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Abstract

The multi-objective evolutionary algorithms NSGA-II and MOEA/D are often
compared using test problems which combine a number of factors to create a
difficult problem. Instead, we study the effect of a variety of factors directly by
using problems in which the presence of these factors can be specified, with the
purpose of studying the effect of each factor individually. The factors we study
are the shape of the objective space and the uniformity of the distribution of
solutions therein, the number of objectives and the correlation between them,
and the separability of variables. We do some additional experiments to better
understand some of our results, especially the phenomena we see when we vary
the correlation between objectives at a high number of objectives. Lastly, we in-
vestigate the possibility of predicting algorithm performance based on attributes
which were measured rather than specified.

NSGA-II is non-domination-based while MOEA/D is decomposition-based,
which together with the fact that they are both frequently used makes for an
especially interesting comparison that may contribute to a further understand-
ing of the differences between their designs, as well as to the ability to choose
the best algorithm for any given problem.



Chapter 1

Introduction

The multi-objective evolutionary algorithms (MOEAs) NSGA-II and
MOEA/D are both frequently used algorithms within the domain of evolu-
tionary multi-objective optimization. However, they differ significantly in
their approach to solving multi-objective optimization problems. NSGA-II is
non-domination-based, while MOEA/D is decomposition-based [1, p. 264].

The literature clearly shows that depending on the test problem, any variant
of NSGA-II or MOEA/D that we are using in these experiments can be the best
of these algorithms [3]. Within the literature there are various test problems
on which NSGA-II and MOEA/D are compared. However, within these test
problems a variety of factors contributing to problem difficulty often come to-
gether, usually in an attempt to resemble real-world problems. (For example:
DTLZ [13], WFG [18]). Instead, this research takes a number of factors from
the literature for which it has been suggested that they are significant factors in
determining the relative performance between these algorithms, and for them
are crafted a number of test problems in which the presence of these factors is
tunable, to study their effect on the relative performance between NSGA-II and
MOEA/D directly. The goal is to contribute to the ability to choose the right
algorithm for the job, as well as to increase our understanding of the implication
of the design differences between NSGA-II and MOEA/D.

Within the literature the shape of the Pareto front and the separa-
bility of variables are described as being significant for the performance of
certain decomposition-based algorithms [3, p. 188]. Another paper shows that
the number of objectives and the correlation between objectives is also
an important factor [1]. On top of that we introduce another factor of study
namely the uniformity of the distribution of solutions, which seems a log-
ical choice as we will see. We use an existing test problem (ρMNK-landscapes)
and craft others in which the presence of these factors is tunable, to study their
effect on the relative performance between NSGA-II and MOEA/D directly.

With this research we hope to contribute to a big and active field of re-
search: By January 2017, there were over 8900 publications on evolutionary
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multi-objective optimization1, and it has already been applied to engineering
problems, scheduling problems, economic and finance problems, automatic cell
planning problems and traveling salesman problems[9, p. 33], showing both a
wide applicability of this kind of algorithm, as well as a very significant amount
of established research.

We will start with an extensive explanation of evolutionary multi-objective
optimization, as well as a number of related factors such as Pareto dominance
and hypervolume. We shall describe the workings of NSGA-II and MOEA/D
in detail, including a very short review of related literature.

We will review some of the differences in performance between these algo-
rithms on test problems as found in the literature, and how that leads us to
choosing the factors for investigation that we in fact choose.

We perform a number of experiments in the style described earlier, based on
ρMNK-problems (which will be described in an earlier chapter) and variations
on disk-quadrant problems which are constructed analogously to the DTLZ
problems (a test suite we will also review in an earlier chapter).

Having performed a number of experiments that measure the effect of factors
which were deliberately put into the problem, with part of the motivation being
the ability to find the best algorithm for the job, our research begs the question:
Can we, given a problem, quickly analyze it in order to choose the best tool for
the job, without using the information that was used to create the problem?
Thus we measure the effect of a number of measured features of test problems
on the relative performance of NSGA-II and MOEA/D.

1.1 Relevance of Evolutionary Algorithms in Ar-
tificial Intelligence

Arguably, evolutionary algorithms are themselves part of AI, being a form of
soft computing, which refers to ”computational techniques designed to deal with
imprecision, uncertainty, approximation and partial truths”[28, p. 22]. Evolu-
tionary algorithms also appear in the form of evolutionary programming, where
an evolutionary approach is used to evolve a program or a neural network[28,
p. 92].

The field of evolutionary algorithms also overlaps with various other forms of
AI. For example, evolutionary algorithms can be used for reinforcement learning
[29]. They are ”considered to be one of the most successful search techniques for
complex problems”, and have been used for things such as knowledge extraction
in a database and learning of controllers in robotics [30, p. 1-2].

1Counting ’journal papers’ and ’conference papers’ in the repository maintained by Dr.
Carlos A. Coello Coello, which can be found at http://delta.cs.cinvestav.mx/~ccoello/

EMOO/
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Chapter 2

Evolutionary
Multi-objective
Optimization

2.1 Multi-objective Optimization Problems

To explain evolutionary multi-objective optimization, we should first explain
multi-objective optimization in general. As the name suggests, we have some
kind of problem in which we try to perform well at multiple objectives at the
same time. The following is a more exact definition:

Definition 2.1.1. A multi-objective optimization problem consists of [1,
p. 265](notation ours):

• A decision space or solution space Ω of admissible solutions

• An objective space RM in which the quality of these solutions is ex-
pressed, where M is the number of objectives.

• Objective functions or fitness functions relating the decision space to
the objective space, that is to say M functions fi : Ω → R, i = 1, . . . ,M .
Sometimes the functions will be seen as components of one function f :
Ω→ RM , simply called the objective function.

When we want to perform well at multiple objectives at the same time, it
becomes a problem in itself to define which solutions is better than another. For
example, when optimizing on two objectives, solution A may perform better at
the first objective, and solution B may perform better at the second objective.
Were there some kind of function that could decide how to balance these ob-
jectives, we could of course just optimize that instead but that would mean we
don’t really have a multi-objective problem, so we shall assume we do not have
such a function.
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Therefore, rather than trying to find ’the solution’ or even ’a solution’ to
the problem, we instead try to find an entire set of solutions. This begs the
question which solutions we should include in the solution set. The answer
is rather simple: We want a variety of solutions, all of which are potentially
useful. That is to say, all solutions for which there is no other solution which is
superior in every way. This leads us to the definition of concepts such as Pareto
dominance.

Definition 2.1.2. Given some multi-objective fitness function f , whose com-
ponents correspond to objectives, a solution x Pareto dominates a solution y
if

∀i ∈ {1, . . . ,M} : fi(x) ≥ fi(y)

and
∃i : fi(x) > fi(y)

[1, p. 265] (This formulation is for a maximization problem; it can be used the
other way around in a minimization problem, where it is instead about having
a smaller value rather than a greater value.)

Definition 2.1.3. A solution is Pareto optimal if it is not Pareto dominated
by any other solution.[1, p. 265]

Definition 2.1.4. The set of all Pareto optimal solutions is referred to as
the Pareto set, and the image (under the fitness function) of this set in the
objective space is called the Pareto front[1, p. 265].
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Figure 2.1: Example set of solutions to a 2-dimensional multi-objective op-
timization problem. Pareto optimal solutions in red (together they form the
Pareto front), other solutions in black.
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Every multi-objective optimization problem, as previously defined, of course
has a Pareto front. In general, and in this document in particular, the goal of
a multi-objective optimization algorithm is to find, or at least approach this
Pareto front.

2.1.1 Examples of multi-objective optimization problems

There is a large variety of multi-objective optimization problems, both specific
problems and entire families of problems. We will present a few problems here
which are used for benchmarking in the literature, as well as some problems
which we will use later on.

DTLZ

The DTLZ (named after its authors, Deb, Thiele, Laumanns and Zitzler) test
problem suite was developed with the following intended features[13, p. 4]:

• Controllable hindrance in converging to the Pareto front as well as in
diversification

• Scalable number of decision variables

• Any number of objectives

• Simple to construct

• Easily comprehensible Pareto-front

• Exhibiting difficulties similar to those in most real-world problems

The decision variables in DTLZ problems are real numbers between 0 and
1, the number of which can be varied (though there are some constraints).
The problems are all rather specific constructions with varying attributes. For
example, DTLZ1 has a simple Pareto front described by the linear hyper-plane

M∑
i=1

fi = 0.5

(which in the 3-dimensional variant is the triangle connecting (0.5; 0; 0), (0; 0.5; 0)
and (0; 0; 0.5), for example) . DTLZ2 has as its Pareto-front the first octant of
the unit sphere. DTLZ3 is similar, but modified to deliberately introduce extra
local optima, and DLTZ4 is also similar but with a very dense distribution of
optima around the 0-plane for any objective. Other variants test the ability
to converge to a curve (and a harder variant of this), to converge to a discon-
nected set of Pareto-optimal regions, to converge to a Pareto front which is a
combination of a straight line and a hyper-plane, and lastly there is the problem
DLTZ9 where the density of solutions gets thinner towards the Pareto-optimal
region[13, p. 19-28].
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For some of the problems the Pareto front has a rather simple form, such
as the hyperplane or octant of the unit sphere as we have just seen. However,
some of these problems (like DTLZ7-9) cannot be represented in such a simple
form[3, p .172].

WFG

The WFG (Walking Fish Group) problems are based on a broader toolkit for
designing test problems. Using this toolkit a number of specific test problems
were proposed, WFG1-WFG9. These problems supposedly (according to their
own authors) offer a more comprehensive set of challenges than for example
DTLZ[17, p. 497]. Some of these have a Pareto front that is easy to describe,
such as WFG4-9 where the Pareto-front is given by

M∑
i=1

fi = 1 ∧ ∀i : fi ≥ 0

but just as with DTLZ not all Pareto-fronts can be easily represented[3, p .172].
The WFG problems vary over a number of possible attributes, such as[17,

p. 494,495,498]:

• Having a convex or concave Pareto-front

• Having a connected or disconnected Pareto front

• Having a degenerate front or not (where the dimensionality of the Pareto
front is smaller than M − 1 where M is the number of objectives)

• Having uni-modal and multi-modal test problems (uni-modal is where an
objective function has only a single optimum)

Also, the test problems are designed to have mostly inseparable decision
variables [17, p. 485]; that is to say that the optima of any decision variable
viewed individually depend on the value of other decision variables; decision
variables can’t be optimized independently of the other variables[17, p. 479].

Knapsack

A knapsack problem is a problem where there is some set of items which have
profits and weights attributed to them. The objective is to find the subset
of those items with the highest total profit while their total weight does not
exceed some limited set capacity. One might imagine wanting to put as much
value as possible in a knapsack while still being able to carry it. Because we
are in the business of multi-objective optimization rather than single-objective
optimization, we use a multi-objective variant.

Definition 2.1.5. A multi-objective knapsack problem is a problem with
the following attributes[1, p. 267]:
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• There is some number of objectives, M , and some number of items N .

• There are profits aij and weights bij attributed to the items, and there are
maximum capacities ci (where i varies over 1, . . . ,M and j over 1, . . . , N).
For some i the capacity may be chosen to be infinite to not add an extra
capacity constraint.

• Solutions consist of binary vectors of length N , one bit for each item to
encode whether that item is included in the solution or not. The space of
admissible solutions consists of those solutions that satisfy

n∑
j=1

bijxj ≤ ci

for all i ∈ {1, . . . ,M}.

• The objective functions are given by

fi(x) =

N∑
j=1

aijxj

for all i ∈ {1, . . . ,M}.

MNK landscapes and ρMNK-Landscapes

MNK-landscapes and ρMNK-landscapes are randomly generated problems with
a variety of tunable parameters.

Definition 2.1.6. An NK-landscape is a single-objective problem that has
as its solutions all binary vectors of some given length N . The various numbers
in the vector, or genes, have some number K of genes associated with them.
These are either chosen randomly, or as the next K genes, wrapping around to
the start of the vector when the end of the binary vector is reached. For every
gene there is a function defining a score based on that gene and its associated
genes, being a function that maps {0, 1}K+1 (the gene and its K associated
genes) to a random number on [0, 1). Averaging these components gives the
objective value for the entire solution[20, p. 120].

Definition 2.1.7. A MNK-landscape is a multi-objective problem that has
M separate objectives, each defined as in the case of the NK-landscape[20,
p. 120].

Definition 2.1.8. A ρMNK-landscape is a MNK-landscape where the ob-
jectives are correlated with some correlation ρ. [20, p. 120] defines a precise
way to generate ρMNK-landscapes that follow a supplied correlation coefficient
between the objectives quite exactly, which could be useful to analyze the effect
of correlated objectives.
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2.1.2 Measuring performance

Convergence measure (CM), inverted generational distance (IGD) and hyper-
volume (HV) are widely-used performance metrics[8, p. 6]. Among these, hy-
pervolume is of particular interest, as it is the performance measure we will use
in our experiments.

Definition 2.1.9. Hypervolume as a metric for the performance of a multi-
objective optimizer, measures the space that is (weakly) Pareto-dominated by
a set of solutions[22, p. 86][23, p. 5].

Hypervolume ”can give a comprehensive assessment in terms of convergence
and diversity”[8, p. 6], and can be said to have ”nicer mathematical properties
than other performance indicators”[22, p. 1].

2.2 Multi-objective Evolutionary Algorithms

What we are generally trying to achieve in multi-objective optimization, is to
find the Pareto set. A multi-objective evolutionary algorithm (MOEA) is a
method that attempts to find, or at least approach this set. There is a wide
variety of evolutionary approaches, but what they have in common is the fol-
lowing:

Definition 2.2.1. In an evolutionary algorithm or genetic algorithm we
maintain a set, often called a population, of solutions to a problem, on which
evolutionary operators operate to generate solutions, in an attempt to find so-
lutions with higher fitness. There are three major evolutionary operators [25,
p. 24]:

• Mutation, where a random (often small) change is made to a solution

• Recombination or cross-over, where new solutions are created by re-
combining multiple existing solutions.

• Selection, some mechanism by which certain solutions are allowed to be
added to the population and other solutions are being removed from the
population, based on their fitness (which is defined as part of the problem).

Evolutionary algorithms are a logical choice for multi-objective optimization,
because as a consequence of their population-based nature, EAs can be used to
approximate the entire Pareto set/front in a single run (in which one population
is subject to evolutionary operators for some number of fitness evaluations,
running time, or until some other stop condition is achieved)[9, p. 32][4, p. 712][1,
p. 264].
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2.2.1 NSGA-II

NSGA-II is a MOEA using non-dominated sorting, where solutions are
sorted into non-dominated fronts. The first non-dominated front is the
Pareto set of the current population, the second non-dominated front is the
Pareto set of the current population when the first non-dominated front is left-
out, and so forth[10, p. 183,184]. This way of sorting the population is the main
way of assessing the relative fitness of solutions in NSGA-II[1, p. 267]. We refer
to the solutions in the first non-dominated front as being of non-domination
rank 1, those in the second front as being of non-domination rank 2, and so
forth[10, p. 184].

0 10

1

Figure 2.2: Example set of solutions to a 2-dimensional multi-objective opti-
mization problem. Each non-dominated front in it’s own color. For example:
The first non-dominated front is red, the second front is black, the last (8th)
Pareto front is in green.

Within the fronts that the population is sorted into, crowding distance is
measured, which is used as a score to maintain diversity within the population.
The solutions which have the lowest or highest value on any of the objectives will
have infinite crowding distance. All other solutions will have a crowding distance
which scales with the distance to their closest neighbors, measured individually
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along all objectives and then added to get a single number[10, p. 185].
NSGA-II uses a combination of binary tournament selection (where

pairs of solutions are selected from the population and the better one is chosen),
crossover, and mutation to generate a new population from the current popu-
lation of size µ, which is then merged with the current population, after which
the best µ solutions are chosen to end up with the next generation. The first
non-dominated front takes precedent over the second, the second over the third,
and so forth, and when a selection has to be made within one single front, the
individuals with the highest crowding distance are chosen[1, p. 186].

NSGA-II was introduced in 2002 as an algorithm that attempted to alleviate
the three difficulties for which MOEAs using non-dominated sorting were mainly
criticized[10, p. 182]:

• High computational complexity, more specifically being computationally
expensive for large population sizes

• The lack of elitism, where good solutions get the opportunity to survive
for many generations

• The need for specifying a parameter (specifically for ensuring diversity,
the so-called sharing parameter), considered undesirable

NSGA-II is ”[arguably] one of the most popular Pareto dominance based
MOEAs” (April 2009)[7, p. 285] and ”the most frequently-used Pareto domi-
nance based EMO algorithm in the literature” (April 2015)[1, p. 267].

Non-dominated sorting

A naive approach to non-dominated sorting would be to iterate through all
possible pairs of solutions and check whether one dominates the other, while
keeping track of the solutions that so far are non-dominated, then mark all the
undominated ones with their non-domination rank, temporarily remove them
from the population, and start over with the rest of the population until the en-
tire population has been sorted. This however has a complexity of O(MN3)[10,
p. 184].

The approach which we will be using has a complexity of O(MN2)[10,
p. 184]. While going through all possible pairs of solutions, one keeps track
for every solution which solutions it dominates as well as a counter of how
many solutions it is dominated by. To get the first non-dominated front, one
goes through the population to find all solutions with their counter at 0. To find
the other fronts, one simply iterates through all the lists of dominated solutions
that are kept for the previous front, and for all these solutions decrements their
counter. If any counter reaches 0, it is part of the next front (as apparently
everything that dominated it was in a previous front).

Both approaches are taken from [10, p. 184].

10



Crowding distance

The crowding distance is another measure for the fitness of solutions within
NSGA-II, one that is used for solutions within the same Pareto front. The idea
is to quantify the significance of a solution to maintaining diversity. Solutions
which are on the extremes of any objective will have infinite crowding distance.
Other solutions will have a crowding distance relating roughly to how close a
solution is to its nearest neighbors.

One starts by initializing the crowding distance for every solution at 0. Then
one iterates through the objectives, and for each objective one sorts the solution
according to that objective. The first and last solution get their crowding dis-
tance set to infinity, and for all other solutions one adds the difference between
the next and the previous solution.

Together with non-dominated sorting we can define the crowded-comparison
operator, which will combine the measures of non-domination rank and crowding
distance into one general measure that can be used on any solutions within an
NSGA-II population.

Definition 2.2.2. The crowded-comparison operator is defined as follows
[10, p. 185]:

• If two solutions differ in non-domination rank, then the one with the lower
non-domination rank dominates the other.

• If two solutions are of the same non-domination rank, then the one with
the higher crowding distance dominates the other.

Now we can recap how NSGA-II works. One starts with some randomly
generated population and assigns non-domination ranks as well as crowding
distances. Then, until some stopping criterion has been met, one repeats the
following steps:

1. Using (binary tournament) selection, crossover and mutation, generate a
new population and combine it with the current population.

2. Assign non-domination ranks as well as crowding distances.

3. Create the new generation by adding as many non-dominated fronts as
fit, starting at the first, according to the population size.

4. If this leaves room in the next generation (because even though it is smaller
than the population size permits, adding the next non-dominated front
would make it greater than permitted) fill the remaining space with the
solutions from the next front that have the highest crowding distance.

2.2.2 MOEA/D

MOEA/D is a decomposition-based EMO algorithm, where a multi-objective
problem is decomposed into a number of single-objective problems. In MOEA/D
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one starts with a number of weight vectors which attribute weights to the
various objectives. Using a scalarizing function the weight vectors are turned
into mappings from the solution space to a single real number, defining the
objective for that weight vector[1, p. 268].

The weights for the various objectives are selected from {0, 1
H ,

2
H , . . . , 1},

where H is freely specified integer. The weight vectors are chosen to be all
vectors that can be formed using these numbers such that the weights sum up
to one. As such, the number of weight vectors scales with H [1, p. 286]. There
are multiple ways to define a scalarizing function based on the weights, more on
that will be explained later.

In MOEA/D every weight vector has one and only one solution attributed
to it. Thus the H parameter together with the number of dimensions to the
problem determines the population size[1, p. 268,270].

The weight vectors will have a number of neighbors associated with them.
The exact number of neighbors can be specified using a parameter, the neigh-
borhood size. Which vectors are neighbors to which is decided based on the
Euclidean distance between them. Vectors that are closer to each other are
preferred to be neighbors over vectors that are distant from each other. Within
these neighborhoods new solutions are generated and compared to the currently
held solutions as candidates for replacing them[1, p. 268].

The basic assumption of MOEA/D is that a uniformity of weight vectors
will naturally lead to a diversity of Pareto optimal solutions. When the Pareto
front is close to the hyperplane

∑M
i=1 fi = 1 in objective space it is thought

that MOEA/D can obtain uniformly distributed Pareto optimal solutions, but
when the Pareto front is complex, this basic assumption of MOEA/D may be
violated[21, p. 234]. There are a number of variations on MOEA/D to be found
in the literature that attempt to use adaptive weight adjustment to adapt to
the shape of a more complex Pareto front, such as [21].

It is possible that MOEA/D will find unique solutions for each weight vector,
but this is not always the case. ”The number of obtained non-dominated solu-
tions by MOEA/D is often much smaller than the number of weight vectors”[3,
p. 170] because a single good solution can be shared by multiple weight vectors
and not all solutions are always non-dominated[3, p. 170], thus the population
may contain solutions that are not included in the approximation of the Pareto
front.

Neighborhood size

There are some obvious difficulties identified with the strategy employed by
MOEA/D when it comes to the size of the neighborhoods. For example, a
solution could be generated within a neighborhood, which is an improvement
for one of the weight vectors which is not in that neighborhood. It seems like this
could easily be remedied by using a large neighborhood size, but this introduces
the problem that the diversity of solutions may rapidly decrease, because when
a solution is found that is good for a large number of vectors, it will replace the
current solution of all these vectors thus vastly reducing the diversity[3, p. 173-
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174]. There is no obvious best choice for the neighborhood size either, as in [1,
p. 276] the best specification for neighborhood size varied between 5, 10 and
50, depending on both the problem that was being solved and the performance
indicator used.

However, in practice it seems like a minor detail. Experiments show that
MOEA/D is not very sensitive to the neighborhood size, except in that it should
not be exceptionally small. A neighborhood size of around 10 is generally found
to be effective, though this may be a consequence of the specific problem and
other settings of the algorithm[4, p. 727-729][1, p. 276].

Scalarizing functions

In MOEA/D there are three methods to use the weights to create concrete
scalarizing functions (in the original paper, [4, p. 713-715], at least. The method
is generic enough that one could use an entirely different scalarizing function
instead).

• Weighted sum, where the output of the scalarizing function is just the
weighted sum of performance on the various objectives, weighted exactly
as described by the weight vector. One problem with the weighted sum
approach is that in the case of non-concave Pareto fronts not every Pareto
optimal solution can be found[4, p. 713].

• Weighted Tchebycheff, which uses some reference point z∗ in addition
to the weight vector w and defines the function

fTE(x|w, z∗) = max
i=1,2,...,k

{wi ∗ |z∗i − fi(x)|}

which is to be minimized. In [4, p. 713] the reference point was defined as

z∗i = max
x∈Ω
{fi(x)}

where Ω is the union of all populations so far. (According to [1, p. 268]
though, it was scaled by a factor of 1.1, which is also what they use). In
other words, it tries to minimize the maximum distance over all objectives
in respect to a value 10% higher than their overall maximum value ever
recorded in a population, where these distances are weighed as specified
in the weight vector.

• Penalty-based boundary intersection (PBI). In this case the follow-
ing function is to be minimized:

fPBI(x|w, z∗) = d1 + θd2

where

d1 =
||(z∗ − f(x))Tw||

||w||
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and
d2 = ||f(x)− (z∗ − d1

w

||w||
)||

where θ is some user defined parameter, which in [4, p. 724] was 5 (though
they acknowledge that finding the right value may ”require a bit more
human effort”[4, p. 724]) and in [1] varied over 0.01, 0.1, 1 and 5. w refers
to the weight vector. There is some reference point z∗ corresponding to
the topmost boundary, just as with weighted Tchebycheff. The idea is that
from this reference point lines emanate in various directions corresponding
to the weight vector, along which the solutions are scored according to how
close they get to the reference point (d1). Because forcing the solutions to
be on the line would create an equality constraint, which is undesirable,
deviation from the line is instead allowed but penalized (d2)[4, p. 714].

Figure 2.3: Contour lines illustrating the effect of the various scalarizing func-
tions. The weight vector is shown as an arrow. Source: [1, p. 268]

The choice of scalarizing function can be very significant. For example, in
one experiment in [1, p. 274] (the 10-500 multidimensional knapsack problem,
performance measured in hypervolume relative to the origin) MOEA/D using
Tchebycheff was found to perform only 87.7% as good compared to when the
weighted sum scalarizing function was used. In the exact same context, PBI
was found to be between 99.7% and 61.9% as good, depending on the choice of
θ, where θ = 0.01 was found to perform best and θ = 5 was found to perform
worst. However, there is no objectively best scalarizing function. Simply by
varying the number of dimensions of the problem and keeping everything else
the same, either the Tchebycheff, weighted sum or PBI was found to perform
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the best. Within PBI, the best value of θ was either 5 or 0.01 in this particular
set of experiments.

Now we can recap exactly how MOEA/D works:
One starts be generating all possible weight vectors based on the number

of dimensions M and the parameter H, and attributing random solutions to
them. Then, while the stopping criterion has not been met, one repeats the
following instructions: For each weight vector, select two solutions from its
neighborhood, and apply crossover and mutation to generate a new solution.
Using the scalarizing function, compare this to the current solution attributed
to each weight vector in the neighborhood and if it scores better, replace the
current solution with it[1, p. 267-268][4, p. 713-716].

Variants

Many variants on MOEA/D have been suggested. For example, it has been
suggested that the various sub-problems of MOEA/D may have different com-
putational difficulties and therefore it would be reasonable to assign different
amounts of computational resources to different problems, leading to the idea
of MOEA/D-DRA, with dynamical resource allocation[5, p. 2].

As previously stated, the basic assumption of MOEA/D is that it can ob-
tain a diversity of Pareto optimal solutions by having uniformity of the weight
vectors, which works well if the Pareto front is close to the hyper-plane given
by

∑m
i=1 fi = 1. This assumption may be violated, leading to a situation where

several sub-problems of MOEA/D will have the same optimal solution, and as
such computing effort is wasted on trying to optimize two identical problems.
It is also possible that at the same time, there are non-dominated solutions dis-
tributed in a narrow gap in one of the objectives, which don’t correspond nicely
to any weight vector. In an attempt to fix this problem MOEA/D-AWA was
introduced, which among other things does adaptive weight adjustment, where
sub-problems are deleted from crowded parts of the Pareto front and new sub-
problems introduced into other parts of the Pareto front. Experimentally it was
shown that this approach indeed helps MOEA/D to obtain better uniformity in
cases where the Pareto front has a sharp peak and a low tail, and it also performs
better on low-dimensional Pareto fronts in many-objective problems. On prob-
lems with a discontinuous Pareto front the adaptive weight adjustment helps to
recognize discontinuous parts of the Pareto front and reduce the computational
effort spent on these parts[21, p. 234].

Though NSGA-III is arguably a successor of NSGA-II rather than MOEA/D
(having been created by the same author and sharing the NSGA name), NSGA-
III uses an approach similar to MOEA/D in that it explicitly searches in a
number of different directions which are uniformly distributed, except NSGA-
III defines multiple reference points rather than search directions. NSGA-III
uses this mainly to maintain diversity on top of the non-dominated sorting
approach which is also seen in MOEA/D. NSGA-III is explicitly designed to
be able to handle problems with four or more objectives. Experimentally it
outperformed MOEA/D on various but not all test problems which were chosen
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from the DTLZ and WFG problems[11].
Another variant is MOEA/D-EGO, which uses Gaussian stochastic process

models on top of the standard MOEA/D. That is to say that the objective func-
tions are based on a Gaussian stochastic process. It is aimed at the situation
where the objective function is computationally very expensive and reduces the
actual calculation of the objective functions to only the initial population, and
a limited number of the generated solutions when the model deems these to be
valuable to evaluate for model improvement. MOEA/D-EGO was experimen-
tally not compared to either MOEA/D or NSGA-II, and as such there are no
real results relevant to this document. However, it is perhaps interesting to note
that it offers the possibility of some parallelism over its competitors, by virtue
of the MOEA/D-based design[6, p. 2].

And then there is MOEA/D-ACO, which attempts to combine MOEA/D
with ant colony optimization. Knowledge about the problem is discovered dur-
ing the search and represented as a pheromone matrix in which the value for
any solution component is based on an empirical measurement of how likely
this component is present in a promising solution, and some problem-specific
information is generated before the problem to create a heuristic information
matrix. In MOEA/D-ACO every weight-vector has its own associated ant which
uses a pheromone matrix and heuristic information matrix to probabilistically
generate new solutions. Each ant has its own heuristic information matrix,
which for example contains information about the price-to-weight ratio of items
in a knapsack problem. The pheromone matrices are shared to some extent,
with weight vectors having been grouped and the ants of each group sharing
a pheromone matrix. In their experimental results they found that MOEA/D-
ACO outperformed MOEA/D-GA (yet another variant, MOEA/D with local
search) in the context of a knapsack problem[27, p. 1845-1846,1849].

Though it is hard to make an exact statement about such differences, it seems
like in the literature there are a lot more variants of MOEA/D than for example
of NSGA-II. Though no hard conclusions can be drawn from this, it might give
us to wonder whether MOEA/D perhaps lends itself especially well to being
adapted with extra mechanisms to optimize it for certain specialized purposes.
Or a perhaps more interesting conclusion could be that within MOEA/D there
is a lot of room for improvement.
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Chapter 3

Comparing NSGA-II and
MOEA/D

3.1 Problem-dependence

Perhaps a good central point of departure is to notice that claims of superior-
ity of either NSGA-II or MOEA/D have to be specific to the problem
that the algorithms are being tested on.

This point is most clearly illustrated when NSGA-II and MOEA/D (and
some other algorithms as well) are compared on a large variety of test prob-
lems, such as WFG and DLTZ problems and variations on them. Which one
is better purely depends on the problem. The same variation can be observed
within MOEA/D. Tchebycheff, PBI and weighted sum are all the best approach
on some problem and the worst approach on some other problem (within the
scope of the algorithms here named)[3, p. 177-178,180-182]. As such a simple
comparison of NSGA-II or MOEA/D in terms of which is better, is not of much
use. However, it might instead be interesting to research what the determining
factors are for whether NSGA-II or MOEA/D will perform better.

A few factors were identified as contributing to the high-performance of
recently proposed weight vector-based algorithms on certain problems [3, p. 188].
(Note: the paper cited here probably referred to more recent algorithms of this
sort, but as these factors mainly have to do with a decompositional approach
using uniformly distributed weight-vectors, one would expect these factors to
be significant for MOEA/D as well):

• The triangular shape of the Pareto front which can be said to be
similar in shape to the distribution of weight vectors

• A small Pareto front in comparison to the size of the feasible region in
objective-space.

• Separable decision variables, allowing for easy convergence and diver-
sification and thereby making it possible to focus on the uniformity of
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obtained solutions over the Pareto front.

Apart from varying the shape of the Pareto front, we might also look at
varying the density of points in the Pareto front in certain areas, as the
identified reason that the shape would matter is its similarity to the shape of the
distribution of weight vectors. This distribution is not just of a certain shape,
but also uniform, like the distribution of weight vectors.

Experimental results have shown that the performance of NSGA-II relative
to MOEA/D improves when objectives become more correlated, and when there
is a large number of dimensions (in particular 6 or more) NSGA-II outperforms
some or all forms of MOEA/D[1, p. 279]. Thus it seems that when the ob-
jectives are highly correlated, the search ability of NSGA-II does not severely
degrade when the number of objectives increases while that of MOEA/D does.
Problems like multi-objective knapsack, and variations on the DLTZ and WFG
test problems have been used repeatedly to show that Pareto-Dominance based
algorithms face difficulties when the number of objectives increases [3, p. 170].
This indicates that the correlation between objectives may be of interest,
as well as the number of objectives.

However, the size of the Pareto front relative to the decision space was
already identified as a potential factor of interest and within ρMNK-landscapes
it has been shown that the ratio of the number of Pareto optimal solutions
compared to the size of the search space varies with the correlation between
objectives. This ratio goes down as objectives become more correlated[19].
Thus, even though the correlation between objectives may be a significant factor
to study it may be hard to separate this from the factor of relative size of the
Pareto front.

In another experiment, it was found that NSGA-II outperforms some al-
gorithms designed specially for many-objective optimization (loosely de-
fined as having 4 or more objectives) on some problems with relatively low
dimensions (DTLZ7 and WFG8 are given as examples). MOEA/D’s search
ability is found to work very well on some problems (such as DTLZ2, DTLZ3
and WFG1) but encounters great difficulties on others (such as DTLZ7 and
WFG8). It is also claimed that ”MOEA/D appears to be more competitive in
relatively low-dimensional problems”[8, p. 13]. This further reinforces the idea
that that the relative performance of algorithms is highly problem-dependent
and it contributes to another of the identified factors for research: The number
of objectives.

3.2 Problems with current test suites

In the test suites we have seen so far, we have seen very little attempt to
isolate particular factors that make a problem difficult. Instead, we see attempts
in providing a test suite that tries to reflect the sort of difficulties that one
encounters in a real-world problem, such as DTLZ[13, p. 3], or which mostly
combines a number of complexities to create test problems such as WFG[18,
p. 14].
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What we will try to do instead, is to isolate certain difficulties as much as
possible, such that we can make a harder claim about what exactly an algorithm
is good or bad at.

3.3 Constructing test-problems

Out of the test-problems seen so far, ρMNK-landscapes may be of particular
interest. Within ρMNK-landscapes the number of objectives and the correlation
can be exactly specified. These are the parameters ρ and M.

Another one of the potential factors, that of separable decision variables, is
also one that could be researched using ρMNK-landscapes, as the parameter K
in this context has the exact role of varying how many variables influence each
other.

As stated before the size of the Pareto front relative to the feasible region
varies with the correlation between objectives, which can be specified within
ρMNK-landscapes. However, we might be interested in finding the effect of one
of these factors apart from the other in which case ρMNK-landscapes might not
offer a straightforward approach.

The uniformity and shape of the Pareto front could perhaps be modified
simply by a transformation on the coordinates of the objective space.

In addition to this, the paper that introduced DTLZ problems also offers
some ways to design test problems. Especially interesting is the Bottom-Up
Approach where one simply chooses a Pareto front which one describes as a
parametric surface involving M − 1 variables where M is the number of objec-
tives of the problem. One can then build an objective space by adding another
variable in the parametric equations scaling the values up or down. Then one
constructs the decision space by mapping the decision variables to the parame-
ters of the parametric surface. The exact way in which this is done can be varied
(with having multiple (local) optima, being linear or not, etc.) and as such the
difficulty in converging to the Pareto front can be regulated[13, p. 7-11].

3.4 Research Question

A number of factors that may influence the relative performance of NSGA-II
and MOEA/D have been identified, namely:

• The separability of decision variables.

• The number of objectives.

• The correlation between objectives.

• The shape of the Pareto front (especially its similarity to the shape of
distribution of weight vectors).

• The uniformity of distribution of solutions within the Pareto front.
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• The size of the Pareto front compared to the size of the feasible region in
objective-space.

The main research question would be: What is the influence of these factors
on the relative performance between NSGA-II and MOEA/D experimentally?
Which we can research on an individual basis, resulting in 6 sub-questions.

This could be done by designing test problems for these factors in which
they are the predominant factor, or in which they can be varied. (For example,
a test problem in which we can set the exact correlation between objectives
could be used to measure the effect of this factor on the relative performance
between NSGA-II and MOEA/D). There are a number of ways to measure the
performance of MOEAs, of which the hypervolume of the Pareto-dominated
part of the domain seems to be the best choice according to the literature.
However, the drawback of hypervolume is that it may be expensive to compute,
so exceptions could be made to this.

Partially this would reproduce some similar research in new contexts (for
example, in [1] the effect of correlation and number of objectives is measured,
but in the context of knapsack-problems only, while we would use ρMNK-
landscapes), but it would also include some new experiments for the other
factors.

As MOEA/D and NSGA-II are rather different in their approach, one being
decomposition-based and the other non-domination-based, these results may
also lead to further insight in the relative strengths and weaknesses of such
approaches more broadly.

Lastly such results may inspire further experiments to investigate why the
observed phenomena are there. One could investigate to what extent the relative
performance of these algorithms correlates with for example their ability to
maintain a diverse population. The exact measurements would depend on the
experimental results when testing the effect of the aforementioned factors.
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Chapter 4

Experiments with Specified
Attributes

4.1 Experiments using ρMNK-Landscapes

Our main focus in these experiments is to investigate the various factors in as
much isolation as possible.

For the most part this can be done, but the size of the Pareto front is an
exception. The dimensionality as well as the correlation between objectives for
a large part determine the size of the Pareto front. Therefore we will leave this
factor out.

4.1.1 Methodology

In general, we will use a running time of 30000 evaluations per algorithm, and
repeat the experiments 10 times (for each repetition of an experiment a new
landscape will be generated). All listed scores are based on the average of the
10 repetitions, and expressed as a percentage of the best performer, so the best
result always has a score of 100.

The population size will be kept at (or as close as possible to) 50. This is
to ensure that it’s feasible to calculate the hypervolume of the Pareto front, as
that is the performance metric we’ll be using. This limit of feasibility is purely
a consequence of the speed of the computer on which the algorithm will be
performed.

We use uniform crossover with a swapping probability of 1
2 , and a mutation

rate of one over twice the number of variables, which for the most part will end
up being 1

40 .
Additionally, to test for statistical significance we use the Mann-Whitney U

test, and call a difference significant if p < 0.05.
We will show visualizations of the results with most of the experiments. The

visualizations within one figure are all the result of the exact same problem.
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(The problem is randomly generated, but the same problem is used for each
algorithm in the visualizations; as opposed to generating a separate random
problem for each algorithm).

4.1.2 Separability

To measure the effect of the correlation between objectives we use ρMNK-
landscapes and vary the ρ parameter, as described earlier.

We have some number of decision variables (N), which all have an attributed
fitness function which also involves a number of variables after it (K), mapping
every possible input to some random number between 0 and 1. These fitness
functions can be averaged to get the fitness of the entire solution. The di-
mensionality of the functions can be varied (M) and the random values can
be generated in a way which creates some desired correlation (ρ) between the
overall fitness functions.

When we are interested in the effect of separability of decision variables, we
can simply vary the number K. Which values are possible is limited by two
factors: It’s mathematically impossible to have K ≥ N , and the amount of
memory needed to store the functions scales exponentially in K (because for
every gene and every dimension of the problem, we store 2K+1 values).

As we are not trying to measure the effect of the number of dimensions, we
will simply use M = 2 because it is easiest to visualize and allows the most
control over the population size, and ρ = 0 because we want to keep its effect
as neutral as possible. For K and N we find experimentally that for reasons of
feasibility we can let K go up to about 16 when the solution size N is 20. So
we will vary K over 0, 1, 2, 4, 8 and 16.

Results

K NSGA-II WS TCH PBI-5 PBI-0.1
0 100 99.823 99.991 99.965 99.703
1 99.455 99.778 100 99.393 98.599
2 99.783 99.374 99.767 100 98.808
4 100 96.447 98.644 99.173 96.391
8 100 97.427 98.556 98.944 95.328
16 100 93.908 92.767 94.480 92.172
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Figure 4.1: NSGA-II, MOEA/D (WS), MOEA/D (TCH), MOEA/D (PBI-5),
MOEA/D (PBI-0.1), K = 0
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Figure 4.2: NSGA-II, MOEA/D (WS), MOEA/D (TCH), MOEA/D (PBI-5),
MOEA/D (PBI-0.1), K = 16

Discussion

NSGA-II seems like a clear winner as it is always within 99.45% of the best score,
and the MOEA/D variants seem to drop off relative to it as K gets higher. For
K = 16, the difference between NSGA-II and every other method is found to
be statistically significant.

Thus it seems that indeed, as it becomes harder to separate variables, NSGA-
II seems to do relatively better. Though it must be said that this is at rather
high values of K because at K > 10 all variables are connected in some way.

To explain this result we might hypothesize the following: As the number
of variables that are connected to each other increases, the fitness correlation
between solutions and their offspring under either mutation or recombination
should become lower. Suppose we were to mutate one bit in a solution. If
K = 0 the effect on the fitness is at most 1

N in general and 1
20 in our case, as

the fitness function is the average of each variable’s associated fitness function,
which is based only on itself. But in the case where K = 16, this is 17

20 (as
a solution appears in the fitness contribution of 16 other genes on top of its
own contribution). Thus, it may occur more frequently in MOEA/D that a
good solution is generated (good in the sense of being close to the Pareto front)
but is rejected because it wasn’t good within the neighborhood where it was
generated, when K is higher. NSGA-II just cares about the distance to the
Pareto front, so it should have no such problems. A simple way to test this
would be to see whether it makes a difference to set the neighborhood size to
the size of the population, and re-run the experiment.
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K NSGA-II WS TCH PBI-5 PBI-0.1
0 100 99.884 99.991 99.921 99.636
1 99.851 99.633 99.558 100 99.140
2 99.829 99.599 100 99.935 99.342
4 99.383 95.710 100 97.526 97.723
8 100 99.297 98.526 98.426 97.705
16 100 98.403 97.063 97.351 95.812

Within these results there is less variation than in the first result, so it seems
like the phenomena just hypothesized is playing a role. The differences between
NSGA-II and MOEA/D under K = 16 are only statistically significant for PBI-
0.1 and TCH. However, it does not remove the variation to the point of there
being no clear difference depending on K.

A problem with using NK-Landscapes is that changing the K parameter
could affect the shape of the Pareto front, as well as how solutions are distributed
within the Pareto front. This limits our ability to explain all phenomena in terms
of separability and its consequences.

One might also wonder whether the combination of N = 20 and K = 16
doesn’t make the problem so complex as to be indistinguishable from random-
ness. Flipping one variable would (more or less randomly) affect the value of 16
variables before it, as their fitness contributions all depend on the next K = 16
variables.

To test whether there is any significant difference, a problem was specified
where solutions are also bit-strings of length 20, but every bit-string has its
own completely random fitness value (between 0 and 1) for every objective. We
found the following result:

K NSGA-II WS TCH PBI-5 PBI-0.1
0 100 99.336 99.602 99.563 98.646

The relative order between the algorithms is still intact, however, we see
much smaller differences. This indicates that there is still some structure present
in the ρMNK problems of the sort we tested that algorithms can take more or
less advantage of. It must be said though, that in this case the difference between
NSGA-II and all MOEA/D variants is again statistically significant.

4.1.3 Number of objectives

To study the effect of the number of objectives we also use ρMNK-landscapes.
We will keep p = 0 and N = 20 and we set K = 4, which is a somewhat
arbitrary choice. M we can vary, but we will have to keep some practicalities
in mind here. When the dimensionality gets higher we know from theory that
the proportion of solutions in the Pareto-front gets higher. We have only the
computational power to compute hypervolumes of Pareto-fronts of about 50
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solutions, and MOEA/D is limited in it’s choice of population size depending
on M . For M = 2, the allowed population sizes for MOEA/D are all integers
above 2, but for example for M = 20, the smallest allowed population sizes are
20 and 210, where 210 might already be problematically high as it could produce
a Pareto-front with significantly more solutions than 50. Unless we want to have
a MOEA/D in which every search direction is given by a unit vector, we can
handle at most M = 9. And thus we will vary M over 2, 4, 6, 8, 9.

The population size will be given by whatever the highest population size
allowed for MOEA/D of at most 55 is (the exact number will vary depending
on M). NSGA-II will use the same population size.

Results
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Figure 4.3: NSGA-II, MOEA/D (WS), MOEA/D (TCH), MOEA/D (PBI-5),
MOEA/D (PBI-0.1), M = 2
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Figure 4.4: NSGA-II, MOEA/D (WS), MOEA/D (TCH), MOEA/D (PBI-5),
MOEA/D (PBI-0.1), M = 9; only the first two objectives

M NSGA-II WS TCH PBI-5 PBI-0.1
2 99.531 96.830 100 98.630 97.236
4 87.564 100 99.207 89.206 98.800
6 38.140 94.430 95.902 75.498 100
8 62.548 93.933 91.607 63.928 100
9 34.635 94.029 92.862 58.444 100

Results

We see a great amount of variation in results, not just between NSGA-II and
MOEA/D, but between all variants. It seems that as the number of objectives
increases, all variants of MOEA/D except PBI with θ = 5 become clearly better
than NSGA-II. The difference between NSGA-II and all other algorithms is sta-
tistically significant, as is the difference between PBI-5 and all other algorithms,
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at 9 dimensions. The same goes for 8 dimensions, except between NSGA-II and
PBI-5.

It’s interesting to see that the algorithm that is clearly the best at accom-
modating a large number of objectives, PBI with θ = 0.1, is incidentally the
algorithm most like (in terms of design) the algorithm which within MOEA/D
is clearly the worst: PBI with θ = 5. The only difference is in the θ parame-
ter, which regulates for the various directions in which the search takes place
how strongly deviation from the exact direction is to be penalized. One would
almost suggest that it is important to not care too much about the direction
of the search, but if that was the only factor to explain the result, it would be
inexplicable why NSGA-II, which doesn’t care about directions of search except
for wanting results not to be too close to each other, performs so badly.

The performance of NSGA-II can be explained quite easily. At 6 objec-
tives, it starts occurring quite frequently that 100% of the solutions within a
generation, including those generated by mutation and/or crossover, are non-
dominated. At 8 objectives this happens after 10 generations already, and the
number of non-dominated solutions typically doesn’t go below 90%. As the se-
lection mechanism within NSGA-II is non-dominated sorting, this means that
there is very low selection pressure to go towards the Pareto front, and in some
generations (when 100% of the solutions are non-dominated) no selection pres-
sure at all to do so. However, for MOEA/D there is a variety of fitness functions
(corresponding to their weight vectors), which all maintain their own selection
pressure.

What’s left to explain is why the value of θ has such a big impact as the
number of objectives increases. The difference that θ makes, is that it regulates
how high the penalty should be for deviating from the exact direction set by
the weight vector. Its effect is linear; for θ = 5 the penalty is 50 times as high
as it is for θ = 0.1. What may explain the behavior is that as the number of
objectives increases, solutions generally are less close to the directions set by
the weight vectors, as there are more parameters to spread over but there is
the same number of solutions (as this is regulated purely by N , which was the
same in all situations). Under a low penalty for this, such as θ = 0.1, this does
not do much, but under θ = 5, it could have the effect of rejecting lots of good
solutions (good as in being close to the Pareto front) because they weren’t close
enough to any weight vector. We will later use a continuous test problem, in
which equally good solutions exist in all directions. It will be interesting to see
if the difference goes away.

4.1.4 Correlation between objectives

To research the effect of the correlation between objectives we can again do
something similar as with the previous experiments. We can use ρMNK land-
scapes where we fix M = 2, N = 20, K = 4. The correlation, ρ, will be varied
over −0.9, −0.5, 0, 0.5, 0.9.
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Results
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Figure 4.5: NSGA-II, MOEA/D (WS), MOEA/D (TCH), MOEA/D (PBI-5),
MOEA/D (PBI-0.1), p = −0.9
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Figure 4.6: NSGA-II, MOEA/D (WS), MOEA/D (TCH), MOEA/D (PBI-5),
MOEA/D (PBI-0.1), p = 0.9

ρ NSGA-II WS TCH PBI-5 PBI-0.1
−0.9 100 95.056 99.004 99.340 97.932
−0.5 99.471 98.278 100 99.321 97.783
0 99.823 100 96.511 99.242 98.786
0.5 100 99.326 98.703 98.660 96.106
0.9 98.968 98.467 100 99.475 99.305

Discussion

The results seem to be characterized mostly by somewhat of a lack of clear
patterns.

This contradicts what one would expect based on [1, p. 279], where there
was a clear trend that the relative performance of NSGA-II increases when the
correlation increases. However, in that paper the experiment was performed
on problems of 4, 6, 8 and 10 dimensions. It could be the case that the effect
of correlated objectives depends on the number of objectives. Another reason
could be that the effect is somehow specific to the shape of the problem, or
the specific way that ’correlated problems’ are constructed in [1], namely as
weighted averages of uncorrelated problems[1, p. 267].

Therefore, it’s worth attempting to see if we get clearer trends in the relative
performance of the algorithms at a high number of dimensions. If not, we may
have to conclude that correlation in itself does not have a clear effect, and it’s
dependent on the test problem and its construction.
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The following results were created using 9 objectives (different values of p
have been chosen because we cannot generate a problem with all negatively
correlated objectives when there are more than 2).

ρ NSGA-II WS TCH PBI-5 PBI-0.1
0 41.591 92.498 91.459 55.903 100
0.25 81.251 98.358 100 52.071 95.965
0.5 99.197 97.166 100 62.155 97.250
0.75 97.113 99.479 100 90.654 99.182
0.9 99.774 100 87.899 73.014 92.556
0.95 100 90.718 88.662 72.659 77.351

Here it does seem like the same effect is present as described in [1, p. 279].
NSGA-II starts catching up to the other algorithms at higher correlations and
overtaking them at extremes. At p = 0.9 the difference between it and other
algorithms isn’t statistically significant anymore. This is a great difference from
what normally happens at M = 9.

This is a potentially interesting phenomenon for further research. We have
the following hypothesis for why we get the results that we do: The higher the
correlation between objectives, the smaller the Pareto front will be compared
to the rest of the search space, while the more objectives, the more solutions
are part of the Pareto front. We have already seen that as the number of
objectives increases, NSGA-II has trouble in maintaining any selection pressure
as there are fewer Pareto-dominance relations. Perhaps the increased correlation
between objectives undoes some of this ’damage’ to NSGA-II. We will later get
back to this in detail (chapter 5).

4.1.5 Shape of the Pareto front

Specifically, we are interested in the effect of the shape of the Pareto front when
it doesn’t nicely match the distribution of weight vectors that MOEA/D uses.
ρMNK-Landscapes themselves do not offer a simple way to regulate the shape
of the Pareto front, but we can slightly modify the problem to allow for this.
We introduce an extra parameter, s ∈ [0, 1], which regulates how much the
shape is transformed. For s = 0, there is no transformation, and for s = 1, the
transformation is extreme. We simply transform the solutions of the ρMNK-
Problem to polar coordinates and then change the argument of the solutions to
be closer to either the point π

8 or 3π
8 , whatever they’re closest to, by multiplying

their distance to this argument by 1− s. This creates two increasingly smaller
(as s goes to 1) pockets of solutions, as far as their directions from the origin
go.
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Results

s NSGA-II WS TCH PBI-5 PBI-0.1
0 99.928 100 99.285 99.792 99.174
0.2 100 99.446 99.005 99.199 98.100
0.4 98.435 99.689 100 96.888 99.397
0.6 100 97.417 96.757 96.828 98.389
0.8 98.346 98.442 100 96.696 98.648
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Figure 4.7: NSGA-II, MOEA/D (WS), MOEA/D (TCH), MOEA/D (PBI-5),
MOEA/D (PBI-0.1), s = 0.4

Discussion

We see no clear trends in these results. There also aren’t that many relations of
statistical significance, as at no point is any algorithm different from all others
in a statistically significant way.

4.1.6 Uniformity

Similar to the previous factor, we can explore the effect of uniformity by trans-
lating the argument of solutions when viewed as polar coordinates. We can
introduce a new parameter, u ∈ [0, 1], and modify the argument, as seen on a
scale of 0 to 1 rather than 0 to π

2 to the power of u. At u = 1, this has no effect,
at u = 0, all solutions will be concentrated on the axis of one objective, and in
between, for example at u = 0.5 we will have an effect that, except for solutions
with an argument of π

2 , their argument will decrease, and the higher the argu-
ment, the more it decreases, which will make the solutions more concentrated
at the bottom and more sparse at the top, relatively speaking. Of course this
also deforms the space of solutions slightly (at least in effect), as with a high
probability there won’t be any solutions with an argument extremely close to
π
2 , and so there will be a space of increasing size where no solutions are found.
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Results

u NSGA-II WS TCH PBI-5 PBI-0.1
1 99.083 99.317 100 98.948 98.378
0.8 97.630 98.706 100 98.240 95.118
0.6 97.953 99.197 100 99.402 98.362
0.4 99.296 99.141 100 98.935 97.535
0.2 98.882 100 99.706 97.475 97.446
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Figure 4.8: NSGA-II, MOEA/D (WS), MOEA/D (TCH), MOEA/D (PBI-5),
MOEA/D (PBI-0.1), u = 0.4

Discussion

As with the shape, there is no algorithm that’s different from all others in a
statistically significant way at any point, and there don’t seem to be any clear
trends.

4.2 Continuous unit-disk quadrant problems

To not limit our use to just discrete problems, we formulate another problem
to test the algorithms on. The feasible objective space will be given by the top-
right quadrant of the unit-disk, the Pareto front will be the top-right quadrant
of the unit-circle, and the search space will simply be the trivial parametrization
of this space. (This approach is based on that of [13, p. 7,11].) In mathematical
terms the problem is:

f1(r, t) = r ∗ cos(tπ
2

)

f2(r, t) = r ∗ sin(t
π

2
)

Where:

r, t ∈ [0, 1]M

We can also expand this to a multi-dimensional variant:

f1(r, t1, . . . , tM−1) = r ∗ cos(t1) ∗ cos(t2) ∗ · · · ∗ cos(tM−1)
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f2(r, t1, . . . , tM−1) = r ∗ cos(t1) ∗ cos(t2) ∗ · · · ∗ sin(tM−1)

f3(r, t1, . . . , tM−1) = r ∗ cos(t1) ∗ cos(t2) ∗ · · · ∗ sin(tM−2)

. . .

fM−1(r, t1, . . . , tM−1) = r ∗ cos(t1) ∗ sin(t2)

fM (r, t1, . . . , tM−1) = r ∗ sin(t1)

For the two-dimensional variant, we can easily apply the same transforma-
tions as previously to vary the uniformity with which solutions are distributed,
as well as the shape of the Pareto front. However, we now have the advantage
that we know the exact shape, so we aren’t merely distorting it in a way we
can describe, it is also trivial to see what the new objective space looks like.
And when it comes to varying the density, we no longer distort the shape of
the solution space, as the transformation maps the entire unit-disk quadrant to
itself bijectively, except when u = 0.

However, it also comes with a disadvantage. There is no clear way to create
a correlation between objectives, and our options to make the variables less
separable are very limited. We could let the value of r distort θ, or the other
way around, or we would have to introduce more variables.

For the disk-quadrant-based problems, we need another form of crossover
and mutation, as these are problems with continuous variables. We will use
simulated binary crossover[14] (this source does not give an explicit algorithm;
our implementation was instead based on [16, p. 4]) with ηc = 15 and polynomial
mutation[15, p. 2] with ηm = 20, as was used in [13, p. 20].

Also, because this problem is not that difficult to solve, we use a far smaller
number of fitness evaluations as our stopping criterion: 400 fitness evaluations.

4.2.1 Shape of the Pareto front

To use this in the context of the shape of the Pareto front, we can use the same
transformation as with ρMNK-landscapes.

Results
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Figure 4.9: NSGA-II, MOEA/D (WS), MOEA/D (TCH), MOEA/D (PBI-5),
MOEA/D (PBI-0.1), s = 0.4
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s NSGA-II WS TCH PBI-5 PBI-0.1
0 100 97.952 99.396 97.829 98.233
0.2 100 97.841 97.942 98.236 98.210
0.4 100 96.947 98.405 97.604 98.502
0.6 100 97.763 98.988 96.546 98.467
0.8 100 97.734 99.402 96.578 98.752
1 100 99.261 99.874 99.013 99.937

Discussion

The data seems to converge as the shape variable gets smaller. Perhaps the
problem is just too easy at that point, allowing all algorithms to solve it to
near perfection and thus without a lot of differentiation. The significance tests
shows no significant differences at s = 1. We do see a slight dip for some
of the algorithms in the mid-range of values. For s between 0.2 and 0.8 the
difference between NSGA-II and all other algorithms is statistically significant,
and thus we may conclude that indeed, NSGA-II is significantly better than all
of MOEA/D when the shape of the Pareto front is limited to a significantly
smaller subset of all possible directions, except for when it consists only of a
few points.

4.2.2 The separability of decision variables

As stated before, there is not a lot of room for testing this without modifying
the problem, but there is one simple test we can do. Rather than defining:

f1 = r ∗ cos(tπ
2

)

f2 = r ∗ sin(t
π

2
)

We let the optimal value for r depend on t.

Define d = 1− |r−t|
max(t,1−t) , that is to say, d is the difference between r and t

relative to the greatest possible distance between them. We now have a problem
with the exact same Pareto shape, comparable in difficulty, but instead of the
optimum value of r being 1, it will be t.

f1 = d ∗ cos(tπ
2

)

f2 = d ∗ sin(t
π

2
)
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Results

0 10

1

0 10

1

0 10

1

0 10

1

0 10

1

Figure 4.10: NSGA-II, MOEA/D (WS), MOEA/D (TCH), MOEA/D (PBI-5),
MOEA/D (PBI-0.1), separable
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Figure 4.11: NSGA-II, MOEA/D (WS), MOEA/D (TCH), MOEA/D (PBI-5),
MOEA/D (PBI-0.1), inseparable

separable NSGA-II WS TCH PBI-5 PBI-0.1
True 99.913 99.969 100 98.717 99.129
False 98.591 94.388 100 98.446 95.646

Discussion

When we go to an inseparable problem, we see an increase in the relative per-
formance of MOEA/D (TCH) increases, and that of all the others decreases.
Sadly we can not see any larger patterns because we don’t have any variants
that are ”in-between”. However, the difference between MOEA/D (TCH) and
other algorithms is statistically significant in the inseparable case.

4.2.3 The number of objectives

We will use the multi-dimensional variant that was described earlier.

Results
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Figure 4.12: NSGA-II, MOEA/D (WS), MOEA/D (TCH), MOEA/D (PBI-5),
MOEA/D (PBI-0.1), M = 8
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M NSGA-II WS TCH PBI-5 PBI-0.1
2 99.916 100 99.791 98.697 99.096
4 61.604 76.532 97.561 94.342 100
6 18.705 44.639 70.335 82.074 100
8 11.650 49.900 77.660 54.008 100

We see very clearly that MOEA/D is very well equipped to handle the increase
in number of dimensions for this test case. From being not significantly better
than other algorithms (except for PBI-5), it becomes clearly (and statistically
significantly) better than all other algorithms. At 6 and 8 objectives, all differ-
ences are statistically significant as well.

4.2.4 The uniformity

We will use the same technique as was used in the context of ρMNK-landscapes.

Results
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Figure 4.13: NSGA-II, MOEA/D (WS), MOEA/D (TCH), MOEA/D (PBI-5),
MOEA/D (PBI-0.1), u = 0.2

u NSGA-II WS TCH PBI-5 PBI-0.1
1 99.671 100 99.350 98.497 98.731
0.8 100 99.546 99.141 97.745 98.410
0.6 99.251 100 99.355 97.369 97.885
0.4 100 99.288 96.970 95.046 96.284
0.2 100 94.329 85.363 84.475 85.814

Discussion

We see a clear pattern of NSGA-II improving relative to all other algorithms as
the problem is being deformed to reduce the uniformity. At s = 0.4 and s = 0.2
the difference between NSGA-II and other algorithms is statistically significant.
(As is the difference between WS an other algorithms, at s = 0.2.
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Chapter 5

Many-objective
high-correlation problems

We see no interesting patterns when it comes to the correlation between objec-
tives in the standard case. However, we do reproduce a result (and quite clearly
so) previously found by [1], that for some reason the correlation between objec-
tives has an enormous positive effect on the relative performance of NSGA-II
relative to all other variants, when the number of objectives was high (at m = 9,
specifically). This suggests it may be interesting to investigate the interplay be-
tween the correlation between objectives and the number of objectives in their
influence on relative performance.

The following is a hypothesis for what may cause this behavior. For all
algorithms we are using in this research, handling a high number of variables is
a challenge. For NSGA-II however, the challenge is specifically that there is no
real selection pressure because there are very few Pareto dominance relations (as
the number of objectives increases, the probability that of two random solutions
one Pareto dominates the other becomes progressively smaller). However, when
we increase the correlation between objectives, this has the opposite effect.
As the correlation between objectives increases, the probability that of two
random solutions one Pareto dominates the other becomes progressively greater.
Because MOEA/D doesn’t make direct use of Pareto-dominance relations, this
counteraction of the difficulty may still be there, but should be less strong.

To research whether this hypothesis is true, we want to find how the tendency
for Pareto-dominance relations varies over various specifications of the correla-
tion strength, and whether this can explain how the performance of NSGA-II
varies with correlation strength.

We will measure both the hypervolume for a wide variety of correlation
strengths between variables and the probability that out of randomly generated
solutions one dominates the other, and measure correlations, as well as using a
linear regression to see the significance of the latter when the former is controlled
for. We will do the same experiment for MOEA/D.
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The relationship between the correlation between variables (ρ) and the prob-
ability for a Pareto-dominance relation between randomly generated solutions
was found to be 0.98 (p = 3.4 ∗ 10−73, measured using 100 solutions over
ρ = 0, 0.01, . . . , 0.99, M = 9, K = 4, N = 20). So the value of ρ seems to
almost fully determine the probability for Pareto-dominance relations within
this context.

Using the same experiment, but now measuring the hypervolume that our
algorithms reach after 30000 fitness evaluations, we measure the following corre-
lations between the probability of Pareto-dominance relations and hypervolume:

Algorithm Correlation p-value
NSGA-II 0.72 2.0 ∗ 10−17

TCH 0.63 3.2 ∗ 10−12

PBI-5 0.70 5.6 ∗ 10−16

PBI-0.1 0.58 1.7 ∗ 10−10

WS 0.64 5.7 ∗ 10−13

We can further analyze the link between probability of Pareto-dominance
relations and hypervolume by using a linear regression. This gives the following
results:

Algorithm Intercept Slope R2

NSGA-II 0.032 0.091 0.52
TCH 0.045 0.068 0.39
PBI-5 0.023 0.083 0.49
PBI-0.1 0.044 0.062 0.34
WS 0.046 0.046 0.41

This gives us some quite interesting information which seems to confirm our
hypotheses. We see that R2 is the biggest for NSGA-II, which confirms our
hypothesis that the effect of the probability for Pareto dominance relations is
the biggest on NSGA-II. (It is however quite close to that of PBI-5, so it is
perhaps more of an indication than conclusive evidence. Also an R2 of 0.52 is
not that high and tells us that though there is predictive power in this model,
another model may describe the data even better). Furthermore we see that the
slope is highest for NSGA-II, which indicates that for NSGA-II indeed the gain
in hypervolume as the probability of Pareto-dominance increases is the highest.
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Purely based on a visualization a reasonable hypothesis seems to be that
the relation between the probability of Pareto-dominance and hypervolume for
NSGA-II is actually that the probability of Pareto-dominance is proportional to
the square root of the hypervolume. To see how reasonable this hypothesis is,
we do the same analyses, but now using the square of the hypervolume rather
than the hypervolume itself. What we find however, is that the strength of the
correlation, the p-value of the correlation, and the R2 of the linear regression
all get worse.

Correlations:

Algorithm Correlation p-value
NSGA-II 0.57 1.5 ∗ 10−9

TCH 0.50 1.6 ∗ 10−7

PBI-5 0.50 1.3 ∗ 10−7

PBI-0.1 0.45 2.5 ∗ 10−6

WS 0.49 2.8 ∗ 10−7

Linear regression:

Algorithm Intercept Slope R2

NSGA-II 0.00058 0.013 0.31
TCH 0.0016 0.011 0.25
PBI-5 −0.00036 0.012 0.25
PBI-0.1 0.0015 0.010 0.20
WS 0.0017 0.011 0.24
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Chapter 6

Experiments with
Measured Attributes

In this research we have identified a number of potential factors that influence
the relative performance of algorithms and we have seen that our attempts
to vary the presence of these factors have indeed lead to various significant
differences in relative performance.

However, these factors have been specified as parameters in problem gener-
ation or definition. It would perhaps be useful to not just look at parameters
that can be specified, but also to measurable features of problems. In a real-life
scenario, one may not know the shape of the Pareto front ahead of time, nor
the uniformity of the way the solutions are distributed within the feasible part
of the objective space.

Take the following scenario: We have an actual multi-objective optimization
problem to calculate good solutions for a problem we encounter for an applica-
tion in industry. Running the algorithm would take long and be expensive, so
we would like to know ahead of time which algorithm can be expected to be the
best performer. We could take the factors hitherto investigated, but how would
we actually use those? We know for which values of K within a ρMNK-problem
you would rather use NSGA-II instead of MOEA/D, but this real world problem
perhaps isn’t easily compared to ρMNK-problems. We could make an educated
guess, but not much more than that.

To gain predictive power, it would be good to not limit ourselves to spec-
ified parameters, but to also use measured attributes that don’t use infor-
mation about how the problem is constructed. Of course it also comes at a
cost. Specified parameters are known exactly, while the same can of course not
necessarily be said of measured attributes (being measured based on a sample
which may or may not be representative). This may severely limit the predictive
power of these attributes, which is exactly contrary to what we were trying to
achieve.

One example of a measurable attribute is the correlation between the
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fitness of parents and their offspring, under both crossover and mutation.
Another measurable attribute is the tendency for Pareto-dominance, just like

in the previous chapters. What is the probability for there to be a Pareto-
dominance relationship between two randomly generated solutions?

We have also seen that the shape of the objective space of admissible
solutions can matter. It’s hard to know exactly what this shape looks like from
a sample, but we can try to gauge it in the following way: We generate weight
vectors like we do for MOEA/D, using H = 10. Then we attribute solutions
to the vectors based according to which vector gives it the lowest d2 term as
calculated for the scalarizing function PBI. We then take a measure similar to
the Gini-impurity of this distribution. Let W be the set of the counters for the
vectors in no particular order and |X| the population size, then this impurity
measure is defined as: 1 −

∑
w∈W ( w

|X| )
2. (The Gini impurity is defined as

iGini(x) =
∑M
i=1

xi

||x||1 (1− xi

||x||1 ), where x is a vector[31].)

Lastly, of course we can simply measure the correlation between the
various objectives on our randomly generated sample.

We will run 250 random ρMNK-problems, including our extra u and s set-
tings. We will have M = 2, N = 20, K ∈ {0, . . . , 8}, ρ ∈ [0, 0.9]. Because
a slight amount of u or s can already mean a lot of distortion (no matter the
specific value of s, if it is greater than zero it splits the feasible objective space
into two distinct components), instead of varying them randomly over a wide
range of values, u is randomly chosen to be either 1 or 0.5 and s is randomly
chosen to be either 0 or 0.5.

We will analyze the results in two ways. Firstly we will look at whether
these measured statistics have any information by looking at the strength and
p-value of the correlation between any statistic and any algorithm’s fitness, and
secondly we will use all statistics together to, separately for every algorithm,
run a linear regression to see the predictive capabilities in the form of the R2

value.
All p values were smaller than 10−4, so these have been left out. The fol-

lowing table contains correlation strengths except for the last row.

Statistic NSGA-II WS TCH PBI-5 PBI-0.1
Objective correlation 0.51 0.52 0.52 0.51 0.54
Impurity 0.40 0.38 0.38 0.39 0.41
Mutation fitness correlation 0.26 0.27 0.29 0.28 0.25
Crossover fitness correlation 0.29 0.27 0.28 0.27 0.26
Pareto domination probability 0.48 0.48 0.48 0.47 0.50
Linear regression R2 0.36 0.37 0.37 0.36 0.39

We see that the correlation strength is somewhat promising, going as high
as 0.54. This shows that measured statistics can (depending on the statistic as
they also went as low as 0.25) say something about the expected result of an
algorithm. Sadly the factors do not combine into a particularly good predictor,
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though a R2 of around 0.4 isn’t terrible.
It could very well be that the problem is simply that the relations between

the statistics and the fitness are not linear. Perhaps by using a slightly more
advanced model we could do much better. If anything, this research shows
promise, but is far from conclusive.
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Chapter 7

Conclusion & Discussion

7.1 Experiments with specified attributes

Experiments showed that as variables become less separable, NSGA-II starts to
outperform MOEA/D. It seems like this can be partially explained by virtue of
the lower fitness correlation, as increasing the neighborhood size to include the
entire population at all times does away with some of the effect. The results also
suggest that even when the separability of variables becomes extreme, there is
still a structure present in the problem which any algorithm may or may not be
more apt to exploit. Furthermore, experiments showed NSGA-II outperforming
MOEA/D as the uniformity of the distribution of solutions decreased.

Experiments also showed that that MOEA/D tends to outperform NSGA-II
when the number of objectives increases.

Along several of the experiments, the specific scalarizing function chosen
for MOEA/D was significant, and even the choice of parameter within it. For
example, in our experiments where we varied the number of dimensions, PBI-5
got as low as 54% of the performance of PBI-0.1.

Furthermore, we find that under a high number (9, in this document) of
objectives, as the correlation between objectives increases, NSGA-II starts out-
performing MOEA/D which is an effect previously observed in the context of
multi-objective knapsack problems.

Surprisingly, we did not find a significant effect to changing the shape of
the feasible part of our objective space (and by implication the Pareto front).
It may be that the shape only really becomes a problem in combination with
other factors, or perhaps our problem was too easy. Higher dimensions offer the
possibility for more complex shapes of which it may be interesting to research
whether the shape can be the determining factor in the relative performance of
algorithms.
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Factor NSGA-II WS TCH PBI-5 PBI-0.1
Inseparability + - - - -
Number of objectives - - - - - - ++
Correlation between objectives . . . . .
. . . at high number of objectives (9) ++ - - - - - -
Shape . . . . .
Uniformity ++ - - - - - - - -

Table 7.1: Our interpretation of results: As the factor increases, what the
algorithm tends toward; Legend: (++) for ”clear best choice”, (+) for ”arguably
best choice”, (.) for ”doesn’t matter or unclear”, ”(-) for ”arguably inferior
choice”, (- -) for ”clear inferior choice”.

7.2 Many-objective high-correlation problems

Based on what we found in our experiments with specified attributes we did
some extra work in investigating the cause of the behavior that under a high
number of objectives a higher correlation between them makes NSGA-II work
better.

We find some interesting results, showing the correlation between the prob-
ability of Pareto-dominance relations and hypervolume can be as high as 0.72
and is at it’s highest for NSGA-II. We find that this probability has an explana-
tory power for the hypervolume, namely R2 = 0.52 under a linear regression
while having both the highest R2 and the highest slope (with the probability of
Pareto-dominance being the independent variable).

This tells us that the probability of Pareto-dominance relations, which is
almost fully determined by the correlation between variables ρ (as the correlation
between ρ and the probability for Pareto-dominance relations is 0.98 with p <
10−72) has a significant influence on the hypervolume the varying algorithms
achieve, and favors NSGA-II. However, with an R2 = 0.52 it would also be
too strong a claim to say that the effect has been totally explained away. It is
hard to say to what extent we have explained the effect, as there is of course a
random element in these algorithms and problems and thus an extremely high
R2 might simply be impossible.

7.3 Experiments with Measured Attributes

We have performed a number of experiments where we measured a variety of
attributes on a population sample. We found that these attributes have some ex-
planatory power, though a small amount, with R2 = 0.36 in a linear regression.
We also found that correlations between these attributes and hypervolume were
not very high, as they varied between 0.26 and 0.51, but they were all significant
with p < 10−4.

Our work in this domain was small and exploratory, as it was not the main
subject of this thesis, but it shows some promise to be further investigated.
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7.4 Future work

As the factors we chose for our experiments on ρMNK and circle-quadrant
problems were somewhat arbitrary, one could always expand on the list of factors
whose effect could be researched.

For the most part our research was satisfactory. However, when it comes
to the matching of the shape of the Pareto front and the distribution of the
weight factors, the effects were not at all as strong as expected. All works are
necessarily limited in scope and we have not chosen to pursue more complex,
higher-dimensional shapes, but this may very well be interesting for future re-
search. In the somewhat simple problems we explored the factor of shape did
not seem to have much of an effect, even though the literature suggests that it
does. The obvious questions that remains are: When does it and when does it
not matter? And how much?

On the topic of researching the cause of the effect that under a high number
of objectives, increasing the correlation between objectives favors NSGA-II, we
did find some results that seem to explain the phenomenon. However, our
predictive model only had an R2 of 0.52 and the difference in slope was not
that big between the various algorithms. Our research strongly suggests an
explanation, but some other methods (perhaps a different model than linear
regression) may be required to make our explanation even more convincing.

When it comes to experiments with measured attributes, we showed that
finding significant correlations and models with some predictive power is pos-
sible. However, the results were quite limited. Because this was not the main
subject of this thesis we have not done a lot of work in further exploring the
possibilities of predicting performance using measured attributes, but it could
very well lead to interesting results to try other measures or predictive mod-
els. This may be especially interesting because it would have a clear real-world
application if good results could be produced, namely to make the choice of
optimal algorithm for a real-world problem easier.
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