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Abstract 

Using preliminary versions of Advanced Scenario Management – Phase 2 (ASM-2) hourly 

supply and demand profiles on neighborhood scale for three 2030 energy transition scenarios, 

this study answers the research question “to what extent can energy storage systems (ESSs) 

serve as a cost-optimal mitigation option to address congestion and increase self-consumption 

in 2030?”. As ASM-2 profiles are on neighborhood scale, ESSs are evaluated on neighborhood 

scale as well, and only congestion in distribution transformers is taken into account. In addition 

to ESSs, PV-curtailment and grid reinforcement are assessed as additional mitigation options. 

To determine implementation and control strategies for the three mitigation options taken into 

account, an optimization study was performed using Mixed Linear Integer Programming in 

Gurobi (Python), for three different perspectives of ownership and managing ESSs: a collective 

of prosumers, distribution system operators and a combination of these. Results show that for 

the prosumer perspective it is likely that ESSs will serve as a cost-optimal mitigation option to 

increase self-consumption by 2030. For the DSO perspective, it is highly unlikely that ESSs 

will serve as a cost-optimal mitigation option to address congestion. However in the combined 

perspective, the potential for self-consumption increase provides reasonable possibilities to 

mitigate congestion ‘along the way’. The actual applicability of ESSs is however heavily 

dependent on ESS price developments and the further advancement of rooftop-PV. While this 

is taken into account in this study, it is recommended that further research adopts a monitoring 

approach with regard to these parameters. As DSOs are currently not explicitly allowed to own 

and operate ESSs, and prosumers are not allowed to own ESSs collectively on neighborhood 

scale, changes in laws and regulations would be needed to facilitate this. Lastly, because of 

(run)time constraints, the geographical scope for this study was restricted to neighborhoods in 

the Province of Utrecht. However, using the optimization script written for this study, a full scale 

version will be published as part of the ASM-2 results. 
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Preface 

This study is carried out as part of the project Advanced Scenario Management – Phase 2, 

which is set up by Utrecht University, Geodan and TNO and supported by Rijksdienst voor 

Ondernemend Nederland. The ASM-2 project aims to provide insight in changes that will occur 

in the Dutch electricity grid because of the electrification of heating and transport towards 2030 

and 2050. The optimization script produced during this study will in turn help to provide insight 

in the need and potential for flexibility in the Dutch electricity grid. The official ASM-2 results 

will be portrayed geographically and made publicly available towards the end of 2020.   
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1. Introduction 

Over the last few decades there has been an increase in the generation of renewable 

energy to address issues like climate change (Edenhofer et al., 2011), poor air quality 

(Buonocore et al., 2016) and the electrification of remote areas (Kuang et al., 2016). Due to 

the nature of most renewable energy sources, like wind turbines and photovoltaics (PV), this 

has in turn resulted in electricity generation that is more decentralized and intermittent (Yaqoot, 

Diwan & Kandpal, 2016). In the Netherlands, the percentage of renewables in the electricity 

mix was 13.8% in 2017 (Eurostat, 2018), remaining low enough to not cause any major 

concerns yet. However, both national and international targets for renewable energy 

generation anticipate a further increase towards 2030 (van der Ree, Honig, Uijt de Haag, 

Kelfkens & Ven, 2019) and 2050 (Afman & Rooijers, 2017). If not addressed timely, this will 

have several consequences for both generation and use of electricity, especially with regard 

to increasing deployment of rooftop-PV in low-voltage networks. Some of the major issues that 

come with decentralized and intermittent generation are peaks exceeding grid capacity 

(congestion), low self-consumption due to a (short-term) mismatch between supply and 

demand, and voltage and frequency instability (reduced power quality) (Lott & Kim, 2014; Teller 

et al., 2017). In addition, with the rise of electric vehicles (EVs) and heat pumps (HPs), an 

increase in electricity demand for transport and space heating can be expected. Both mostly 

draw electricity from low-voltage networks in the evening, especially in residential areas. Often 

coinciding with a drop in generation through rooftop-PV, this further intensifies congestion and 

low self-consumption (Lott & Kim, 2014; Teller et al., 2017). 

Multiple (costly) mitigation options can be thought of, some with more limitations than 

others. For example, conventionally increasing grid capacity to deal with congestion might 

bring unnecessary costs if large peaks do not occur frequently. Otherwise, curtailment of 

renewable electricity (i.e. purposely discarding electricity if grid capacity is exceeded by a 

(short-term) surplus) can be a relatively low-cost and therefore attractive solution (ECN, 2017), 

but also seems objectionable as it perpetuates the need for fossil fuels in the electricity mix. 

While these and other mitigation options can be useful (supplementary) options (Luthander, 

Widén, Munkhammar, & Lingfors, 2016; Sevilla et al., 2018;  Maier, Nemec-Begluk & Gawlik, 

2019), a solution that can both mitigate congestion and support the advance of renewable 

electricity can be found in energy storage systems (ESSs) (Lott & Kim, 2014; Teller et al., 

2017). ESSs can be used to increase flexibility and stability across many compartments of the 

energy system, including generation, transmission, distribution and end-user services. Specific 

functions of ESSs that are beneficial for low-voltage networks are (inter and intraday) demand 

shifting and peak reduction to mitigate congestion and increase self-consumption, and 

frequency and voltage regulation to maintain power quality (Lott & Kim, 2014; Teller et al., 
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2017). As ESSs often come with high investment costs, it is important to determine their 

optimal configuration in terms of technology, location, size, control strategy, and relation to 

other mitigation options (Sufyan, Rahim, Aman, Tan & Raihan, 2019). While there is already a 

substantial amount of research on how to optimize ESSs in this respect (Yang, Bremner, 

Menictas & Kay, 2018; Sufyan et al., 2019), actual optimization studies are rare, especially on 

a larger geographical scale. For the Netherlands specifically, an optimization study regarding 

congestion mitigation has been performed by Distribution System Operators (DSOs), but 

insights for specific regions are not publicly available because of confidentiality and privacy 

reasons. While general results showed little prospects for purely mitigating congestion through 

ESSs, the potential for increasing self-consumption and a combination of ESS functions was 

not thoroughly assessed (ECN, 2017). 

Since 2017 a research group consisting of Utrecht University, independent research 

organizations and commercial parties has been trying to obtain a better understanding of the 

effects that increased renewable generation, in combination with more EVs and HPs, will have 

on the Dutch electricity grid. The project, called ‘Advanced Scenario Management – Phase 2’ 

(ASM-2), aims to do so by generating annual electricity demand profiles (hourly resolution) for 

every neighborhood in the Netherlands for the present day, and 2030 and 2050 energy 

transition scenarios. More so, renewable electricity supply profiles are generated for the same 

years and scenarios. By combining the two, a residual demand profile arises that can give 

insight in hourly congestion and supply-demand matching issues on neighborhood level (RVO, 

2016). The next step in the project is to examine options to mitigate these issues, as soon as 

the hourly profiles are finished. 

Based on preliminary versions of ASM-2 supply and demand profiles, this research 

provides a first insight in the potential of ESSs to mitigate congestion and increase self-

consumption in future Dutch low-voltage networks on neighborhood level. Assuming perfect 

forecast, cost-optimal combinations of ESSs, PV-curtailment and grid reinforcement are 

obtained through Mixed Integer Linear Programming (MILP) in Gurobi (Python). This process 

is performed for three (economic) perspectives for owning and managing ESSs: neighborhood 

collective of prosumers (i.e. end-consumers with PV-systems), DSOs, and a combination of 

the two. To lay the groundwork for this optimization process, important technical and financial 

parameters for mitigation options (in particular for ESSs) are mapped through literature study 

and the evaluation of (inter)national policy documents. Considering that ASM-2 profiles are on 

neighborhood scale, it is assumed that one low-voltage network is present per neighborhood. 

Moreover, while congestion can in reality occur in various components within low-voltage grids, 

congestion is only assessed on distribution transformer level. Consequently, at maximum one 

ESS per neighborhood is implemented. Because the ASM-2 profiles are still preliminary, only 

supply and demand profiles for 2030 are assessed and demand for EVs is not taken into 
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account. Finally, because of (run)time constraints the geographical scope is restricted to the 

Province of Utrecht. However, using the optimization script that was constructed during this 

study, a renewed and full country-scale version of the results in this study will be portrayed 

geographically as part of the final ASM-2 results. 

Considering the ASM-2 supply and demand profiles for its 2030 energy transition 

scenarios and different perspectives for owning and managing ESSs, the following research 

question was formed:  

“To what extent can ESSs serve as a cost-optimal mitigation option to address 

congestion and increase self-consumption in 2030?” 

In addition to ESSs, PV-curtailment and grid reinforcement are taken into account as other 

mitigation options. Optimization concerning the deployment and control strategies of these 

options is carried out conform the principle of perfect forecast. 

 In section 2 of this report, theoretical background is discussed with regard to the ASM-

2 project, Dutch low-voltage networks, PV-curtailment and ESSs. In section 3, assumptions 

and methods of analysis are discussed with regard to the ESS technology used, perspectives 

of ownership examined, and the optimization model created for this study. In section 4, the 

results of this study are reported for different ASM-2 scenarios and perspectives of ownership. 

In section 5, conclusions are drawn from these results. Finally in section 6, limitations of this 

report and recommendations for future research are discussed.  
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2. Theoretical background 

This section intends to further elaborate on the scope of this study and introduce some 

key concepts and definitions. In particular, this section includes relevant background 

information on the ASM-2 project and the hourly supply and demand profiles used. Moreover, 

the geographical scope for assessing Dutch low-voltage networks is further discussed, and the 

definitions for congestion and self-consumption are specified in this light. In addition, the 

concept of PV-curtailment is explained. Furthermore, incentives for owning and managing 

ESSs are introduced, as well as relevant policy. Finally, ESS placement and important 

technical and financial parameters are discussed. 

2.1. ASM-2 

This study is carried out as part of the ASM-2 project, supported by Rijksdienst voor 

Ondernemend Nederland (RVO, 2016). Since its start in 2017 multiple organizations have 

contributed, the most prominent and still remaining contributors are Utrecht University, TNO, 

and Geodan. The main goal of the project is to analyze the effects that an increase in 

renewable electricity generation, EVs and HPs have on the Dutch electricity grid, specifically 

examining congestion and supply-demand matching issues, provide a first insight in possible 

mitigation measures, and make this information accessible in a geographical interface. 

2.1.1. Supply and demand profiles 

To assess the effects of an increase in intermittent renewables, HPs and EVs on low-

voltage networks, part of the ASM-2 project involves generating supply and demand profiles 

for Dutch neighborhoods. These profiles are produced with a resolution of one hour for every 

hour of the year. The following four profiles are produced, for both residences and utilities: 

- Supply: rooftop-PV electricity (2017 data and predictions) 

- Demand: conventional electricity (2017 data) 

- Demand: heating and cooling electricity via HPs (predictions) 

- Demand: transport electricity via charging of EVs (predictions) 

At the time of writing this thesis, demand profiles for EVs could not be finished and were not 

used. Moreover, only profiles for neighborhoods in the Province of Utrecht were assessed, 

because of (run)time constraints. A diagrammatic representation of the low-voltage supply and 

demand profiles used in this study can be seen in figure 1. A brief description of the basic 

methodology used for constructing these (preliminary) profiles will follow. Note that this 

comprises preliminary versions and unpublished work from within the ASM-2 project. 
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Figure 1: ASM-2 supply and demand profiles used in this study 

 

Note. Profiles are created separately for residences and utilities, but summed before being 

examined as one low-voltage network. 

Supply profile: rooftop-PV 

By combining building footprints from the Dutch Land Registry (PDOK, 2018) and a 

high-density LiDAR height point cloud (PDOK, 2015), roof surface polygons characterized by 

a certain slope and aspect are identified for all buildings in the Netherlands. Hour-by-hour 

measurements of global horizontal irradiation (KNMI, 2018) are converted to solar resource 

profiles for each of these roof surfaces by subsequently applying the Erbs diffuse fraction 

(Erbs, Klein & Duffie, 1982) and Perez transposition (Perez, Ineichen, Seals, Michalsky & 

Stewawrt, 1990) models. Afterwards, solar elevation angle dependent performance ratios 

(Moraitis, Kausika, Nortier & van Sark, 2018) and an assumed panel efficiency of 20% are 

applied to obtain PV-potential profiles. 

For the present situation, the installed roof PV-capacity per neighborhood is deducted 

from three datasets on currently registered PV-systems (CBS, 2019a; CBS, 2019b; RVO, 

2019). For the future situation, a scenario specific national roof PV-capacity is distributed over 

neighborhoods proportional to the total yearly PV-potential on their roof surfaces. For both the 

present situation and future scenarios, the neighborhood capacity is sub-distributed over 

slope-aspect-positions by applying the same distribution ratios found in a large dataset of 

registered Dutch PV-systems. 

Finally, the capacities per slope-aspect-position are multiplied by corresponding 

normalized versions of the earlier produced PV-potential profiles to obtain hour-by-hour 

rooftop-PV supply profiles for each neighborhood.  

Demand profile: conventional (residential) 

Measured residential electricity demand profiles (Liander, 2019) are normalized and 

binned into one of three household types (one person, multiple persons without children, or 

nuclear family). To ensure that the dataset reflects conventional demand, profiles indicating 

the presence of either a heat pump or PV-system are filtered out. 
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For each neighborhood, the number of households per type, as well as their current 

average yearly electricity demand is publicly available (CBS, 2019c). For each household, the 

corresponding average demand is multiplied with a normalized demand profile randomly 

selected from the relevant household type bin. By summing the produced household profiles, 

a single residential conventional demand profile is obtained for each neighborhood. For now, 

future scenario profiles are assumed to be identical to the present situation profiles.  

Demand profile: conventional (utility) 

Measured yearly electricity demands on municipality level for 20 Chamber of 

Commerce segments (CBS, 2019d) are distributed among neighborhoods proportional to their 

relevant building floor spaces as found in the Dutch Land Registry (PDOK, 2018). Segments 

for which the majority of the buildings will most likely be connected to a mid or high instead of 

a low voltage grid, are disregarded. 

The remaining segment values are then multiplied by corresponding measured and 

normalized electricity demand profiles (Liander, 2019). Finally, the resulting segment demand 

profiles are summed to produce a single utility conventional demand profile for each 

neighborhood. Similar to residential conventional demand, future scenario profiles are 

assumed to be identical to the present situation profiles. 

Demand profile: HPs (residential) 

Using maps on building types (PDOK, 2018), scenario specific modeled energy labels 

(van ‘t Rein, 2018), neighborhood demography (CBS, 2019c) and real estates (PDOK, 2018), 

each neighborhood is assigned a residential floor space per home type. Here, each home type 

is a combination of a building type (detached, semidetached, terraced corner, terraced 

between, or apartment), an isolation level (low, medium, or high) and a household type (one 

senior, one adult, two seniors, two adults, multiple adults, one adult with children, or nuclear 

family). These floor spaces are multiplied by corresponding normalized residential space 

heating profiles (Ecofys, 2015), then summed, to obtain a single residential space heating 

demand profile per neighborhood.  

Scenario specific national numbers of air-source, ground-source and hybrid HPs are 

distributed over neighborhoods in a way that national heat transition costs (PBL, 2019a) are 

kept to a minimum. Here, neighborhoods are either entirely equipped with one of the three 

types of HPs, or not at all. For the ones that are equipped with HPs, the earlier produced space 

heating demand profiles are multiplied with an assumed average HP intensity (air-source: 0.33, 

ground-source: 0.22, hybrid: 0.13 J/J) to produce neighborhood HP electricity demand 

profiles.  
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Demand profile: HPs (utility) 

Small consumer yearly gas demands per postal code (Liander, 2018) are aggregated 

to neighborhood level and reduced by residential gas demands (CBS, 2019c) to acquire a 

yearly gas demand for small utility buildings per neighborhood. These are multiplied with 

normalized average gas use profiles (NEDU, 2018) to produce neighborhood gas use profiles, 

which are in turn converted to heat demand profiles assuming an average gas boiler efficiency 

of 90% and a gas energy density of 9.77 kWh/m3.  

It is assumed that utility buildings within a neighborhood make use of the same scenario 

specific heating technology as was assigned to its residential buildings in the previous section. 

Again, for neighborhoods equipped with HPs, utility HP electricity demand profiles are 

generated  by multiplying their heating demand profiles by the same HP intensities as 

mentioned above.  

2.1.2. Energy transition scenarios 

The ASM-2 supply and demand profiles are generated for three different moments in 

time: present day, 2030 and 2050. The present day serves as a single reference point. For 

2030 and 2050 multiple energy transition scenarios are explored, based on national policy 

documents and predictions by independent research organizations (PBL, 2019b; 

Rijksoverheid, 2019). There are three scenarios, called ‘Local’, ‘Regional’ and ‘National’. For 

2030, these scenarios differentiate in the amount and the geographical scale on which 

renewable electricity is generated. For 2050, the scenarios also differentiate on the distribution 

of different heating strategies throughout neighborhoods. At the time of writing this thesis, 

supply and demand profiles for 2050 could however not be finished and were not used. Actual 

values used for 2030 scenarios are depicted in table 1. 

Table 1: Values used for 2030 energy transition scenarios 

Scenario Local Regional National 

Total residential rooftop-PV peak power (GWp) 13.7 10.5 8.1 

Total utility rooftop-PV peak power (GWp) 15.4 11.2 7.3 

Share of households with air-source HPs 5.8% 

Share of households with ground-source HPs 2.8% 

Share of households with hybrid HPs 5.0% 

 

2.2. Dutch low-voltage networks 

To gain basic understanding of Dutch low-voltage networks and further define the 

assessment of ‘congestion’ and ‘self-consumption’, some preliminary research was performed 

on the characteristics of low-voltage networks, mainly through literature study. 
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2.2.1. Geographical scale 

The geographical scale of low-voltage networks is dependent on the amount and 

geographical density of connections attached to a single distribution transformer (where mid-

voltage networks are connected to low-voltage networks). As a rule of thumb, the scale of low-

voltage networks is in the range of 40-50 connections in rural areas to 200-250 in residential 

areas (Alliander, 2015; Phase to Phase, 2019). Moreover, publicly available location data on 

network components (Liander, 2020) show that neighborhoods often contain more than one 

distribution transformer, and that low-voltage networks do not necessarily stick to 

neighborhood borders. While it is acknowledged that the scale of low-voltage networks often 

does not correspond with neighborhood borders, this study assumes that every neighborhood 

consists of a single low-voltage network (with one allocated distribution transformer) as ASM-

2 supply and demand profiles are produced on neighborhood scale and due to data availability. 

A diagrammatic representation of distribution transformers in low-voltage networks as 

assessed in this study can be seen in figure 2. 

Figure 2: The basic low-voltage network as assessed in this study 

  

Note. The outer dashed-line symbolizes the low-voltage network, whereas the inner dashed-

line symbolizes the summed value of supply and demand profiles. 
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2.2.2. Congestion 

Congestion in low-voltage networks occurs when the capacity (rated power) of one or 

more network components is exceeded and thermal limits are reached, either by peaks in 

demand or surpluses from intermittent renewables. This can result in severe voltage problems, 

and reduced lifetime and in the worst case collapse of network components (ECN, 2017; 

Godina, Rodrigues, Matias & Catalão, 2015). Typically, Dutch low-voltage networks contain 

three main components where congestion might take place: distribution transformers (where 

voltage is lowered from mid-voltage (10-25 kV) to 400 V), low-voltage distribution boxes (to 

distribute and optionally further lower voltage from 400 to 230 V), and low-voltage cables (for 

transport) (ECN, 2017; Phase to Phase, 2020) 

As ASM-2 supply and demand profiles are generated on neighborhood scale, this study 

focuses on congestion at distribution transformer level. Thermal limits for distribution 

transformers are reached (and congestion occurs) when rated power is exceeded for 

prolonged periods of time. For short periods of time however it is possible for a transformer to 

operate above its rated power (up to 110%) while thermal limits are not reached (ECN, 2017). 

Distribution transformers can be subject to upward congestion (PV-surpluses and/or electricity 

discharged from ESSs to the mid-voltage network) and downward congestion ((residual) 

electricity demand for direct consumption and/or charging of ESSs). 

2.2.3. Self-consumption 

Short term (inter and intraday) supply-demand matching issues are likely to occur more 

frequently in future low-voltage networks, mainly due to increasing deployment of rooftop-PV. 

A parameter that can quantitatively define supply-demand matching in this regard is ‘self-

consumption’. It is used to express the extent to which energy produced within certain system 

boundaries is used within those same system boundaries. In this study the parameter self-

consumption is defined as ‘the percentage of electricity produced through rooftop-PV within a 

low-voltage network, used within that same low-voltage network’. 

2.3. PV-curtailment 

PV-curtailment as a means of dealing with congestion involves purposely discarding 

electricity if grid capacity is exceeded by a (short-term) PV-surplus. This process often takes 

place at the inverter of PV-systems. On first sight this seems objectionable as it perpetuates 

the need for fossil fuels. However, in recent years it has received more recognition as in some 

cases grid capacity has in fact limited the deployment of new PV-systems (Tennet, 2019). 

Because the highest capacity exceeding peaks are often scarce throughout the year, 

curtailment electricity losses (and costs) for these peaks are relatively low in comparison to 

grid reinforcement. Following this same principle, PV-curtailment has shown to work 

complementary to ESSs: by decreasing the ESS capacity required for congestion mitigation, 
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its capacity is used more efficient (Zerrahn, Schill & Kemfert, 2018). Curtailment of renewable 

electricity in the Netherlands is currently limited to DSO pilot projects or producer initiatives, 

but in other European countries it is actively implemented (Furusawa, Brunekreeft & Hattori, 

2019; Kies, Schyscka & von Bremen, 2016). 

2.4. Incentives for owning and managing ESSs 

Consistent with the scope of the ASM-2 project, ESS functions that this study examines 

are demand-shifting and peak-shaving with the aim to mitigate congestion and/or increase self-

consumption. Preliminary research showed that the advancement of rooftop-PV in low-voltage 

networks also causes phase imbalance and power quality issues (Brinkel et al., 2020). While 

ESSs can actually be helpful in preserving power quality (Teller et al., 2017), this is outside of 

the scope of this study. Considering the ESS functions taken into account, three incentives for 

owning and managing ESS are commonly reported:  

- Reducing costs for electricity by prosumers 

- Reducing costs for congestion mitigation by DSOs 

- Combination of incentives: multifunctional storage 

For each of these incentives, basic principles and relevant policy are described below. 

2.4.1. Reducing costs for electricity by prosumers 

Dutch electricity prices for end consumers for the biggest part consist out of taxes. 

These taxes are planned to be increased significantly towards 2030. Moreover, net metering 

(Dutch: salderingsregeling) is planned to be completely phased out from 2023 to 2031, 

disallowing owners of PV-systems to subtract a surplus in generated electricity from their 

demand from the grid. Instead, PV-owners can sell a surplus of electricity against feed-in tariffs, 

which are lower than the electricity price (Energiekaart, 2016). These developments can serve 

as a stimulus for collective ownership of ESSs by prosumers. However, current laws and 

regulations only specifically allow end-users in the Netherlands to store electricity ‘behind-the-

meter’, i.e. within the boundaries of a single residence (RVO, 2014). 

2.4.2. Reducing costs for congestion mitigation by DSOs 

The conventional method for DSOs to mitigate congestion in distribution transformers 

is to increase their capacity, which can come with high costs. ESSs can also mitigate 

congestion through demand-shifting and peak-shaving. Current Dutch laws and regulations 

however prohibit DSOs from commercially participating on the energy market, with the 

exception of compensating for any electricity losses on their part (Netbeheerder Nederland, 

2018). As storing electricity likely involves buying and selling electricity to some extent, this is 

also not allowed. However, real time balancing of the electricity grid is a function already 
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allocated to DSOs, meaning short time storage is already happening in practice. There is a 

good possibility that regulations will be altered in the future, as ultimately cost-optimal 

congestion mitigation also leads to cheaper electricity prices for end-consumers (RVO, 2014). 

2.4.3. Combination of incentives: multifunctional storage 

As ESSs can fulfill several functions, it is likely that ESSs will actually be multifunctional 

in some low-voltage networks (e.g. mitigating congestion, increasing self-consumption, and 

preserving power quality). In this regard it is expected that an independent (commercial) third 

party, also referred to as an aggregator, will own and manage ESSs to make as much profit 

as possible by buying and selling electricity at different prices (Energiekaart, 2017). However, 

Dutch policy is focused on maintaining an equal electricity price for every private end-user, and 

the purely commercial aggregator business case is likely to interfere with that aim. Moreover, 

electricity market prices are not necessarily driven by congestion, and a commercial 

perspective based on real-time pricing or price forecasting is proven to have a negative effect 

on power quality, making it a less favorable option in that sense (Faessler, Schuler, Preißinger 

& Kepplinger, 2017). 

2.5. ESS placement 

This study examines supply and demand profiles on neighborhood scale. Consequently 

it also focuses solely on ESSs on neighborhood scale. Because of the focus on congestion in 

distribution transformers, the scope of this study is restricted to the placement of at maximum 

one ESS per neighborhood, directly ‘after’ its distribution transformer (on the low-voltage side). 

ESSs on this scale are commonly referred to as ‘community storage’ or ‘storage on utility 

scale’. A diagrammatic representation of ESS placement within low-voltage networks as 

assessed in this study can be seen in figure 3.   
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Figure 3: ESS placement within low-voltage networks as assessed in this study 

 

Note. The outer dashed-line symbolizes the low-voltage network, whereas the inner dashed-

line symbolizes the summed value of supply and demand profiles. 

2.6. ESS technical and financial parameters 

The assessment of ESSs in this study is subject to several technical and financial 

parameters that require some elaboration. This section discusses some of these parameters. 

Inverter efficiency 

Before electricity can be stored in ESSs placed in low-voltage networks, it is converted 

from alternating current (AC) to direct current (DC) via an inverter. The reverse process occurs 

before electricity is returned to the grid. Inverter efficiencies are often defined as ‘one-way’ 

efficiencies, and should be accounted for twice in the storage process (Hesse et al., 2017). 

‘Round-trip’ efficiency 

 Next to inverter efficiency, ESSs can be subject to technology specific efficiencies, 

often dependent on battery chemistry. It describes the ability of a technology to convert DC 

electricity to chemical energy and vice versa, and is often defined as ‘round-trip’ efficiency (not 

to be mistaken for ‘system round-trip efficiency’, which includes inverter efficiency). As it 
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describes the combined efficiency of charging and discharging, its square root should be 

applied when assessing one of these processes (IRENA, 2017; Mongird et al., 2019).  

Self-discharge 

 Self-discharge refers to the process of discharge taking place without purposely 

discharging the ESS. However as no electricity is discharged to the grid in this process, it 

actually results in electricity loss (Hesse et al., 2017). 

Depth of discharge and state of charge 

 Depth of discharge indicates the percentage of ESS capacity that is uncharged. Often 

it is used to describe a maximum ‘allowable’ depth of discharge, as some technologies 

deteriorate substantially faster beyond this level. The inverse of DOD is the state of charge 

(SOC), which refers to the percentage of ESS capacity (or absolute value) that is charged 

(IRENA, 2017). 

Degradation and end-of-life 

Specifically for battery technologies, degradation usually takes place in the form of 

capacity-fade, which means that no longer the full originally installed capacity can be used. 

The end-of-life (EOL) criterion for batteries is traditionally set at 20% capacity-fade (or 80% of 

original capacity remaining), however various studies show potential for longer life (after 20% 

capacity fade) of certain battery technologies, and use of second-hand batteries (Casals, 

García & Canal, 2019; JRC, 2018). 

Shelf and cycle-life 

 Specifically for battery technologies, lifetime is dependent on two factors, namely shelf-

life and cycle-life (Schmidt, Melchior, Hawkes & Staffell, 2019; Schram, Lampropoulus & van 

Sark, 2018). Shelf-life describes the time ESSs can be used before EOL is reached, 

independent of use intensity. It is often specified in years. Cycle-life on the other hand 

describes the amount of cycles ESSs can endure before EOL is reached. It is often specified 

in amount of full range cycles (i.e. from maximum DOD to 100% SOC and back). However, 

cycle-life is often higher for non-full range cycles than for full range cycles (Masaud & El-

Saadany, 2019). 

3. Methodology 

This section discusses the methodology leading up to multiple results, as well as 

important assumptions and the model used for optimization. First, assumptions with regard to 

the ESS technology adopted in this study are discussed, along with values (and respective 

sources) assumed for important parameters. Second, methods for initial assessment of 2017 

and 2030 supply and demand profiles are discussed. Third, the process of determining cost-
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optimal combinations of mitigation options is discussed for three different perspectives of 

ownership, namely collective ownership by prosumers, DSOs, and a combination of these. 

Fourth, actual mathematical equations that form the optimization model are discussed at once 

for all perspectives. Finally, analysis of model outputs is discussed. 

3.1. ESS technology 

Specifically with a focus on demand-shifting and peak-shaving, rated power for utility scale 

storage is usually within the range of 100 kW to 50 MW (IRENA, 2017). Various ESS 

technologies operate within this range, the majority being battery technologies. Predictions on 

future applicability of technologies are largely based on learning rates and expected global 

capacity growth, resulting in divergence between sources and general uncertainty regarding 

technical and financial parameters. However, four battery technologies in particular are often 

mentioned as promising for post-2030 application (IRENA, 2017; Jülch, 2016; Masaud & El-

Saadany, 2019; Schram et al., 2018): 

- Vanadium redox flow battery (VRFB)  

- Sodium-sulfur high temperature battery (NaS) 

- Lead-acid battery (Lead-acid) 

- Lithium-ion battery (Li-ion)1 

3.1.1. Technology selection 

Selection of ESS technologies for actual application is case-specific, but considering the level 

of detail this study aims to provide a case-specific selection process is deemed out of scope. 

Instead, on the basis of technology exclusive characteristics, Li-ion is deemed the most 

appropriate ESS technology for the optimization model in this study. Below some technology 

exclusive characteristics and successive assumptions are highlighted to substantiate the 

selection of Li-ion. 

VRFB 

VRFB has shown great potential in terms of lifetime (both shelf and cycle-life) and maximum 

DOD (100%) (Mongird et al., 2019). While investment costs are still relatively high, a fast 

decline is expected towards 2030. Its main limitation however is energy density: VRFB 

installations require a lot of space for relatively little storage capacity (IRENA, 2017). As this 

study examines ESSs in low-voltage networks and therefore also in residential areas, VRFB 

is deemed not a suitable technology. 

 

                                                           
1 While Li-ion actually covers a collection of sub-technologies, all with slightly different features, this 

study considers the branch as a whole.  
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NaS 

NaS performs relatively well on most important technical parameters (DOD, lifetime, energy 

density). While investment costs are still relatively high, a fast decline is expected towards 

2030 (IRENA, 2017). However its  high operating temperatures lead to safety concerns and 

relatively high operation costs (Akinyele, Belikov & Levron, 2017; IRENA, 2017). As there is 

no indication for these shortcomings to dissolve in the nearby future, NaS is not deemed an 

appropriate technology for use in this study. 

Lead-acid 

Lead-acid has traditionally been the go-to technology for a variety of ESS functions, with high 

technology readiness and very low investment costs compared to other technologies (IRENA, 

2017; JRC, 2018). However, its limited maximum DOD (50%) and short shelf and cycle-life 

largely cancel out this financial advantage. Moreover, Lead-acid is susceptible to abrupt failure 

after the EOL criterion (20% capacity-fade) is reached, while other technologies have shown 

reliable operation well after this point. Furthermore, Lead-acid is nearing ‘the end’ of its 

technological learning curve, with a high total global capacity already installed compared to 

other technologies (IRENA, 2017). 

Li-ion 

Li-ion performs relatively well in terms of maximum DOD (80-85%), round-trip efficiency and 

shelf-life. While its cycle-life can be a limiting factor in certain applications, improvements in 

this respect are predicted towards 2030 (IRENA, 2017; Schmidt et al, 2019). Furthermore, the 

advancement of Li-ion in EVs in recent years have caused its global capacity to increase, and 

investment costs to decrease heavily (Cole & Frazier, 2019; JRC, 2018, IRENA, 2019). In fact, 

Li-ion has surpassed Lead-acid as the fastest growing battery technology (IRENA, 2019). It is 

assumed that this trend will continue as the demand for EVs continues to rise and investment 

costs continue to decrease. Hence, the ESS technology further utilized in this study is Li-ion. 

3.1.2. Technical and financial parameters 

This section shows values chosen for technical and financial parameters related to ESSs (table 

2). Moreover, values and assumptions for some specific parameters are discussed in detail. 

ESS investment costs and c-rate 

When assessing ESS investment costs, it is important to make a distinction between costs for 

‘battery-packs’ and stationary storage systems. While the first is mostly relevant for application 

in EV’s, the latter also include costs related to construction and procurement, battery balance 

and safety management, and the AC-DC inverter (JRC, 2018; Schmidt et al., 2019). Moreover, 

investment costs are heavily dependent on the ESS’s c-rate (JRC, 2018). For utility scale 

stationary storage, a c-rate of 0.25 is deemed appropriate and hence assumed for this study 
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(JRC, 2018; Letcher, 2020, p. 270) (and rated power is assumed constant for every SOC). 

ESS investment prices are adopted accordingly. Multiple extensive reports have been 

published that predict future ESS investment costs. However, values from one specific report 

are used in this study as it cites multiple other sources, uses a broad definition of stationary 

storage systems, focuses on Li-ion specifically and has been published relatively recently 

(JRC, 2018).  

Battery degradation and operation and maintenance (O&M) costs 

As mentioned in section 3.1.1., cycle-life is a limiting factor for Li-ion in certain applications. 

While extensive studies have been done on control strategies that limit battery degradation, 

this is outside the scope of this study. Moreover, it is assumed that at maximum one full-range 

(and probably smaller) charge cycle occurs per day (due to the intermittent nature of rooftop-

PV profiles) and that by 2030 technological improvements have achieved a cycle-life that is 

high enough to facilitate this intensity of use. Shelf-life is hence the only determinant factor for 

ESS lifetime in this study. While capacity-fade occurs because of degradation, it is assumed 

that yearly O&M will counteract this effect as constraints are set to make sure SOC stays within 

acceptable bounds (Cole & Frazier, 2019). Prices for ESS O&M are adopted accordingly.  

Table 2: Values for (2030) technical and financial parameters related to ESSs 

Symbol Description Value Unit Source 

ηinv Inverter efficiency 97 % Hesse et al., 2017 

ηdc,dc ‘Round-trip’ efficiency (dc-to-dc) 96 % IRENA, 2017 

c-rate Power-to-energy-ratio 0.25 Factor IRENA, 2017 

LESS Lifetime (shelf) of ESS 18 Year IRENA, 2017 

dischself Hourly self-discharge 0.9995 Factor Hesse et al., 2017 

SOCmax,% Maximum state of charge in % 100 % IRENA, 2017 

SOCmin,% Minimum state of charge in % 

(inverse of maximum DOD) 

15 % IRENA, 2017 

pESS (ref) ESS price for investment 

(reference) 

284 €/kWh JRC, 2018 

pESS (low) ESS price for investment (low) 175 €/kWh JRC, 2018 

pESS (high) ESS price for investment (high) 406 €/kWh JRC, 2018 

pESS,vom ESS price for variable O&M 

(based on total electricity 

throughput) 

0.00025 €/kWh Cole & Frazier, 2019; 

Mongird et al., 2018 

pESS,fom ESS price for fixed O&M (based 

on rated power) 

7.50 €/kW 

per year 

Cole & Frazier, 2019; 

Mongird et al., 2019 
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3.2. Assessment of unmitigated supply and demand profiles 

To find primary anomalies in input data and to create a reference point for the 

assessment of cost-optimal mitigation options, 2017 and 2030 (all scenarios) supply and 

demand profiles are combined and basic descriptive statistics are gathered.  

3.2.1. Residual demand profiles 

Because ASM-2 profiles are on neighborhood scale, the individual distribution of 

rooftop-PV systems and electricity demand are outside the scope of this study, as are losses 

within low-voltage networks. As a result, perfect electricity exchange is assumed within low-

voltage networks over the course of one hour. Moreover, PV-inverter losses are already 

accounted for in the ASM-2 supply profiles. Hence, residual demand profiles are created by 

simply subtracting hourly supply values (rooftop-PV profiles) from hourly demand values 

(conventional and HP profiles). 

3.2.2. Direct self-consumption and initial congestion 

The most important descriptive statistics that are gathered are direct self-consumption 

and initial congestion. Direct self-consumption is defined as PV-generated electricity that is 

directly used (i.e. within the low-voltage network within one hour and without any mitigation 

applied). Mean percentage and standard deviation (st. dev.) are given, as are histograms to 

show distribution across all neighborhoods. Initial congestion is defined as congestion that 

takes place without any mitigation applied. The amount of neighborhoods were initial (upward 

and downward) congestion takes place is specified, as is mean hours of (upward and 

downward) congestion. 

3.2.3. Grid capacities 

As of March 2020 Dutch DSOs have collectively published aggregated transformer 

capacities for (almost) every Dutch neighborhood (Liander, 2020). Following the assumed 

geographical scope for low-voltage networks (neighborhood scale) this study assumes low-

voltage network capacity to be equal to the aggregated transformer capacities published by 

DSOs. Using a rule of thumb, ‘missing’ neighborhood capacities in this dataset are assumed 

to be 200% in comparison to the highest peak load in the respective ASM-2 conventional 

(present-day) demand profiles (CE Delft, 2017). Moreover, while transformers can operate 

above their rated power for short periods of time, this is not taken into account as it is thought 

not to improve accuracy when compared to the hourly and neighborhood scale of the available 

data. Furthermore, aggregated transformer capacities are published in apparent power (kVA), 

but are considered equal to real power (kW) as perfect power quality and phase balance is 

assumed. Finally, no transformer losses are taken into account. 
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3.3. Cost-optimal mitigation options (1): prosumer perspective 

Considering the incentive of owning and managing ESSs to reduce electricity costs, 

this section discusses cost-optimal application of ESSs from the perspective of a neighborhood 

collective of prosumers (hereafter: prosumer perspective). PV-curtailment and grid 

reinforcement are not applied in the prosumer perspective as the sole incentive is to increase 

self-consumption, not to mitigate congestion. 

3.3.1. Electricity prices 

This study assumes that regulations will change and takes into account the possibility 

where residents within a single neighborhood can collectively own and manage ESSs. In such 

a situation, it might be possible for residents to act as energy traders on the electricity market. 

However, as commercial incentives for energy trading have shown to have negative effects 

regarding congestion management and self-consumption, it is assumed that regular low-

voltage prosumer electricity prices are enforced. As of March 2020, it has been determined by 

law that feed-in tariffs for PV-generated electricity must be at least 80% of the electricity price 

without taxes. For 2030, prices are based on predictions by independent research organization 

TNO (PBL, 2019b). Values used are 0.216 €/kWh and 0.0761 €/kWh with and without taxes 

respectively. The feed-in tariff hence effectively becomes 0.0610 €/kWh. Originally obtained in 

€2019, above values are converted to €2017 using average annual inflation rates (Webster, 2020). 

For the sake of simplicity, it is assumed that net-metering is completely disbanded by 2030. 

3.3.2. ESS control strategy 

In general, the optimization process makes use of the principle of perfect forecast. This 

implicates that both application and control strategy of mitigation options are based on 100% 

accurate predictions on hourly electricity supply and demand. The control strategy for the 

prosumer perspective is to minimize costs for electricity by increasing self-consumption. This 

‘increased self-consumption’ is hereafter defined as ‘optimized self-consumption’ which,  

besides direct self-consumption, also includes PV-generated electricity that is discharged from 

ESSs (after it was stored first). In a real-life situation (i.e. without perfect forecast), it is not clear 

in advance when a surplus of PV-generated electricity will be at hand. To be sure of economic 

benefits, ESSs will usually charge as soon as a surplus occurs (Struth et al., 2013). Conversely 

in a situation with perfect forecast, ESSs will charge as late as possible before discharging as 

this minimizes losses through self-discharge. Both situations can facilitate an increase in self-

consumption, as can be seen in figure 4 and 5. Both figures also show that any congestion 

issues are not automatically addressed with this control strategy. Then again, mitigating 

congestion is not part of the prosumer incentive to own ESSs.  
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Figure 4: Storage during a day with PV-surplus in the prosumer perspective (without forecast) 

 

Figure 5: Storage during a day with PV-surplus in the prosumer perspective (perfect forecast) 

 

3.4. Cost-optimal mitigation options (2): DSO perspective 

As ESSs can serve as an alternative option to mitigate congestion (as opposed to the 

conventional grid reinforcement), the perspective of DSOs owning and managing ESSs is 

taken into account in this study. As additional mitigation options, PV-curtailment and grid 

reinforcement are assessed. Grid capacities are considered as discussed in section 3.2.3.. 
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3.4.1. ESS control strategy 

In general, the optimization process makes use of the principle of perfect forecast. This 

implicates that both application and control strategy of mitigation options are based on 100% 

accurate predictions on hourly electricity supply and demand. The control strategy for the DSO 

perspective is to minimize costs for congestion mitigation by reducing grid reinforcement. ESSs 

might be charged with PV-generated electricity, but this is only necessary in the case of a grid 

capacity exceeding PV-surplus. In other cases, grid-bought electricity might also be charged 

as increasing self-consumption is not part of the DSO incentive to own ESSs. 

3.4.2. PV-curtailment 

In addition to ESSs, PV-curtailment is applied to take care of the largest but scarce PV-

surplus peaks. Since 2013, regulations in Germany allow and facilitate curtailment of 

renewable electricity, however with certain restrictions. For new PV-systems, consumers have 

the choice for power-based curtailment or energy-based curtailment. Power-based curtailment 

involves installing inverters with 70% power of the installed peak power, which is a clear in 

advance indicator, but can result in curtailment when there is no congestion. On the other 

hand, energy-based curtailment allows DSOs to ‘smart curtail’, with no restrictions on reduced 

power but to a maximum of 3% of all PV-generated electricity. As the latter requires full 

reimbursement of curtailed electricity, this is often also a satisfactory option for prosumers 

(Furusawa et al., 2019; Kies et al., 2016) 

Dutch DSOs are vocal about implementing curtailment in future years to save 

reinforcement costs (ECN, 2017). This study assumes that policy regarding curtailment will be 

similar to German regulations. Consequently this study assumes that curtailment will be 

allowed up to a maximum of 3% of all PV-generated electricity, set as a constraint that is 

evaluated independently on neighborhood scale. For the sake of simplicity, it is assumed that 

PV-curtailment does not require investment costs. A diagrammatic representation of PV-

curtailment as mitigation option within low-voltage networks can be seen in figure 6. 

3.4.3. Grid reinforcement 

Reinforcement of transformer capacity can be performed with two different techniques. 

First, (old) transformers can simply be replaced with new transformers with a higher rated 

power, preferably after the old transformer has completed its full lifecycle. Alternatively, a new 

transformer can be ‘added’ at a strategical position in a low-voltage network, effectively splitting 

the network between these transformers. The lifetime of distribution transformers (further 

referenced as Lgrid) is estimated at 60 years (Elia, 2019). Because of scarcity in publicly 

available data on actual transformer age and geographical boundaries of actual low-voltage 

networks, this study does not take into account ‘logical’ moments for replacement or strategic 

placement of transformers. Considering uncertainties and the level of detail that come with 



28 
 

these assumptions, it is chosen to not set a minimum for reinforcement in terms of rated power. 

However, as ASM-2 supply and demand data is provided in kW rounded to whole numbers, 

minimal grid reinforcement is effectively 1 kW. In regard to prices for distribution transformer 

reinforcement/placement, a range of 20.000 to 70.000 €/MW was found in literature and policy 

documents (Ecofys, 2014; Enexis, 2020). As multiple sources opt for a price in the range of 

35.000 €/MW (Dekker, 2016; Ecofys, 2014), this value (35 €/kW) was adopted as constant 

price for both transformer reinforcement and replacement (further referenced as pgrid). A 

diagrammatic representation of grid-curtailment as a mitigation option within low-voltage 

networks can be seen in figure 6. 

Figure 6: All mitigation options within low-voltage networks as assessed in this study 

 

Note. The outer dashed-line symbolizes the low-voltage network, whereas the inner dashed-

line symbolizes the summed value of supply and demand profiles. 

3.5. Cost-optimal mitigation options (3): combined perspective 

As explained in section 2.4.3., multifunctional application of ESSs is deemed promising 

and often interpreted as a commercial service provided by a third party (or aggregator). 

However, market prices are often not based on congestion levels, and commercial incentives 

for energy trading have shown to cause negative effects on power quality. Considering these 

limitations, the ‘combined perspective’ has been created for this study. In this perspective 

mitigating congestion and increasing self-consumption are both incentives for owning and 
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managing ESSs, but standard ‘prosumer prices’ for buying and selling electricity are imposed  

(as discussed in section 3.3.1.). As additional mitigation options, PV-curtailment and grid 

reinforcement are assessed. Grid capacities are considered as discussed in section 3.3.2.. 

3.5.1. ESS control strategy 

In general, the optimization process makes use of the principle of perfect forecast. This 

implicates that both application and control strategy of mitigation options are based on 100% 

accurate predictions on hourly electricity supply and demand. The control strategy in the 

combined perspective is to minimize costs both for congestion mitigation (DSO oriented) and 

electricity (prosumer oriented) by reducing grid reinforcement and increasing self-

consumption. With perfect forecast, charging PV-surpluses that exceed grid capacity get 

highest priority (Struth et al,. 2013), as is demonstrated in figure 7. Secondary, charging is 

performed as late as possible before discharging to minimize self-discharge losses. In addition 

to ESSs, PV-curtailment is applied to take care of the largest but scarce PV-surplus peaks. 

Figure 7: Storage and curtailment during a day with PV-surplus in the combined perspective 

(perfect forecast) 

 

3.5.2. PV-curtailment 

PV-curtailment is considered in the same way as in the DSO perspective and hence discussed 

in section 3.4.2.. 

3.5.3. Grid reinforcement 

Grid reinforcement is considered in the same way as in the DSO perspective and hence 

discussed in section 3.4.3..  
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3.6. Optimization model: Mixed Integer Linear Programming 

To obtain cost-optimal mitigation options for all perspectives, optimization was carried 

out with Mixed Integer Linear Programming (MILP). MILP allows for one or more variables to 

have integer values (whole numbers), which enables the possibility to adopt binary decision 

variables in the model. For this particular model decision variables are needed to determine 

the mode of operation for ESSs, as will be explained in the following sections. The optimization 

script was written for Python, using the MILP dedicated module Gurobi (Gurobi, 2019). 

While the model in general follows the principles of system compartments and 

electricity flows as depicted in figure 6, some alterations had to be made to determine levels 

of optimized self-consumption. With one large energy storage compartment it is not possible 

to keep track of the amount of PV-generated electricity that flows through the ESS, as it also 

possible to charge grid-bought electricity. Hence, two interchangeable virtual compartments 

were created inside the system, where either PV-generated or grid-bought electricity is 

charged, with corresponding additional electricity flows. A diagrammatic representation of 

these two compartments implemented in the ESS can be seen in figure 8. 

Figure 8: System boundaries and virtual compartments for energy storage 

 

Note. The outer dashed-line symbolizes the low-voltage network, whereas the inner dashed-

line symbolizes the summed value of supply and demand profiles. 
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3.6.1. Model variables 

Variables are created in Gurobi to model electricity flows, and capacities and mode of 

operation of mitigation options. All variables are continuous variables, with the exception of 

variables for ESS mode of operation which are binary decision variables. The majority of these 

variables are created for each hour of the year, which is notated and further referenced as time 

periods t in set T (equation 1). This results in the creation of over 100.000 variables per 

neighborhood for each optimization process. 

𝑇 = {𝑡1, 𝑡2, … , 𝑡8760 }          (1) 

, with T as yearly set “T” and t as time periods (hours). 

Decision variables 

All mitigation options examined can possibly co-exist in one neighborhood. Decision 

variables are hence only necessary to determine mode operation, which is relevant only for 

ESS. Two binary decision variables are made for charging and discharging mode (table 3). 

The constraints applied to these variables will also allow for ‘idle’ ESS mode, as will become 

clear in section 3.2.3.. 

Continuous variables 

Continuous variables in Gurobi can take on any value between 0 and ∞ by default 

(including float numbers), as is usual in mathematical programming (Gurobi, 2020). In this 

study, continuous variables are used to model the capacity of ESS and transformer 

reinforcement, and electricity flows (both basic and related to ESS and PV-curtailment), as can 

be seen in table 3. 
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Table 3: Model variables and descriptions 

  

Name/symbol Description Type Quantity 

𝑐ℎ𝑏𝑖𝑛 Decides if ESS is in charging mode (1) or not (0) Binary 

decision 

∀ 𝑡 ∈ 𝑇 

𝑑𝑖𝑠𝑐ℎ𝑏𝑖𝑛 Decides if ESS is in discharging mode (1) or not (0) Binary 

decision  

∀ 𝑡 ∈ 𝑇 

𝑔𝑟𝑖𝑑𝑐𝑎𝑝,𝑟𝑒𝑖𝑛𝑓 Added transformer capacity (power) in kW Continuous single 

𝑐𝑎𝑝𝐸𝑆𝑆 Installed capacity of the ESS in kWh Continuous single 

𝑆𝑂𝐶𝑡𝑜𝑡 Total absolute SOC of the ESS in kWh Continuous ∀ 𝑡 ∈ 𝑇 

𝑆𝑂𝐶𝑝𝑣 Absolute SOC allocated to PV-generated electricity 

in kWh 

Continuous ∀ 𝑡 ∈ 𝑇 

𝑆𝑂𝐶𝑔𝑟𝑖𝑑 Absolute SOC allocated to grid-bought electricity in 

kWh 

Continuous ∀ 𝑡 ∈ 𝑇 

𝑝𝑣𝑐𝑢𝑟𝑡 PV-generated electricity directly curtailed by the 

DSO in kWh 

Continuous ∀ 𝑡 ∈ 𝑇 

𝑝𝑣𝑔𝑟𝑖𝑑 PV-generated electricity directly sold to the grid 

(and not curtailed!) in kWh  

Continuous ∀ 𝑡 ∈ 𝑇 

𝑔𝑟𝑖𝑑𝑑𝑒𝑚 Grid-bought electricity directly used for electricity 

demand in kWh 

Continuous ∀ 𝑡 ∈ 𝑇 

𝑝𝑣𝑐ℎ PV-generated electricity charged into the ESS in 

kWh 

Continuous ∀ 𝑡 ∈ 𝑇 

𝑔𝑟𝑖𝑑𝑐ℎ Grid-bought generated electricity charged into the 

ESS in kWh 

Continuous ∀ 𝑡 ∈ 𝑇 

𝑑𝑖𝑠𝑐ℎ𝑝𝑣,𝑑𝑒𝑚 PV-generated electricity discharged from the ESS 

and used for electricity demand in kWh 

Continuous ∀ 𝑡 ∈ 𝑇 

𝑑𝑖𝑠𝑐ℎ𝑝𝑣.𝑔𝑟𝑖𝑑 PV-generated electricity discharged from the ESS 

and sold to the grid in kWh 

Continuous ∀ 𝑡 ∈ 𝑇 

𝑑𝑖𝑠𝑐ℎ𝑔𝑟𝑖𝑑,𝑑𝑒𝑚 Grid-bought electricity discharged from the ESS 

and used for electricity demand in kWh 

Continuous ∀ 𝑡 ∈ 𝑇 

𝑑𝑖𝑠𝑐ℎ𝑔𝑟𝑖𝑑,𝑔𝑟𝑖𝑑 Grid-bought electricity discharged from the ESS 

and sold to the grid in kWh 

Continuous ∀ 𝑡 ∈ 𝑇 
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3.6.2. Model objective: EAA maximization 

This section includes some equations that describe the optimization model used in this 

research, specifically the model objective. The main goal of the optimization is to decide which 

(combination of) investment(s) is cost-optimal regarding three mitigation options, namely grid 

reinforcement, ESS and PV-curtailment. Generally in capital budgeting, to determine whether 

an investment is profitable, the ‘Net Present Value’ (NPV) is calculated. In addition to totaling 

the initial investment and annual cash flows, it corrects for the time-value of money by taking 

in to account an annual discount rate for annual cash flows (Blok & Nieuwlaar, 2016). However, 

this method is unpractical when comparing investments with different lifetimes, as is the case 

with grid reinforcement and ESSs. In this situation, the Equivalent Annual Annuity (EAA) 

approach can be adopted. The EAA for an investment is calculated by dividing the NPV with 

an ‘annuity factor’ that is subject to the investment lifetime (Shim, Siegel & Dauber, 2008). The 

EAA thereby converts both initial investment and discounted cash flows to a single annuity, 

i.e. a constant annual cash flow that is independent of investment lifetime. As a result, using 

the EAA allows for all three mitigation options to be optimized in a single mathematical 

equation. Moreover, as all annual cash flows in this study are annuities by definition, as they 

are based on a single year of supply and demand profiles and thus constant. The annuity factor 

is hence only applied to initial investments.  

Typically it is argued that one should only advance on investments with a positive EAA 

(thereby indicating profitability). In this case however, the business-as-usual (BAU) cases for 

the DSO and combined perspective involve a negative EAA, as grid reinforcements do not 

provide annual benefits. Hence a situation arises where a negative EAA can still be beneficial 

compared to the BAU case- it just needs to be as high as possible. Alternatively, when benefits 

are not per definition not included in an objective function, a negative EAA can be written as a 

positive EAC (Equivalent Annual Costs).  

The EAA method presumes that investments can and will be renewed indefinitely and 

that investment costs and cash flows will stay constant forever, which is of course not realistic. 

However, this study also assumes that inter(national) energy transition targets, regulations and 

subsidies will ensure that the demand for low-voltage network flexibility will continuously 

increase towards 2050. Vice versa, costs for ESSs are expected to continuously decrease. 

Hence the EAA method is considered appropriate for providing insight in the general 

profitability of ESSs. 

Main functions: EAAs 

For the three perspectives of ESS ownership that are taken into account in this study, 

the respective EAA objective functions are expressed in equations 2, 3 and 4, and broken 

down further in equations 5-13. ESS technology specific parameters, chosen values, and 
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respective sources are used as discussed in table 2 (section 3.1.). Electricity prices are used 

as discussed in section 3.3.1.. Values with respect to grid reinforcement are discussed in 

section 3.4.3..) 

𝐸𝐴𝐴𝑝𝑟𝑜𝑠𝑢𝑚𝑒𝑟  =   𝐵𝑒𝑙,𝑐𝑜𝑠𝑡𝑠,𝑠𝑎𝑣 − 𝐶𝐸𝑆𝑆 −  
𝐼𝐸𝑆𝑆

∝𝐸𝑆𝑆
       (2)  

, with EAAprosumer as the EAA for the prosumer perspective of ownership, Bel,costs,sav as annual 

benefits associated with saved electricity costs, CESS as annual costs associated with ESS 

O&M, IESS as the initial investment for the ESS, and ∝ESS as the annuity factor related to ESS 

investments. ∝ESS is broken down further in equation 4, Bel,costs,sav is broken down further in 

equations 6, 7, and 8, CESS is broken down in equation 10, and IESS is broken down further in 

equation 12. 

𝐸𝐴𝐴𝐷𝑆𝑂  = −𝐶𝑒𝑙,𝑙𝑜𝑠𝑠 − 𝐶𝐸𝑆𝑆 − 
𝐼𝐸𝑆𝑆

∝𝐸𝑆𝑆
− 𝐶𝑐𝑢𝑟𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡 −

𝐼𝑔𝑟𝑖𝑑,𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑑

∝𝑔𝑟𝑖𝑑
    (3) 

, with EAADSO as the EAA for the DSO perspective of ownership, Cel,loss as annual costs 

associated with electricity losses in the storage process, Ccurtailment as annual costs associated 

with PV-curtailment, Igrid,reinforced as the investment for grid reinforcement in the optimized case 

and ∝grid as the annuity factor related to grid reinforcement investments. ∝grid is broken down 

further in equation 5, Ccurtailment is broken down further in equation 11. Igrid,reinforced is broken down 

further in equation 13. 

𝐸𝐴𝐴𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑  =  𝐵𝑒𝑙,𝑐𝑜𝑠𝑡𝑠,𝑠𝑎𝑣 − 𝐶𝐸𝑆𝑆 −
𝐼𝐸𝑆𝑆

∝𝐸𝑆𝑆
−

𝐼𝑔𝑟𝑖𝑑,𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑑

∝𝑔𝑟𝑖𝑑
     (4) 

, with EAAcombined as the EAA for the combined perspective of ownership. 

Annuity factor and discount rate 

As explained earlier in this section, the annuity factor is used to calculate the EAA for 

discounted cash flows and initial investments. Only the latter is the case here, as all annual 

cash flows in this study are considered annuities by definition. The annuity factor is subject to 

investment lifetime. Hence, two different annuity factors are used in this study, one for ESS 

investment and one for grid reinforcement investment. Moreover, the annuity factor is subject 

to the discount rate. The discount rate for this study is assumed to be constant at 7%, which is 

considered middle ground between sources in the field of renewable energy and Dutch DSO 

statements regarding long term investments (Alliander, 2019; Schmidt et al., 2019). 

∝ =
(1+𝑟)𝐿 − 1

𝑟 ∙ (1+𝑟)𝐿 
           (5) 

, with r as the discount rate and L as the investment lifetime, in this case for either ESS (LESS) 

or grid reinforcement (Lgrid). 
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Annual benefits: saved electricity costs (prosumer) 

For prosumers, the only benefit involves saved electricity costs, which originates in 

storing and self-consuming PV-generated electricity in an ESS. Any costs related to electricity 

losses originating in the storage process are automatically accounted for through parameters 

for efficiency and self-discharge in the Cel,costs function (equation 8) and ESS balance 

constraints (section 3.8.3). In the combined perspective, the costs for these losses are in reality 

shared between DSO and prosumer. However as this has very little, if any, influence on the 

total EAA, no distinction is made in this regard for the sake of simplicity. 

𝐵𝑒𝑙,𝑐𝑜𝑠𝑡𝑠,𝑠𝑎𝑣 = 𝐶𝑒𝑙,𝑐𝑜𝑠𝑡𝑠,𝑏𝑎𝑢 − 𝐶𝑒𝑙,𝑐𝑜𝑠𝑡𝑠        (6) 

, with Cel,costs,bau as the annual costs of electricity for prosumers in the BAU case, and Cel,costs 

as the annual costs of electricity in the optimized case. Both are further broken down in 

equations 7 and 8 respectively. 

𝐶𝑒𝑙,𝑐𝑜𝑠𝑡𝑠,𝑏𝑎𝑢 =  𝐸𝑒𝑙,𝑏𝑜𝑢𝑔ℎ𝑡,𝑏𝑎𝑢 ∙ 𝑝𝑒𝑙,𝑏𝑢𝑦 − 𝐸𝑒𝑙,𝑠𝑜𝑙𝑑,𝑏𝑎𝑢 ∙ 𝑝𝑒𝑙,𝑠𝑒𝑙𝑙     (7) 

, with Eel,bought,bau and Eel,sold,bau as amount of electricity bought and sold in the BAU case in kWh, 

and pel,buy and pel,sell as the price for buying and selling electricity from/to the grid in €/kWh. 

𝐶𝑒𝑙,𝑐𝑜𝑠𝑡𝑠 = ∑  (𝑔𝑟𝑖𝑑𝑑𝑒𝑚[𝑡] + 𝑔𝑟𝑖𝑑𝑐ℎ[𝑡]) ∙ 𝑝𝑒𝑙,𝑏𝑢𝑦 − (𝑝𝑣𝑔𝑟𝑖𝑑[𝑡] + (𝑑𝑖𝑠𝑐ℎ𝑝𝑣,𝑔𝑟𝑖𝑑[𝑡] +

𝑡 ∈ 𝑇

 

                               𝑑𝑖𝑠𝑐ℎ𝑔𝑟𝑖𝑑,𝑔𝑟𝑖𝑑[𝑡]) ∙ 𝜂𝑖𝑛𝑣 ∙ √𝜂𝑑𝑐,𝑑𝑐) ∙ 𝑝𝑒𝑙,𝑠𝑒𝑙𝑙     (8) 

Annual costs (1): electricity losses through storage process (DSO) 

In the prosumer and combined perspective, costs related to electricity losses in the 

storage process are automatically accounted for through parameters for efficiency and self-

discharge in the Cel,costs function (equation 8) and ESS balance constraints (section 3.8.3). In 

the DSO perspective however, buying and selling electricity for financial gain is by law not part 

of DSO activities and thus Bel,costs,sav (and Cel,costs) are not included in the objective function. As 

noted in section 2.4.2., it is however still the obligation of DSOs to make up for any electricity 

losses caused by their activities. In the case of storage processes, involving either PV-

generated electricity or grid-bought electricity, it is assumed that all losses are compensated 

for by buying electricity for the regular buying price (including taxes). The resulting costs are 

described by Cel,loss in equation 9 and added to the DSO objective function.   

𝐶𝑒𝑙,𝑙𝑜𝑠𝑠 = ∑ (𝑝𝑣𝑐ℎ[𝑡] + 𝑔𝑟𝑖𝑑𝑐ℎ[𝑡] − (𝑑𝑖𝑠𝑐ℎ𝑝𝑣,𝑑𝑒𝑚[𝑡] + 𝑑𝑖𝑠𝑐ℎ𝑝𝑣,𝑔𝑟𝑖𝑑[𝑡] + 

𝑡 ∈ 𝑇

 

          𝑑𝑖𝑠𝑐ℎ𝑔𝑟𝑖𝑑,𝑑𝑒𝑚[𝑡] + 𝑑𝑖𝑠𝑐ℎ𝑔𝑟𝑖𝑑,𝑔𝑟𝑖𝑑) ∙ 𝜂𝑖𝑛𝑣 ∙ √𝜂𝑑𝑐,𝑑𝑐) ∙ 𝑝𝑒𝑙,𝑏𝑢𝑦   (9) 
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Annual costs (2): fixed and variable O&M for ESS (prosumer and DSO) 

𝐶𝐸𝑆𝑆 = 𝐶𝐸𝑆𝑆,𝑣𝑜𝑚 + 𝐶𝐸𝑆𝑆,𝑓𝑜𝑚  

         = ∑ (𝑔𝑟𝑖𝑑𝑐ℎ[𝑡] + 𝑝𝑣𝑐ℎ[𝑡]) ∙ 𝑝𝐸𝑆𝑆,𝑣𝑜𝑚

𝑡 ∈ 𝑇

+ 𝑐-𝑟𝑎𝑡𝑒 ∙ 𝑐𝑎𝑝𝐸𝑆𝑆 ∙ 𝑝𝐸𝑆𝑆,𝑓𝑜𝑚                                       (10) 

, with CESS,fom, CESS,vom as respectively the fixed and variable operation and maintenance (O&M) 

costs associated with ESS. 

Annual costs (3): curtailment reimbursement (DSO) 

As explained in section 3.4.2., it is assumed that DSOs need to fully reimburse 

prosumers for any PV-generated electricity that is curtailed. This results in annual costs for the 

DSO. As the exact same amount weighs as a benefit to prosumers, the costs cancel 

themselves out in the combined perspective (and thus are not present in the EAAcombined 

equation). 

𝐶𝑐𝑢𝑟𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡 = ∑ 𝑝𝑣𝑐𝑢𝑟𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡[𝑡]

𝑡 ∈ 𝑇

 ∙ 𝑝𝑒𝑙,𝑠𝑒𝑙𝑙                                                                                             (11) 

Investments: ESS (prosumer and DSO) and grid reinforcement (DSO) 

𝐼𝐸𝑆𝑆 =  𝑐𝑎𝑝𝐸𝑆𝑆 ∙ 𝑝𝐸𝑆𝑆          (12) 

𝐼𝑔𝑟𝑖𝑑,𝑟𝑒𝑖𝑛𝑓𝑜𝑟𝑐𝑒𝑑 =  𝑔𝑟𝑖𝑑𝑐𝑎𝑝,𝑟𝑒𝑖𝑛𝑓 ∙ 𝑝𝑔𝑟𝑖𝑑        (13) 

3.6.3. Model constraints 

This section demonstrates model constraints set up to either define relationships 

between variables or set minimum/maximum values for variables. The constraints are set up 

for decision variables and continuous variables, and mostly for every time period in T. 

Decision variable constraints (ESS mode of operation) 

The decision variables decide whether the ESS is in (dis)charging or idle mode. 

However, these modes can only be operational one a time. To facilitate this, first a constraint 

is set to ensure that the sum of binary variables chbin and dischbin is lower or equal to 1 for 

every time period in T (equation 14). In addition, conditional constraints are set to make sure 

no (dis)charging takes place if one of these variables is equal to 0 (equations 15 and 16). 

𝑐ℎ𝑏𝑖𝑛[𝑡] + 𝑑𝑖𝑠𝑐ℎ𝑏𝑖𝑛[𝑡] ≤ 1           (∀ 𝑡 ∈ 𝑇)       (14) 

𝑐ℎ𝑏𝑖𝑛[𝑡] = 0 → 𝑐ℎ𝑝𝑣[𝑡] + 𝑐ℎ𝑔𝑟𝑖𝑑[𝑡] = 0           (∀ 𝑡 ∈ 𝑇)     (15) 

𝑐ℎ𝑏𝑖𝑛[𝑡] = 0 → 𝑑𝑖𝑠𝑐ℎ𝑝𝑣,𝑑𝑒𝑚[𝑡] + 𝑑𝑖𝑠𝑐ℎ𝑝𝑣,𝑔𝑟𝑖𝑑[𝑡] + 𝑑𝑖𝑠𝑐ℎ𝑔𝑟𝑖𝑑,𝑑𝑒𝑚[𝑡] +  

 𝑑𝑖𝑠𝑐ℎ𝑔𝑟𝑖𝑑,𝑔𝑟𝑖𝑑[𝑡] = 0           (∀ 𝑡 ∈ 𝑇)      (16) 
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Energy balance constraints: residual demand 

As this study assumes that electricity exchange with a low-voltage network is 100% 

efficient between all network components, the residual demand equals neighborhood demand 

minus neighborhood PV-supply for time period in T. Therefore, the basic electricity balance 

constraint is set up using the residual demand (equation 17).  

𝑑𝑒𝑚𝑟𝑒𝑠[𝑡] = 𝑔𝑟𝑖𝑑𝑑𝑒𝑚[𝑡] + (𝑑𝑖𝑠𝑐ℎ𝑝𝑣,𝑑𝑒𝑚[𝑡] + 𝑑𝑖𝑠𝑐ℎ𝑔𝑟𝑖𝑑,𝑑𝑒𝑚[𝑡]) ∙ 𝜂𝑖𝑛𝑣 ∙ √𝜂𝑑𝑐,𝑑𝑐 −  

           𝑝𝑣𝑔𝑟𝑖𝑑[𝑡] − 𝑝𝑣𝑐ℎ[𝑡] − 𝑝𝑣𝑐𝑢𝑟𝑡[𝑡]           (∀ 𝑡 ∈ 𝑇)     (17) 

, with demres as residual demand in kWh. 

As all variables in Gurobi can only take on positive values, equation 17 is true for both positive 

(more demand) and negative (more PV-supply) residual demand. In addition, two other 

constraints are set up to ensure that in each of these situations only the appropriate variables 

are assigned with a value higher than 0.  

𝑑𝑒𝑚𝑟𝑒𝑠[𝑡] ≥ 0 → 𝑝𝑣𝑔𝑟𝑖𝑑[𝑡] + 𝑝𝑣𝑐ℎ[𝑡] + 𝑝𝑣𝑐𝑢𝑟𝑡[𝑡] = 0           (∀ 𝑡 ∈ 𝑇)    (18) 

𝑑𝑒𝑚𝑟𝑒𝑠[𝑡] ≤ 0 → 𝑔𝑟𝑖𝑑𝑑𝑒𝑚[𝑡] + 𝑑𝑖𝑠𝑐ℎ𝑝𝑣,𝑑𝑒𝑚[𝑡] + 𝑑𝑖𝑠𝑐ℎ𝑔𝑟𝑖𝑑,𝑑𝑒𝑚[𝑡] = 0           (∀ 𝑡 ∈ 𝑇) (19) 

ESS (1): capacity constraints 

Several constraints related to ESS performance parameters have been set. First, 

maximum and minimum values are set for the absolute SOC, based on ESS capacity and 

performance related maximum DOD (equations 20 and 21). Moreover, a constraint is set to 

ensure that maximum ESS (dis)charging power is not exceeded, based on c-rate and ESS 

capacity (equation 22 and 23). 

𝑆𝑂𝐶𝑡𝑜𝑡[𝑡] ≤ 𝑆𝑂𝐶𝑚𝑎𝑥,% ∙ 𝑐𝑎𝑝𝐸𝑆𝑆           (∀ 𝑡 ∈ 𝑇)      (20) 

𝑆𝑂𝐶𝑡𝑜𝑡[𝑡] ≥ 𝑆𝑂𝐶𝑚𝑖𝑛,% ∙ 𝑐𝑎𝑝𝐸𝑆𝑆           (∀ 𝑡 ∈ 𝑇)       (21) 

(𝑝𝑣𝑐ℎ[𝑡] + 𝑔𝑟𝑖𝑑𝑐ℎ[𝑡]) ∙ 𝜂𝑖𝑛𝑣 ∙ √𝜂𝑑𝑐,𝑑𝑐  ≤ 𝑐-𝑟𝑎𝑡𝑒 ∙ 𝑐𝑎𝑝𝐸𝑆𝑆           (∀ 𝑡 ∈ 𝑇)   (22) 

𝑑𝑖𝑠𝑐ℎ𝑝𝑣,𝑑𝑒𝑚[𝑡] + 𝑑𝑖𝑠𝑐ℎ𝑝𝑣,𝑔𝑟𝑖𝑑[𝑡] + 𝑑𝑖𝑠𝑐ℎ𝑔𝑟𝑖𝑑,𝑑𝑒𝑚[𝑡] + 𝑑𝑖𝑠𝑐ℎ𝑔𝑟𝑖𝑑,𝑔𝑟𝑖𝑑[𝑡]  

≤ 𝑐-𝑟𝑎𝑡𝑒 ∙ 𝑐𝑎𝑝𝐸𝑆𝑆           (∀ 𝑡 ∈ 𝑇)        (23) 

ESS (2): energy balance constraints 

In addition to ESS performance constraints, ESS energy balance constraints are set. 

As explained in section 3.6., the modeled ESS has two virtual compartments: one for PV-

generated electricity and one for grid-bought electricity. First a constraint is set to create the 

two compartments (equation 24). In addition, constraints are set for the respective energy 

balances of these compartments (equations 25 and 26). Finally, constraints are set for the 
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SOC start-value. As one year of supply and demand profiles are assessed (but is recurrently 

accounted for over the ESS lifetime), it is deemed most accurate to assume a start value that 

is equal to SOCmin (equation 27). Moreover, it is assumed that at start of operation the ESS is 

pre-charged (i.e. not charged with PV-generated electricity) (equation 28). 

𝑆𝑂𝐶𝑡𝑜𝑡[𝑡] = 𝑆𝑂𝐶𝑝𝑣[𝑡] + 𝑆𝑂𝐶𝑔𝑟𝑖𝑑[𝑡]           (∀ 𝑡 ∈ 𝑇)       (24) 

𝑆𝑂𝐶𝑝𝑣[𝑡 + 1] = 𝑆𝑂𝐶𝑝𝑣[𝑡] ∙ 𝑑𝑖𝑠𝑐ℎ𝑠𝑒𝑙𝑓 + 𝑝𝑣𝑐ℎ[𝑡] ∙ 𝜂𝑖𝑛𝑣 ∙ √𝜂𝑑𝑐,𝑑𝑐 − 𝑑𝑖𝑠𝑐ℎ𝑝𝑣,𝑑𝑒𝑚[𝑡] −  

             𝑑𝑖𝑠𝑐ℎ𝑝𝑣,𝑔𝑟𝑖𝑑[𝑡]           (∀ 𝑡 ∈ 𝑇)      (25) 

𝑆𝑂𝐶𝑔𝑟𝑖𝑑[𝑡 + 1] = 𝑆𝑂𝐶𝑔𝑟𝑖𝑑[𝑡] ∙ 𝑑𝑖𝑠𝑐ℎ𝑠𝑒𝑙𝑓 + 𝑔𝑟𝑖𝑑𝑐ℎ[𝑡] ∙ 𝜂𝑖𝑛𝑣 ∙ √𝜂𝑑𝑐,𝑑𝑐 − 𝑑𝑖𝑠𝑐ℎ𝑔𝑟𝑖𝑑,𝑑𝑒𝑚[𝑡] −  

    𝑑𝑖𝑠𝑐ℎ𝑔𝑟𝑖𝑑,𝑔𝑟𝑖𝑑[𝑡]           (∀ 𝑡 ∈ 𝑇)      (26) 

𝑆𝑂𝐶𝑡𝑜𝑡[1] = 𝑆𝑂𝐶𝑚𝑖𝑛,% ∙ 𝑐𝑎𝑝𝐸𝑆𝑆         (27) 

𝑆𝑂𝐶𝑔𝑟𝑖𝑑[1] = 𝑆𝑂𝐶𝑚𝑖𝑛,% ∙ 𝑐𝑎𝑝𝐸𝑆𝑆         (28) 

Grid capacity constraints (DSO and combined only) 

For the DSO and combined perspective, two constraints are set that obligate electricity 

flows to stay below (possibly reinforced) transformer capacity, thereby dealing with both 

upward congestion (PV to grid and discharged to grid) and downward congestion (grid to 

demand and grid charged) (equation 29 and 30). 

𝑝𝑣𝑔𝑟𝑖𝑑[𝑡] + (𝑑𝑖𝑠𝑐ℎ𝑝𝑣,𝑔𝑟𝑖𝑑[𝑡] + 𝑑𝑖𝑠𝑐ℎ𝑔𝑟𝑖𝑑,𝑔𝑟𝑖𝑑[𝑡]) ∙ 𝜂𝑖𝑛𝑣 ∙ √𝜂𝑑𝑐,𝑑𝑐  

≤ 𝑔𝑟𝑖𝑑𝑐𝑎𝑝 + 𝑔𝑟𝑖𝑑𝑐𝑎𝑝,𝑟𝑒𝑖𝑛𝑓            (∀ 𝑡 ∈ 𝑇)        (29) 

𝑔𝑟𝑖𝑑𝑑𝑒𝑚[𝑡] + 𝑔𝑟𝑖𝑑𝑐ℎ[𝑡] ≤ 𝑔𝑟𝑖𝑑𝑐𝑎𝑝 + 𝑔𝑟𝑖𝑑𝑐𝑎𝑝,𝑟𝑒𝑖𝑛𝑓            (∀ 𝑡 ∈ 𝑇)     (30) 

Curtailment constraints 

For the prosumer perspective it is assumed that no curtailment takes place, so a 

constraint is to keep the variable’s value at 0 (equation 31a). For the DSO and combined 

perspective, a constraint is set to keep total curtailment below or equal to 3% of total PV-

generated electricity (equation 31b). 

𝑝𝑣𝑐𝑢𝑟𝑡𝑎𝑖𝑙𝑚𝑒𝑛𝑡[𝑡] = 0           (∀ 𝑡 ∈ 𝑇)        (31a) 

∑ 𝑝𝑣𝑐𝑢𝑟𝑡𝑎𝑖𝑙[𝑡]

𝑡 ∈ 𝑇

= 3% ∙ ∑ 𝑝𝑣[𝑡]

𝑡 ∈ 𝑇

                                                                                                               (31b) 

, with pv as all PV-generated electricity in kWh. 
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3.6.4. Analysis of model output 

To analyze model outputs, a csv-file containing neighborhood specific values and 

indicators is created with Python after optimization is completed, and further analysis is 

performed using Microsoft Excel. For each perspective of ownership examined, the most 

important indicators are reported as descriptive statistics in the results section of this report, 

and some are further examined through bivariate analysis. A short overview of the assessed 

indicators is given below for each perspective examined. However as a general annotation, it 

should first be noted that as grid reinforcement in this study effectively has a minimum value 

of 1 kW (see section 3.4.3), it is deemed appropriate to only take into account ESSs with a 

capacity of 1 kWh and higher. Moreover, for the DSO and combined perspective, only 

neighborhoods with initial congestion are taken into account. Values are reported for every 

energy transition scenario, except where noted. 

Prosumer perspective 

Reported descriptive statistics for the prosumer perspective are: 

- Amount and share (%) of neighborhoods with ESSs installed 

- Direct self-consumption of neighborhoods with ESS installed (mean % and st. dev.) 

- Optimized self-consumption of neighborhoods with ESS installed (mean % and st. dev.) 

- Increase in self-consumption of neighborhoods with ESS installed (%-point) 

- Normalized ESS capacity (ESS capacity installed divided by PV-peak power installed) 

(mean kWh/kWp) 

- Amount of neighborhoods with congestion and were ESSs are installed 

- Decrease in congestion after ESS implementation (mean % of hours) 

In addition, histograms are produced that portray the distribution of implemented ESSs over 

different levels of both direct and optimized self-consumption. Moreover, scatter plots are 

generated to show the relationship between normalized ESS capacity and levels of direct self-

consumption. 

DSO perspective 

Reported descriptive statistics for the DSO perspective are: 

- Amount and share (%) of neighborhoods with ESSs installed 

- Amount and share (%) of neighborhoods with PV-curtailment applied 

- Percentage of total PV-generated electricity curtailed (mean % and st. dev.) 

- Amount and share (%) of neighborhoods with grid reinforcement applied 

- Reinforcement costs saved compared to BAU costs in (mean % and st. dev.) 
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Combined perspective 

Reported descriptive statistics for the combined perspective are all values mentioned 

in the prosumer and DSO perspectives. In addition, a direct comparison with both the prosumer 

and DSO perspective is made for 6 neighborhoods for the local scenario. Four indicators are 

compared: normalized ESS capacity, increased self-consumption, percentage of total PV-

generated electricity curtailed, and reinforcement costs saved. Moreover, a load-duration curve 

is produced showing how the combined perspective operates over the course of a whole year. 

Sensitivity analysis 

Finally, as prices regarding ESS investment costs vary greatly throughout literature, a 

concise sensitivity analysis is performed for the local scenario using the lowest and highest 

value obtained from literature. Outputs entail the amount and share (%) of neighborhoods with 

ESSs installed, mean normalized ESS capacity, mean increase in self-consumption, and mean 

% reinforcement costs saved. As this is considered essential for answering the research 

question, the outcome is included in the results section and subsequently referred to in the 

conclusion (as opposed to discussion).  
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4. Results 

4.1. Assessment of unmitigated supply and demand profiles 

For 2017 supply and demand profiles, basic descriptive statistics are gathered to find 

primary anomalies in input data. For 2030 supply and demand profiles, basic descriptive 

statistics are gathered to serve as a reference point for assessment of cost-optimal mitigation 

options. Statistics are presented for each energy transition scenario and mainly focus on direct 

self-consumption and initial congestion. An overview can be found in table 4. 

4.1.1. 2017 supply and demand profiles 

First assessment of 2017 supply and demand profiles shows that for 19 out the 891 

neighborhoods, total electricity demand is 0. Moreover, congestion occurs in 81 neighborhoods 

(all downward congestion). This is deemed not realistic and thus a total of 100 neighborhoods 

are not taken into account for further assessment. 

For the remaining 791 neighborhoods, the mean direct self-consumption is 95.7%, with 

a standard deviation of 7.9%. For 28 (3.5%) neighborhoods, direct self-consumption is 0% as 

no rooftop-PV is installed. For 703 neighborhoods (88.9%), direct self-consumption is 100%. 

A histogram depicting the distribution of direct self-consumption of all neighborhoods in 2017 

(present-day) can be seen in figure 9. 

4.1.2. 2030 supply and demand profiles 

Concerning 2030 supply and demand profiles for 791 neighborhoods, congestion 

values for upward congestion differ greatly from downward congestion. Upward congestion 

occurs in 7, 4 and 1 neighborhood(s) in the local, regional and national scenarios respectively, 

whereas downward congestion occurs in 319 neighborhoods in all scenarios. 

Concerning direct self-consumption, 2030 mean values are 80.5%, 87.7% and 93.3% 

for the local, regional and national scenarios respectively, showing an inverse relationship with 

the total rooftop-PV installed. Histograms depicting the distribution of direct self-consumption 

of all neighborhoods can be seen in figure 10, 11 and 12 for each scenario respectively.  
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Table 4: Initial congestion and direct self-consumption (2017 and 2030) (n=791) 

 

Figure 9 and 10: Distribution of direct self-consumption of all neighborhoods in 2017 (left) and 

2030 local scenario (right) (n=791) 

 

 

 

 

 

 

 

Figure 11 and 12: Distribution of direct self-consumption of all neighborhoods for 2030 regional 

scenario (left) and 2030 national scenario (right) (n=791) 

 

  

  

 

 

 

  

Year/energy transition scenario 2017 2030 

Local 

2030 

Regional 

2030 

National 

Direct self-consumption (mean % (st. dev.)) 95.7% 

(7.9%) 

80.5% 

(19.4%) 

87.8% 

(17.2%) 

93.3% 

(13.8%) 

Neighborhoods with congestion (amount (%)) 0 

(0.0%) 

323 

(40.8%) 

322 

(40.7%) 

320 

(40.5%) 

Neighborhoods with initial upward congestion 

(amount (%)) 

0 

(0.0%) 

7  

(0.9%) 

4  

(0.5%) 

1  

(0.1%) 

Hours of initial upward congestion (mean) 0 698 627 615 

Neighborhoods with initial downward 

congestion (amount (%)) 

0 

(0.0%) 

319 

(40.3%) 

319 

(40.3%) 

319 

(40.3%) 

Hours of initial downward congestion (mean) 0 424 434 445 
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4.2. Cost-optimal mitigation options (1): prosumer perspective 

Basic descriptive statistics were gathered on cost-optimal mitigation options for the 

prosumer perspective. These statistics are presented for each energy transition scenario and 

mainly focus on the intensity of ESS implementation and consequential improvements with 

regard to self-consumption and congestion. An overview can be found in table 5. 

In the local, regional and national scenario, ESSs were installed in 75, 44 and 28 

neighborhoods respectively. The mean direct self-consumption for these neighborhoods is 

36.8%, 37.1% and 40.1% for the three scenarios respectively, again showing an inverse 

relationship with total rooftop-PV installed. Mean optimized self-consumption shows an 

increase of 6.8%, 6.6% an 5.6% for the three scenarios, implicating a higher increase for lower 

direct self-consumption values. Histograms depicting the distribution of direct and optimized 

self-consumption of neighborhoods with ESSs can be seen in figure 12-17 for all scenarios. 

Out of the 7, 4 and 1 neighborhoods with initial upward congestion, ESSs were installed 

in 5, 3, and 1 neighborhood(s) for the local, regional and national scenarios respectively. Out 

of the 319 neighborhoods with initial downward congestion, ESSs were installed in 2, 1 and 0 

neighborhood(s) in the local, regional and national scenario respectively. In none of the 

scenarios congestion is fully mitigated, but a decrease in (% of) hours of congestion is seen 

for upward congestion: 7.35%, 5.84%, 4.15% in the local, regional and national scenario 

respectively. 

Table 5: Descriptive statistics for optimized 2030 prosumer perspective (n=791) 

Energy transition scenario Local Regional National 

Neighborhoods with ESS installed (amount (%)) 75 (9.5%) 44 (5.6%) 28 (3.5%) 

Direct self-consumption of neighborhoods with ESS 

installed (mean % (st. dev.)) 

36.8% 

(12.2%) 

37.1% 

(12.0%) 

40.1% 

(12.5%) 

Optimized self-consumption of neighborhoods with 

ESS installed (mean % (st. dev.)) 

43.6% 

(10.2%) 

43.7% 

(10.7%) 

45.7% 

(9.6%) 

Increase in self-consumption of neighborhoods with 

ESS installed (mean %-point) 

6.8% 6.6% 5.6% 

Normalized ESS capacity (mean kWh/kWp) 0.23 0.22 0.19 

Neighborhoods with ESS installed and upward 

congestion (initial and residual) (amount) 

5 3 1 

Decrease of upward congestion (mean % of hours) 7.35% 5.84% 4.15% 

Neighborhoods with ESS installed and downward 

congestion (initial and residual) (amount) 

2 1 0 

Decrease of downward congestion (mean % of hours) -1.19% 0% N.A. 
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Figure 12 and 13: Distribution of direct (left) and optimized (right) self-consumption of 

neighborhoods with ESSs for 2030, local scenario, prosumer perspective (n=75) 

 

 

 

 

 

 

 

 

Figure 14 and 15: Distribution of direct (left) and optimized (right) self-consumption of 

neighborhoods with ESSs in 2030, regional scenario, prosumer perspective (n=44) 

 

 

 

 

 

 

 

 

 

Figure 16 and 17: Distribution of direct (left) and optimized (right) self-consumption of 

neighborhoods with ESSs for 2030, national scenario, prosumer perspective (n=28) 
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To better illustrate the increase in self-consumption for different levels of direct self-

consumption, scatter-plots were generated for each scenario showing normalized ESS 

capacity (i.e. divided by PV-peak power installed) on the y-axis, and the percentage of direct 

self-consumption on the x-axis (figure 18 – 20). It shows that normalized ESS capacity follows 

a polynomial pattern and has a peak between 27% and 28% self-consumption in each 

scenario. After this result was generated, the mean increase in optimized self-consumption for 

neighborhoods with a direct self-consumption between 25% and 35% was calculated as 11,5% 

for the local scenario (n=20), almost double in comparison to the mean increase of all 

neighborhoods with ESS installed. 

Figure 18: ESS capacity/PV-peak power vs. direct self-consumption in 2030, local scenario, 

prosumer perspective (n=75) 

 

Figure 19: ESS capacity/PV-peak power vs. direct self-consumption in 2030, regional scenario, 

prosumer perspective (n=44) 
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Figure 20: ESS capacity/PV-peak power vs. direct self-consumption in 2030, national scenario, 

prosumer perspective (n=28) 

 

4.3. Cost-optimal mitigation options (2): DSO perspective 

For neighborhoods where initial congestion occurs (see section 4.1), basic descriptive 

statistics were gathered on cost-optimal mitigation options for the DSO perspective. These 

statistics are presented for each energy transition scenario and mainly focus on the intensity 

of ESSs implementation, PV-curtailment, and grid reinforcement. An overview can be found in 

table 6. 

Table 6: Descriptive statistics for optimized 2030 DSO perspective 

Energy transition scenario Local 
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Regional 

(n=322) 
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0.07% 

(N.A.) 
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320 

(100%) 

Percentage of BAU reinforcement costs saved in 
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38.2% 

(41.5%) 

34.2% 

(24.5%) 

29.5% 

(N.A.) 
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congestion. On average, grid reinforcement costs are reduced by 38.2% when PV-curtailment 

is implemented, although this value is subject to a very high standard deviation (41.5%).  

4.4. Cost-optimal mitigation options (3): combined perspective 

For neighborhoods where initial congestion occurs (see section 4.1), basic descriptive 

statistics were gathered on cost-optimal mitigation options for the combined perspective. 

These statistics are presented for each energy transition scenario and mainly focus on the 

intensity of ESSs implementation, PV-curtailment, and grid reinforcement. An overview can be 

found in table 7. However, it should be noted that significance of some values is questionable 

as they apply to a small amount of neighborhoods. To better illustrate how the combined 

perspective operates, a direct comparison with both the prosumer and DSO perspective is 

made for 6 neighborhoods where ESSs are implemented in the local scenario (table 8). 

Specifically, four indicators are compared: normalized ESS capacity (prosumers), increased 

self-consumption (prosumers), PV-curtailment (DSO), and reinforcement costs saved (DSO). 

Table 7: Descriptive statistics for optimized 2030 combined perspective 

Energy transition scenario Local 

(n=323) 

Regional 

(n=322) 

National 

(n=320) 

Neighborhoods with ESS installed (amount (%)) 6 (1.9%) 4 (1.2%) 1 (0.3%) 

Direct self-consumption of neighborhoods with ESS 

installed (mean % (st. dev.)) 

33.8% 

(16.7%) 

32.0% 

(17.7%) 

16.6% 

(N.A.) 

Optimized self-consumption of neighborhoods with ESS 

installed (mean % (st. dev.)) 

40.3% 

(14.8%) 

38.5% 

(15.5%) 

25.7% 

(N.A.) 

Increase in self-consumption of neighborhoods with ESS 

installed (mean %-point) 

6.5% 6.5% 9.1% 

Normalized ESS capacity (mean kWh/kWp) 0.22 0.16 0.13 

Neighborhoods with ESS installed and initial upward 

congestion (amount) 

4 3 1 

Neighborhoods with ESS installed and initial downward 

congestion (amount) 

3 1 0 

Neighborhoods with PV-curtailment applied (amount (%)) 3 (0.9%) 3 (0.9%) 1 (0.3%) 

Percentage of total PV-generated electricity curtailed 

(mean (st. dev.)) 

0.06% 

(0.03%) 

0.04% 

(0.03%) 

0.05% 

(N.A.) 

Neighborhoods with grid reinforcement applied (amount 

(%)) 

322 

(99.7%) 

321 

(99.7%) 

320 

(100%) 

Percentage of BAU reinforcement costs saved in 

neighborhoods with PV-curtailment (mean (st. dev.)) 

39.1% 

(35.0%) 

51% 

(42.7%) 

73.7% 

(N.A.) 
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Table 8: Comparison of neighborhood statistics for the combined perspective and the prosumer and DSO perspective (local scenario) (n=6) 

Neighborhood Prosumer perspective DSO perspective Combined perspective 

Normalized 

ESS capacity 

(kWh/kWp) 

Increased self-

consumption 

(%-point) 

PV-curtailment 

(% of total PV) 

Reinforce-

ment costs 

saved (%) 

Normalized 

ESS capacity 

(kWh/kWp) 

Increased self-

consumption 

(%-point) 

PV-curtailment 

(% of total PV) 

Reinforce-

ment costs 

saved (%) 

BU03212064 0.246 7.88% 0.073% 16.15% 0.248 7.92% 0.063% 38.66% 

BU03420705 0.437 12.44% 0.004% 100.00% 0.437 12.44% 0.000% 100.00% 

BU06320501 0.062 1.67% 0.000% 0.00% 0.096 2.58% 0.000% 33.28% 

BU06320604 0.152 5.51% 0.068% 12.69% 0.154 5.58% 0.063% 24.32% 

BU07070603 0.150 4.20% 0.000% 0.00% 0.191 5.29% 0.000% 8.32% 

BU07360108 0.397 11.31% 0.081% 23.82% 0.408 11.59% 0.068% 68.96% 

 

Across all indicators, the combined perspective behaves differently from the prosumer and/or DSO perspective. With regard to the prosumer 

perspective, higher normalized ESS capacity and increased self-consumption can be noted in 5 out of 6 neighborhoods. With regard to the DSO 

perspective, lower percentages of PV-curtailment can be observed in all appropriate neighborhoods. Moreover, reinforcement costs are lower in 

5 out of 6 neighborhoods- in the one neighborhood left over (BU03420705) PV-curtailment is fully mitigated congestion but is completely 

substituted by energy storage. To illustrate how mitigation options in the combined perspective operate over the course of a whole year, a load-

duration curve has been produced for neighborhood BU07360108 and is included in Appendix A (figure A1). 
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4.6. Sensitivity analysis 

To get insight in the effect that ESS investment costs have on the implementation of ESSs, a 

sensitivity analysis was performed on the local scenario for every perspective examined. 

Because of (run)time constraints, only the lowest and highest prices found in literature were 

examined. Using the highest price, no ESSs were installed in any of the perspectives. 

Moreover, even using the lowest price, no ESSs were installed in the DSO perspective. An 

overview of the results using the lowest price for the prosumer and combined perspectives can 

be found in table 9. 

In the prosumer and combined perspective, ESSs were installed in 437 and 91 

neighborhoods respectively, indicating a large difference with the reference ESS price. It also 

implies that in the combined perspective, purely downward congestion is mitigated in the 

majority of the neighborhoods. Using the lowest ESS price, ESS capacity is on average more 

than 7 times bigger in the prosumer perspective and more than 4 times bigger in the combined 

perspective. The mean increase in self-consumption is 10.4% and 7.1% for the prosumer and 

combined perspective respectively. In the combined perspective, reinforcement costs are 

reduced by 48.1% on average in comparison to BAU costs. 

Table 9: Sensitivity analysis: descriptive statistics for optimized 2030 prosumer and combined 

perspectives using lowest ESS price for investment (local scenario) 

Perspective Prosumer 

(n=791) 

Combined 

(n=323) 

Neighborhoods with ESS installed (amount (%)) 437 (55.2%) 91 (28.2%) 

Increase in self-consumption of neighborhoods with ESS 

installed (mean %-point) 

10.4% 7.1% 

Normalized ESS capacity (mean kWh/kWp) 1.56 0.95 

Percentage of BAU reinforcement costs saved in 

neighborhoods with PV-curtailment (mean (st. dev.)) 

N.A. 48.1% 

(37.1%) 
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5. Discussion 

This section discusses the reliability of the results obtained in this study. First, general 

limitations are conversed, mainly related to the methodology of this study. Secondly, 

as preliminary versions of ASM-2 supply and demand profiles are used, limitations of 

input data are discussed.  

5.1. General limitations 

2030 supply and profiles 

As this study only assesses supply and demand profiles for 2030, optimization with regard to 

the implementation of mitigation options that span several years is inherently not very accurate. 

This study should however not be seen as an optimization study for actual implementation, but 

as a first insight to demonstrate economic and technical viability of ESSs on neighborhood 

scale. 

Perfect forecast 

Perfect forecast allows for ESS control strategies to perform optimally. Especially for the 

combined perspective, where ESSs are used to mitigate congestion and must charge at the 

right moment, some reservations need to be made. As congestion mitigation has priority in the 

combined perspective, the ESS cannot charge before the peak PV-surplus has passed. In a 

real-life situation some mistakes are inevitable in real life in this regard, and thus by assuming 

perfect forecast this leads to an overestimation of self-consumption and ESS profitability. 

Moreover, it might lead to an underestimation of PV-curtailment as this never has to be used 

as an ‘emergency option’, but only in the smallest, pre-calculated amounts.  

Hourly resolution and perfect electricity exchange 

As this study assesses hourly supply and demand profiles, some peaks in either supply or 

demand cannot be monitored. This inherently ‘smoothens’ the electricity profile and reduces 

the ‘visibility’ of congestion, and thus possibly incites an underestimation of PV-curtailment or 

ESSs implemented. Moreover, perfect electricity exchange was assumed within 

neighborhoods for a time resolution of one hour, but in reality rooftop-PV systems and 

electricity demand are not evenly distributed throughout a neighborhood, nor throughout time. 

Inevitably, some losses will occur in the process of exchanging electricity with other 

connections, and some electricity exchange cannot take place at all because of the actual 

(smaller) size of low-voltage networks. As a result, it is possible that in reality hourly PV-

surpluses are higher and direct self-consumption levels are lower. Considering the relatively 

low amount of neighborhoods with low direct self-consumption, this could lead to a 

underestimation of the amount of ESSs installed. 
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5.2. Limitations of input data 

At the time of writing this thesis, several ASM-2 supply and demand profiles are still in 

their preliminary versions and are subject to some limitations. While most of these limitations 

will be addressed in the final result of the ASM-2 project, this section discusses the most 

important limitations for the profiles (not) used in this study. 

Demand: EVs (not included) 

The most obvious input data limitation is the absence of profiles regarding electricity 

demand for EVs. Especially in residential areas EVs are often charged during evenings, 

possibly leading to higher peaks in demand. However, EV batteries are also likely to contribute 

to the flexibility of low-voltage networks through ‘smart charging’ initiatives. 

Supply: rooftop-PV 

Rooftop-PV supply profiles used in this study assume that all PV-systems are attached 

to the low-voltage grid, while in reality large producers (with connections higher than 160 kVA 

(Liander, 2014)) are connected directly to the mid-voltage network. This might lead to an 

overestimation of total electricity supply and thus in some cases overestimation of congestion 

and (capacities of) ESSs installed. Moreover, PV-systems in future scenarios are assumed to 

be placed at orientations and angles corresponding to currently installed systems. As the space 

available for rooftop-PV decreases with higher capacities installed, this might lead to an 

overestimation of optimally placed PV-systems, which might in turn lead to an overestimation 

of electricity supply.  

Demand: conventional 

The assumption that conventional demand will stay constant in comparison to present-

day data might lead to an underestimation for future years, when more electrical appliances 

are likely to contribute to conventional demand. However it is also likely that appliances will be 

more efficient, possibly canceling out this underestimation (Allouhi et al., 2015). Another 

limitation is that public services like street lighting are not taken into account, which might lead 

to a smaller peak-demand during evenings. This effect is however considered relatively small. 

Specifically for utility profiles, some data on remote connections is not available due to 

privacy reasons, possibly causing underestimation of electricity use in certain areas. On the 

other hand, also because of privacy reasons, some data on large consumers might be 

clustered with small consumers. This might lead to a possible overestimation of electricity use 

in certain areas, as in reality large consumers (with connections higher than 160 kVA (Liander, 

2014)) are connected directly to the mid-voltage network. Hence it is a possible explanation 

for downward congestion seen in some neighborhoods in 2017. 
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Demand: HPs 

Residence heat demand profiles for HPs are based on a constant coefficient of 

performance (COP), which means that outside temperatures are not taken into account. This 

might lead to under or overestimation of electricity use in colder or warmer days. Moreover, 

the input data is based on national policy ‘advice’ regarding heating strategies on local level, 

which at this point does not seem to take into account legacy of heating strategies already in 

place. Specifically for utility profiles, underlying gas-use profiles are not based on utility type. 

This leads to general inaccuracy of hourly profiles when for example night-time operation or 

periodical peaks in demand are not specifically accounted for. 

6. Conclusion 

Following all the results provided, the research question for this study was answered: 

“To what extent can ESSs serve as a cost-optimal mitigation option to address 

congestion and increase self-consumption in 2030?” 

Considering that the results of this study are based on preliminary ASM-2 supply and 

demand profiles for a restricted geographical scope, and that optimization is carried out using 

perfect forecast, this study finds that ESSs are likely to serve as a cost-optimal mitigation option 

in Dutch low-voltage networks by 2030 for the objective of increasing self-consumption, 

however under certain circumstances. Optimization results for the prosumer perspective and 

all ASM-2 energy transition scenarios show that for direct self-consumption levels up to ± 55% 

ESSs can be profitable on neighborhood scale. Moreover, optimal direct self-consumption 

levels were obtained as between 27-28% for all scenarios, with normalized ESS capacity 

peaking around these levels. Out of the 791 neighborhoods taken into consideration, ESSs 

were installed in 75, 44, and 28 neighborhoods in the local, regional and national scenario 

respectively. Self-consumption was increased on average by 6.8%, 6.6% and 5.8% for each 

scenario respectively. Actual applicability of ESSs will be very dependent on ESS price 

developments as sensitivity analysis performed for the local scenario shows a large variation 

in the number of ESSs installed: 437 for the lowest and 0 for the highest prices found in 

literature. 

Moreover, this study finds that purely to address congestion in distribution transformers, 

ESSs are not likely to serve as a cost-optimal mitigation option in Dutch low-voltage networks 

by 2030. Optimization results for the DSO perspective show that, even for the lowest ESS price 

found in literature, no ESSs were installed in any of the energy transition scenarios. PV-

curtailment is applied only in 4, 3 and 1 neighborhood(s) in the local, regional and national 

scenarios, mainly because upward congestion does not occur very often. 
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Finally, in combination with the incentive to reduce electricity costs for prosumers, ESSs 

might actually be used as a cost-optimal mitigation option to (partly) mitigate congestion in 

Dutch low-voltage networks by 2030. Optimization for the combined perspective showed that 

only 6, 4 and 1 ESS(s) were installed in the local, regional and national scenario respectively, 

primarily mitigation upward congestion and saving 46% of reinforcement costs (compared to 

BAU costs) on average. Self-consumption increase is also boosted in comparison to the 

prosumer perspective, but often little and never more than 1 %-point. PV-curtailment is applied 

only in 3, 3 and 1 neighborhood(s) in the local, regional and national scenario respectively, 

mainly because upward congestion does not occur very often. For one neighborhood, PV-

curtailment was completely substituted by an ESS. Overall it can be noted that the combined 

perspective in most cases provides better results for both parties involved, while costs are 

shared. Sensitivity analysis for the local scenario showed that for the lowest ESS price found 

in literature 91 ESSs were installed, thereby also mitigating downward congestion and saving 

48.1% of reinforcement costs (compared to BAU costs) on average. Dissimilarly no ESSs were 

installed for the highest ESS price found in literature, again underlining the importance of future 

development of ESS prices. 

7. Recommendations 

After completion of this study, supplementary research will soon follow as part of the 

final ASM-2 results. Large differences will be optimization on full geographical scale (i.e. for all 

neighborhoods in the Netherlands), and improvements with regard to input data. In addition, 

this section provides some other recommendations for further research. 

First, it is recommended to incorporate supply and demand profiles for multiple years 

as this will give a more realistic insight in optimal ESS capacity and optimal moment in time for 

ESS deployment. Moreover, other types and combinations of ESSs that were out of scope for 

this study might also be researched in depth, for example VRFBs for business parks with lots 

of free space, or aggregated home-batteries controlled from a central unit. Furthermore, as 

actual applicability of ESSs is very case-specific, it is recommended to perform research that 

takes into account actual geographical boundaries of low-voltage networks, and capacity and 

age data of individual network components. Practicality of this type of research is however very 

dependent on data availability, which is currently restricted to DSO use because of privacy 

reasons.  

In earlier studies DSOs have claimed to see little to no potential for ESSs in low-voltage 

networks for the sole function of mitigating congestion (ECN, 2017). While this study 

acknowledges this, it is recommended to assess actual possibilities to employ ESSs in a 

multifunctional setting as this will likely bring to light the full potential of ESSs for congestion 

mitigation. However for realistic predictions regarding ESS performance in such a setting, 
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perfect forecast should be avoided. In addition, Dutch policy does not allow DSOs to explicitly 

engage in the practice of energy storage, and prosumers are not allowed to store energy 

outside of their own residence. As this limits the possibilities for (multifunctional) storage on 

neighborhood scale, amendments of laws and regulations are desirable in this regard. 

Lastly, predictions on future ESS investment prices have been adjusted to lower values 

multiple times in recent years. As profitability of ESSs is heavily dependent on developments 

regarding ESS investment prices, it is recommended to adopt a monitoring approach in this 

regard and periodically assess the potential of ESSs to become cost-optimal in the future. 
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Appendix A 
Figure A1: Load duration curves for neighborhood BU07360108 in local scenario, combined perspective 

 

Note. Negative power represents PV-surplus or electricity discharged to the mid-voltage network. Positive power represents electricity demand. 

Reinforced grid capacity equals 4172 kVA (both for positive and negative power), while currently installed grid capacity is 3400 kVA. 
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