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Abstract

Collection-oriented languages are characterised by their provision of a set of primitives which

work on data in aggregate, and are intrinsically suited to parallelisation. Polyhedral compilation

systems aim at optimising aggregate computations using an abstract, mathematical representation.

However, they are typically run as optimisation passes not over high-level programmes representing

aggregate computations, but over the low-level intermediate representation they compile down to.

This means that information can be lost if code is not written in the correct form. Accelerate[1] is a

collection-oriented language embedded in Haskell. Programmes are compiled into LLVM-IR, that

code being passed to the LLVM compiler. Polly[2], a polyhedral optimisation pass of LLVM, aims

specifically at optimising programmes typical in Accelerate, namely computations over regular,

multi-dimensional arrays. In this project we investigate the strengths of each system in order to

see how they can together produce faster code.
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1 Introduction

The defining characteristic of a collection-oriented language is that it provides a set of primitives

which work over collections as a whole. Such languages are thus intrinsically suited to parallelisation

by the fact that the unit of work is the whole collection. One major sub-class of collection-oriented

languages is array-oriented languages. Perhaps the most commonly known, and one of the oldest,

array-oriented languages is APL. APL is known for its vast collection of array primitives with special

characters as names. Somewhat more recent are Futhark[3] and Accelerate[1]. These languages provide

a set of primitives for working with arrays commonly known from functional programming, such as

map, fold and scanl. Using these primitives, an an intuitive representation of array computations

is allowed. This is in contrast to other array-based languages which require the user to deal with

explicit loops and indexing over arrays, such as SaC[4]. The selling point of languages like Futhark

and Accelerate is that while allowing such an intuitive representation of array computations, they

compile to highly efficient code involving iteration over regular, multi-dimensional arrays. They also

handle parallelisation automatically without user intervention. Such performance is typically only seen

in programmes written with high-performance computing frameworks such as OpenCL and OpenMP.

However, in such frameworks, the user must handle memory allocation and parallelism explicitly.

Polyhedral compilation is a technique which aims at optimising exactly the kind of computa-

tional behaviour which these array-oriented languages exhibit. That is, iterations over regular, multi-

dimensional arrays. A polyhedral compiler will take a programme, extract a mathematical, polyhedral

representation of it, apply a number of transformations this representation with a view to maximis-

ing memory locality, and then map it back into a transformed programme. One algorithm used to

optimise memory locality is the Pluto[5] algorithm. Polly[2] is an optional polyhedral optimisation

pass of the LLVM[6] compiler. Being part of the LLVM compiler framework, it generally deals with

programmes written in C or C++, but is on paper independent of source language. Polly uses the

Pluto algorithm internally to optimise the polyhedral representations of programmes which it extracts,

while also applying a number loop optimisation heuristics such as tiling. The Tiramisu[7] project is a

high-performance computation framework for CPUs and GPUs. Instead of applying polyhedral opti-

misations automatically, it provides a number of polyhedral transformation primitives to be utilised by

the user explicitly. PolyMage[8] is an image-processing language with a polyhedral optimiser directly

suited to its domain.

Given the domain of array-oriented languages, it might seem that they are directly suited to

the application of polyhedral compilation, where regular array iteration is the focus. Polly, being

an optimisation pass of LLVM, works with LLVM-IR, which is the LLVM compiler’s intermediate

representation format. The Accelerate language also generates LLVM-IR from its programmes, using

LLVM to compile the LLVM-IR to a final executable. This establishes the possibility for leveraging

polyhedral compilation techniques not from a low-level C-like language, but instead from a high-level

array-oriented language, a language whose domain is exactly what Polyhedral compilation techniques

aim to optimise.
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1.1 Research Questions

In this project we investigate the following:

1. There are limits to the type and form of programme Polly will accept and optimise. We investigate

exactly what types of programmes Polly accepts, and the extent of the benefit it provides. We

also look into classes of programmes which become slower with the application of Polly.

2. Polly can be sensitive to the form of code it will optimise. Even if two pieces of code are equivalent

and very similar, it might optimise only one. We investigate how Accelerate’s code generation

can be adapted such that it is in a form for which Polly can work with.

3. Following our research on what applications are best suited to polyhedral compilation, we imple-

ment in Accelerate a range of applications, and measure the benefit of our changes to Accelerate’s

code generation.

4. Accelerate applies its own domain-specific optimisations to the code it generates. We investigate

the interaction of these optimisations with Polly.

1.2 Document Structure

Following this introduction, we provide a background of polyhedral compilation and collection-oriented

languages, looking at Polly and Accelerate in detail. Afterwards, we establish the potential for poly-

hedral compilation in Accelerate. We first explore the extent of programmes optimised by Polly by

running a range of benchmarks. We then use our insight from this, in applying Polly for the first time

to a programme in Accelerate. Having shown that Polly can indeed optimise a programme written

with Accelerate, we implement a number of differing examples in Accelerate to understand the extent

of the benefit of Accelerate and Polly when applied together. We then conclude with a discussion of

our results and what they mean for polyhedral compilation applied to collection-oriented languages.

We also discuss possible future work.

2 Background

Consider the two code snippets in Figure 1. Both implementations of the dot-product produce the

same result, but from different approaches. Accelerate, a collection-oriented language, allows the user

to express the dot-product using a number of high-level collection-oriented primitives, applying crucial

optimisation techniques such as array fusion to reduce the cost of this expressivity. In C, pattern and

dependency recovery is left to the optimisation passes of the compiler. For instance, Polly, an optional

optimisation pass of LLVM contains special provisions for matrix multiplication, but they trigger only

for code of a certain form. This is dealt with in more detail in Section 2.1.1. This can make it difficult

for the user to write optimal code without knowing the internals of the compiler.

In this section we look into both approaches, later seeing how they interact. We first give a

description of polyhedral compilation. We later give an overview of collection-oriented languages,

and Accelerate in particular. After this in Section 3, we round up both approaches, discussing how
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dp = fold (+) (constant 0) $ zipWith (*) a b

(a) Haskell, Accelerate

int dp = 0;

for (i = 0; i < N; ++i) {
dp += a[i] * b[i];

}

(b) C

Figure 1: Two different implementations of the dot-product

collection-oriented languages like Accelerate and polyhedral compilation techniques might work to-

gether.

2.1 Polyhedral Compilation

Polyhedral compilation has for decades[9] existed as a method of optimising the memory locality of

loop nests whose boundaries and array offsets in statements are affine functions of surrounding loop

variables and constant parameters. Affine means linear combination plus an optional constant. Such

loop nests are common in array computations, and this includes a lot of the code generated by array-

oriented languages such as Accelerate and Futhark. For instance in Accelerate, the collective operations

map and zipWith both compile to affine loop nests over arrays. In the literature, maximimal parts of

programmes satisfying the above conditions are called static control parts, or (SCoPs)[10][11].

In loop nests satisfying the above conditions, each statement invocation in a loop can be viewed as

a point in a multi-dimensional polyhedron, the coordinates of the point being the corresponding loop

variable assignments. A polyhedral compiler will detect the suitable maximal loop nests (SCoPs) in a

programme and produce a polyhedral representation of them. It will then apply a number of heuristics

to this representation with a view to maximising memory locality while preserving data dependencies.

This results in a transformation on the initial polyhedral representation of the programme, which is

mapped back into the original programming language, providing a new, hopefully optimised schedule

of the original programme statements. See Figure 2 for an example of a SCoP and a visual polyhedral

representation of its statement invocations.

for (int i = 1; i < M; ++i) {
for (int j = 1; j <= i; ++j) {

A[i] += B[i][j];
}

}

2 4 6 8
j

2

4

6

8

i

Figure 2: A SCoP and a visual polyhedral representation of its statement invocations.
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The set of statement invocations of a SCoP, as illustrated in Figure 2, is known as its iteration

domain. Each combination of i and j for which the single statement in the SCoP executes is denoted

by a black dot. The iteration domain may be formally defined by what is called a basic integer set[10].

The basic integer set for a statement encapsulates the affine constraints under which a statement

is invoked, and the constant parameters on which it depends. All polyhedrons can be viewed as

hyperplanes constrained by a set of affine constraints. As an example, call the single statement in the

code in Figure 2 Statement. This statement depends on the parameters i and j. The basic integer

set S for Statement would be:

S = [M ]→ {Statement[i, j]|1 ≤ i ∧ i < M ∧ 1 ≤ j ∧ j ≤ i}

In this basic integer set, we see the plane defined by all instances of (i, j) constrained by three

affine constraints: 1 ≤ i < M , 1 ≤ j and j ≤ i. These three affine constraints applied to the plane

form a triangle.

2.1.1 Polly

Polly is a polyhedral optimisation tool which is included as an optional component of the LLVM

compiler framework. Polly is implemented as an optimisation pass of LLVM, working on LLVM-IR,

the intermediate representation language of LLVM. The fact that Polly works as an optimisation pass

on LLVM-IR allows it to work with any front-end language which LLVM supports.

Polly runs in a multi-step process. It takes the input LLVM-IR code and first detects the SCoPs

in it. It then produces a formal polyhedral representation of the detected SCoPs, which it passes

to the Integer Set Library (isl)[12]. isl deals natively with integer sets as previously defined, and

the transformations upon them. It is the backend of Polly, and it is in isl that programme schedule

optimisation occurs. One of the optimisation methods which isl can apply to a programme schedule

is the Pluto[5] algorithm. The Pluto algorithm translates the polyhedral representation of a SCoP in

isl into a linear programme, whose objective function aims to minimise the time between writes and

reads of the same data. The solution of the linear programme is the optimised schedule.

Outside of the optimisations carried out by isl, Polly can also apply a number of heuristics itself,

a notable one of which is tiling, and is detailed below. These heuristics all work upon the polyhedral

representation of programmes in isl. Following optimisation, the final step is extracting the schedule

from isl and producing the corresponding, transformed LLVM-IR.

We now look at an example of loop tiling, one of the transformations which Polly commonly applies

to code. Loop tiling is also known in the literature as loop blocking[10]. Loop tiling aims at increasing

memory locality by executing a loop tile-wise. See Figure 3 the tiling of code for the addition of two

N by N matrices B and C.

The iteration behaviour of the two versions of matrix multiplication can be visualised as in Figure 4.

Each dot corresponds to a single execution of the addition statement. The set of all dots corresponds

to the iteration domain, which in this case is square. In the untiled case, we start at the bottom,

executing the statements in each row left to right. In the tiled example we see four separate blocks,

each denoted by a square surrounding a number of dots. To execute the statements in the tiled manner,

we start at block 1, executing each statement contained in it from left to right, bottom to top. Once
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for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {

A[i][j] = B[i][j] + C[i][j];
}

}

(a) Original

for (int ii = 0; i < N; ii += 4) {
for (int jj = 0; jj < N; jj += 4) {

for (int i = ii; i < min(N, ii + 4); ++i) {
for (int j = jj; j < min(N, jj + 4); ++j) {

A[i][j] = B[i][j] + C[i][j];
}

}
}

}

(b) Tiled

Figure 3: Applying tiling to code for matrix addition

finished, we move onto block 2 and execute the statements in the same order, then move onto the

remaining two blocks.

-2 0 2 4 6 8
j

-2

0

2

4

6

8

i

(a) Original

1 2

3 4

-2 0 2 4 6 8
j
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0

2

4

6
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(b) Tiled

Figure 4: Tiling matrix addition visually

Polly also has provisions for detecting and optimising matrix multiplication, as laid out in [13].

The matrix multiplication optimisation again uses the polyhedral representation of a programme in

isl to both detect matrix multiplication and optimise it. Even though this optimisation works on an

abstract polyhedral representation, we have found that it is sensitive to code form. In Figure 5 we see

code that it correctly detects as matrix multiplication, and code which it doesn’t.

2.1.2 Other Polyhedral Compilation Tools

This is not the first project to consider applying polyhedral compilation techniques to array-oriented

languages. Tiramisu[7] is a functional, array-oriented language which instead of running an automated

polyhedral optimiser on programmes, provides a set of primitives to apply polyhedral transformations

manually, such as loop tiling, splitting and shifting. In the cited paper, it is claimed that automated

polyhedral optimisers such as Polly are unable to match the performance of hand-tuned code for

examples such as generalised matrix multiplication (C = αAB + βC). For a high-level, implicitly

parallelising language like Accelerate, this is not a concern. We are interested in speed-ups which
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for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {

A[i][j] = 0;

for (int k = 0; k < N; ++k) {
A[i][j] += B[i][k] * C[k][j];

}
}

}

(a) Passes matrix multiplication detection

for (int i = 0; i < N; ++i) {
for (int j = 0; j < N; ++j) {

int sum = 0;

for (int k = 0; k < N; ++k) {
sum += B[i][k] * C[k][j];

}

A[i][j] = sum;
}

}

(b) Fails matrix multiplication detection

Figure 5: Detecting matrix multiplication

Accelerate can realise without user intervention. This is one of the motivations behind choosing Polly.

PolyMage[8] is an image-processing domain-specific language with a polyhedral optimiser directly

suited to its domain. The framework boasts impressive results compared to hand-tuned Halide code

over a number of image-processing examples.

2.2 Collection-Oriented Languages

Collection-oriented languages define a set of primitives which work over collections of data as a whole,

avoiding explicit looping. Programmes in such languages are intrinsically suited to parallelisation.

One class of collection-oriented languages is array-oriented languages, the most notable example of

which is probably APL, known for its vast collection of array primitives with special characters as

names. Descended from APL is J, with more advanced mechanisms for writing point-free code, and

ASCII-based primitive names. Programmes written in these systems are not compiled and run, but

are interpreted. Moving away from the APL lineage, we have the Accelerate framework, providing

a functional language which also falls into the array-oriented class. In Accelerate, programmes are

formed from a number of primitives commonly known from functional programming, such as map,

fold and scanl. Programmes in Accelerate are not interpreted directly, but are compiled to LLVM-

IR, leaving the rest of the work to the LLVM compiler to create a runnable binary. Futhark[3] is a

similar framework, but programmes are compiled into either CUDA or OpenCL code.

2.2.1 Accelerate

In Accelerate, the fundamental data-type is the dense, regular, multi-dimensional array. Such arrays

are efficiently represented in a flat way in memory. Accelerate defines a set of primitives which work

over these multi-dimensional arrays as a whole. A subset of these primitives is listed in Listing 1.
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−− Generate an array of a given shape given a function over indices

generate :: (Shape sh, Elt a)

⇒ Exp sh

→ (Exp sh → Exp a)

→ Acc (Array sh a)

−− Apply a function to each element of an array

map :: (Shape sh, Elt a, Elt b)

⇒ (Exp a → Exp b)

→ Acc (Array sh a)

→ Acc (Array sh b)

−− Combine two arrays with a function

zipWith :: (Shape sh, Elt a, Elt b, Elt c)

⇒ (Exp a → Exp b → Exp c)

→ Acc (Array sh a)

→ Acc (Array sh b)

→ Acc (Array sh c)

−− Reduce an array with a function over i t s innermost dimension

fold :: (Shape sh , Elt a)

⇒ (Exp a → Exp a → Exp a)

→ Exp a

→ Acc (Array (sh:.Int) a)

→ Acc (Array sh a)

−− Map over each value and i t s neighbourhood

stencil :: (Stencil sh a stencil , Elt b)

⇒ (stencil → Exp b)

→ Boundary (Array sh a)

→ Acc (Array sh a)

→ Acc (Array sh b)

−− Left−to−right scan along the innermost dimension of an arbitrary rank array

scanl :: (Shape sh, Elt a)

⇒ (Exp a → Exp a → Exp a)

→ Exp a

→ Acc (Array (sh:.Int) a)

→ Acc (Array (sh:.Int) a)

−− Matrix transpose on a two−dimensional array

transpose :: Elt e

⇒ Acc (Array DIM2 e)

→ Acc (Array DIM2 e)

Listing 1: A subset of the primitives defined in Accelerate

Arrays in Accelerate are represented by the Array type in Haskell. This type is parameterised by

two types: dimensionality and type of data contained. Accelerate represents at the type level whether

an array has two, three or more dimensions, but it does not represent the actual array size in the type.

The class of possible dimensionalities is represented by the type-class Shape in Haskell. Examples of

this class’ use can be seen in Listing 1. The inhabitants of each dimensionality are known as shapes.

See below for an example of a two-dimensional shape.

type DIM2 = (Z :. Int) :. Int −− DIM2, an instance of the Shape type−class

((Z :. 10) :. 10) :: DIM2 −− A two−dimensional example of a shape .

Listing 2: A two-dimensional shape
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Shapes are not only used to define an array’s size, but also as an index into an array. A multi-

dimensional array must have a multi-dimensional index with matching dimensionality. This is guar-

anteed by the type system at compile time.

We now explain the behaviour of the primitives in Listing 1.

generate Generate an array of a chosen shape, given a function which takes an index into the array

and constructs a value. The result is constructed by calling the given function on every index

into the result.

map Apply a given function to every element in an array, constructing a new array.

zipWith Given a combination function and two arrays of equal dimensionality, this function constructs

a new array by applying the combination function to corresponding pairs of values from the two

input arrays. The input arrays are generally expected to be of the same shape.

fold Given a reduction function and a zero element, this function reduces an array along its inner-most

dimension. This produces a result with dimension one less than the input. For a two-dimensional

matrix, fold will reduce each row into a single value, resulting in a one-dimensional vector.

stencil This function is similar to the map function, but instead of mapping over each value of

the input, each value plus a neighbourhood of a chosen size is mapped over. The Boundary

argument determines what values are given to the function when the neighbourhood extends

over the boundaries of the input array.

scanl Computes the cumulative sum of an array along the inner dimension given an associative

operation and a starting value.

transpose Computes the matrix transpose over a two-dimensional array, swapping its two dimensions.

Accelerate separates aggregate operations and single-value operations into two classes at the type

level. Types surrounded in Acc denote the results of aggregate operations, and types surrounded in

Exp denote the results of single-value operations. This prevents irregular nested data-parallelism. For

instance, one cannot call a map or fold inside the argument function to another map, as the argument

function’s result must be an Exp, but the result of a map or fold is an Acc. Accelerate is thus limited

to flat data-parallelism over regular, multi-dimensional arrays.

In Figure 1, we saw a dot-product implementation both in Accelerate and in C. The operations

in collection-oriented languages work over data as a whole. A naive way to compile the Accelerate

version would be to have code which carries out the zipWith, and code which carries out the fold

separately. The equivalent of this in C would be as in Figure 6b.

This is a sub-optimal solution when compared to the C implementation in Figure 1. Not only

do we need more memory for the intermediate array p, we now have two array traversals instead of

one. In order for a collection-oriented language like Accelerate to compete with C for memory usage

and run-times, it must implement a type of optimisation known as array fusion. This involves, when

possible, combining the computations from multiple successive array operations into a single array

traversal. With fusion, the two separate loops become one, just like in the original C implementation.

To apply fusion, Accelerate separates primitives into two classes:
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dp = fold (+) (constant 0) $ zipWith (*) a b

(a) Dot-product in Accelerate

int dp = 0;
int p[N];

for (i = 0; i < N; ++i) {
p[i] = a[i] * b[i];

}

for (i = 0; i < N; ++i) {
dp += p[i];

}

(b) Accelerate dot-product naively compiled to C

Figure 6: Implementations of dot-product

1. Producer : Each output element depends on at most one element of each input array.

2. Consumer : Each element depends on multiple elements of each input array.

Out of the primitives listed in Listing 1, generate, map and zipWith are producers. The primitives

fold and stencil are consumers.

Fusion is applied to a programme’s AST in two successive phases:

1. Producer/producer : Sequences of adjacent producers are fused into a single producer.

2. Producer/consumer : Annotates AST as to which producers should be computed separately,

and which should be fused into their consumers. This phase is ultimately completed during

code generation, where the consumer skeleton is specialised by embedding the code of the fused

producer.

We now look at how fusion applies to the dot-product example. In the example, the only producer

is zipWith, so there is no producer-producer fusion. The producer zipWith is fused with the consumer

fold. When this fused unit is compiled, it results in a fused dot-product computation, analogous to

the C implementation in 1, but with provisions for running in parallel which we will elaborate on

below. This fusion process greatly reduces computation time and total memory needed for array

computations, while maintaining the ease of defining computations.

Accelerate can produce code to run both on CPUs and on GPUs. In this project, we focus only

on running programmes on CPUs in parallel on multiple cores. In either case, each separate fused

unit of an Accelerate programme is compiled into one or more functions in LLVM’s intermediate

representation language called LLVM-IR. LLVM optimises the code further and compiles it into object

code for the respective computation unit, either the CPU or GPU. In this context, a compiled object

is called a kernel.

In Accelerate, each primitive is associated with a number of skeletons which define the code to carry

out its operation on an array. Fused units, which are formed of a chain or producers with a consumer

at the end, are compiled by taking the skeleton of the consumer, and including code to compute the

producer inside that skeleton. Our dot-product example is compiled according to the skeleton for the

fold operation, the fold being the outer consumer.

The operation fold in Accelerate can compile in different ways based on the dimensionality of

the input. In the dot-product case, the whole of the input to fold is reduced to a single element.
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This contrasts with taking an array of dimensionality above 1 and reducing along its inner dimension,

leaving potentially many values in the result.

The fold operation in this example is carried out by two separate skeletons, which each carry

out a separate pass in order to compute the result. The first skeleton carries out the bulk of the

computation. The skeletons are first instantiated with the code for the producer, namely zipWith,

and are then compiled into two separate kernels. Equivalent C code to what the first skeleton would

compile to is shown in Listing 3. We now come to scheduling, dividing and executing the work.

The input is split into as many portions as there are available worker threads. A temporary array is

allocated of size equal to the number of portions. Each worker then runs the first kernel on its allocated

portion in parallel with the other workers. This first kernel carries out the dot-product operation on

its allocated portion, and writes the result to the temporary array at the position corresponding to

the portion assigned to it. A single worker runs the kernel for the second pass. This kernel iterates

over the temporary array, and reduces the partial results into a single final result.

void fold_pass_1 (int ix_start0 , int ix_end0 , // Begin and end index of portion to be worked on

int portion , // Id of portion to be worked on

int * tmp , // Temporary array where resu l t w i l l be stored

int * a, int a_sh0 , // First input array , passed in with s ize

int * b, int b_sh0) { // Second input array , passed in with s ize

int result = 0; // Beginning of the reduction

for (int i = ix_start0; i < ix_end0; ++i) {

result += a[i] * b[i]; // The code for the zipWith has been inserted here

}

tmp[portion] = result; // Write the part ia l resu l t for th is portion

}

Listing 3: Equivalent C code for the kernel of the first pass needed to compute the dot-product

3 The Potential for Polyhedral Compilation in Accelerate

Polyhedral compilation techniques aim to optimise programmes that contain loops whose bounds and

array access offsets are affine combinations of surrounding loop variables and constant parameters. In

other words, programmes formed of regular iterations over regular, multi-dimensional arrays. On the

face of it, array-oriented languages such as APL, Accelerate and Futhark should seem directly suited

to polyehdral compilation. In practice, we have found that it can be difficult to get collection-oriented

languages and polyhedral compilation to work together.

In this project we look at integrating Polly, a polyhedral optimisation pass of LLVM, with Accel-

erate, which compiles programmes into LLVM-IR. Polly recovers the polyhedral representation of a

programme from LLVM-IR, this LLVM-IR generally being generated from a language like C. We have

found from experimentation that it is difficult to know exactly what type of code Polly expects in order

to perform its optimisations. This was true starting both from C, and later from LLVM-IR. However,

once the right form of code is known, Polly can provide impressive speed-ups for certain applications,

for instance with its custom code for matrix multiplication. This shows the potential of collection-

oriented languages like Accelerate to use polyhedral compilation. Programming array operations in a

12



low-level language like C, the user must know the ins and outs of Polly in order to use Polly to its

full potential. In contrast, this knowledge can be programmed into a collection-oriented language like

Accelerate, and can be made available to the user implicitly, just like Accelerate’s implicit parallelism.

In the rest of this section we justify our claims towards the potential for integrating Polly and

Accelerate with benchmarks. We first benchmark Polly over a wide range of applications in order

to understand what conditions Polly provides the most benefit under. We then implement a number

of these applications in Accelerate and investigate how the benefit of Polly carries over to the code

generated by Accelerate.

All benchmarks were run on a computer with the specifications in Table 1.

CPU MD ThreadRipper2950X (16cores @3.5GHz), zenv1 architecture
Cache L1d:512KiB, L1i:1MiB, L2:8MiB, L3:32MiB
GPU NVidia RTX2080, Turing architecture
RAM 64GB DDR4,2833MHz
Storage Two 8TB HDDs and two 1TB NVME drives
OS GNU/Linux, distribution Ubuntu19.10Eoan

Table 1: Specifications of computer benchmarks were run on

3.1 Benchmarking Polly

In order to understand the potential benefit Polly can provide to Accelerate programme run-times,

Polly must be tested over a wide range of programmes which might be implemented in Accelerate. To

this end, we have benchmarked Polly with the Polybench[14] suite of algorithms. Polybench defines

a number of algorithms over regular, multi-dimensional arrays, ranging over multiple domains and

memory access patterns. While Polly supports the generation of parallel code, all benchmarks were

run single-threaded. This is in order to find a baseline for the speed-up Polly can provide to work

which Accelerate assigns to separate threads.

We have compiled each algorithm of Polybench with clang, optimisation level -O3, comparing the

speed-up Polly provides when enabled to when it is disabled. When compiling with Polly, we also

set -polly-position=early as an argument, causing Polly to run earlier in the optimisation chain.

This has the effect of increasing compilation times, but was found to lead to the fastest code across all

Polybench examples. Without this, Polly’s affine array subscript detection can fail, especially when

C99 variable-length arrays are used. The -polly-position=early setting does cause Polly to run

before inlining, but this is not an issue, as we wish to measure the speed of the kernels alone.

Polybench allows the user to specify that each kernel takes as arguments arrays either with hard-

coded sizes, or with C99 variable lengths. We split our benchmarks into two groups according to this

choice. Both choices are illustrated in the benchmarks in Figure 7, the left yellow bar of each pair

corresponding to C99 variable-length arrays, the right blue bar corresponding to hard-coded array

sizes.

We found Polly to provide a speed-up to a number of kernels in the Polybench suite. The most

notable speed-ups were for 2mm and 3mm, which involve matrix multiplication. As previously men-

tioned, Polly contains specialised code for recognising and optimising programmes containing matrix

multiplication, which was invoked in this case. We discuss later the difficulty of generating the right

13
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Figure 7: Relative speed-up with Polly enabled to -O3 optimisation alone. At horizontal grey bar
means no speed-up, above means faster. The yellow bar on the left of each pair is speed-up with C99
variable-length arrays, the blue bar on the right is with hard-coded array sizes.

code for this to be invoked. For the remaining kernels where a speed-up was observed, the most notable

transformation Polly was found to have applied was tiling. No significant difference of run-times was

found between the C99 variable-length versions and hard-coded versions, apart from in the fdtd-2d

example. The C99 version showed a slight speed-up, but the hard-coded array sizes version showed a

slow-down. Polly generated completely different code for each case. It is not immediately clear why.

Looking closely at Polly’s benchmark results over the Polybench examples in Figure 7, we see a

large class for which either a near-zero speed-up is provided, or in the case of heat-3d and jacobi-1d,

a considerable slow-down. All of these examples fall under the stencils directory in Polybench.

Stencils are an important class of computation in scientific computing and machine learning.

Stencil computations are characterised by the fact that, for multi-dimensional input and output

arrays, an element in the output is computed from an element from the input and a small number of

elements surrounding it. This characteristic makes stencil computations amenable to parallelisation

and locality optimisations. One such locality optimisation is tiling, which as detailed in Section 2.1.1.

Polly applies tiling to most examples, including the stencil examples, and Polly allows the user set

the tile size at each loop nesting level. Determining the optimal tiling size for a programme is a

computationally intensive task, and there is no single optimal tile size for all examples[15]. Polly does
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for (t = 1; t <= TSTEPS; t++) {
for (i = 1; i < N - 1; i++) {

for (j = 1; j < N - 1; j++) {
for (k = 1; k < N - 1; k++) {

B[i][j][k] = 0.125 * (A[i+1][j][k] - 2.0 * A[i][j][k] + A[i-1][j][k])
+ 0.125 * (A[i][j+1][k] - 2.0 * A[i][j][k] + A[i][j-1][k])
+ 0.125 * (A[i][j][k+1] - 2.0 * A[i][j][k] + A[i][j][k-1])
+ A[i][j][k];

}
}

}
for (i = 1; i < N - 1; i++) {

for (j = 1; j < N - 1; j++) {
for (k = 1; k < N - 1; k++) {

A[i][j][k] = 0.125 * (B[i+1][j][k] - 2.0 * B[i][j][k] + B[i-1][j][k])
+ 0.125 * (B[i][j+1][k] - 2.0 * B[i][j][k] + B[i][j-1][k])
+ 0.125 * (B[i][j][k+1] - 2.0 * B[i][j][k] + B[i][j][k-1])
+ B[i][j][k];

}
}

}
}

Listing 4: heat-3d implementation

not do anything towards determining the optimal tile size to apply to a given example. If it does apply

tiling, which it does in most examples, it uses a default tile size of 32. That is, each iteration variable

is iterated in blocks of 32. This turned out to be the wrong choice for the stencil examples, as seen in

the benchmark results in Figure 7.

The heat-3d example in Polybench simulates heat propagation in a three-dimensional environment.

See Listing 4 for its implementation. The heat-3d example actually involves the iterated application

of two separate stencil computations.

Polly by default fuses these the two stencil loops and applies a tile size of 32 on each loop. As

seen in the benchmark results, this causes a slow-down. The only way we found to get a speed-up

with Polly was to prevent fusion by inserting an asm volatile("") between the two stencil loops,

and to set the tile sizes of each loop manually with -polly-tile-sizes=24,4,1024. At this point not

much is left for Polly to do but apply the chosen tile sizes. The story is the same for jacobi-1d and

jacobi-2d. Fusion plus a default tile size of 32 cause either a slow-down or no change in speed. One

case where this strategy seems to work is fdtd-2d in the C99 case. The hard-coded array size case

differs considerably. In that case, only loop tiling is applied.

The above results serve towards an initial investigation into the extent of the benefits Polly can

provide. In Section we use these results in deciding where to start in investigating which type of

programme, when implemented in Accelerate, can be optimised by Polly.

3.2 Benchmarking Accelerate

In Section 3.1 we conducted an initial investigation into the type of code which Polly can provide a

benefit to by benchmarking it against a number of examples written in C. We now move the focus to

Accelerate, investigating the extent to which Polly can optimise code written in Accelerate. We also

look at what changes can be made when Polly cannot optimise code. Out of the Polybench kernels

benchmarked, we have chosen to first look at the 2mm kernel, as this was one of the kernels with the
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// First loop
for (i = 0; i < NI; i++)

for (j = 0; j < NJ; j++)
{

tmp[i][j] = SCALAR_VAL (0.0);
for (k = 0; k < NK; ++k)

tmp[i][j] += alpha * A[i][k] * B[k][j];
}

// Second loop
for (i = 0; i < NI; i++)

for (j = 0; j < NL; j++)
{

D[i][j] *= beta;
for (k = 0; k < NJ; ++k)

D[i][j] += tmp[i][k] * C[k][j];
}

Listing 5: Polybench C implementation of 2mm

tmp a b =
fold (+) (constant 0) $

generate (Z_ ::. ni ::. nj ::. nk) $
λ(_ ::. i ::. j ::. k) →

let partA = a ! (Z_ ::. i ::. k)
partB = b ! (Z_ ::. k ::. j)

in constant alpha * partA * partB

where (Z_ ::. ni ::. nk) = shape a
(Z_ ::. _ ::. nj) = shape b

Listing 6: Accelerate implementation of first loop of 2mm

highest speed-up when Polly was enabled. The Polybench C implementation of the 2mm kernel is shown

in Listing 5.

The kernel takes four two-dimensional matrices A, B, C, D as input, and sets D to alpha·A·B·C+beta·D,

where alpha and beta are constants. In Polybench this is implemented with two separate nested

loops, where the first loop sets a temporary buffer tmp to alpha · A · B, and the second loop sets D to

beta · D + tmp · C.

The mean run-time of the Polybench implementation of the 2mm kernel in C over the EXTRALARGE

problem size was 43 seconds with Polly disabled, and 1.83 seconds with Polly enabled. We did not

observe any difference in run-times between the C99 variable-length array version and the hard-coded

array sizes version.

For the Accelerate implementation, we have followed this looping style as closely as possible in

order that the code generated by Accelerate is close to the code generated for the C implementation.

This was done using the generate combinator. The Accelerate implementation of the first loop is

shown in Listing 6. A more idiomatic implementation of the 2mm example follows later on after we

first examine the more C-like implementation.

We now explain the semantics of the Accelerate implementation of this loop. If matrix a is of size

ni×nk and matrix b is of size nk×nj, the generate statement represents a three-dimensional matrix

g of size ni×nj×nk, where each element gi,j,k = alpha ·ai,k ·bk,j . The fold statement then takes this

g and sums it along the inner-most dimension, indexed by k. This results in the matrix tmp defined

by:
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tmpi,j =

nk∑
k=1

gi,j,k

Just like in the Polybench benchmarks, we ran the Accelerate implementation of 2mm with a single

thread. The kernel took a mean average of 79.73 seconds to run on the same EXTRALARGE problem size.

Comparing with the run-times for the C implementation, this indicates that there is a large potential

for optimisation by Polly.

4 Polyhedral Compilation of Accelerate Programmes

Now that we have shown the potential for the speed-up that might be provided by applying Polly

to Accelerate programmes, we now investigate in detail how this might be done. Accelerate compiles

programmes into LLVM-IR, which is then compiled and optimised further by the LLVM compiler. The

resulting objects are then loaded into memory and executed within the Accelerate runtime. Accelerate

programmes therefore have the potential to be optimised by Polly, which itself is implemented as

an optimisation pass of LLVM. Polly, however, can provide benefit only to code of a certain form,

so we must make sure that Accelerate generates suitable code. A more detailed explanation of the

compilation process in Accelerate can be found in Section 2.2.1.

4.1 Optimising the 2mm kernel

To investigate the ability of Polly to optimise code generated by Accelerate, we initially focus on the

first loop of the 2mm kernel alone. The code for this is listed in Section 3.2. This implementation takes

a mean average of 34.26 seconds to run with a single thread for the EXTRALARGE problem size. Given

that the C implementation of the whole of 2mm runs in under 2 seconds with Polly enabled, we see

that the potential for optimisation remains.

The generate statement, when compiled alone, results in three regular nested loops, the loop

variables being used directly to index into the input and output arrays. Following the fusion process

described in Section 2.2, when compiled as part of the larger programme, the generate statement is

fused with the fold statement. With this, no intermediate matrix G is produced.

Following our tests, we found that Polly is not able to optimise the resulting code. This is due

to the implementation of fold, which is not implemented with a nested loop for each of the output

dimensions, but with one flat loop for the outer-most dimensions, and a loop for the inner-most

dimension which is folded over. The generate statement is defined over multiple dimensions, so the

indices into these dimensions must be recovered from the flat loop variable. The pseudocode for the

code generated by Accelerate for the first loop is shown in Listing 7.

We now discuss why it is not possible for Polly to optimise this code. For Polly to optimise code,

all array indices must be affine combinations of loop variables and constant parameters. In this code,

there are three variables used as array indices: a index, b index and out index. In a offset, we

have out sh1 index, which is the result of a division operation over a loop variable. Because of this,

a offset is not an affine index. The situation is the same in b offset: out sh0 index is the result
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void kernel (int out_sh1 , int out_sh0 , double * out ,
int a_sh1 , int a_sh0 , double * a,
int b_bh1 , int b_sh0 , double * b) {

int out_size = out_sh1 * out_sh0;

for (int out_index = 0; out_index < out_size; ++ out_index) {
int out_sh1_index = out_index / out_sh0;
int out_sh0_index = out_index % out_sh0;

int out_element = 0;

for (int k = 0; k < a_sh0; ++k) {
int a_index = (out_sh1_index * a_sh0) + k;
int b_index = (k * b_sh0) + out_sh0_index;

int generate_result = a[a_index] * b[b_index ];

out_element += generate_result;
}

out[out_index] = out_element;
}

}

Listing 7: Pseudocode for generated code of the first loop of 2mm

of a remainder operation over a loop variable. It is therefore not affine. The array index out index is

affine, as it is itself a loop variable, however this does not change the situation.

We have solved this issue by replacing Accelerate’s flat loop implementation of fold with an

implementation generating a nested loop for each dimension of the output, thus producing code suitable

for optimisation by Polly. After this change, even with Polly turned off, LLVM was able to optimise

the generated code for the first loop of the 2mm kernel much better, running in 20.93 seconds. With

Polly turned on, we obtained a run-time of 3.54 seconds, down from 34.26. The pseudo-code for this

is shown in Listing 8.

Note that the array indices a index and b index are now affine, and that out index also has a

new definition. In the definition of a index, the loop variable out sh1 index is multiplied by a sh0,

which itself is a constant parameter. The array index is therefore affine. The remaining array indices

are defined similarly.

We now focus on the whole of 2mm. We have already looked at the implementation of the first loop.

This leaves the second loop, which we separate into two stages. Firstly, the result of the first loop

is multiplied with matrix C. This matrix multiplication is implemented in the same way as the first

loop, and is now easily optimised by Polly. The second stage involves adding the result of the matrix

multiplication to beta ·D, also optimised by Polly as is. We obtain a mean run-time of 9.12 seconds,

down from 79.73.

Having shown in Section 3.2 the ability of Polly to optimise the C-like explicit indexing implemen-

tation of 2mm after making the change to the code generation of fold, we were interested in seeing

whether the benefits carry over to a more idiomatic implementation. This implementation is shown in

Listing 9.

Our idiomatic implementation of 2mm ran in 133 seconds, up from the 79.73 for the C-like version.

With our change to the code generation of fold alone, the run-time went down to 43 seconds. With

Polly enabled, the run-time went down even further to 8.2 seconds, in fact beating the run-time of the
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void kernel (int out_sh1 , int out_sh0 , double * out ,
int a_sh1 , int a_sh0 , double * a,
int b_bh1 , int b_sh0 , double * b) {

for (int out_sh1_index = 0; out_sh1_index < out_sh1; ++ out_sh1_index) {
for (int out_sh0_index = 0; out_sh0_index < out_sh0; ++ out_sh0_index) {

int out_element = 0;

for (int k = 0; k < a_sh0; ++k) {
int a_index = (out_sh1_index * a_sh0) + k;
int b_index = (k * b_sh0) + out_sh0_index;

int generate_result = a[a_index] * b[b_index ];

out_element += generate_result;
}

int out_index = (out_sh1_index * out_sh0) + out_sh0_index;

out[out_index] = out_element;
}

}
}

Listing 8: Pseudocode for the first loop of 2mm after change to fold loop behaviour

matrixMultiply a b =
A.fold (+) (constant 0) $ A.zipWith (*) aRep bRep

where (_ ::. i ::. j) = shape a
(_ ::. _ ::. k) = shape b

cAll = constant All

aRep = A.replicate (Z_ ::. cAll ::. k ::. cAll) a

bRep = A.replicate (Z_ ::. i ::. cAll ::. cAll) $ A.transpose b

kernel2mm a b c d =
A.zipWith (+) betaD matrixMultiplyPart

where betaD = A.map (* constant beta) d

tmp = A.map (* constant alpha) $ matrixMultiply a b

matrixMultiplyPart = matrixMultiply tmp c

Listing 9: Idiomatic implementation of 2mm in Accelerate
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first implementation.

Neither our initial nor the idiomatic implementation of 2mm in Accelerate managed to match the

speed of the Polybench C implementation, which ran at 1.83 seconds with Polly. Polly has special

provisions for matrix multiplication which are triggered by the Polybench implementation, but is not

triggered by the code generated by Accelerate. We compared the code generated by Accelerate with

the code generated by the Polybench implementation. The code generated by Accelerate was not far

off.

Accelerate divides work by assigning to each thread a portion of the output array to compute. A

portion is indicated by a start and end offset for each dimension of the ouput array. The start and

end offsets into the output array for each instance of a kernel are set by passing them in as arguments.

This is true even when running a single thread. Polly’s matrix multiplication detection code expects

the loops to begin at zero, not at some start offset passed in as an argument. This causes the detection

to fail.

Even though Accelerate does not generate suitable code for the matrix multiplication detector, it

is not the easiest to write suitable code in C either. The code only works if we accumulate the dot

product into the result matrix itself. It does not work if we accumulate into a separate variable and

set that as the result at the end of the loop.

It would be possible to change Accelerate so that it generated loops starting from zero by adding

the start offsets of arrays into array addresses appropriately. However, this would provide a benefit

only to matrix multiplication, and it is unclear how it would affect the run-times of other programmes.

4.2 Optimising Other Kernels

To show that the benefits of Polly combined with our change to fold were not restricted to a single

example, we have run tests on a further three kernels from the Polybench suite where large speed-ups

were observed: syr2k, correlation and gemm. Not all kernels in the Polybench suite are suited to

idiomatic implementation in Accelerate. For instance, the lu kernel, which performs an LU decompo-

sition, require complex loop bounds to separately compute the lower and upper triangles of the result,

which cannot be expressed by the usual Accelerate primitives which work over arrays as a whole. This

is not to say that the lu kernel cannot be implemented in Accelerate. We are simply interested in

idiomatic implementations in order to find out how well polyhedral optimisation can be applied to the

code generated by Accelerate’s primitives. Also note that all implementations required the usage of

the fold primitive.

We ran benchmarks over all combinations of the two following variables:

1. Polly enabled or disabled

2. Our change applied to fold or not

We first consider the cases where our change code generation of fold was not applied. For all

kernels, the run-time was the same whether Polly was enabled or disabled. This was expected, as

Polly cannot optimise calls to the unchanged version of fold, which form the bulk of the work in these

kernels.
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We now consider the contribution of our change to fold to the run-times of the kernels in question.

Even with Polly disabled, the run-times of all kernels showed a significant speed-up with the change

to fold. With Polly enabled, we observed a even higher speed-up for all kernels again. The relative

speed-ups are illustrated in Figure 8.

2mm syr2k correlation gemm
0

10
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Figure 8: Relative speed-ups of four polybench kernels with change to fold relative to unchanged
Accelerate code. At horizontal grey bar means no speed-up, above means faster. Yellow bar on left of
each pair is with Polly disabled. Blue bar on right of each pair is with Polly enabled.

4.3 Parallelism, Polly and Accelerate

Accelerate is at its core an implicitly parallel language. Having shown the contribution of Polly and

the change to fold to the run-times of a number of kernels in the single-threaded context, we have

verified that this contribution carries over to the multi-threaded context as well. We ran our tests with

the same kernels and variables as in the previous section, but this time with thirty-two threads. The

results are shown in Figure 9.
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Figure 9: Relative speed-ups of four polybench kernels with change to fold relative to unchanged
Accelerate code. At horizontal grey bar means no speed-up, above means faster. Yellow bar on left of
each pair is with Polly disabled. Blue bar on right of each pair is with Polly enabled.

Polly also provides a way of automatically parallelising code, which can be enabled with the

-polly-parallel argument, generating code to work with OpenMP[16], the parallel programming
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API. In our tests we have used LLVM’s own OpenMP back-end. We have compared the relative

speed-up provided by Polly both in the single-threaded case, and in the multi-threaded case with

-polly-parallel. We ran the multi-threaded case with thirty-two threads, just like in our Accelerate

tests above. The results are listed in Figure 10.
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Figure 10: Speed-up with Polly relative to -O3 alone, either single-threaded or multi-threaded (log2

scale). At horizontal grey bar means no speed-up, above means faster. The yellow bar on the left
of each pair is speed-up with single-threaded Polly, the blue bar on the right is multi-threaded with
-polly-parallel.

Many kernels show either no change in speed or even a slow-down with -polly-parallel enabled.

For the cases where there is no change, this means that either Polly couldn’t optimise the code in the

first place, that Polly couldn’t parallelise the code, or that it chose not to parallelise the code. For

instance with the heat-3d kernel, no change in speed was observed, as Polly chose not to parallelise

it. Polly fuses the two loops in such a way that it no longer profitable to parallelise them.

Out of the four examples which we earlier also implemented in Accelerate, correlation and syr2k

showed a significant speed-up with -polly-parallel, and 2mm and gemm showed a slow-down. The

bulk of the work in the two kernels with a slow-down involves matrix multiplication. Polly’s custom

matrix multiplication detection transforms this into code which seems not parallelise well.

In Table 2 we compare the Polybench C implementations with Accelerate implementations of the

four kernels above, varying whether Polly is enabled and the number of threads the kernels are run
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with. For the Polybench C implementation, 32 threads with polly implies -polly-parallel.

Running the kernels single-threaded without Polly, C is the clear winner. The C implementations

run from 12 to 3 times better. Running without Polly the Accelerate implementations with 32 threads,

none of them beats the single-threaded run-times of the C implementations with Polly enabled. How-

ever, with -polly-parallel, the C implementations of 2mm and gemm show a slow-down, as previously

mentioned. With Polly enabled, the Accelerate versions of these two kernels already run faster than the

C implementations, with only 4 threads. The C implementations of correlation and syr2k do show

a significant speed-up with -polly-parallel at 32 threads. However Accelerate with Polly enabled

already beats correlation at just 4 threads, and syr2k at 8 threads. These results show that in the

multi-threaded setting, Accelerate and Polly can make a useful combination.

Kernel
Polybench C Accelerate

No Polly With Polly No Polly With Polly
1 1 32 1 32 1 2 4 8 16 32

2mm 41.75 1.82 2.06 131.35 8.85 8.16 3.8 1.92 0.99 0.60 0.43
correlation 57.32 4.25 0.64 200.12 13.55 4.98 2.04 1.05 0.52 0.39 0.30
gemm 9.41 2.19 2.93 119.56 7.90 7.70 3.12 1.57 0.80 0.49 0.35
syr2k 43.73 6.71 0.88 133.73 9.17 5.96 2.74 1.40 0.70 0.40 0.42

Table 2: Run-times in seconds of kernels by number of threads. Polybench C, 32 threads with Polly
implies -polly-parallel.

4.4 Larger Examples

In this section, we move away from the small examples of Polybench and look at how Accelerate

and Polly work together on larger examples. We first look at a marsh simulation, then the k-means

clustering algorithm, and finally the integral image algorithm.

4.4.1 Salt Marsh Simulation

The salt marsh simulation[17] simulates the sediment and water flow dynamics of a marsh. It is largely

a stencil computation, where in addition, at each step, the whole result is iterated over to fix values

at the boundary. It is implemented with a stencil2 operation followed by a generate to fix the

boundary values. The stencil2 operation runs over two input arrays. It is like a zipWith version of

stencil. In place of zipWith applying a function to corresponding elements of two arrays, stencil2

applies a function to corresponding neighbourhoods.

The salt marsh simulation involves no fold operations, so whether or not our fold change was

applied is irrelevant. Without Polly enabled, the example ran in 1931 seconds, and with Polly enabled,

it ran in 1888 seconds. We wanted to see where exactly in the programme speed-up arose, so we

removed the generate call that fixes the boundary values, and ran our tests again. Without Polly

enabled, the simulation ran in 578 seconds, and with Polly enabled, it ran in 584 seconds, showing a

slow-down. This shows that the speed-up was limited to the boundary value fixing operation.

This is not the first time we have observed Polly causing a slow-down of a stencil operation. Most

of the Polybench stencil kernels showed either no change, or a slow-down as in the heat-3d and
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jacobi-1d example. This does not mean that Polly cannot provide speed-ups to stencil computations

with the right parameters. However, as explained in Section 3.1, it may not be computationally easy

to deduce the right parameters such as tile size. In this case, there is nothing that Accelerate can

automatically do.

Accelerate unrolls the loops in the code it generates for stencil operations, and we wondered whether

this was having an effect on the ability of Polly to optimise the stencil code. We disabled the stencil

loop unrolling and ran the tests again. This time with Polly disabled, we observed a slower run-time

of 705 seconds, up from 578. This at least shows the benefit of loop unrolling when Polly is disabled.

When we enabled Polly, we observed a run-time of 694 seconds, a slight speed-up on the run-time

without Polly, but still well above the best run-time we observed when loop unrolling was enabled and

Polly was disabled.

From this example and the previous stencil examples from the Polybench suite, we can conclude

that Polly is best left disabled for stencil computations. This is not necessarily a negative result, we

have merely found one of the limits of Polly. Due to the fact that stencil computations in Accelerate

occur through the stencil and stencil2 primitives, it would be simple to implement functionality

which decides against enabling Polly in this case.

4.4.2 K-Means Clustering

The k-means clustering algorithm[18] takes a set of vectors and partitions them into k clusters such

that each vector belongs to the cluster with the nearest mean. This is implementated in Accelerate at

https://github.com/tmcdonell/accelerate-examples. The implementation in question defines a

benchmark which takes three parameters c, pmin and pmax. The first parameter defines the number of

clusters. The second and third parameters define the minimum and maximum number of points per

cluster, the number of points and their positions being chosen randomly between the minimum and

maximum.

We ran the benchmark both with Polly and without over a dataset comprising 382500 points. We

ran the benchmark multiple times, each time varying the number of clusters while keeping the point

set the same. Our change to fold has no bearing on the code. In Figure 11 we have two graphs.
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Figure 11: Run-times ranging from 5 to 200 clusters

From these results, we can see that as the number of clusters increases relative to the number

of points, the total run-time of k-means increases. We also see that it is in these examples of more

clusters and increased run-times that Polly provides a benefit. Polly does not provide a benefit with

lower numbers of clusters, but in that case the run-times are negligible anyway.

4.4.3 Integral Image

The integral image is a data structure that is crucial in the Viola-Jones face detection algorithm[19].

Given an image I(x, y), the integral image II(x, y) at a point (x, y) is equal to the sum of points above

and to the left of that point, plus the point itself. It can be defined formally as follows:

II(x, y) =
∑

x′≤x,y′≤y

I(x, y)

In Accelerate, the integral image over a whole image may be efficiently computed using a com-

bination of calls to scanl1, which computes the prefix sum along an array’s inner dimension, and

transpose:

integralImage =

transpose .

scanl1 (+) .

transpose .

scanl1 (+)

Listing 10: Integral image implementation in Accelerate

In this algorithm, the transpose calls are producers, and the scanl1 calls are consumers. The

scanl1 primitive is the inclusive version of scanl. It does not take an argument for initialising each

sum. It instead initialises the sum with the first element of the corresponding input row. Following

the fusion process, the algorithm results in three fused units:

1. transpose
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2. scanl1 (+) . transpose

3. scanl1 (+)

After testing, we found that Polly was only able to optimise the transpose unit, which compiles to

a two-dimensional loop over its two-dimensional input array. With this, it satisfies the requirements

for polyhedral optimisation. Given Accelerate’s existing implementation, it is not possible for Polly to

optimise the scanl1 units. This is because scanl1 iterates over its two-dimensional input array using

a single loop variable, recovering the two coordinates using integer division and remainder operations,

which are not affine. This breaks the affine array indexing requirement for polyhedral compilation.

This is exactly the same issue observed in the implementation of fold before we changed it.

First leaving the scanl1 operation unchanged, we tested the integral image algorithm over random

images which we generated of varying sizes, running the tests both with and without Polly. We

again ran the tests multi-threaded with thirty-two threads. All tests of this algorithm are run multi-

threaded unless otherwise mentioned. Remember that the only kernel optimised by Polly here is that

corresponding to the outer transpose call. Polly simply tiles it. In the results in Figure 12, Image

size n means an image of width and length n.
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Figure 12: Run-times of integral image algorithm implemented in Accelerate

From the results we can see that until the image size of 37500, the tiling of the final transpose by

Polly leads to a speed-up, but that it mostly causes a slow-down thereafter. It is not immediately clear

why this is, as it would seem that the nature of the transpose operation is directly amenable to the

cache friendliness provided by tiling. To narrow the search for the culprit down, we implemented the

transpose algorithm in C, and tested it on all image sizes from 0 to 60000 in increments of 5000, thus

testing image sizes even larger than we did with Accelerate. We ran the tests with a single thread.

Polly tiled the transpose algorithm just as in the Accelerate implementation. We found that Polly

provided a significant speed-up to the transpose algorithm over all image sizes.

We also tried running the unchanged integral image algorithm over all image sizes mentioned, but

with a single thread. We found in this case as well that Polly provided a speed-up in all cases. The
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results of single-threaded test are listed later in Figure 14. It seems therefore that the slow-down on

larger image sizes of the algorithm with Polly enabled may be down to how Accelerate divides work

and carries out multi-threading, and not down to the implementation of transpose itself. Solving this

problem is left as future work.

We changed the iteration behaviour in the code generation of scanl1 similarly to how we did for

fold. That is, we ensured that each indexed array dimension corresponded to a unique loop variable.

Following this change, Polly was finally able to optimise both scanl1 units in the integral image

algorithm. We ran the algorithm again over the same image sizes and noted significant speed-ups in

comparison to the results we observed from the unchanged scanl1 implementation which we tested

with and without Polly. This was apart from the image sizes 35000 and 37500. The total and relative

speed-ups are listed in Figure 13. Figure 13a shows the total run-times both with the old scanl1 and

the new. For the old version, run-times both with Polly and without are listed. For the new version,

only run-times with Polly are listed. These form the three bars of each group. Figure 13b compares

the relative speed-ups Polly provides based on whether the change to scanl1 is applied. The first bar

of each group is with the old version of scanl1, the second bar of each group is with the new version.
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Figure 13: Run-times of integral image algorithm with or without change to scanl1

We ran the algorithm again, this time with the change to scanl1, with a single thread. This was

to narrow down the possibilities as to origin of the slow-down observed with image sizes 35000 and

37500. In Figure 14 we list the run-times for the unchanged version without and with Polly applied,

and the changed version with Polly applied.

The speed-ups for the changed version with Polly applied when run with a single thread were not

as dramatic as some of the speed-ups observed in the multi-threaded case. However in comparison,

they show a consistent speed-up over all image sizes in comparison to the unchanged version both

with and without Polly applied. This leads us to the conclusion that if the anomalies observed when

running the algorithm multi-threaded can be solved, the change to scanl1 applied with Polly can

make a useful contribution to the integral image algorithm over all image sizes. Given how our change

to fold showed a speed-up over a range of applications with Polly applied, it is likely that our change

27



10000 20000 30 000 35000 37500 40000 42500 45000
0

10

20

30

40

(a) Total run-times of algorithm per image size. Yellow
is without change and without Polly, brown is without
change and with Polly, blue is with change and with
Polly.

10000 20000 30000 35000 37500 40000 42500 45000
0.0

0.5

1.0

1.5

2.0

2.5

(b) Relative speed-ups per image size with Polly com-
pared to without Polly. At bar means no speed-up, be-
low means slower with Polly, above means faster with
Polly. Yellow is without change, blue is with change.

Figure 14: Single-threaded run-times of integral image algorithm with or without change to scanl1

implementation

to scanl1 would also.

5 Conclusion, Discussion & Future Work

The aim of this project was to investigate the extent to which array-oriented languages could work

together with polyhedral compilation. The number of general-purpose array-oriented frameworks which

aim at applying polyhedral compilation without user intervention is limited. For instance PolyMage

applies polyhedral optimisation automatically, but is focussed towards image processing. Tiramisu is

general purpose, but requires users to apply polyhedral transformations to code explicitly, similarly to

Halide.

Based on the literature on polyhedral compilation, and on Polly in particular, we had high hopes

as to the ability of Polly to optimise a wide range of array algorithms with minimal user intervention.

Our hopes were somewhat broken by the results from the Polybench benchmarks which we ran. We

observed slow-downs in a number of cases. In fact, for the stencil class of algorithms, we observed a

slow-down in all examples. One of the stencil examples exhibiting a slow-down was heat-3d, simulating

3-d heat propagation. After a lot of back and forth on the mailing list for Polly, we finally arrived at a

solution for getting Polly to speed heat-3d up. It involved preventing loop fusion by editing the code,

and setting tiling sizes manually. At that point, not much was left to Polly but to apply the tile sizes.

It is not necessarily a negative insight that the default tile size, and Polly always applies this if

it applies tiling, slows stencil operations down. This in fact is exactly the kind of insight we are

looking for. Accelerate knows exactly when it is dealing with stencil computations; this is namely

when the stencil primitive is used. If we had a computationally simple way of deducing tile sizes,

then Accelerate could apply it over all programmes involving the stencil primitive. However, we

previously noted that this is computationally complex[15]. With that, we are left with a weaker rule

which could be applied: Accelerate should not apply Polly to any programme involving the stencil
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operations.

Tiling size isn’t the only optimisation parameter which can be set manually in Polly. Polly has

settings for things such as fusion strategy, strip-mining, vectorisation and more. However, the docu-

mentation for these parameters is minimal, and can only be found in the argument descriptions for

Polly. Given the minimal documentation, it was difficult to know the scope of each parameter, and

more importantly for us, whether the value of each parameter could be deduced in a computationally

simple manner for automatic application by Accelerate such that it leads to faster code. Such an

investigation would have to be left for further work.

Two positive results we obtained in this project were in our changes to the fold and scanl1

operations. We noticed that the code generation for these operations did not fit the requirements of

being a SCoP for polyhedral compilation. It was quite simple to change the code generation for fold

to fit the requirements. The change to scanl1 took more work for it to be accepted by Polly. We

could not find any more operations where this change was needed. As shown in the results, we found

that these changes contributed towards significant speed-ups when Polly enabled.

The question of whether Polyhedral compilation can be applied beneficially to a general-purpose

array-oriented language like Accelerate without user intervention seems still to be an open question.

The promise of such a language in the polyhedral context is that the explicit representation of array-

based semantics should allow more efficient communication between language and polyhedral compiler

in terms of what a programme represents. With Accelerate and Polly, this communication is realised

in two ways. One way is code generation, which we were able to fix for fold and scanl1, two very

important primitives. The other way is through the arguments passed to Polly, such as tiling sizes. We

did see that tile sizes are computationally difficult to derive, but Polly provides many more arguments

and settings which we did not fully understand, or were not able to investigate due to the lack of

documentation. Given greater knowledge of these settings, it might then be possible to optimise a

wider range of array-based programme without user intervention. This will have to be left for further

work.
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