O(∆(H)`) memory in total, where ∆(H) is
the maximum degree. Next, the inner products of the local vertices and the samples are
computed. As discussed before, we store only the best match found so far for each local
vertex during the inner product computation. It follows that this only uses O(|Vs|) memory.

After computing the matches, we have a few communication steps, where processors
send requests, accept requests and send information on the formed clusters. Of these,
the first or the last can be the largest communication step. In the first communication
step, each processor sends a request for each local vertex to the owner of the sample it
wants to match with. Because we limit the number of requests to a sample by a single
processor by cmax, a processor can receive at most pcmax requests per sample, resulting in
O(cmaxp`/p) = O(cmax`) requests in total. However, it is not likely that a processor actually
receives so many requests, because the total number of requests is limited by the number
of vertices. Therefore, in practice this is likely to decrease when increasing p. In the final
communication step, the information on the nets and weight of the accepted matches is
grouped by each processor for every sample. This information is then sent to the owner of
the sample. It follows that a processor can only receive O(cmax∆(H)`/p) data. This again
scales inversely to p.

Finally, we create the contracted hypergraph. As explained before, the size of this
hypergraph is at least a factor 2 smaller than the original hypergraph.

Uncoarsening

In the parallel uncoarsening phase, we find the best moves based on the gain values of the
vertices. To update these gains efficiently during the computation, we need to keep track of
counts C of vertices in part 0 and 1, for all local nets. We also need to store the counts of
the local vertices Cloc, to later efficiently update the gains of the vertices after receiving the
correct C values. Storing both of these vectors, requires O(|Es|) memory. To implement the
FM heuristic efficiently, we use a gain bucket data structure. The size of this bucket data
structure is determined by the maximum possible gain of any vertex gainmax. We have that

gainmax = max
v∈Vs

 ∑
e∈I(v)

c(e)

 . (3.1)

The total number of buckets needed is then 2gainmax +1. Sadly, this does not scale with the
number of processors. However, the number of vertices in the buckets does decrease when
increasing p, so more of these buckets will be empty. For future work, it could be interesting
to consider different types of storage when using a large number of processors.
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When updating the vector C at the end of a round, every processor is responsible for
|E|/p hyperedges. For each of these hyperedges, the cost and processor indices of all pro-
cessors that contain a vertex in the hyperedge are stored by the corresponding processor.
The values of C at the start of the round are also stored for each of these nets. Because
the number of different processors in a net is expected to be small, only O(|E|/p) memory
is needed to store this information.

In the update of the vector C, the largest two communication steps of the refinement
algorithm take place. In the first communication step, the local values of C for each net with
changed counts are sent to the processor responsible for this net. In theory, the local value
of C could be changed for each net in a single round, so a processor could receive (|E|/p)|Et|
updates from every processor P (t). Because only a few vertices are moved in each round,
this is not a realistic estimate. We can bound the number of updates sent by a processor by
x∆(H), where x is the number vertices moved by each processor in a round. The maximum
number of updates received by a processor is thus bounded by px∆(H), which is still not a
tight bound. After receiving the updates, each processor computes the updated values of C
for each of its corresponding nets and sends the updated (changed) values to all processors
that contain vertices in the net. In this second communication step, the updated values
are only sent to the relevant processors. It follows that any processor can receive at most 1
update for each local net, so |Es| updates in total in this step, therefore scaling with p.



4 | Experimental results

We have tested PMondriaan to check the quality of the partitionings produced, the running
time, and the memory usage using a number of hypergraphs corresponding to sparse matrices
from the SuiteSparse collection [27]. We also included 1 test matrix that was used for testing
Mondriaan [4], called tbdlinux1. Table 4.1 presents the matrices used, ordered based on
the number of nonzeros. In the following section, we will refer to a hypergraph as the matrix
corresponding to it.

All tests used the MPI backend of Bulk compiled with GCC 7.3.0 and OpenMPI 3.1.4.
The test were run on the Dutch national supercomputer Cartesius, located at surfSARA
in Amsterdam. Unless otherwise indicated, the experiments were done on thin nodes, that
have 24 cores, 64GB memory, and either an E5-2690 v3 CPU with a clock speed of 2.6 GHz,
or an E5-2695 v2 CPU with a clock speed of 2.4 GHz. Two experiments used fat nodes,
that have 32 cores, 256GB memory, an E5-4650 CPU and a clock speed of 2.7 GHz.

The main results are summarized in Table 4.2. In the next sections, we will discuss
these results regarding parameter settings, solution quality, and running time. Finally, we
discuss some results regarding the memory usage of the partitioner. In our experiments,
we compare our partitioner to the Mondriaan partitioner in the onedimcol mode. In this
mode, Mondriaan creates a 1D partitioning of the columns of a matrix, corresponding to a
partitioning of the vertices of the hypergraph (in the row-net model).

1Available at https://www.staff.science.uu.nl/~bisse101/Mondriaan/

Matrix Rows Columns Nonzeros
tbdlinux 112757 20167 2157675
Si34H36 97569 97569 5156379
marine1 400320 400320 6226538
atmosmodd 1270432 1270432 8814880
delaunay_n21 2097152 2097152 12582816
hugetrace-00000 4588484 4588484 13758266
StocF-1465 1465137 1465137 21005389
asia_osm 11950757 11950757 25423206
CurlCurl_4 2380515 2380515 26515867
Emilia_923 923136 923136 40373538
HV15R 2017169 2017169 283073458

Table 4.1: Properties of the test matrices, ordered based on the number on nonzeros.
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PMondriaan Mondriaan
Matrix ` % cmax Cut Time Cut Time
tbdlinux 1500 7.4 20 30478 33.3 23845 14.7
Si34H36 10000 10.2 20 18199 39.9 18194 6.1
marine1 5000 1.2 50 2086 26.9 1981 4.7
atmosmodd 25000 2.0 50 17213 86.6 17174 9.7
delaunay_n21 50000 2.4 50 2945 138.3 2734 11.5
hugetrace-00000 180000 3.9 150 1509 295.6 1340 18.4
StocF-1465 10000 0.7 50 4822 180.0 5668 22.4
asia_osm* 700000 5.9 150 16 315.8 149 22.6
CurlCurl_4 40000 1.7 50 25489 187.8 26257 32.6
Emilia_923 8000 0.9 50 26802 80.4 25395 23.3
HV15R* 20000 1.0 50 62415 332.6 60293 178.2

Table 4.2: Hyperedge-cut and running time for partitioning test matrices using PMondriaan
and Mondriaan for k = 2 and ε = 0.03. For PMondriaan, we use 32 processors, a global
sample size of `, and a maximum cluster size of cmax. The % column shows the percentage
of vertices that is used as a sample. The other parameters are set to the default values
shown in Table 3.2. We use random sampling and set vertex weights to their degree. For
PMondriaan, the cut is the minimum cut found in 10 runs and T the average time over
these runs. The * indicate the tests that were run on fat nodes of Cartesius. Mondriaan
was run in the onedimcol mode, for fair comparison to PMondriaan. The cut values for
which PMondriaan performs better or at most 1 percent worse than Mondriaan are marked
in boldface.

4.1 Parameter tuning

In this section we discuss how different sample sizes `, maximum cluster sizes cmax, and
sampling methods work together. Table 4.3 shows the hyperedge-cut and running time to
bisect StocF-1465 for various values of ` and cmax using different sampling methods. It also
includes the size reduction of the hypergraph in the first coarsening level (right column).
First, we discuss the difference in performance of the two sampling methods. We expect the
label propagation sampling method to work better for smaller sample sizes than random
sampling, because the diversity of the samples is more important in this case. However,
we see that even for cmax = 20, the label propagation method produces a partitioning that
has an only slightly better cut size than the random method. We conclude that choosing
samples randomly provides enough diversity to create good clusters. Also note that using
label propagation greatly influences the running time, slowing the program down by at least
a factor of 1.5. Therefore, we only use the random sampling method in further experiments.

Next, we consider the influence of the choice of the sample and cluster size on the
coarsening process. Looking at the coarsening ratios in Table 4.3, we see that choosing a
small sample size (5000) and large cluster size (100) or a large sample size (15000) and small
cluster size (20) only reduces the size of the hypergraph by 20 percent in the first coarsening.
This results in a longer running time. The fastest coarsening, and lowest running time, is
achieved with a large sample size of 16000 and a medium cluster size of 50. The best solution
is found for a sample size of 10000 and a cluster size of 50. In this case, the hypergraph
is not reduced by 50 percent in the first coarsening, but in the following coarsening levels,
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` cmax Sampling Cut T (in s) |V ′|/|V |
16000 50 R 4864 173 0.53

LP 4829 250 0.07
15000 20 R 4931 206 0.78

LP 4916 336 0.79
10000 50 R 4729 180 0.68

LP 4963 263 0.68
5000 100 R 4851 188 0.79

LP 6197 280 0.79

Table 4.3: Hyperedge-cut and running time T for 1 run of PMondriaan to bisect the hyper-
graph corresponding to the StocF-1465 matrix using different parameters. We alternate
between the random (R) and the label propagation (LP) sampling method for different sam-
ple sizes, `, and maximum cluster sizes, cmax. The |V ′|/|V | column shows the ratio between
the number of vertices in the original hypergraph and the hypergraph created in the first
coarsening level.

the reduction was around 50% at each level. We prioritize solution quality over a small
improvement in running time, so we use a sample size of 10000 and a cluster size of 50 for
the StocF-1465 matrix in the experiments.

To provide a more general insight into the choice of these parameters, we show the
sample size and the cluster size used in our experiments for all matrices in Table 4.2. The
choice for these parameters was based on preliminary experiments. In the table, the sample
size is also provided as a percentage of the number of vertices. Note that for most matrices
around 1-2% of the vertices was used as a sample. A maximum cluster size of 50 worked well
in most cases, only for the two smallest matrices, a cluster size of 20 was used. There are
four matrices that use a much larger percentage of vertices as samples: hugetrace-00000,
asia_osm, tbdlinux, and Si34H36. The first two matrices are both much sparser than
the other matrices. Because vertices will only be matched to a sample if they share at
least 1 hyperedge, a larger sample size is needed in this case to achieve a good coarsening.
The last two matrices, tbdlinux and Si34H36, have a relatively small number of columns,
corresponding to vertices in the hypergraph. Choosing a smaller sample size resulted in
partitionings with a much larger cut size for these matrices. This indicates that our parallel
partitioning algorithm is less suited to partitioning small matrices.

4.2 Quality of partitionings

In this section, we discuss the results of Table 4.2 regarding the quality of the partitionings
produced. We compare the cut size of the best partitioning produced by PMondriaan
in 10 runs to the cut size of the partitioning produced by Mondriaan in the onedimcol
mode. In about half of the experiments, a better or comparable partitioning was produced
by PMondriaan, indicated using boldface in the table. The worst partitionings produced
by PMondriaan were for tbdlinux, 28% increase in cut size, and hugetrace-00000, 13%
increase in cut size.

To study the effect of using different numbers of processors on the partitioning quality, we
ran PMondriaan using p = 2, 4, 8, 16, 32, 64 processors to partition StocF-1465, Emilia_923,
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and tbdlinux into 2 and 8 parts. The results are shown in Table 4.4. We did 10 runs of
PMondriaan for each combination of p and k, and report the best and average cut size
found. We see that for k = 2, the best and average cut found are consistent for all numbers
of processors. The slight variations can be accounted for by the randomness in the algorithm.
For k = 8, there is more variation in the quality of the solutions. In this case, the best and
average cut size actually improves slightly when using more than 8 processors. Surprisingly,
while the best cut size for k = 2 in 4.4(a) is 18% smaller than the cut size of Mondriaan,
for k = 8, the best cut size is 23% larger than the one of Mondriaan.

When partitioning tbdlinux using 64 processors, an unbalanced partitioning was found
in 6 out of 10 runs (up to 3.03% imbalance). The imbalance is likely the result of the large
number of rows the matrix has with respect to the number of columns. In the coarsening, this
can create vertex cluster of high weight, making it difficult to create a balanced partitioning.
This problem could be solved by introducing a weight limit on the clusters that are created.
The balanced partitionings that were found for k = 2, had a much smaller cut size than
those produced using less processors.

We conclude that the number of processors used has only a minimal effect on the quality
of the partitionings that are produced.

4.3 Running time

In this section, we discuss the running times achieved by PMondriaan. Table 4.2 shows that,
when using 32 processors, the running times of PMondriaan are much larger than those of
Mondriaan. For several matrices, the running time is even a factor 10 larger. The smallest
relative difference in running time is achieved for the matrix with most nonzeros, HV15R.

Table 4.4 shows the running times for a varying number of processors. We first discuss
the results for partitioning the matrices for k = 2, and then the results for k = 8. In 4.4(a),
we see a linear decrease in running time up to p = 32. In 4.4(b), we only see a linear decrease
up to p = 8, and in 4.4(c) we do not see a linear decrease at all. This again shows that our
parallel partitioner is less suited for partitioning small hypergraphs, as the speedup achieved
for these matrices is small.

To study why our partitioner is slower than the PMondriaan partitioner, we timed the
different phases of the partitioning process when bipartitioning Emilia_923. The results
are shown in Table 4.5. Here, we immediately see that the most time is spent in the initial
partitioning phase, which should be the shortest phase of the partitioning process. To
assert whether this phase is slow because of the label propagation (LP) or the FM step in
this phase, we compare the average running times of the LP and FM part of the initial
partitioning phase. The running times of these parts of the initial partitioning phase, for
a maximum number of iterations in the label propagation algorithm of 25 and 0, are given
in Table 4.6. Note that the total time increases when using 0 rounds of label propagation,
because the FM algorithm converges much slower in this case. Neither of these two phases
therefore seems to be solely responsible for the large running time.

Table 4.7 shows the time spent in the initial partitioning phase for all matrices. We
see that these times vary greatly, while the coarsened hypergraphs all have less than 200
vertices at this point. The density d, defined as d = nz (A)/(mn) for an m× n matrix A, is
also included in the table. We note that for the more sparse matrices, relatively less time is
spent in the initial partitioning phase. This indicates that this phase is slow because of the
large number of hyperedges in the coarsened hypergraph. Most hypergraph partitioners,
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k 2 8
p Best cut Avg cut T (in s) Best cut Avg cut T (in s)
2 4762 4980 2027 - - -
4 4784 4934 796 - - -
8 4725 4922 411 69689 82451 2403
16 4761 4824 258 60485 72144 985
32 4822 5016 180 60140 70475 454
64 4824 4939 160 - - -

Mondriaan 5668 22 48805 53

(a) Results for StocF-1465. For p = 2, 4 and k = 8 the runs exceeded the time limit of 1 hour and
15 minutes. For p = 64 and k = 8, the program failed because of a segmentation fault.

k 2 8
p Best cut Avg cut T (in s) Best cut Avg cut T (in s)
2 27222 28783 437 - - -
4 27474 30877 224 122631 153555 4269
8 27270 30028 103 160914 172267 1720
16 27048 35583 87 150945 165235 627
32 26802 29971 80 125637 145517 343
64 27048 30869 78 125751 134279 226

Mondriaan 25395 23 94134 65

(b) Results for Emilia_923. For p = 2 and k = 8 the runs exceeded the time limit of 1 hour and
15 minutes.

k 2 8
p Best cut Avg cut T (in s) Best cut Avg cut T (in s)
2 30220 31415 44 105321 107136 110
4 29654 31124 37 110629 113395 77
8 28090 30634 33 116401 120242 64
16 30457 31051 32 117929 120484 66
32 30478 31085 33 117887 119028 66
64 25139 *25689 39 113717 *114939 80

Mondriaan 23845 15 93912 24

(c) Results for tbdlinux. For p = 64, both for k = 2 and k = 8, 6 of the 10 runs produced an
unbalanced partitioning. The average is taken over these runs.

Table 4.4: Best cut, average cut, and average running time T for partitioning matrices using
PMondriaan over 10 runs for the (λ − 1)-cut metric. The parameters were set as in Table
4.2. Results for one run of Mondriaan using the onedimcol mode and ε = 0.03 are included
for reference.
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Multilevel phase Time (in s)
Parallel coarsening 1746
Communicating hypergraph 1065
Sequential coarsening 8439
Initial partitioning 37404
Sequential uncoarsening 9489
Communicating best L 8883
Parallel uncoarsening 10050

Table 4.5: Running time of the phases of the parallel multilevel framework for bisecting
Emilia_923 using 32 processors. The parameters were set as in Table 4.2. The phase with
the longest running time is marked in boldface.

such as PaToH [3], collapse duplicate hyperedges after each coarsening step, to reduce the
number of hyperedges. When collapsing two duplicate hyperedges e1 and e2, one of the
hyperedges is removed and the other is assigned cost c(e1) + c(e2). This was not included in
PMondriaan yet. Implementing this in PMondriaan will reduce the number of hyperedges
in the coarsened hypergraphs. This will presumably greatly decrease the running time in
the initial partitioning phase, and also speed up the coarsening and uncoarsening phase.

We briefly discuss the running times of the other phases of the parallel multilevel method.
The parallel coarsening using sampling achieves the desired speedup of the coarsening phase.
Using the PMondriaan partitioner with only 1 processor, we find that coarsening the hy-
pergraph using 32 processors gives a speedup factor of 161 for the first coarsening level.
This superlinear speedup is achieved because of the use of the sampling scheme in the par-
allel coarsening algorithm, that is not included in the sequential coarsening algorithm yet.
The parallel uncoarsening also achieves a significant speedup with respect to the sequential
uncoarsening, as the highest levels of the uncoarsening phase are always more expensive.
Here, a speedup of a factor 10 was achieved for the longest sequential uncoarsening using
p = 1 relative to the longest parallel uncoarsening using p = 32. Of the two communication
steps, communicating the best partitioning found after the sequential coarsening phase has
the longest running time. This is surprising, as here only the labels of the vertices are sent
to all processor rather than the information on all their nets. In this phase, each processor
also checks for every received label if it belongs to a local vertex. To find the local index
of a vertex an std::unordered_map is used. The lookup of a value in this map could be
less efficient when the value is not present, which will be the case for most of the vertices,
resulting in a longer running time of this phase. In future work, it could be investigated if
searching the label queue to find the label for each local vertex, or requesting the labels of
the local vertices, will improve the efficiency.

Finally, we discuss the results of Table 4.4 regarding the running times of the 8-way
partitionings. We note that, when using a small number of processors, the running times of
the 8-way partitioning are over 10 times longer than those of the 2-way partitioning. In the
8-way partitioning, the second bisection should have a running time of less than half of the
time of the first bisection, giving total running time of at most twice the bipartitioning time.
To demonstrate the origin of this problem, Table 4.8 shows the running times of the bisection
and redistribution part of the recursive k-way algorithm for partitioning Emilia_923 into
8 parts. We see that the time in every bisection is indeed almost halved compared to the
bisection at the previous level. The bottleneck is in the redistribution step of the recursive
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LP rounds Time LP Time FM
25 2098 819
0 245 4508

Table 4.6: Average running time in seconds of label propagation (LP) and FM refinement
in the initial partitioning phase for partitioning Emilia_923, using different numbers of
iterations in the label propagation step. Except for lp_max_iter, the same parameters as
in Table 4.2 were used. In the initial partitioning phase, we bipartition the hypergraph 10
times using a label propagation and FM refinement step. In the label propagation phase, a
random initial partitioning is first created.

Matrix T (in s) d · 105

tbdlinux 8157 94.89
Si34H36 10758 54.17
marine1 13723 3.89
atmosmodd 28246 0.55
delaunay_n21 7985 0.29
hugetrace-00000 8212 0.07
StocF-1465 54566 0.98
asia_osm 140 0.02
CurlCurl_4 82560 0.47
Emilia_923 37405 4.74
HV15R 103782 6.96

Table 4.7: Running time T of initial partitioning phase when bipartitioning the test matrices
using the same parameters as Table 4.2. The coarsened hypergraphs all have less than 200
vertices in the initial partitioning phase. The d column shows the density of the matrices,
defined as d = nz (A)/(mn) for an m× n matrix A.



4.4. MEMORY USAGE 43

Level T bisect T redistribute
1 79150 62040
2 45184 58510
3 26107 -

Table 4.8: Time T in seconds of the levels in the recursive bipartitioning into k = 8 parts
using p = 32 processors for Emilia_923. The time in the bisection and redistribution
phases of processor 0 are given. The parameters were set as in Table 4.2. After the final
bipartitioning, the vertices are not redistributed.

bisection. In this step, the hypergraph is redistributed over the processors, which requires
communication. When using a small number of processors, the h-relation corresponding to
the communication step is very large. For example, when p = 2, suppose that half of the
local vertices in is part 0 and half in part 1, then this processor sends information on 1/4
of all vertices in the hypergraph to the other processor. For larger numbers of processors
this becomes less apparent, but still forms a bottleneck. In future work, we could explore
different ways of redistributing the vertices, or, for example, not redistribute at all.

4.4 Memory usage

To test the memory scalability of our partitioner, we used the job-statistics command of
Cartesius to measure the memory use per processor during a bipartitioning. Table 4.9 states
the memory usage of PMondriaan, using 64 processors, and Mondriaan for the bisection of
HV15R. The difference between the average and maximum memory use of any processor for
PMondriaan is only 5%. From this, we can conclude that the data is distributed well among
the processors. The memory use per processor of PMondriaan is a factor 5 lower than that
of Mondriaan.

In Figure 4.1, the memory use per processor to bisect Emilia_923 is plotted over a range
of processors used. For p = 2, the memory per processor of PMondriaan is greater than
that of Mondriaan. This implies that the either the memory used to store the hypergraph
itself is larger for PMondriaan, or that the (un)coarsening algorithms require more memory.
However, we see that when using more than 4 processors, PMondriaan uses less memory
than Mondriaan. The memory use always decreases when increasing p. The improvement
in memory use gets smaller when using more processors. This can be explained by the fact
that more redundant information is stored at this point. For example, nets can be split over
more processors, requiring multiple processors to store the indices and costs of these nets.
It could also imply that the algorithms used are less memory efficient when using a large
number of processors. We do note that reduction in memory use is larger for HV15R, which
is the bigger matrix, implying that the memory use is better scalable for larger matrices.

Note that, for a shared-memory system the available memory per processor scales as
1/p. This means that, for example for a Cartesius fat node, the algorithm does not achieve
the desired scalablibity when using p = 32 processors on a single node. However, we can use
multiple nodes with less processes running on each node to exploit the memory-scalability
that is achieved for distributed-memory systems.

In future work, the memory use of the algorithms could be researched in more elaborate
experiments to improve the scalability of the algorithms. Implementing the collapsing of
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Memory (in GB)
PMondriaan avg 3.8
PMondriaan max 4.0
Mondriaan 19.8

Table 4.9: Memory use per processor during partitioning of HV15R using the PMondriaan
and Mondriaan partitioners. PMondriaan was run on p = 64 processors, using the same
parameters as Table 4.2. For PMondriaan, the average and maximum memory use over the
processors is given.

Figure 4.1: Memory usage per processor when bipartitioning Emilia_923. The blue line
indicates the memory usage of PMondriaan per processor using p processors. The orange
dotted line shows the memory use of Mondriaan.

duplicate hyperedges will also further decrease the memory use.



5 | Conclusion

In this thesis, we presented a novel parallel hypergraph partitioning algorithm. The algo-
rithm uses a 1D column distribution of the sparse matrix associated with the hypergraph.
To create k-way partitionings, it uses the recursive bisection method. We introduced a par-
allel extension of the successful multilevel framework, and use this as a foundation for our
parallel bisection algorithm. This framework consists of a parallel coarsening, a sequential
coarsening, an initial partitioning, a sequential uncoarsening, and a parallel uncoarsening
phase. Both the parallel and sequential coarsening methods are clustering-based. The paral-
lel coarsening algorithm is based on a sampling scheme, where only a select group of samples
is considered for matching, to reduce the communication. In the uncoarsening phase, the
partitioning is refined using the FM heuristic. For the parallel uncoarsening phase, a paral-
lel version of the heuristic is introduced, where we limit the number of synchronizations by
moving groups of vertices together.

The algorithms were implemented in a parallel hypergraph partitioner, named PMon-
driaan, that can partition a hypergraph into k parts using p processors. PMondriaan was
created in the C++ programming language, using the Bulk software library [30]. Using
Bulk, we were able to write PMondriaan for distributed-memory, shared-memory, and hy-
brid systems simultaneously.

We provided experimental results of PMondriaan to check the quality of the partitionings
produced, the running time, and the memory usage by comparing these to the Mondriaan
partitioner [4]. The bipartitionings produced by PMondriaan were of comparable or better
quality to those of Mondriaan for 5 out of 11 matrices. For only two matrices the cut size
produced by PMondriaan was more than 10 percent higher than those of Mondriaan. The
quality of the 8-way partitionings created for three matrices was always at least 10% worse
than those of Mondriaan. The quality of the partitionings remained stable when increasing
the number of processors used. The running time decreased linearly with the number of
processors used. In the coarsening phase, a superlinear speedup was achieved, due to the
sampling scheme. However, the running times of PMondriaan were still about 5 times as
large as those of PMondriaan, when using 32 processors. The bottleneck here is the initial
partitioning phase. For 8-way partitioning, the communication in the redistribution step
after each bipartitioning significantly increases the running time. The partitioner is memory
scalable. It uses only 3.8GB per processor on average to partition a matrix with 283 million
nonzeros, while Mondriaan uses 19.9GB.

In conclusion, PMondriaan achieves our goal to develop a parallel hypergraph partitioner
for a distributed-memory system that is memory scalable, while providing state-of-the-art
solutions. A reasonable speedup is achieved with respect to the single processor running
times of PMondriaan, but no speedup is achieved with respect to the Mondriaan partitioner.
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5.1 Future work

Much future work remains to be done. Foremost, the running times need to be improved.
To achieve this, two important aspects need to be addressed. First, the running time of the
initial partitioning phase should be decreased. The number of hyperedges in the coarsened
hypergraph can be decreased by collapsing duplicate hyperedges. This would not only speed
up the initial partitioning phase, but also the coarsening and uncoarsening phase. It will
also reduce the memory usage of the partitioner.

To reduce the cost of communicating the best partitioning after the sequential uncoars-
ening phase, a different scheme, where the label of a local vertex is requested by a processor,
could be considered.

When creating partitionings into k > 2 parts, different ways of redistributing the vertices
could be considered to decrease the running time of this process. For example, we could
implement a method where vertices are not redistributed at all, and all processors work
together on both sub-problems.

The sampling scheme significantly speeds up the coarsening phase, while still giving high
quality partitionings. This scheme could also be used in a sequential partitioning scheme.
Also, different variations of this scheme could be considered, where, for example, local
vertices can also form clusters with other local vertices or only matches of a certain quality
are accepted.
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