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1 Introduction

In the human eye, faces are not particularly extraordinary
images. However, this is surely not the case for other
observers. For instance, in the field of computer vision
faces have been remarkably difficult stimuli. In 2000,
a review (Pantic & Rothkrantz, 2000) was written on
the possibilities of an automatic interpreter of faces and
facial expressions; a then still far too difficult problem to
solve. In the past 20 years, the field of computer vision
has made applaudable progress in expression recognition.
However, in present day still little is known on the mech-
anism behind these facial expressions and what defines
them.

Facial expressions likely originated from the evolution-
ary advantages accompanying them. The widening of the
eye, for example in the fear expression, causes greater
perceptibility for sensory input, giving actors of this facial
expression an evolutionary benefit in threatful situations
(Lee, Susskind, & Anderson, 2013). Frith (2009) sub-
stantiated the theory that these facial expressions were
first perceived by observers as public information on the
environment, which later evolved into a complex commu-
nication system. The research on how humans understand
and process these facial expressions is in agreement that
emotional expressions are differently processed and cap-
ture more attention than neutral faces (Vuilleumier &
Schwartz, 2001). However, which emotion affects ob-
servers the most is still a topic of debate. The hypothesis
that happy faces are more efficient in capturing atten-
tion is called the happiness superiority effect (HSE) while
the hypothesis that angry faces capture attention more
effectively is called the angry superiority effect (ASE).
Specifically, some studies have reported a HSE, while
others reported an ASE (Becker, Anderson, Mortensen,
Neufeld, & Neel, 2011; Savage, Lipp, Craig, Becker, &
Horstmann, 2013).

In reviews on the existing literature, researchers con-
cluded that in most (if not all) studies little unconfounded
evidence exists for either ASE or HSE (Becker et al., 2011;
Frischen, Eastwood, and Smilek, 2008). The promising
results on ASE are likely to have resulted from experiment
design issues and low level visual information. Studies
which recorded an HSE also have been criticised due to
the happy stimuli in these studies that often display an
open mouth. This makes the stimulus more salient due
to the high contrast of the mouth area. In fact, Savage
et al. (2013) described these confounds as the shortcuts
of the visual search experiment overshadowing the actual
effect of the different expressions in the tasks. However,
not all visual features are confounds. The visual features
described above can either be a confound or a part of the
mechanism defining an expression, making them defining

features of the expression. To find if the visual features
causing these attentional effects are defining features or
confounds, they need to be evaluated. Seeing that any
variety between conditions is a valid possibility to explain
the behavioural differences between these conditions, vi-
sual features are in need of being thoroughly investigated.
Here we might find that some visual features like the
V-shape of the eyebrows do contain useful information
on the expression, while others, for example the visibility
of teeth, are correctly classified as confounds. To summa-
rize: specific visual features may give a more sufficient
explanation for the attentional effect found in studies on
the superiority effect when compared to the emotional
label. Therefore the facial expression can be described
with the use of defining features.

The question that comes to mind is: What are the dif-
ferent defining stimuli of happy and angry faces? Stimulus
properties that could be responsible for the attentional
effects of emotional faces might be the spatial frequency
(SF) content of the image and edge detection (HOG; his-
togram oriented gradients) (Chen, Chen, Chi, & Fu, 2014;
Déniz, Bueno, Salido, & De la Torre, 2011; Halit, De
Haan, Schyns, & Johnson, 2006). Therefore, this paper
focuses on HOG and SF features for both happy and
angry faces. Section 2 contains literature studies into
the stimuli and visual features used in this field, because
they are at the base of the argument. Next, section 3
and 4 explain the current approach and methods used
for the experiments. Section 5 and 6 give an overview
of the visual features found and whether they were gen-
eralizable. Finally, in the conclusion this paper defines
the happy and angry faces with visual features in the
different datasets and explains possible implications of
this research for the discussion on the superiority effect
and the field of artificial intelligence in general.

2 Visual features

Most of the papers in this field use a visual search task1

to test their hypotheses. However, some difficulties arise
when one is not careful with the use of face stimuli in
these visual search tasks. Two important reviews of this
literature are Frischen et al. (2008) and Becker et al.
(2011). Both of these papers reviewed visual search tasks
and concluded that previous research into the superiority
effect was often flawed in its methodology. Subsequently,
Frischen constructed three criteria for further research:
set size, content of the distractors controlled for, and vig-
ilance for the influence of search strategies. Becker et al.
(2011) added two criteria to this list: eliminating low level
visual features and different identities for the face stimuli.
While reviewing these problems in the existing literature,
Becker et al. (2011) came to the conclusion that there

1See Frischen et al. (2008) and Becker et al. (2011) for elaborate explanations of the visual search tasks.
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was little unconfounded evidence for either ASE or HSE.
As explained above, Becker et al. (2011) claimed that the
issues in previous papers are due to stimulus problems
and flaws in the design. By thoroughly describing the set
criteria they could design experiments that where valid,
avoid these pitfalls, and make reasonable claims on the
superiority effect.

After conducting these experiments, Becker et al.
(2011) concluded from their evidence that HSE was more
prominent than ASE in the visual search tasks. If his
approach was correct this found HSE should have been
a reasonable claim on the superiority effect. However,
by recreating Becker’s experiment Savage, Becker, and
Lipp (2016) found that these effects could be traced back
to only three faces and when these faces were replaced,
an ASE could also be discovered. Moreover, from these
results it is still unclear if happy or angry expressions are
the most salient. The reason for this is that the visual
search tasks on ASE and HSE stimulus selection appears
to plays a critical role for which effect will emerge. Even
with faces in the same test-set this can lead to contradict-
ing results (Savage et al., 2016). These results seem to
indicate that, even though researchers focus specifically
on trying to control for confounds in the stimuli and
flaws in the design, they still appear. This intuition is
supported by Becker et al. (2011) themselves by noting
that visual search tasks like these are prone to a host of
potential confounds which lead to misleading conclusions.

Although this thesis does agree with Becker et al.
(2011) that visual features cause problems for the inter-
pretation of the face stimuli, controlling the experiments
for all visual features seems reductive. Removing the
confounds from the data is nearly impossible and it could
also lead to the loss of important visual data. The cri-
terium described by Becker et al. (2011) to eliminate low
level visual features does not appear to be useful. Instead
of filtering these visual features from the stimuli, it might
be interesting to look at how these visual features play
a part in expression recognition. To this end it is useful
to look at another review of the superiority effect also
done by Savage et al. (2013). According to these authors,
the visual features described in the papers above can be
traced back to the complex face stimuli used in those
papers. Instead of measuring the mechanism behind the
expression, the papers researching the superiority effect
sometimes measure the visual features in the face stimuli
that provide shortcuts for the visual search task. Thus,
instead of excluding the visual features that cause atten-
tional effects, these features have to be studied in order
to differentiate the confounds from the defining features.

A face can be represented by different attributes each
consisting of specific visual features. Some of the visual
features can help people and algorithms more efficiently
distinguish the expression (label) of a face. These features
can include the “V”-shape of eyebrows or the presence of

teeth but also luminance in areas of the face can contain
specific visual features. The mentioned visual features
are either part of the mechanism defining the expression
or can help predict the expression but do not define it.
Note that in the papers researching the superiority effect,
this second category of visual features caused attentional
effects, which confounded the evidence. For example, in
the paper of Hansen and Hansen (1988) where the con-
trast areas caused misleading conclusions in the research
(Purcell, Stewart, & Skov, 1996). This was reinforced by
the literature reviews discussed earlier and by a different
study into this debate which found that HSE and ASE
could be caused by emotional related and emotional un-
related visual features (Savage et al., 2013). The visual
features in these studies that confounded the results often
arise from differences in contrast information. However,
contrast information could also contain defining features.

Spatial frequency is an attribute of visual information
containing contrast information of an image. Numerous
studies into the relation of SF and facial recognition have
been done (Gao & Maurer, 2011; Goren & Wilson, 2006;
Jeantet, Caharel, Schwan, Lighezzolo-Alnot, & Laprevote,
2018). However, in review on this literature Jeantet et
al. (2018) found several limitations within these studies,
partially due to design and the complexity of the face
stimuli used. Therefore, though indications are present
hinting at the importance of SF features, more research
has to be done to generalise conclusions on SF to faces
and specific expressions. Due to the sheer interest and
research into SF content regarding facial and expression
recognition, this might be an interesting visual attribute
to investigate at a high level of detail. Another promis-
ing visual attribute for expression recognition is HOG
information, which reflects the structural properties of
an image. HOG information has been found particularly
useful in human expression recognition due to its focus
on object orientation (Dalal & Triggs, 2005) and received
much attention in the field of computer science due to
its success in expression recognition (Carcagǹı, Del Coco,
Leo, & Distante, 2015). Therefore, in this thesis the focus
is specifically on HOG and SF.

Histograms of oriented gradients are feature descrip-
tors successfully used in face recognition. HOG consists
of a histogram which tracks the counts of gradients with
certain orientations for a part of an image. In the HOG
feature extraction process, an image is first divided into
N ×N pixel blocks. In these blocks, the orientation of
each pixel is recorded and combined into a histogram.
Because of this, HOG features are highly spatially specific.
Furthermore, an image can be described by its changes
in light and dark across space. Specifically, spatial fre-
quency refers to the number of dark-light cycles in a given
unit of space. Each spatial frequency of an image also
has an orientation: the angle across which the dark-light
alternation occurs within the image. Crucially, the SF
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features used in this paper only consist of the magnitude
of the frequency component. No phase information is
used in the analysis. As such, the SF features used here
only convey global contrast information. Furthermore, to
make sure no residual local information remains in the
SF data, this data has been down-sampled by taking the
sums of the magnitudes within a given frequency and ori-
entation range. After having inferred which attributes of
the face can be useful for defining happy and angry faces,
namely HOG and SF, it is now possible to re-evaluate the
research question and divide it in four smaller questions
which are easier to answer:

1. What HOG features are defining for happy faces?
2. What HOG features are defining for angry faces?
3. What SF features are defining for happy faces?
4. What SF features are defining for angry faces?

3 Machine learning

The machine learning algorithm explained here will be
used in the experiment in order to answer the four sub-
questions mentioned in the previous section. By using
machine learning models trained on these features it is
possible to test within the mentioned attributes (HOG
and SF) which specific features are helpful for identifying
the expressions in the datasets. To map specific features
directly to the success of the model, two preconditions
are required. First, the model has to be reasonably good
at predicting the correct expression. Second, the link
between the features and how the model uses those fea-
tures to identify the expression is fairly straightforward.
In this process it is important to constrain the machine
learning models to a smaller number of features to make
sure it is possible to easily decode the features that are
important. Through using attributes that are linked to
expression recognition in humans (SF) and in computer
vison (HOG) and using machine learning to find specific
features that achieve good results at expression recogni-
tion in the face stimuli, we made a model for recognising
happy and angry faces using only the most relevant fea-
tures within the attribute. To summarize: through the
use of machine learning models the aim of this paper is
to better understand and aid the research into human
expression recognition, specifically happy and angry ex-
pressions. This is attempted by constructing a model of
expression recognition using these features.

This machine learning model can lead to new insights
into human expression recognition. Here an AI-technique
is used to perform a narrow but intelligent task when
done by humans. This kind of use of machine learning
models falls under the branch of Weak AI. In the past,
this approach has given new insight into different cog-
nitive processes like facial recognition. For example, by
using Hidden Markov Models (HMM) Chuk, Chan, and

Hsiao (2014) found promising information on eye move-
ment during facial recognition, hinting to the significance
of different types of processing in facial recognition. Since
the process of expression recognition is fairly similar, this
thesis is optimistic about the possibility of translating the
result found in this paper to models of human expression
recognition in further research.

To make such a machine learning model we have to
follow certain steps: feature extraction, data splitting,
feature selection and cross-validation. For all the datasets,
features are extracted from each stimulus. The two at-
tributes of features researched in this thesis are SF and
HOG. The SF features are represented by the Fourier Mag-
nitude Spectrum. Here, the Fourier Magnitude Spectrum
is divided into 16 orientations and 24 spatial frequen-
cies. This entails that for each of the 16 orientations,
the stimulus is divided into 24 spatial frequencies where
the information of the contrast energy is saved. In total,
this amounts to 384 features. For the HOG features, the
stimuli are divided into 400 10 × 10 px blocks. For each
block, 9 orientations are evaluated. Then, the gradient
information is saved for each orientation.

All further steps have to be repeated for each com-
bination of dataset (Nimstim, Karolinska or Radboud),
emotion (happy or angry) and attribute (HOG or SF).
This will result in 12 models. To illustrate the process,
we will only describe one of these combinations: Nimstim
HOG happy. The process for the other combinations
is identical. In the methods section, the procedure is
explained in more detail. After extracting the HOG fea-
tures from the Nimstim set, the data was divided into 10
partitions of exactly the same balance between neutral
and happy or neutral and angry faces, see Stuit, Paffen,
and van der Stigchel (Under review). These partitions
are combined into 10 folds. Within each fold, 9 partitions
are make up the feature selection set and the remaining
partition is a test set. The folds differ in which partitions
fall in the feature selection set and which partition is the
validation set. Each feature selection set is divided into
70% training set and 30% validation set.

In the first step of the feature selection, the features
are sorted by chi-squared analysis of variance score, indi-
cating their suspected importance. In other words, the
features are ranked on the difference between the two
classes which are tested (neutral vs happy). These chi-
squared values are also used to determine the maximum
amount of features to be included in the model: 25% of
the sum of the total chi-squared values. Second, based
on this ranking, the best cluster of features is selected
for a first iteration of the wrapper model. The wrapper
model entails that combinations of features are tested on
their joint ability to decode classes in the dataset. The
selected cluster of features is trained on the train set and
tested on the validation set. Then, the features within
the cluster are reordered on the classification performance
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of this iteration (F1 macro score). Subsequently, the best
features are selected for inclusion in the intermediate
wrapper model. The features that were not included in
this selection are added back into the initial ranking with
the ordering based on their added value still intact. Next,
all these steps are repeated until the predetermined max-
imum amount of features is included and the wrapper
model of this fold is complete. The final step of feature
selection is that all features in the intermediate model are
re-evaluated on their usefulness in the model. The fea-
tures that are not contributing to the model are deleted
from it. Because 10 fold cross-validation is used in this
thesis, the feature selection is performed for each of the
10 folds. This results in 10 complete wrapper models.
Each model is then tested on the test set of their own fold
resulting in 10 performances. In the remainder of this
thesis the average of these 10 folds are taken to represent
the model of the given emotion, attribute, and dataset,
in this example the Nimstim HOG happy model.

4 Methods

The experiments in this thesis are all without participants
and partly use the same methods as in Stuit et al. (Under
review). The apparatus was identical to this article and
will therefore not be discussed.

4.1 Stimuli

The stimuli consist of photographs of faces with dif-
fering expressions: angry, happy and neutral. Three
datasets with such faces were used in this thesis. First,
the Nimstim (N) dataset containing 81 faces. Secondly,
the Karolinska (K) dataset containing 140 faces. Finally,
the Radboud (R) dataset containing 114 faces with frontal
gaze. From the Nimstim dataset, exuberant stimuli and
stimuli with an open mouth were excluded due to the in-
tenseness of these expressions. This decision was made to
keep the same level of expression intensity between differ-
ent expressions and different datasets (to avoid comparing
happy with very happy).

4.2 Measurement

The measures of the experiments are the performance of
the models on the different datasets. This is measured in
accuracy (percentage of faces classified correctly) per fold.
The error bars used are the standard error of the mean.
A two-sided one sample t-test was used for the cross-
validation matrices. All effects were considered significant
above α = 0, 05.

4.3 Procedure

The algorithm described in the machine learning chapter
of this thesis was used for each combination of dataset,
emotion label and attribute. This resulted in 12 models
that were numbered as displayed below. The models had
to perform a classification task, either classifying neutral
and happy faces or angry and neutral faces. Each of
these models was first trained and tested on its respective
dataset leading to the base performance of the models.
From these models the most important features were
extracted and visualised. Then, for each combination
of attribute and emotional label the models within this
group were tested on the two datasets they were not
trained on. This is the cross validation. For example,
for the combination Happy HOG, model 1 was tested on
dataset R and K, model 5 was tested on the N and K
datasets, and model 9 was tested on dataset N and R.
This resulted into four cross-validation matrices (figure
6). See the table below for the complete overview of the
models.

Dataset
Attribute & emotional label

Ha HOG Ha SF An HOG An SF
N 1 2 3 4
R 5 6 7 8
K 9 10 11 12

5 Results

Figure 1: Visualisation of the average performance of the
different data types, here the data types (x-axis) represent
a combination of attribute and expression. Note that all
averages are above the 0.5 mark. The error-bars are the
standard error of the mean (SEM).
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All 12 trained models achieved above chance (0.5) per-
formance on the test set when the test set was from the
same dataset the models were trained on.

When looking at the HOG models, the R HOG happy
model stands out because of its relatively small error bar
compared to the other models. Figure 2 shows that all
models perform above chance, corresponding with the av-
erage values for the HOG happy and HOG angry models
in figure 1. This is also the case for the SF angry and
SF happy models in figure 3. Lastly, these figures show
that all the models did not just perform above chance,
but most even achieved an accuracy above 0.8, which can
be seen in the averages per emotion in figure 1.

Note that all the HOG happy expression models re-
sulted in features around the mouth to be found impor-
tant, see figure 4. For the HOG angry expression models
the space between the eyes resulted in important features
for all datasets. However, in the Nimstim and Karolin-
ska datasets the eyes also held important features for
the HOG angry models. This was not the case in the
Radboud dataset. Interestingly, the HOG happy model
trained on the Radboud dataset selected no features in
the area of the teeth or the area of the lips and the teeth,
even though historically this has been an important fea-
ture for the recognition of happy faces. The Karolinska
dataset did have important features located on and sur-
rounding the teeth. The mean amount of features used
for each model are: N An = 16.7600, N Ha = 12.1200, K
An = 16.2000, K Ha = 12.0000, R An = 12.0400 and R
Ha = 11.2800.

Figure 2: Performance of the different models trained
on HOG features. On the x-axis the data type which is
a combination of dataset and expression and on the y-
axis the performance. Note that all models perform above
chance. The error-bars are the SEM.

In the SF happy models located at the right of fig-
ure 5, the features in these models seem to have a slight

horizontal orientation, most evident in the R SF happy
model. In the SF angry models shown on the left, the
features seem to have a diagonal orientation. In the N
SF angry model the features seem to have an orientation
diagonal to the left while in the R SF angry model the
features have an opposite orientation to this (diagonal to
the right). Within the features of the K SF angry model,
both orientations are present (diagonal left and diagonal
right ). The mean amount of features used for each model
are: N An = 4.3600, N Ha = 4.0000, K An = 3.0000, K
Ha = 3.0000, R An = 3.9600, R Ha = 3.0800.

Figure 3: The models trained on SF features, performance
is shown on the y-axis and data type (data set plus expres-
sion) is shown on the x-axis. The error-bars represent the
SEM and all models perform above chance.

To test if the models generalise well across datasets,
all models were tested on the two other datasets. Note
that generalisation of the models implies the presence
of defining features, while no generalisation implies the
presence of confounds. Figures 4 and 5 indicate that
in the HOG features patterns are present while the SF
features do not result in clear patterns. Similar effects
can be observed in the confusion matrices visualised in
figure 6. In the HOG angry models (top left), the model
trained on the K dataset performed significantly well on
the N and R datasets. It seems that a model for angry
faces based on HOG features can be made that generalises
well to other datasets. In the HOG happy models (top
right), the N HOG happy model performed significantly
well on both the R and K datasets. Here again, it seem
that HOG features can generalise well to other datasets,
in this case for happy faces. The SF models were less
successful for both happy and angry faces: no model
was present that could classify the other two datasets
significantly better than chance. This suggests that SF
models do not generalise well across different datasets.
Another noteworthy result from the cross-validation can
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Figure 4: Here the most important HOG features per model are shown mapped onto faces. On the right side the
angry expressions are shown and on the left side the happy. Note that the angry expression models seem to use more
features than the happy expression models.

be found in the R HOG angry model. This model had
significant results on both other datasets, but while the
model performed well on the K dataset, it performed sig-
nificantly worse than chance at classifying the N dataset.
This effect is seen even stronger for the R HOG happy
model which was significantly worse at classifying both
the N and the K datasets. Lastly, only one dataset from
the entire cross-validation was significantly well classified
by both models not trained on this dataset. This was
the R dataset for the HOG angry models. To summarise:
the main result found in figure 6 is that HOG features
seem to generalise well, hinting at the presence of defining
features, while SF features do not generalise well, hinting
to the presence of confounds.

6 Discussion

The research question of this thesis is: what different
features define happy and angry faces? To answer this
question, it is important to first investigate how difficult
classifying happy or angry faces is, based on HOG and SF
features within each dataset. For this purpose, 12 differ-
ent models were trained on the visual features to classify
these expressions. All of the 12 models performed sub-
stantially above chance, see figure 2 and figure 3. Thus,
the conclusion can be drawn from the averages in figure 1
that both HOG and SF features can be used to accurately
classify and therefore define angry and happy faces within
their own datasets.

Secondly, if the features within an attribute are part
of the mechanism defining an expression, similar best per-
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Figure 5: : These pictures are the SF feature maps. Here the most important SF features are visualised. On the
right side are the angry expression models and on the left side are the happy expression models. Note that there is no
clear pattern in either the angry models or the happy models.

forming features should be chosen for the different models.
Otherwise, these features are likely to be confounds. The
best performing features of the models were visualised
in feature maps for both HOG and SF, see figure 4 and
figure 5. Analysis of the HOG features showed that in
both the models for angry faces and the models for happy
faces, familiar patterns were found. For the HOG angry
models the features that decoded information between
the eyebrows, the upper nasal area, was found important
in all models. However, HOG information found on the
eyes seems only important for the models trained on the
N and K datasets, see figure 4. This implies that the
information found in these datasets might differ from the
R dataset, where the same HOG information on the eyes
was not found to be among the most important features.
Furthermore, from these patterns the prediction can be
made that specific HOG features (between the eyebrows)

can help define angry faces. Similar effects were found for
the HOG happy models; here also a specific pattern of
features was found. HOG information around the mouth
area was important in all three models. For the HOG
happy models, the conclusion can be drawn that spe-
cific HOG features (around the mouth) can help define a
happy face in these datasets. Different results were found
by analysing the SF feature maps: no clear patterns were
visible for both the SF angry models and the SF happy
models. Due to the lack of patterns in the SF models, it is
unlikely that the features found in the different SF models
hold information that could help define happy or angry
faces. Therefore the intuition in this paper is that the
SF features without spatial information are confounds. If
the SF features are confounds, then these features should
not generalise well across different datasets.

Finally, the question has to be answered if the fea-
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Figure 6: Confusion matrices of the cross-validation of the models. The y-axis are the labels for the dataset that
the model was trained on and the x-axis the label of the dataset the model was tested on. The results of the models
tested on the same dataset that they were trained on were excluded. The labels used here are: 1 = Nimstim (N), 2 =
Karolinska (K) and 3= Radboud (R).

tures in these models can be generalised and thus if the
features are confounds or part of the mechanism defining
the expressions. For this purpose the cross-validation2

was performed. From the results visualised in figure 6,
the conclusion can be drawn that HOG features can gen-
eralise well for happy and angry faces. Also, as described
above, patterns were found in the HOG feature maps
per emotion. From these results the conclusion can be
drawn that HOG features are useful as a mechanism for
defining happy and angry faces. On the other hand, the
SF features did not generalise well for either happy or
angry faces. Also, in the SF feature maps no patterns
were found. Therefore, these SF features without spatial
information are not defining features but instead they are
confounding variables.

The results mentioned above are the main results
found in the experiment. Nevertheless, some other impor-

tant results were found as well. First the feature maps in
figure 4 and figure 6 will be discussed. Interesting was
that in the HOG happy models, faces with an exposed
open mouth did not lead to many important features
being identified in and around the teeth, see figure 4.
The presence of teeth has been found important for the
recognition of happy faces due to its luminance content
and therefore we could expect that the edge information
on teeth and the place around the teeth would lead to
interesting HOG features. However, this was not found
by the models. Another surprising aspect found in the
feature maps is the horizontal orientation of the SF happy
models. This orientation is best seen in the features of
the R SF happy model in figure 5. SF features with a
horizontal orientation have been found useful for emotion
recognition specifically in happy faces (Huynh & Balas,
2014). However, this preference has been found relative

2More details on the analyses of the cross-validation can be found in appendix A.
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to other aspects of the face and thus can be dataset spe-
cific. The SF angry models also indicate an orientational
preference; these models have diagonal orientations. The
N SF angry model has a diagonal orientation to the left
while the R SF angry model has a diagonal orientation
to the right, opposite to the N SF angry model. For the
features found in the K SF angry model, both orientations
are present. These differences could be explained by the
luminance information of the stimuli. For the different
datasets the light source used by the photographer could
be differently oriented. This can influence the luminance
information in the stimuli. SF is highly sensitive to this
kind of information and the presence of more light in
the picture might influence this and could explain the
differences.

The cross-validation also resulted in some additional
interesting results, see figure 6. Firstly: the significantly
worse than chance performance of some of the HOG fea-
ture models. Both the R HOG happy model and the R
HOG angry model were significantly worse than chance
on at least one other dataset. The R HOG happy model
performed significantly badly at both the K and the
N dataset, while R HOG angry performed significantly
badly on the N dataset, but did generalise well to the
K dataset. Thus, while this is not true for the other
datasets, all HOG models trained on the R dataset were
significant. This implies that models trained on the R
dataset have a higher chance of finding features important
for classification, however these models also have a higher
chance that these features are disadvantages. This seems
to indicate that something interesting is decoded within
the R dataset. When looking at the HOG feature maps
(figure 4 ) it is evident that the models trained on the R
dataset use a smaller amount of features compared to
the other HOG models with the R HOG happy model
consisting of the lowest amount of features. A smaller
number of features means that individual features are
likely to have a stronger influence on the classification.
Possibly this low amount of features is responsible for the
significant but often bad performance of the R HOG mod-
els. Secondly, only one dataset seemed to be significantly
well performed on by both models trained on the other
datasets. The dataset in question was the R dataset for
the HOG angry models. Both the N HOG angry and
K HOG angry models had similar features selected as
the model trained on the R dataset. These results are
not surprising since all the important features for the
model trained on this dataset, R HOG angry, are also
found important for the other HOG angry models. This
could be caused by the R HOG angry model only using a
small amount of features. These features were al located
between the eyebrows implying that the most useful HOG
information is only located between the eyebrows for the
R dataset. This provides further evidence for the hypoth-
esis that the low amount of features selected by the HOG

models might be related to the interesting effects found
in the Radboud dataset.

7 Conclusion

In this thesis, the aim was to find defining visual features
for happy and angry faces. For this purpose, first a lit-
erature study was done to target specific visual features
that could be of use. The conclusion was that contrast
information, especially HOG and SF, could be useful
attributes for the search of specific features. With this in-
formation the research question was divided into 4 smaller
questions:

1. What HOG features are defining for happy faces?
2. What HOG features are defining for angry faces?
3. What SF features are defining for happy faces?
4. What SF features are defining for angry faces?
In order to answer these questions a machine learning

algorithm was used to train models on these features with
the task of classifying either angry (angry vs neutral) or
happy (happy vs neutral) faces. The experiment that
followed contained 12 models trained on either HOG or
SF features tested across different datasets. The results
from this experiment show that HOG features can be
defining features for happy and angry faces across our
datasets. These features can be used to optimise the
classification process for these emotions and better under-
stand the essence of happy and angry faces. However, SF
features without spatial content did not generalise well
for happy and angry faces. This information appeared to
be very dataset specific and therefore is a confounding
variable for defining happy or angry faces. Now the re-
search questions can be answered. A HOG features model
was found that can define happy faces across different
datasets, namely the Nimstim HOG happy model. A
generalizable HOG feature model for angry faces was also
found, namely the Karolinska HOG angry model. No SF
feature models were found that can define happy or angry
faces in different datasets.

The goal of artificial intelligence is to achieve human-
level intelligence or even surpass it. Intelligent tasks often
are difficult for computers but come naturally to humans.
For example, verbal communication has been a corner-
stone in the field of AI for decades because it is a typical
example of an intelligent task. Using and recognising fa-
cial expressions are intelligent tasks as well because they
have a similar function as a communication system and
in social interaction. The importance of this research for
the field of AI is that it can help in understanding human
expression recognition. Finding the defining features and
confounds supports this research. For example, the con-
founding variables that cause difficulties in the debate on
the superiority effect can be studied to see which effects
are caused by confounds and which are caused by the ex-

9



pressions themselves. Generally speaking, the goal of this
thesis is to apply machine learning, an AI technique, to
aid research that attempts to gain a better understanding
of how a specific part of human intelligence works.

Future research could look into the comparison of
eye-tracking data and the models used in this study. If
similarities are found between eye-tracking data and the
defining features from this thesis, the theory that these
features define an expression will have additional support.
One study already showing interesting data is Schurgin
et al. (2014) which found the importance of the upper
nasal area for the anger expression. This area was found
to be part of the defining features for angry faces in this
thesis. Furthermore, it would be interesting to look at
more attributes that may be important for defining angry
and happy faces and to investigate if these features are
confounds or defining features. Finally, additional expres-
sions such as fear or disgust could be studied to investigate
if HOG can also successfully define those expressions.
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Appendix A Additonal statistics

A.1 Significance

HOG AN HOG HA

0,1127 0,0022 0,0024 0,0000
0,0120 0,0000 0,0345 0,4580
0,0268 0,0000 0,0027 0,0000

SF AN SF HA

0,0410 0,2238 0,3316 0,8682
0,1378 0,0132 0,7204 0,0309
0,0629 0,2472 0,4026 0,2393

Table 1: p-values

HOG AN HOG HA

2,1499 3,4693 4,4624 9,5667
2,906 15,5938 2,1468 -2,8244
-2,0194 13,7858 -4,9249 -19,6362

SF AN SF HA

0,3046 -0,6774 0,3504 -1,5266
1,5905 4,1467 -0,3572 1,8541
-2,6374 0,1881 -0,5699 1,1901

Table 2: t-values

A.2 Interpretation

In this appendix the results that lead to the interpretation
of figure 6 are explained in more detail. This paragraph
contains in text the information found in appendix A.1.
For the HOG Angry models cross-validation, see figure
6 upper left corner, this resulted in 4 values which were
significant above chance (the model trained on N tested
on R [x=3, y=1], p = 0.0022, t = 3.4693, the model
trained on K tested on N [x=1, y=2], p = 0.0120, t =
2.9060, the model trained on K tested on R [x=3, y=2], p
< 0.0001, t = 15.5938, and the model trained on R tested
on K [x=2, y=3], p < 0.0001, t = 13.7858), one value
that was significant below chance (the model trained on
R tested on N [x=1, y=3], p = 0.0268, t = -2.0194) and
one value which was not significant (the model trained on
N tested on K [x=2, y=1]). Secondly, the HOG Happy
models cross-validation, see figure 6 upper right corner,
resulted in 3 values which were significant above chance

(the model trained on N tested on K [x=2, y=1], p =
0.024, t = 4.4624, the model trained on R tested on N
[x=3, y=1], p < 0.0001, t = 9.5667, and the model trained
on K tested on N [x=1, y=2], p = 0.0345, t = 2.1468),
two values that were significant below chance (the model
trained on R tested on N [x=1, y=3], p = 0.0027, t =
-4.9249 and the model trained on R tested on K [x=2,
y=3], p < 0.0001, t = -19.6362) and one value which was
not significant (the model trained on K tested on R [x=3,
y=2]). Thirdly, the SF Angry models cross-validation,
figure 6 lower left corner, resulted in 2 significant values
above chance (the model trained on N tested on K [x=2,
y=1], p = 0.0410, t = 0.3046 and the model trained on
K tested on R [x=3, y=2], p = 0.0132, t = 4.1467). The
other values were not significant. Lastly, the SF Happy
models cross-validation, see figure 6 right below, had only
one significant value. This value was significant above
chance ([x=3, y=2], p = 0.0309, t = 1.8541).
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