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Abstract

We propose a machine learning algorithm, based on decision trees and a bagging procedure
that helps us to study the allowed combinations of degeneration types in Calabi-Yau
threefolds. Many Calabi-Yau manifolds have been constructed and classifying them is an
important question. Recently a classification method for Calabi Yau threefolds has been
proposed, based on studying the degeneration limits of the manifold. The degenerations
correspond to taking the limit to the boundary of the Kähler moduli space. At a
boundary, so-called limiting mixed Hodge structures can be defined, which are uniquely
represented by 2 numbers. Determining these for all possible limits of the Kähler moduli
space gives a graph-like structure, that can be used to classify the manifold. These
graphs consist of enhancement chains, which are sequences of subsequent limits together
with the corresponding type and value of the limiting Hodge structure. The rules for
the allowed single enhancements chains are explicitly known. The machine learning
algorithm developed in this work is able to learn most of these known rules from data
on Calabi-Yau threefolds. The algorithm is used to learn the rules on the, previously
unknown double enhancements. We find strong evidence that the proposed algorithm
is able to learn rules on the allowed single and double enhancements in Calabi-Yau
threefolds given enough input.
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Chapter 1

Introduction

The study of string theory has had huge impact on both physics and mathematics
[1]. One important mathematical object for which string theory has provided
many new insights are Calabi–Yau manifolds. These manifolds can be used to so
called compactify the 10 dimensional theory that arises in string theory. String
theory is a (and perhaps the) theory of quantum gravity and has many fascinating,
useful features. However, for string theory to be a proper, consistent theory it
turns out that we need 10 dimensions to describe our world. This is of course not
how we perceive our world, where we only have 3 spacial and 1 time dimension.
The idea behind compactification is to curl up these six extra dimensions, to make
them so small that we cannot observe them. How we compactify turns out to
greatly influence the effective theory at low energy. The reason to use Calabi–Yau
manifolds is that they keep precisely the right amount of supersymmetry [2]. This
leads to a major research question: which low energy, effective theories can emerge
from string theory? Finding an answer to this question is done in the so called
Swampland program which tries to identify all effective theories which are and are
not consistent with quantum gravity. All the effective field theories that are con-
sistent with string theory are in the landscape while the rest is in the swampland [3].

An approach to study the landscape and swampland would be to try all possible
compactifications on Calabi–Yau manifolds. Unfortunately this is not possible due
to the huge number of possible Calabi–Yau manifolds. The number of constructed
Calabi–Yau manifolds by Kreuzer and Starke is 473, 800, 776 [4]. Working through
all these possible compactifications is not possible due to the computational
complexity [5]. Therefore finding criteria for when theories are in the swampland
or not is a big open problem. There are many criteria stated as swampland
conjectures [3], an example being the Swampland Distance Conjecture. To study
these conjectures it is helpful to classify Calabi–Yau manifolds. It is however
very difficult to classify the Calabi–Yau manifolds, since the data is either very
difficult to handle and basis dependent or to generic and captures only a little bit
of information about the manifold.

In recent work [6, 7, 8] a new method has been proposed to classify Calabi–Yau
threefolds. This method is based on the mixed Hodge structure and Deligne split-
ting [9, 10]. The mixed Hodge structure is a refinement to the Hodge structure
and it can be studied at the boundaries of the moduli space of a Calabi–Yau
manifold, where the normal Hodge structure is not well defined any more at these
boundaries. It can be used to classify the degeneration limits [11]. This classifica-
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tion and especially the allowed types of subsequent degenerations by normally
intersecting divisors will be the main study of this thesis. The construction of the
classification data is based on advanced mathematics but although difficult to fully
understand, computing the actual classification is simple and can be efficiently
done on a computer. Due to this efficient way of classifying the Calabi–Yau
manifolds, we can use this on two data sets of constructed Calabi–Yau manifolds,
one set classified by Kreuzer and Skarke and the other set being the complete
intersection Calabi–Yau manifolds (CICY).

In these modern days, having lots of data available is almost always linked with
using machine learning. Since 2012, when the famous paper by Krizhevsky,
Sutskever and Hinton [12] was published, the interest in machine learning has
been ever increasing. This can also be seen by the number of physics papers that
have been published in recent years using the techniques of machine learning. In
2017 the first applications of machine learning in string theory were published
by four independent groups [13], [14], [15] and [16]. Although the term machine
learning has had a lot of attention since 2012, it has been around for much longer
and is a broader field than the study of (deep) neural networks alone. For instance
in 1984 Probably Approximately Correct (PAC) learning, which is a general formal
learning model [17] was already introduced by Valiant [18].

The goal of this thesis is to apply machine learning techniques on the vast amount
of available data on Calabi–Yau manifolds. We want to study the enhancements
of the classification of Calabi–Yau manifolds at their infinite volume limits. To
do this with machine learning techniques, we have developed an algorithm. This
algorithm uses decision trees together with a bagging procedure from Positive
Unlabelled learning, concepts that will be introduced in this thesis. With this algo-
rithm we are able to study the enhancements patterns obtained from Calabi–Yau
manifolds and find the known enhancement rules as presented in [6]. With this
algorithm we want to give new insights into the rules of the allowed enhancements
as presented by [11] and hope to answer the question raised in [6] on the allowed
combinations of two Deligne splittings.

Throughout this thesis we assume that the reader is familiar with complex geome-
try and specifically the study of Calabi–Yau manifolds. Terms such as complex
structure, moduli space, Hodge decomposition and cohomology should be known.
For the purpose of this thesis, it would have become too elaborate to also explain
the basic complex geometry. If the reader feels uncertain about any of these
objects we would recommend [19] for an introduction into complex geometry (or
[20] for a physicist approach), [21] for learning about Calabi–Yau manifolds in
string theory and [22] for an introduction to Hodge structures.

This thesis is structured as follows. In Chapter 2 we present the theory behind
the classification of the degeneration at the large volume point. This is done
by introducing the Mixed Hodge Structure and the Nilpotent orbit theorem. In
Chapter 3 we will give general introduction to machine learning and then discuss
the specific decision tree algorithm which is the basis of our method. To use
this on the available data we have to use so called Positive Unlabelled machine
learning, which we also introduce in this chapter. Next we present the algorithm
used to find the enhancement rules in Chapter 4 and also discuss the validity of
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the algorithm. In Chapter 5 we present and discuss the results of the algorithm
on the enhancement rules.
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Chapter 2

Hodge theory and classifying
the limits

In this chapter we will provide the mathematical tools which are necessary to
classify the Calabi–Yau threefolds (Y3). This classification is done by studying the
moduli space of the Y3. We first introduce the period vector Π and its behaviour
at the boundary of the complex structure moduli space. This is done by working
with the monodromy of the period vector, giving us the monodromy matrix.
Next we present the Nilpotent Orbit theorem, in which this matrix is used. This
theorem provides an expression for the period vector at the large volume point
up to exponential corrections. We then introduce the Mixed Hodge structure and
Deligne splitting and we use the approximation of the period vector at the large
volume point to study these structures. By the Deligne splitting we can finally
classify the Calabi–Yau manifolds, due to the restrictions of the values in the
splitting. In the last part of this chapter, we explain how to explicitly calculate
the Deligne splitting for Calabi–Yau threefolds. This chapter is based on [6] and
[7], which are based on the work presented in [11] where the used notation has
been introduced.

2.1 The period vector

We work with Y3, for which we have a complex structure and Kähler moduli
space. The goal is to study the complex structure moduli space Mcs, especially
the boundaries of this space. Via mirror symmetry this can all be mapped to the
Kähler moduli space and thus the presented method can also be used to study
MK , we will shortly discuss this but refer to for instance [6] for a more detailed
story. The boundaries (or singularities) of the moduli space correspond to the
degeneration of the Calabi–Yau manifold. The boundaries can be studied using
Mixed Hodge structures. We will first focus our discussion on Mcs but we keep
in mind that this can be directly related to MK by mirror symmetry.

SinceMcs is also a Kähler manifold, it has a Kähler potential which can be locally
determined by

K(z, z̄) = − log

[
i

∫

Y3

Ω ∧ Ω̄

]
, (2.1.1)

with Ω a (3, 0)-form. This form can be expanded into a real integral basis γI ,
I = 1, ..., 2h2,1 + 2
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Figure 2.1 – Three degenerate complex manifolds, represented by a genus-two
Riemann surface. The two divisors of the discriminant locus ∆ intersect normally
and at this intersection the singularities of the Calabi–Yau manifold worsens.

Ω = ΠIγI , ηIJ = −
∫
Y3
γI ∧ γJ . (2.1.2)

So plugging this into Equation 2.1.1 gives K(z, z̄) = − log
[
iπ̄IηIJ π

J ].

For us, it’s crucial that we can expand Ω into a real integral basis since the πI

terms, called the periods can be studied using powerful mathematical techniques.
As a notation we use the bold lettered π to indicate the vector as

Π =




Π1

...

Π2h1,1+2


 .

For now we only need to know that the period vector Π is a multi-valued function
that experiences monodromies [7]. When a function experiences a monodromy
this means that when it starts at a point z and is moved around a singular point
z∗ back to z, it has a different value. This means that the behavior of Π tells
us something about the singularities of Mcs and these are exactly the points we
want to study. We will later study the period vector in more details.

The points inMcs for which the underlying Y3 becomes singular form the discrim-
inant locus ∆s. By moving on ∆s, the singularity of the Y3 changes and can get
worse, see Figure 2.1. This will be very useful for us. However ∆s can have many
intersecting components, making its structure non-trivial and therefore difficult to
study. It can be shown ([7] and references therein) that there exists a resolution
of ∆s to more well behaved discriminant locus ∆ , for which ∆ = ∪k∆k such
that all ∆k intersect normally. In essence this means that we can study how the
Y3 becomes more degenerate when taking the intersection with more and more
resolutions.

Since Π experiences monodromies, we can study this when moving around ∆.
This can be done by introducing local coordinates zI such that ∆k is given by
zk = 0. For these coordinates, moving around ∆k corresponds to zk → e2πizk.
This also directly gives us a way to study the behavior of a selection of the ∆k

normally intersecting divisors by taking for instance only zn = zm = 0 which gives
the intersection of ∆n and ∆m.

When we take zk → e2πizk, we get

Π(. . . , e2πizk, . . . ) = T−1
k Π(. . . , zk, . . . ), (2.1.3)
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where Tk is the monodromy operator which acts on the integral basis of 3-forms.
These operators are unipotent and we can define nilpotent matrices from these by

Nk = log(Tk), (2.1.4)

which is called the log-monodromy matrix. These matrices will play a crucial role
in classifying the Y3.

2.1.1 Nilpotent Orbit theorem

Now that we have discussed the log-monodromy matrix, we can further study
the period vector for which we need the next crucial ingredient; the Nilpotent
Orbit theorem. This theorem gives an approximation of Π on a local patch
which contains the discriminant locus ∆. This can be made in such a way that
Π is studied near the intersection of nε divisors ∆i but away from any other
intersection. In local coordinates this then corresponds to

zI = (zi, ζk) s.t. ∆i = 0 is given by zi = 0. (2.1.5)

The Nilpotent orbit theorem states that [7]

Πnil = exp
[ nε∑

j=1

− 1

2πi
(log zj)Nj

]
a0(ζ) ≡ exp

[ nε∑

j=1

−tjNj

]
a0(ζ) (2.1.6)

approximates the period Π up to polynomial corrections in zi near zi = 0, where
Nj are the log-monodromy matrices. a0(ζ) is a holomorphic function and for
later use we have defined the coordinates ti ≡ 1

2πi log(zi). In these coordinates
the Nilpotent orbit approximations holds up to exponential corrections. It is
important that Πnil has the same transformation as Π. As we will see shortly, at
the large complex structure 1 the Nilpotent orbit approximation can be associated
to a limiting, polarized Mixed Hodge structure. This structure will be used to
classify the Y3.

2.2 Hodge Structure

The Mixed Hodge Structure (MHS) is a powerful mathematical tool and a refine-
ment to the Hodge Structure (HS). A HS is a decomposition of a vector space,
where the decomposition has to obey some relation. For the purpose of this thesis
we will not discuss the underlying Hodge theory fully, for this we recommend [19],
or more focused on our purpose [6],[7]. From Hodge theory we know that the
third cohomology, for a given complex structure, splits as

H3(Y3,C) = H3,0 ⊕H2,1 ⊕H1,2 ⊕H0,3, (2.2.1)

which is a Hodge decomposition of weight 3. The decomposition is heavily tied to
the complex structure since the spaces Hp,q consists of (p, q) forms

αp,q = ai1...ipj̄1...j̄qdz
i1 ∧ · · · ∧ dzip ∧ dz̄j̄1 ∧ · · · ∧ dz̄j̄q .

1When not at the large complex structure you might also need a1(ζ)
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When moving through Mcs, although the space H3(Y3,C) stays the same, the
decomposition of the (p, q) forms change since the complex structure changes.
This can be explicitly seen from the fact that Hp,q are vector spaces and the period
vector Π spans the space H3,0. The period vector is a function of the complex
structure moduli and thus if the moduli change, then this function changes and
therefore H3,0 changes. By moving towards and going to the boundaries of Mcs,
this decomposition breaks down since at the boundaries of Mcs the complex
structure of the Y3 degenerates and this decomposition of forms is not well defined
any more. Again this can also explicitly be seen from the period vector, since
Πnil breaks down when sending zj → 0. Therefore the MHS is needed, which
gives extra structure which is preserved even when the Y3 becomes singular.

First we need to study how 2.2.1 changes when moving through Mcs, for which
we can best use the filtration definition of the HS. Suppose we have a Hodge
structure H of weight n. The Hodge filtration F is given by [19]

F iHC ≡ ⊕p≥iHp,q,

and

HC = F 0 ⊃ F 1 ⊃ ... ⊃ F k ⊃ {0}.
In the case of Y3 this gives us the following

F = (F 3, F 2, F 1, F 0)

with

F 3 = H3,0, F 2 = H3,0 ⊕H2,1

F 1 = H3,0 ⊕H2,1 ⊕H1,2, F 0 = H3,0 ⊕H2,1 ⊕H1,2 ⊕H0,3

It is important to note that H3,0 is the space spanned by (3, 0)-forms and that Ω
is an unique (3, 0)-form. Therefore F 3 is encoded by Ω.

This is very useful since we can obtain the other spaces F p by taking derivatives
on F 3. This is done by using the Gauss Manin connection, ∇I ≡ ∇∂/∂zI by

which we have ∇IF p ⊂ F p−1 and for Y3 we even have that all elements of F p

for p < 3 are obtained by derivatives of F 3 [6]. In this manner Ω contains all
the information on the filtration and with the result from the Nilpotent Orbit
theorem we have a beautiful and neat way to study Ω.

2.2.1 Polarized Hodge structure

Although not needed at this point, we also introduce the polarized Hodge structure,
which is a Hodge structure H with the extra requirement that it has a bilinear
form S(,̇)̇ on HC such that the following conditions are satisfied

S(Hp,q, Hr,s) = 0 for p 6= s, q 6= r, (2.2.2)

ip−qS(v, v̄) > 0 for any non-zero v ∈ Hp,q. (2.2.3)
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We have already introduced the anti-symmetric matrix η = ηIJ , which we can
use to define the anti-symmetric bilinear form

S(v, w) ≡ S(v,w) = vT ηw ≡ −
∫

Y3

v ∧ w. (2.2.4)

This bilinear form gives the Hodge structure coming from the third cohomology
its polarization. We will need this to determine the type of Deligne splitting that
we are going to introduce next.

2.3 Deligne Splitting

The MHS is related to the Deligne splitting, which gives a more straightforward
way to relate objects to the points in ∆. The Deligne splitting can be seen as a
refinement of the Hodge decomposition 2.2.1 which keeps structure even when
Y3 has become singular. The Deligne splitting is given by Ip,q, p, q = 0, . . . 3 and
pictorially it is given as

(H3,0, H2,1, H1,2, H0,3)
move to ∆−−−−−−−−→

I3,3

I3,2 I2,3

I3,1 I2,2 I1,3

I3,0 I2,1 I1,2 I0,3

I2,0 I1,1 I0,2

I1,0 I0,1

I0,0

(2.3.1)
This splitting can be studied by taking the filtration F on a point in ∆. In local
coordinates we have that ∆k is given by zk = 0. The easiest situation is when
only one zk is sent to zero, so we will look at z1 = 0 while all other coordinates
are zk 6= 0. This means that we look at the points of ∆1 which are not in any
other ∆k. We sent z1 → 0 or in the t coordinates as introduced in the Nilpotent
orbit theorem we have t→ i∞, which gives us

lim
t1→i∞

e−t
1N1F p.

It is possible to associate

(F (∆o
1), N1)→ {Ip,q(∆o

1)}.
To do this we have to use the monodromy weight filtration Wi, i = 0, . . . 6
which is a set of vector spaces that can be associated to N . For Y3 these spaces
can be explicitly determined from images and kernels of N,N2 and N3 (the
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log-monodromy matrices in the Nilpotent orbit) as

W6 = V,
∪
W5 = KerN3,
∪
W4 = KerN2 + ImN,
∪
W3 = KerN + ImN ∩KerN2,
∪
W2 = ImN ∩KerN + ImN2,
∪
W1 = ImN2 ∩KerN,
∪
W0 = ImN3.

(2.3.2)

This is where the MHS shows up, the weight filtration is the extra data needed to
define from a HS the MHS. To associate F∆ and N to Ip,q we have

Ip,q = F p∆ ∩Wp+q ∩
(
F̄ q∆ ∩Wp+q +

∑

j≥1

F̄ q−j∆ ∩Wp+q−j−1

)
. (2.3.3)

For the classification of the Y3 we need the following definitions and properties.
The first very important feature of the nilpotent matrices N is how they act upon
the filtrations F and W , NFN∆ ⊂ F∆p− 1 and NWi ⊂Wi−2. This gives us

NIp,q ⊂ Ip−1,q−1. (2.3.4)

Furthermore we define the primitive parts

P p,q = Ip,q ∩ kerNp+q−2, (2.3.5)

which can be used in the following

Ip,q =
⊕

i≥0

N i(P p+i,q+i). (2.3.6)

Since the MHS comes from HS as the decomposition of the third cohomology of a
Y3, which has a polarization, the MHS has the same polarization and is therefore
a polarized MHS. This gives the following properties

S(P p,q, N lP r,s) = 0 for p+ q = r + s = l + 3 and (p, q) 6= (s, r), (2.3.7)

ip−qS(v,Np+q−3v̄) > 0 for v ∈ P p,q, v 6= 0. (2.3.8)

Now Ip,q is clearly dependent on the point considered in ∆ and thus differs when
taking (more) intersections.
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∑
= h3,0

∑
= h2,1

∑
= h1,2

∑
= h0,3

i3,3

i3,2 i2,3

i3,1 i2,2 i1,3

i3,0 i2,1 i1,2 i0,3

i2,0 i1,1 i0,2

i1,0 i0,1

i0,0

i3,3

i3,2 i2,3

i3,1 i2,2 i1,3

i3,0 i2,1 i1,2 i0,3

i2,0 i1,1 i0,2

i1,0 i0,1

i0,0

Figure 2.2 – In the left diamond, the summation properties of the diagonal rows is
shown. The rows all sum to hp,q. In the left diamond the symmetry axis for the
diamonds are shown.

To use the Deligne splitting as classification it is useful to introduce the limiting
Hodge diamond.

i3,3

i3,2 i2,3

i3,1 i2,2 i1,3

i3,0 i2,1 i1,2 i0,3

i2,0 i1,1 i0,2

i1,0 i0,1

i0,0

, ip,q = dimC I
p,q . (2.3.9)

By the relation between Ip,q and H3(Y3,C) we get the following equality

hp,3−p =
3∑

q=0

ip,q, p = 0, . . . 3, (2.3.10)

see Figure 2.2. Since h3,0 = 1 for Y3, the number of shapes of the limiting Hodge
diamonds is reduced to 4, one for each value of i3,d with d = 0, . . . , 3. These are
labelled with Roman numbers as I, II, III and IV (see Table 2.1). This notation
has been introduced by [11]. Furthermore we have

ip,q = iq,p = i3−p,3−q,

thus i2,2 = i1,1 and i1,2 = i2,1. This gives mirror symmetries in the limiting
Hodge diamond as given in Figure 2.2. Due to the symmetries there is only one
independent value ip,q which are denoted as a,b,c and d. This gives the following
4m possible Deligne splittings

Ia , a = 0, ...,m ,

IIb , b = 0, ...,m− 1 , (2.3.11)

IIIc , c = 0, ...,m− 2 ,

IVd , d = 1, ...,m ,

where m is the dimension of the considered moduli space. In our case this will be
the Kähler moduli space and thus m = h1,1.
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name Hodge diamond labels N, η

Ia
a′ a′

a

a
a+ a′ = m
0 ≤ a ≤ m

rank(N,N2, N3)
= (a, 0, 0)
ηN has a nega-
tive eigenvalues

IIb
b′

b

b′
b b + b′ =

m− 1
0 ≤ b ≤
m− 1

rank(N,N2, N3)
= (2 + b, 0, 0)
ηN has b neg-
ative and 2
positive eigen-
values

IIIc
c′ c′

c

c c + c′ =
m− 1
0 ≤ c ≤
m− 2

rank(N,N2, N3)
= (4 + c, 2, 0)

IVd d

d′ d′
d

d+ d′ = m
1 ≤ d ≤ m rank(N,N2, N3)

= (2 + d, 2, 1)

Table 2.1 – The possible different types and values of Deligne splitting, together with
their corresponding limiting Hodge diamond. The classification of the diamonds by
type and value was introduced by [11]. The value m corresponds to the dimension
of the moduli space we are working in. In the diamonds, the intersections without
a dot represent a zero and those with a dot but without a letter represent an one.
In the third column the relation and restriction on the values in the diamond
are given. In the fourth column a specific way to determine the type of Deligne
splitting is given.[7]

2.3.1 Determining the Deligne splitting

To be able to use the Deligne splitting to classify the Y3, we want to be able to
explicitly determine the splitting easily. From Equations 2.3.4,2.3.6, 2.3.7 and
2.3.8 we can determine that the ranks of Nk are different for the different types
of Deligne splitting.

As an example, we could look at the Ia. In this case we have i3,0 = i0,3 = 1,
i2,2 = i1,1 = a and i2,1 = i1,2 = a′, so all other ip,q are zero and thus their
corresponding spaces are empty. So if we apply N to the non-empty spaces we
see that
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NI2,2 ⊂ I1,1, NI1,1 ⊂ I0,0 and N2I2,2 ⊂ I0,0 = ∅.
So we see that the rank(N2) = 0 (and therefore also rank(N3) = 0). Similar
analysis can be done for the other 3 types. However, for both types I and II
rank(N2) = 0, thus to distuinguish between those types we also need to deter-
mine the sign of the eigenvalues of ηN . This can be done using the polarization
condition.

Up until now our discussion has taken place in Mcs, but we will now use mirror
symmetry to explicitly calculate the Deligne splitting in the Kähler moduli space.
By mirror symmetry we know that for every Y3 there is a mirror manifold Ỹ3

related to it. The association is via the large complex structure point, which
is mapped to the large volume point in the mirror Calabi–Yau manifold [6]. A
full discussion of how to do this properly can be found in [6, 7], but for us it
is enough to know that we can do this mapping and apply the whole mathe-
matical theory we just discussed to the large volume points in Kähler moduli space.

Now we only need an explicit way to compute N and η for a point in ∆ to
determine the Deligne splitting at this point. It can be shown [6] that the period
vector Π can be written in terms of the topological terms

KIJK =

∫

Y3

ωI∧ωJ∧ωK , cI =
1

24

∫

Y3

ωI∧c2(Y3), and χ =

∫

Y3

c3(Y3), (2.3.12)

where KIJK are the triple intersection numbers and c2(Y3) and c3(Y3) are the
Chern classes, as [6]

Π =




1
tI

1
2KIJKtJ tK + 1

2KIJJ tJ − cI
1
6KIJKtItJ tK − (1

6KIII + CI)t
I + iζ(3)χ

8π3


 . (2.3.13)

With the expression for the period vector (2.3.13) we can now determine an explicit
form for the monodromy transformation matrices by apply the shift tI → tI + 1
to Π, which is equivalent to taking zk → e2πizk to Equation 2.1.3. This gives

TA =




1 0 0 0
−δAI δIJ 0 0

0 −KAIJ δIJ 0
0 1

2(KAAJ +KAJJ) −δAJ 1


 , (2.3.14)

and from this we get, using Equation 2.1.4

NA =




0 0 0 0
−δAI 0 0 0
−1

2KAAI −KAIJ 0 0
1
6KAAA 1

2KAJJ −δAJ 0


 . (2.3.15)

It is also possible to determine an explicit expression for η [7]

η =




0 −1
6KJJJ − 2bJ 0 −1

1
6KIII + 2bI

1
2(KIIJ −KIJJ) δIJ 0

0 −δIJ 0 0
1 0 0 0


 . (2.3.16)
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To determine the type of Deligne splitting, we need to determine the rank of
NA, N

2
A and N3

A. Due to the triangular structure of NA this will turn out to be
rather simple. In the next section we will discuss how the Deligne splitting can
be determined when taking the normal intersection of multiple divisors, which is
the more general case. We will present the explicit calculation that we will use to
determine the Deligne type.

2.4 Enhancement rules

Having introduced a way to associated the Deligne splitting to specific limit in
the moduli space, we want to apply this to classify the Calabi–Yau manifolds. To
do this, we will take all combinations of coordinates in the Kähler moduli space
and determine the type of Deligne splitting when sending the coordinates in the
combination to i∞, keeping the real part constant. Roughly this means that we
take all the limits in which one coordinate ti1 is send to i∞ and determine the
resulting Deligne splitting, than we take all the limits in which two coordinates
ti1 , ti2 are both send to i∞ and determine the Deligne splitting. This process
is continued until all the possible limit combinations are classified. To do this
properly, we would have to introduce an index set I = (i1, . . . , in) and define
a growth sector. However, for us it is sufficient to have this picture of sending
groups of coordinates to infinity. For a detailed explanation we refer to [11] for a
more rigid approach and we refer to [6] for a approach more applied to our case.
We will just discuss the results which are most important for our discussion.

To determine the Deligne splitting, we have to find the log-monodromy matrix
for each limit. It has been shown that this matrix for a specific limit

tI ≡ (ti1 , . . . , tin)→ i∞,
is given by

N(I) = Ni1 + · · ·+Nin ,

where I is previously introduced the index set and Nik is the log-monodromy
matrix belongs to the corresponding coordinate sent to i∞. In fact it was shown
in [23] that any positive linear combination of Nik can be used. With the log-
monodromy matrix we are able to determine the Deligne splitting at the limit. By
staring with an index set I with only one index and adding one extra coordinate
at the time, we can determine so called enhancement chains [6] of the form

I0
ti1→i∞−−−−−−→ Type A(i1)

ti2→i∞−−−−−−→ Type A(i2)
ti3→i∞−−−−−−→ ...

tin→i∞−−−−−−→ Type A(in) .

Taking a certain index set corresponds to taking the intersection of the corre-
sponding divisors of the discriminant locus ∆.

It turns out that there are some restrictions to which enhancements are allowed
after each other in such a chain [11]. The first thing is that the type can only
increase, meaning that for instance enhancemeents of the form IV→ II are not
possible. The full list of known enhancement rules is given in Table 2.2. The rules
given in Table 2.2 only give a restriction on the chains, but not on the combination
of limits. For instances when individually sending tin → i∞ and tim → i∞, we
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starting type enhanced type

Ia

Iâ for a ≤ â
IIb̂ for a ≤ b̂, a < m

IIIĉ for a ≤ ĉ, a < m

IVd̂ for a < d̂, a < m

IIb

IIb̂ for b ≤ b̂
IIIĉ for 2 ≤ b ≤ ĉ+ 2

IVd̂ for 1 ≤ b ≤ d̂− 1

IIIc
IIIĉ for c ≤ ĉ
IVd̂ for c+ 2 ≤ d̂

IVd IVd̂ for d ≤ d̂

Table 2.2 – List of all allowed enhancements of degeneration types as determined
in [11], where m is the dimension of the moduli space. Table is taken from [6].

get two Deligne splittings denoted as Type Ain and Type Aim . It is not known
how Type Ain and Type Aim restrict the Deligne splitting found when sending
both tin , tim → i∞. Some first results for specific cases have been found [11], but
the full rules remain to be unknown. In thesis we will call these unknown rules
the double enhancement rules, reflecting the fact that they govern how two limits
meet. The known rules are called the single enhancement rules.

For the large volume regime we only need the intersection numbers to determine
the log-monodromy matrix. This is very convenient since this data is available
for Calabi–Yau manifolds. When taking a certain index set I the corresponding
log-monodromy matrix is determined as [6]

N(I) =




0 0 0 0
−∑i∈I δiI 0 0 0
−1

2

∑
i∈I KiiI −∑i∈I KiIJ 0 0

1
6

∑
i∈I Kiii 1

2

∑
i∈I KiJJ −∑i∈I δiJ 0


 . (2.4.1)

To simplify the notation we define, as is done in [6]

K(I)
IJ ≡

∑

i∈I
KiIJ , K(I)

I ≡
∑

i,j∈I
KijI and K(I) ≡

∑

i,j,k∈I
Kijk . (2.4.2)

With these quantities it is straightforward to compute N2
I and N3

I , which results
in

N2
(I) =




0 0 0 0
0 0 0 0

K(I)
I 0 0 0

0 K(I)
J 0 0


 , N3

(I) =




0 0 0 0
0 0 0 0
0 0 0 0
−KI 0 0 0


 . (2.4.3)
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We see that the only possible non-zero term in N3
I is −KI . When this term is

non-zero the Deligne splitting is of type IV, but when this term is zero, it is clear
that the rank of N3

I is also zero. In this case we directly know that the type of
Deligne splitting is not IV. In a similar way we can compute the ranks of N2

I and
NI and use this to determine the Deligne splitting. In the case that both N3

I and
N2
I have rank 0, we also need to compute the sign of the eigenvalues of ηNI . This

is needed to distinguish between a type I and II. However, a singularity of type
Ia will never occur in the large volume regime, thus we do not have to check this
type [6].

Combining the expressions in Equations 2.4.1 and 2.4.3 with the information in
the last column of Table 2.1, we can now readily determine the Deligne splittings
only using the intersection numbers. This gives us the conditions presented in
Table 2.3.

Type rkKI rkK(I)
I rkK(I)

IJ

IIb 0 0 b
IIIc 0 1 c+ 2
IVd 1 1 d

Table 2.3 – List of types in the large volume regime in the limit tI = (ti1 , ..., tin)→
i∞. For numbers and vectors, we define the ranks rk(K(I)) and rk(K(I)

I ) to be

either 0 or 1, depending on whether rk(K(I)) = 0 and K(I)
I = 0 ∀ I. [6]
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Chapter 3

Machine learning

As explained in Section 2.4 we want to find rules for the allowed double enhance-
ments using machine learning techniques. In this chapter, we will present a short,
general introduction to machine learning. We will discuss a definition of machine
and outline the general learning model. For this we will explain what is meant
with task, performance and experience. After this more theoretical discussion, we
will present the more practical side of machine learning in Section 3.2. We explain
how we can actually make a computer program perform better at a task. This
discussion will also lead us to the discussion on how to validate the performance
of the machine learning method and how to prevent under and overfitting. In
Section 3.3 we will then discuss the specific machine learning method of decision
trees, which form the basis of our final algorithm. The last section of this chapter
is devoted to a specific area of machine learning, called Positive Unlabelled (PU)
learning. Due to the nature of our data we need to use this specific variant of
machine learning.

3.1 General Machine Learning

Traditional computer programs and algorithms are instructions which the com-
puter will exactly follow. Everything the computer has to do, has to be added to
the instructions, from storing data to performing computations. This also means
that we can exactly tell what the computer is doing, since it has been exactly told
what to do. This works very well for tasks for which we know how to perform, or
in computer language for which we know how to write code for it.

However, when we encounter a problem for which we don’t know how to exactly
perform the task, it is seemingly impossible to write an computer program for
it. An example of this is classification of objects, for example deciding whether
something is a dog or a cat. Deciding whether an animal is a dog or a cat is for
many humans an easy task. Somehow we intrinsically know when an animal is a
dog or cat. Most humans have learned this at some point in their life, probably
just by observing and learning from the people around them. However, despite
being a seemingly very simple task, it is very difficult to state exactly the difference
between a cat and a dog and how humans are able to classify them. For instance
we might say that an animal having a whisker is a cat. But in most cases we are
also able to distinguish between cats and dogs when we do not see their head,
or we encounter a cat whose whiskers have been cut of. Thus there are more
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features which distinguish cats from dogs, but it is very hard (if not impossible)
to exactly write those down. Especially, because there appear to be exceptions to
each of the rules. To have a computer algorithm classify cats and dogs, we would
have to program exactly those distinguishing features for all the cases. Therefore
it is simply too difficult to write a (regular) computer algorithm to classify cats
and dogs. This is where machine learning comes in handy. Machine learning
is a method to make a computer perform a task, without explicitly telling the
computer how to perform the task. It will learn how to perform this task by itself,
just like human learns how to classify cats and dogs.

3.1.1 Machine learning definition

Machine learning can be defined in a formal way, although it is difficult to capture
the vast amount of different machine learning variants. A proper definition of
learning by a computer is given in [24]:

Definition 3.1.1.
A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P , if its performance at tasks in T , as
measured by P , improves with experience E.

This is a very broad definition, due to the fact that machine learning is also a very
broad topic. An insightful way to think about this definition is to see experience
E as some input data, which the algorithm uses to learn to perform a task. The
task T can be anything we want the computer to do with the data, ranging
from classifying different objects to driving a car. The measure P is used to tell
the algorithm if it is performing the task correctly. The main idea of machine
learning is to allow the algorithm to alter itself such that the performance improves.

In the case of deciding if an animal is a cat or dog, the experience E (the data)
could be a lot of pictures of cats and dogs or a list of features for all encountered
instances. The task T would be to classify whether a given data point is a cat or
dog. The measure P could be simply the percentage of correctly classified animals,
but it can also be another, more difficult function on the performance of the
algorithm. Common nomenclature is to say that the machine learning algorithm
is trained on the (training) data to learn to perform the task. In the end the goal
is to have a machine learning algorithm which has learned to perform a task well
on data which it has not seen before, this is called generalization. Thus in the cat
and dog classification case it would have learned based on a number of pictures
such that it can (almost always) classify new cases correctly.

3.1.2 Task

The goal of machine learning is to perform a task and the learning is the method
to make the algorithm better at performing the task. The task can in general be
described by what the algorithm should do with samples or data points. Samples
are given in terms of features, which are (often) represented as vectors in a n
dimensional space Rn, called the feature space. See Table 3.1 for some example
samples in a 4 dimensional feature space. Every sample can be written as a vector,
for instance x1 = (7.5, 0, 1, 0.4, 0.8) and the task can be described by a function t
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with

t : R4 → {0, 1},
where 0 represents a cat and 1 a dog. The function takes the feature functions
and maps them to the correct animal.

weight whiskers fur tail length ear length

sample 1 7.5 0 1 0.4 0.8
sample 2 2.3 1 1 1.2 0.2
sample 3 1.7 0 1 1.7 0.2
sample 4 3.3 0 1 0.7 0.6

Table 3.1 – The features of four example samples which can be used to classify
wether an animal is a cat or dog.

Since many problems can be solved with machine learning, it is impossible to
name all the different tasks. However to get some idea about the vast amount
of possabilities and variety we will discuss some common, general types of tasks.
These are classification, regression, data clustering and dimensionality reduction
[25], [17].

Classification is the task of determining from the input what type of object this
is. Image recognition, such as the one for cats and dogs belongs to this type task
and it is characterized by the discrete classes. An object either belongs to a class
or not. The continuous version of this is regression, in which the algorithm has to
learn to predict a (numerical) value given some input. Data clustering is the task
of getting a set of data points and finding common groups within them. For this
task, we do not necessarily know or have different types of object. It can be used
to find different types or groups within the data. Dimensionality reduction is the
task of finding the features which are most distinguishing for the objects. In the
case of finding the difference between cats and dogs, this might result in learning
that a feature such as having a fur will be less important to classify the animal
compared to having whiskers.

3.1.3 Performance

The performance measure is a key aspect of machine learning and it is described
by the loss function. The goal of machine learning is to train the algorithm in
such a way that it performs the given task as well as possible. The loss function
is a measure of how well the task is performed. Due to the wide range of task, it
is not possible to define one unique loss function but in general the loss function
should be a map of the following form [17]

l : H×D → R+,

where H is called the hypothesis space and D the data on which the algorithm
performs the task. The hypothesis space is the space containing all the possible
solutions for the task which the algorithm can find. This space is chosen before
starting the machine learning. It can be anything from ten linear functions to
all functions that can be made from all combinations of continuous functions.
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The data D can be either only the feature space Rn or Rn × Y where Y is the
space of labels given to the points in Rn. In the case of cats and dogs Y thus
contains whether an instance is a cat or a dog and the loss function could simply
be the percentage of correctly classified samples. In some cases, for instance deep
neural networks, the used loss function has a huge effect on the capability of the
algorithm to learn.

To get some intuition about the loss function, it is useful to work with the example
of classifying cats and dogs. The task of this machine learning algorithm is to
correctly classify the different animals. In the end we want to get as many correct
predictions as possible, thus naively this should be our performance and the loss
function could be the fraction of incorrectly labelled data. So lets assume we
have some training set X = {(x1, y1), . . . , (x1, y1)} and some classifier h ∈ H.
Then taking as a error function the fraction of incorrectly labelled would give the
following

H×D → R+, (h, T ) 7→ |{xi|h(xi) 6= yi, x ∈ X}|
|X |

The problem with this type of loss function is that it is not a smooth function.
When taking a new h′ ∈ X close to h might not have any effect on this fraction,
since it classifies all objects in the same way. Only when the classifier classifies
points differently the loss function, but the new function might be closer to the
optimal solution in the hypothesis space and thus beneficial to finding the optimal
solution. The goal of the algorithm is to find the solution in H for which the loss
function is as low as possible. This is done in the learning process, by determining
the value of the loss function of the current solution h and updating it to h′ such
that l(h,X ) > l(h′,X ). An example for a smooth loss function would be the
logarithmic loss, which can be used for a classification task where the algorithm
outputs probabilities for a instance to belong to a certain class. In the case of
cats and dogs, the cats are labelled as 0 and the dogs as 1. The log loss is then
defined as

∑

xi∈X
−(yi log(pi) + (1− yi) log(1− pi),

where pi is the predicted probability of the instance xi to be a cat and yi its true
label [26].

3.1.4 Experience

Due to the wide range of machine learning tasks, it is useful to distinguish between
different types of machine learning. Often, machine learning is classified into two
main classes supervised and unsupervised [25] but there is also third sub-type
called reinforcement learning [17] as also discussed in [27]. The key difference
between the types of machine learning is based on what kind of data is used to
make the algorithm learn. The experience which a machine learning algorithm
uses to learn is a (big) dataset. This dataset stores the features of the different
instances but it can also store the class to which it belongs. The term dataset
should be interpret rather generic, since the algorithm can also learn on data
created by its own behaviour. In many types of machine learning the data points
are not used just once, but rather the algorithm performs its task on the data and
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uses its performance to change its own behaviour (this is the learning aspect). In
the next step the same data is again used to check how the algorithm performs
with this change.

Supervised learning
Labelled data is used for supervised learning and this could for example be learning
to recognise emails on whether they are spam or not. The data would be a set of
emails that are labelled as either spam or not. Supervised learning can also be
used for regression tasks, in which the output is continuous instead of discrete.
The name supervised learning comes from the fact that the algorithm is told when
it is correct or not, since the true labels are known for the data, thus we have
some kind of abstract teacher who teaches the algorithm. In this case the training
set contains the features as well as the label of the samples, D = {(xi, yi)}Ni=1,
where N is the number of samples. In mathematical terms, the goal of supervised
learning is to find a function f : X → Y such that

f(xi) = yi

Theoretically it is possible to give an estimate on the performance of a supervised
machine learning model, see for instance [17].

Unsupervised learning
When the data is not labelled, unsupervised machine learning is used. In this
case the teacher is not present and the algorithm is not told if it has performed
the task correctly. This can be used for example to learn to recognise patterns in
the data often to cluster different samples or find outliers. In the case of the spam
recognition, the algorithm will learn to recognise unusual emails or that certain
emails are always kept unread. Mathematically unsupervised learning is based on
finding the probability distribution, thus finding models as [27] p(xi, θ) where θ
are random samples from the underlying probability distribution which are thus
the observed points present in the dataset.

Reinforcement learning
The third sub-class is reinforcement learning and can be seen as semi-supervised
learning. This type of machine learning often occurs in (computer) games, in
which a reward is given for winning or completing a level but the algorithm
has to completely figure out how this reward is reached. The data on which
the algorithm learns doesn’t contain labels but the algorithm is told when it
has performed good or bad. The algorithm observes its environment and the
task is often to perform an action on this environment [24]. This is done in a
sequential fashion. This makes reinforcement have some important similarities
with supervised learning and therefore it is not always seen as a separate type.
An common example of reinforcement learning is learning to play a game, for
instance chess. A reinforcement algorithm takes actions, in this case performing a
move and reacts on the environment since the opponent also performs a move.
Not after every move the algorithm is told how it performed, but only at some
certain points. For instance by giving it a reward for capturing a piece or when it
has won the game. This is an important aspect in which reinforcement learning
differs. In [24] this is called delayed reward.
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3.2 Machine learning methodology

Definition 3.1.1 only defines machine learning, it does not discuss the procedure.
To get a good understanding of machine learning it is necessary to also know how
a general algorithm can use its experience and performance measure to learn to
better perform the given task. In [24] 4 procedural steps are given to develop a
machine learning program. The first step is to choose the training, the second
step is picking the type of target function. Next one has to choose a model to
approximate this target function and in the last step the training takes place to
optimise the model to perform the task on the training data.

Suppose we have chosen a task that we want to perform, as example we will
stick to determining whether an animal is cat or dog. Another example we will
often use is training a machine to play chess. The first step described in [24] is to
determine the experience we want to learn on. This could be for instance pictures
of cats and dogs but might also be lists of samples for which the values of certain
features is stored. Furthermore there is a choice of using labelled data or not.
When working with classification the type of labelling is obvious, these are the
classes. There are cases when this is not so straightforward, for instance when
learning to play chess. In this case the user has a wide variety of labels such as
the best move, whether the game was eventually won or lost or give scores to the
board state.

The next step is to determine the target function the algorithm will learn. This
target function is used to perform the task, so for instance when classifying cats
and dogs this could be a function that assigns a probability to an instance of
being a cat or a dog. With classification the choice of target function is rather
limited, but with learning to play chess there are some options for the target
function. An example target function would be a function that takes a board
state and outputs the current best move. Another target could be giving a score
to the current state of the board. So picking the target function essentially boils
down to picking what kind of output we want.

When the target function has been chosen, the next step is deciding which
representation to use to approximate this target function with. This choice heavily
depends on the task and the target function. The representation can be best seen
as a class of functions, from which the algorithm can pick approximations. An
example would be the class of linear functions y = ax+ b, where the algorithm
has to learn the values of a and b to best approximate the target function. This
is the step where the machine learning method has to be chosen. In recent years
neural networks have become the prime example of such a method. But there
are many more such as, but not limited to k-means, decision trees and principle
component analysis. In the case of classifying cats and dogs we could for example
let the algorithm learn rules to check the input features and use these to classify.
The last step is to pick the specific function from the representation that best
approximates the target function. A machine learning method will consist of
certain parameters which will influence the behaviour of the algorithm. The
learning should make sure that the parameters are chosen such that the algorithm
performs as well as possible and thus approximates the target function. In the
case of a (linear) regression, the parameters are the values of the coefficients in the
(linear) regression. Finding the best parameter values is done by computing the
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performance via the loss function on the training data. The goal is to change the
values such that the loss function is lowered. This can often be done by computing
the gradient of the loss function with respect to the parameters. By using the
gradient it can be determined on how to change the parameter values to lower the
loss function. By changing the parameters, we get a new version of the algorithm.
This will again be tested against the data and should perform slightly better.
This repeated until the algorithm performs as desired. This phase is called the
training of the algorithm.

3.2.1 Performance of the final algorithm

It is also important to have an idea of how well the algorithm performs on unseen
data. Therefore machine learning often also has a testing phase. During this phase
the algorithm is presented with data which it has not seen during the training.
By computing the loss function on the unseen data, called the testing data, the
testing error can be computed. This error gives an estimate on the performance
of unseen data. To be able to compute this testing error the available data D
has to be split into training and testing data. There is no fixed rule on how big
the two separate sets should be. By keeping the training set large, the algorithm
should be able to learn more and thus perform better. But the pay off is that the
results on the testing data become less certain.

Performing very well on the training set doesn’t guarantee that the algorithm
generalizes well. There can be many causes for this, for instance working with
an unsuitable model but two causes are important to discuss namely over- and
underfitting, see 3.1. Data will have some noise and therefore when the data comes
from a certain relation, points will slightly deviate from this relation. Overfitting
occurs when the algorithm is completely fitted to the training data and thus
following the random perturbation as well. This can be the case when the data
comes from a linear or quadratic relation, whereas the algorithm is able to learn
any polynomial expression. If the training is continued long enough, the algorithm
will eventually perfectly fit the data. Underfitting occurs when the capacity of the
algorithm is too small. The capacity of an algorithm is the amount of different
mappings it can learn [25]. Using the same example, the capacity of a model is too
small when the data comes from polynomial of degree 10 whereas the algorithm
is only capable of learning linear functions. It doesn’t matter how long the model
is trained, since it will never be able to approximate the fit well due to the small
capacity.

3.2.2 Hyperparameters

Besides the parameters which are optimized in the training phase, there will
often also be so called hyperparameters which are parameters which influence the
performance but the algorithm is not allowed to change. For instance, when using
a regression with polynomials it could be the maximum degree of the polynomials.
Sometimes hyperparameters could possibly also be trained, but often these are
fixed as hyperparameters to limit the search space or to make the algorithm
simpler. Choosing the values of the hyperparameters is important and should be
done with care. Determining the best hyperparameters is done through validation.
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Figure 3.1 – Examples of over and underfitting. The data comes from a polynomial
of degree 4 with some random noise. In graph on the left the data is approximated
by a linear function, which does not capture the data properly. In the graph on
the right the data is approximated by a polynomial of degree 14, which exactly
goes through all points but which is not a good approximation of the data. In
graph in the middle a polynomial of degree 4 is used to approximate the data,
which clearly does follow the data properly.

Validating the algorithm is done by computing the loss function of the performance
on some subset of the data.

To be able to compute a true testing error, the testing data cannot be used
during the training and validation of the algorithm. By using the testing data
to validate and pick the best hyperparameter values we essentially also use this
data to learn. Therefore the data for the validation has to be taken from the
training data, giving three sets of data used in the development and testing of
a machine learning algorithm. To validate different hyperparameter values, the
algorithm is trained on the training data and than the error is computed on the
validation data. Doing this for different values of the hyperparameters gives a
way to compare their predictive power. The hyperparameter settings for which
the algorithm performs best on the validation data should be picked. We want to
train the algorithm on as much data as possible and therefore it is best to than
retrain the algorithm on the combined data form the training and validation set.
In this way the algorithm can learn on as much data as possible. The validation
process can be improved by doing cross validation [27], where the training data is
split into K subsets of equal size. The algorithm than trains on K − 1 subsets
and can be validated on the remaining subset. This can than be done K times.
The validation is than based on the average validation score across the K subsets.

3.3 Decision trees

In this section we will explain decision trees, which is the machine learning method
that forms the basis of our algorithm. For this we will be using the implementation
from Scikit learn [28]. This implementation is based on the algorithm developed
by Breiman et all [29] in 1984, called Classification And Regression Trees (CART)
. Other well known algorithms are C4.5 [30] (1993) and ID3 [31] (1986) both
developed by Quinlan. A decision tree is a so called white box algorithm, since they
are easy to interpret and their decision making process can be easily understood.
The opposite to this are black box algorithms, for which it is (almost) impossible
to follow the decision making process. An example for a black box algorithm are
neural networks. Being able to interpret the algorithm is the main reason for
using decision trees to learn the enhancement rules, as explained in Section 2.4.
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Figure 3.2 – An example of a decision tree based on classifying cats and dogs. The
first node, the box indicated in green, is the root. This is where all the data
comes in. The boxes in red correspond to nodes, which split the data based on
the value of a specific feature. The blue boxes are the leaves, at which the objects
are labelled. In this case, there were never any dogs with whiskers encountered.

A decision tree is a machine learning method which tries to mimic a human
approach to making a decision. It can be represented by a tree like structure
and used as a flowchart. To make a decision on a sample, the values of certain
features are checked successively depending on the preceding checks. See Figure
3.2 for an example, which is based on classifying cats and dogs and we will use
this throughout this section.

In this case, the first thing we might check is whether the animal has whiskers or
not, if this is the case we conclude that the animal is a cat (since we have only ever
seen cats with whiskers and no dogs with whiskers). If this is not the case we are
still uncertain, so the next check could be the weight of the animal. Depending
on the animals we have observed, when the animal is below a certain weight we
again conclude that it is a cat. For the animals for which we are still uncertain,
we can keep on asking questions and might even check the same features again
at different values. In essence a decision tree tries to mimic this decision making
process. Decision trees can be used both for classification and regression tasks.
We will be using decision trees to classify and thus we will explain the algorithm
for this task.

3.3.1 Elements of decision tree

A decision tree consists of nodes, leaves, branches and a root. The root of a decision
tree is the first node and does not have any in going branches. This is the point at
which all the input data is given and the first data split is made, in the case of the
cat and dog classification this is the question if the animal has whiskers. The root
is indicated by the green color in Figure 3.2. Nodes reassemble further questions,
indicated by red in Figure 3.2, thus in our cat and dog example this is for example
the question how much the animals weights. Nodes have one incoming branch and
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at least two outgoing branches (in general nodes can have arbitrary number of out-
going branches). The algorithm we will use only has two outgoing branches, this
is called a binary decision tree. The leaves are the points at which the tree stops
and here we have thus classified our input, these are indicated by blue in Figure 3.2.

The algorithm makes such a structure of questions (called splits), based on the
training data it has been given by finding features that separate the data as much
as possible. We will use the classification of the cats and dogs as an example to
explain the general algorithm. The training data is a set of points in some space
Rn, where n is the number of features. Taking the features from Table 3.1, we
have n = 4. While the space in general is Rn, the features do not have to be able
to attain all values in R. Some features might have discrete values while others
can be defined on a specific interval only. Examples for this would be the animal
having whiskers or not, which can be stored as an one or zero or the weight of
the animal, which is defined on R>0.

3.3.2 How to split the data

The objective of a (classification) decision tree algorithm is to create nodes that
split the data in such a way that the impurity of the outgoing sets decreases as
much as possible. This means that they contain mainly one class of objects, thus
in our case mainly cats or dogs. The splits are made by grouping the set according
to the value of a certain feature. Thus as an example, see Figure 3.3, the cats
and dogs are split by their weight, one set containing animals of weight less or
equal to a and one set with weight above a. At the next node such a split is made
again, based on the samples that reach this node.

Deciding on which feature and value to split is an essential part of the method
and this is done by choosing the split that has the highest reduction in normalized
cost. The reduction in normalized cost is defined as [27]

∆ := cost(D)−
( |DL|
|D| cost(DL) +

|DR|
|D| cost(DR)

)
, (3.3.1)

where D is the incoming data of the node and DL and DR are the two splitted
sets. The cost function gives a measure on the impurity of a set. The impurity is
a quantity on how mixed the set is with different types of objects. There exist
different cost functions, the implementation we use for the decision trees is the
CART algorithm [29] which uses the Gini index. Other types of cost functions
are the misclassification rate and the entropy [27].

The Gini index is defined as

G =

C∑

c=1

pc(1− pc), (3.3.2)

where the sum is over all the different classes of samples in the set and pc is the
percentage of a certain class being present in the set. The Gini index gives the
expected error of misclassification when classifying in the following way. Take
a sample randomly from the set (with probability pc) and randomly label it
according to the distribution of the classes in the set. The probability of a wrong
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classification is 1−pc. In our algorithm the Gini index is used as the cost function
in equation 3.3.1 and the goal is to find data splits such that ∆ is minimized.
This is done by computing the value of ∆ using the Gini index for different splits
and finding the lowest value.

As an example of the Gini index we look at the set of all observations in Figure
3.3, which we will call R. The objective is to split this set into two subsets, such
that ∆ in equation 3.3.1 is maximal. In the given example, the first split is made
on the weight at value a. This makes the subset R1 pure (G = 0) and the subset
R2 ∪R3 ∪R4 has Gini index G = 0.38. The Gini index of R is

GR =
16

25
· 9

25
+

9

25
· 16

25
= 0.461

.
This gives

∆ = 0.461− (0 +
15

25
· 0.38) = 0.237,

which is the lowest value of ∆ on R.

If we would have split the data for instance on the value b for ear length, this
would give

∆ = 0.461−
(

9

25
· 2 · 4

9
· 5

9
+

16

25
· 2 · 12

16
· 4

16

)
= 0.461− 0.418 = 0, 043.

This gives a much smaller reduction of cost. In a real decision tree, the algorithm
computes the cost reduction for all splits and then selects the best split by picking
the highest cost reduction.

Figure 3.3 – An example of how data
is split using the Gini index with a
decision tree. The color correspond
to a specific label.

Figure 3.4 – An example of data for
which a decision tree finds a cor-
rect way to split the data, but this
is rather cumbersome. A diagonal
boundary between the data is much
more optimal. The color correspond
to a specific label.

28



3.3.3 Greedyness, sub-optimal solution

The decision tree algorithm we are considering is called a greedy algorithm, this
means that at every node the algorithm will try to decrease the current impurity
as much as possible but it will not look at future nodes. Therefore, the solution
that we might find can be a local optimal solution but not the best fit for the data.
The construction of the best binary tree with the minimal number of questions is
a NP-complete problem [32]. Since NP-complete problems become unsolvable on
large amount of data, using a greedy algorithm is preferred even though this can
lead to sub-optimal solutions. For the algorithm presented in the next chapter,
this does not seem to be a problem due to the small decision trees we use.

3.3.4 Obliqueness

Another important thing about decision trees is the fact that in general they
only look at the values of the individual input features. Such a decision tree is
called univariate. This means that the algorithm will not make splits based on
comparing values. This short coming is very important for our work and therefore
we shall explain it in more detail. Lets say we want to buy a new computer and
we are only interested in how much it costs and the quality of the processor. We
are only willing to buy a computer of a certain quality processor if it is of certain
price and we are willing to pay more if the quality is higher, see Figure 3.4.. Thus
the computers that we classify as want to buy and those which we classify as do
not want to buy are dependent on the ratio between the two features and not on
either of the individual features.

The regular CART algorithm only looks at single features to make a split and
is therefore not capable of directly learning such a ratio. It will create a large
tree with nodes that alternate their selection criterion, see Figure 3.4. If the
algorithm were capable of comparing two features, then it could directly learn
than the ratio should be above some threshold value. There are extensions to
decision tree algorithms which make them multivariate, meaning that they do
look at the multiple input values. A way to make decision trees learn these ratios
is by allowing them to learn on linear combinations of the features [29].

3.3.5 Overfitting

Furthermore the final tree is highly dependent on the data we feed the algorithm.
Decision trees are very prone to overfitting, due to the fact that splits will be
added until all data is split into sets of separate classes. To solve this it is also
important to have some stopping criteria on when to stop growing the tree. One
method to prevent this is to limit the size of the tree. Another method is called
pruning, which is also part of the CART algorithm. In pruning the tree is first
completely grown after which some nodes and their sub-nodes and leaves are
replaced by one leave, which labels according to the majority vote. For the details
see [29].

Since decision trees can easily overfit and are very much influenced by the data
presented there exists an extension called decision forests. This classifier then
consists of many decision trees, all trained on different subsets of the data. The
combined classification of all trees than gives a true classification. In this way,
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the randomness of the decision tree can be dealt with. A similar approach is used
in our algorithm, as will be presented in Section 4.2.

3.4 Positive Unlabeled learning

Decision trees are the basis for our algorithm, since their decision making process
is interpretable. However the data on which we want to learn is not suitable for
any of the three main machine learning techniques presented in Section 3.1. To
understand this, we first have to explain the data and how it is represented.

As discussed in the introduction and chapter 2 we want to learn the rules for the
enhancements of the Deligne splitting. We want to do this by the data from the
observed classifications of the degenerations for Calabi–Yau manifolds. Despite
having around 20000 Calabi–Yau manifolds, the data set for a single enhancement
will always be of the order h1,12

. This is due to the fact that for a given Y3 there
are only 4h1,1 possible Deligne splittings when working in the Kähler moduli space.
Furthermore, the data is discrete since the classification of the degeneracies is
done by two numbers. So, when working with all the single enhancements chains,
all the data can be stored in as an array of length 4, where the entries have the
type and value of the two degeneracies. For the double enhancements we can, in
a similar fashion store the data in a 6 dimensional array. This means that our
data is discrete, finite and all possible data points (not taking into account if they
can occur) are known.

The reason why conventional machine learning is not possible is two fold. The first
problem comes from the fact that we are only able to tell which points are certainly
allowed, since these are the points that we observe in our data. We do not know
anything for certain about the points that we do not observe and therefore we do
not have any data on enhancements that are not allowed. This means that we
do not have negative training data and therefore traditional supervised machine
learning cannot learn from this data. Unfortunately also unsupervised learning
is not able to discover some structure in the observed data points, since all the
points lie on a lattice, with precisely the same distance between them. So the
data has a lot of structure and the points do not group depending on whether
they are allowed or not.

To overcome these problems, we might naively argue that not observing a combi-
nation means that this not allowed especially since we check so many Calabi–Yau
manifolds compared to the number of possible enhancements. However, if we look
at the single enhancements from IV to IV , we never observe IV1 → IV1 but this
is a possible enhancement by the rules in [6]. This shows that this assumption
does not hold and something else is needed.

There is a sub class of supervised machine learning that deals with these kind of
problems, which is called Positive Unlabelled (PU) machine learning [33]. In PU
learning we only have points which are labelled positive and no points that are
labelled as negative but there are a lot of unlabelled points available. There can
be several reasons why only positive data is present, for instance because it is
much more difficult or expensive to label a point as negative.
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An example is linking a gene with a disease. It is much easier to label a gene as a
predictor or cause for a certain disease than excluding a certain gene from having
an effect. Another example is a simplified version of recommendations of movies
or series on Netflix or youtube. These sites only know what you have watched but
they don’t know anything on what you have not watched. It can than be assumed
that when you have watched something you like it. However not having watched
something doesn’t mean that you do not like it, you simply have not watched it yet.

PU machine learning is based on this type of data and uses the unlabelled data
together with the positive data to still perform the task. This type of data is
exactly the data we deal with, since we can only label the observed enhancements
as possible.

3.4.1 PU learning methods

There are several ways to perform PU learning, which can be used for different
learning problems. The first naive approach is to just take all the unlabelled
points as negative and use a supervised machine learning algorithm, which is
an approach taken by Neelakantan, Roth, and McCallum 2015 [34]. Another
approach would be to only train on the positive samples and use this to rank the
unlabelled samples by how similar they are to the positive samples [35]. These
approaches are studied and used but more sophisticated methods exist and these
approach are not truely seen as PU algorithms. The PU algorithms can be divided
into three different types: two-step techniques, biased learning and class prior
incorporation [33]. Since we use the first two types, we will not discuss the third
type.

3.4.2 Biased PU learning

In biased PU learning, the unlabelled data is treated as mainly truly negative
with some hidden positive points, which are seen as noise. There are several
approaches on how to deal with these contaminated unlabelled data, as discussed
in [33]. The method used in this thesis is based on [35], which uses bootstrapping
create different training sets. These training sets contain all the positive data
points and a subset of the unlabelled points, which are randomly sampled and
regarded as negative data. On every training set a single classifier is trained and
this classifier than classifies the unseen data points from the unlabelled set to give
these points a score. By using enough pairs of training sets and classifiers, all
points from the unlabelled set will have been scored. After this has been done,
the scores are aggregated and a final label is given to the unlabelled data. This
method is based on the bagging (bootstrap aggregating) procedure as suggested
by Breiman [36]. The bagging procedure and how exactly it is implemented in
this thesis, will be explained in Section 4.2.

3.4.3 Two-step

The two-step techniques are based on the idea of first finding reliable negatives
and then applying a machine learning algorithm to the positive data and the
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reliable negatives and possibly the unlabelled data [33]. There are many different
methods for both steps, as discussed in [37] where the focus lies on text classifi-
cation. Our method is based on the Positive examples and Negative examples
Labeling Heuristic (PNLH) [38]. This method essentially takes the first step
further by also searching for reliable positives. In the PNLH method, first the
reliable negatives are found and with this information the reliable positives our
found. In our used method we do this in the same step, but it is essential to find
reliable positives. In the second step, a regular classification algorithm is trained
on the positive data and the reliable negatives and positives. For the first step
we use the bagging algorithm and for the second step we use a regular decision tree.
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Chapter 4

Algorithm

In this chapter we will discuss the developed algorithm used to learn the double
enhancement rules. First we will discuss the data on which the algorithm will
be applied, this is done in Section 4.1. In Section 4.2 we will discuss the basis
and main part of the algorithm, which is the bagging procedure based on the
methods explained in Section 3.4. During the development of the algorithm,
we discovered that the basis, main algorithm is not always able to perform
correctly. To overcome this we implemented two extensions of the algorithm, these
extensions are discussed in Section 4.3. In the last part of this chapter, a validation
procedure of the algorithm will be presented. The validation is based on the single
enhancements since we know the true, exact rules for these enhancements.

4.1 The data

The enhancement rules are learned from Calabi–Yau manifolds, which are con-
structed by the methods from [4] and [39]. With the intersection numbers of these
Calabi–Yau manifolds, we can determine the Deligne splitting by the calculations
presented in 2.3.1 for the different degeneracies. This gives us the graph like
structures as presented in [6] from which we can read of the single and double
enhancements.

The goal is to learn the rules for the double enhancements. For our discussion
it is useful to use some slightly different language than in [6]. By the type of an
enhancement we mean the value of the Roman number, thus I, II, III or IV and
with the value we mean the value of the numbers a, b, c and d in Ia, IIb, IIIc and
IVd. This distinction is important since the rules for the allowed enhancements can
be grouped per combination of types. To simplify the interpretation of the decision
trees, it is therefore also good to apply the algorithm to every possible combination
of types separately. As a general notation we denote a single enhancement chain
by

Typea → Typeb.

The Typea degeneration corresponds to sending tIa → i∞ with the ordered index
set Ia = (i1, ..., ina) which specifies the growth sector [6] and similarly tIb → i∞
with the growth sector Ib = (i1, ..., ina , ina+1), which thus contains one extra
coordinate. In a similar fashion the double enhancements are given by

Typea + Typeb → Typec, (4.1.1)
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where we have a ordered index set Ia = (i1, ..., ina) and Ib = (i1, ..., inb) which
specify the growth sector and Ia\Ib = {ix} and Ib\Ia = {iy} with ix 6= iy. Fur-
thermore Ic = Ia ∪ Ib.

For every allowed combination of types (meaning the roman numbers will never
decrease) in an enhancement, we will perform our analysis by the algorithm. The
input data for the algorithm are the observed combinations of values. So for
instance when learning the rules for IV→ IV the specific enhancement IV1 → IV3

is stored as a two dimensional array [1, 3] or in general as [a, b]. For the double
enhancements the data is stored as [a, b, c].
Learning on specific combinations of types would mean for the single enhancements
that we perform the algorithm 10 times on the data corresponding to the types.
However, since we never encounter any type I except for when no coordinate
is send to infinity we are not able to learn any of the rules regarding this type.
The same holds for the enhancements from II to II, which also do no occur in
Calabi–Yau manifolds. In the end, the algorithm is only run on 5 combinations of
types.

4.2 The bagging algorithm

To deal with the PU data a bootstrap aggregating (bagging) algorithm using
decision trees has been implemented. As the name suggests, this algorithm is
based on a bootstrap procedure. This essentially means that the algorithm will
use random sampling with replacement to improve the performance of the al-
gorithm. Bootstrapping is a common method in statistics when working with
random variables from an unknown distribution. By using a set of samples of the
random variable and sampling from this set a normal distribution is recovered
and in this way the methods and tools known for a normal distribution can be used.

The algorithm has three steps which are repeated a number of times. The first step
is to make a training set. The second step is training a decision tree on the training
set and the third and final step is to classify points which are not in the training set.

To perform the training of a classification decision tree, the training data needs
data point from the different classes. In the case of enhancements these are the
allowed (positively labeled) and not allowed enhancements (negatively labeled).
Since we can only observe the allowed enhancements, there is no natural way
to get negatively labeled data. The set of all observed points are called P and
the set of unobserved points are called U In the first step a training set Xt is
created. This is done by bootstrapping a subset Ut of size b from the set U . The
points in Ut are labelled as negative and added to the training set. The points
in P are obviously allowed and therefore labelled as positive and added to the
training set Xt, thus Xt = P ∪ Ut. We will refer to the points in Ut as the bagged
or bootstrapped elements.

In the next step, a decision tree ft is trained on the training data Xt. It is
important to note that only the labels for P are completely certain. There might
be points in Xt which are hidden positives, meaning that their current label for
the training is incorrect. In the last step the points which were not in the training
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set, thus the points in U\Ut, are classified by ft. The classification as done by the
decision tree of the current time step is stored.

These three steps are repeated N times. Since the samples in Ut are selected at
random for every iteration, the trained decision tree for every iteration step t can
be different. After N iterations, the average classification for all points in U are
computed and this gives a probabilistic classification for their true label. After
the N iterations a last decision tree is trained on all the data, thus on the sets
P and U . The points in U have been given a label according to the probabilistic
classification, in which the label is the one with the highest probability. This last
decision tree is then used to distill the enhancement rules.

Algorithm 1: PU bagging algorithm

Input : TX : data of observed points
Y: data of points to be classified
Lx: labels of observed points
Nbag: number of samples taken from Y
Nrun: number of times classification is done

Output : C: predicted classification on Y

Create A used to store the predicted labels per element of Y

for i = 1 to Nrun:
Create TY to store samples from Y used in the training process.

for j = 1 to Nbag:
Pick a random y ∈ Y. Add y to TY

end

LY := Array of Nbag false labels
T := TX ∪TY

L := LX ∪ LY
V := TX\TY

Train a decision tree on T and L.
Predict the labels of the elements of V with the decision tree and store in
A.

end

Compute the average labels of every point in Y and store in C

4.2.1 The performance of the bagging procedure

To check the learning abilities of the algorithm we first tried to learn the rules for
two examples, the enhancements from IV to IV and the enhancement from II to
III on data obtained from Calabi–Yau manifolds with h1,1 upto 5. However, by
applying the algorithm directly to the data we encountered a problem.

As discussed in Section 3.3.4, decision trees are univariate algorithms and this
means that only they learn splitting criteria which are parallel to the axes. If
we take the known enhancement rules from [6], then we can see that these rules
depend on the relative values between the two limits. So for the single enhance-
ment case, learning rules parallel to the axes will make learning more difficult and
also the resulting decision tree will be much harder to interpret. When applying
the algorithm directly to the data of the form [a, b] the final classification of the

35



a

b

1 2 3 4 5

1

2

3

4

5

IVa → IVb

Figure 4.1 – The observations of the enhancement IVa → IVb for the Kreuzer
Skarke database [4] for h1,1 ≤ 5.

points from U is prone to mistakes. This makes the algorithm unable to learn the
correct enhancement rules.

There are several ways to overcome this problem. One might use so called mul-
tivariate or oblique decision trees. However these algorithms are much more
difficult to make, have longer computation time and are more difficult to interpret.
Furthermore, there are only a very few readily available implementations of such
decision tree algorithms and these are often not very good or insightful.

For now we will change the data based on the known rules to make the algorithm
perform well. Working with the example of the enhancement IVa → IVb, we
change the input vectors from [a, b] to [b − a, a + b]. This gives a much better
performance and makes the decision trees much smaller. Thus in general we could
perform an operation on the input vector, which essentially is a basis transfor-
mation to boost the learning process. Since we do not know the rules for the
double enhancements we also do not know which basis transformation we should
use. Therefore we first have to find the best basis transformation and then start
the learning process. To find the best basis transformation, we developed an
adaptation of the already proposed PU algorithm, which is presented in Section 4.3.
This algorithm we will call the feature selector and it is again an iterative algorithm.

Example 1

For all the CYs from the KS database upto m = 5, we took the observations of
the enhancements of IVa → IVb which are presented in Figure 4.1 by a green dot.
So the only not observed, but allowed enhancement is IV1 → IV1 thus this combi-
nation is part of the set U . In this first example we will show that the algorithm is
capable of classifying all other value combinations as not possible. The algorithm
has two hyperparameters: the number of iterations and the number of samples
being bootstrapped. In this example, there are 11 unlabelled points. In the case
that we always bootstrap 10 points, we will always have at least 1 point being
classified per iteration. Assuming that only one element is classified (due to
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sampling with replacement, an element might be sampled twice in one iteration),
we need to run the algorithm 110 times to have a lower bound of on average 10
classifications per unobserved sample. For this example we decided to have 1100
iterations. This gives a lower bound on the average number of classifications per
sample of 100 but still has a low computation time of only a few seconds, enabling
us to test different parameter values and settings.

The results are presented in Table 4.1, where we can clearly see that for this case
increasing the number of bootstrapped elements increases the accuracy of the
algorithm. This can be explained by the fact that for this case only one unlabelled
sample is still possible. So bootstrapping all other elements and thus labelling
them as not possible indeed gives them, for this specific enhancement, the correct
label. Since in general we do not know the true label, it might be beneficial to
have some more fluctuations in the model. In Section 4.4 we will discuss the best
values for the hyperparameters.

n = 1 n = 5 n = 10

IV1 → IV1 1.000 1.000 1.000
IV2 → IV1 0.395 0.017 0.000
IV3 → IV1 0.099 0.000 0.000
IV3 → IV2 0.398 0.019 0.000
IV4 → IV1 0.098 0.000 0.000
IV4 → IV2 0.100 0.000 0.000
IV4 → IV3 0.399 0.019 0.000
IV5 → IV1 0.100 0.000 0.000
IV5 → IV2 0.098 0.000 0.000
IV5 → IV3 0.099 0.000 0.009
IV5 → IV4 0.395 0.018 0.010

Table 4.1 – Probability of the enhancement from IV to IV being allowed computed
by the bagging algorithm with decision trees. n is the number of elements being
bootstrapped.

Example 2

In this second example, we will look at the enhancements II → III where the
training data again comes from Calabi Yau manifolds with h1,1 ≤ 5 . There
are several differences compared to the previous example. First of all, there are
less allowed enhancements (only 9). Secondly we also observe a smaller portion,
namely just 6 of the 9 allowed enhancements. Lastly, we have a slightly different
enhancement rule since it is dependent on the value of the type II and not only
on the difference between the values. To show the need of using some kind of
multivariate decision tree, the results of the algorithm are presented for different
basis transformations. The number of bootstrapped samples is 10 for all different
inputs. The results for the algorithm are presented in Table 4.2. The enhance-
ment patters are stored as [a, b] before the basis transformation. The different
transformations are also given in the table, note that we have also performed the
algorithm on a over determined system (4 input features).
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[a− b, a+ b] [a, b] [a, b, a− b, a+ b] [a− b, a]

II0 → III0 not possible 0.104 0.011 0.12 0.139
II0 → III1 not possible 0.002 0.033 0.031 0.0
II0 → III2 not possible 0.002 0.078 0.034 0.0
II0 → III3 not possible 0.035 0.002 0.0 0.0
II1 → III0 not possible 0.889 0.012 0.327 0.373
II1 → III1 not possible 0.576 0.033 0.168 0.141
II1 → III2 not possible 0.146 0.076 0.04 0.0
II1 → III3 not possible 0.494 0.002 0.0 0.0
II2 → III3 possible 0.617 0.523 0.318 0.975
II3 → III0 not possible 0.145 0.989 0.343 0.445
II3 → III3 possible 0.971 0.367 0.464 1.0
II4 → III0 not possible 0.190 0.225 0.222 0.199
II4 → III1 not possible 0.182 0.862 0.272 0.198
II4 → III3 possible 0.984 0.285 0.526 1.0

Table 4.2 – Probability of the enhancement from II to III being allowed computed
by the bagging algorithm with decision trees.

From the results in Table 4.2 it is clear that the algorithm needs the correct
transformation to correctly classify, but it is still not able to identify all points
correctly. For some samples the probability of it being positive or negative is
around 0.5, which gives a very uncertain result. Therefore another extension,
besides the feature selector has to be implemented to give all the points a label
with a high certainty.

To obtain the rules for the double enhancement, we will need 10 different decision
trees, one for each combination of types. Since we fix the type before training,
we only have to store the values of the different instances. For the double en-
hancements this means that we can store a point as a 3 dimensional vector and
for the single enhancements we could store the points as a 2 dimensional vector.
If we look at for example the single enhancement IVa → IVb, we can store the
input as [a, b] where a is the value of the begin node and b the value of the end
node. For the double enhancement, we can thus similarly store the input as [a, b, c].

4.3 Extension of the algorithm

We will now discuss two extensions of the algorithm to boost its learning. The
first extension is used to prepare the data and find the basis transformation to
enable the best learning. The second extension is to have more points from the
unlabeled data get a label with a high certainty.

4.3.1 Feature selector

The preparation step is to choose which basis transformations we want to test.
This can be any computation on different elements from the input vector. The
current algorithm is made in such a way that the transformations have to be given
by the user.
These computations are then executed on the input vectors, creating new vectors
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which can be used as input for a decision tree learning algorithm. The elements
of these vectors are called features and the vectors will in general be of higher
dimension than the original input vectors. An example transformation would be

a, b→ [a, b, b− a, a− b, b+ a].

After having applied the transformation on the data, we want to find the features
that predict the labels the most. In regular supervised machine learning this can be
done with various algorithms from [28]. However we are dealing with PU-learning
and thus we do not have negatively labeled data. Furthermore, these algorithms
are often used on high dimensional data sets. For machine learning purposes
our data is not high dimensional and we even have very few data points. This
makes the conventional methods not suitable for our data. Therefore we use an
algorithm, which is highly based on the bagging idea. We call the algorithm the fea-
ture selector. It performs many iterations and each iteration consists of three steps.

The first step of the iteration is to perform the bagging procedure, similar to the
first step described in 4.2. Next, a decision tree is trained on the created training
data also similar to the second step of the bagging algorithm. The last step is
different, the algorithm doesn’t classify the unused points but it checks which
features from the transformed input data the decision tree has used to split the
data. This data is stored at every iteration step. After all the iterations, the
algorithm computes how many times every feature (computation on the data) has
been used to split the data.

We classify the features by how many times they are used as a selection criterion,
where the best feature is the feature which has been used the most as split.
There are two options to select the best features to learn on. Either the M
most chosen features can be selected directly from performing the procedure
once or only the most chosen feature is selected and the whole feature selector
algorithm is run again, but without this one feature. This last procedure is
the one implemented for this code, since in the test phase we observed that
in most cases there is only a big difference between the best feature and the
rest, while the other features are chosen approximately the same amount of
times. By removing the most chosen feature this changes and again one feature is
clearly the most chosen. See algorithm 2 for pseudo-code on the feature selector.
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Algorithm 2: Feature selection algorithm

Input : TX : data of observed points
Y: data of unobserved points
Lx: labels of observed points
Nbag: number of samples taken from Y
Nrun: number of times classification is done
F: list of manipulations.

Output : S: scoring of features to split upon

Create F used to store the scoring on number of times feature was used as
splitting criteria.

Apply the manipulations of F to TX and Y to create all the features used in
training.

for i = 1 to Nrun:
Create TY to store samples from Y used in the training process.

for j = 1 to Nbag:
Pick a random y ∈ Y. Add y to TY

end

LY := Array of Nbag false labels
T := TX ∪TY

L := LX ∪ LY
Train a decision tree on T and L.
Store the used features for the splits of the decision tree in F.

end

Determine how often each feature stored in F was used, output this score in S

4.3.2 Adding points

As has become clear from the results presented in the previous section, the algo-
rithm is not yet capable of finding all the allowed and not allowed enhancements
with very high certainty (see Table 4.2. However, for some unobserved samples it
is very certain, meaning that it (almost) always gives them the same classification
in every round of the bagging procedure. These very certain points can be used
to make the algorithm more robust in the following way. After the probabilities
for all unobserved samples are computed, the samples for which this probability
is above some predefined threshold to be a certain class are added to the list
of observed samples. This means that the samples are added to the set P and
removed from the set U . In this way, they are not taken into account for the
bootstrap procedure. This gives less fluctuations and with the assumption this
previously computed probability is correct, the algorithm should be better able
to classify correctly. From this point on the set P does not contain only points
which are for sure positive, it might contain negatively labeled points and extra
positive points which are estimated labels. See algorithm 3 for pseudo-code on
this algorithm.

Adding this extension to the algorithm and keeping the iteration going until all
samples have a probability above the threshold value gives for both examples the
correct classification to all samples and gives easily interpretable decision trees
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which give the same rules as presented in [6].

Algorithm 3: Adding points to classified data

Input : Y: data of unclassified points
X0: data of classified points
C: predicted probability of class on Y
t: threshold value to add points to classified data

Output : X: updated classified points

for y ∈ Y :

Get probability py of point y to be True from C.

if py > t:

Add y to X with label True.
Remove y from Y

end

elif py < 1− t:
Add y to X with label False.
Remove y from Y

end

end

4.4 Validating the algorithm

The disadvantage of using machine learning is that we can not present results
with hundred percent certainty. Therefore it is important to validate and test
the algorithm in order to find the best values for the hyperparameters and to
get a measure on how well the algorithm performs. In the development of the
algorithm we have worked with two enhancements for which the rules are known,
from II to III and from IV to IV. These two enhancements are also used to
determine the values for the hyperparameters. With these values, we can test
the algorithm on the other known enhancements and thus getting a performance
measure. In this section we will discuss the validation process and the final choice
of hyperparameters.

Since we are not interested in the classification of individual data point but in
the classification rules, we do not want to be correct on most data points but
on all. Therefore we have to validate our algorithm slightly differently compared
to a regular machine learning algorithm. In a regular validation procedure, the
algorithm will be trained with different settings of hyperparameters on a subset
of the input data and validated on the rest of the input data. The setting of hy-
perparameters with the best validation score will be picked as the final algorithm.
Another reason why we need a different validation procedure is that our sample
space is finite and very small compared to usual machine learning standards. We
know all the points that are an option and we only need to label whether this
is option is indeed possible. For the algorithm to learn, it needs all the options,
since the bagging procedure makes use of the unlabeled points. Because of these
two reasons, the algorithm cannot simply be validated by taking points out of
sample set and used as a validation as is usually done in machine learning.
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There are several methods we can use as validation. The most straightforward
way is to use the observed data to check if the algorithm can find the rules for
the single enhancements with this data. This procedure tells us something about
the capacity of the algorithm but it also tells something about whether there is
enough observed data to find the correct rules. Even a perfect algorithm, capable
of finding the correct rules will need enough data to find the rules. So while this
might give some interesting results, if the algorithm cannot find the correct rules
it is hard to determine the cause.

As an example, when looking at the data obtained from CYs with h1,1 ≤ 5 for
the enhancements from III to III, we never encounter an enhancement from IIIa
(with a = 0, 1, 2, 3) to III3, which is however an allowed enhancement according
to [11]. The algorithm is likely to end up with rules such that it is never allowed
to enhance to III3, since it never encounters such enhancement. If we however
add only one enhancement to III3, lets say III1 → III3. The algorithm always
finds the rule from [11]. Thus validating only with the observed points might
teach us more about our observations and data than about the predictive power
of the algorithm. CYs might not show all allowed enhancements [7]. Of course,
to justify our results we also have to know the quality of the data set.

Therefore we use a slightly different method. By using the fact that we know the
exact rules for the single enhancements, we can create multiple, artificial datasets.
This means that we pick two types, for example II and III and compute all allowed
enhancements from II to III. This gives the complete data and we can take a
random subset of the allowed points as training input. On these artificial datasets,
we can apply the algorithm and check if it gives the desired result. Using many
different artificial datasets with varying size, we can check how much data the
algorithm needs in order to learn the correct rules. We can than also check the
settings for which the algorithm has the highest probability to give the correct
result. We believe that this this is the best way to validate the algorithm.

4.4.1 Validation procedure

The following hyperparameters are fined-tuned by the different validation ap-
proaches.

� threshold value

� runs feature selector

� runs labeling

� bagging size

� number of features to select

Validation one: threshold
The first test is done on the enhancements from II to III and IV to IV, cross
validated over different input sets of varying size. For II to III these are sets of
6, 7 or 8 elements and for IV to IV 9, 10, 11, 12 and 13 elements. For every input
size we have created 50 random training sets. For the enhancement from II to III
there are 20 possibilities for which 9 are allowed and for the enhancement from

42



threshold 6 7 8 avg

60 36.96 76.88 145.92 86.6
70 89.76 124.36 176.96 130.4
75 95.88 133.0 188.32 139.1
80 98.52 138.68 217.04 151.4
85 100.44 137.96 241.08 159.8
90 99.8 136.64 245.28 160.6
95 72.68 135.64 247.04 151.8

Table 4.3 – The number of perfect classifications for the enhancement from II to
III for 50 sets per percentage of input data with 5 tests per input set.

IV to IV there are 25 possibilities of which 15 are allowed.

The best values for number of runs for both the feature selector as the label-
ing procedure are determined by testing the algorithm against random input
sets of varying size. The number of runs are chosen from the following values
[50, 100, 200, 500, 1000], where every combination for Nf and Nb is picked, giving
25 different combinations for the hyperparameters. For every combination, the
algorithm is run on 50 different input sets and for every training set, the algorithm
is run 5 times. This makes a total of 250 runs per combination of hyperparameters.

For the enhancement II to III, the tests where done on input sets of size 6, 7 and 8.
On sets with only 5 elements, the algorithm is in very rare cases also capable to
learn the perfect classification. The results from this test suggest using a threshold
value of 90 instead of 80 when looking at the best performing hyperparameters
in Table 4.5. The average value in Table 4.3 also suggests that a threshold value
of 85 of 90 gives a better result. Also a very high threshold value of 95 gives
very good results when almost all data is known, but it performs worse when the
algorithm is only presented with a small portion of the possible data.

For the enhancement from IV to IV, we have taken input sets of size 9 to 13.
These results are less decisive, since almost all threshold values seem to perform
approximately the same. There is only a small noticeable difference for the results
with threshold value 95, which as with the enhancement II to III performs badly
when presented with little information. This is the case for both enhancements
and can be explained by the fact that the algorithm will never be very certain
when presented with little data. Therefore, very few points will ever reach this
level of certainty and thus most will never receive a label for a next round.

Validation two: number of runs
To determine the optimal number of runs, the number of runs is varied while
keeping the other hyperparameters fixed. In Figures 4.2 and 4.3, the average
number of perfect classifications per combination of Nb and Nf is given. The
average is taken over all values for the threshold and input size. The maximum
number of perfect classifications is 250. For the enhancement from II to III we can
clearly see an improvement in the results when the algorithm is allowed to have
more runs. This is expected but unfortunately not supported by the results for the
enhancement from IV to IV. From Figure 4.2 it seems as if the algorithm performs
slightly better when using Nb = 500. But the difference between the performance
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threshold 9 10 11 12 13 avg

60 182.28 195.2 238.76 248.88 249.96 223
70 183.64 197.92 240.24 249.76 250.0 224.3
75 180.84 198.68 240.2 249.6 250.0 223.9
80 181.0 199.48 239.96 249.68 250.0 224
85 180.44 198.0 237.28 249.88 250.0 221.4
90 173.28 192.88 234.84 249.84 250.0 219.3
95 154.96 185.84 235.08 249.64 250.0 214.8

Table 4.4 – The number of perfect classifications for the enhancement from IV to
IV for 50 sets per percentage of input data with 5 tests per input set.

for Nb = 500 and 1000 is very small and is most likely due to randomness. In
Figure 4.3 there is no clear improvement which can also be explained besides
random fluctuations in the performance. Essentially we think that the algorithm
performs similarly regardless of the number of runs .

The idea of these random fluctuations is supported by the results presented in
Table 4.6, where we see that the top 5 best performing algorithms perform slightly
above average. This shows that these are just some random fluctuations. From
Table 4.5, for the enhancement from II to III, we can conclude that for this
enhancement the algorithm does perform better with certain hyperparameters.
These results both support the idea that a threshold value of 85 of 90 is optimal
and that the algorithm is more stable when increasing Nb and Nf . This can
also very well be seen by the results in Figure 4.3, which are almost equal when
Nb = 1000, showing that the algorithm has come to a stable solution. This means
that the algorithm will give the same result every time the algorithm is run, which
is the situation we are interested in. We do not want to find results which come
from a random fluctuation. We want to get the same result every time. Of course
increasing the number of runs doesn’t keep improving the algorithm.
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Figure 4.2 – Mean perfect score per Nf and Nb value for the enhancement II to III
with Th = 0.8. The algorithm is run on input sets of 6,7 and 8 elements. For each
size 50 random sets are created and for every set 5 tests are done. This makes
250 tests per size. The average over the size is taken.
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Nf , Nb, Th perfect

(1000, 500, 85) 163.7
(500, 500, 90) 164.0
(1000, 500, 90) 164.3
(1000, 1000, 90) 164.3
(500, 1000, 90) 165.3

Table 4.5 – The top 5 of perfect val-
idations together with their mean
validation score values on the en-
hancement from II to III with 50
fixed sets. For every set the algo-
rithm was run 5 times.

Nf , Nb, Th perfect

(1000, 500, 70) 224.3
(200, 1000, 70) 224.6
(1000, 50, 80) 225.0
(1000, 50, 75) 225.3
(500, 100, 75) 225.6

Table 4.6 – The top 5 of perfect val-
idations together with their mean
validation score values on the en-
hancement from IV to IV with 50
fixed sets. For every set the algo-
rithm was run 5 times.
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Figure 4.3 – Mean perfect score per Nf and Nb value for the enhancement IV to IV
with Th = 0.8. The algorithm is run on input sets of 9,10,11,12 and 13 elements.
For each size 50 random sets are created and for every set 5 tests are done. This
makes 250 tests per size. The average over the size is taken.
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Validation three: bagging size
To determine the best bagging size, the settings from the previous tests with the
best scores are chosen. The bagging sized is varied and again tested against 50
random sets where each set is checked 5 times. The threshold value was taken
to be 90. The results are not really clear to which amount is the best to pick as
bagging size. When looking at Table 4.7 we see that the performance increases
when increasing the bagging size but then suddenly drops when going to 11 data
points. Similar behavior is seen for the enhancement from IV to IV, where the
performance is much less when adding all but one element in the bagging procedure.

bagging size perfect mean score

1 167.3 0.921
3 171.7 0.917
5 175.3 0.918
7 189.7 0.929
9 188.7 0.938
11 102.3 0.829

Table 4.7 – The number of perfect clas-
sifications and mean validation score
against the number of bagged ele-
ments for the enhancement from II
to III. This was computed for 50
random sets per percentage of input
data, each with 5 tests per set. The
average scores were taken over the
percentage of input data.

bagging size perfect mean score

1 169.5 0.905
3 205.125 0.945
5 218.875 0.961
7 224.75 0.97
9 223.875 0.969
11 215.5 0.96
13 159.0 0.774

Table 4.8 – The number of perfect clas-
sifications and mean validation score
against the number of bagged ele-
ments for the enhancement from II
to III. This was computed for 50
random sets per percentage of input
data, each with 5 tests per set. The
average scores were taken over the
percentage of input data. The input
data with 13 elements was not used.

.
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Validation four: number of features
To determine the best number of features to select upon, the settings from the
previous tests with the best scores are chosen. The number of features selected
is varied and again tested against 50 random sets where each set is checked 5
times. The value for the threshold was taken as 90 (but using 80 gives very similar
results). From Tables 4.9 and 4.10 it is clear that using only one feature makes
it impossible for the algorithm to learn. As can be expected, using 2 features
will give good results, but only slightly better than using 3 or 4 features to select.
The difference between the results are big enough to make conclusive statements.
To give more details, it might be insightful to not only give the average over the
data size but look at the results per input size. Since taking more features makes
the input overdetermined in a linear algebra sense, we could still argue against
using more than needed for a new basis. In this test we have not looked at many
different features, but only at taking the original values of the nodes and their
sums and differences thus [a, b, b− a, b+ a].

No features perfect Mean score

1 0.0 0.61
2 165.7 0.92
3 163.3 0.92
4 147.3 0.89

Table 4.9 – The number of perfect
classifications and the mean valida-
tion score per number of features to
select for II to III with Th = 0.9,
Nf = 1000 and Nb = 1000. 50 ran-
dom sets each 5 tests per percentage
of data available.

No features perfect Mean score

1 22.5 0.69
2 214.3 0.97
3 212.8 0.96
4 206.8 0.96

Table 4.10 – The number of perfect
classifications and the mean valida-
tion score per number of features to
select for IV to IV with Th = 0.9,
Nf = 1000 and Nb = 1000. 50 ran-
dom sets each 5 tests per percentage
of data available.

Final hyperparameter choice
For the results presented in the next chapter we use the following settings:

� Nb = 1000,

� Nf = 1000,

� Th = 0.9,

� bagging size is three less than the total number of unlabelled points,

� number of features selected 2 for single enhancements, 3 for double enhance-
ments.

With the results in this section we can also conclude that the algorithm is clearly
capable of finding the correct rules if it presented with enough data.
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Chapter 5

Results

In this chapter, we present and discuss the results from the algorithm as explained
in Chapter 4. In Section 5.1 we present our findings on the single enhancements
and compare those with the known rules from [6]. Furthermore we discuss the
effect of the size of the observed data on the outcome of the algorithm. In Section
5.2 we present the results of the algorithm on the double enhancements. The data
used in this chapter comes from the Kreuzer Skarke list [4] (upto h1,1 = 5) and
the CICY [39] (upto h1,1 = 7).

5.1 Results single enhancement

The developed algorithm was run on the observed single enhancements, with
the 1000 iterations in both the feature selection and the bagging / classification
procedure. The threshold value to add points to the observed points was at
0.9. The features to select were [a, b, b − a, b + a]. The starting value for the
minimum number of not bagged elements is 3. When less than 3 points are still not
classified, this value decreases such that always at least one point is bagged. The
algorithm was stopped when either all points where classified or after 10 full cycles.

The algorithm was trained on data of at most h1,1 = 7. For every value of h1,1 all
the data obtained from Calabi–Yau manifolds with lower value of h1,1 was also
used in the training, since we know that rules for the allowed enhancements do
not depend on the value of h1,1. Of course the allowed splitting types do depend
on the value of h1,1, but these only increase in numbers. This was important since
especially for h1,1 = 6 and 7 the data came from the CICY, which are very few Y3’s
compared to the Kreuzer Skarke CYs. In Table 5.1 the number of observed points,
the number of value combinations and the number of allowed enhancements are
given. By the value combinations, we mean two enhancements types and values
which can both exists but their enhancement might not be allowed. This could for
instance be IV3 → IV2 (which is not allowed) and II3 → III2 (which is allowed).
In Table 5.2 the rules as obtained from the algorithm are presented. The green
cells indicate that the obtained rules are equal to those presented in [6]. The red
cells contain rules that are incorrect. Two example decision trees from which the
results are obtained are presented in Figure 5.1.

When comparing Tables 5.1 and 5.2, there are a several important thing to notice.
First of all we see that the even when the data does not contain all the allowed
single enhancements, the algorithm is able to learn the correct rules. This is
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h1,1 = 4 h1,1 = 5 h1,1 = 6 h1,1 = 7

II→ II 0/16 (10) 0/25 (15) 0/36 = 0 (21) 0/49 = 0 (28)
II→ III 3/16 ≈ 0.19 (5) 6/25 = 0.24 (9) 9/36 = 0.25 (14) 13/49 ≈ 0.27 (20)
II→ IV 6/16 ≈ 0.38 (6) 10/25 = 0.4 (10) 14/36 ≈ 0.39 (15) 19/49 ≈ 0.39 (21)
III→ III 3/9 ≈ 0.33 (6) 6/16 ≈ 0.38 (10) 7/25 = 0.28 (15) 8/36 ≈ 0.22 (21)
III→ IV 6/9 ≈ 0.67 (6) 10/16 ≈ 0.63 (10) 15/25 = 0.6 (15) 21/36 ≈ 0.58 (21)
IV→ IV 9/16 ≈ 0.56 (10) 14/25 = 0.56 (15) 15/36 ≈ 0.42 (21) 16/49 ≈ 0.33 (28)

Table 5.1 – For different values of h1,1 we have given the number of observed single
enhancements and the total possible number of enhancements. To show if the
data is equally valid for different values of h1,1 we have expressed the fraction
of observed against possible data points. In brackets we have given the total
number of allowed enhancements, which we have computed by the rules presented
in Table 2.2 [6].

for instance the case with the enhancement IV → IV, for h1,1 ≤ 6. In the case
of III → III the algorithm is never able to learn the correct rules. This can be
explained by the number of observed points and the amount of hidden positives
in the unobserved data. For h1,1 = 4, 5 the number of hidden positives is high ,
which explains why the algorithm is not able to learn. For the higher values of
h1,1 it gets even worse, since we only obtain one extra observed point.

On the enhancement II→ III, the algorithm is only able to obtain the rules for
h1,1 = 6, 7 even though 5 out of 25 and 7 out of 36 unobserved points are possible.
From this enhancement we clearly see that having more points gives the algorithm
more capacity to learn. The percentage of observed points for this enhancement is
slightly increasing when h1,1 increases. This shows, together with the observation
that for the enhancement IV → IV with h1,1 = 7 this percentage has dropped
compared to the other values and the algorithm does not learn the rules perfectly.
So if this percentage drops when h1,1 is increased, the algorithm seems to be
unable to learn. A last interesting remark is the fact that when the algorithm
is wrong, it is still close to the true rules. This is for instance the case with the
enhancement IIIa → IIIb, the algorithm is partly correct since the known rule is
b ≥ a. The algorithm however finds extra restrictions to this enhancement. This
suggests that the rules for the enhancement chains in Calabi–Yau manifolds are
more restrictive than the general case. Unfortunately the algorithm is not able to
learn anything for III→ III with h1,1 = 4.
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Enhancement h1,1 = 4 h1,1 = 5 h1,1 = 6 h1,1 = 7

IIa → IIIb b − a ≤ −1 or
a ≥ 2

a ≥ 2 and
b− a ≥ −3

−2 ≤ b − a ≤ 0 b− a ≥ −2 and a ≥
2

IIa → IVb b − a ≥ 1 and
a ≥ 1

b − a ≥ 1 and
a ≥ 1

b− a ≥ 1 and a ≥
1

b− a ≥ 1 and a ≥ 1

IIIa → IIIb No rules b − a ≥ 0 and
b ≤ 2

b − a ≥ 0 and
b ≤ 2 or b = a = 3

b − a ≥ 0 and
a ≤ 2 or b− a = 0

IIIa → IVb b− a ≥ 2 b− a ≥ 2 b− a ≥ 2 b− a ≥ 2

IVa → IVb b− a ≥ 0 b− a ≥ 0 b− a ≥ 0 b − a ≥ 0 and
(a ≤ 5 or b− a = 0)

Table 5.2 – The rules obtained for the single enhancements from the decision trees
trained on the data obtained by the algorithm presented in chapter 4. The
aglorithm was run on data from Calabi–Yau manifolds with 4 different values of
h1,1. The cells in green show the cases for which the algorithm has been able to
learn the enhancements. The cells in red indicate the cases in which the final
decision tree was wrong. This was determined by comparing with the rules as
presented in Table 2.2 [6]

X[0] <= 0.5
gini = 0.497
samples = 24

value = [13, 11]

X[0] <= -2.5
gini = 0.457
samples = 17

value = [6, 11]

True

gini = 0.0
samples = 7

value = [7, 0]

False

gini = 0.0
samples = 6

value = [6, 0]

gini = 0.0
samples = 11

value = [0, 11]

(a) The final decision tree of the enhancement
II→ III on the data for h1,1 = 6. The array
X contains the information on the enhance-
ments with X[0] = b−a and X[1] = a. This
tree has learned on the data classified by
the bagging algorithm.

X[0] <= -0.5
gini = 0.469
samples = 16

value = [10, 6]

gini = 0.0
samples = 6

value = [6, 0]

True

X[1] <= 2.5
gini = 0.48

samples = 10
value = [4, 6]

False

gini = 0.0
samples = 6

value = [0, 6]

gini = 0.0
samples = 4

value = [4, 0]

(b) The final decision tree of the enhancement
III → III on the data for h1,1 = 5. The
array X contains the information on the en-
hancements with X[0] = b−a and X[1] = a.
This tree has learned on the data classified
by the bagging algorithm.

Figure 5.1
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5.2 Results of double enhancement

The developed algorithm was run on the observed double enhancements, with
the 1000 iterations in both the feature selection and the bagging / classification
procedure. The threshold value to add points to the observed points was at 0.9.
The features to select were [a, b, c, c−a, c−b, b−c, , c+a, b+c, b+a]. The starting
value for the minimum number of not bagged elements is 3. When less than 3
points are still not classified, this value decreases such that always at least one
point is bagged. The algorithm was stopped when either all points where classified
or after 10 full cycles.

The observed data is shown in Table 5.3. By comparing the percentage of observed
points between the different values of h1,1 it is clear that the data from h1,1 = 6
and 7 contains much less observed points. The rules for the single enhancements
do not depend on the value of h1,1, so we would expect to observe approximately
the same percentage of points for all values of h1,1. With this reasoning, there
should more allowed points in the not observed data. Since this is increasing
we believer that we do not have enough data for h1,1 = 6 and 7. This idea is
supported by the fact that for the single enhancement, the algorithm fails to learn
the correct rules when the percentage of observed points drops. Therefore we only
present the rules obtained on the data from Calabi–Yau manifolds with h1,1 = 4
and 5. These rules are presented in Table 5.4. In Figure 5.2 two example decision
trees are shown.

The rules obtained from h1,1 = 4 and 5 show similarities for the different double
enhancements, but (except for IIa + IIIb → IVc) are never exactly the same. In
most cases, the rules are based on the same values of types or their difference.
For instance when looking at the enhancement IIa + IIIb → IIIc, the algorithm
finds that the value of c tells us if the enhancement is allowed. However the
specific value for c differs for both sets of data. In some cases there are some extra
restrictions found in one of the two data sets, as is for instance the case with the
enhancement IIa + IVb → IVc. It also seems as if the rules depend on the value
of h1,1, for instance with the enhancement IVa + IVb → IVc.

The results are indecisive, since they are different for the 2 values of h1,1 and we
do not have more results to compare. To improve the results, the most obvious
step would be to add more data on the enhancements for h1,1 = 6 and 7. When
we have more data for these Calabi–Yau manifolds we could also use this data.
This would give us more rules and enable us to compare which rules depend on
the value of h1,1.
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Enhancement h1,1 = 4 h1,1 = 5 h1,1 = 6 h1,1 = 7

II + II→ II 0 0 0 0
II + II→ III 4/9 = 0.44 10/23 = 0.43 16/46 = 0.35 26/80 = 0.33
II + II→ IV 0 0 0 0
II + III→ III 4/11 = 0.36 10/26 = 0.38 13/50 = 0.26 17/85 = 0.2
II + III→ IV 7/14 = 0.5 16/30 = 0.53 26/55 = 0.47 41/91 = 0.45
II + IV→ IV 10/20 = 0.5 20/40 = 0.5 24/70 = 0.34 29/112 = 0.26
III + III→ III 4/14 = 0.29 7/30 = 0.23 7/55 = 0.13 8/91 = 0.09
III + III→ IV 10/14 = 0.71 20/30 = 0.67 35/55 = 0.64 56/91 = 0.62
III + IV→ IV 16/20 = 0.8 30/40 = 0.75 35/70 = 0.5 41/112 = 0.37
IV + IV→ IV 19/30 = 0.63 34/55 = 0.62 35/91 = 0.37 56/140 = 0.4

Table 5.3 – For different values of h1,1 we have given the number of observed double
enhancements and the total possible number of enhancements. To show if the
data is equally valid for different values of h1,1 we have expressed the fraction of
observed against possible data points.

Enhancement h1,1 = 4 h1,1 = 5

IIa + IIb → IIIc c− a ≤ 1 c ≤ 2
IIa + IIIb → IIIc c ≤ 1 c ≤ 2
IIa + IIIb → IVc b ≥ 1 b ≥ 1
IIa + IVb → IVc b ≥ 2 a+ b ≥ 5 or c− a ≤ 1 and b ≥ 2
IIIa + IIIb → IIIc c ≤ 1 c ≤ 2 and c− a ≤ 1 and c− b ≤ 1
IIIa + IIIb → IVc a+ b ≥ 1 or c− a ≤ 3 a+ b ≥ 2 or c− b ≤ 3 or c− a ≤ 3
IIIa + IVb → IVc c− b ≤ 2 or c− a ≤ 3 c− b ≤ 2 or a+ b ≥ 3 or c− b ≤ 3
IVa + IVb → IVc a+ b ≥ 4 or c− a ≤ 1 a+ b ≥ 5 or c− a ≤ 2 or c− b ≤ 1

Table 5.4 – The rules obtained for the double enhancements from the decision
trees trained on the data obtained by the algorithm presented in chapter 4. The
algorithm was run on data from Calabi–Yau manifolds with 2 different values of
h1,1.
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X[0] <= 2.5
gini = 0.42

samples = 30
value = [21, 9]

X[2] <= 1.5
gini = 0.459
samples = 14
value = [5, 9]

True

gini = 0.0
samples = 16

value = [16, 0]

False

X[1] <= 1.5
gini = 0.298
samples = 11
value = [2, 9]

gini = 0.0
samples = 3

value = [3, 0]

gini = 0.0
samples = 9

value = [0, 9]

gini = 0.0
samples = 2

value = [2, 0]

(a) The final decision tree for the double en-
hancements from II and III to IV . The in-
put vectors are [VIII , VIV −VIII , VII+VIII ].
The value array gives the number of ele-
ments from each class at a node or leaf.
The index (starting from 0) gives the class,
where 0 means the enhancement is not pos-
sible and 1 means it is possible.

X[0] <= 0.5
gini = 0.133
samples = 14

value = [1, 13]

X[1] <= 3.5
gini = 0.444
samples = 3

value = [1, 2]

True

gini = 0.0
samples = 11

value = [0, 11]

False

gini = 0.0
samples = 2

value = [0, 2]

gini = 0.0
samples = 1

value = [1, 0]

(b) The final decision tree for the double
enhancements from III (L) and III (R)
to IV . The input vectors are [VIII,L +
VIII,R, VIV − VIII,R, VIV − VIII,L]. The
value array gives the number of elements
from each class at a node or leaf. The index
(starting from 0) gives the class, where 0
means the enhancement is not possible and
1 means it is possible.

Figure 5.2 – The rules obtained for the double enhancements from the decision
trees trained on the data obtained by the algorithm presented in chapter 4. The
aglorithm was run on data from Calabi–Yau manifolds with 4 different values of
h1,1.

54



Chapter 6

Conclusion and outlook

In this thesis we developed an algorithm to study the enhancements of Deligne
splittings in Calabi–Yau manifolds. This algorithm is based on machine learning
techniques, in particular a bagging algorithm that uses decision trees . The
algorithm is mainly based on the algorithm presented in [35].

The algorithm was used to study the limiting mixed Hodge structure that arises at
the boundary of the moduli space of a Calabi–Yau manifold. To do this, we first
briefly presented the mathematical theory behind this structure. For this we had
to discuss the monodromies of the period vector in the complex structure moduli
space. Furthermore we used the Nilpotent orbit theorem to get an approximation
of the period vector upto exponential corrections. With this we were able to define
the mixed Hodge structure and use this information to classify the limits at the
boundary, in similar fashion as [6].

Furthermore we have presented a general discussion on Machine learning to help
the reader properly understand the techniques needed for the algorithm. The
main machine learning algorithm used is the decision trees, which we have favored
due to their interpretability. Due to the special nature of the data, we were not
able to use conventional machine learning techniques and therefore we resorted to
a special type of machine learning named Positive Unlabeled learning. This type
of learning was needed to properly classify all the allowed enhancements of the
Deligne splittings.

The algorithm presented in this thesis has been able to rediscover the known
single enhancement rules for some cases. However, due to a lack of data for some
enhancement chains the algorithm has not been successful for all cases. It is
however clear that the algorithm can learn the rules when it is presented with
enough data. With this algorithm we have also discovered new enhancement rules,
for when two divisors intersect. These rules are the main result of this thesis.
They present some new insight in the enhancement rules, but the results are
unfortunately not decisive yet. This is due to two reasons. First of all the rules
discovered for h1,1 = 4 and 5 differ, making the results unclear. Secondly, we lack
enough data for h1,1 = 6 and 7 to find a pattern in the rules to find mistakes in
the results of the algorithm for different values of h1,1. When having multiple
results for the same enhancements, we can compare the resulting rules and find
patterns.
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The analysis presented in this thesis does give us some new insight in the limits
that occur in the Calabi–Yau manifolds. For instance it is still unknown if all
enhancements that are allowed actually occur in Calabi–Yau manifolds [7]. The
rules presented in Table 5.2 might suggest that this is not the case, since we
have learning different rules by learning with data coming from the Calabi–Yau
manifolds compared to the general rules.

There remain several things that we can study further. First of all it would be
great to have more data on h1,1 = 6 and 7, or even higher values. This would
give the algorithm more data to learn and we might be able to find rules with a
higher degree of certainty. Although we have shown that our algorithm is capable
of learning, we might investigate this further. We could test the algorithm on
completely different data sets as a proof of concept but we might also be able
to study the algorithm more theoretical. In [33] some methods to measure the
performance of a PU learning algorithm have been proposed. One part part of the
algorithm can be definitely improved, which is the feature selector. We have biased
this part towards the rules that are already known, making it not completely
generic. Finding a better way to determine a proper basis transformation for the
data would greatly improve the algorithm. However the results in this thesis have
shown that a PU machine learning method is capable of learning enhancement
rules.
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