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Abstract

In this work, the influence of nonmagnetic impurities in the form of zinc ions on the supercon-
ducting state of lanthanum strontium copper oxide (LSCO) will be studied. The superconducting
system is described by the spin-fermion Hubbard model and its superconductivity characterised by
the critical temperature. The replacement of copper by zinc atoms changes the superconducting
coupling and the kinetic energy of the itinerant holes. This dependence on the zinc concentrations
is found from a fit to experimental results and explained in the picture of an excluded area around
each zinc impurity.

Lanthanum copper oxide consists of layers of copper-oxygen planes and charge reservoirs. Su-
perconductivity arises when sufficiently many lanthanum ions are replaced by strontium ions in the
charge reservoirs, adding itinerant holes to the copper-oxygen planes. These itinerant holes on the
oxygen ions and the original localized holes on the copper sites are described by the spin-fermion
Hubbard model, which consists of a Hubbard Hamiltonian for the itinerant holes, an antiferromag-
netic Heisenberg Hamiltonian for the localized holes and a Kondo interaction Hamiltonian between
the two types of holes.

As a result of the replacement of copper with zinc, the critical temperature of the supercon-
ducting phase is reduced until the superconducting state vanishes completely at the critical zinc
concentration. The zinc dependence enters the critical temperature via the superconducting cou-
pling, the critical coupling and the system’s typical energy scale, all of which depend in the same
manner on the zinc doping and the critical zinc concentration. A possible explanation for this
dependence and a way to find the critical zinc concentration from the strontium doping level will
be given.
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Chapter 1

Introduction

Superconductivity is the fascinating phenomenon of vanishing resistivity and the expulsion of mag-
netic fields, which occurs in certain materials at low temperatures [1]. A superconductor’s perfect
conductance allows the transportation of currents without energy loss and resulting heat produc-
tion. Because of this and the bending of external magnetic fields, superconductors could be used
to make very efficient power lines, or magnetic levitating trains [2, 3]. This makes superconducting
materials very interesting for everyday appliances. However, the superconductors so far discovered
only become superconducting at low temperatures, which means that their usage would require
extensive cooling. Though progress has been made in discovering and creating superconductors
with higher and higher transition temperatures, room temperature has yet to be reached.

To aid in the search for higher temperature superconducting materials, it is important to
understand where the superconductivity comes from, to find what the underlying mechanism
is. The first class of superconductors, which were discovered in the 1910’s, were metals with
transition temperatures of a few Kelvin [4]. The first microscopic theory to describe these metals
satisfactorily was proposed by Bardeen, Cooper and Schrieffer in 1957 [5]. However, eventually
insulating materials were found to become superconducting upon doping, i.e. under the addition
of charge carriers, which had higher critical temperatures than could be accounted for with the
metallic theory [6].

These high-temperature superconductors also come in a variety of classes, depending on their
composition. The focus of this thesis is on the cuprates, insulating compounds containing copper-
oxygen layers separated by other atoms [7]. In these materials, the superconducting phase depends
not only on the temperature, but also on the type of atoms between the copper-oxygen planes. A
doping process changes these atoms and adds the charge carriers responsible for superconductivity
to the copper-oxygen planes. So far, many attempts have been made to describe the behaviour
of these high-temperature superconductors, however, no unifying theory describing the underlying
mechanism has been found yet. A popular approach to discovering the origin of high-temperature
superconductivity is the investigation into the destruction of it by the inclusion of impurities. The
hope is that from determining how the superconductivity disappears, its emergence will be uncov-
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ered. This understanding could help find stronger superconductors for even higher temperatures.
The goal of the research behind this thesis is to describe the influence of nonmagnetic zinc

impurities on the superconducting phase of the strontium doped cuprate La2−xSrxCuO4, to gain
insight into the mechanism underlying high-temperature superconductivity.

The structure of this report is the following. In the first chapter a general introduction to
both conventional and high-temperature superconductivity will be given. For conventional super-
conductivity, the focus will be on London theory and Landau-Ginzburg theory for a macroscopic
description and Bardeen-Cooper-Schrieffer theory from a quantum field theory approach for a
microscopic description. The high-temperature superconductivity will be discussed based on the
description of the structure and the behaviour of the cuprate superconductors as found from ex-
periments. A short overview of some wide-spread models for these compounds will also be given.
In the second chapter, the doping of the cuprate La2CuO4 will be described. In the first section
of this chapter, the effect of nonmagnetic impurity doping, in the particular case of zinc, on the
antiferromagnetic ground state and the critical Néel temperature will be investigated. The system
is modelled by a generalized nonlinear σ model and the doping included using percolation theory.
In the second part of this chapter, the critical temperature for the superconducting phase as a
function of strontium or hole doping will be featured. This will be done using the spin-fermion
Hubbard model.
In the third chapter, the effect on the superconducting critical temperature of both types of dop-
ing combined will be studied. The combination of the two dopant types according to the previous
chapter will be considered, a comparison to experimental data will be made and possible theoretical
explanations will be discussed.
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Chapter 2

Background on superconductivity

2.1 Conventional superconductivity

The mechanism of superconductivity was first discovered in 1911 by a student of Kamerlingh-
Onnes, who found that the resistivity in mercury vanishes abruptly below a certain temperature,
which is depicted in figure 2.1 [4]. Afterwards, many more materials with a superconducting phase
were discovered [8]. The critical temperature Tc at which their resistivity drops to zero was the
first defining quantity of superconductivity.

Roughly twenty years later, Meissner and Ochsenfeld discovered that a superconductor, when
placed in an external magnetic field, expels the field [9]. That is, the external field is bent around
the superconductor, but does not penetrate inside it. This was afterwards called the Meissner(-
Ochsenfeld) effect and it makes the superconductor a perfect diamagnet. However, there is a
maximum magnetic field, the critical field Hc, above which superconductivity disappears [1]. To
be more precise, there are two ways in which the superconductivity can disappear for increasing
magnetic field, leading to two types of superconductors:

• type I superconductors have a clear critical magnetic field above which the superconductivity
abruptly disappears. This field is small, on the order of tenths of a Tesla. Pure metals are
the largest group of materials in this type.

• type II superconductors do not have a discontinuity in the resistivity at a certain critical field
value, but rather loose their superconductivity gradually between two critical field values,
Hc1 and Hc2. The upper limit Hc2 is usually of the order of tens or hundreds of Tesla.

Another way to break the superconducting state besides temperature or magnetic field strength is
through a critical current. Often experiments look at both critical field and critical current (see
for example [10]).

From further experiments investigating the critical temperature of superconductors, it was
discovered that Tc depends on the isotope of a material, in such a way that Tc ∝ m

−1/2
a where ma is
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2.1. CONVENTIONAL SUPERCONDUCTIVITY

Figure 2.1: Drop in resistivity of mercury as found by Kamerlingh Onnes and his
student [4].

the atomic mass [11]. This led to the believe that not just the electrons matter in superconductivity,
but also the ionic background lattice. Another effect adding to this believe was sound attenuation,
also known as phonon mode softening. In this effect, the coupling between electrons and phonons
leads to a decrease in the phonon’s frequency and a widening of phonon peaks dependent on
temperature as found from Rayman scattering experiments [12, 13].

2.1.1 London and Ginzburg-Landau theory

After the discovery of the superconducting phase, several attempts at describing superconductivity
theoretically were made. The most famous, macroscopic descriptions are the London theory from
the 1930’s and Ginzburg-Landau theory from the 1950’s [1].

London’s theory has as focus not to describe a perfect conductor, but a perfect diamagnet, that
is a material with magnetic induction B = 0 [14]. The theory is based on the assumption that in
a superconductor the electrons are accelerated by an external electrical field without dissipation
(vanishing resistivity). Starting from Newton’s equation for an electric force

m∗
dvs
dt

= −e∗E, (2.1)

where vs is the speed of the supercurrent density js = −e∗nsvs, and m∗ and e∗ are the effective
mass and charge, respectively, of the superconducting particles, the first London equation is

djs
dt

=
e∗2ns
m∗

E. (2.2)
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2.1. CONVENTIONAL SUPERCONDUCTIVITY

Here ns is the number density of the superconducting particles. Applying a rotational on both
sides of this equation and using Faraday’s law ∇× E = − ∂B/∂t leads to the second London
equation

∇× js +
e∗2ns
m∗

B = 0. (2.3)

To be precise, the time-derivative is actually zero and the left-hand side of the above equation
should just be equal to a constant. However, London postulated that the constant should be zero.
This also follows from minimizing the total energy.

With Ampère’s law for a static electric field, ∇×B = µ0 js, the second London equation can
be rewritten, after some algebra and using that ∇ ·B = 0, as [1]

∇× (∇×B) = µ0∇× js, (2.4)

∇(∇ ·B)−∇2B = −µ0
e∗2ns
m∗

B, (2.5)

∇2B− 1

λ2
L

B = 0, (2.6)

where λ2
L = m∗/(µ0nse

∗2) is the (London) penetration depth. This indicates that the induced
field is not absolutely expelled from the superconductor, but rather disappears over a finite length
scale.

An important difference between a perfect conductor and a superconductor is in the way the
induced field is canceled [1]. Both would expel a magnetic field, see figure 2.2b. However, if the
magnetic field is turned on in the normal state of the materials and the temperature is lowered, the
perfect conductor will no longer expel the field, see figure 2.2a. This difference shows that while a
perfect conductor, obeying only Lenz’s law, retains the information of its past, the superconductor
always has B = 0, independent of when the external field was turned on.

Another important theory is the Ginzburg-Landau theory, which combines electromagnetism
with thermodynamics and is built on the Landau theory for phase transitions. The goal is to
describe the behaviour of an order parameter ψ, that vanishes in the normal phase, but becomes
non-zero in the superconducting phase. The usual Landau free energy for a spatially fluctuating
order parameter is given by

F = F0 +

∫ (
α(T )|ψ|2 +

β

2
|ψ|4 + γ|∇ψ|2

)
d3r . (2.7)

The generalization of the Landau free energy is done by including an electromagnetic potential
field A in a gauge invariant way, leading to

Fs = Fn +

∫ (
α|ψ|2 +

β

2
|ψ|4 +

1

2m∗
|(−i~∇− e∗A)ψ|2 +

|∇×A|2

2µ0

)
d3r , (2.8)
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2.1. CONVENTIONAL SUPERCONDUCTIVITY

(a) (b)

Figure 2.2: The difference in behavior between a perfect conductor and a supercon-
ductor. (2.2a) The magnetic field is turned on in the low temperature phases and
gets repelled from both materials. (2.2b) The magnetic field is turned on before the
temperature is lowered and switched off in the low temperature phases, where the
perfect conductor retains the field, but the superconductor still expels it.

where m∗ is again the effective mass and e∗ the effective charge, equal to twice the electron charge.
From minimizing the free energy with respect to the order parameter ψ and the field A, one can
find the Ginzburg-Landau equations:

αψ + β|ψ|2ψ +
1

2m∗
(−i~∇− e∗A)2 ψ = 0, (2.9)

~e∗

2im∗
(ψ∗∇ψ − ψ∇ψ∗)− e∗2

m∗
A|ψ|2 =

1

µ0

∇×B. (2.10)

There are no general solutions to these equations. However, by studying some limiting cases,
two important length scales can be determined. The first is again the London penetration depth,
λ2
L = m∗/(µ0n

∗
se
∗2) with n∗s = |α|/β . The other length scale found from Ginzburg-Landau theory

is the coherence length ξ2 = ~2/2m∗|α| , which gives the scale of spatial fluctuations. The ratio
between these two length scales

κ =
λL
ξ

=
m∗

~e∗

√
2β

µ0

(2.11)

is called the Ginzburg parameter and determines the type of superconductor. For κ� 1 (λL � ξ),
the material is a type I, for κ� 1 (ξ � λL) a type II superconductor.

As mentioned before, the type II superconductors have two critical magnetic fields, between
which the field can partially penetrate the material. This intermediate phase is called the Shub-
nikov phase and the field enters the material here as a lattice of flux tubes. These fluxes are
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2.1. CONVENTIONAL SUPERCONDUCTIVITY

quantized by a flux quantum

φ0 =
h

e∗
=

h

2e
, (2.12)

which follows readily from the Ginzburg-Landau theory. To see this, consider splitting the order
parameter into an amplitude and a complex phase

ψ = |ψ|eiχ (2.13)

leading to a supercurrent density

js =
~e∗

2im∗
(ψ∗∇ψ − ψ∇ψ∗)− e∗2

m∗
A|ψ|2

=
e∗~
m∗
|ψ|2∇χ− e∗2

m∗
|ψ|2A. (2.14)

Since the current far from the flux tubes vanishes, the phase term equals the potential field term.
Integrating over a closed loop leads to∮

C

∇χ · dr =
e∗

~

∮
C

A · dr =
e∗

~

∫
Σ

(∇×A) · dσ

=
e∗

~

∫
Σ

B · dσ ≡ e∗

~
φc, (2.15)

where φc is the magnetic flux. Since the order parameter is uniform, i.e. its value should be the
same after a closed loop, the flux has to be an integer multiple of 2π, so that

φc = n
~2π

e∗
= n

h

2e
≡ nφ0, (2.16)

giving rise to the quantization of the magnetic flux.
To summarize, the main characteristics of superconductors are the resistivity drop and the

exclution of magnetic fields, up to a critical field, which leads to the different types of supercon-
ductors. The behaviour of superconductors in magnetic fields can be described by the London
theory or by the Ginzburg-Landau theory. However, these are macroscopic theories and do not
give an explanation of the underlying mechanism responsible for superconductivity yet.

2.1.2 BCS theory

The fundamental description of the microscopic origin of superconductivity came a few years after
the development of Ginzburg-Landau theory from Bardeen, Cooper and Schrieffer [5]. It was known
from the isotope effect and the sound attenuation that phonons were involved in the appearance of
superconductivity. From the flux quantization it was known that the effective charge carriers had
twice the electron charge. These findings led to the idea that the phonons could be responsible for

8



2.1. CONVENTIONAL SUPERCONDUCTIVITY

an attractive interaction between two electrons. Intuitively, this works as follows [1]: one electron
moving through the positively charged lattice causes a slight displacement of the surrounding ions.
After the electron has passed through, a slightly positively charged area remains behind, attracting
another electron. This only works for electrons at the Fermi surface with a low momentum, i.e. at
low temperatures. However, at low temperatures, even a small attraction is sufficient to cause a
superconductive state.

Such a pair of electrons that have opposite momentum and spin forms an energetically favourable
bound state called a Cooper pair. Only electrons with a kinetic energy εk in the range εF −~ωD <
εk < εF + ~ωD, where ωD is the Debye frequency and ~ωD the maximum phonon energy, are
available to form Cooper pairs. Favouring the formation of these Cooper pairs energetically, more
and more electrons pair up and the Cooper pairs form a new many-body groundstate similar to
a Bose-Einstein condensate [15]. In this subsection, the physics of this system will be described
using a field theory approach to the original BCS model.

The action for the superconducting electrons in this approach is given by

S
[
ψ†, ψ

]
=
∑
σ=↑,↓

∫ ~β

0

dτ

∫
dxψ†σ(x, τ)

[
~
∂

∂τ
− ~2∇2

2m
− µ

]
ψσ(x, τ)

+

∫ ~β

0

dτ

∫
dxV0ψ

†
↑(x, τ)ψ†↓(x, τ)ψ↓(x, τ)ψ↑(x, τ), (2.17)

where ψσ(x, τ) and ψ†σ(x, τ) are the annihilation and creation field operators of electrons with spin
σ, m is the electron mass, µ is the chemical potential, and V0 is an attractive interaction potential
between pairs of electrons of opposite spin [15]. The interaction term couples two fermionic fields
with different spins, as any term with a product of annihilation fields with the same spin would
vanish, due to the fermionic nature of the electrons [7]. The corresponding partition function is
given by

Z =
1

Z0

∫
Dψ†σDψσe

iS[ψ†,ψ]/~ , (2.18)

where Z0 is the non-interacting partition function. To be able to work with this action, the quartic
interaction term needs to be dealt with using a Hubbard-Stratonovich transformation to a complex
field η(x, τ) such that

Z =
1

ZηZ0

∫
Dψ†σDψσDη†Dηe

i
~

(
S[ψ†,ψ]−

∫ ~β
0 dτ

∫
dx 1

V0
η†η
)
. (2.19)

The quartic interaction term in the fermionic fields can then be removed by shifting the functional
integral over η to

η → η + V0ψ↑ψ↓, (2.20)

η† → η† + V0ψ
†
↓ψ
†
↑, (2.21)
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2.1. CONVENTIONAL SUPERCONDUCTIVITY

which does not change the functional integration measure. The resulting action is then

S
[
η†, η, ψ†, ψ

]
=−

∫ ~β

0

dτ

∫
dx
|η(x, τ)|2

V0

+
∑
σ=↑,↓

∫ ~β

0

dτ

∫
dxψ†σ(x, τ)

(
~
∂

∂τ
− ~2∇2

2m
− µ

)
ψσ (x, τ)

+

∫ ~β

0

dτ

∫
dx
{
ψ†↑(x, τ)ψ†↓(x, τ)η(x, τ) + η†(x, τ)ψ↓(x, τ)ψ↑(x, τ)

}
.

(2.22)

By varying the action with respect to the complex fields η and η†, the field equations

η = V0ψ↓ψ↑, (2.23)

η† = V0ψ
†
↑ψ
†
↓ (2.24)

are obtained, indicating that the complex auxiliary field η is the Cooper pair field. Its vacuum
expectation value 〈0|η|0〉 = V0 〈0|ψ↓ψ↑|0〉 gives the Cooper pair density in the ground state.
Because of this, it can serve as an order parameter for the superconducting phase.

To evaluate the action of equation (2.22), which is now only quadratic in the fermionic fields,

it is useful to switch to the so-called Nambu fermion fields Φ† =
(
ψ†↓ ψ↑

)
, so that the action can

be written in a matrix form

S
[
η†, η, ψ†, ψ

]
=−

∫ ~β

0

dτ

∫
dx
|η(x, τ)|2

V0

+

∫ ~β

0

dτ

∫
dx Φ†AΦ,

(2.25)

where A is given by

A =

(
ξ(k) + i~ωn η

η† ξ(k)− i~ωn

)
(2.26)

in momentum space, with ξ(k) = ~2k2/(2m) − µ the kinetic energy of the electrons with respect
to the Fermi level and ωn the fermionic Matsubara frequency [7]. The component A22 obtains
a minus sign, because of the interchange of the fermion fields ψ†↓ and ψ↓ in the Nambu vector
notation. Now the fermionic fields in the partition function can be integrated out in the partition
function of equation (2.19) leading to an effective action in terms of the Cooper pair field

Seff
[
η†, η

]
= −

∫ ~β

0

dτ

∫
dx
|η(x, τ)|2

V0

− i ln det

[
A[η]

A[0]

]
, (2.27)

where det A[η] = ξ2 + (~ωn)2 − |η|2, so that, in real space, the effective action for the Cooper pair
field becomes

Seff
[
η†, η

]
= −

∫ ~β

0

dτ

∫
dx
|η(x, τ)|2

V0

− iTr ln

[
1− |η|2

−∂2
τ +

(
−~2∇2

2m
− µ

)2

]
. (2.28)
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2.1. CONVENTIONAL SUPERCONDUCTIVITY

From this effective action, the effective potential as a function of the order parameter of super-
conductivity, ∆ = 〈0|η|0〉, can be extracted [7]. It is given by

Veff (|∆|, T ) =
|∆|2

V0

− kBT
∫

d3k

(2π)3

∞∑
n=−∞

{
ln

[
1 +

|∆|2

~2ω2
n + ξ(k)2

]}
. (2.29)

Since the only electron states contributing to the momentum integral are the ones in the region of
~ωD around the Fermi surface, the integral can be rewritten as∫

d3k

(2π)3
=

∫ ~ωD

−~ωD
dξ NFD(ξ) ' NFD (EF )

∫ ~ωD

−~ωD
dξ , (2.30)

where NFD(ξ) = 1/(exp (βξ) + 1) is the Fermi-Dirac distribution or density of states at the energy
level ξ and it can be taken to be roughly equal to the distribution at the Fermi energy in the domain
of the integral, because ~ωD � EF .

To find the superconducting and normal phases of the system, one needs to find the stable
equilibrium points of the effective potential [7]. These points are the solutions to

∂

∂|∆|
Veff (|∆|, T ) = 0, (2.31)

∂2

∂|∆|2
Veff (|∆|, T ) > 0. (2.32)

The condition for the vanishing first derivative results in

2|∆|

{
1

V0

− kBTNFD(EF )

∫ ~ωD

−~ωD
dξ

∞∑
n=−∞

[
1

~2ω2
n + ξ2 + |∆|2

]}
= 0, (2.33)

where the Matsubara sum can be carried out using
∑

1
/[
a2 + (n+ 1

2
)2
]

= π/a tanh(πa) leading
to

2|∆|


1

V0

−NFD(EF )

∫ ~ωD

0

dξ

tanh

(√
ξ2+|∆|2

2T

)
√
ξ2 + |∆|2

 = 0. (2.34)

In the superconducting phase |∆| 6= 0 and the term between brackets in the above equation must
vanish, resulting in the gap equation

1 = V0NFD(EF )

∫ ~ωD

0

dξ

tanh

(√
ξ2+|∆|2

2kBT

)
√
ξ2 + |∆|2

. (2.35)
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2.1. CONVENTIONAL SUPERCONDUCTIVITY

In the limit T → Tc, the order parameter vanishes and the energy integral can be performed
by an integration by parts ([16])∫ B

0

dz

z
tanh z = ln z tanh z

∣∣∣∣B
0

−
∫ B

0

dz ln z sech2 z. (2.36)

For z = ξ
2kBTc

, the upper bound B = ~ωD
2kBT

is very large, because ~ωD � kBT at low temperatures,
and the gap equation gives approximately

1 ≈ V0NFD(EF )

(
ln

~ωD
2kBTc

−
∫ ∞

0

dz ln z sech2 z

)
, (2.37)

where the remaining integral is given by∫ ∞
0

dz ln z sech2 z = − ln
4eγ

π
, (2.38)

so that, after solving for the critical temperature, one finds

kBTc =
2eγ

π
~ωDe1/NFD(EF )V0 ≈ 1.13~ωDe1/NFD(EF )V0 . (2.39)

Note here that Tc is small compared to the phonon energy due to the exponential factor and the
small attractive interaction. Also, the direct dependence of the temperature on the phonon energy
explains the isotope effect, as the Debye frequency goes exactly as M−1/2.

In the opposite limit, that is for T → 0, the gap equation reduces to

1 = V0NFD(EF )

∫ ~ωD

0

dξ√
∆2 + ξ2

≈ V0NFD(EF ) ln
2~ωD

∆
, (2.40)

where the last equation holds only the leading term for ~ωD/∆ � 1 [16]. This leads to the
maximum value of the energy gap at zero temperature

∆0 = 2~ωDe1/V0NFD(EF ) . (2.41)

Just like the critical temperature, the maximum energy gap depends on the exponent of V0NFD(EF ).
When forming the ratio of these two,

∆0

kBTc
= πe−γ ≈ 1.76, (2.42)

the dependence on the material cancels and a universal constant is recovered.
The full temperature dependence of the gap can be found numerically and is given by

∆(T ) ≈ ∆0 − (2π∆0kBT )
1
2 e−∆0/kBT (2.43)
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2.1. CONVENTIONAL SUPERCONDUCTIVITY

for T � Tc, and

∆(T ) ≈ 3.06kBTc

(
1− T

Tc

) 1
2

(2.44)

for Tc − T � Tc [16]. See figure 2.3 for the energy gap as a function of the temperature.
A second experimental finding that BCS theory explains is the behaviour of the specific heat

as a function of the temperature [5]. The specific heat measures the amount of energy put into a
system that is used to increase the system’s temperature. For most materials, a part of the specific
heat comes from the phonons and the remainder from the electrons [17]. In the superconducting
phase, the electronic specific heat varies exponentially with the temperature, while at the critical
temperature, the specific heat discontinuously drops to the usual normal state electronic specific
heat and increases linearly with temperature, see also figure 2.4.

Figure 2.3: Temperature dependence of the gap energy as described by BCS theory
and found from experiments [18].

Figure 2.4: Schematic representation of the specific heat as a function of temper-
ature, exhibiting an exponential dependence in the superconducting phase and a
discontinuity at the critical temperature [16].
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2.2. HIGH-TC SUPERCONDUCTIVITY IN CUPRATES

The BCS theory predicts a temperature-depedence of the specific heat near zero temperature
as

CT ≈ 8.5αTc e
−1.44Tc/T , (2.45)

where α = 2
3
π2k2

BNFD(εF ) [5]. The values for the constants 8.5 and −1.44 in this relation come
very close to experimental results for several different materials [19], indicating that the exponential
behaviour of the specific heat stems indeed from a gap in the energy. With their theory, Bardeen,
Cooper and Schrieffer also recovered the jump in the specific heat at the critical temperature,
which shows that the phase transition from the normal to the superconducting state is a second
order transition.

2.2 High-Tc superconductivity in cuprates

In 1957, the first superconductor with a high critical temperature of Tc ≈ 30 K was found by
Müller and Bednorz [6]. Similar to the low-temperature or conventional superconductors, the
high-Tc materials have a drop in the resistivity [1]. However, these superconductors show some
prominent differences with the conventional metallic superconductors. For example, most of them
are insulators in the undoped normal phase instead of conducting metals described by Fermi
liquid theory. Also, the isotope effect on the critical temperature is very small compared to the
conventional superconductors’ effect [20] and magnetic interactions play an important role, that is
the conducting phase can coexist with magnetic fluctuations or even a magnetically ordered phase
[21, 22].

Because of these differences and the high critical temperature, it is believed that these materials
do not become superconducting mainly through phonon-coupled Cooper pairs and that they can
therefore no longer be described by the BCS theory [7]. No general theory has been found to
describe all types of high-Tc superconductors, but for certain materials some models were made.
The focus of this thesis will be on high-temperature superconducting cuprates, and more specifically
La2−xSrxCuO4. In this section, the undoped cuprates’ crystal structure, an outline of the behaviour
of cuprates when they become hole-doped and an indication of the theoretical description by the
three-band and some one-band models will be given. In principle, cuprates can also become
superconducting with electron doping [22], though this will not be further discussed here.

2.2.1 Cuprate lattice structure and experimental features

In general, the structure of the high temperature superconducting cuprates is the following. The
cuprates consist of copper-oxygen layers separated by spacer or charge reservoir layers as can be
seen in figure 2.5(a) [7]. The superconductivity of these materials is believed to originate in the Cu-
O2 layers [23]. The number of the Cu-O2 planes between each spacer layer can vary and affects the
critical temperature. In HgBa2Can−1CunO2n+2+δ, for example, the critical temperature increases
from 98 K for n = 1 plane, over 128 K for n = 2 up to 135 K for n = 3 copper-oxygen planes
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2.2. HIGH-TC SUPERCONDUCTIVITY IN CUPRATES

[24]. Another well-studied example is the family of Bi2Sr2Can−1CunO2n+4+δ, where the critical
temperature also increases with increasing n [25]. The compound of interest here, La2−xSrxCuO4,
has a single copper-oxygen plane between the charge reservoirs.

In the undoped system La2CuO4, the lanthanum is ionized to La3+ and the oxygen to O2− [7].
However, for charge neutrality each copper atom releases two electrons from the 4s and the 3d
shells, which leaves a vacancy in the latter, so that the outer shell is 3d9 instead of the filled
3d10. In the picture of holes this vacancy can be described as one effective spin-1

2
particle at each

copper site [26]. Due to strong interactions, the undoped system is antiferromagnetically ordered
at low temperature and even arranges into the Néel state below the critical temperature TN [22].
The copper-oxygen lattices of the undoped material as depicted in figure 2.5(b) can therefore be
described by a two-dimensional antiferromagnetic Heisenberg model [7].

(a) (b)

Figure 2.5: Schematic representation of the structure of cuprates. (a) The layered
structure of cuprates [27]. The two superconducting CuO2-layers are separated by
charge reservoir or spacer layers. Note that La2CuO4 would contain only one copper-
oxygen layer between the spacer layers. (b) Square lattice of the copper-oxygen plane
with copper atoms at the lattice sites (black dots) and oxygen atoms forming the
links (grey dots) [7].

The copper-oxygen planes only become superconducting when the spacer layers are doped [7].
In the case of La2−xSrxCuO4, the strontium replaces some of the La3+ and ionizes into Sr2+,
adding more holes to the copper-oxygen planes. It is generally assumed that the holes are located
on the oxygen ion links rather than on the copper sites, because the onsite Coulomb repulsion
is larger than the gap between the energy levels of the outermost copper and oxygen shells [28].
With an increasing surplus of holes, the low-temperature Néel state gets destroyed and the system
eventually transitions into a superconducting phase [29, 22], as can be seen in figure 2.6. The
superconducting phase begins at zero temperature for some critical doping level xsc,−, has an
increasing critical temperature Tc(x) up to an optimal doping level x0, after which the critical
temperature decreases again, effectively describing a superconducting dome. Other phases which
appear for different doping levels and temperatures are the pseudogap (PG), the spin-glass (SG)
and the non-Fermi liquid phase, for example [30].
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2.2. HIGH-TC SUPERCONDUCTIVITY IN CUPRATES

Figure 2.6: Schematic diagram of the phases for superconducting cuprates [31]. At
low hole doping and low temperature, the system is in an antiferromagnetic state,
at higher doping a superconducting dome appears.

Besides the expanded phase diagram and the before-mentioned smallness of the isotope effect,
some other experimental features which characterise the cuprates and set them apart from conven-
tional superconductors are a short coherence length and a momentum dependent order parameter
[7]. The coherence length in cuprates is usually of the order of a few nanometer, ξ ≈ 1 − 4 nm,
instead of tens or hundreds of nanometer as for the conventional superconductors, ξ ≈ 50− 1000
nm. This means that the coherence length is shorter than the penetration depth and the cuprates
are type II superconductors, as described in section 2.1.1.

The momentum dependence of the energy gap for most cuprates was found from angle-resolved
photo-emission spectroscopy (ARPES) [7]. ARPES uses the photo-electric effect to emit free
electrons and measures their kinetic energy and the angle at which they are emitted [32]. For
two-dimensional solids, ARPES gives the density distribution of the electronic excitations (the
quasiparticles) over energy and momentum along a certain direction in the reciprocal space. When
probing cuprate superconductors, ARPES experiments show a momentum dependence in the order
parameter, as opposed to the conventional superconductors, which have a uniform energy gap [7].
The anisotropic order parameter

∆ = ∆0 [cos kxa− cos kya] , (2.46)

where a ≈ 3.8Å is the lattice spacing between the copper ions, generally has a d-wave symmetry,
see figure 2.7. An overview of experiments on the nature of the order parameter in cuprates can
be found, for example, in Ref. [33].

To conclude, high-temperature superconducting cuprates have a doping-induced superconduc-
tivity originating from the copper-oxygen planes. The superconducting pairs have a small coher-
ence length and give rise to a d-wave type order parameter. A theoretical description of these
superconductors should therefore focus on the holes as the charge carriers of the system, and be
restrained to the copper-oxygen planes. As examples of such a description, the three-band model
and two reduced one-band models will be shortly discussed next.
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Figure 2.7: The d-wave nature of the order parameter ∆/∆0 as a function of mo-
mentum.

2.2.2 Three-band model

Besides the assumption that the charge carriers only move in the copper-oxygen planes, the com-
plexity of the superconducting cuprates will also be reduced by considering only the outer shells
of the ions. For copper, this is the dx2−y2 shell and for oxygen these are the px and py shells, which
play a significant role in the superconductivity of cuprates [34]. Since one electron is missing in the
dx2−y2 shell, the system can be represented by a lattice with spin-1

2
holes located at the copper ions,

into which the doping introduces additional holes [35]. Considering the system with the copper-d
and oxygen-px and -py shells filled as the vacuum state, the Hamiltonian for the holes consists
of hopping between copper and oxygen atoms tpd, hopping between oxygen-oxygen neighbours tp,
onsite energies ε and onsite-interaction potentials U at the copper and oxygen ions [36, 35, 37]:

H =− tpd
∑
〈i, j〉, σ

(
p†jσdiσ + d†iσpjσ

)
− tp

∑
〈j, j′〉,σ

(
p†jσpj′σ + p†j′σpjσ

)
+ εd

∑
iσ

ndiσ + εp
∑
jσ

npjσ + Ud
∑
i

ndi↑n
d
i↓

+ Up
∑
j

npj↑n
p
j↓ + Udp

∑
〈i, j〉,σ

ndiσn
p
jσ,

(2.47)

where the fermionic operators p†j create holes at the oxygen sites, d†i create holes at the copper

sites and nzl = z†l zl is the number operator at either oxygen z = p, l = j or copper z = d, l = i
sites. The sums over 〈l, l′〉 are sums over nearest neighbour copper or oxygen pairs and σ is
the spin. See figure 2.8 for an overview of the hoppings and interactions. This Hamiltonian
was introduced as an extended Hubbard Hamiltonian [36], but has since become the three-band
(Hubbard) Hamiltonian [35].

The three-band model is still difficult to work with, due to the high number of parameters
[35]. An attempt to simplify it has been made in the following way. When the system becomes
doped in the regime where the onsite-interaction Ud at the copper sites is larger than the energy
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Figure 2.8: Overview of the hopping tpd between the copper and the oxygen sites
and tpp between the p-shells of two oxygen sites, the onsite Coulomb repulsions Ud
and Up and the intersite repulsions Vpd and Vpp (this last one is not included in the
Hamiltonian (2.47), while Vpd = Udp) [38].

difference ∆E = εp−εd (the charge-transfer gap), the added holes will occupy the oxygen sites [36].
Experiments have shown that this is indeed the case in the superconducting cuprates [39]. Since
the extra hole on one of the four oxygen ions around the copper atom can couple in a symmetric
or antisymmetric way with the original hole of the copper site, the two holes can collectively be
described by a spin singlet or triplet state, as described by Zhang and Rice [40]. They further
argued that the spin singlet state suffices to describe the system, and the model can be reduced
to one with a spin singlet state centered on each copper site, corresponding to an effective model
of spins and spin-holes on only the copper lattice. The effective Hamiltonian is given by [41]

H = −t
∑
〈i, j〉,σ

c†iσcjσ + U
∑
i

ni↑ni↓, (2.48)

where c†iσ creates a fermion on the copper sites and U is the onsite repulsive interaction.
An alternative for this reduction of the three-band model to a one-band model is an expansion

of the three-band Hubbard model to the so-called t− J Hamiltonian in the strong coupling limit
[42]

H = − t
∑
〈i, j〉, σ

[
c†i,σ (1− ni,−σ) (1− nj,−σ) cj,σ + h.c.

]
+ J

∑
〈i, j〉

[
Si · Sj −

1

4
ninj

]
,

(2.49)

with t the hopping energy between the copper sites, whose term preserves the spin and excludes
double occupancy of the copper sites, Si the spin-1/2 operator and J = 4t2/U the antiferro-
magnetic coupling between nearest neighbours. The next term in the expansion is a hopping term
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between three sites. Eskes and Eder showed that with the inclusion of this three-site term the t−J
model is still relevant in the intermediate coupling regime, which is appropriate for the cuprate
superconductors [43].

However, the correctness of the reductions of the three-band model to simpler models is still
a matter of discussion. For example, the band models correspond to different types of insulators:
the one-band models show the physical behaviour expected for doping a Mott-Hubbard insulator,
whereas the actual superconducting cuprates are doped charge-transfer insulators, a fact which
is incorporated in the three-band model [41]. The difference between these two lies in the gap
existing between bands of same-ion states (Mott insulator) or between bands of the anions and
cations (charge-transfer insulator) [44]. Also, it is not clear whether the triplet states between the
copper and oxygen holes can really be ignored [45]. In general and especially in the overdoped
regime (above the optimal doping level), the oxygen sites become important and can not be simply
treated as a pertubation on the copper hole system [46]. In section 3.2 a model which focuses on
the oxygen sites will be discussed in detail.

Figure 2.9: Lattice of tilted CuO-octahedra [47].

Another effect that is not included in either the three-band model or the one-band models
is the influence of the spacer-layer oxygen atoms on the copper-oxygen planes [48]. In the three-
dimensional cuprate lattice, each copper atom is surrounded by six oxygen atoms in a slightly tilted
octahedron, see figure 2.9 [49]. Still only the four oxygen atoms in the plane with the copper play
a role in the superconducting interactions in the system, as the two so-called apical oxygens in the
spacer layers are at a larger distance to the copper atoms and therefore have a much weaker bond
[23]. However, the net tilting of the four in-plane oxygens also leads to a Dzyaloshinskii-Moriya
(spin-orbit coupling) and a XY (direct exchange) interaction [49], which will be described in more
detail in the next chapter when considering the nonlinear σ model.
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Chapter 3

Description of doped La2CuO4

In this chapter, a theoretical description of the copper-oxygen planes with doping will be given.
In the first section, the copper-oxygen planes are doped with nonmagnetic zinc atoms, replacing a
fraction of the copper atoms. In the second section, the doping is done by exchanging a fraction of
the lanthanum ions in the spacer layers with strontium atoms, which contribute additional holes
to the copper-oxygen planes.

In the first section, the goal will be to describe the doping-induced change in the antiferro-
magnetically ordered state at low temperature by deriving an expression for the Néel temperature
using the nonlinear σ model, while the goal of the second section is to find the critical tem-
perature for the superconducting phase as a function of the strontium doping fraction using the
Spin-Fermion-Hubbard model. In the next chapter, both types of doping will be combined.

3.1 Nonmagnetic impurity doping

The doping with zinc, resulting in La2Cu1−zZnzO4, is a way to break the magnetic ordering of the
undoped insulating compound [49]. The ionized zinc atoms have the same valence as the copper
ions, that is, they also release two electrons, but their outer shell is fully filled. This means that
there are no free holes on sites where zinc has replaced the copper ions and there is no magnetic
interaction between these sites and the spin-1/2 holes on the copper sites. This supresses the
antiferromagnetic ordering and destroys superconductivity. There are several other dopants with
a similar effect, for example nickel or magnesium [50, 51]. The effect of zinc doping was included in
the generalized nonlinear σ model through percolation theory in Ref. [49], which will be explained
in more detail below.

The generalized nonlinear σ model follows from an expansion of the antiferromagnetic Heisen-
berg model for the low temperature state of La2CuO2, including anisotropic interactions stemming
from the tilted copper-oxygen octahedra, which can be seen in figure 2.9 [49]. However, the model
describes again only the copper-oxygen plane, such that the underlying structure is a square lat-
tice. The Hamiltonian for the general nonlinear σ model is derived from the extended Heisenberg
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Hamiltonian given by

H = HH +HDM +HXY =
∑
<I, J>

(JSISJ + DIJ · (SI × SJ) + SIΓIJSJ) (3.1)

where the summation is taken over nearest neighbours on the copper sites. This Hamiltonian has
a typical antiferromagnetic exchange energy, but also two terms for the anisotropic interactions
[52]. The second term in the above equation gives the Dzyaloshinskii-Moriya (DM) interaction, a
spin-orbit coupling, also known as the antisymmetric exchange interaction. The symmetry of the
system puts constraints on the orientation of the vector DIJ . For a system with planes as shown
in figure 3.1a, the vector components are given by

DAB = ± (0, d, 0) (3.2)

DAC = ± (d, 0, 0) (3.3)

where DAB is the interaction between neighbours on the x-axis, DAC the interaction between
neighbours on the y-axis and d is the exchange energy of the order 10−2J [49]. The DM vectors are
perpendicular to the copper bonds and have alternating sign, as can be seen in figure 3.1(b). This
means that there are actually two inequivalent neighbours in the sum over nearest neighbours.

(a) (b)

Figure 3.1: (a) Coordinate system for the copper-oxygen plane. The black dots
correspond to the copper atoms, the empty circles represent the oxygen ions titled
below the plane, the gray circles the ions above [53]. (b) Schematic representation
of the antiferromagnetic spins on the copper sites, represented by the black arrows,
and the Dzyaloshinskii-Moriya vectors, indicated by the open arrows [53].
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The last term in the Hamiltonian corresponds to the XY interaction, which is a direct-exchange
interaction. It is described by

ΓAB =

Γ1 + Γ2 0 0
0 Γ1 − Γ2 0
0 0 Γ3

 (3.4)

ΓAC =

Γ1 − Γ2 0 0
0 Γ1 + Γ2 0
0 0 Γ3

 , (3.5)

where the components Γ1,2,3 are of the order of 10−4J [49].
The expanded Heisenberg Hamiltonian of equation (3.1) is most useful for the description of

low-energy excitations above the Néel ground state. Overall, the system in this region will be
antiferromagnetically ordered, with only small long-distance fluctuations [49]. Therefore, the spin
of the lattice sites can be decomposed into a staggered or antiferromagnetic component and a
uniform or fluctuating component, such that

SI
S
≡ ΩI ≈ (−1)InI + alI , (3.6)

where ΩI is the coherent spin at site I in the copper lattice, a is the lattice spacing, nI is the
staggered unit spin and lI is the perpendicular fluctuation. These last two obey the relations
|n|2 = 1 and n · l = 0. The nearest-neighbour spins at sites J = I ± 1 can be approximated by
an expansion of the staggered component around the spin at site I, while the uniform spin stays
roughly the same, i.e.

nJ ≈ (−1)I±1nI − (a · ∇)nI , (3.7)

lJ ≈ lI . (3.8)

Substituting the decomposition (3.6) and the above expansion into the Hamiltonian (3.1) and
including doping leads in the long-wavelength or continuum limit (a2

∑
I →

∫
d2r) to

HH =
JS2K(z)

2

∫ [
(∇n)2 + 8l2

]
d2r , (3.9)

HDM =
4S2K(z)

a

∫
[d+ · (n× l)] d2r , (3.10)

HXY =
2S2K(z)

a2

∫ [
(Γ1 − Γ3)n2

z

]
d2r , (3.11)

where d+ = (DAB + DAC)/2 and in the XY-Hamiltonian the small terms like Γ(∇n)2 and Γl2 are
neglected. The factor K(z) comes from percolation theory.
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Percolation theory is used to include the site-dilution by the doping with zinc atoms. In general,
this theory describes clustering in probability distributions over structured systems [54]. In the
case of the zinc doping, the clustering can be pictured as follows. The holes at the copper sites
interact with each other through a Coulomb repulsion, which forms a bond between one copper
site and its four neighbours. When a zinc ion replaces a copper ion, the four interaction bonds are
broken and the systems loses its connectivity. See also figure 3.2(a).

In the doped lattice system, the effect of the nonmagnetic zinc ions enters the Hamiltonian
as an uncorrelated variable ηI with an expectation value equal to the magnetic concentration,
〈ηI〉 = pI [49]. The magnetic concentration pI = 1 at a copper site and pI = 0 at a zinc site. This
leads to a replacement in the Hamiltonian of ΩI ·ΩJ → pIpJΩI ·ΩJ .

Above a critical or limiting concentration pc, the system forms an infinite cluster, where a
connection between two opposite sides of the system could be made via the interaction bonds
[54], see figure 3.2(b). However, as more zinc is doped into the system, more bonds are broken
and the system loses its connectedness [49]. The order parameter for the transition between an
unconnected and a connected system is the fraction of sites in the infinite cluster P∞.

Treating the static impurities as an average effect results in P∞(z) = 〈p(r)〉 = 1 − z, where
z is the zinc concentration [55]. This fraction gives a constraint on the coherent spin, such that
Ω2
I = P∞ instead of Ω2

I = 1 for the undoped system. The average effect on two sites, 〈pIpJ〉 = K(r),
where K is the bond dilution factor, which depends on the symmetry of the system’s structure.
Averaging also over the positions gives 〈K(r)〉 = K(z) = 1 − 3z, the average bond dilution
factor as a function of the zinc concentration z for small z, which is the factor showing up in the
Hamiltonians (3.9)-(3.11).

(a) (b)

Figure 3.2: (a) Abstract picture of the breaking of interaction bonds due to the
dilution with zinc atoms in the copper lattice [54]. (b) Example of a connection from
one side of the system to the other over the interaction bonds between the copper
sites [56].
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3.1.1 Wess-Zumino term

In going to the continuum limit in the expanded Heisenberg model, an additional term arises,
such that the total partition function for the generalized nonlinear σ model contains not only the
different terms of the Hamiltonian described above, but also a topological term that emerges as
a Berry phase from the geometry of the coherent spin space that Ω lives in [7]. This topological
term is found by making a path integral expansion of the partition function

Z = Tr e−βH[S] =

∫
DΩ 〈Ω|e−βH[S]|Ω〉 =

∫ ∏
DΩi 〈Ωi|e−∆τH[S]|Ωi+1〉 , (3.12)

with ∆τ = β/M an infinitesimal interval and M a large number. Expanding the exponent to first
order in ∆τ one finds that

〈Ωi|e−∆τH[S]|Ωi+1〉 ≈ 〈Ωi|1−∆τH[S]|Ωi+1〉 ≈ 〈Ωi|
(

1−∆τH[S]
)(
|Ωi〉+ ∆τ∂τ |Ωi〉

)
≈ 1 + ∆τ 〈Ωi|∂τ |Ωi〉 −∆τ 〈Ωi|H[S]|Ωi〉
≈ e∆τ(〈Ωi|∂τ |Ωi〉−H[SΩi]).

(3.13)

The partition function then becomes

Z =

∫
DΩe

∫ β
0 〈Ω|∂τ |Ω〉−H[SΩ] dτ , (3.14)

where the integral over 〈Ω|∂τ |Ω〉 corresponds to the Berry phase. Due to the periodic boundary
conditions in τ and the requirement that Ω2 = 1, this integral is a line integral over a closed curve
on the parameter sphere, described by Ω(τ) as depicted in figure 3.3. The integral can therefore

Figure 3.3: The trajectory travelled by the transformation of Ω [57]. It splits the
spin sphere into two surfaces.
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be rewritten as ∫
〈Ω|∂τ |Ω〉 dτ = −i

∮
i 〈Ω|∇Ω|Ω〉 · dΩ

= − i
2

∫
S2

i∇× 〈Ω|∇Ω|Ω〉 · d2Ω

= − i
2

∫
S2

B · d2Ω ,

(3.15)

where B is the Berry curvature, corresponding to the ”flux” of a spin monopole in the center of
the coherent spin sphere. In the transition from the line integral to the surface integral, Stokes’
theorem was used. Note that there are two possible surfaces, the upper and the lower cap, and both
should have the same surface integral, effectively giving half the integral over the whole sphere.
The total flux over the sphere is quantized by an integer n and points along the surface normal,
which is parallel to Ω. The integral for n = 1 then becomes∫

〈Ω|∂τ |Ω〉 dτ = − i
2

∫
S2

Ω · d2Ω . (3.16)

This simple surface integral can be evaluated by parametrizing the curve that Ω describes with
parameters τ ∈ [0, β] and t ∈ [0, 1]. The surface is then given by the normal vector times Ω(t, τ),
so that the integral becomes∫

〈Ω|∂τ |Ω〉 dτ = − i
2

∫ β

0

∫ 1

0

Ω · (∂τΩ× ∂tΩ) dt dτ (3.17)

and, as a result, the partition function is

Z =

∫
DΩ eSWZ−

∫ β
0 H[SΩ]dτ . (3.18)

where the first term is given by the so-called Wess-Zumino action

SWZ = −iS
∫ 1

0

∫ β

0

Ω · (∂τΩ× ∂tΩ) dτ dt . (3.19)

Applying again the spin decomposition from equation (3.6), the scalar triple product of the spin
becomes to first order in a

ΩI · (∂τΩI × ∂tΩI) = nI ·
[
(−1)I(∂τnI × ∂tnI) + a(∂τnI × ∂tlI) + a(∂τ lI × ∂tnI)

]
. (3.20)

The first term vanishes in the sum over the whole lattice for smooth configurations of n, due to
the terms with (−1)I . The second and third term can be written as

nI · (∂τnI × ∂tlI) = ∂t [nI · (∂τnI × lI)]− ∂tnI · (∂τnI × lI) = ∂t [nI · (∂τnI × lI)] (3.21)

nI · (∂τ lI × ∂tnI) = ∂τ [nI · (lI × ∂tnI)]− ∂τnI · (lI × ∂tnI) = ∂τ [nI · (lI × ∂tnI)] , (3.22)
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3.1. NONMAGNETIC IMPURITY DOPING

where the extra terms on the right-hand side vanish, because the vectors lI , ∂tnI and ∂τnI are
coplanar. It is assumed that there is no contribution from second derivatives in nI . The integral
over τ of equation (3.22) becomes zero due to the periodic boundary conditions in τ , while the
t-integral over the right-hand side of equation (3.21) results in∫ 1

0

∂t [nI · (∂τnI × lI)] dt = nI · (∂τnI × lI), (3.23)

because ∂τnI(t = 0) = 0. The integral of the term from equation (3.20) is therefore reduced to∫ 1

0

∫ β

0

ΩI · (∂τΩI × ∂tΩI) dτ dt =

∫ β

0

nI · (∂τnI × lI) dτ . (3.24)

Substituting this back into the Wess-Zumino action of equation (3.19) leads, in the continuum
limit and including again percolation, to

SWZ =
−iSP∞

a

∫ β

0

dτ

∫
d2r l · (n× ∂τn) , (3.25)

where P∞ = 〈p(r)〉 is again the fraction of sites in the infinite cluster [49]. It enters here instead of
K(z) as for the other terms, because the Wess-Zumino action goes as Ω3

I ∝ p3
I = pI , where pI = 1

at copper sites and pI = 0 at zinc sites.

3.1.2 Generalized nonlinear σ model and the Néel temperature TN(z)

The full action for the generalized nonlinear σ model is the sum of the Heisenberg, DM interaction,
XY interaction and the Wess-Zumino actions [49]. In terms of the staggered and uniform spin fields,
it is given by

Sgnlσm =

∫∫ [
−iSP∞

a
l · (n× ∂τn) +

JS2K

2

(
(∇n)2 + 8l2

)
+

4S2K

a
d+ · (n× l) +

2S2K

a2
(Γ1 − Γ3)n2

z

]
d2r dτ .

(3.26)

The first step now is to integrate out the uniform field l(r) in the partition function using the
typical Gaussian integral for a vector, which results in∫

Dl e
∫∫

4S2JK|l|2+l·
(
−iSP∞

a
n×∂τn− 4S2K

a
n×d+

)
d2rdτ ∝ e

− 1
16JS2K

∫∫ (
−iSP∞

a
n×∂τn− 4S2K

a
n×d+

)2
d2rdτ

= e
∫∫ P∞

16JKa
(∂τn)2−S

2K
Ja2 (d2

+−(n·d+)2)− iSP∞
8Ja2 (∂τn·d+) d2rdτ ,

(3.27)
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3.1. NONMAGNETIC IMPURITY DOPING

where it was used that n2 = 1 and n · ∂τn = 0. The integral of the last term ∂τn · d+ vanishes
due to the periodicity of n(τ) in τ . In the middle term, the d2

+-part only shifts the action by a
constant, so that it can be neglected and the resulting total action is

Sgnlσm =
1

2gc

∫
dτ

∫
d2r

[
P∞
K

(∂τn)2 +Kc2(∇n)2 +KD2
+n

2
a +KΓcn

2
c

]
, (3.28)

where g = 2
√

2a/S is the bare coupling constant, c = 2
√

2SJa is the spin-wave velocity, D+ =
4Sd+, na and nc are the components of the staggered spin field in the a-orthorhombic and c
direction, respectively, and Γc = 32JS2(Γ1 − Γ3). In a more conventional notation, this can be
redefined as

Sgnlσm =
1

2gcK/P∞

∫
dτ

∫
d2r
[
(∂τn)2 + Z

{
c2(∇n)2 +m2

an
2
a +m2

cn
2
c

}]
, (3.29)

where Z = K2/P∞ , ma = D+ and m2
c = Γc. From this action one can see that the favoured

orientation of the antiferromagnetic spin n is along the b-orthorhombic direction, as the a- and
c-directions give an energy penalty due to the mass terms [58]. So it makes sense to split the
staggered field n into a parallel and a perpendicular component compared to the bortho-direction,
so that n = (na, nb = σ0, nc) = (σ0,n⊥), where σ0 is a constant [49]. With a Lagrange multiplier
to ensure the constraint that n2 = P∞ from percolation, the partition function becomes

Z =

∫
Dσ0Dn⊥δ

(
n2 − P∞

)
e−S[σ0,n⊥]

=

∫
Dσ0Dn⊥Dλ e

1
2gcK/P∞

Tr[n⊥(ω2
n+Zc2k2+Zm2

a+Zm2
c+iλ)n⊥+iλσ2

0−iλP∞],

(3.30)

where Tr = 1
β

∑∞
n=−∞

∫
d2k

(2π)2 , i.e. the Matsubara sum and the momentum space integral. After
one integrates out the transverse field component n⊥, one obtains, up to a constant,

Z =

∫
Dσ0Dλ e

1
2gcK/P∞

Tr[iλσ2
0−iλP∞]− 1

2
Tr ln[ω2

n+ζ2], (3.31)

where ζ2 = iλ+ Z(c2k2 +m2
a +m2

c). Varying the action of this partition function with respect to
σ0 and λ gives the equations of state for the system

λσ0 = 0, (3.32)

P∞ − σ2
0

gcK/P∞
= Tr

1

ω2
n + ζ2

, (3.33)

where the Lagrange multiplier λ is related to the correlation length by λ ∼ ξ−2 [58]. There are
three different regimes that satisfy the first of the above equations, namely 〈σ0〉 = 0, λ = 0 or both
σ0 = λ = 0. In the first case where 〈σ0〉 = 0, the main spin component averages to zero, so the
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3.1. NONMAGNETIC IMPURITY DOPING

system is in the paramagnetic phase, T > TN , and the correlation length is finite, λ = 1/ξ2 > 0.
In the second regime with λ = 0, the correlation length goes to infinity and the system is in the
antiferromagnetic phase with T < TN . At the point where both the average spin and the inverse
correlation length reach zero, the phase transition occurs.

At this critical point T = TN , equation (3.33) becomes [49]

P 2
∞

gcK
= Tr

1

ω2
n + ζ2

. (3.34)

The first step in working with this equation is performing the Matsubara sum

1

β

∞∑
n=−∞

1

(2πn/β)2 + ζ2
=

β

(2π)2

∞∑
n=−∞

1

n2 + (βζ/2π )2

=
β

(2π)2

π coth (πβζ/2π )

βζ/2π

=
1

2ζ
coth

βζ

2
.

(3.35)

Then equation (3.34) becomes

P 2
∞

gcK
=

∫
d2k

(2π)2

1

2c
√
Z(k2 + (m2

a +m2
c)/c

2)
coth

cβ
√
Z(k2 + (m2

a +m2
c)/c

2)

2

=
1

2πZc2β

∫ βcΛ/2

β
√
Z(m2

a+m2
c)/2

coth y dy

=
1

2πβc2Z

[
ln sinh

βcΛ

2
− ln sinh

β
√
Z(m2

a +m2
c)

2

]
,

(3.36)

with a change of variables y = cβ
√
Z

2

√
k2 + (m2

a +m2
c)/c

2 and Λ =
√

2π/a the Fermi cut-off. This
can be rearranged into

2πβcKP∞
g

− ln sinh
2πβc

gc
+ ln sinh

β
√
Z(m2

a +m2
c)

2
= 0, (3.37)

where gc = 4π/Λ is a critical coupling constant. However, the cut-off Λ diverges in the continuum
limit where the lattice spacing goes to zero. Using that limx→∞ ln sinhx = ln(ex/2) = x − ln 2,
and defining the so-called spin stiffness as

ρs = c

(
1

2g
− 1

2gcKP∞

)
, (3.38)
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the equation describing the Néel temperature kBTN = 1/βN is given by

4πβNP∞Kρs + ln

[
2 sinh

βN
√
Z(m2

a +m2
c)

2

]
= 0. (3.39)

In the undoped system, the Néel temperature would be governed by

4πβNρs + ln

[
2 sinh

βN
√
m2
a +m2

c

2

]
= 0. (3.40)

This shows that the dilution from the zinc doping changes the system by a rescaling of the spin
stiffness and the anisotropy mass. The spin stiffness is an indication of the change in the ground
state energy of a spin system caused by a slow in-plane twist of the spins [59]. It is often used
as an indicator of quantum phase transitions. The anisotropy masses correspond to DM and XY
gaps, that get renormalized by a factor of

√
Z. The DM gap is the in-plane gap, while the XY gap

is the out-of-plane gap. Both result in an easier destruction of the Néel ground state by thermal
fluctuations, decreasing the Néel temperature with increasing zinc concentration, see figure 3.4.

Figure 3.4: The decrease in the Néel temperature as a function of the zinc concen-
tration with data from experiments and theory, taken from Ref. [55].
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3.2. HOLE DOPING

3.2 Hole doping

As mentioned in section 2.2, the charge carriers responsible for superconductivity in the cuprates
are the holes that are added to the copper-oxygen plane by doping the spacer layers with strontium.
These additional holes are the itinerant holes, which hop between the oxygen ions, while the
initial holes from the undoped material are localized on the copper atoms. Both types of holes
can be described by the Spin-Fermion-Hubbard (SFH) model proposed by Marino et al. [60],
which contains besides the hopping energy also on-site Coulomb repulsions, antiferromagnetic
superexchange interactions between the copper atoms’ holes and Kondo magnetic interactions
between the localized and the itinerant holes. The goal of this section is to describe the critical
temperature Tc(x) that forms the dome of the superconducting phase in the phase diagram of
La2−xSrxCuO4 as a function of the doping concentration x. For this, the SFH model will be used,
following Marino et al. [60].

The underlying structure for the model is again the copper-oxygen plane, but now the focus
is on the oxygen sites instead of the copper sites. The oxygen ions couple in two distinct ways
with the copper ions, namely with either their px or their py orbital overlapping with the copper
d-orbital. This leads to two different sublattices for the oxygen atoms. The lattice from the point
of view of the oxygen sites can be seen in figure 3.5. The lattice vectors are

d1 =
1

2
(X−Y) , (3.41)

d2 =
1

2
(X + Y) , (3.42)

d3 =
1

2
(−X + Y) , (3.43)

d4 =
1

2
(−X−Y) , (3.44)

where X = ax̂ and Y = aŷ are the primitive vectors of the copper lattice (a is again the lattice
spacing between the copper atoms).

The Spin-Fermion-Hubbard Hamiltonian for the holes in the copper-oxygen plane is given by

HSFH = H0 +HU +HAF +HK (3.45)

where H0 is the kinetic hopping term, HU is the on-site Coulomb repulsion for the itinerant holes
in the different sublattices, HAF is the antiferromagnetic interaction for the localized holes, and
HK is the magnetic interaction with the spins of the itinerant holes. These individual terms are
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3.2. HOLE DOPING

Figure 3.5: Square lattice for the copper-oxygen plane [60]. The small black and the
small white dots are the two different types of oxygen ions, with only their px or
py shells contributing, respectively, while the large black dots are the copper atoms.
The vectors X and Y are the primitive vectors for the copper lattice, while the di
form the oxygen lattice.

given by

H0 = −tp
∑
σ,R,di

[
ψ†Aσ(R)ψBσ(R + di) + ψ†Bσ(R + di)ψAσ(R)

]
, (3.46)

HU = Up
∑
R

nA↑ n
A
↓ + Up

∑
R,di

nB↑ n
B
↓ , (3.47)

HAF = JAF
∑
〈I, J〉

SI · SJ , (3.48)

HK = JK
∑
I,R,di

SI · [SA(R) + SB(R + di)] , (3.49)

with the sums taken over the nearest neighbours, R the position on the A-sublattice of the oxygen
atoms, R + di the position of the surrounding oxygen atoms on the B-sublattice, and I, J the
positions of the copper atoms. Here, tp is the parameter for the hole hopping between oxygen
sites on the different sublattices A and B, Up is the onsite interaction, JAF the antiferromagnetic
coupling strength between holes on the copper sites and JK the Kondo coupling parameter for
the interaction between the holes on the copper and the holes on the oxygen sites. The coupling
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3.2. HOLE DOPING

parameters are related to the three-band model as described in section 2.2.2 with [61]

JAF =
4t4pd

(Upd + ∆E)2

(
1

Ud
+

2

2∆E + Up

)
, (3.50)

JK = t2pd

(
1

∆E

+
1

Ud −∆E

)
, (3.51)

where ∆E = εp − εd is the energy difference between the oxygen and the copper orbits, td is the
copper hopping parameter and the other parameters as explained before.

3.2.1 Effective Hamiltonian

The first step in dealing with the Hamiltonian HSFH is to trace out the localized spins of the
copper atoms in a similar way as in section 3.1 in the partition function

Z = Trψ TrSI e
−βHSFH [SI , ψ] = Trψ

(
e−β(H0[ψ]+HU [ψ]) TrSI e

−β(HAF [SI ]+HK [SI , ψ])
)
. (3.52)

The trace over the localized spins SI can be performed by transitioning to the spin coherent states
ΩI ≡ SI/S, leading to the path integral

TrSI e
−β
(
HAF [SI ]+HK [SI , ψ]

)
=

∫
DΩ 〈Ω|e−βH[SI ]|Ω〉 ≈

∫
DΩ e

∫ β
0 〈Ω(τ)|∂τ |Ω(τ)〉−H[SΩ] dτ , (3.53)

where H[SΩ] = S2JAF
∑
〈I, J〉ΩI ·ΩJ + SJK

∑
〈I, J〉ΩI · (SA + SB). The spin state may again be

split into an antiferromagnetic and a fluctuating component, but now according to

ΩI ≈ (−1)InI + a2lI (3.54)

where nI is the staggered unit spin and lI is the perpendicular fluctuation, obeying as before the
relations |n|2 = 1 and n · l = 0. The nearest neighbour’s spin at site J = I + 1 is approximated by
an expansion around the spin of site I

ΩJ ≈ (−1)I+1nI + a∇nI + a2lI . (3.55)

With this, following the same steps as in section 3.1.1 leads to the term from equation (3.25)
without the percolation factor for the Berry phase term in equation (3.53). In the Hamiltonian
term H[SΩ] one has

ΩI ·ΩJ ∝
1

2
(ΩI + ΩJ)2 ≈ a2(∇nI)

2 + 4a3∇nI · lI + 4a4|lI |2, (3.56)

where some constant factors were neglected, and

ΩI · (SA + SB) ≈
[
(−1)InI + a2lI

]
· (SA + SB) . (3.57)
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Because of the symmetry of the lattice and the continuity of n, the middle term of equation (3.56)
and the first term of equation (3.57) vanish, so that in the continuum limit

H[n, l] =
S2JAF

2

∫ [
(∇n(r))2 + 4a2|l|2

]
d2r + SJK

∫
l · (SA + SB) d2r . (3.58)

As a result, the full trace over the spins in the partition function can be written as∫
DΩ e

∫ β
0 〈Ω(τ)|∂τ |Ω(τ)〉−H[SΩ] dτ =∫

DnDl δ(n2 − 1) e

∫∫ [
il·(n×∂τn)−S

2JAF
2

(∇n)2−S
2JAF

2
4a2|l|2−SJK l·(SA+SB)

]
d2rdτ

, (3.59)

where the integral over the fluctuating field l is a simple Gaussian integral with a linear term, and
gives∫

Dl e
−
∫∫ [ 4S2JAF a

2

2
|l|2+l·(SJK(SA+SB)−in×∂τn)

]
d2rdτ

∝ e
∫∫

1
2

[SJK(SA+SB)−in×∂τn]2 1
4S2JAF a

2 d2rdτ

= e
∫∫ J2

K
8JAF a

2 (SA+SB)2d2rdτ
e
−
∫∫

1
8S2JAF a

2 (∂τn)2d2rdτ
,

(3.60)

where it was used that the cross term between the oxygen spins and the uniform field n vanishes.
The remaining integral is then given by∫

Dn δ(n2 − 1)e−
ρ
2

∫∫
[(∇n)2+ 1

c2
(∂τn)2]d2rdτe

∫∫ J2
K

8JAF a
2 (SA+SB)2d2rdτ

= Znlσme
∫ β
0

∑
R,di

J2
K

8JAF
(SA+SB)2dτ

,

(3.61)
with ρ = S2JAF the spin stiffness and c = 2S2JAFa the spin-wave velocity. Finally, the total
partition function becomes

Z = Znlσm Trψ e
−β
(
H0+HU−

∑
R,di

J2
K

8JAF
(SA+SB)2

)
(3.62)

and one is left with an effective Hamiltonian for only the itinerant holes. The spin operators in this
effective Hamiltonian can be expressed in terms of the hole creation and annihilation operators for
the two sublattices according to

SA(R) =
1

2
ψ†A,α(R)σαβψAβ(R), (3.63)

SB(R + di) =
1

2
ψ†B,α(R + di)σαβψBβ(R + di), (3.64)

where σαβ are the spin Pauli matrices.
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Including a perturbation in the hopping term and the on-site repulsion, one finds for the
effective Hamiltonian in terms of the hole creation and annihilation fields

Heff =− tp
∑

R,di,σ

[
ψ†Aσ(R)ψBσ(R + di) + ψ†Bσ(R + di)ψAσ(R)

]
−gS

∑
R,di

[
ψ†A↑(R)ψ†B↓(R + di) + ψ†B↑(R + di)ψ

†
A↓(R)

]
×[

ψB↓(R + di)ψA↑(R) + ψA↓(R)ψB↑(R + di)
]

−gP
∑
R,di

[
ψ†A↑(R)ψB↑(R + di) + ψ†A↓(R)ψB↓(R + di)

]
×[

ψ†B↑(R + di)ψA↑(R) + ψ†B↓(R + di)ψA↓(R)
]
,

(3.65)

where gS = J2
K/(8JAF ) and gP = 2t2p

/
Up are the superconducting and the pseudogap coupling

parameters, respectively. The superconducting coupling corresponds to an attractive interaction
between the holes.

The next step is to perform a Hubbard-Stratonovitch transformation to cancel the terms
quadratic in the fermionic fields. This results in an effective Hamiltonian

Heff [Φ, χ, ψ] =− tp
∑
R,di

∑
σ

[
ψ†Aσ(R)ψBσ(R + di) + h.c.

]
−
∑
R,di

{
Φ(di)

[
ψ†A↑(R)ψ†B↓(R + di) + ψ†B↑(R + di)ψ

†
A↓(R)

]
+ h.c.

}
−
∑
R,di

{
χ(di)

[
ψ†A↑(R)ψB↑(R + di) + ψ†A↓(R)ψB↓(R + di)

]
+ h.c.

}
+

1

gS

∑
R,di

Φ†(R + di)Φ(R + di) +
1

gP

∑
R,di

χ†(R + di)χ(R + di),

(3.66)

where

Φ†(R,di) = gS

[
ψ†A↑(R)ψ†B↓(R + di) + ψ†B↑(R + di)ψ

†
A↓(R)

]
, (3.67)

χ†(R,di) = gP

[
ψ†A↑(R)ψB↑(R + di) + ψ†A↓(R)ψB↓(R + di)

]
(3.68)

are the Cooper pair creation field and the exciton (electron-hole pair) creation field. These fields
live on the links between the oxygen sites and are mostly translationally invariant, so that only
the dependence on di matters. Similar to the BCS theory of section 2.1.2, the vacuum expectation
values of these fields ∆ = 〈Φ〉 and M = 〈χ〉 give the order parameters for the superconducting

34



3.2. HOLE DOPING

and the pseudogap phases, respectively. As in the before-mentioned section 2.1.2, the Fourier
transformation of the effective Hamiltonian1

Heff [Φ, χ, ψ](k) =− t
∑
k,σ

4∑
i=1

[
eik·diψ†Aσ(k)ψBσ(k) + h.c.

]
−
∑

k

{
Φ(k)

[
ψ†A↑(−k)ψ†B↓(k) + ψ†B↑(k)ψ†A↓(−k)

]
+ h.c.

}
−
∑
k,σ

{
χ(k)

[
ψ†Aσ(k)ψBσ(k)

]
+ h.c.

}
+

1

gS

∑
k

Φ†(k)Φ(k) +
1

gP

∑
k

χ†(k)χ(k)

(3.69)

can be expressed in terms of the Nambu fermion field

Ψ(k) =


ψA,↑(k)
ψB,↑(k)

ψ†A,↓(−k)

ψ†B,↓(−k)

 . (3.70)

Performing a mean-field approximation in the Hubbard-Stratonovitch fields, one can write the
effective Hamiltonian in terms of the Nambu fields as

Heff [∆,M,Ψ] =
1

gS

∑
k

|∆(k)|2 +
1

gP

∑
k

|M(k)|2 +
∑

k

Ψ†(k)H(k)Ψ(k), (3.71)

where the matrix H is given by

H =


0 ε−M 0 −∆

ε−M∗ 0 −∆ 0
0 −∆∗ 0 −ε+M∗

−∆∗ 0 −ε+M 0

 , (3.72)

with ε = −t
∑

k,i e
ikdi . This matrix has the doubly degenerate energy eigenvalues

E(k) = ±
√
ε2(k) + |M(k)|2 + |∆(k)|2. (3.73)

At this point, it can be noted that the superconducting order parameter has a d-wave nature
in momentum space as expected (see section 2.2.1). To see this, consider the Fourier transform of
the superconducting gap

∆(k) =
4∑
i=1

∆(di)e
ik·di , (3.74)

1Here, it was used that χ(k) is symmetric in k.
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where one has that ∆(d1,3) = −∆(d2,4) ≡ − ∆0/2 and the k-vector has its components along the
original lattice’s X- and Y-directions. Therefore, using the expressions from equations (3.41-3.44),
one gets

∆(k) = ∆0

(
cos

(kx + ky)a

2
− cos

(kx − ky)a
2

)
= ∆0

(
cos

(kx + ky)a
′

√
2

− cos
(kx − ky)a′√

2

)
,

(3.75)

where a is the lattice spacing between the copper atoms and a′ = a
/√

2 is the spacing between
the oxygen atoms. Comparing this with equation (2.46) shows that the superconducting order
parameter has the same d-wave symmetry.

3.2.2 Critical temperature for La2-xSrxCuO4

The actual number of holes in the system depends on the doping percentage. However, this relation
is not a linear one, and may not even be known exactly [60]. For now, it will be described by the
doping function d(x). The relation can be entered in the partition function through a Lagrangian
constraint

λ

(
Nd(x)−

N∑
p=1

∑
C=A,B

∑
σ

ψ†C,σ,pψC,σ,p

)
, (3.76)

where N is the number of oxygen planes between two spacer layers and the constraint is enforced
by including an integration over the multiplier field λ, which has as vacuum expectation value the
chemical potential, 〈λ〉 = µ. The partition function of the effecitve Hamiltonian of equation (3.71),
including the constraint, becomes

Z =
1

Z0

∫
DΨD∆DMDλ e

−
∫∫ [
− |∆|2

gS
− |M|2

gP
−λNd(x)+Ψ†(i∂τ−H+λĨ)Ψ

]
d2rdτ

, (3.77)

where Z0 is a normalization constant and Ĩ corresponds to the the matrix with (1, 1,−1,−1) on its
diagonal. Expanding the imaginary time as a Matsubara sum, taking the mean-field approximation
for the multiplier field and integrating over the Nambu fields leads to

Z ∝
∫

D∆DMDµ e
∫∫

Veffd2rdτ (3.78)

with the effective potential given by

Veff [∆,M, µ] =
|∆|2

gS
+
|M |2

gP
+Nµd(x)

− N

β

∞∑
n=−∞

∑
l=±1

∫
d2k

4π2
ln

[
ω2
n +

(√
ε2(k) + |M(k)|2 + lµ

)2
+ |∆(k)|2

]
.

(3.79)
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Minimizing the effective potential with respect to the different fields yields three conditions:

2|∆|

 1

gS
−NT

∞∑
n=−∞

∑
l=±1

∫
d2k

(2π)2

1

ω2
n +

(√
ε2(k) + |M(k)|2 + lµ

)2

+ |∆|2

 = 0 (3.80)

2|M |

 1

gP
−NT

∞∑
n=−∞

∑
l=±1

∫
d2k

(2π)2

1 + lµ/
√
ε2 + |M(k)|2

ω2
n +

(√
ε2(k) +M2 + lµ

)2

+ |∆|2

 = 0 (3.81)

Nd(x)−NT
∞∑

n=−∞

∑
l=±1

∫
d2k

4π2

2l
(√

ε2(k) + |M(k)|2 + lµ
)

ω2
n +

(√
ε2(k) + |M(k)|2 + lµ

)2
+ |∆(k)|2

= 0. (3.82)

The critical temperature for the superconducting phase follows from the minimization equation
for the superconducting gap in the limit that M = 0 and ∆→ 0, see Appendix A. It is determined
by the transcendental equation

Tc(x) =
αη(NgS)/2gc

ln 2 + ln cosh [µ(x)/2Tc(x) ]
, (3.83)

where η(Ng) = (Ng − gc)/Ng and gc = α/Λ is a critical coupling parameter, which depends on
α, a function of the characteristic velocity, and Λ, the characteristic energy scale related to the
coherence length of the system. The maximum of the critical temperature Tc,max = Tc(x0) at the
optimal doping level x0 occurs for µ(x0) = 0. In terms of the system’s parameters it is given by

Tc,max =
Λ

2 ln 2
η(NgS). (3.84)

Compared to the conventional critical temperature from BCS theory (see equation (2.39)), one
can see that both depend on the typical energy scale of the system and both are monotonically
increasing functions of the coupling parameter. Substituting the expression for the maximum
critical temperature into equation (3.83) leads to

Tc(x) =
Tc,max ln 2

ln 2 + µ/2Tc + ln (1 + e−µ/Tc/2)

≈ Tc,max ln 2

ln 2 + µ/2Tc + (e−µ/Tc − 1)/2
,

(3.85)

where on the right-hand side µ(x) and Tc(x) are still functions of the doping concentration.
From the condition that µ(x0) = 0, one can also gain some insight into the chemical potential.

Namely, by combining the minimizations of the effective potential with respect to ∆ and µ, as
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shown in Appendix A, one finds that

µ(x) = d(x)
gc

2η(NgS)
. (3.86)

In the case of a single spacer layer between the copper-oxygen planes (as one has for La2−xSrxCuO4),
the simplest function for the hole concentration d(x) that satisfies the two conditions, namely that
d(0) = 2, the number of holes per area of the oxygen lattice’s unit cell A = a′2, and d(x0) = 0, is
d(x) = 2|x0 − x|/x0 . This gives for the chemical potential

µ(x) = 2γ(gS)|x0 − x|, (3.87)

where γ(gS) = gc/2x0η(gS) . Substituting this chemical potential into equation (3.83) and tak-
ing the limit Tc(x) → 0 gives the lowest and highest doping points at which the dome of the
superconducting phase ends, namely

xsc,− = x0 −
Tc,max
γ

ln 2, (3.88)

xsc,+ = x0 +
Tc,max
γ

ln 2. (3.89)

To conclude, equation (3.83) describes the symmetric superconducting dome in the phase diagram
for La2−xSrxCuO4, which is bounded by the doping concentrations (3.88) and (3.89) and has a
peak at the optimal doping level at height Tc,max = Λ

2 ln 2
η(NgS), see figure 3.6. This description

of the superconducting phase will be used in the next chapter to investigate the influence of zinc
impurities.
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Figure 3.6: The dependence of the critical temperature on the doping concentration
of strontium with data from experiments (the red circles) compared to the theory,
taken from Ref. [60].
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Chapter 4

Description of co-doped
La2-xSrxCu1-zZnzO4

In the previous chapter, the description of the effect of two types of doping into the LaCuO
compound were given. One is the hole doping from replacing lanthanum with strontium, which
leads to the superconducting phase at sufficiently high concentrations. The other is the impurity
doping by zinc, which by replacing the copper atoms destroys the antiferromagnetic ordering of the
copper-oxygen planes. In this chapter, the influence of the two dopants combined will be studied.
In a previous work [49], the effect of co-doping on the Néel temperature and the antiferromagnetic
ground state was investigated. The Néel temperature as a function of the zinc concentration z,
TN(z), slightly increases before decreasing for low strontium doping [62]. As a function of hole
doping x, the Néel temperature TN(x) decreases more slowly for higher zinc concentrations. These
behaviours have been described in Ref. [55], for example.

In this thesis, the focus is on the effect of the zinc concentration z on the critical temperature
Tc of the superconducting phase. The exchange of the copper ions with other transition elements
like zinc is known to destroy the superconducting phase [51], which could give an insight into
the mechanism underlying superconductivity in cuprates. The effect of the zinc doping on the
critical temperature for the superconducting phase is even stronger than the effect on the Néel
temperature, as small concentrations of only about 6% in YBCO [63] or 2−3% in the underdoped
regime of La2−xSrxCuO4 [64] suffice to completely suppress superconductivity.

Several of the dopants, either magnetic or nonmagnetic and with different valences, commonly
investigated are nickel (valence 2+ with S = 1) [65], magnesium (valence 2+ with S = 0) [50],
zinc (valence 2+ with S = 0), iron (valence 3+ and in high spin state), cobalt (valence 3+ and
in low spin state), gallium (valence 3+ with S = 0) or aluminium (valence 3+ with S = 0)
[51]. The advantage of zinc is that it has the same preferred valence state as copper (both are
2+), so the doping does not change the charge balance [66]. It also has a similar ionic radius,
conserving the structure of the copper-oxygen planes as it replaces the copper ions. The main
difference with the replaced copper ions is the nonmagnetic nature of zinc, due to the absence
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of the spin-1/2 hole. The nonmagnetic zinc is known to be more effective at destroying the
superconducting state than for example nickel (S = 1) [51], though magnesium (S = 0) seems to
be similarly effective [50]. In conventional superconductors, nonmagnetic impurities barely affect
the critical temperature [67], so this doping seems to directly influence the characteristic nature of
high-temperature superconductivity.

4.1 Literature overview

In this section, an overview of some experimental results and proposed theoretical descriptions
concerning the co-doping of LaCuO will be given. For the suppression of the superconducting
critical temperature as a function of zinc doping, there are several groups of models [64]:

1. models treating the breaking of Cooper pairs caused by disorder or scattering, analogously
to conventional superconductors with impurities,

2. models describing the superconducting-insulator transition from the perspective of a direct
increase in resistance due to the zinc substitution,

3. models based on the superfluid picture, in which superconductivity is locally destroyed
around each zinc impurity (”swiss cheese” model),

4. models focusing on stripes, that become pinned by the zinc impurities, and where the pinning
of the stripes competes with the superconductivity.

In the first approach, BCS theory is adjusted by turning the interaction potential into a d-
wave interaction [68]. The disorder from impurities is handled by adding a potential scattering
or a magnetic Hamiltonian term to the standard HBCS. One rather old theoretical description
resulting from this is the Abrikosov-Gorkov theory, which predicts a universal behaviour following
[69]

ln
Tc(z)

Tc(0)
= ψ(1/2)− ψ

(
1/2 + 0.140z

Tc(0)

zcTc(z)

)
, (4.1)

where ψ(x) = d ln Γ(x)/dx and zc is the critical concentration at which Tc(z) vanishes. The theory
behind it is a pair-breaking mechanism due to the impurity’s potential. Although the equation
seems to fit to experiments in the low doping regime, where it becomes approximately linear, it
does not work so well near the critical doping. Also, the universality or applicability of the relation
to different compounds was questioned in Ref. [70], where instead a material dependent slope and
a sudden drop near the critical concentration is predicted.

In the picture of the spin singlets, formed by the localized copper spins and the doped holes
on the oxygen sites, it is assumed that the absence of the spin-1/2 hole on the zinc site leads
to the breakdown of the singlet pairs, which gives rise to the suppression in the Tc [71]. The
pair-breaking causes a decrease in the critical temperature as a function of zinc, which increases
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with the strontium doping level at lower hole concentrations, i.e. the slope |dTc/dz | decreases as x
increases. This dependence on the hole doping of the suppression rate of Tc was also found in Ref.
[72], where measurements show that Tc(z) has a roughly linear decrease. A linear decrease with
the dopant concentration also shows up for elements other than zinc [51], see figure 4.1. For zinc,
the linear decrease is higher for the underdoped regime [72]. The explanation for the difference
between the underdoped and overdoped regimes given is again the picture of a zinc ion breaking
a Cooper pair. However, the dependence of |dTc/dz | on the hole concentration was also linked
to the evolution of the pseudogap in the underdoped regime. This link will be discussed in more
detail further on.

Figure 4.1: The critical temperature as a function of the dopant concentration for
several elements [51]. All of these replace the copper atoms in La1.85Sr0.15CuO4.

Some issues with these theories of pair-breaking due to a scattering potential are that they are
mostly based on BCS theory and that they treat zinc as a purely nonmagnetic impurity, giving
rise to only the potential scattering term, even though experiments have shown that zinc induces
a magnetic moment in the Cu-O planes [51]. Also, in Ref. [73] it is stated that the pair-breaking
models are insufficient in explaining the results, while the ”swiss cheese” model of the third point
can explain the dependence of Tc and the superfluid properties on the zinc concentration more
accurately.

The second approach partially goes into the first as well, but here the assumption is that a loss
of the superconductivity’s coherence around the nonmagnetic impurities gives rise to a residual
resistance [74]. This residual resistance is fairly large in the underdoped regime, but becomes
quickly reduced in the overdoped regime [75]. The critical temperature as a function of this
residual resistance forms a single pair-breaking curve in the underdoped regime, with a universal
ρ(Tc → 0) ≈ h/4e2 , see figure 4.2. This residual resistance of h/4e2 is the sheet resistance of
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Figure 4.2: Renormalized critical temperature as a function of residual resistance
caused by the zinc doping [75]. At lower hole doping levels, the curves collapse onto
a universal line, while at higher levels the decrease is hole doping dependent.

the copper-oxygen planes [50]. The explanation for the appearance of the residual resistance is
the so-called randomness effect that leads to the loss of the itinerant nature of the holes from the
strontium doping. The randomness effect is the carrier localization by the disorder resulting from
the zinc doping [71], which ties back to the disorder approach described above.

In the third approach, the ”swiss cheese” model, the zinc impurity causes an area of roughly the
square of the pair coherence length to be excluded from the superfluid state in the superconducting
system [64]. This excluded area arises from a difference in the magnetic moment of the surrounding
copper ions, even though zinc itself is nonmagnetic [76]. Namely, the localized spin-1/2s of the
copper sites are no longer fully screened, resulting in a local moment on the zinc site. This localized
magnetic moment has a magnitude of roughly one Bohr magneton (1.0− 1.2µB), corresponding to
the copper’s moment, which is usually concealed or screened, and decreases as more zinc is added
[51]. As a result, the zinc impurity causes a scattering effect, which leads to a lower quasiparticle
density in its vicinity [77]. The quasiparticle density is then linked to the effective moment at the
zinc site.

In Ref. [78], it was found that the magnetic moment P 2
eff/Zn can also decrease with increasing

hole concentrations, in which case it falls quite sharply until the hole doping level x ≈ 0.19 is
reached and further overdoping does not change the Zn-induced magnetic behavior significantly,
see figure 4.3. Experimental observations indicated that the pseudogap also vanishes at x ≈ 0.19
for cuprates (see references in Ref. [78]). The link with the pseudogap is also mentioned in the
group’s later work [72], though there in the picture of the pair-breaking mechanism.

This connection to the pseudogap is also brought up in Ref. [79], where it was found as well
that the suppression rate |dTc/dz | is independent of the hole doping on the overdoped side, while
it decreases with the hole concentration in the underdoped regime. This difference between the
two regimes leads to an asymmetric collapse of the superconducting dome, where the optimal
hole doping shifts to higher concentrations as the peak moves to the right, see figure 4.4. The
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Figure 4.3: The effective magnetic moment P 2
eff/Zn as a function of the hole content

for La2−xSrxCu1−yZnyO4 [78].

explanation for this behaviour is based on the observation that the collapse of the dome appears
to follow the ”pseudogap line”. Because of the opening of the pseudogap, the density of states is
suppressed near the Fermi energy, as the pseudogap competes with the superconducting gap. This
changes the scattering rate, leading to the increased suppression of Tc.

Figure 4.4: Critical temperature domes for different zinc doping levels [79]. The
upper figure is for La2−xSrxCuO4, the lower figure for YBa2Cu3O7−δ. The pseudo-
gap line indicated is from YBa2Cu3O7−δ, rescaled to the maximum temperature of
La2−xSrxCuO4 in the upper figure.

The fourth approach is based on the stripes model, in which there is a separation between a
spin-ordered phase and the superfluid [80]. The idea is then that the zinc impurities pin stripes
and slow down their dynamics in a finite-size region around them. The effect is similar to the
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”swiss cheese” model [80, 64] in that the superfluid density ns is locally reduced. However, in
Ref. [80], the zinc does not directly lessen the superfluid density, but instead increases the stripe
effective mass density, yielding a decrease of Tc ∝ ns/m. From the connection of the effective
mass to the kinetic energy density, which decreases with the zinc doping as the stripes become
pinned, the ratio Tc(x, z)/Tc(x, 0) = 1− z/zc is found to describe the decrease of Tc with the zinc
doping. Here, zc is again the critical zinc concentration at which the critical temperature vanishes.
In the underdoped regime, zc(x) ∝ x2, while for optimal and overdoping, zc is independent of the
strontium concentration x. However, in Ref. [64] it is noted that this scaling of the critical zinc
concentration zc ∝ x2 is not necessarily compatible with results from Ref. [75], which indicate that
the critical concentration is instead determined by the residual resistivity ρ = (2h/πe2)(zc/x) =
h/4e2, yielding zc ∝ x.

To emphasize, one of the most important phenomenological findings is that on the microscopic
level, the zinc impurity causes an effective magnetic moment on surrounding copper sites [51]. That
is, the magnetization becomes staggered around the zinc and so the antiferromagnetic correlations
are locally enhanced [81, 76]. That zinc reveals the antiferromagnetic structure is also mentioned
in Ref. [82], where it is furthermore claimed that the induced spins on the neighboring coppers
are not correlated (which is a different picture from a single moment or spin cluster around the
zinc impurity). The separate areas around the various zinc impurities are also barely interacting
among each other [76].

Another important finding on a more macroscopic level, is that there is a universality for
different compounds in that the suppression of the critical temperature as a function of zinc doping,
|dTc/dz |, is constant in the overdoped regime, but decreases with increasing hole concentration
in the underdoped compounds, see also figure 4.5. The opposite happens with Tc as a function of
the residual resistivity, where the curves collapse in the underdoped regime, but show a decreasing
slope with increasing hole concentration in the overdoped regime [75].
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(a) (b)

Figure 4.5: The normalized critical temperature as a function of the zinc doping [80].
The red symbols correspond to Zn or Li doped YBa2Cu3O7−x, the black symbols
to Co doped Bi2Sr2Ca1−yYyCu2O8+x. (a) Underdoped regime with different slopes
for different hole doping levels. (b) Overdoped regime with universal behaviour for
different hole doping levels.

4.2 Expanding the spin-fermion Hubbard model

The method that will be used in this work to describe the co-doping of La2CuO4 with strontium
and zinc is based on the spin-fermion Hubbard model from Ref. [60] as described in section 3.2.
The compound already contains the strontium ions, which cause the creation of Cooper pairs
consisting of holes with a correlation length ξ ≈ 10 Å [60], which is assumed to remain the same
upon zinc doping.

In this section, the method and results for the inclusion of zinc doping into the spin-fermion
Hubbard model will be presented. This is done by comparing the critical temperature as a function
of the zinc concentration and the hole concentration from the strontium doping to experimental
data from Refs [50, 51, 64, 72, 83].

A first assumption is that the zinc concentration z alters both the antiferromagnetic and the
Kondo coupling strength JAF and JK . Namely, since the replacement with nonmagnetic zinc of a
site in the antiferromagnetically ordered system changes the spin-based exchange locally, both the
coupling JAF with adjacent copper ions and the coupling with the itinerant holes at the surrounding
oxygen sites JK will be modified. As a result, the superconducting coupling gS becomes a function
of the zinc concentration, gS(z).

The goal is to determine the zinc dependence of the superconducting coupling by comparing
the critical temperature to experimental data. Two different approaches for the incorporation of
zinc through the superconducting coupling into the critical temperature will be investigated. The
first takes the superconducting coupling as expected from percolation theory, the second assumes
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that the superconducting coupling has a general linear dependence on the zinc concentration.
The critical temperature Tc(x, z) is determined by equation (3.83) from chapter 3.2 (which for

La2−xSrxCuO4 has N = 1),

Tc(x, z) =

αη
2gc

ln 2 + ln cosh µ0(x)
2Tc(x)

=
Λ(1− gc/gS(z))/2

ln 2 cosh ρgc(x0−x)
Tc(x,z)(1−gc/gS(z))

, (4.2)

where η = 1 − gc/gS and ρgc/η = ρgc/(1 − gc/gS) = γ. The values of the parameters in this
equation can be found in table 4.1. Note that the resulting critical temperature is in eV (1 eV
∼ 11604.5 K).

Λ (eV) 0.018
η 0.23870
γ (eV) 0.02
gS (eV) 0.39406
gc (eV) 0.3
ρ 0.016
x0 0.16

Table 4.1: Values for the relevant parameters in the superconducting phase of
La2−xSrxCuO4 [60].

Another way through which the zinc impurities might influence the system is the reduction of
the kinetic energy around each zinc ion [80]. The kinetic energy enters as the hopping parameter
t into the energy scale Λ = 2

√
2πta′/ξ and the critical coupling gc = 8πt2/Λ = 2

√
2tξ/a′ [60]. The

kinetic energy is assumed to be suppressed as t(z) = t(1 − z/zc) [80]. The combination of this
contribution with the superconducting coupling gS(z) results in the transcendental equation for
the critical temperature

Tc =

Λ
(

1− z
zc

)(
1− gc(1− z

zc
)

gS(z)

)
/2

ln 2 cosh
ρ(x0−x)gc(1− z

zc
)

Tc(1−gc(1− z
zc

)/gS(z))

, (4.3)

with the values for the parameters again given in table 4.1.

4.2.1 Percolation approach

In a first approach, the zinc dependence is taken from the percolation theory of Ref. [49], mentioned
in chapter 3.1. The percolation factors change the Hamiltonian terms with localized spins, such
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that

HAF = JAFK(z)
∑
〈I, J〉

SI · SJ , (4.4)

HK = JKP∞(z)
∑
I,R,di

SI ·
(
SA(R) + SB(R + di)

)
, (4.5)

where P∞(z) = 1− z is again the fraction of sites in the infinite cluster and K(z) = 1− 3z is the
bond dilution factor. The percolation factors change the superconducting coupling constant as

gS =
J2
K

8JAF
→ gS(z) =

J2
KP

2
∞(z)

8JAFK(z)
=

J2
K(1− z)2

8JAF (1− 3z)
. (4.6)

However, the function P 2
∞(z)/K(z) = (1− z)2/(1− 3z) increases with increasing z, so that

this coupling increases with the zinc doping, see figure 4.6(a). As a result, the critical temperature
Tc(x, z) = Tc [gS(z), µ(x)] as a solution to equation (4.2) also increases, as shown in figure 4.6(b).
Since it is expected that the superconductivity is suppressed, and it is known that the critical
temperature decreases with increasing zinc doping, this approach seems implausible.

(a) (b)

Figure 4.6: The results from the percolation theory approach. (a) The supercon-
ducting coupling gS(z) = gS(1− z)2/(1− 3z). (b) The resulting critical temperature
Tc(z) for x = 0.1, normalized with respect to Tc(z = 0).

Even with the inclusion of the zinc dependence of the kinetic energy, the percolation theory
approach fails to describe the decreasing critical temperature, see figure 4.7. Therefore, it will
be shown in the next subsection that the more general zinc dependence of the superconducting
coupling provides a better description of the system.
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Figure 4.7: The normalized critical temperature Tc(z)/Tc(z = 0) for x = 0.15 with
gS(z) = gS(1 − z)2/(1 − 3z) and the kinetic energy dependence in gc(z) and Λ(z),
compared to experimental data (◦ Ref. [50], • Ref. [51], × Ref. [64], � Ref. [72]).
The critical zinc concentration from experiments is zc = 0.027.

4.2.2 General linear expansion

In this second approach, a more general expression for the superconducting coupling is used.
Alternatively to the percolation approach, the reduction of the coupling constant can be described
by an expansion in the zinc concentration z. The goal is then to fit the parameter b in the
superconducting coupling constant

gS(z) = gS (1− bz) (4.7)

to the experimental data. Since the zinc concentration is small (less than 0.04 [64]), the expansion
is only performed to first order. The parameter b for this linear dependence is determined from
fitting the solution Tc(x, z)/Tc(x, z = 0) of equation (4.2) to the experimental data. This is done
for the different strontium concentrations of x = 0.10, x = 0.15 and x = 0.20, each of which
give an optimal b, see figure 4.8. For small zinc concentrations, the critical temperature from this
approach seems to follow the data well, but at higher amounts of zinc doping, the ln cosh-term
becomes more important and the theoretical function deviates from the experimental data.
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(a) (b)

(c)

Figure 4.8: The normalized critical temperature Tc(z)/Tc(z = 0) for (a) x = 0.10,
(b) x = 0.15 and (c) x = 0.20 with gS(z) = gS(1 − bz), compared to experimental
data (◦ Ref. [50], • Ref. [51], × Ref. [64], � Ref. [72], � Ref. [83]). The optimal
values for the linear parameter b found from fitting are indicated in the titles.

As mentioned before, the critical temperature can depend on the zinc concentration not only
via the superconducting coupling, but also through the kinetic energy, as shown in equation (4.3).
In this case, optimal values for both the linear parameter b as well as the critical zinc concentration
zc are found from fitting the normalized Tc(z) to the experimental data for the different strontium
concentrations of x = 0.10, x = 0.15 and x = 0.20. The results are shown in figure 4.9 and table
4.2. This fit returns values for zc which are very close to a linear fit from the experimental data
and the b-parameter equals 1/zc. Also noteworthy is that the critical zinc concentration increases
almost linearly with the hole doping.
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(a) (b)

(c)

Figure 4.9: The normalized critical temperature Tc(z)/Tc(z = 0) for (a) x = 0.10, (b)
x = 0.15 and (c) x = 0.20 with gS(z) = gS(1−bz) and the kinetic energy dependence
in gc(z) and Λ(z), compared to experimental data (◦ Ref. [50], • Ref. [51], × Ref.
[64], � Ref. [72], � Ref. [83]). The optimal values for the critical zinc concentration
zc and the linear parameter b found from fitting are indicated in the titles. See also
table 4.2.
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x b 1/b zc

0.10 65.5 0.0153 0.015
0.15 36.6 0.0274 0.027
0.20 27.3 0.0366 0.036

Table 4.2: The values for the linear parameter of gS(z) = gS(1− bz) and the critical
zinc concentration zc found from fitting the critical temperature of equation (4.3) to
experimental data for different amounts of strontium doping x.

As a result, both the critical coupling and the superconducting coupling go with the zinc
concentration as (1 − z/zc), such that the z-dependence of η = 1 − gc(z)/gS(z) disappears and
equation (4.3) reduces to

2Tc −
Λ
(

1− z
zc

)(
1− gc

gS

)
ln 2 cosh

ρ(x0−x)(gc(1− z
zc

))
Tc
(

1− gc
gS

) = 0. (4.8)

See figure 4.10 for the comparison of the critical temperature from this equation to the experimental
data. Here, no fitting parameters are used, since the critical zinc concentration can be extracted
from experiments.
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(a) (b)

(c)

Figure 4.10: The normalized critical temperature Tc(z)/Tc(0) for (a) x = 0.10, (b)
x = 0.15 and (c) x = 0.20 using equation (4.8) with fixed zc, compared to experi-
mental data (◦ Ref. [50], • Ref. [51], × Ref. [64], � Ref. [72], � Ref. [83]).
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This approach can be applied to other materials as well. Using equation (4.8) for Bi2Sr2Ca-
(Cu1−zZnz)2O8+δ (Bi2212), for example, results in

Tc(x, z)−
Tmaxc

(
1− z

zc

)
ln 2

ln 2 cosh
ρ(x0−x)(gc(1− z

zc
))

Tc
(

1− gc
2gS

) (4.9)

where gS → 2gS, to account for the two copper-oxygen planes, Tmaxc = Λ/2 ln 2 and the parameters
are as given in table 4.3. Note that this equation only holds in the underdoped regime, since the
superconducting dome of Bi2212 is asymmetric around the optimal doping point [60]. In the
overdoped regime, the transcendental equation becomes

Tc(x, z)−
Tmaxc

(
1− z

zc

)
ln 2

ln (1 + e−γ(x0−x)(1−z/zc)/Tc)
= 0. (4.10)

Using the critical zinc concentration found from a fitting to the data from Ref. [84] gives the plots
shown in figure 4.11.

Tmaxc (eV) 0.0080
η 0.61538
γ (eV) 0.041
gS (eV) 0.3900
gc (eV) 0.3
x0 0.245

Table 4.3: Values for the relevant parameters in the superconducting phase of the
bilayer Bi2Sr2CaCu2O8+δ [60].
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4.3. DISCUSSION

(a) (b)

Figure 4.11: Plot of Tc(z)/Tc(z = 0) given by (a) equation (4.9) for x = 0.19
(underdoped regime) and (b) equation (4.10) for x = 0.25 (overdoped regime), both
with the parameters from table 4.3 for Bi2Sr2Ca(Cu1−zZnz)2O8+x compared to the
experimental data of Ref. [84]. The values of the critical zinc concentration zc from
fitting are given on top of each plot.

4.2.3 Summary

The main result from the expansion of the spin-fermion Hubbard model to the co-doped La2−xSrx-
Cu1−zZnzO4 system is the dependence of the superconducting coupling constant, the critical cou-
pling, and the energy scale on the zinc doping amount z and the critical concentration zc as
(1 − z/zc). As a consequence, the critical temperature Tc(x, z) for the superconducting phase is
the solution to the equation

Tc(x, z)−
Λ
(

1− z
zc

)(
1− gc

gS

)
/2

ln 2 cosh
ρ(x0−x)(gc(1− z

zc
))

Tc(x,z)
(

1− gc
gS

) = 0, (4.11)

since the zinc dependence from the critical coupling and the superconducting coupling cancel out.

4.3 Discussion

In the first trial approach to the inclusion of zinc, the nonmagnetic impurity was treated as an
exclusively on-site effect, removing a single spin site from the antiferromagnetic copper lattice
that is the background for the itinerant holes in the spin-fermion Hubbard model. This effect was
included through percolation theory as introduced by Ref. [49], where it had successfully described
the destruction of the Néel state, both in the purely zinc doped and the co-doped compounds.
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4.3. DISCUSSION

However, in the superconducting system, this approach is insufficient to explain the destruction
of superconductivity upon zinc doping. Even with inclusion of the kinetic energy suppression as
proposed in Ref. [80], the superconducting coupling following from percolation theory does not
give the correct reduction in the critical temperature.

Instead, fitting of the experimental data with a single fitting parameter shows that the su-
perconducting coupling goes with (1 − z/zc), the same dependence as the kinetic energy. The
contribution to the kinetic energy comes from the picture in which each zinc impurity perturbs
the magnetization in a finite area around it, thereby disrupting the hopping of the charge carriers
(”swiss cheese” model) [80]. Since the contribution to the superconducting coupling is the same,
it can be assumed that this as well is affected by the same excluded area, not only through the
local spin change. This means that the Cooper pairs are limited in their coherent movement by
the zinc impurities.

The inclusion of the kinetic energy reduction is necessary to explain the data. It gives most of
the linear behaviour in the zinc concentration of the critical temperature in the regime where the
ln cosh-term plays a large role, i.e. near the critical zinc concentration. Note that this is different
from Ref. [80], where Tc(z) decreases linearly precisely with the same dependence as the kinetic
energy in the entire regime. A byproduct of the inclusion of the kinetic energy dependence is that
the ratio of the couplings gc/gS and as a result η = 1− gc/gS remain the same upon zinc doping.

For Bi2212, the theory does not fit the data so well in the underdoped regime, but slightly
better just above the optimal doping level. It is interesting to note that the best fitting critical
zinc concentrations are almost equal for the two cases. In the results for LSCO, the critical zinc
concentration increases with increasing hole doping, in a way that it seems not to be universal in
the optimal and overdoped regime. Rather, zc increases almost linearly with the strontium doping.
The critical zinc concentration can be seen as the amount of zinc necessary to have the areas where
superconductivity is destroyed percolating through the system. An increase in zc would indicate a
decrease in the size of the affected region, which seems to occur for higher hole concentrations. It is
in this picture of the ”swiss cheese” model that the zinc impurity should be considered, especially
since experiments show the induction of magnetic moments on copper sites surrounding the zinc
impurities and an effective magnetic moment on the zinc ions themselves [51]. However, the linear
increase of the critical zinc concentration with strontium doping in the optimal and overdoped
regime is in disagreement with Ref. [80] (see figure 4.5b), but corresponds to the expectation of
zc ∝ x from Ref. [64]. More research is necessary to satisfactorily determine how the critical zinc
concentration depends on the strontium doping.

All the results in this work are based upon the spin-fermion Hubbard model, which is a mean-
field approximation used to describe the overall superconducting system. A more general approach
would be needed to gain more insight into the microscopic features. Another product of this
approach is the absolute separation between the pseudogap and superconducting phases. While
from experiments it appears that the pseudogap might play a role in the underdoped regime [79],
this effect is not included here. It might be that the exclusion of the pseudogap leads to the absence
of a significant difference in the results between the underdoped and overdoped regime.
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Chapter 5

Conclusion

In this work, the destruction of high-temperature superconductivity in cuprates through the doping
of zinc as a nonmagnetic impurity was investigated, with the main focus on La2−xSr2CuO4. For
this purpose, the spin-fermion Hubbard model as described in Ref. [60] for the superconducting
system was extended to include doping by zinc. It was found that the zinc impurity not only
affects the on-site spin of the antiferromagnetic background, but also the kinetic energy of the
itinerant holes in its vicinity.

The effect of the impurity on a single spin was incorporated into the superconducting coupling
through the percolation theory approach from Ref. [49]. However, this is not sufficient to explain
the decrease in the critical temperature upon zinc doping. Rather, the superconducting coupling
is suppressed with a linear term in the amount of zinc and the critical zinc concentration, at which
both the superconducting coupling and the critical temperature vanish. This linear decrease with
the zinc concentration was found to be the same as the dependence of the kinetic energy as proposed
by Ref. [80].

Moreover, both contributions of zinc dependence in the critical temperature, namely from
the kinetic energy and from the superconducting coupling, need to be considered to describe
the experimental data satisfactorily. The zinc dependent kinetic energy enters into the hopping
parameter of the itinerant holes between the oxygen sites and subsequently into the critical coupling
strength and the energy scale of the superconductivity. The critical coupling gives the minimum
value of the superconducting coupling for a phase transition to occur, while the energy scale
determines the maximum value below which superconducting Cooper pairs can be considered [60].

This means that both the formation and the dynamics of Cooper pairs are affected in the same
manner in a region surrounding the zinc impurities, the size of which decreases with increasing hole
concentration. It would be interesting to find how the affected area around each zinc impurity
precisely depends on the hole doping and how the suppression of the coupling and the kinetic
energy works microscopically. Further research could also be done into the pseudogap and its
interplay with the nonmagnetic zinc impurities.
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Appendix A

Additional details on the minimization
of the effective potential

In this section, the details on the minimization of the effective potential,

Veff [∆,M, µ] =
|∆|2

gS
+
|M |2

gP
+Nµd(x)

− N

β

∞∑
n=−∞

∑
l=±1

∫
d2k

4π2
ln

[
ω2
n +

(√
ε2(k) + |M(k)|2 + lµ

)2
+ |∆(k)|2

]
,

(A.1)

for the Spin-Fermion-Hubbard model from section 3.2 will be given.

Superconducting gap

Firstly, minimizing this potential with respect to the superconducting gap leads to

δVeff
δ∆

=
2|∆|
gS
−NT

∑
l=±1

∫
d2k

(2π)2

+∞∑
n=−∞

2|∆|
ω2
n +

(√
v2k2 +M2 + lµ

)2
+ ∆2

0

= 0. (A.2)

This has as solutions that either |∆| = 0 or the difference between 1/gS and the integral vanishes.
This difference can be rewritten in the following way. First, the Matsubara sum can be evaluated
through

∑+∞
n=−∞ 1/(ω2

n + ζ2) = 1/(2Tζ) tanh (ζ/2T ), such that the above equation becomes

1

gS
−N

∑
l=±1

∫
d2k

(2π)2

1

2

√(√
v2k2 +M2 + lµ

)2
+ ∆2

0

tanh


√(√

v2k2 +M2 + lµ
)2

+ ∆2

2T

 = 0.

(A.3)
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Changing the integration variable k to ε = v2k2 turns the integral over
∫

d2k/(2π)2 =
∫
k dk/2π

into an integral over
∫ Λ2

0
dε/4πv2 =

∫ Λ2

0
dε/2α , where Λ2 is the energy cutoff of the Fermi level

and α = 2πv2. The difference in equation (A.3) then becomes

1

gS
− N

4α

∑
l=±1

∫ Λ2

0

dε√(√
ε+M2 + lµ

)2
+ ∆2

tanh


√(√

ε+M2 + lµ
)2

+ ∆2

2T

 = 0. (A.4)

Changing again the integration variable from ε to yl(ε) = 1
2T

√(√
ε+M2 + lµ

)2
+ ∆2 with

2T dyl =

√
ε+M2 + lµ√(√

ε+M2 + lµ
)2

+ ∆2

dε

2
√
ε+M2

, (A.5)

√
ε+M2 =

√
(2Tyl)2 −∆2 − lµ (A.6)

results in

4α

NgS
−
∑
l=±1

∫ yl(Λ
2)

yl(0)

4T
√
ε+M2

√
ε+M2 + lµ

tanh yl dyl =

4α

NgS
− 4T

∑
l=±1

∫ yl(Λ
2)

yl(0)

[
1− lµ√

(2Tyl)2 −∆2

]
tanh yl dyl = 0.

(A.7)

The first part of the integral gives∫ yl(Λ
2)

yl(0)

tanh yl dyl = ln cosh yl(Λ
2)− ln cosh yl(0), (A.8)

while the second part is of the form∫ yl(Λ
2)

yl(0)

1√
y2
l −D2

tanh yl dyl , (A.9)

where D = ∆/2T . In the limit ∆ → 0, T → Tc (M = 0), this is an integral over tanh y/y, which
can be evaluated using the expansion tanh y =

∑∞
n=1 22n(22n − 1)B2ny

2n−1/(2n)!, such that∫ yl(Λ
2)

yl(0)

1

yl
tanh yl dyl =

∞∑
n=1

22n(22n − 1)B2n

(2n)!

∫ yl(Λ
2)

yl(0)

y2n−2
l dyl

=
∞∑
n=1

22n(22n − 1)B2n

(2n)!

1

2n− 1

([
Λ + lµ

2Tc

]2n−1

−
[
lµ

2Tc

]2n−1
)
.

(A.10)
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Since Λ � µ, the first term from the upper bound of the integral dominates and it is possible to
expand in terms of µ/Λ, so that

4Tc
∑
l=±1

lµ

∞∑
n=1

22n(22n − 1)B2n

(2n)!

1

2n− 1
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Λ + lµ

2Tc
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−
[
lµ

2Tc

]2n−1
)

≈ 4Tcµ
∑
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∞∑
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l
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Λ

)

= 4Tcµ
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n=1
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(2n)!

1
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Λ

2Tc
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1 + (2n− 1)

µ

Λ
−
[
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µ

Λ
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= 8Tcµ

µ

Λ
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22n(22n − 1)B2n

(2n)!

[
Λ

2Tc

]2n−1

= 8Tc
µ2

Λ
tanh

Λ

2Tc
.

(A.11)

As a result, equation (A.7) becomes

4α

NgS
− 4Tc

(
ln cosh

Λ + µ

2Tc
+ ln cosh

Λ− µ
2Tc

− 2 ln cosh
µ

2Tc

)
− 8Tc

µ2

Λ
tanh

Λ

2Tc
= 0. (A.12)

Rearranging and using again that Λ� µ leads to

α

2NgSTc
− µ2

Λ
tanh

Λ

2Tc
−
(

ln cosh
Λ

2Tc
− ln cosh

µ

2Tc

)
= 0

α

2NgSTc

(
1− 2NgSTc

gc

µ2

Λ2

)
−
(

ln cosh
Λ

2Tc
− ln cosh

µ

2Tc

)
= 0,

(A.13)

where gc = α/Λ is the critical coupling and the term with µ2/Λ2 can be neglected, leading to

α

2NgSTc
−
(

ln cosh
Λ

2Tc
− ln cosh

µ

2Tc

)
= 0, (A.14)

which is
α

2NgSTc
= ln

cosh Λ/2Tc
coshµ/2Tc

. (A.15)

Taking the exponent on both sides and expanding cosh Λ/2Tc = eΛ/2Tc(1 + e−Λ/Tc)/2 gives

e−α/2NgSTc+Λ/2Tc
(
1 + e−Λ/Tc

)
= 2 cosh

µ

2Tc
(A.16)

eΛ(1−gc/NgS)/2Tc =
2

1 + e−Λ/Tc
cosh

µ

2Tc
. (A.17)
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Taking the natural logarithm of both sides and assuming that Λ� Tc, such that e−Λ/Tc ≈ 0 results
in

Λη

2Tc
= ln 2 + ln cosh

µ

2Tc
, (A.18)

where η = 1 − gc/NgS. Rearranging for Tc on the left hand side of the equation results in the
transcendental equation for the critical temperature as given in equation (3.83).

Something similar can be done for the pseudogap, but this will not be given in more detail
here, as the focus of this work is on the superconducting gap.

Chemical potential

Minimizing the effective potential of equation (A.1) with respect to the chemical potential µ leads
to

δVeff
δµ

= Nd(x)− N

β

∞∑
n=−∞

∑
l=±1

∫
d2k

4π2

2l
(√

ε2(k) +M2 + lµ
)

ω2
n +

(√
ε2(k) + |M(k)|2 + lµ

)2
+ |∆(k)|2

= 0. (A.19)

After the evaluation of the Matsubara sum, this becomes

d(x)−
∑
l=±1

∫
d2k

4π2

2l
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v2k2 + |M(k)|2 + lµ
)

2
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tanh
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+ ∆2

2T

 = 0.

(A.20)

With the same substitution of ε = v2k2 and yl(ε) = 1
2T

√(√
ε+M2 + lµ

)2
+ ∆2, this becomes

2αd(x)−
∑
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(A.21)

The integral over µ tanh yl gives again the typical ln cosh yl terms. In the case that ∆ → 0 and
T → Tc (M = 0), the remaining integral is of the form∫ yl(Λ

2)

yl(0)

yl tanh yl dyl . (A.22)
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This integral can be evaluated in the same manner as the integral for the minimization with respect
to the superconducting gap in the previous subsection, i.e. by writing tanh y =

∑∞
n=1 22n(22n −

1)B2ny
2n−1/(2n)!, such that∫ yl(Λ
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(A.23)

Since Λ � µ, the first term from the upper bound of the integral dominates and it is possible to
expand in terms of µ/Λ, so that
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(A.24)

As a result, equation (A.21) becomes

2αd(x) + 4Tc

(
ln cosh

Λ + µ

2Tc
+ ln cosh

Λ− µ
2Tc

− 2 ln cosh
µ

2Tc
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− 4Λµ tanh
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Since Λ� µ, one has

d(x)− 2µΛ

α
tanh

Λ

2Tc
+

4µTc
α

(
ln cosh

Λ

2Tc
− ln cosh

µ

2Tc

)
= 0. (A.26)

Plugging in the expression for the ln cosh-terms from equation (A.14) gives

d(x)− 2µΛ

α
tanh

Λ

2Tc
+

2µ

NgS
= 0. (A.27)

Taking again into account that Λ � Tc, so that tanh Λ/2Tc ≈ 1, substituting gc = α/Λ and
η = 1− gc/NgS, and solving for µ leads to equation (3.86).
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