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Abstract

In research of complex natural phenomena, a challenge arises when the data suggests the presence
of subgroups from different distributions. This heterogeneity can be limited by identifying these
subgroups. This is a challenge for most established research constructs, especially in clinical
settings. For example, in research on major depressive disorder it is widely recognised that there is
widespread heterogeneity within the diagnosed population, where different patients can have very
different expressions of depressive symptoms. This poses challenges in diagnosis and treatment,
for practitioners and researchers alike. Identifying subtypes from a theoretical standpoint requires
considerable time and effort. Recently, attention has shifted to potential data-driven methods for
the identification of subtypes. Unsupervised learning (or clustering) methods aim to categorise data
into clusters. However, such methods require a proper representation of the data to distinguish
meaningful clusters. A promising data representation is the conditional independence structure
of the data. This structure directly shows conditional independence relations between variables
of the data in the form of a network. Different conditional independence structures suggest
different underlying data distributions. Therefore, finding heterogeneous conditional independence
structures within the data can be indicative of heterogeneous subtypes. In addition, the resulting
networks allow for more detailed interpretation through network analyses. To use unsupervised
learning in unison with conditional independence structures, two models from the Gaussian model
family are combined: the Gaussian Mixture Model for clustering, and the Gaussian Graphical
Model for estimation of conditional independence structures. Gaussian Mixture Models perform
clustering by fitting a Gaussian component per cluster to the data. Each component, defined by a
means vector and a covariance matrix, represents a cluster. Data points are assigned a probability of
belonging to each cluster. Gaussian Graphical Models estimate conditional independence structures
by computing regularised estimates of partial correlations from the covariance matrix. This results
in a sparse network structure, where variables that are not connected by an edge are conditionally
independent of each other. By exploiting the direct relation between the covariance matrix and the
conditional independence structure, the methods can be combined. This results in clusters that
are distinguished by different conditional independence structures. Furthermore, these conditional
independence structures are captured in networks that can be analysed and compared. The
resulting methodology is referred to as the GGM/GMM method. To assess performance of the
GGM/GMM method, it is first tested on simulated data with various group sizes and with various
degrees of heterogeneity. Second, the method is applied to two real data sets: the Social Media
Disorder data set investigating social media disorder among adolescents, and European Social
Survey data measuring public opinion of immigration and refugees. Benchmarking results show
that the method is able to correctly estimate conditional independence structures of subgroups,
independent of the structural overlap between the groups. However, group size was found to be a
limiting factor. Groups with estimated sizes under 400 have estimated conditional independence
structures with severe structural errors and instability. For each of the real datasets (social media
disorder & public opinion) two models were computed, one for identification of three subgroups, and
one for identification of five subgroups. Selecting different models leads to substantively different
representations of the subgroups. Finally, limitations of this work are discussed, as well as potential
avenues for further research and development of the GGM/GMM method.



Introduction
In an effort to understand natural phenomena, researchers distinguish them, categorise them, formally define
them, and create theories about them. These phenomena are broken down further into parts, and through
analysis of the interacting parts, we aim to understand the whole. Theory building is therefore an essential
part of any research field. Theory frames the concept, and allows formulation of hypotheses that can be
tested (Meredith, 1993). However, theory needs to be specific enough to formulate reasonable hypotheses.
Therefore, theories are commonly formulated for very specific constructs. Consider the many distinct types of
cancers, viruses, genetic abnormalities, diseases, psychopathologies, behavioural disorders, or public attitudes.
All above examples have well-defined research constructs, securely founded in theory.

However, it is widely recognised that there is still heterogeneity within many such research constructs:
within psychopathology (e.g. Nandi, Beard, & Galea, 2009; Nigg, Willcutt, Doyle, & Sonuga-Barke, 2005;
Wardenaar & de Jonge, 2013), genetics (e.g. Kearns & Losick, 2005; McClellan & King, 2010), oncology
(e.g. Fisher, Pusztai, & Swanton, 2013; Lawrence et al., 2013), virology (e.g. Bukh, Miller, & Purcell,
1995), consumer behaviour (e.g. Mueller & Rungie, 2009; Zenetti & Klapper, 2016) and attitude research
(e.g. Ford & Lowles, 2016), for example.

Such heterogeneity can be challenging for practitioners and researchers alike: it limits the generality
of treatment and makes accurate diagnosis more difficult. One way of handling heterogeneity while also
building theory is by defining more specific subtypes of a construct (Doty & Glick, 1994). Subtypes further
differentiate the construct by specifying how its parts relate to each other. Consider for example attention
deficit hyperactivity disorder (ADHD). To set the diagnosis ADHD, mental health practitioners worldwide
follow the Diagnostic and Statistical Manual of Mental Disorders (DSM-5; American Psychiatric Association,
2013). The DSM-5 considers two categories of symptoms of ADHD: inattention symptoms, and hyperactivity-
impulsivity symptoms. Subsequently, the DSM-5 defines three subtypes of ADHD: predominantly inattentive
subtype, predominantly hyperactive-impulsive subtype, and a combined subtype. Differentiating between
these subtypes helps practitioners recognise a patient’s problems, set an accurate diagnosis and provide care
based on the patient’s needs (Nigg, Blaskey, Huang-Pollock, & Rappley, 2002). In addition, ADHD theory
is specified to account for these subtypes and focus research in this area.

Subtypes
Useful subtypes have two important properties. First, a subtype should be necessary: it should have a

clear utility. In a clinical setting, for example, the utility of subtypes of a disease is to improve treatment, by
targeting subtypes differently. If different disease subtypes receive the same treatment, there is no benefit to
distinguishing the subtypes, other than to further theory. Second, a subtype should be meaningful. Not any
arbitrary difference suffices to be classified as a subtype. Any subtype should be meaningful, in the sense
that the subtype has discriminatory power. It follows that the discovery of a new subtype is only meaningful
if it is coherent: the distinction should be structural and reproducible.

Which subtypes are necessary and meaningful is the topic of ongoing debate. Consider again the DSM
example. Up until now, the DSM has known five different iterations, changing some constructs significantly
between iterations. For example, between the DSM-IV (American Psychiatric Association, 2000) and the
DSM-5, ‘autistic disorder’, ‘Asperger’s disorder’, ‘childhood disintegrative disorder’ and ‘pervasive develop-
mental disorder not otherwise specified’ were combined into one single concept: ‘autism spectrum disorder’.
At the same time, the DSM-IV diagnosis ‘panic disorder and agoraphobia’, was separated into two different
disorders in the DSM-5. These changes are made to reflect evolving theory and changes in consensus within
the psychiatric community. Subtypes in the DSM are defined top-down by specialists in the field, based on
years of empirical evidence and best practices.

In recent years, there has been a call for more structural, data-driven identification of subtypes in psy-
chopathology to address the difficulty of identifying subtypes (e.g. Benjamins et al., 2017; Bora, Aydın,
Saraç, Kadak, & Köse, 2017; Lombardo et al., 2016). Traditional, top-down approaches such as the approach
of the DSM build subtypes from theory, starting with an hypothesis and collecting empirical data in support
of the hypothesis. The hypothesis is then statistically tested and accepted or rejected based on the result. In
contrast, data-driven (or bottom-up) approaches start by collecting data and then aim to learn patterns from
this data. These patterns can subsequently be used to formulate new hypotheses and build theory (Oquendo
et al., 2012).
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Unsupervised learning
More specifically, unsupervised learning, or clustering, is a data-driven method used to identify groups,

or clusters, in the data. Unsupervised learning can be used to identify subtypes. For example, consider the
work of Firoozbakht, Rezaeian, Porter, and Rueda (2014), who identify subtypes of breast cancer by learning
the most informative biomarkers from genetic data.

Different clustering methods use different information to perform this grouping. For example, k-means
clustering (Hartigan & Wong, 1979) groups data points based on their Euclidian distance from one another.
Data points are placed in p-dimesional space, with p being the number of variables in the data. After
initialising the algorithm with k random means, the algorithm iteratively assigns each point to the cluster
with the nearest mean, then recalculates the means. This process is repeated until means no longer change.
Gaussian Mixture Models (Reynolds, 2009), on the other hand, perform clustering based on the Gaussian
distribution of the data. The model is initialised with k Gaussian distributions, known as components. Then,
for each point, probabilities of belonging to each component are computed, after which the distributions of
the components are updated. The end result is slightly different: data points are assigned a probability of
belonging to each of k clusters (also known as soft clustering). For an illustration of both models, see Figure
1.1. In sum, what distinguishes the groups from one another is dependent on the clustering method and the
data representation that is used.

However, unsupervised learning has a number of weaknesses. First, unsupervised learning methods are
notoriously dependent on the data representation used (Bengio, Courville, & Vincent, 2013). For example,
representing the variables of the data as scales or compound variables (e.g. through principal component
analysis) will lead to different results than using the raw data. This is due to the fact that some information
is lost when variables are combined or reduced. Consequently, this information cannot be used to distinguish
clusters from each other. However, selecting a good data representation for the given clustering problem
reduces noise and improves performance (Buhmann, 1995). Variable selection (i.e. selecting which variables
are used for learning) ties in to the above. Variables that explain more variance than others may improve
clustering performance, while variables with little or no explanatory power variables will reduce clustering
performance by introducing noise. Similarly, introducing a variable with high explanatory power can render
other variables redundant. This is the problem of spurious correlations (Simon, 1954). A famous example of
spurious correlations is the observation that the number of ice cream sales is highly predictive of the number of
drownings. However, if the variable ‘temperature’ were included in this prediction, ice cream sales would lose
all predictive power for drownings. Understanding such spurious correlations often requires understanding of
the context. As a consequence, learning algorithms are generally bad at selecting the relevant variables by
themselves, as they do not naturally have an internal representation of how variables relate to each other, or
to the learning problem. This can lead to a number of problems, such as algorithmic bias (Hajian, Bonchi,
& Castillo, 2016). As a consequence, it falls upon the researcher to decide on relevant variables and data
representation to feed into the algorithm.

(a) Example of a k-means clustering model with k = 5
(Lim, 2018).

(b) Example of a Gaussian mixture model with k = 2
(Ramalho, 2014).

Figure 1.1: Examples of k-means clustering and Gaussian mixture modelling for two-dimensional data.
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Second, unsupervised learning does not necessarily lead to interpretable results. For example, consider
again the clustering method k-means clustering. To reiterate, this method groups data points based on their
distance to each other. By definition, the resulting k clusters have the smallest possible within-cluster variance
and the highest between-cluster variance for the data. Data points within the same cluster are close to each
other, while the clusters themselves are far apart from each other. However, to determine whether clusters
are empirically different, a statistical hypothesis test needs to be performed. In addition, the resulting cluster
statistics do not provide much information as to why the clusters turned out to be different. In fact, this
problem is the main focus of the field of explainable artificial intelligence (Holzinger, Biemann, Pattichis,
& Kell, 2017). Specifically, Holzinger et al. (2017) define comprehensible AI as “systems that emit symbols
enabling user-driven explanations of how a conclusion is reached”. By this definition, the above example of
k-means clustering is not comprehensible.

In sum, using unsupervised learning for the identification of subtypes requires deliberate consideration
of the data representation used for learning, and the explainability of the results. Here, we argue that a
choosing a suitable data representation could mitigate both weaknesses.

Conditional independence structure
A promising data representation for identifying subtypes is the conditional independence structure (CIS;

Baioletti, Busanello, & Vantaggi, 2009; Studeny, 2006; Wermuth & Lauritzen, 1990; Wille & Bühlmann,
2006). The conditional independence structure of the data represents the conditional dependencies and
independencies between the variables. It can be visualised as a graph G = (V,E) with node set V and
edge set E. The nodes represent the variables, and an edge connecting two nodes represents a dependence
relation. The absence of an edge, then, represents independence between the variables, conditional on all
other variables. The conditional independence structure is not an inherent property of the data. It needs to
be estimated from the data using an appropriate method. In the following, we argue that different subtypes
have different conditional independence structures.

Consider again the ADHD example. The CIS of ADHD shows how symptoms of ADHD are (in)dependent
of each other. Recall that the DSM-5 defines three subtypes of ADHD: the predominantly inattentive subtype,
the predominantly hyperactive-impulsive subtype, and the combined subtype. It is reasonable to expect the
CIS of each subtype to be different, as the inattentive subtype is more dependent on the inattentive symp-
toms and the hyperactive-impulsive subtype is more dependent on the hyperactive-impulsive symptoms.
Figure 1.2 visualises this expectation in graphs. Notice how both the predominantly inattentive and predom-
inantly hyperactive-impulsive subtypes are densely connected within the corresponding symptoms, while the
combined subtype shows more connections between the two categories of symptoms.

This graphical representation illustrates structural differences between the subtypes. Comparing the
network structures of subtypes helps to interpret why and how subtypes differ. In addition, these networks
can be analysed using methods from graph theory. Graph theoretical measures examine properties of the
graph, such as the importance of nodes (e.g. centrality indices, Koschützki et al., 2005), or the relations
between nodes (e.g. shortest path analyses, Dijkstra et al., 1959). In short, graphs of heterogeneous

(a) Dummy CIS of predominantly
inattentive subtype.

(b) Dummy CIS of predominantly
hyperactive-impulsive subtype. (c) Dummy CIS of combined subtype.

Figure 1.2: Expectation of differing (dummy) CISs for different subtypes of ADHD. Blue nodes represent
inattentive symptoms, orange nodes represent hyperactive-impulsive symptoms. Edges represent conditional
dependence between variables.
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conditional independence structures can be used to represent and interpret different subtypes.
In sum, we aim to use unsupervised learning of heterogeneous conditional independence structures as a

method for finding subtypes of a construct. The network representing the CIS then allows for analysis, inter-
pretation and comparison of the learned subtypes. This overcomes a major weakness of unsupervised learning,
namely the lack of explainability, and effectively combines identification and interpretation of subtypes.

Clustering by conditional independence structure
Separate methods exist for the estimation of CISs and for clustering. However, the challenge lies in

combining two methods, such that the conditional independence structure is used as a feature of clustering.
Hill and Mukherjee (2013) suggest combining Gaussian Mixture Modelling (GMM) for clustering and

Gaussian Graphical Modelling (GGM) for estimation of conditional independence networks. Both methods
are built on principles of the Gaussian distribution and therefore share components that make them compat-
ible. See the Related Work section for a detailed description of the methods and see the Methods section for
mathematical definitions of both methods.

The Gaussian Mixture Model is a probabilistic clustering method. It estimates k different clusters by
estimating a unique Gaussian distribution (i.e. component) for each cluster. Two parameters define a
Gaussian component: the means vector and the covariance matrix (see Methods section for a mathematical
description of the GMM). The model produces ‘soft’ cluster assignments: a probabilistic expression of cluster
assignment. For estimation, it uses the expectation-maximisation (EM) algorithm (A. P. Dempster, Laird,
& Rubin, 1977). The EM algorithm iteratively computes an expectation of the log-likelihood of cluster
assignments using the current parameters, then updates the parameters by maximising the log-likelihood.
The result is a (local) maximum likelihood estimate of the Gaussian components and soft cluster assignments
for all data points.

The Gaussian Graphical Model is used to estimate conditional independence structures for variables that
follow a Gaussian distribution. Specifically, it estimates partial correlations between variables. A partial
correlation of exactly zero indicates independence between two variables, conditional on all other variables
in the model. Partial correlations can be directly calculated from the off-diagonal elements of the precision
matrix - the inverse of the covariance matrix. However, due to numerical precision, a direct inversion of
the covariance matrix produces a precision matrix with no values exactly zero, and thus no conditional
independence in the model. Therefore, GGMs are often estimated using regularisation: a technique to reduce
the smallest parameters in a model to exactly zero. This results in a sparse conditional independence structure
where only a few parameters are non-zero. Such models are easier to interpret and are often more accurate
(Epskamp, Borsboom, & Fried, 2018).

The above methods are compatible due to their reliance on the covariance matrix. Within the Gaussian
mixture model, we replace the default update of the variance-covariance matrix with a variance-covariance
matrix estimated using the regularised Gaussian graphical model. For the resulting clusters, we draw networks
representing their conditional independence structures.

By combining the Gaussian Mixture Model with the Gaussian Graphical Model, we develop a promising
data-driven tool for the simultaneous identification and interpretation of subtypes in heterogeneous data. The
resulting clusters represent different subtypes, that can be investigated and analysed through their network
representation, which shows subtype-specific conditional independence structures. The new method is further
referred to as the GMM/GGM method.

Application of the methodology
While the focus of this thesis lies on the methodology, its value is best highlighted by applying the

GMM/GGM method to specific domains. To this end, the GMM/GGM method is applied to two domains
that have an interest in identifying and interpreting subtypes.

Social media disorder
The first domain is within adolescent psychology. Specifically, we identify subtypes in data collected as

part of the Digital Youth project, a 5-year longitudinal study on the role of social media and gaming in the
lives of Dutch adolescents (Van Den Eijnden, Koning, Doornwaard, Van Gurp, & Ter Bogt, 2018). The aim
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of the project is to advance theory on the disordered video game and social media use among adolescents,
dubbed social media disorder (SMD). SMD symptoms were shown to have a negative effect on life satisfaction
and perceived social competence. As SMD research is relatively novel, the structure of the related variables
has not yet been investigated extensively. In addition, Van Den Eijnden et al. (2018) note as one of the
limitations that the sample suffers from heterogeneity, which may have impacted the results. Furthermore,
the SMD data is categorised into one of three categories representing levels of SMD: a normal group, a risky
group, and a problematic group.

Application of the proposed method to the SMD data can address these limitations. Specifically, we focus
on the question of heterogeneity. We use the method to generate a model with three subgroups, hypothesising
that we find subgroups that correspond to the three levels of SMD. In addition, we generate another model,
this time identifying five subgroups. This model serves as a comparison to the first model, to assess whether
further clustering will yield different results. We hypothesise that one or more of the subgroups in the
three-group model will be further broken up into two subgroups in the five-group model.

Public opinion of immigration and refugees
The second domain is that of public opinion. Specifically, we identify subtypes in data from the European

Social Survey, a bi-annual survey among European countries, polling public opinion on various societal and
socio-economical topics, such as politics, media and social trust, health and inequality, justice and immigration
(ESS round 7, 2014).

To limit the scope of the research, we focus on public opinion of immigration and refugees. This topic
has seen considerable political and societal attention in the past decade, mainly due to societal crises such
as the European migrant crisis (Poddar, 2016), the Rohingya refugee crisis in Bangladesh (Parnini, Othman,
& Ghazali, 2013) and the migration crisis in Central America (Isacson, Meyer, & Morales, 2014). In fact,
anti-immigration has been the focal point of recent political campaigns, most notably the Brexit campaign
in the UK (Currie, 2016), and the 2016 presidential campaign of Donald Trump in the US (Martin, 2017),
both of which have received major popular support.

Unraveling public opinion on this complex topic is no easy task. Public opinion is heterogeneous by
definition. The endeavour of discovering profiles of public opinions has been labeled attitudinal segmentation
(H. Dempster & Hargrave, 2017). For example, Purpose (2017) identified five different profiles of German
public opinion regarding immigrants. However, H. Dempster and Hargrave (2017) review that most work on
attitudinal segmentation finds three general profiles: a favourable group, an opposed group, and an ambivalent
or conflicted middle group.

Application of the GGM/GMM method performs attitudinal segmentation on the large ESS data. Com-
pared to previous work on attitudinal segmentation, the GGM/GMM method adds interpretability to the
results, which may provide insight into existing ambiguity. Again, two models are generated for the ESS
data: a three-group model and a five-group model. We hypothesise that the three-group model will be rep-
resentative of the three profiles described above, namely favourable, opposed, and ambivalent/conflicted. In
addition, we expect that the five-group model will further nuance the ambivalent/conflicted group.

Problem definition
In this thesis, I focus on data-driven identification and interpretation of heterogeneous subtypes. To

this end, I develop a clustering method that distinguishes clusters based on their conditional independence
structure. Each cluster is seen as a subtype, and can be interpreted by analysing its conditional independence
structure, revealing how variables interact. Building on the work of Hill and Mukherjee (2013), this method
combines Gaussian Graphical Modelling and Gaussian Mixture Modelling, and introduces a new model
selection criterion that is adapted for selection of cluster-specific sparse conditional independence structures.
The GGM/GMM method is benchmarked and tested on artificial data, to assess method performance under
varying circumstances. Finally, the method is used to generate models with three and five subgroups, for data
in two domains: social media disorder and the public opinion of immigration. For both domains, results are
expected to address existing questions of heterogeneity (what are the different subtypes?) and explainability
(why and how are subtypes different from each other?).
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Related work
In this section, fundamental concepts and theory preceding the current investigation are outlined and re-
viewed. Two core concepts will be explored: Gaussian graphical modelling (GGM) and Gaussian mixture
modelling (GMM). GGM is a method for estimation of conditional independence structures. GMM is a
clustering method that fits Gaussian distributions to the data in order to distinguish clusters. Both methods
rely on the variance of the data. By exploring both methods, I outline how they can be used in unison in
order to perform simultaneous identification and interpretation of subtypes.

Gaussian Graphical Modelling
Gaussian graphical models (GGM; Lauritzen, 1996) are also known as covariance selection models

(A. P. Dempster, 1972), concentration graph models (Drton & Perlman, 2004), pairwise Markov random
fields (Epskamp, Maris, Waldorp, & Borsboom, 2016) or regularised partial correlation networks (Epskamp
& Fried, 2018). Despite varying nomenclature, the models have the same purpose: modeling conditional
independencies between variables in the form of a graph. This results in a network where nodes represent
variables and edges represent the partial correlation. The partial correlation represents the dependence re-
lation between variables, controlled for all other variables in the model. Notably, a partial correlation of
exactly zero implies conditional independence between variables. In the graph, this can be easily seen, as
there is no edge between variables if their partial correlation is zero. This property of GGMs makes them an
attractive method to inspect the structure of variables in a holistic manner.

The GGM and its graph need to be estimated from the data. Estimation, however, is not exact. Due
to the high dimensionality of the data and the computational precision of the estimation method, a naive
estimate of the partial correlation will almost always be non-zero. As a consequence, the graph will be fully
connected: all nodes are connected to all other nodes, which implies that every variable is dependent on every
other variable. However, it is highly likely this is not true in reality. The real structure is most likely sparse:
it contains only a few edges. To eliminate false positives (a.k.a. spurious edges) and encourage sparsity,
regularisation is applied to the estimation of the model. Regularisation techniques penalise the smallest
estimates in order to reduce them to exactly zero, and remove them from the model. As a consequence, a
regularised GGM will have a sparse structure. This makes interpretation easier and simultaneously reduces
the amount of parameters in the model (i.e. the model complexity).

Over the past decades, GGMs started to gain traction in the fields of biometrics and computational biology
(e.g. A. P. Dempster, 1972; Wong, Carter, & Kohn, 2003). The model proved powerful in handling high-
dimensional biological data such as gene expression data (e.g. Schäfer & Strimmer, 2005; Toh & Horimoto,
2002). The method was quickly adopted by other fields in natural sciences, social sciences and economics,
such as speech recognition (Bell & King, 2007), finance flows (Giudici & Spelta, 2016), cancer research (Zhao
& Duan, 2019) and attitude research (Dalege et al., 2016). An enormous body of methodological literature on
GGMs exists, covering estimation methods, regularisation methods, model selection methods and validation
methods. The exact methods used for this thesis are described in the Methods section. The remainder of
this section is structured as follows: first, it will provide a brief overview of various GGM methodologies,
focusing on the unique characteristics of various model components. Second, it will review some of the more
prominent applications of GGMs in recent works.

Usage
Starting with an arbitrary data set, the pipeline for Gaussian graphical modelling roughly follows the

following steps: (1) estimation of partial correlations between variables using (2) regularisation, followed
by (3) a model selection procedure. For each of these steps, various techniques have been proposed, each
applicable to a distinct problem. For an overview, see table 2.1.

Estimation
Gaussian graphical models rely on the covariance matrix of the data for estimation of partial correlations

(Epskamp et al., 2018). To estimate partial correlations from the covariance matrix, two methods are
proposed.
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Parameter
estimated Estimation method Regularisation method Model selection

Zero-order
correlation

Correlation matrix (Costantini
et al., 2015) - -

Partial
correlation

Inverse covariance matrix
(A. P. Dempster, 1972) - -

Regularised
partial
correlation

Inverse covariance matrix
(A. P. Dempster, 1972)

Confidence intervals (Williams
& Rast, 2018) EBIC (Chen &

Chen, 2008)Graphical LASSO (Friedman et
al., 2008)

eLASSO (van Borkulo et al.,
2014)

Node-wise regression
(Meinshausen & Bühlmann,
2006)

LASSO (Tibshirani, 1996) Cross-validation
(Krämer et al.,
2009)Adaptive LASSO (Zou, 2006)

Table 2.1: Overview of methods used for estimating Gaussian Graphical Models. Dotted lines indicate
interchangeability.

The first, proposed by A. P. Dempster (1972), uses an interesting property of the covariance matrix. The
inverse of the covariance matrix, known as the precision matrix, can be used to obtain partial correlations.
Specifically, an entry (i, j) in the precision matrix is equal to exactly zero if and only if i is conditionally
independent of j, given all other variables. Non-zero entries ωij = (i, j) in the precision matrix can be used
to calculate the value of the partial correlation ρij between i and j using the formula ρij = − ωij√

ωiiωjj
.

However, the above only holds in the case that all variables follow a multivariate Gaussian (i.e. normal)
distribution and the precision matrix is positive definite. In most cases, Gaussianity is simply assumed and
slight violation of the assumption is not problematic (Knief & Forstmeier, 2018). In the case that the data
is binary or ordinal, the data are known not to be normally distributed and an adaptation has to be made.

For binary data, the Ising model can be applied (van Borkulo et al., 2014). The Ising model (Ising, 1925)
was originally developed as a mathematical model of ferromagnetism that describes the spin of particles in a
square grid known as a lattice graph. In the graph, nodes (representing particles), have a spin value of +1 or -1
and edges (representing interaction relations) indicate agreement, disagreement, or non-interaction between
nodes. The model can then be used to compute the probability of different configurations based on the
interactions. Despite apparent simplicity, the Ising model is a non-trivial description of pairwise interactions
between binary random variables, that has since been adopted to fields outside theoretical physics. For binary
data, the Ising model can perform the same functions as the GGM (van Borkulo et al., 2014).

For ordinal data, Epskamp (2016a) suggests using polychoric and polyserial correlations (Olsson, 1979;
Olsson, Drasgow, & Dorans, 1982), which are compatible with the GGM as long as the resulting covariance
matrix is positive definite. In case the covariance matrix is not positive definite, it can be coerced to become
so (Bates & Maechler, 2019).

The second method to estimate partial correlations is through node-wise regressions, suggested by Mein-
shausen and Bühlmann (2006). Using (regularised) regression, this method estimates the set of direct neigh-
bours of a node, for every node in the graph. To illustrate, let {A,B,C,D} be the set of nodes. The
neighbours of node A are then estimated by regressing A on B,C and D, resulting in relations between
nodes, e.g. A −→ B. This process is repeated for B,C and D. Finally, for each pair of relations A→ B and
B → A, the average value is taken for the final model. Interestingly, this leads to the exact same estimates
as the first method (Epskamp & Fried, 2018).

For this thesis the first method is employed, as it is slightly faster and applicable in the Gaussian Mixture
Model described below. A more formal description of the estimation method can be found under the Methods
section.
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Regularisation
The above methods compute an optimal fit of the GGM parameters to the provided data. However, a

well-known problem with estimations of this kind is overfitting (Hawkins, 2004). An overfit model fits well
on the sample used to estimate the model, but fits poorly on unseen observations. This problem scales with
dimensionality: the more variables are included in the model, the more likely it is to be overfit.

To prevent overfitting, regularisation techniques can be applied to the estimation of the model. Regular-
isation techniques add a penalty term to the equation of parameter estimation. The degree of penalty scales
with model complexity: the more parameters are non-zero, the higher the penalty term. Some regularisation
techniques are able to penalise, or ‘shrink’, parameters to exactly zero, causing them to be excluded from the
model entirely. This property of regularisation results in sparse estimates, a feature that is important in the
estimation of GGMs (Epskamp et al., 2018). The following paragraphs outline a number of regularisation
techniques used in estimating GGMs.
LASSO. A well-known regularisation technique in statistics and machine learning is the least absolute shrink-
age and selection operator (LASSO, Tibshirani, 1996). Originally introduced for regression models, the
LASSO penalises the sum of absolute values of all regression coefficients in the model, the so-called l1 penalty.
In other words, the LASSO penalises model complexity. The more and larger the regression coefficients, the
higher the penalty that is applied to each coefficient. Furthermore, because the LASSO uses the absolute
values, one of its properties is that coefficients can be reduced to exactly zero. To determine the degree of
penalty, it employs a regularisation parameter λ. The higher the value of λ, the more coefficients are pe-
nalised, and more coefficients become exactly zero. Note that in the case of regression, LASSO regularisation
simultaneously performs variable selection, as variables with a coefficient of zero are dropped from the model.
Adaptive LASSO. Multiple variations of LASSO regularisation have been suggested. First is the adaptive
LASSO, proposed by Zou (2006). It is similar to the LASSO, but adds a weighting to the penalty term that
is proportional to the coefficient value. Thus, large coefficients are punished more than small coefficients.
This expands the consistency of the regularisation to scenarios where the regular LASSO would not be
applicable. In estimating partial correlation networks, it outperforms the regular LASSO, more so when the
true underlying structure is sparse (Costantini et al., 2015).
glasso. Second is the graphical LASSO, also known as simply glasso, introduced by Friedman et al. (2008).
It was introduced specifically for estimating sparse graphs from the inverse covariance matrix. Specifically,
it applies a penalty to the sum of absolute values of the precision matrix, the `1 penalty. Similar to the
regular LASSO, this leads to some estimates that are exactly zero. In this case, however, it is the values of
entries of the precision matrix that are shrunk. Recall that any two variables are conditionally independent
of each other given all other variables if and only if their entry in the precision matrix is exactly zero. In
short, the glasso penalises model complexity and simultaneously labels some variable pairs as conditionally
independent.
eLASSO. The third variation on the LASSO algorithm is the eLASSO, introduced by van Borkulo et al.
(2014). This is an adaptation of the LASSO aimed specifically at binary data, for use with the Ising model.
The main challenge here is that network models with discrete, binary data behave as discrete Markov Random
Fields, which are known to be computationally intractable. To estimate such networks, van Borkulo et al.
(2014) apply a `1 (LASSO) penalty to node-wise logistic regressions, which apply to binary data. This method
allows regularised estimation of Ising models for binary data.
Confidence intervals. Recently, a different method was proposed outside of the LASSO family. Williams and
Rast (2018) propose a tried and trusted statistic as a method of regularisation: the confidence interval. They
note that the highly used `1 penalty using the glasso has a number of limitations. First, the accuracy of
`1 methods does not necessarily generalise to all settings, as for example highly correlated variables are not
captured well. Second, they note that estimation error does not diminish with increasing sample size, unlike
most Bayesian or frequentist approaches. Third, the authors highlight that statistical inference from a `1
based model is not straight forward. Inclusion of some variable or parameter does not entail significance,
and exclusion does not entail no effect: these inferences require formal hypothesis testing. In addition, the
data-driven variable selection leads to model selection bias. Williams and Rast (2018) therefore propose a
method that circumvents many of these limitations and has a closed form solution. The method involves the
entries of the precision matrix, similar to the glasso approach. However, the entries are first standardised
using Fisher-Z transformations. Subsequently, two-tailed 100(1 − α)% confidence intervals of the estimates
are defined, where α is manually set. The set of edges is then obtained from those estimates whose confidence
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interval excludes zero. In practice this means that if α = 0.05, there is a maximum 5% chance of false pos-
itives, and 95% of cases will have a true value in that interval range. They find that this latter percentage,
the coverage probability, is identical to the specificity (or true negative rate) of the model, meaning that the
specificity of the model can be manually selected. In contrast, they show that the glasso approach strongly
declines in specificity as the underlying true networks become more densely connected. However, the glasso
outperforms the CI approach in terms of sensitivity, or true positive rate. In sum, the CI method errs on
the side of caution, aiming to be more rigid in uncovering true network structure, rather than aiming for
discovery and predictive accuracy.

For this thesis, the regularisation method of choice is the glasso. This has two main reasons: first, the
glasso works well in the discovery of sparse structures, which is the goal in the identification of multiple sparse
networks through clustering. Second, the glasso is a fast algorithm that works well in conjunction with the
Gaussian Mixture Model discussed below. A more detailed description of the glasso algorithm can be found
under the Methods section.

Model selection
To find the optimal value of the regularisation parameter, typically a large number of models is estimated

for varying values of that parameter. The optimal model is then selected based on a model selection metric.
Various such model selection metrics have been suggested for GGMs.
Cross-validation. A widely used model selection metric in statistics and machine learning is cross-validation
(Krämer et al., 2009; Shao, 1993). For cross-validation, the dataset is divided into a training set and a test
set. The model is learned from the training set, after which its predictive power is tested on the test set. This
can be expanded to k-fold cross-validation (Mosteller & Tukey, 1968), where the data is randomly divided
into k sets of equal size, and each set is used as a test set once. This results in k models that optimise the
value of λ for a training set of size k− 1. The resulting k models are then summarised, usually by taking the
mean of the estimated values of λ (Krämer et al., 2009).

k-fold cross-validation requires some consideration. First, the value of the hyperparameter k is non-trivial.
While k = 10 is common in machine learning applications (Anguita, Ghelardoni, Ghio, Oneto, & Ridella,
2012), the choice is somewhat arbitrary. Second, Gaussian graphical models are sensitive to changes in sample
size (Foygel & Drton, 2010). A test set of size n/k, even for large n and k = 10, may lead to unrepresentative
test sets. This can cause bias in estimating λ.
AIC. The Akaike Information Criterion (AIC; Akaike, 1974) is a well-known information criterion for model
selection. In contrast to cross-validation, information criteria weigh model complexity against goodness-of-fit
in an effort to select the optimal model. The AIC is defined as

AIC = 2k − 2 log (L̂)

where k denotes the number of parameters in the model and L̂ denotes the maximum likelihood estimate, a
goodness-of-fit estimator. From this equation, it is easy to see that the AIC punishes model complexity and
rewards goodness-of-fit: a lower value of the AIC implies a model with better trade-off between complexity
and accuracy.
BIC. The Bayesian Information Criterion (BIC) is quite similar to the AIC. In fact, both information criteria
can be used interchangably. The BIC is given by

BIC = k logn− 2 log (L̂)

where k and L̂ are the same as in the AIC, and n denotes the sample size. The only difference is in the
first term: for the BIC, the complexity penalty grows with sample size, where for the AIC, it does not. As
a consequence, the BIC penalises model complexity more heavily and is thus better suited in settings where
false positives are to be avoided.
EBIC. The extended Bayesian Information Criterion (EBIC) is a variation of the BIC aimed at selecting
models from a very large candidate model space (Chen & Chen, 2008; Foygel & Drton, 2010). This is
accomplished by adding another penalty term that targets the size of the model space, i.e. the number of
candidate models with the same number of dimensions. The formula is given by

EBICγ = k logn− 2 log (L̂) + 2γSp
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where Sp denotes the size of the model space with p variables. For Gaussian graphical models, the size of
the model space with equal dimensions is given by p2k, where p denotes the number of variables in the model
and k denotes the number of edges to be estimated (i.e. the dimensionality). The formula can be rewritten
as

EBICγ = −2 log (L̂) + k log(n) + 4 γ p log(k)

which is also noted by Epskamp and Fried (2018); Foygel and Drton (2010).
Chen and Chen (2008) further show that the EBIC further reduces false positives, thereby performing

better at estimation of sparse structures. How much penalty is applied, is defined by the new parameter γ:
this hyperparameter still needs to be set manually. For GGMs, the experimental value suggested by Epskamp
et al. (2018) is γ = 0.5.

For this thesis, the model selection method of choice is the EBIC, for two main reasons. First, the EBIC
is the most conservative, as it penalises model complexity most. This is beneficial as the goal is to find sparse
structures. In addition, the aim is to find sparse structures for multiple unknown clusters in the data. This
reduces the sample size of each cluster, which increases the risk of false positives. By using the EBIC, this
risk can be minimised. Second, the EBIC can be easily extended to a mixture form, where it is used to
select the optimal model for multiple groups simultaneously. This extension is elaborated further under the
Methods section.

Applications of GGMs
GGMs have been applied in various different fields, mainly because of their relative simplicity and easily

interpretable graphical representation.
Bioinformatics. As GGMs excel at high-dimensional modelling, they have been extensively used in the field of
bioinformatics, particularly in genomics. Dobra et al. (2004) used GGMs to explore and evaluate interactions
and conditional independencies between gene expressions of breast cancer pathways. Wille et al. (2004) use
GGMs to investigate two pathways of isoprenoid biosynthesis in thale cress and find candidate genes that
connect the two pathways. Chu, Weiss, Carey, and Raby (2009) then use GGMs to specifically investigate
a target gene of interest, map its neighbours, and use this to infer an integrated gene activation pattern in
the pathogeny of asthma. Ma, Gong, and Bohnert (2007) more broadly investigated thale cress by modelling
gene expressions of 6 760 genes, resulting in a network with 18 625 edges. They subsequently found coherent
subnetworks representing metabolic functions, stress responses and regulatory functions. In a different appli-
cation, Lee et al. (2019) used GGMs to assess the impact of external effects on complex metabolic processes,
by capturing changes in interactions of metabolites. Zhao and Duan (2019) use the Cancer Genome Atlas to
learn interactions of genes in cancer cells, and compare 15 specific types of cancer. They find a hypothesised
common set of genes that is implicated in human carcinogenesis, and new gene interactions unique to cancer
cells, paving the way for effective, targeted research.

In sum, GGMs are useful in bioinformatics to overcome the extremely high dimensionality of some bio-
logical data, while also providing insight into the structural relationships between variables in the data.
Social sciences. In social sciences, and in particular in psychology, the network methodology provided by
GGMs has seen a steady increase in popularity. In lieu of the reproduction crisis, GGM methodology has
been adopted as an alternative to then-dominant latent variable modelling. Specifically, the assumption
is that human behaviour is an emergent property of causal interaction between (psychological and non-
psychological) variables. The GGM, then, provides a means of discovering and investigating this complex,
causal interplay of variables. Dubbed psychological networks by Epskamp et al. (2018), this method has seen
numerous methodological and applied publications. For example, multiple tutorials exist for psychological
networks (e.g. Costantini et al., 2015, 2019; Dalege, Borsboom, van Harreveld, & van der Maas, 2017;
Epskamp et al., 2018; Epskamp & Fried, 2018; Hevey, 2018; Jones, Mair, & McNally, 2018), providing step
by step instructions and examples for the application and interpretation of network models. Additionally,
the psychological network methodology has been adapted to challenges common to psychology research,
such as ordinal data (Epskamp, 2016a) and the relation to the reigning paradigm, latent variable modelling
(Epskamp, Rhemtulla, & Borsboom, 2017).

Unsurprisingly, the method has been broadly applied to problems in psychology, especially in psy-
chopathology (Borsboom & Cramer, 2013; Contreras, Nieto, Valiente, Espinosa, & Vazquez, 2019). Ar-
mour, Fried, Deserno, Tsai, and Pietrzak (2017) investigate the structure of post-traumatic stress disorder
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(PTSD) symptoms in order to find highly comorbid symptoms and possible targets for intervention. Beard
et al. (2016) conduct a similar investigation for symptoms of depression and anxiety to find the most cen-
tral symptoms, while Fried, Epskamp, Nesse, Tuerlinckx, and Borsboom (2016) use networks to analyse the
discrepancy between formally defined clinical symptoms of depression and empirically assessed symptoms of
depression. Both studies plead for more focus on the central symptoms of depressive disorders: sad mood
and worry. Forrest, Jones, Ortiz, and Smith (2018) and Smith et al. (2018) perform network analyses for
eating disorders, finding that the network approach is able to highlight symptoms that may be core targets
of clinical intervention.

Outside psychopathology, most applications of psychological network models can be found in personality
and attitude research. Cramer et al. (2012) challenge the latent variable view of personality and posit that
personality dimensions arise from the network structure of personality components. Costantini et al. (2015)
provide a framework for applying network analysis to a common personality questionnaire, and Costantini
and Perugini (2016) apply this notion to the personality dimension conscientiousness. In attitude research,
Dalege et al. (2016) outline a novel theoretical framework for attitude research: the Causal Attitude Network
(CAN) model. It is based on the same principle as psychological networks in general: variables interact
directly with each other. For the CAN model, an attitude is a network of causally interacting evaluative
reactions toward an attitude object. Dalege et al. (2017) provide an example of how the CAN model can be
applied to practical settings.

Gaussian Mixture Modelling
Gaussian mixture models (GMM) fall within the broad family of model-based clustering methods, aimed

at unsupervised learning of cluster assignments. The main premise is that each cluster, or component, follows
a unique Gaussian distribution, hence the full dataset is a mixture of Gaussians. The task is then to estimate
the Gaussian components and calculate probabilities of belonging to a component for each case in the data.
First, this section will briefly discuss methodological considerations in applications of GMMs. (However, a full
methodological description applicable to the current research is given under the Methods section.) Second,
typical applications of GMMs will be discussed.

Usage
A concise summary of Gaussian Mixture Models is given by Reynolds (2009). GMMs are represented

as a weighted sum of Gaussian components. For any dataset, let n denote the rows and p the columns (or
variables) of that set. Let K denote the number of components that will be modelled. Each component k
in the GMM can be seen as a Gaussian probability density function defined by its mean vector (size p) and
covariance matrix (size p× p).

Design
The design of GMMs has two main considerations. First is the dimensionality of the covariance matrices.

Constraining the covariance matrices to be tied, diagonal, or spherical reduces the number of parameters to

Figure 2.1: Illustration of Gaussian mixture model components for varying types of covariance matrices.
Image retrieved from Müller (2018).
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be estimated. However, this also changes the shapes of the components (see Figure 2.1) which in turn could
impact the accuracy of the model.

Second is model selection: what number of components should be fitted? This parameter needs to be
either manually set, or learned. Manually setting this parameter is highly dependent on the domain and the
context. Several classes of methods have been suggested for learning the optimal number of components:
maximum likelihood estimations (e.g. Keribin, 2000; Leroux, 1992; Roeder & Wasserman, 1997; Verbeek,
Vlassis, & Kröse, 2003), distance measures (e.g. Chen & Kalbfleisch, 1996; James, Priebe, & Marchette,
2001; Woo & Sriram, 2006), and Bayesian approaches (e.g. Constantinopoulos, Titsias, & Likas, 2006; Cor-
duneanu & Bishop, 2001; Steele & Raftery, 2010).

Estimation
After the design is selected, the model needs to be estimated: for each of the components, the optimal mean

vector and covariance matrix has to be found. A well-known, efficient algorithm for this is the Expectation
Maximisation (EM) algorithm (A. P. Dempster et al., 1977). First, the model is randomly initialised, typically
by assigning data points to components randomly. Each component now has a means vector and a covariance
matrix. The EM algorithm then iteratively performs two steps:

(1) Expectation step: calculate prior probabilities of belonging to each component, based on values of means
and covariances.

(2) Maximisation step: update value of means and covariances based on prior probabilities and corresponding
maximum likelihood.

However, the EM algorithm has shortcomings. First, while searching for a maximum likelihood, the
algorithm only finds local maxima. This means that the found maximum likelihood is not necessarily the
global maximum likelihood. The algorithm is sensitive to initialisation: changing the initial values can
potentially change the model outcome. A trivial solution to this problem is to restart the model multiple
times with different initial values, and select the model that has the highest maximum likelihood. This
reduces the chance of a ‘bad’ model significantly.

Second, the algorithm can run into singularities: the situation in which a covariance matrix is singular
after the update, causing the likelihood function to spike to infinity. Singularity of a covariance matrix
implies that the variance is exactly zero. Typically, this happens when a component is fit to a single point,
causing the Gaussian to collapse to that point. Luckily, this issue can also be resolved by restarting the
model multiple times. Any model initialisation that results in a singularity is then discarded.

Regularisation
While less common, regularisation exists for GMMs as well. Regularisation, in this case, implies penalising

the estimated parameters of the components, i.e. the means vectors and/or the covariance matrices. Zhou,
Pan, and Shen (2009) apply the LASSO penalty (Tibshirani, 1996) to shrink means towards zero. Variables
with means reduced to zero are deemed non-informative towards distinguishing Gaussian components and
are subsequently removed from the model. Thus, applying a penalty to component means performs variable
selection.

Regularisation of the covariance matrices serves the same purpose as for the graphical model: reducing
model complexity by increasing sparsity. Interestingly, Zhou et al. (2009) use the glasso algorithm for this
estimation.

Applications of GMMs
Gaussian Mixture Models are a well-known and popular clustering method for high-dimensional problems.

Computer vision. GMMs are often applied in imaging studies for their discriminatory power. M.-H. Yang
and Ahuja (1998) use GMMs for the automated detection of skin color in images, finding that a mixture of
Gaussian components outperforms a single Gaussian density function for this task. Similarly, Zivkovic (2004)
use GMMs for background subtraction in images. Their approach allows for real-time background subtraction
from surveillance images, thereby reducing the image to intruding objects only. Image segmentation, the
detection of regions in an image, has been investigated by Farnoush and Zar (2008), and by Kim and Kang
(2007).
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Methods
This section will provide exact definitions and descriptions of the methods used in this thesis. First, an exact,
mathematical description is given for Gaussian Graphical Models (GGM) and for Gaussian Mixture Models
(GMM). Second, the pipeline for the GGM/GMM method is presented. Third, methods for interpretation
of GGM networks are reviewed.

Regularised Gaussian Graphical Models
A Gaussian Graphical Model is defined as an undirected graph G = (V,E) that describes the conditional

independence structure of a set of random variables. LetX = (X1, . . . , Xp) denote the set of random variables,
with a p-dimensional multivariate distribution around Np(µ,Σ), with mean µ and covariance matrix Σ. Each
of the p variables X1, . . . , Xp then corresponds with the vertices in the set V . The estimation of the network
structure is then equivalent to the estimation of non-zero edges in edge set E.

An edge (i, j) /∈ E if and only if Xi is conditionally independent of Xj given all other variables. Stated
differently, edge (i, j) is not part of edge set E if and only if there is zero partial correlation between Xi and
Xj (ρij = 0), conditional on all other variables. Non-zero partial correlations can be inferred directly from
the inverse of the covariance matrix Σ. Let Ω = Σ−1 denote the inverse covariance matrix, also known as
the precision matrix. Let ωij denote entry (i, j) of Ω. The relationship between partial correlations and Ω is
given by the following equation:

ρij = − ωij√
ωiiωjj

Hence, non-zero entries of Ω correspond to edges in edge set E. Formally:

ωij 6= 0⇐⇒ (i, j) ∈ E

Now, let x1, . . . , xn denote a random sample from the multivariate distribution Np(µ,Σ). Then, sample
mean is given by

x̄ =
∑n
i=1 xi
n

and the sample covariance matrix is given by

S =
∑n
i=1(xi − x̄)2

n

Note that obtaining the precision matrix requires inverting the true covariance matrix, but only the sample
covariance matrix is available. Hence, the precision matrix needs to be estimated from the sample. Maximum
likelihood estimation can be used to estimate the precision matrix Ω by maximising the following log-likelihood
function:

`(Ω) = log det Ω− tr (ΩS)
The result of this maximisation is the maximum likelihood estimate Ω̂, which is an approximation of the true
Ω.

Regularisation
Estimation of partial correlation estimates using the above equations rarely leads to estimates of Ω that

are sparse (i.e. contains only few non-zero entries). In high-dimensional contexts with small sample sizes (i.e.
n < p), the sample covariance matrix S is singular, and can therefore not be used to estimate Ω. Even when
n ≥ p, especially for large p, Ω̂ is often a poor estimator due to the fact that sampling variation leads to
estimates that are never exactly zero, causing spurious edges, i.e. false positives. In order to limit spurious
edges and encourage sparsity, the estimation of Ω can be regularised using the ’least absolute shrinkage and
selection operator’ (LASSO; Tibshirani, 1996). The LASSO places a penalty on the estimation, resulting in
the following penalised log-likelihood:

`p(Ω) = log det Ω− tr (ΩS)− λ||Ω||1 (3.1)

where the `1 norm is given by
||Ω||1 =

∑
i,j,i 6=j

|ωi,j |
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and λ denotes a non-negative tuning parameter controlling sparsity. To obtain the maximum likelihood
estimate, the penalised log-likelihood is maximised over positive-definite matrices. This is a convex optimi-
sation problem that has seen several suggested approaches (e.g. the ’maxdet’ algorithm (Yuan & Lin, 2007);
semi-definite interior point optimisation (d’Aspremont, Banerjee, & El Ghaoui, 2008); permutation-invariant
estimation using Cholesky decomposition (Rothman, Bickel, Levina, Zhu, et al., 2008)). The method used
here is the graphical LASSO (glasso; Friedman et al., 2008), which is a quick and widely used method.

The glasso algorithm iteratively finds values for the matrix Ω̂ such that

Ω̂ = arg maxΩ≥0 (log det Ω− tr (ΩS)− λ||Ω||1) (3.2)

The algorithm uses the fact that in order to find Ω̂, we can invert an estimate of Σ, defined as Σ̂. This is
achieved using the following algorithm (Friedman et al., 2008):

1. Initiate Σ̂ = S + λI, where S denotes the covariance matrix of the sample, and I denotes the identity
matrix of S.

2. Let i and j represent the rows and columns of Σ̂, respectively. For each i = 1, 2, . . . , p and each
j = 1, 2, . . . , p, solve the lasso problem, defined as:

β̂ = min
β

{
1
2 ||Σ̂

1/2
ii β −

(
Σ̂−1/2
ii Sij

)
||2 + λ||β||1

}
where β̂ is a p − 1 vector solution. Fill in row i and column j with the values of Σ̂iiβ̂, ignoring the
diagonal.

3. Repeat step 2 until convergence.

The resulting estimate Σ̂ is then inverted to obtain Ω̂.

Model selection
Typically, the optimal value of the tuning parameter λ is not set manually, but determined in a model

selection procedure. A large number of models is estimated under varying values of λ in the range [λmin, λmax].
For Gaussian Graphical models, λmax is typically set to the largest absolute correlation, and λmin is typically
chosen by multiplying λmax with some ratio R (e.g. 0.01 or 0.1), giving λmin = Rλmax (Epskamp, 2016b).
To select the optimal model from these values, cross-validation or an information criterion can be used. The
Bayesian Information Criterion (BIC) is widely used in this context. An extended version of the BIC (EBIC;
Chen & Chen, 2008) introduces an additional complexity penalty to the BIC:

EBIC = −2`+ E log(N) + 4γE log(V ) (3.3)

where ` denotes the log-likelihood, E denotes the edge set and V denotes the set of vertices. The EBIC uses
the hyperparameter γ between 0 and 1. When γ = 0, the EBIC reduces to the BIC. The higher the value of
γ, the higher the preference for simpler models (i.e. less edges). Minimizing the EBIC with respect to the
value of λ (and the resulting log-likelihood) then selects the optimal model. The hyperparameter γ, however,
needs to be set manually.

Clustering using regularised Gaussian Graphical Models
In order to identify structurally heterogeneous subtypes of the investigated phenomenon, it is possible

to use the conditional independence structure of the Gaussian Graphical Model. Hill and Mukherjee (2013)
provide a method of estimating K different clusters using Gaussian Mixture Modelling with glasso estimation
of precision matrices. This method combines discovery and estimation of subtypes in the data, resulting in
clusters with unique Gaussian Graphical Models. The method is described below.
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Gaussian Mixture Model
In order to cluster the data, Hill and Mukherjee (2013) extend the above estimation to a multivariate

Gaussian Mixture Model, where cluster assignments are considered the latent variable. Every Gaussian
mixture, in essence, represents a cluster and a distinct Gaussian Graphical Model. The Gaussian mixture
distribution is defined by

f(xi; Θ) =
K∑
k=1

πkNp,k(xi|µk,Σk)

with mixing proportions πk satisfying 0 < πk < 1 and
∑K
k=1 πk = 1, and where Np,k is the multivariate

Gaussian density with mixture-specific mean µk and covariance matrix Σk. Important to note is that the
covariance matrices are of full rank. Since the aim is to estimate the off-diagonal elements of the precision
matrix by inverting the covariance matrix, using a spherical covariance matrix will result in a singularity.
Using a diagonal covariance matrix will result in components that are more similar to each other, decreasing
the discriminatory power of the model. Θ represents the set of all unknown parameters for all mixtures
{(πk, µk,Σk) : k = 1, . . . ,K}.

Regularisation
The penalised log-likelihood function (3.1) can be extended to a Gaussian mixture form:

`p(Ω) =
n∑
i−1

log
(

K∑
k=1

πkNp,k (xi|µk,Σk)
)
− n

2 pλ(Θ) (3.4)

with penalty term

pλ(Θ) = λ

K∑
k=1

πk||Ωk||1

Note that the penalty term for each cluster is weighted by its mixing proportion. Previous work has shown
that including the mixing proportion in the penalty term yields better results in general (Hill & Mukherjee,
2013; Zhou et al., 2009). As such, this penalty term is used.

In contrast to (3.1), equation (3.4) is not convex, and thus its maximisation is a non-trivial task. Hill
and Mukherjee (2013) use the Expectation-Maximisation (EM) algorithm (A. P. Dempster et al., 1977) to
obtain maximum likelihood estimates. First follows a brief explanation of the EM algorithm. Then, the EM
algorithm is defined for the maximisation of (3.4).

The EM algorithm uses a set X of observed data, a set Z of latent variables, the vector of unknown
parameters Θ, and the likelihood function L(Θ;X,Z) = p(X,Z|Θ). Directly maximising the marginal likeli-
hood of the observed data is normally intractable. EM, then, iteratively applies two steps to find an optimal
solution:

Expectation step: define expected value of the log likelihood function of Θ:

Q(Θ|Θ(t)) = EZ|X,Θ(t) [logL(Θ;X,Z)]

Maximisation step: find parameters that maximise Q(Θ|Θ(t)):

Θ(t+1) = arg maxQ(Θ|Θ(t))

After each maximisation step, the newfound parameters Θ(t+1) are used in the next expectation step. This
process is repeated until convergence at a (local) maximum.

For the estimation of the penalised log-likelihood function of a Gaussian Mixture Model, the problem is
defined as follows.
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Let zi be a latent variable satisfying zi = k if observation xi belongs to cluster k. Then it follows that
P (zi = k) = πk and p(xi|zi = k) = Np,k(xi|µk,Σk). The complete data can then be denoted as {xi, zi}ni=1.
The penalised log-likelihood for the complete data is then:

`p,c(Ω) =
n∑
i−1

log (πzi
) + log (Np,zi

(xi|µzi
,Σzi

))− n

2 pλ(Θ) (3.5)

The expectation step then uses the current parameter estimates Θ(t) to compute

Q(Θ|Θ(t)) = E
[
`p,c(Θ)|{xi}ni=1,Θ(t)

]
=

n∑
i=1

K∑
k=1

τ
(t)
ik [log(πk) + log(fk(xi|µk,Σk))]− n

2 pλ(Θ)
(3.6)

where τ (t)
ik is the posterior probability of observation xi belonging to cluster k, and can be seen as a ’soft’

cluster assignment:

τ
(t)
ik =

π
(t)
k Np,k(x(t)

i |µ
(t)
k ,
∑(t)
k )∑K

j=1 π
(t)
j Np,j(x(t)

i |µ
(t)
j ,
∑(t)
j

(3.7)

In the maximisation step, Q
(
Θ|Θ(t)) is maximised to provide estimates of the parameters Θ(t+1) = {π(t+1)

k , µ
(t+1)
k ,Σ(t+1)

k }.
The standard updates for each of these parameters are as follows:

π
(t+1)
k =

∑n
i=1 τ

(t)
ik

n
(3.8)

µ
(t+1)
k =

∑n
i=1 τ

(t)
ik xi∑n

i=1 τ
(t)
ik

(3.9)

The update for Σ(t+1)
k can be rewritten as the inverse of the update for Ωk, which is:

Ω(t+1)
k = arg max

[
n∑
i=1

τ
(t)
ik

(
log det Ωk − tr (ΩkS(t)

k )
)
− nλ

(
πt+1
k

)
||Ωk||1

]
= arg max

[
log det Ωk − tr (ΩkS(t)

k )− λ||Ωk||1
] (3.10)

where the standard update of S(t+1)
k is:

S
(t+1)
k =

∑n
i=1 τ

(t)
ik

(
xi − µ(t+1)

k

)2

∑n
i=1 τ

(t)
ik

(3.11)

The expectation and maximisation steps are repeated until either (1) a maximum number of iterations is
reached (default is 100), (2) a minimum cluster size is reached (default is 4), or (3) the relative change of the
penalised log-likelihood is below a certain threshold (default is 10−4).

Model selection
Finally, model selection is addressed by comparing the cross-validation and BIC methods. The EBIC has

been shown to outperform the BIC in the discovery of sparse estimates (Chen & Chen, 2008). Normally,
the EBIC applies to the selection of sparse estimates a single Gaussian. However, the GMM consists of k
Gaussians, each needing sparse estimates. Therefore, we extend the literature by adapting the EBIC to the
mixture model, in order to make it usable for model selection in the GMM.

The EBIC as described in equation (3.3) is tailored to a single Gaussian Graphical Model. The EBIC can
be extended to the Gaussian Mixture Model by considering that the edge set E equals the degrees of freedom
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of the model. The degrees of freedom for the penalized Gaussian Mixture Model is given by the following
equation (Hill & Mukherjee, 2013; Yuan & Lin, 2007):

dfλ = K(P + 1)− 1 +
K∑
k=1

Ek

where p is the number of variables and Ek is the edge set of cluster k under λ, equivalent to the number of
non-zero entries in the upper triangle of Ω̂k, formally given by

Ek = # {(i, j) : i ≤ j, (ω̂kλ)ij 6= 0}

The EBIC for the penalised Gaussian Mixture Model is then:

EBIC = −2`(Θ̂λ) + dfλ log(n) + 4 γ dfλ log(p) (3.12)

The resulting Gaussian Mixture Model contains, in each mixture k, the penalised precision matrix Ω̂k that
can be used to draw the network of the corresponding Gaussian Graphical Model.

Pipeline
Integrating the above methods results in the following pipeline:

1. Generate 100 log-scaled values of the penalisation parameter λ between λmin and λmax.

2. For each value of λ, do the following:

For R restarts, do the following:
i. Initialise K components by randomly assigning data points to each component. Compute

means µ(0)
k and variance-covariance matrices S(0)

k for each component. Use S(0)
k as input for

the glasso algorithm to obtain Ω(0)
k and invert the result to obtain Σ(0)

k .
ii. Repeat the following EM steps until convergence:

A. Expectation step: for each data point, compute posterior probabilities τ (t)
ik using µ(t)

k and
Σ(t)
k , as in Equation (3.7).

B. Maximisation step: for each component, compute µ(t+1)
k and S(t+1)

k using (3.9) and (3.11),
respectively. Use S(t+1)

k as input for the glasso algorithm to obtain Ω(t+1)
k (Eq. (3.10))

and invert the result to obtain Σ(t+1)
k .

C. Increment t.
iii. Compute the EBIC score for this model using equation (3.12).

3. Return the model with the lowest EBIC score.

4. For each group in the best model, draw networks and compute network features.
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Intepretation and comparison of regularised Gaussian
Graphical Models

Once a Gaussian Graphical Model has been computed and drawn as a network, it can be interpreted using
several network features. If multiple GGMs are computed (e.g. for varying conditions, groups, or clusters),
these features can be used to compare the networks.
Visualisation. A GGM can be interpreted through visualisation of the GGM. The graph visually represents
the conditional independence structure of the variables, which can aid in the generation of new hypotheses
about variable relations and interaction. Additional methods can be applied to create an informative graph.
For example, the package qgraph (Epskamp et al., 2018) in the statistical language R applies several. First,
by default, it determines the layout of the graph using the Fruchterman-Reingold algorithm (Fruchterman &
Reingold, 1991), creating a force-directed layout, causing strongly connected variables to be closer together
and vice versa. Second, it allows for a threshold value, where any edges with weights lower than this value will
not be drawn. Third, it allows for the grouping of variables, if any variable structure is known or expected
a priori. By using (a combination of) these settings, a visual inspection of the graph can provide valuable
information about the studied construct.
Centrality. Second, the centrality of the nodes in the graph can be investigated. Centrality measures are
graph-theoretic measures used to identify the most important or impactful nodes in the network. The four
relevant centrality measures are strength centrality, betweenness centrality, closeness centrality and expected
influence..

Strength centrality simply sums the absolute edge weights of the edges tied to a certain node v:

CS(v) =
E∑
|(eij ∈ E : i = v ∨ j = v)|

Betweenness centrality counts how often node v is part of a shortest path between two random nodes. It
signals nodes that function as bridges between other nodes in the network:

CB(v) =
∑

s6=v 6=t∈V

σst(v)
σst

where σst is the total number of shortest paths from node s to node t and σst(v) is the number of these
shortest paths that go through v.

Closeness centrality quantifies how close a node is, on average, to all other nodes. It is the average length
of the shortest path between the node itself and all other nodes:

CC(v) = 1∑
s d(s, v)

where d(s, v) denotes the distance between node s and node v.

Expected influence is a relatively new centrality measure proposed by Robinaugh, Millner, and McNally
(2016). It is similar to strength, but takes into account positive and negative values of edge weights by not
taking the absolute value:

CEI(v) =
E∑

(eij ∈ E : i = v ∨ j = v)

Stability. Third, the stability of the estimated edges can be interpreted as a measure of the rigidity of relations
between variables. Edge weight stability can be estimated by using bootstrapping techniques. The R package
bootnet does exactly this (Epskamp et al., 2018). By resampling with replacement and re-estimating the
edge weights for each resampling, an edge weight distribution for each edge is calculated, with corresponding
mean, standard deviance, and confidence interval. Edges that are sensitive to this resampling will have wide
distributions and can be considered unstable, and vice versa.
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Results
Benchmarking

To test whether the method is able to accurately identify conditional independence structures of subgroups,
the method is tested on artificial data. Artificial data is generated as follows. First, for each subgroup, a
p × p precision matrix is generated, containing the wanted conditional independence structure. Second,
these precision matrices are converted to a covariance matrix. Third, multivariate data is randomly sampled
from these covariance matrices, resulting in an artificial subsample for each subgroup. Finally, the artificial
subsamples are combined into one sample.

Such artificial datasets are generated for varying values of three conditions: degree of structural overlap,
balanced sample sizes and unbalanced sample sizes. The exact list of conditions is presented in Table 4.1.

Performance of the model is assessed for every condition. For each condition, an optimal model is
computed with k = 3 and γ = 0.5. Edges estimated to be lower than 0.1 are excluded from the resulting
networks. Precision of the estimated structures is assessed by comparing the estimated structures of the
subgroups with the true structure of the subgroups. This comparison includes estimation accuracy (i.e.
whether the estimated network contains no spurious edges and all true edges) and edge weight accuracy (i.e.
how closely the true edge weights are approximated by the estimated edge weights).

This section is divided as follows. First, a baseline condition is presented as an example. For this baseline
condition, an extensive evaluation of the results is performed to provide an overview of how benchmarking
tests are assessed. Second, summarised results are presented for varying values of the three conditions.
Results of centrality indices and centrality stability are excluded from these summaries, as centrality values
are dependent on the structure of the estimated networks. However, full results of network structure, network
stability, centrality indices and centrality stability are available upon request.

Conditions

Degree of structural overlap Varying balanced group sizes Varying unbalanced group sizes

0/4 overlap N = 500 Nk = {1000, 1000, 500}

2/5 overlap N = 400 Nk = {1000, 500, 100}

4/6 overlap N = 300 Nk = {500, 500, 100}

6/7 overlap N = 200

N = 100

Table 4.1: Overview of conditions tested in the benchmarking tests.

Figure 4.1: Estimated CIS of the full artificial dataset generated using the CISs shown in
Figure 4.2. Nodes represent variables, edge weights represent partial correlations between
variables.
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Baseline condition
In this section, we create an artificial dataset that serves as a baseline case that is used for testing the

method. We use this baseline case as an example of the application of the GGM/GMM method. We compare
network structure, network stability, centrality scores and centrality stability of the estimated networks with
those of the true networks.

An artificial dataset was generated with p = 12 variables, k = 3 subgroups, each with a subsample size
of N = 500. The conditional independence structures used to generate this dataset are presented in Figure
4.2. In this condition, each subgroup has a variable structure of four interdependent variables, connected
cyclically by edges with random weights in the range [0.3, 0, 4]. The structures of the subgroups do not
have any variables in common. This is the simplest case, where the subgroups have no overlap in terms of
conditional independence structure.

The resulting dataset has sample size N = 1500. Estimating the conditional independence structure of
this aggregate dataset yields the graph seen in Figure 4.1. Visually inspecting this graph, it resembles the
structures of the three subgroups, combined into one graph. However, the edge A − B (belonging to group
1) was estimated to be lower than 0.1, and has been excluded from the graph.

Figure 4.2: True CISs used to generate the artificial sample. Nodes represent variables, edge weights represent
partial correlations between variables.

Figure 4.3: CISs for k = 3 subgroups estimated using the proposed GMM/GGM method. Nodes represent
variables, edge weights represent partial correlations between variables.
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Structural estimation. From the artificial sample, a family of models was computed with k = 3, distinguishing
three subgroups in the sample. The estimated conditional independence structures are shown in Figure 4.3.
Comparing the networks in Figure 4.3 with those in Figure 4.2 reveals that the method is able to accurately
estimate the structures of the subgroups. Note that the edge weights of the estimated networks are lower
than those in the true networks, due to regularisation.
Centrality plots. Figure 4.4 shows the standardised centrality plots of the true networks and the estimated
networks. A visual comparison reveals that the strength and expected influence centralities are almost
identical between the true and the estimated networks, save for differences as a result of smaller edge weights
in the estimated networks. Closeness and betweenness centralities show slight differences between the true
and estimated networks. For example, in the betweenness plot for group 3, variable J/V10 has a high
positive value (2.0) in the true network, but a slightly negative value (−0.5) in the estimated network. Such
discrepancies may be the result of the fact that betweenness and closeness are less stable in very sparse
networks (Epskamp, 2016a). As a consequence, these measures should be interpreted with care.
Edge weight stability analysis. Figure 4.5 shows the edge weight stability analyses for the true and estimated
networks. Visual comparison reveals that the estimated networks are more likely to have spurious edges,
indicated by the presence of more grey area, which represents confidence intervals for an edge weight value.
In addition, estimated edges are sometimes less stable (e.g. group 3, edge V9-V12), indicated by the larger
confidence interval around the edge.
Centrality stability analysis. Figure 4.6 shows the plots of the stability of the centrality indices for the true
and estimated networks. Visual inspection of the plots shows that overall, the centrality scores seem less
stable for the estimated networks, compared to the true networks. This is especially true for the betweenness
centrality. Nonetheless, the centralities of the true networks also seem unstable, as indicated by the large
area around the lines indicating the confidence intervals.

Figure 4.4: Standardised centrality plots for graphs of the true networks (left) and estimated
networks (right) of the artificial data with k = 3, p = 12, equal N = 500, and no structural
overlap. The x-axis shows standardised centrality scores. The y-axis shows the nodes. Groups
are indicated by colours.
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Figure 4.5: Stability analyses of true networks (top row) and estimated networks (bottom row) of the artificial data with k = 3,
p = 12, equal N = 500, and no structural overlap. Red line indicates estimated network weights, black line indicates bootstrap
means, grey areas indicate 95% confidence interval for bootstrap means. From left to right: group 1, group 2, group 3.
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Figure 4.6: Centrality stability plots for graphs of the true networks (left column) and estimated networks (right column) of
the artificial data with k = 3, p = 12, equal N = 500, and no structural overlap. x-axis indicates % of retained cases, y-axis
indicates average correlation with the 100% sample, colours indicate centrality metrics, areas indicate 95% confidence intervals
around average correlations. From top to bottom: group 1, group 2, group 3.
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Variations of baseline condition: degree of structural overlap
To estimate model performance in cases where subgroups have variables in common, the method was

tested with subgroups that have overlapping structures. The structure of each subgroup in the baseline
condition was extended by adding one or more variables to the structure clockwise. This was done for
one, two and three variables, respectively. This results in subgroup structures that have one, two or three
variables in common with each other subgroup structure, resulting in four conditions in total: 0/4 overlap
(i.e. the baseline condition), 2/5 overlap, 4/6 overlap and 6/7 overlap. Each subgroup retains a sample size
of N = 500. Figure 4.7 provides the true structures of all groups for each condition.

For each of the conditions, a family of models with k = 3 was computed, and the model with the lowest
EBIC score was selected as the optimal model. In addition, a single network for the full sample is computed.
The resulting estimated networks for each condition are shown in Figure 4.8. Results are summarised in
Figure 4.9.

Results show that all but one group network are correctly estimated by the method. Only the network
for group 2 in the 6/7 overlap condition produced one spurious edge. In addition, the networks for the full
samples are often unable to capture the full structures of all groups in one graph. For these networks, the
strongest edges are those that are shared by two groups, i.e. overlapping edges. Edge weights are consistently
estimated to be lower than the true edge weights, ranging from ±70% to ±85% of the true value.
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Figure 4.7: True structures for subgroups of every structural overlap condition.
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Figure 4.8: Estimated structures for subgroups and full sample of every structural overlap condition.

Figure 4.9: Summary of estimation performance for varying degrees of structural overlap. Red lines indicate
% of edges correctly estimated, blue lines indicate % to which estimated edge weights approach true edge
weights. x-axis represents conditions, y-axis represents percentages.
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Figure 4.10: Summary of edge weight instability for varying degrees of structural overlap. Network edge
weight stability was calculated as the sum of confidence interval ranges for all edges of the network. Colours
indicate groups. x-axis represents conditions, y-axis represents sum of CI ranges.

Figure 4.10 shows an overview of edge weight instability for all conditions. Two meaningful observations
can be made. First, edge weight instability is higher for the 0/4 overlap condition (i.e. the baseline condition)
than for the other conditions. Second, there is a spike in instability of the network for group 2 in the 6/7
overlap condition. This corresponds with the spurious edge that was estimated for this network.

Variations of baseline condition: balanced sample sizes
The method was also tested for decreasing balanced sample sizes. In addition, the conditional indepen-

dence structure chosen for testing balanced sample sizes was that of the 4/6 overlap condition, as some
structural overlap is expected for most real data. Furthermore, for N = 500, this structure yields stable
results with no estimation errors. Starting from N = 500, the sample size was decreased with 100, 200, 300
and 400, respectively, resulting in five conditions: N = 500, N = 400, N = 300, N = 200, N = 100. For each
of the conditions, a family of models with k = 3 was computed, and the model with the lowest EBIC score

Figure 4.11: Summary of estimation performance for varying balanced sample sizes. Red lines indicate % of
edges correctly estimated, blue lines indicate % to which estimated edge weights approach true edge weights.
x-axis represents conditions, y-axis represents percentages.
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Figure 4.12: Estimated structures for subgroups and full sample of every balanced sample size condition.

was selected as the optimal model. In addition, a single network for the full sample is computed for each
condition. The resulting estimated networks are shown in Figure 4.12. Results are summarised in Figure
4.11.

Results show that all conditions with sample sizes lower than 500 have at least one estimation error in one
of the groups. For conditions with a sample size of 300 or less, one or more networks are estimated empty (i.e.
without any edges). With decreasing sample sizes, accuracy of edges and edge weights strongly decreases.
Inspecting networks with erroneous edges, results show that in some cases spurious edges in one group are
part of the true structure of another group (e.g. N = 300, group 2; N = 200, group 2). However, for the
two conditions with the lowest sample sizes, erroneous edges are estimated that are not part of any group’s
true structure. The full sample networks also become more sparse with decreasing sample size. However, for
every group size, the full sample network shows three cliques of connected variables that correspond to the
three groups.
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Figure 4.13: Summary of edge weight instability for decreasing balanced sample sizes. Network edge weight
stability was calculated as the sum of confidence interval ranges for all edges of the network.

Edge weights are still estimated lower than the true edge weights. With decreasing sample size, the edge
weights seem to deviate more from the true value. In general, edge weight agreements follow the same pattern
as edge estimation accuracy. In other words, if an edge is accurately estimated, the estimated edge weight is
likely within ±25% of the true edge weight.

Figure 4.13 shows an overview of edge weight instability for all conditions. Generally, instability seems
to increase with decreasing sample size. However, instability for group 1 seems to stay at the same level for
all conditions, despite the fact that the group 1 network is empty for N = 200 and N = 100. The empty
networks for group 3 (N = 300 and N = 200) also show low instability.

Variations of baseline condition: balanced sample sizes
Finally, the method was tested for different combinations of unbalanced sample sizes. Again, the condi-

tional independence structure chosen for testing was that of the 4/6 overlap condition. Group sizes were set
to be N = 1000 (large group), N = 500 (medium group) or N = 100 (small group). Using these sizes, three
cases were investigated. First, the case where one group is significantly smaller, but all groups have large

Figure 4.14: Summary of estimation performance for varying unbalanced sample sizes. Red lines indicate
% of edges correctly estimated, blue lines indicate % to which estimated edge weights approach true edge
weights. x-axis represents conditions, y-axis represents percentages.
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Figure 4.15: Estimated structures for subgroups and full sample of every balanced sample size condition.

enough sample sizes for stable results. Second, the case where there is one large majority group, one small
minority group, and one middle sized group. Third, the case where on group is again significantly smaller,
but has a problematically low sample size. These cases translate to the following combinations of group
sizes: Nk = {1000, 1000, 500}, Nk = {1000, 500, 100} and Nk = {500, 500, 100}. Again, full sample networks
are computed for each condition. The resulting estimated networks are shown in Figure 4.15. Results are
summarised in Figure 4.14.

Results show that all networks with N = 1000 are estimated correctly. Networks with N = 500 are
estimated with errors when there is another, larger group in the same condition (i.e. Nk = {1000, 1000, 500},
group 3 and Nk = {1000, 500, 100}, group 2), but not when N = 500 is the largest sample size (i.e. Nk =
{500, 500, 100}, groups 1 and 2). Networks with N = 100 are always estimated to be empty. For the full
sample networks, the network structure resembles the largest groups of that condition. For example, in the
Nk = {1000, 1000, 500} condition, the structures of groups 1 and 2 are both fully present in the network of
the full sample. This effect is less pronounced, but still present in the Nk = {500, 500, 100} condition.

Edge weights follow the estimation accuracy: when estimation accuracy is high, the edge weights approach
the true edge weights closely. However, lower group sizes lead to lower estimation accuracy, and a less close
approximation of the true edge weights.
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Figure 4.16: Summary of edge weight instability for varying combinations of unbalanced sample sizes. Net-
work edge weight stability was calculated as the sum of confidence interval ranges for all edges of the network.

In terms of instability, the networks with the largest group sizes have the lowest edge weight instability.
However, the instability of smaller groups seems to be relative to the larger groups, as evidenced by the edge
weight stability for the Nk = {1000, 500, 100} condition. In this condition, group 3 (empty network with
N = 100) has a very high instability. In contrast, group 3 in the Nk = {500, 500, 100} condition (also empty
and with N = 100), has a very low instability.

33



Social Media Disorder
Data description

The data used here was collected as part of the Digital Youth project, a 5-year longitudinal study on
the role of social media and gaming in the lives of Dutch adolescents. The study is based on self-report
measures from high-school students in several Dutch cities. Data was collected annually in February and
March through an online survey administered at school. Three waves of measurements were administered in
2016, 2017 and 2018, respectively. Differences in sample sizes between waves are largely due to entire schools
joining or declining participation in the study. As a consequence, the distribution of demographic variables
may vary between waves.

The resulting set contains responses by 4716 children and adolescents in the age range 10 to 18. Demo-
graphics for each wave are shown in Table 4.2. Each wave consisted of a questionnaire measuring 19 variables,
presented in Table 4.3. Out of the 4716 participants, only 644 (13.7%) participated in all three waves.

Since the current application does not take into account time-series or directionality, waves were treated
as separate, cross-sectional datasets. In the pre-processing stage, all incomplete cases (i.e. cases with missing
values) were removed from each wave. The wave 2 dataset was selected for further analysis as it had the
most complete cases out of all three waves.

In estimating the networks, the descriptive variables sex, age and education level were excluded from the
estimations, to avoid results that discriminate subgroups based on descriptives. Furthermore, the categorical
SMD score was excluded from the networks, as the numerical SMD score was already included. Figure 4.17
shows the estimated network for the full wave 2 SMD data.

Wave Complete cases
Gender Age

Male (%) Female (%) Min Max Mean Std. dev.

1 1640 897 (54.7%) 743 (45.3%) 10 16 13.3 0.916

2 2376 1224 (51.5%) 1152 (48.5%) 11 17 13.9 1.21

3 1890 953 (50.4%) 937 (49.6%) 11 18 14.4 1.50

Table 4.2: Demographics of SMD wave data.

Figure 4.17: Estimated CIS of the full SMD dataset. Nodes represent vari-
ables, edges represent partial correlations between variables.
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Variable Abbreviation Description

Sex sex Gender of the participant.

Age age Age of the participant.

Education level edulvl Education level of the participant. Contains five levels correspond-
ing to Dutch education levels (i.e. VMBO, VMBO/HAVO, HAVO,
HAVO/VWO, and VWO).

Social media
disorder (raw

score)
smd Sum score of 9 binary items of the Social Media Disorder scale (Van

Den Eijnden, Lemmens, & Valkenburg, 2016), measuring the severity of
social media disorder (American Psychiatric Association, 2013).

Social media
disorder (level) smd gr Ordinal transformation of social media disorder score containing three

(increasingly severe) levels, labeled normal user, risky user and problem-
atic user, respectively.

Attention
problems ap Part of the Dutch ADHD-questionnaire (Scholte & Van der Ploeg, 1999).

Mean score of 9 items measuring symptoms of attentive problems, where
higher values indicate more severe symptoms.

Impulsivity imp Part of the Dutch ADHD-questionnaire (Scholte & Van der Ploeg, 1999).
Mean score of 6 items measuring symptoms of impulsivity, where higher
values indicate more severe symptoms.

Hyperactivity hyp Part of the Dutch ADHD-questionnaire (Scholte & Van der Ploeg, 1999).
Mean score of 6 items measuring symptoms of hyperactivity, where
higher scores indicate more severe symptoms.

Depressive
symptoms ds Mean score of 6 items of the Dutch version of the Depressive Mood

Inventory (Kandel & Davies, 1982), measuring symptoms of depression,
where higher scores indicate more severe symptoms.

Life satisfaction ls Mean score of 7 items of the Dutch version of the Satisfaction With Life
Scale (SWLS; Diener, Emmons, Larsen, & Griffin, 1985), where higher
scores indicate higher life satisfaction.

Self esteem se Mean score of 5 out of 10 items of the Dutch translation of the Rosenberg
Self-Esteem Scale (RSE; Rosenberg, Schooler, & Schoenbach, 1989),
where higher scores indicate a higher degree of self-esteem.

Physical self
esteem pse Mean score of 5 items measuring physical self-esteem: one’s esteem of

their appearance. Higher scores indicate a higher degree of physical
self-esteem.

Narcissism cns Sum score of 10 items of the Dutch version of the Childhood Narcissism
Scale (CNS; Thomaes, Stegge, Bushman, Olthof, & Denissen, 2008)
measuring narcissistic qualities, where higher scores indicate a higher
degree of narcissism.

Fear of missing
out fomo Mean score of 5 items of the Fear of Missing Out Scale (Przybylski,

Murayama, DeHaan, & Gladwell, 2013), measuring the degree to which
one is fearful of missing out on positive experiences with their social
circle. Higher scores indicate a higher degree of fear of missing out.
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Variable Abbreviation Description

Perceived social
competence cbsa Mean score of 5 items of the Dutch version of the Self-perception Profiles

for Adolescents questionnaire (Competentie Belevingsschaal voor Ado-
lescenten, CBSA; Treffers et al., 2002), measuring the degree to which
one feels competent in social interactions. Higher scores indicate higher
perceived social competence.

Intensity of
meeting friends ffs Mean score of 4 items measuring the frequency and intensity with which

the participant meets with friends, where higher scores indicate a higher
intensity.

Restrictive
parental rules rspr Mean score of 5 items adapted from the parenting practices questionnaire

(van Den Eijnden, Spijkerman, Vermulst, van Rooij, & Engels, 2010),
measuring the degree to which parents apply restrictive rules to their
children’s internet and game use. Higher scores indicate more use of
restrictive rules.

Reactive
parental rules rapr Mean score of 4 items adapted from the parenting practices questionnaire

(van Den Eijnden et al., 2010), measuring the degree to which parents
apply reactive rules to their children’s internet and game use. Higher
scores indicate more use of reactive rules.

Quality of
communication qoc Mean score of 3 items asking participants whether they feel comfort-

able, understood, and taken seriously when talking about internet or
game use with their parents. Higher scores indicate a higher quality of
communication.

Table 4.3: Variables in the SMD data.

Three-group model
From the wave 2 SMD data, a family of models was computed with k = 3, distinguishing three subgroups

in the data. The optimal k = 3 model was selected with λ = 0.01933, with EBIC = 89747. Figure 4.18 shows
the estimated networks for the k = 3 model. For all networks, variable names and mean values are drawn in
the nodes. Figure 4.19 shows the edge weight stability plots for the networks in Figure 4.18.
Edge weight stability. From the edge weight stability plots in Figure 4.19, a number of edges stand out
as potentially spurious, since their confidence interval includes zero, while the edge is non-zero. Table 4.4
presents unstable edges for all groups. Any interpretation of these edges should be made with additional
caution.

Groups

1 2 3

ls2-qoc2 ds2-hyp2 se2-qoc2

fomo2-se2 cns2-pse2 smd2-ls2

ffs2-rspr2 cbsa2-ffs2 ds2-fomo2

ap2-ds2 ffs2-ls2 cns2-se2

Table 4.4: Unstable edges for networks in Figure 4.18.
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Figure 4.18: CISs for three subgroups estimated in the wave 2 SMD data using the proposed GMM/GGM
method. Nodes represent variables, edge weights represent partial correlations between variables.

Network structures. Group 1 is the largest group in this model. Its network shows two disconnected struc-
tures. The strongest edges are rapr2-rspr2, pse2-se2, ap2-imp2, and ap2-hyp2. Group 1 is the only group
that connects the variables rapr2 and rspr2 to any of the other variables. Specifically, there is a negatively
weighted edge between rspr2 and ffs2.

Group 2 is the smallest group in the model. Its network shows a more disconnected structure. The
variables rapr2 and smd2 are disconnected, and therefore conditionally independent of all other variables.
The strongest edges are ap2-imp2, se2-pse2 and hyp2-imp2. Compared to the networks for groups 1 and
3, group 2 has more edges connected to the variable ffs2. In addition, group 2 does not have an edge
rapr2-rspr2, unlike groups 1 and 3. Furthermore, group 2 has a unique, strong edge between rspr2 and
qoc2. Finally, group 2 has the highest mean values for ds2 and fomo2, and the lowest mean values for se2,
pse2, ls2 and cbsa2.
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Figure 4.19: Stability analysis plots of the networks in Figure 4.18. From left to right: group 1, group 2, group 3.

Group 3 shows three cliques of variables, the two smallest being rapr2-rspr2 and ffs2-cbsa2. The
strongest edges are se2-pse2, ap2-imp2 and rapr2-rspr2. Compared to groups 1 and 2, group 3 has most
similarities with group 1. However, in group 3 the variable smd2 is connected with a negatively weighted edge
to the variable ls2. In addition, group 3 has the lowest mean values on ds2, smd2, ap2, hyp2 and imp2, and
the highest mean values on ls2, se2, pse2 and cbsa2.

Comparing the three networks to each other, we see that their networks have a strong structure in common:
pse2-se2-ls2-ds2-ap2-imp2-hyp2. In addition, the variables ap2, hyp2 and imp2 (i.e. ADHD variables) are
connected with positively weighted edges for all groups, and so are the variables pse2, se2 and ls2 (i.e.
quality of life variables). Interestingly, the variables rapr2 and rspr2 (i.e. parental rules) are connected for
groups 1 and 3, but not for group 2.
Centrality analysis. Figure 4.20 shows plots of the standardised centrality for the subgroups in the three-group
model. Figure 4.21 shows the stability of the centrality measures for each group. For all groups, strength
and expected influence centrality are the most stable, never going below the recommended critical value of
0.5 (Epskamp et al., 2018). Betweenness centrality is stable for group 3, and only marginally unstable for
groups 1 and 2, dropping below the critical value only at 30% of the original sample. Closeness centrality
is absent for groups 2 and 3, but is stable for group 1. Therefore, strength and expected influence will be
interpreted for all groups, betweenness centrality will be interpreted for all groups, and closeness centrality
will be interpreted for group 1.

The three most central nodes for each group for each centrality measure are shown in Table 4.5. Based on
strength and expected influence centrality, the most central nodes for all groups are se2 (self-esteem), pse2
(physical self-esteem), ls2 (life satisfaction), imp2 (impulsivity), and ap2 (attentive problems). Betweenness
and closeness centralities vary strongly per group, due to the different connectivity of the networks. For group
1, the nodes with the highest betweenness correspond to the nodes with the highest strength. For group 3,
the nodes with the highest betweenness are imp2 (impulsivity), ffs2 (intensity of meeting friends) and cns2
(narcissism). Incidentally, these are nodes that connect strong nodes to each other (e.g. se2-cns2-imp2), or
that connect strong nodes to nodes that would otherwise be disconnected (e.g. imp2-ffs2-rspr2).
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Figure 4.20: Standardised centrality plots for subgroups in the three-group model of the SMD data.
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Group Strength Expected Influence Betweenness Closeness

1
se2
imp2
pse2

se2
imp2
pse2

ds2
ls2
se2

ds2
ls2
se2

2
se2
ds2
ls2

se2
hyp2
imp2

ds2
ls2
ffs2

NA

3
ds2
se2
ls2

se2
ap2
hyp2

ls2
ds2
se2

NA

Table 4.5: Three most central nodes per group per centrality measure, for networks of subgroups in the
three-group model.

Figure 4.21: Centrality stability plots for subgroups in the three-group model of the SMD data. From top to
bottom: group 1, group 2, group 3.
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Summary. Intuitively, the network structure of group 1 suggests an ‘average’ subgroup. This is the largest
group, containing nearly half of the entire sample. Unique properties of this network include the negative
partial correlation between restrictive parental rules and intensity of meeting friends, as well as a negative
partial correlation between self-esteem and fear of missing out. The most central nodes are self-esteem and
depressive symptoms. At face value, the structure of group 1 does not stand out compared to groups 2 and
3.

Intuitively, the network structure of group 2 suggests an ‘insecure’ subgroup. Compared to groups 1 and 3,
this group shows many connections stemming from intensity of meeting friends, which has positive correlations
with life satisfaction, self-esteem and perceived social competence. In addition, fear of missing out has the
highest mean value for this group and has the strongest correlation to depressive symptoms out of all groups.
Furthermore, unlike groups 1 and 3, group 2 does not have a connection between reactive and restrictive
parental rules. Instead, restrictive parental rules are negatively correlated to quality of communication: the
more restrictive parental rules are used, the worse the quality of communication is, and vice versa. Finally,
this group has the highest mean values for ADHD symptoms, depressive symptoms, fear of missing out and
social media disorder score and the lowest mean values for quality of life measures (life satisfaction, self-esteem
& physical self-esteem). In sum, the network for group 2 indicates a different role for restrictive parental
rules and social interactions with peers.

Intuitively, the network structure of group 3 suggests a ‘happy & healthy’ subgroup, most notably defined
by low mean scores for clinical measurements (all ADHD variables, narcissism, depressive symptoms, and
social media disorder score), and high mean values for quality of life measurements (life satisfaction, self-
esteem & physical self-esteem). The structure is similar to group 1, where depressive symptoms and life
satisfaction are very central in the network. However, unlike group 1, there are no negatively weighted edges
between restrictive parental rules and intensity of meeting friends and between self-esteem and fear of missing
out, implying that those variables are conditionally independent of each other for this group.

Five-group model
From the wave 2 SMD data, another family of models was computed with k = 5, now distinguishing five

subgroups in the data. The optimal k = 5 model was then selected with λ = 0.00663 and EBIC = 88793.
For group 5, the method returned a group assignment that set the values of the variable smd2 to zero for all
group members. As a consequence, this variables does not have any variance and cannot be used to calculate
partial correlations. Consequently, these variables were removed from the group 5 network. The respective
edge weight stability plot, centrality plot and centrality stability plot were adapted to the revised network.
Any comparisons of group 5 with other groups should be made with additional caution. Figure 4.22 shows
the estimated networks for the k = 5 model. For all networks, variable names and mean values are drawn in
the nodes. Figure 4.23 shows the edge weight stability plots for the networks in Figure 4.22.
Edge weight stability. Edge weight stability plots for the k = 5 model are shown in Figure 4.23. Edges for
which the confidence interval included zero are summarised in Table 4.6. These edges should be interpreted
with additional caution, as they are the least stable. Coincidentally, most unstable edges have small edge
weights, i.e. < 0.2. The reverse is not necessarily true.

Groups

1 2 3 4 5

ap2-smd2 ap2-hyp2 ap2-ds2 ap2-ds2 cns2-pse2

cns2-pse2 ap2-ds2 cns2-se2 ap2-hyp2 cns2-se2

cns2-ls2 cbsa2-ffs22 cbsa2-cns2 cbsa2-ffs2 cbsa2-ls2

ds2-fomo2 cbsa2-se2 ds2-ls2 cns2-smd2 ds2-se2

imp2-hyp2 cns2-pse2 imp2-cns2 cns2-imp2 imp2-rspr2

rapr2-rspr2 ds2-fomo2 fomo2-qoc2 ds2-se2

rspr2-qoc2 ls2-ffs2

rapr2-smd2

Table 4.6: Unstable edges for networks in Figure 4.22
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Figure 4.22: CISs for five subgroups estimated in the wave 2 SMD data using the proposed GMM/GGM
method. Nodes represent variables, edge weights represent partial correlations between variables.
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Network structures. Group 1 is the smallest group of the five-group model. Its network shows two dis-
connected structures that together include all variables. The strongest edges are hyp2-ds2, se2-ls2 and
cbsa2-se2. Compared with the other groups, group 1 has two unique, negatively weighted edges, namely
rspr2-qoc2 and rspr2-ffs2. In addition, there is no negatively weighted edge ds2-ls2, which is present in
all other networks. Furthermore, compared to groups 2, 3 and 4, group 1 has the lowest mean values on ds2,
smd2, ap2, hyp2 and imp2, and the highest mean values on ls2, se2, pse2 and cbsa2.

For group 1, the absent edge between depressive symptoms and life satisfaction virtually disconnects two
parts of the network: clinical measurements on one hand (all ADHD measures, depressive symptoms, social
media disorder score, and fear of missing out), and the remaining variables on the other hand. It also implies
that life satisfaction is independent of depressive symptoms for this group.

Group 2 shows a more sparse structure, with the variables smd2 and qoc2 disconnected from the rest of
the network. The strongest edges are imp2-ap2, se2-pse2, imp2-hyp2 and ls2-ds2. Compared to the other
groups, group 2 is the only group that has a negative edge rapr2-rspr2. In addition, the mean value of qoc
is the lowest out of all groups.

Group 2 shows high connectivity around the variable intensity of meeting friends. Furthermore, reactive
and restrictive parental rules have a unique negative correlation in this group. Social media disorder has
the highest mean score in this group, but is disconnected, implying conditional independence from all other
variables.

Group 3 shows a network structure where, again, smd2 is disconnected from the network. In addition,
rapr2-rspr2 and ffs2-cbsa2 form two small, disconnected cliques. The strongest edges are imp2-ap2, se2-
pse2, imp2-hyp2 and ds2-fomo2. Compared to the other groups, group 3 shows the relative importance of
the variable fomo2, which is strongly connected in the network.

Group 4 has a network structure that connects all variables to a single structure. The strongest edges
in the network are rapr2-rspr2, pse2-se2, and ap2-imp2. Compared to the other groups, group 4 has the
highest mean values on ds2 and fomo2, and the second lowest mean values on ls2, pse2 and se2.

Group 5 is the largest group in the five-group model. It has a different structure than groups 1 through
4, due to the exclusion of the variable smd2 which was equal to zero for all group members. The network
structure connects all variables except qoc2. The strongest edges in the network are se2-pse2, ap2-imp2,
and rapr2-rspr2. Compared to the other groups, group 5 has the highest mean values on ls2, se2 and pse2
and the lowest mean values on ds2, ap2, imp2 and hyp2.
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Figure 4.23: Stability analysis plots of the networks in Figure 4.18. From left to right and top to bottom: group 1,
group 2, group 3, group 4, group 5.

44



Figure 4.24: Standardised centrality plots for networks of subgroups in the five-group model of
the SMD data. Left panel: groups 1-4. Right panel: group 5.

Centrality analysis. Figure 4.25 shows the stability of the centrality measures for the groups in the five-group
model. Figure 4.24 shows plots of the standardised centrality for each group. Strength and expected influence
centrality are stable for most groups, only reaching values below 0.5 in group 2. The stability of betweenness
centrality differs strongly for each group. Whereas it is clearly unstable for groups 2, 3 and 4, it shows a
much more stable pattern for groups 1 and 5. Closeness centrality was not applicable to any of the groups,
due to the unstable nature of their networks. Therefore, strength and expected influence will be interpreted
for all groups, betweenness centrality will be interpreted for groups 1 and 5, and closeness centrality will not
be taken into account.

The three most central nodes for each group, for each centrality measure are shown in Table 4.7. Based on
strength and expected influence centrality, some of the most central nodes for all groups are se2 (self-esteem),
ls2 (life-satisfaction), pse2 (physical self-esteem) and ds2 (depressive symptoms). Betweenness centrality for
groups 1 and 5 reflects the differences in structure: group 1 uniquely connects the variable rspr2 (restrictive
parental rules) to the variables ffs2 (intensity of meeting friends) and qoc2 (quality of communication). For
group 5 on the other hand, the variable ds2 (depressive symptoms) provides a bridging function between
variables on the right- and left-hand side of the graph.
Summary. Intuitively, group 1 resembles the ‘happy & healthy’ subgroup from the three-group model, shown
by the low mean values of depressive symptoms, social media disorder and ADHD symptoms. However,
the same similarities apply to group 5. A distinguishing property of this group, compared to group 5, are
the negative correlations connected to restrictive parental rules. In addition, life satisfaction and depressive
symptoms are conditionally independent for this group. This suggest that group 1 may be a subgroup of the
‘happy & healthy’ group, characterised by the above properties.

Intuitively, group 2 resembles the ‘insecure’ group from the three-group model, evidenced by low mean
values on quality of life measures, high mean values of social media disorder, depressive symptoms and ADHD
symptoms, and the central position of depressive symptoms in the network. However, the same similarities
apply to group 4. In addition, similar to the ‘insecure’ group, but unlike group 4, group 2 has strong
connectivity around intensity of meeting friends, and a low mean value for perceived social competence. This
suggests that group 2 is a subgroup of the ‘insecure’ group, characterised by social competence.

Intuitively, group 3 resembles the ‘average’ group from the three-group model in terms of means and
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Group Strength Expected Influence Betweenness

1
se2
ls2
ds2

se2
ls2
ds2

se2
qoc2
rspr2

2
se2
ls2
imp2

se2
imp2
ap2

NA

3
pse2
imp2
ap2

imp2
ap2
se2

NA

4
ls2
se2
imp2

imp2
se2
ap2

NA

5
se2
imp2
ds2

ap2
pse2
se2

ds2
imp2
ls2

Table 4.7: Three most central nodes per group per centrality measure, for networks of subgroups in the
five-group model.

Figure 4.25: Centrality stability plots for subgroups in the three-group model of the SMD
data. From left to right, from top to bottom: group 1, group 2, group 3, group 4, group 5.
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structure. However, it has two unique edges connected to fear of missing out.
Intuitively, group 4 resembles the ‘insecure’ group from the three-group model, similar to group 2. How-

ever, compared to group 2, it has less connectivity around intensity of meeting friends, and more edges
connected to life satisfaction, suggesting that group 4 is also a subgroup of the ‘insecure’ group, but charac-
terised by life satisfaction.

Intuitively, group 5 also resembles the ‘happy & healthy’ group, mainly due to the fact that social media
disorder score was equal to zero for this group. In addition, quality of life measures have high mean values.
However, it’s structure does not have any unique properties that significantly distinguish it from other groups.
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Public opinion of immigration and refugees
Data description

To investigate potential subtypes of public opinion of immigration and refugees, data was used from
round 7 of the European Social Survey (ESS round 7, 2014). The ESS is a bi-annual survey among European
countries, polling public opinion on various societal and socio-economical topics, such as politics, media and
social trust, health and inequality, justice and immigration. The topics polled differ from round to round.
The topic of immigration was polled in round 1 (2002) and round 7 (2014). The latter was selected because
it is more recent.

Round 7 of the ESS contained 41 items polling opinions about immigration, immigrants and refugees.
From these items, 18 items were retained for further analysis. The main reasons for exclusion were if a
variable was nominal (i.e. variable has only a few levels with no clear ordering), if the question asked did not
directly relate to one’s opinion about immigrants or refugees, or if the variable represented an administrative
value (e.g. group number). Table 4.9 presents descriptions of the 18 retained items.

In the pre-processing stage, items selected for inclusion were retained. Subsequently, all incomplete cases
were removed from the dataset. The resulting dataset contained a total of 31 385 participants from 21 coun-
tries. Age and gender emographics can be found in Table 4.8. Figure 4.26 shows the estimated network for
the full ESS data.

Gender Age

Male (%) Female (%) Missing Min Max Mean Std. dev.

15183 (48.4%) 16191 (51.6%) 11 (0.00%) 14 104 48.4 18.3

Table 4.8: Age and gender demographics for final ESS dataset.

Figure 4.26: Estimated CIS of the full ESS dataset. Nodes represent variables, edge
weights represent partial correlations between variables.
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Item Abbreviation Measurement

Allow many/few immigrants of same race/ethnic group as majority imsmetn
4-point

Likert scale

Allow many/few immigrants of different race/ethnic group from ma-
jority

imdfetn
4-point

Likert scale

Allow many/few immigrants from poorer countries outside Europe impcntr
4-point

Likert scale

Allow many/few immigrants from poorer countries inside Europe eimpcnt
4-point

Likert scale

Qualification for immigration: good educational qualifications qfimedu
11-point

Likert scale

Qualification for immigration: speak country’s official language qfimlng
11-point

Likert scale

Qualification for immigration: Christian background qfimchr
11-point

Likert scale

Qualification for immigration: be white qfimwht
11-point

Likert scale

Qualification for immigration: work skills needed in country qfimwsk
11-point

Likert scale

Qualification for immigration: committed to way of life in country qfimcmt
11-point

Likert scale

Taxes and services: immigrants take out more than they put in or
less

imbleco
11-point

Likert scale

Immigration bad or good for country’s economy imtbgeco
11-point

Likert scale

Immigrants take jobs away in country or create new jobs imtcjob
11-point

Likert scale

Immigrants make country’s crime problems worse or better imwbcrm
11-point

Likert scale

Immigrants make country worse or better place to live imwbcnt
11-point

Likert scale

Immigrant different race/ethnic group majority: your boss imdetbs
11-point

Likert scale

Immigrant different race/ethnic group majority: married close rela-
tive

imdetmr
11-point

Likert scale

Country’s cultural life undermined or enriched by immigrants imueclt
11-point

Likert scale

Table 4.9: Variables in the ESS data.
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Three-group model
From the ESS data, a family of models was computed with k = 3, distinguishing three subgroups in the

data. The optimal k = 3 model was selected with λ = 0.00843 and EBIC = 2019887.
For group 3, the method returned a group assignment that set the values of the variables qfimwht,

imdetbs, and imdetmr to zero for all group members. As a consequence, these variables do not have any
variance and cannot be used to calculate partial correlations. Consequently, these variables were removed
from the group 3 network. The respective edge weight stability plot, centrality plot and centrality stability
plot were adapted to the revised network. Any comparisons of group 3 with other groups should be made
with additional caution.

Figure 4.27 shows the estimated networks for the k = 3 model. For all networks, variable names and
mean values are drawn in the nodes. Figure 4.28 shows the edge weight stability plots for the networks in
Figure 4.27.

Figure 4.27: CISs for three subgroups estimated in the ESS data using the proposed GMM/GGM method.
Nodes represent variables, edge weights represent partial correlations between variables.
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Figure 4.28: Stability analysis plots of the networks in Figure 4.18. From left to right: group 1, group 2, group 3.

Edge weight stability. Edge weight stability plots are presented in Figure 4.28. For all groups, no edges have
CIs overlapping with zero, indicating that all edges are stable.
Network structures. Group 1 has the largest group size. Its network shows five separate cliques of variables of
differing sizes. All edges in the network are positively weighted. The strongest edges are eimpcnt-impcntr,
imdfetn-imsmetn, qfimchr-qfimwht, and imdetbs-imdetmr. Compared to group 2, the group 1 network is
more sparse and has a more fractured structure. In addition, group 1 has a small number of very strong edge
weights.

The network for group 2 shows a single structure that connects all variables. The strongest edges are
imdetbs-imdetmr, impcntr-imdfetn and imsmetn-imdfetn. Compared to group 1, group 2 has no edge
eimpcnt-impcntr, even though this was by far the strongest edge of group 1. In addition, a relatively strong,
negatively weighted edge imsmetn-qfimchr was introduced. While all nodes are connected, the top clique is
connected to the rest of the network through the negatively weighted edge imueclt-eimpcnt.

For all group members of group 3, the values of variables eimpcnt, imdetbs and imdetmr are exactly zero.
As a consequence, these variables are excluded from the conditional independence structure, as they have no
variance and thus no partial correlations with any of the other variables. This is especially noteworthy because
the excluded variables have very strong connections in groups 1 and 2. The network for group 3 shows three
cliques of variables. The strongest edges in the remaining network are imdfetn-imsmetn, eimpcnt-impcntr,
qfimedu-qfimwsk and qfimedu-qfimlng. Compared to groups 1 and 2 in terms of mean values, group 3 has
the lowest mean values on qfimchr, qfimlng, qfimedu, qfimwsk, qfimcmt, imsmetn, imdfetn, impcntr, and
eimpcnt. Also, group 3 has the highest mean values on imueclt, imwbcnt, imbgeco, imbleco, imwbcrm, and
imtcjob.

Comparing the groups structurally, they share all of the edges between the variables qfimedu, qfimlng,
qfimwsk, qfimcmt, and most of the edges between the variables imueclt, imwbcnt, imbgeco, imtcjob,
imbleco and imwbcrm. Interestingly, both of these structures are also visible in the network for the full data
(Figure 4.26).
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Group Strength Expected Influence Betweenness Closeness

1
eimpcnt
imdfetn
impcntr

eimpcnt
imdfetn
impcntr

imwbcnt
imbgeco
imdfetn

imbgeco
imwbcnt
imtcjob

2
qfimwsk
imsmetn
imdetmr

qfimwsk
qfimwht
qfimedu

eimpcnt
imueclt
imsmetn

eimpcnt
imsmetn
qfimwht

3
imdfetn
eimpcnt
imwbcnt

imdfetn
eimpcnt
imwbcnt

imdfetn
imwbcnt
imbgeco

imwbcnt
imbgeco
impcntr

Table 4.10: Three most central nodes per group per centrality measure, for networks of subgroups in the
three-group model of the ESS data.

Centrality analysis. Figure 4.29 shows plots of the standardised centrality for the subgroups in the three-group
model. Figure 4.30 shows the stability of the centrality measures for each group. For all groups, strength
and expected influence centrality are the most stable. In addition, none of the centrality indices go below
the recommended critical value of 0.5. Therefore, all centrality indices will be interpreted for all groups.

The three most central nodes for each group for each centrality measure are shown in Table 4.10. In
terms of strength and expected influence centrality, the most central nodes for groups 1 and 3 are eimpcnt
(allow immigrants from poorer countries in Europe) and imdfetn (allow many/few immigrants from different
ethnic group as majority). For group 2, this is the variables qfimwsk (qualification for immigration: work
skills needed in country) and imsmetn (allow many/few immigrants from same ethnic group as majority).
For betweenness centrality, the most central nodes for groups 1 and 3 are imwbcnt (immigrants make country
worse or better place to live), imdfetn (allow many/few immigrants from different ethnic group as majority)
and imbgeco (immigrants bad or good for country’s economy). For group 2, however, the variables with the
highest betweenness centrality are eimpcnt (allow immigrants from poorer countries in Europe) and imueclt

Figure 4.29: Standardised centrality plots for subgroups in the three-group model of the ESS
data. Left panel: groups 1 & 2. Right panel: group 3.
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(country’s cultural life undermined or enriched by immigrants), due to the bridging function of the edge
eimpcnt-imueclt. In terms of closeness centrality, groups 1 and 3 again share the same most central nodes,
imbgeco (immigration bad or good for country’s economy) and imwbcnt (immigrants make country worse
or better place to live) being the most closely connected nodes in the networks. Group 2, however, shows
a higher closeness centrality for the variables eimpcnt (allow immigrants from poorer countries in Europe)
and qfimwht (qualification for immigration: be white).

Figure 4.30: Centrality stability plots for subgroups in the three-group model of the ESS data. From top to bottom:
group 1, group 2, group 3.
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Summary. Intuitively, the network structure of group 1 suggests an ‘indifferent’ subgroup. It is the largest
group. Furthermore, the very high positive edge weight between eimpcnt and impcntr suggests that his
subgroup views immigrants from outside or from within Europe the same. In addition, how much this
subgroup values an immigrant being white (qfimwht) or Christian (qfimchr) has no impact on any of
the other variables. However, compared to group 3, they are not unbothered by immigrants being their
boss (imdetbs) or marrying a close relative (imdetmr). Furthermore, they value immigrants’ education
(qfimedu), native language proficiency (qfimlng), work skills (qfimwsk) and commitment to native values
(qfimcmt) on average about as much as group 2, and much higher than group 3. How important this is
found, is moderated by how this subgroup views the impact of immigrants on jobs, the economy, and country
welfare, as evidenced by the high betweenness and closeness centralities of imbgeco, imtcjob and imwbcnt,
respectively. In general, the network properties of this subgroup do not suggest either positive or negative
attitudes towards immigrants.

Intuitively, the network structure of group 2 suggests an ’opposed’ subgroup. This is evidenced most
by the differences in central nodes, compared with the other groups. For group 2, the variables qfimwht
(qualification for immigration: be white) and qfimwsk (qualification for immigration: work skills needed in
country) are strongly connected within the network, whereas this is not the case for groups 1 and 3. In
addition, this network shows high importance of immigrants being Christian (qfimchr). This variable is
connected closely to the rest of the network and has the highest mean value out of all groups. The strong
negative partial correlation between qfimchr and imsmetn (allow immigrants of the same ethnicity) suggests
that for this group, immigrants of the same ethnicity being welcomed depends on their being Christian.
Furthermore, this group has the highest mean values on the items measuring how much they would mind
having an immigrant as their boss (imdetbs) or married to a close relative (imdetmr). Finally, compared to
groups 1 and 3, group 2 is missing the edge eimpcnt-impcntr (allow immigrants from poorer countries in
Europe & allow immigrants from poorer countries outside Europe). Given the high edge weights in groups 1
and 3, this is a notable difference. Statistically, it means that there is no common variance explained between
these variables, even though both variables inquire an opinion about immigrants from poor countries. The
subtle, but crucial difference is whether these immigrants are from inside or outside Europe. Interestingly,
the mean value for eimpcnt is higher, indicating less willingness to allow immigrants from poor countries
within Europe.

Intuitively, the network structure of group 3 suggests a ’favourable’ subgroup. For this group, all 7423
group members gave the lowest possible value (0) when asked how much they would mind having an immigrant
be their boss (imdetbs), be married to a close relative (imdetmr), or be non-white (qfimwht). This alone
is a clear definition of this group, which is reflected in the graphical representation. In addition, similar to
group 1, this subgroup views immigrants from within and outside Europe equally, but is more willing to
allow immigrants compared to group 1. This subgroup has the lowest mean values for all items evaluating
how many immigrants should be barred (i.e. immigrants with the same ethnicity (imsmetn), or with different
ethnicity (imdfetn), and items evaluating the bar to qualify for immigration (i.e. education (qfimedu), work
skills (qfimwsk), native language (qfimlng), commitment to national way of life (qfimcmt), their being white
(qfimwht) and their being Christian (qfimchr)). Finally, out of all groups, this subgroup has the highest
mean values on items evaluating whether immigrants make the country worse or better (imwbcnt), how much
immigrants enrich culture (imueclt), and how good immigrants are for the economy (imbgeco). In general,
this group has a favourable attitude towards immigrants. Structurally, three variables were removed. The
remaining network has three cliques for the different categories of questions: qualification for immigration,
how many or few immigrants should be allowed, and perceived added value of immigrants.
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Five-group model
From the ESS data, another family of models was computed with k = 5, now distinguishing five subgroups

in the data. The optimal k = 5 model was selected with λ = 0.0111 and EBIC = 1978750. For the five-group
model, the method again set group estimations in such a way, that some variables in groups 2 and 3 had no
variance. Specifically, group 2 is missing the variables qfimwht, imdetbs and imdetmr, for which all values
were zero. Group 3 is missing the variable eimpcnt, for which all values were equal to 3.

Figure 4.22 shows the estimated networks for the k = 5 model. For all networks, variable names and
mean values are drawn in the nodes. Figure 4.23 shows the edge weight stability plots for the networks in
Figure 4.22.
Edge weight stability. Edge weight stability plots are presented in Figure 4.32. Again, for all groups, no edges
have CIs overlapping with zero, indicating that all edges are stable.
Network structures. The network structure for group 1 has three cliques, with all but one edge (qfimchr-
imsmetn) having positive weights. The strongest edges are impcntr-eimpcnt, imwbcnt-imueclt and imdetbs-
imdetmr.

Group 2 shows a more sparse network structure, with three cliques and one variable (qfimchr) completely
disconnected from the rest of the network. The strongest edges are eimpcnt-impcntr and imdfetn-imsmetn.
Compared to all other groups, it has the lowest mean value of qfimchr, qfimedu, qfimlng, qfimcmt and
qfimwsk.

The network structure for group 3 has two disconnected structures, with only one negatively weighted edge
(imdetbs-imtcjob). The strongest edges are imdetbs-imdetmr, imdfetn-impcntr, and qfimwht-qfimchr.

Group 4 shows a network structure with two disconnected structures and slightly more edges. The
strongest edges are impcntr-eimpcnt, imdetbs-imdetmr, imsmetn-imdfetn and the negatively weighted edge
qfimchr-imsmetn. Compared to other groups, group 4 has the highest mean value of qfimchr.

Group 5 shows a more fractured network structure, with four disconnected cliques. All edges are positive.
The strongest edges are imdetbs-imdetmr, impcntr-eimpcnt, impcntr-imdfetn and eimpcnt-imdfetn. In
addition, group 5 is the largest group in terms of sample size.
Centrality analysis. Figure 4.33 shows plots of the standardised centrality for the subgroups in the five-group
model. Figure 4.34 shows the stability of the centrality measures for each group. For all groups, strength
and expected influence centrality are the most stable, never taking values below 0.5. Betweenness centrality
is stable for groups 1, 2 and 5, but not for groups 3 and 4. Closeness centrality is stable for all groups
except group 3. Therefore, strength and expected influence centralities will be interpreted for all groups,
while betweenness is only interpreted for groups 1, 2 and 5, and closeness is interpreted for all groups except
group 3.

The three most central nodes for each group for each centrality measure are shown in Table 4.11. Based
on strength and expected influence centrality, in general the most central nodes are impcntr (allow immi-
grants from poor countries outside Europe), eimpcnt (allow immigrants from poor countries inside Europe),
imdfetn (allow immigrants with a different ethnicity), imsmetn (allow immigrants with the same ethnicity),
qfimwsk (qualification for immigration: work skills) and imwbcnt (immigrants make country better/worse
place to live). In terms of betweenness centrality, groups 1, 2 and 5 each have different nodes in the top
three. For group 1, qfimchr (qualification for immigration: be Christian) and qfimwht (qualification for im-
migration: be white) lead the top three. For group 2, it’s imbgeco (immigrants bad/good for the economy)
and imbleco (taxes and services: immigrants take out more/less than they put in). For group 5, the vari-
ables imwbcnt (immigrants make country better/worse place to live) and imwbcrm (immigrants make crime
situation worse/better) score the highest on betweenness centrality. On closeness centrality, groups 2 and 5
share the top three: imwbcnt (immigrants make country better/worse place to live), imbgeco (immigrants
bad/good for the economy) and imtcjob (immigrants take/create jobs). Groups 1 and 4 share the vari-
bles qfimchr (qualification for immigration: be Christian) and imdfetn (allow immigrants with a different
ethnicity) in the top three of closeness centrality.
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Figure 4.31: CISs for five subgroups estimated in the ESS data using the proposed GMM/GGM method. Nodes represent
variables, edge weights represent partial correlations between variables.
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Figure 4.32: Stability analysis plots of the networks in Figure 4.31. From left to right and top to bottom: group 1,
group 2, group 3, group 4, group 5.
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Figure 4.33: Standardised centrality plots for subgroups in the three-group model of the ESS data. Top panel: groups 1, 4 & 5.
Bottom panel, left to right: group 2, group 3.
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Group Strength Expected Influence Betweenness Closeness

1
qfimwsk
imwbcnt
impcntr

qfimwsk
imwbcnt
impcntr

qfimchr
qfimwht
imdfetn

qfimchr
imdfetn
qfimwht

2
imdfetn
eimpcnt
impcntr

imdfetn
eimpcnt
impcntr

imbgeco
imbleco
imdfetn

imwbcnt
imbgeco
imtcjob

3
qfimwsk
imdfetn
impcntr

qfimwsk
imdfetn
impcntr

NA NA

4
imsmetn
imwbcnt
eimpcnt

imwbcnt
eimpcnt
impcntr

NA
imsmetn
qfimchr
imdfetn

5
impcntr
imdfetn
eimpcnt

eimpcnt
imdfetn
impcntr

imwbcnt
imwbcrm
imdetmr

imwbcnt
imbgeco
imtcjob

Table 4.11: Three most central nodes per group per centrality measure, for networks of subgroups in the
five-group model.

Figure 4.34: Centrality stability plots for subgroups in the three-group model of the SMD data. From left to right,
from top to bottom: group 1, group 2, group 3, group 4, group 5.
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Summary. Intuitively, the group 1 network is very similar in structure to group 1 in the three-group model
(labeled ‘indifferent), and to group 5 in this model. The main difference is the bridging role of qfimchr
(qualification for immigration: be Christian). It is also the second largest group, after group 5. Another
distinguishing feature is the relatively large discrepancy (compared to all other groups) between allowing
immigrants from poor countries within Europe (eimpcnt) and outside Europe (impcntr). Immigrants from
within Europe are slightly less welcomed by this subgroup. In addition, variables measuring importance of
qualification criteria have slightly higher mean values than the comparison groups. This leads to an intuitive
labelling of a ‘euro-sceptic’ subgroup. This group is largely indifferent, but has a slightly higher bar for
qualification and a slightly lower appreciation of European immigrants.

Intuitively, the group 2 network is very similar to the group 3 network in the three-group model (labelled
‘favourable’). It also has removed the variable qfimwht (qualification for immigration: be white) from
the model because all values were zero. It also has the lowest mean values for items tapping importance
of qualification criteria and opposition towards immigrants, as well as the highest mean values for items
measuring opinions of benefits of accepting immigrants. Not surprisingly, the structure of the network
corresponds to these three categories. Therefore, this network can be labelled as ‘favourable’, corresponding
to the group 3 network from the three-group model.

Intuitively, the network for group 3 structure suggests an ‘anti-immigration‘ subgroup. This group has
the highest mean values on all variables measuring opposition towards immigrants, as well as all variables
measuring importance of qualification criteria. In addition, it has the lowest mean values on all variables
measuring opinions of beneficial effects of accepting immigrants. Especially interesting are the items tapping
importance of race (qfimwht) and religion (qfimchr), which are highly correlated. Overall, this group is the
most reluctant to accept immigrants of any kind.

Intuitively, the network structure for group 4 shows some resemblance with group 2 from the three-
group model (labeled ‘opposed’). From its properties, it suggests a ‘religiously motivated’ subgroup. This is
evidenced by the very central role and high mean value of the variable qfimchr (qualification for immigration:
be Christian). This variable strongly influences whether immigrants from poor countries outside Europe would
be accepted, as indicated by the negative partial correlation between those variables. In addition, the variable
measuring opposition towards a close relative marrying an immigrant with a different ethnicity (imdetmr)
has a much higher mean value than the variable measuring opposition towards having an immigrant with a
different ethnicity as your boss (imdetbs). Interestingly, whether immigrants are white (qfimwht) has less
impact (i.e. lower mean value and lower centrality). Furthermore, other variables about qualification for
immigration have relatively low means compared to group 2 from the three-group model or group 3 from this
model.

Finally, group 5 constitutes the largest group in this model, showing many similarities with group 1 from
the three-group model (labelled ‘indifferent’). As in the ‘indifferent’ group, this group shows no preference
for immigrants from within or outside Europe, and does not have a central role for either race or religion.
Furthermore, the variables measuring importance of qualification criteria are relatively high, but in a separate
clique of the network, not impacted by other variables. The same holds for variables measuring opinions of
benefits of immigrants. Therefore, this group is assumed to be the ‘indifferent’ subgroup, corresponding to
group 1 from the three-group model.
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Discussion
In this section, results and limitations of this thesis are discussed, after which suggestions for future research
are made. Specifically, we discuss implications for the GGM/GMM method and evaluate its performance
both on artificial and real world data.

Conclusions
Results described in the previous section are discussed below. Specifically, the following paragraphs

provide conclusions and inferences that can be drawn from the results. The section is divided according to
the results. First, we discuss benchmarking results. Second, we discuss results of the Social Media Disorder
data. Third, we discuss results of the Public Opinion of Immigration and Refugees data.

Benchmarking
The benchmarking tests aimed to test the impact of a number of properties of the data on the performance

of the method. Performance was evaluated as the ability to accurately retrieve the conditional independence
structure of the groups in the data by comparing the estimated network structure to the true network
structure. Specifically, three properties of the data were investigated: the degree of structural overlap between
the groups, the sample size, and the presence of unbalanced group sizes. Furthermore, for all conditions, a
full sample network was drawn. This network represents the data if no clustering is performed: the sample
size is thus Nfull =

∑
kNk. The relation between the group structures and the full sample structure is also

reported.
First, the degree of structural overlap did not limit the performance of the method. For all conditions,

the true conditional independence structures were correctly estimated. This implies that the method is
suitable for the detection of subgroups, given that these groups have heterogeneous conditional independence
structures (CIS). Even if the structures of the groups have some variables in common (i.e. overlapping),
this does not hinder estimation. In addition, with increasing structural overlap, the edge weight stability
remained similar across conditions. This indicates a stable basis for interpretation, using centrality indices
and stability measures. The full sample network is unable to represent all groups in a single graph, especially
if there is structural overlap between the groups. It tends to show those edges that are shared by two or more
groups, and may serve as an indicator of edges that are important for more than one group. Nonetheless,
the full sample network cannot show all group structures, unless the the groups have no structural overlap.

Second, the sample size of the full sample is a strong limiting factor on the performance of the method.
For all conditions with a group size lower than 500, we see some degree of error. For conditions with group
sizes of 300 or less, these errors become severe, leading to empty networks being estimated for at least one of
the groups. Furthermore, network stability decreased with decreasing sample size. This poses limitations on
the use of centrality indices and stability measures in the interpretation of the resulting networks. Structures
of small groups may still be estimated by lowering the hyperparameter γ, which controls the degree of
regularisation. With a lower value of γ, more edges will be included in the graphs. However, this comes at
the cost of precision and stability, further limiting interpretation of the structure. It should be noted that
the stability of the true networks in conditions sample sizes below 300 was also low. Therefore, it seems that
small group sizes impact the stability of the true data, which in turn clouds estimation. As a consequence, we
suggest using this method when the expected group size is at minimum 400, and preferably 500 or larger. The
full sample network becomes more sparse with decreasing sample size. For all conditions, the strongest edges
in this network are those that are shared between groups. Therefore, the full sample network is indicative of
edges that are shared between groups, even when sample size is low.

Third, the presence of unbalanced group sizes only impacts performance for the smallest group. Group
sizes allocated to each group by the GGM/GMM method somewhat reflect the true group sizes. As an
example, consider Figure 4.12, condition N = {1000, 1000, 500}, where the smallest true group (group 3,
N = 500) is also the smallest estimated group (group 3, N = 596). Furthermore, it does not seem that
the presence of one small group skews the estimation results of large groups. However, it does seem that
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larger groups can ‘impose’ some of their properties on smaller groups (e.g. Figure 4.12, condition N =
{1000, 1000, 500}, Group 3). This can be explained by the mixture model assigning (many) members of a
large group to a small group, causing the graphical model to try and reconcile the two competing structures
in one graph. In addition, if there is more than one small group, the method may not have enough data
points to separate the two distributions. As a consequence, the method either estimates one empty network
and one network that contains properties of both groups, or it estimates two networks that may share some
properties of both groups. The networks then become confounded.

The network of the full sample is strongly biased towards the largest group. As an example, see figure
4.12, condition N = {1000, 1000, 500}, full sample network. Here, the network for the full sample shows
clearly the structures of the two largest groups, but does not show any edges unique to the smallest group.
Using the GGM/GMM method, however, the structure of the smallest group is retrieved with almost perfect
accuracy.

In sum, a number of conclusions can be drawn regarding the performance of the GGM/GMM method.
First, performance of the method (i.e. the ability to accurately estimate subgroup CISs) is highly dependent
on group sizes. Specifically, for any group with a size smaller than 400, the results will be unstable and will
deviate more from any true underlying structure.

Second, if a single network is drawn for all groups (i.e. the full sample network), it reflects the underlying
subgroups in two ways. First, it is biased towards the largest subgroup(s): the emerging structure will look
most like the structure of the largest subgroup(s) in the data. Structural elements of smaller groups are more
likely to be ‘outweighed’ and excluded from the network. Second, it is biased towards shared edges, i.e. edges
that are present in the networks of more than one subgroup. This property can help identify edges present
in most or all of the underlying subgroups.

Third, centrality scores, edge weight stability and centrality stability that aid interpretation are less
informative for graphs with low sample sizes, due to the fact that graphs with low sample sizes are unstable.
Therefore, interpretation of networks estimated from a small sample size should be done with additional care.

Social Media Disorder
Application of the outlined GMM/GGM method produces k conditional independence structures indicat-

ing possible heterogeneous subgroups in the data. While the method does not test whether the subgroups
produced by the methods are indeed empirically valid, it does allow building theory using this data-driven
exploration. In this section, we discuss to what extent the results fits with existing social media disorder
(SMD) theory.

Three-group model
The networks resulting from the three-group model show marginally different structures. All groups have

a strong, common structure that is supported by the full sample network. Specifically, the ADHD variables
(attention problems, impulsivity and hyperactivity) and the quality of life measures (life satisfaction, self-
esteem and physical self-esteem) form closely connected cliques in all groups. Interestingly, the cliques are
connected through depressive symptoms. This observation is in line with known comorbidity between ADHD
and depression (Yen, Ko, Yen, Wu, & Yang, 2007).

For the three-group model, we expected to see differences between groups based on the three levels of
social media disorder: normal, risky, and problematic. However, differences observed between the three
groups do not support this hypothesis. In fact, the role of social media disorder score seems very limited
for all groups. Instead, observed differences seem to be a reflection of differences in quality of life. Group
2 (intuitively labeled ‘insecure’), for example, shows lowest mean scores for quality of life measures, and
highest mean scores for depressive symptoms and ADHD, while the opposite is true for group 3 (intuitively
labeled ‘happy & healthy’). Furthermore, group 1 (intuitively labeled ‘average’) shows no striking or unique
structure that indicates how it differs from the other groups.

Although the results are not in line with the hypothesis about this model, the estimated subgroups and
networks still show some interesting properties that may indicate potential avenues for further research of
social media disorder. Specifically, the structure of the ‘insecure’ subgroup suggests a subgroup of adolescents
that have a unique, negative correlation between restrictive parental rules and quality of communication with
parents. van Den Eijnden et al. (2010) show that independently, quality of communication is a preventive
factor of social media disorder, while restrictive parental rules are a risk factor of social media disorder.
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In combination with the low quality of life measures of this group, one hypothesis may be that this group
represents adolescents whose parents employ a authoritative parenting style, characterised by restrictive rules
and low communication (Gray & Steinberg, 1999). This hypothesis would also explain the relatively high
mean value of social media disorder in this group. In this way, the presented method provides data-driven
insights that can lead to new hypotheses for further empirical investigation.

Five-group model
The networks of the five-group model show more differences in structure and group sizes compared to the

three-group model. However, all groups have relatively small group sizes, indicating instability. Therefore,
results for this model should be interpreted with due care. Same as in the three-group model, ADHD
symptoms (attention problems, impulsivity and hyperactivity) and quality of life measures (life satisfaction,
self-esteem and physical self-esteem) form cliques in all groups.

The five-group model was expected to further break down the groups of the three-group model. Given
the method’s sensitivity to sample sizes, it is most likely that the largest group of the three-group model
(i.e. the ‘average’ group) is broken up. Results suggest that, to some degree, this is indeed the case. Some
informative features of the three-group model were carried over (such as the ‘insecure’ group), but due to
the unbalanced nature of the data (further discussed under Limitations), and the relatively low sample sizes
of all groups, the five-group model does not provide new, clearly interpretable subgroups compared to the
three-group model.

Public opinion of immigration and refugees
Three-group model

At first glance, the three networks output by the three-group network seem to have quite different struc-
tures. One striking observation is the removal of three variables from the network of group 3, and another is
the strongly connected structure of group 2 (see Figure 4.26).

In general, the high connectivity of the group 2 network and the varying mean values of different variables
suggest an ambiguous structure. Previous work on anti-immigrant attitudes has revealed high prevalence of
discrepant or contradicting opinions within anti-immigration attitudes (e.g. Katwala, Ballinger, & Rhodes,
2014; Pratto & Lemieux, 2001). An example would be acknowledgement of the economic value of immigrant
labour, while also feeling that immigrants make the country a worse place to live (H. Dempster & Hargrave,
2017). Some unique structural properties of this group could be attributed to prejudicial attitudes, such
as racial discrimination or euro-skepticism. However, this is impossible to determine from the conditional
independence structure (and the mean values) alone.

Furthermore, the existence of a ‘favourable’ group has been reported before (for example, Ford and Lowles
(2016) define a group of ‘confident multiculturals’ within the UK public). The final network structure of this
group is not informative in itself. However, the exclusion of three variables that tap bias against immigrants
is a significant structural difference.

Finally, group 1 (intuitively labelled ‘indifferent’) seems to represent a majority of Europeans. The
majority ‘ambiguous middle’ group, reported by H. Dempster and Hargrave (2017), seems to be less ambiguous
and more indifferent. The network for this group does not suggest any conflicting opinions, and does not
suggest favour or opposition towards immigrants.

In sum, the network structures found in the three-group model do seem to represent the expected groups.
However, ambiguity and discrepant opinions seem to be reserved mostly for the ‘opposed’ subgroup.

Five-group model
The networks of the five-group model seem to further break down the subgroups found in the three-group

model. Interestingly, the main themes of the groups in the three-group model are clearly carried over to
the five-group model. First, the largest groups in both models (i.e. group 1 in the three-group model, and
the group 5 in the five-group model) have nearly identical structures. Second, both models have clear pro-
immigration and anti-immigration subgroups. The five-group model further breaks down public opinion and
suggests smaller, more niche attitude profiles, such as a group that emphasises Christianity and a group that
is Euro-sceptic. Such ideological distinctions are supported by previous work on attitudinal segmentation of
public opinion of immigration in Europe (Green, 2007), and are also reflected in the European parliament
(Lahav, 1997). The network structures for these groups may help identify values important to specific
ideologies.
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The results of the proposed method seem in line with existing literature on attitudinal segmentation.
This work adds a way of exploring the structural relations between related topics for each of these categories,
facilitating understanding of an ultimately complex attitude.

Limitations
The conclusions presented in this thesis are a result of an ambitious project to combine unsupervised

learning and structural modelling methods, applying the method to a variety of real and artificial test data.
Due to the broad nature of the approach, the method can have many different parameter configurations, a
few of which have been tested. However, this process was not exhaustive and was limited by a variety of
process- and content-related factors. These limitations are discussed in this section.

Method
While the method shows promise for the identification of subgroups based on conditional independence

structure, it has a number of limitations. First, the current implementation of the method lacks an algorithmic
way to select the value of k, the number of groups. Such methods do exist for Gaussian Mixture Modelling,
for example greedy learning (Verbeek et al., 2003), or model selection criteria (Figueiredo & Jain, 2002).
Such methods would increase the applicability of the method to datasets where there are no theoretical
expectations for how many probable subgroups the data contains.

Second, due to time and space constraints, the benchmark tests do not include all possible parameter
variations. For example, none of the internal parameters of the method (such as the EM parameters (log-
likelihood threshold, number of iterations and minimum cluster size), or the model selection method (EBIC,
BIC, cross-validation)) have been varied in the benchmarking tests, because these parameters have seen
extensive testing in other works and common practice parameter values are available. In addition, not all
possible properties of the data have been tested, such as combinations of the conditions in this work (e.g.
sample size × structural overlap), or the type of data (i.e. ordinal vs. ratio data). Furthermore, some of the
tests in this work could be expanded further (e.g. including negative weights in conditions with structural
overlap).

Third, the conditional independence structures output by the model are a computational way to express
structural heterogeneity of the data. Whether the resulting structures are theoretically feasible or useful in
practice, needs to be evaluated by specialists in the field. In fact, the method can only provide a first step in
finding theoretically sound subtypes. Therefore, the results should not be interpreted as definitive subtypes
of the construct. Instead, they should be interpreted as indicators of the heterogeneity, which can be used
to further investigate and discriminate potential subtypes.

Social Media Disorder & Public opinion of immigration and refugees
Limitations for the results of the empirical cases lie in the data itself. The SMD data was stratified into

three categories, based on the degree of SMD. However, the distribution of values for social media disorder
(SMD) score is very skewed: the group with the highest level of SMD has a sample size of less than 50,
making it too small to be properly detected by the GGM/GMM method. As a consequence, the majority of
the participants can be considered ’healthy’, which biases the results. Specifically, the groups identified in
both models are most likely different subtypes of healthy participants. This conclusion is further supported
by group 5 in the five-group model, which constitutes over one third of the sample, but has a SMD score of
zero for the entire group. This limitation can be remedied by performing the same analyses on a large sample
of data from the high SMD population. However, this data is not available at this time.

For the data on public opinion of immigration and refugees, data was retrieved from the European Social
Survey. However, many potentially informative variables in this data were not used. For example, the effects
of individual demographics (i.e. nationality, age, a.o.) are not taken into account explicitly. In addition, it is
impossible to exclude any systematic errors or biases in the data, beyond what is reported by the authors of
the ESS.

The main limitation for results in both domains is the fact that the number of subgroups to be identified
by the method was set manually. In the SMD case, the three-group model was expected to capture the
three categories of SMD. However, due to the highly unbalanced nature of these groups, this proved difficult.
The five-group model served as a contrast to compare with the three-group model, but the choice for k = 5
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is rather arbitrary. As a consequence, a meaningful interpretation of subgroups in the five-group model
becomes difficult and arbitrary. This limitation can be remedied by providing a means of selecting k, as
stated before. In the public opinion case, the three-group and five-group models serve as a nice comparison
with the SMD data. However, it cannot be ignored that a model with a different number of subgroups may
be more explanatory, and may be a better fit to model subtypes within this dataset.

Future research
This work provides a novel application of data-driven, computational methods to topics that traditionally

fall under the experimental approach of social sciences. Building on this work, there are a number of avenues
that interested researchers may want to pursue. First is the development of a k-selection method. Expanding
the current methodology to perform automatic model selection (and limiting the resulting computational
cost) will improve the identification power of this method. For example, Verbeek et al. (2003) introduce a
greedy learning algorithm for learning the optimal amount of mixtures for a GMM, and Figueiredo and Jain
(2002) suggest an alternative algorithm that performs simultaneous selection of components and parameter
fitting.

In the same vein, since the expectation-maximisation algorithm is known to be sensitive to initialisation
values, the method could benefit from alternatives to the EM algorithm. For example, Pernkopf and Bouchaf-
fra (2005) describe a novel algorithm combining genetic algorithms with the traditional EM algorithm in order
to overcome the limitations of EM. Similarly, Benavent, Ruiz, and Sáez (2009) suggest an entropy-based EM
algorithm and M.-S. Yang, Lai, and Lin (2012) develop a robust EM algorithm that overcomes limitations of
traditional EM.

Second, the dual nature of the GMM/GGM method implies a complicated method that requires extensive
testing. A start has been made in this thesis, but as discussed before, there are a number of more internal
parameters that have not been extensively tested yet. These include internal parameters governing the EM
algorithm (i.e. the log-likelihood difference threshold, minimum cluster size and number of iterations), as
well as the hyperparameter γ that determines model sparsity. In addition, more testing of data properties
will further inform of the strengths and weaknesses of the GGM/GMM method. Of particular interest is the
influence of the type of data (i.e. ordinal, normally distributed, or mixed type) on the performance of the
model, as the type of data changes the properties of the covariance matrix on which the method depends.
Testing this is especially important for social sciences, where differing measurement scales are commonplace.

Third, the method can be extended with additional functionality, such as feature selection. While this
was not a topic of focus in the current work, the framework of the GMM/GGM model does allow for such
functionality. For example, Zhou et al. (2009) apply regularisation penalties to means vectors within the
GMM, thereby performing simultaneous model and feature selection. The addition of feature selection to the
methodology is of particular interest in cases where the number of variables is large.

In sum, this thesis addressed the identification and interpretation of subgroups in data. To this end,
clustering and structural estimation methods were combined in order to add explainability to the clustering
results. The resulting GGM/GMM method distinguishes clusters in data by their conditional independence
structure, which can be visualised in the form of a network. The method yields a network for each cluster,
that can be analysed using network analytic tools. Clusters can then be compared to each other based on
network structure and network analysis results. Comparing the networks can generate new insights and
hypotheses about the studied construct.

The GGM/GMM method adds to existing works by using the conditional independence structure both as
a feature in clustering and as a tool for interpretation of the results, addressing challenges in the interpretation
of clustering results. By addressing these challenges, the method allows generation of new hypotheses about
structurally different types of the construct. Such identification of subtypes is especially meaningful in
domains that deal with heterogeneity in the data, such as social sciences.
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