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Abstract

We consider Einstein-Maxwell theory with a negative cosmological constant and
study the possible existence of traversable wormholes in Asymptotically (locally)
AdS spacetimes. It has been argued in the literature that such solutions are foli-
ations of warped AdS3 spacetimes and are supersymmetric solutions to N=2 d=4
gauged supergravity. In this talk, I will briefly go through our journey through the
the geometric and physical aspects of the solutions, provide some results, as well as
some failed attempts, and suggest some open questions. We find that traversabil-
ity, as measured from the boundary, seems to hold, with the null energy condition
being satisfied. The total electric and magnetic charge are zero in the global cover.
We interpret this as two semiwormhole solutions glued together. The conformal
mass blows up because of the non-compactness of the boundaries. We were not
able to produce similar constructions in 5d, but found a new solution which em-
beds the 4d solution in 5d. In the future, we intend to test the wormholeness of
the 4d solution, generalize the construction and study the new 5d solution.
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Introduction

General Relativity does not exclude non trivial topology as one of its possible so-
lutions. Wormholes made their first appearance in a paper by Misner and Wheeler
in 1957 [1], after having been proposed, as a concept, by Weyl earlier. One can
think of them either as shortcuts between two regions of spacetime, or as tubes
that connect two disconnected regions. They have not yet been fully understood
classically, or in the semi-classical regime. Wormholes can exist as vacuum solu-
tions of the equations of motion, or can be accompanied and supported by matter.
This matter can either be regular, i.e. with positive energy, or exotic, i.e. with
negative energy. We are particularly interested in the possible existence of worm-
holes with regular matter. However, it is quite hard to find such solutions that
are stable and can give a significant contribution to the path integral of quantum
gravity. This is mainly due to the fact that, roughly speaking, the wormhole guides
matter to come closer at the throat, i.e. the region where the size of the worm-
hole is minimum. As a result, matter with positive energy at the throat will lead
to gravitational collapse. An indirect way to assure stability is via supersymme-
try.1 If such stable solutions exist, then it is possible to send a signal through the
wormhole, which means very roughly that they have the property of traversability.
A class of traversable wormhole solutions to free Einstein-Maxwell theory with a
negative cosmological constant has been recently proposed in [2] and proven to be
supersymmetric in [3].

It is remarkable that such wormholes supported by regular matter exist as so-
lutions to such a simple theory. We study this class of solutions with several
ambitions in mind. One of them is to find how they are embedded in string the-
ory, which is the candidate theory as the theory of quantum gravity. Another goal
is to examine closely the non-exoticity of the matter accompanying the worm-
hole and explain why the throat does not collapse. In fact, regular matter means
that the energy conditions are satisfied. Energy conditions are restrictions on the
stress energy tensor of general relativity such that it describes physical matter,
with positive energy density. However, energy conditions usually rule out exotic
phenomena, such as traversable wormholes. Finally, our aim is to take a closer
look at the physical properties of these solutions and better interpret them.

After introducing some preliminary concepts in chapter 1, we move on to elab-
1It is beyond the scope of this thesis to explain that argument in detail
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INTRODUCTION

orating on wormholes, in general, as well as on the particular model of interest
in chapter 2. Afterwards, we present our first attempt of finding a higher dimen-
sional origin of these wormholes in chapter 3. There, we use some ansätze to find
an embedding in five dimensions and we find in the literature that the solutions
consistently uplift to eleven dimensional supergravity, as introduced in [4]. In the
following chapter, namely chapter 4, we compute that the null energy condition,
as well as the traversability as measured from the boundary, are satisfied. This
immediately leads us to an observation that there is an apparent contradiction to
the Topological Censorship theorem, which , in principle, forbids such traversable
wormholes that obey this condition. Moving on, in chapter 5, we calculate all the
conserved charges, those associated to the Killing isometries and to electromag-
netism, as an attempt to study all the physical properties of the solutions. Even
though we find that they are all zero, there is interesting physics in the vacuum
structure of quantum gravity. We find that a picture of two semiwormholes with
opposite physical properties is a consistent interpretation for the model and pro-
vides interesting diagnostics that will be further discussed in the end. We conclude
with some open questions and an outlook of possible further research.

2



1. Preliminaries

1.1 Einstein-Maxwell theory

Classical Electrodynamics and General Relativity can both be described under the
veil of geometry. Matter fields and electromagnetism can be viewed as manifes-
tations of the bending of space.[1] The relation of the electromagnetic field with
geometry can be seen in 1.1

In this thesis, we consider free1 Einstein-Maxwell’s theory in curved spacetime
with cosmological constant Λ, which has the following action

S =

∫
d4x
√
−g
[
(R + 2Λ) +

1

4
FµνF

µν

]
(1.1)

where Fµν = ∂µAν−∂νAµ, is the antisymmetric electromagnetic field strength and
g = det(gµν) is the determinant of the metric. The first term in the action is the
Einstein-Hilbert term with a cosmological constant. The second term consists the
dynamical term for the gauge field Aµ.

Maxwell’s equations in curved spacetime and Einstein’s field equations that
emerge upon varying this action with respect to the fields, i.e. Aµ and gµν , plus
the Bianchi identity, are the following

Homogenous Maxwell’s equations: ∇[αFµν] = 0 (1.2)
Inhomogenous Maxwell’s equations: ∇µF

µν = 0 (Jν = 0)
(1.3)

Einstein’s field equations:

Rµν −
1

2
gµνR + Λgµν =

8πG

µ0c4

(
Fµρg

ρσFσν −
1

4
gµνFρσF

σ
ρ

)
(1.4)

where Jν is the source term of the electromagnetic field.2 Equation (1.2) is just the
Bianchi identity giving Gauss’s law for magnetism and Faraday’s law. Equation
(1.3) give Gauss’s law and Ampère–Maxwell law. In Einstein’s field equations (1.4)

1the term "free" here means that there are no sources
2If the sources in Maxwell’s equations are zero, nothing prevents the field lines to have a

strength. It will be a divergenceless non vanishing field strength.
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PRELIMINARIES

in the LHS there is the Einstein tensor Gµν = Rµν− 1
2
Rgµν , where Rµν is the Ricci

tensor and R is the Ricci scalar, and Λgµν is the cosmological constant term. In
the RHS, this expression is the energy momentum tensor Tµν of Maxwell fields.

Figure 1.1: The impact of the electromagnetic field in geometry, and vice verca.
Top: field lines of force. Middle: Maxwell stress tensor caused by these field lines.
This stress tensor sources the gravitational field and is equal to the contracted
curvature tensor of the spacetime continuum, up to a multiplicative constant.
Bottom: The distorted metric of spacetime. The imprint of the field lines is
so specific, that one can go back and reconstruct through the geometry all the
properties of the field lines. In this picture, one can see the interpretation of
electromangetism out of pure geometry. Figure taken from [1]

Maxwell’s equations in curved background have a more compact formulation by
means of exterior calculus and differential forms, which we choose to omit here.

The Maxwell tensor is
Fµν = ∂µAν − ∂νAµ (1.5)

and its dual
? Fµν =

1

2

√
−gεµναβFαβ (1.6)
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PRELIMINARIES

where ? is the hodge star operator. Some useful invariants are the following

F 2 ≡ FµνF
µν (1.7)

FF̃ ≡ 1

2
Fµν ? F

µν (1.8)

1.2 AdS spacetimes

Anti-de Sitter space3 takes its name after the Dutch mathematician, physicist and
astronomer Willem de Sitter. It is a maximally symmetric Lorentzian manifold
of constant negative curvature. The relevant one of constant positive curvature is
called de Sitter space.

Maximally symmetric spaces are those that have a maximal amount of Killing
isometries. For dimension n, that number is n(n+1)

2
, with flat Minkowski being the

first and easiest example. Its group of isometries is the Poincaré group. Anti-de
Sitter space is a homogeneous space that can be defined as a quadric surface in
a flat vector space. As a first familiar example of such a quadric surface one can
consider the n−sphere, Sn, of radius R , which can be defined as the positive
definite quadric surface in flat euclidean space of one dimension higher,Rn+1.

X2
1 +X2

2 + . . .+X2
n+1 = R2 (1.9)

The metric would be
ds2

Sn = dX2
1 + . . .+ dX2

n+1 (1.10)

On this quadric surface, the group SO(n+ 1) takes a pair of two antipodal points
~X = (X1, . . . , Xn+1) and ~X = (−X1, . . . ,−Xn+1) and maps it to some other pair
on the n−sphere.

In the exact same way, AdSn spacetime can be defined as a hyperbolic quadric
surface with two timelike coordinates, negative radius of curvature,l, embedded in
R(2,n−2).

X2
1 +X2

2 + . . .+X2
n−1 − U2 − V 2 = −l2 (1.11)

with metric
ds2

AdSn = dX2
1 + . . .+ dX2

n−1 − dU2 − dV 2 (1.12)

The group SO(2, n − 1) leaves the null quadric invariant, or takes a pair two
antipodal points ~X = (X1, . . . , Xn+1) and ~X = (−X1, . . . ,−Xn+1) on the surface
and maps them to another pair. This is the group of isometries of AdSn, with
n(n+1)

2
generators. The topology of AdSn is Rn−1 ⊗ S1.

For completeness, let us note that de Sitter spacetime, with radius of curvature
k, is a one sheeted hyperboloid

X2
1 +X2

2 + . . .+X2
n −X2

n+1 = k2 (1.13)
3In fact, the first name of anti-de Sitter space, was just de Sitter of second kind.
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PRELIMINARIES

Figure 1.2: (1 + 1) Anti-de Sitter space embedded in (1 + 2) flat space. This
picture is slightly counter intuitive, since in our eyes it seems like a hyperboloid
of dimension 2 embedded in a Euclidean space of dimension 3. In fact, what
this picture tries to show is a generalized hyperbolic surface in a Minkowski-like
space with two timelike coordinates. This embedding suffers from closed timelike
curves. In order to avoid that one takes the universal cover, which "unwraps" the
embedding. Figure taken from [5]

embedded in Minkowski R(1,n+1) with

ds2
dSn = dX2

1 + . . .+ dX2
n − dX2

n+1 (1.14)

The group of isometries is SO(1, n − 1) this time. In the same fashion, de-Sitter
space also has maximal amount of isometries. The topology of dSn is Sn−1 ⊗R.

1.2.1 AdS as solutions to Einstein’s field equations

Anti-de Sitter metrics, as well as de Sitter ones, serve as exact solutions to vacuum
Einstein’s field equations with cosmological constant, whose sign derermines the
sign of the curvature4. More precisely, anti-de Sitter are homogeneous spacetimes
of constant negative curvature, while de-Sitter ones correspond to positive curva-
ture. Constant curvature is reflected locally in the Riemann tensor, which takes
the form

Rabcd =
R

12
(gacgbd − gadgbc) (1.15)

where R is the Ricci scalar. By definition, the Weyl tensor, which is the traceless
part of the Riemann tensor, is zero. Cabcd = Rab − 1

4
Rgab = 0. The Ricci scalar

4In the (−,+,+,+) signature
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PRELIMINARIES

is everywhere constant by virtue of the constracted Bianchi identities. Einstein’s
equations in four dimensions take the following form

Rab −
1

2
Rgab = −1

4
Rgab (1.16)

where Λ = 1
4
R is the cosmological constant that appears in the Einstein-Hilbert

action.
Let us suppose that the LHS of Einstein’s equations are geometry related quan-

tities and in the RHS are the matter related quantities. With this prescription,
one can think of these solutions as non vacuum, involving a perfect fluid with
constant density, ρ = R/32π, and constant pressure P = −R/32π. However, such
fluids would be required to have either negative energy, or negative pressure.[6]
In the semiclassical regime, this term on the RHS can be thought of as vacuum
energy of quantum fields. According to this, the computed value is many orders of
magnitude greater than its experimental bound, leading to the, so called, "cosmo-
logical constant problem". Therefore, the interpretation of Λ can be made through
the geometry. It can be thought of as a fundamental constant of Nature, whose
smallness (if non-zero), is as problematic as the smallness of the other fundamental
constants of Nature, e.g. the Planck length.[7] For that reason, in this thesis we
regard it as a constant related to the geometry and place it in the LHS of Einstein’s
field equations.

Rab −
1

2
Rgab + Λgab = 0 (1.17)

The current observed value is slightly positive, which corresponds to positive cur-
vature, i.e. de Sitter spacetime. A negative value for the cosmological constant
implies negative constant curvature, i.e. anti-de Sitter spacetime.

1.2.2 Conformal Compactification

Conformal compactification is a concept first proposed by R. Penrose in [8] that is
now being used in order to study asymptotic properties of spacetimes. This aspect
of it was not completely understood at the time. In a series of three lectures in
Les Houches summer school[9], he explained the technique in detail for each of the
cases Λ > 0 and Λ < 0. For the case Λ = 0, he published a lengthy analysis of the
asymptotic behaviour of zero rest-mass fields with this technique.[10]

The geometrical construction, whose definitions were taken from [11], is the
following

• Let a smooth Lorentzian manifold (M, g) be the "physical" spacetime, of
which we want to study the assymptotic properties.

• There is an "unphysical" spacetime, which is a smooth manifold M̄, with
boundary I. The bulk of it is equivalent to the physicalM.

7
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• There is a function Ω, defined in such a way that brings us from the boundary
to the physical spacetime. This is a positive function onM, it is smooth on
M̄, zero on the boundary Ω|I and defined up to a scalar function such that
dΩ|I 6= 0.

• The conformally rescaled metric ḡ = Ω2g, with these conditions, is a smooth
non degenerate Lorentzian metric on the unphysical spacetime M̄.

Conformal compactification is made possible for specific spacetimes, and the pos-
sibility is determined by the fall-off of the Weyl tensor at infinity. The conformal
boundary will have different components depending on different ways of going from
the physical spacetime to infinity.

It is important to note that the quantities we aim to study in the physical
spacetime through this technique, should be invariant under conformal rescalings.
This is due to the fact that the physical spacetime, does not include the boundary.

This can be regarded as a technique of bringing the infinity to a closer coordinate
distance. However, the word compactification is not meant in the usual sense. The
unphysical spacetime need not be compact, with the exception of Minkowski space.

1.3 Causality

1.3.1 Causality in Minkowski

Let us begin with some useful definitions. Let a coordinate system on Minkowski5
spacetime M4 be xµ = (t, ~x),µ = 0, 1, 2, 3,

• A path is usually described by xµ(λ) is usually parametrized by a parameter
s.

• It is required that the tangent vector dxµ(λ)
dλ

is non vanishing and paths trans-
formed under affine reparametrizations are considered equivalent.

• A causal path is defined as the one whose tangent vector dxµ(λ)
dλ

is either
timelike or null.

• A causal diamond D(q, p) is the region of all the causal paths between two
points q, p. It is the intersection of the causal future of p and the causal past
of q.

The proper time elapsed along a causal path from a point p to a point q is

τ =

∫ 1

0

dλ

√
gµν

dxµ

dλ

dxν

dλ
=

∫ 1

0

dλ

√(
dt

dλ

)2

−
(
d~x

dλ

)2

(1.18)

5The use of the concept of Minkowski, here, is just for simplicity. The concepts can be
generalized to arbitrary Lorentzian signature manifolds
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Figure 1.3: A causal diamond D(p, q) in Minkowski spacetime, being the intersec-
tion of causal future of q and the causal past of p. Note that it can be defined for
more general cases.Figure taken by [12]

If the causal diamond between those two points q, p is compact then, there is a path
that extremizes the proper time. And then, such a causal path that extremizes
the proper time is called a geodesic. If this compactness fails, then there is no
geodesic between the two points, q and p.[12]

Timelike paths are usually parametrized by the proper time, while for null paths,
the proper time elapsed is zero. In order to parametrize null paths, one uses an
affine parameter.

1.3.2 Causality in AdS

Starting from the definition of AdS2 as a hyperbolic hypersurface embedded in
R(2,1).

− u2 − v2 + w2 = −l2 (1.19)

where l is the radius of curvature. The line element is

ds2 = −du2 − dv2 + dw2 (1.20)

One can make the following change of coordinates

u =
√
l2 + w2 cos t, v =

√
l2 + w2 sin t, t ' t+ 2π,−∞ < w < +∞ (1.21)

one can take the universal cover and think of t as a real variable, in order to avoid
closed timelike curves. Then upon this change of coordinates, the metric takes the
form

ds2 = −
(
R2 + w2

)
dt2 +

R2

R2 + w2
dw2 (1.22)

9



PRELIMINARIES

Figure 1.4: The conformal diagram of AdS2. An observer on the boundary will
measure that a lightray travels from one conformal boundary to the other in finite
time. In this diagram q and p are causally connected but there is no geodesic
between the two, because the proper time elapsed along the path can be arbitrarily
large. For AdSn the conformal diagram is half of this diagram, σ < π/2, where
each point in this diagram corresponds to a codimension 1 sphere. Figure taken
by [12]

The change of coordinates

sinσ =
l√

l2 + w2
, where 0 < σ < π for −∞ < w < +∞ (1.23)

brings the metric (1.22) of global AdS2 to its conformally flat form as follows

ds2 =
l2

sinσ
(−dt2 + dσ2), −∞ < t < +∞, 0 < σ < π (1.24)

.
Physical AdS spacetime is non compact and the boundary in figure 1.4 is not

included in it. A causal diamond of two conformally related manifolds is indepen-
dent of the rescaling. This means that causality works in the same manner in both

10
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of them, and it is sufficient if we just look at the conformal diagram 1.4. In that
diagram if the two points that define the causal diamond D(p, q) are sufficiently
close, then the causal diamond is compact. In the case that the causal diamond
is big enough, so that it reaches the boundary, then due to the fact that AdS is
non-compact, the causal diamond is non-compact.

1.3.3 Global Hyperbolicity in AdS

Let us first provide some definitions. A spacelike hypersurface S of a manifold
M is called achronal if it intersects timelike geodesics no more than once. The
future/past domain of dependence of a spacelike hypersurface is the points on
the manifold that belong to the causal future/past of S. An achronal spacelike
hypersurface that its future and past domain of dependence produce the whole
manifold is called a Cauchy hypersurface. A Cauchy hypersurface is an initial
value hypersurface.

A manifold is called globally hyperbolic if it admits a Cauchy hypersurface. Then,
there exists a natural foliationM = R×S, with which the initial data hypersurface
can be evolved to produce the whole manifold.[see figure 1.5]6

Figure 1.5: M is globally hyperbolic =⇒ M = R× S. Figure taken from [13]

In anti-de Sitter spacetime, the conformal infinity is timelike. Specifying the
initial data on a spacelike hypersurface would not determine the future evolution
deterministically, unless there are boundary conditions associated with the con-
formal infinity. In the above description, using the causal diamonds, there are
conditions to make the diamonds compact. It is true and well known that the
physical AdS spacetime does not include the boundary and its causal diamonds
are non-compact, leading to issues with the initial value problem and global hyper-
bolicity. Another viewpoint via the conformal diagram (1.4) is the following: every

6If a spacetime is globally hyperbolic, there exists a foliation [see appendix D for more infor-
mation] M = R× S, where if M contains a wormhole, S should contain one as well.

11
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horizontal line on this diagram is a constant t surface, which evolves upwards. If
there are no conditions imposed on the conformal boundary, it is obvious that the
inital value problem is not well defined.7

However, if one studies the conformally rescaled manifold together with its
boundary, i.e. the conformally compactified AdS, then with appropriate condi-
tions this is globally hyperbolic. This will, of course, not be a physical manifold,
but if the quantities being calculated with this scheme are independent of the
rescaling, then one can consider that there is no issue with global hyperbolicity.
This is also referred to in the literature as global hyperbolicity in the AdS sense.

7The Einstein tensor Gµν = Rµν− 1
2Rgµν is considered as the D’Alambertian operator acting

on the metric. Einstein’s equations are like wave equations on 2-tensors with source term Tµν .
For the wave equation to be well defined, global hyperbolicity is important.

12



2. Wormhole solutions

2.1 Realization of wormholes in the literature

As a physics student, that has not taken any topology course, the first encounter
with wormholes should be in a General Relativity course, where the Schwarszchild
black hole solution is studied extensively. So, let us begin with a qualitative review
of that wormhole.

The maximal analytic extension of the Schwarschild solution gives the Kruskal
diagram 2.1, where right and left there are two assymptotically flat causally dis-
connected regions, and up and down are a black hole and a white hole. The causal
disconnectedness can be easily seen with the help of the light cones. If an observer
is in either of the assymptotic regions, they only end in the singularity to their
future.

Figure 2.1: Kruskal diagram of the maximal analytic extension of Schwarszchild’s
black hole solution. The shaded regions are the black hole(up) and the white
hole(down) singularities, the horizon at R = 2GM , the constant t slices and the
constant r slices are shown in the figure. Null paths in this diagram are all oriented
at π

4
and 3π

4
angles. The future and past timelike infinity are also shown. Figure

taken from [14]
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WORMHOLE SOLUTIONS

The Schwarszchild spacetime appears to have a wormhole at the t = 0 slice,
with topology R×S2 which is depicted in the following picture 2.2.1 In that t = 0
slice, while going to smaller and smaller values of the radial coordinate r−, the
size of the 2− sphere at each constant r decreases. The fact that it does not shrink
to zero is interpreted as a wormhole throat.

Figure 2.2: Taking horizontal slices in the Kruskal diagram we can see the forma-
tion of a wormhole at the t = 0 slice, with the topology R× S2. In the right figure
one dimension is suppressed, so each circle corresponds to a sphere. The wormhole
has a throat of minimal finite size placed at r = 2GM . Figure taken from [14]

2.2 The peculiar property of traversability

The notion of traversability is an important property that, crudely speaking, means
that an entity can travel through the throat of the wormhole at finite time. A more
rigorous definition of traversability says that "If a spacetime contains a causal path
that begins and ends at spatial infinity and cannot be continuously deformed to a
causal curve that lies entirely in the spatial boundary region, the spacetime contains
a traversable wormhole." [15]. Some useful definitions taken from [15] will follow
here

• intra-universe wormhole: a wormhole that connects two regions of spacetime
that are in the same universe

• inter-universe wormhole: a wormhole that connects two regions of spacetime
that belong to different universes

• short wormhole: a wormhole creating a causal path that takes shorter to go
through than to go around

1Not all horizontal slices correspond to constant time, but to constant Kruskal coordinate v.
Only slice C does is a constant t = 0 slice.
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• long wormhole: a wormhole creating a causal path that takes longer to go
through than to go around

• eternal wormhole: given a spacetime that admits a time-function, if there
is no topology change with respect to time and a wormhole exists on every
constant-time hypersurface, then the wormhole is eternal

• eternally traversable wormhole: an eternal wormhole is traversable for all
time

Some immediate rational questions might arise at this point. For example, what
does it really mean that there are two separate universes, when they are connected
by an inter-universe wormhole?

Figure 2.3: (a) Is an inter-universe wormhole that connects two disconnected as-
symptotic regions. (b) The boundary is identified and the wormholes are intra-
universe. Topologically, taking the cover of picture (b) one can have two copies of
the picture (a).

A suitable remark at this point is that the wormhole of figure 2.2, that appears
in the Schwarszchild solution is neither traversable, nor eternal. Traversable worm-
holes are, at least classically, not allowed. The reason is that they would lead to
causality violations. More specifically, inter-universe wormholes are not allowed.
However, in the case of intra-universe traversable wormholes, they are allowed if
they are long. In the semi classical regime, they are allowed if they are supported
by exotic matter. A more detailed discussion about these matters will continue in
chapter 4.

2.3 Notable wormhole constructions in the litera-
ture

Introducing wormholes with the example of the Schwarzschild solution might be
misleading. Wormholes can be contained in spacetimes with or without black holes.
They are multiply connected geometries that can be solutions to Einstein’s field
equations, with or without fields, with in turn can be either classical or quantum.
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Wormholes were first proposed classically by Weyl, without really having that
name yet. His hypothesis involved the possibility that sourceless electromagnetic
field energy can cause the spacetime to curve, giving mass in some region, where
the field lines are trapped inside a one dimensional tube.[see figure 2.6] The term
"wormhole" was given by J. Wheeler in the analysis with C. Misner in the Annals
of Physics[1]. Inside this analysis, inspired by Weyl’s idea, he states that they are
the "handles" of multiply connected geometries. A topological definition of what
a wormhole is, does not apply in this thesis, because the definitions that exist
in literature concern Minkowski spacetime. A definition is contained in Visser’s
book for Lorentzian traversable wormholes.[16] A geometrical definition is the one
depicted in the figure 2.2. "A wormhole is a region of spacetime that contains a
"world tube", i.e. the time evolution of a closed surface, that cannot be continuously
deformed to a world line, namely, the time evolution of a point." [17]

The starting point for the study of wormholes was the Schwarschild eternal black
hole solution, where a wormhole makes its appearance at the t = 0 slice. As men-
tioned above, the Schwarszchild wormholes are not eternal. Namely, they collapse
very quickly to a black hole and a white hole. Those are also known as Einstein-
Rosen bridges and are not traversable. Inspired by Schwarchild wormholes, Kip
Thorne first introduced the idea that negative energy matter, also referred to as
exotic matter, can maintain the throat open, preventing gravitational collapse. In
fact, Stephen Hawking in [18], Kip Thorne in [19] and other physicists argued that
quantum effects, such as the Casimir effect in quantum field theory, allow negative
energy density, which makes it possible to stabilize the throat.

The first traversable Lorentzian wormholes were introduced independently by El-
lis in [20] and Bronnikov in [21], in 1973. These papers present solutions to gravity
with a minimally coupled scalar field, which has negative polarity instead of posi-
tive. This kind of matter renders the throat open and produces a solution known
as the Ellis drainhole, which is horizonless, singularity-free, geodesically complete
and traversable. A bit later, in 1988, Thorne and his PhD student Morris intro-
duce the same solution for educational purposes, without knowing the existence
of Ellis’s and Bronnikov’s papers. This remained in the literature as the Morris-
Thorne wormhole. Last but not least, another class of traversable Lorentzian
wormholes supported by negative energy matter was analyzed in Visser’s book in
1989 [16]. Wormholes that are solutions to extended theories of gravity can be
proven traversable without requiring the existence of matter, but are not in the
interests of this thesis.

Recent advances in the wormhole literature become more and more interest-
ing. In 2013, Susskind and Maldacena in [22] conjectured a connection between
traversability and quantum teleportation, known as the ER = EPR conjecture.
This conjecture, makes the study of traversable wormholes quite promising. A
notable construction is that of Gao, Jafferis and Wall in [23]. In this paper, they
work on an eternal BTZ black hole solution, where an interaction through a dou-
ble trace deformation between the two boundary CFTs creates a quantum matter
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stress energy tensor with enough negative energy to support the throat and allow
traversability. Another example of traversable wormholes is introduced by Mal-
dacena in [24]. The wormholes in that paper are solutions to Einstein-Maxwell
theory with charged massless fermions, which are responsible for the negative en-
ergy that supports the throat. They are assymptotically flat, but can also be made
assympotically AdS.

Wormholes have been fully understood classically in the literature. Traversabil-
ity and stability are two properties that seem to be closely related. It has been
argued that these properties require matter with negative energy to support the
throat of the wormhole from collapsing. In the following section, a solution which
was proposed by Anabalon in [2] is being presented, where non-exotic matter sup-
ports the throat. In this thesis, we will analyze some aspects of these solutions
and how they reflect to the already existing literature.

2.4 Introducing the model

Recall that the action of Einstein-Maxwell theory contains an Einstein-Hilbert
term with or without a cosmological constant and a dynamical term for the gauge
field, which is minimally coupled to the gravitational field.

S =

∫
d4x
√
−g
[
(R + 2Λ) +

1

4
FµνF

µν

]
(2.1)

where R is the Ricci scalar, g is the determinant of the metric tensor field, Λ is the
cosmological constant term and F µν is the electromagnetic field strength tensor.
This action can have many solutions, one of which is of course empty AdS, for
negative cosmological constant and the electromagnetic field turned off.

This theory admits an assymptotically locally AdS solution that contains a
wormhole with Maxwell fields. The remarkable feature of those solutions is that
the vacuum version of them, as we shall see is dynamical. Let us introduce the
model

The metric field gµν is of the form

ds2 =
4l4

σ2f(r)
dr2 + h(r)

(
− cosh2 θdt2 + dθ2

)
+ f(r) (du+ sinh θdt)2 (2.2)

with {t, r} ∈ R, θ ∈ [ 0,+∞ ), the coordinate u is identified, u+ α = u.
where

f(r) =
4l2

σ2

r4 + (6− σ)r2 +mr + σ − 3

r2 + 1
− Q2 + P 2

r2 + 1
, h(r) =

l2

σ
(r2 + 1)

The matter section of the spacetime is characterized by an electromagnetic field
with field strength tensor Fµν . The non-zero components of it are
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Fru = −Fur =
2(r2 − 1)Q− 4rP

(r2 + 1)2
(2.3)

Frt = −Ftr =
2(r2 − 1)Q− 4rP

(r2 + 1)2
sinh θ = Fru sinh θ (2.4)

Fθt = −Ftθ =
−2Qr + P (1− r2)

r2 + 1
cosh θ (2.5)

The gauge field that produces this field strength is the following

A = Φ(r) (du+ sinh θdt) , Φ(r) =
2Qr + P (1− r2)

r2 + 1
(2.6)

Einstein-Maxwell’s equations are satisfied for this solution. In this thesis we shall
see what the parameters in this solution mean. We expect that m is linked to the
mass, σ is just a parameter defining the model and contributes to the volume, l
is the radius of curvature of AdS and, thus, a physical scale. Our expectation is
that Q and P are related to static electric and magnetic charges2, which will be
proven wrong.3

The rest of the details for the model used for the calculations are included in
Appendix C.

2.4.1 On the definition of the metric

The different spacetimes are characterised by a set of parameters {σ,X,m}. Those,
of course, cannot take arbitrary values, whereas they should agree with several
physical constraints.

Translation of the constraints onto the parameters

Some thoughts on what these constraints could be are listed below:

1. f(r) should not have real roots in order to avoid coordinate singularities. Its
denominator being always positive, its roots are the same as its numerator’s
roots. Since its numerator is a quartic polynomial, if its discriminant is
positive then it either has all roots real or not real. Then, there are a couple
of more inequalities that should be satisfied, which lead us to the case of all
roots being real.

2As we shall see later on, these are not even charges.
3At this point it is useful to note that there is nothing wrong with including a magnetic charge.

It is a theoretical solution and the magnetic monopole charge enters the metric in the same way
as the electric one. The exact same comment applies for the charged Reissner-Nordstrom black
hole.
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2. setting Q = P = 0 in the discriminant inequality should give the exact
same constraints as in the uncharged case. Those are 3 < σ < 12 and
|m| < 2

3
√

3
(12− σ)

√
σ − 3

3. the measure which shows the size of the throat should be positive. This
essentially gives 4l2

σ2 (σ − 3) > (Q2 + P 2)

As it has already been pointed out, if f(r) has no real roots, it will have a
constant sign, since it is a continuous function. In our case, this sign will be
positive, namely f(r) > 0, because the dominant term in the polynomial has a
positive sign.

Determining the sign of a quartic function

The analysis requires the study of quartic polynomials. This is because in f(r),
for example, the denominator is always positive, thus what is left to study is the
numerator, which is a fourth order polynomial. If we demand that it has no real
roots, it is the same as demanding that it has a constant sign. We need the non-
real roots to avoid singularities and as a gift we get automatically the positivity
of f(r).

The form of our polynomial is r4 + cr2 + dr + e and for its study one needs to
define the discriminant ∆.

∆ = 256e3 − 128c2e2 + 144cd2e− 27d4 + 16c4e− 4c3d2 (2.7)

In order to have all roots either all real or all imaginary, a positive discriminant
is required, ∆ > 0. To restrict ourselves to the case that all roots are imaginary,
so that a coordinate singularity is avoided in the metric, the constraints, in total,
translate to:(

(∆ > 0) ∧
((

c < 0 ∧ e > c2

4

))
∨ (c ≥ 0)

)
∨
(

(∆ = 0) ∧
(
e =

c2

4

)
∧ (d = 0)

)

Final Bounds

After taking into account all those physical constraints we end up with the fol-
lowing allowed intervals for

{
σ,m,X ≡ 3(Q2+P 2)

l2

}
. Note that these parameters

are those that define different spacetimes with similar properties. Thus, finding
bounds on them, such that the spacetimes are well defined, meaning no coordinate
singularities, and obeying the energy conditions such that traversability is not al-
lowed.4
For the charged case the positivity of f(r) gives:

4Here, in fact, we are trying to probe the validity of the NEC as the condition to rule out
traversability. Namely, what we are trying to achieve is to prove that a spacetime can obey the
NEC and, simoultaneously, have a traversable wormhole
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• (∆ > 0) ∧
(
c < 0 ∧ e > c2

4

)
gives:

(σ > 6) ∧

(
σ − 3− Xσ2

12
>

(6− σ)2

4

)
=⇒

0 < X <
(−144 + 48σ − 3σ2)

σ2
=⇒(

24 + 12
√

1−X
3 +X

> σ > 6

)
∧ (0 ≤ X < 1)

(2.8)

∆ > 0 =⇒

|m| <
√

2

3
√

3

√
18 (−48 + 24σ − (3 +X)σ2) + σ3

(
1 + 3X + (1−X)

√
1−X

)
(2.9)

• (∆ > 0) ∧ (c ≥ 0) gives:

0 < σ ≤ 6

0 ≤ X <
12

σ2
(σ − 3) =⇒

(
6 ≥ σ >

6− 6
√

1−X
X

)
∧ (0 ≤ X < 1)

|m| <
√

2

3
√

3

√
18 (−48 + 24σ − (3 +X)σ2) + σ3

(
1 + 3X + (1−X)

√
1−X

)
(2.10)

• (∆ = 0) ∧
(
e = c2

4

)
∧ (d = 0) gives:(

σ =
24± 12

√
1−X

3 +X

)
∧ (X < 1) ∧ (m = 0) (2.11)

If we combine the first two sets of constraints,

X < 1

24 + 12
√

1−X
3 +X

≥ σ >
6− 6

√
1−X

X

0 ≤ |m| <
√

2

3
√

3

√
18 (−48 + 24σ − (3 +X)σ2) + σ3

(
1 + 3X + (1−X)

√
1−X

)
(2.12)

The third constraint is a separate case. The proof that those constraints agree
exactly with the constrants (3.9) of [3] can be found in the appendix (which I
haven’t written yet).
For the uncharged case the positivity of f(r) gives:
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• (∆ > 0) ∧
(
c < 0 ∧ e > c2

4

)
gives:

6 < σ < 12 (2.13)

|m| < 2

3
√

3

√
−432 + 216σ − 27σ2 + σ3 (2.14)

• (∆ > 0) ∧ (c ≥ 0) gives:(
((3 < σ < 4) ∨ (4 < σ ≤ 6)) ∧

(
|m| < 2

3
√

3

√
−432 + 216σ − 27σ2 + σ3

))
(2.15)

∨
(

(σ = 4) ∧
(

0 < |m| < 16

3
√

3

))
(2.16)

• (∆ = 0) ∧
(
e = c2

4

)
∧ (d = 0) gives:

(σ = 4 ∨ σ = 12) ∧ (m = 0) (2.17)

Considered altogether they give:

3 < σ ≤ 12 0 ≤ |m| < 2

3
√

3

√
−432 + 216σ − 27σ2 + σ3 (2.18)

which are consistent with each other, in the sense that setting X = 0 to the first
set of constraints gives the second set of constraints. The constraint for |m| in the
charged case is exactly as the one in (3.9) of [3] after manipulations. Both sides
of the inequality (2.12) for σ are equivalent to those in (3.9) of [3].5

Comments on the positivity of f(r)

The function f(r) can not have real zeros, since in that way the metric is ill defined
and the distances blow up. We concluded that no zeros means positive sign. This
positivity plays a role in various aspects regarding the spacetime solution.

First of all, it is a pathological case when a spacetime has closed timelike curves,
unless one wants to plan an itinerary to the past, kill their grandparents to end
their own existence, leaving physicists puzzled with many paradoxes.6 The posi-
tivity of f(r) plays a role in proving that this spacetime solution is free of closed

5The fact that 1
1+X+

√
1−X = 1+X−

√
1−X

X(X+3) was extensively used to show that they are equiva-
lent.see appendix

6Well, the absence of closed timelike curves is not the only unphysical aspect. The universe
having negative curvature or containing traversable wormholes is also not so realistic, but at
least it is not pathological. Space travel is also not promised. This solution can only be seen as
just a theoretical tool.
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timelike curves. See proof in [2]. As proven in this thesis the null energy condition
satisfied, thanks to the positivity of this function f(r), which means that the mat-
ter contained in this spacetime is regular and non-exotic. Positivity of the throat
size is also an important issue in the case that we want to avoid negative lengths
and f(r) being positive assures it.

2.4.2 Construction and Group Structure

Construction

The construction of [2] is based on squashing AdS3 and, then embedding and
warping it into AdS4. But let us begin with some definitions in the direction of
understanding all those terms, that might look scary at first sight.

The term squashed refers to the lorentzian analog of the squashed three sphere,
studied in [25]. The 3−sphere is a homogenous space that can be seen as a hopf
fibration with base manifold a 2− sphere and hopf fiber a circle, i.e. S3/S1 =
S2.[See appendix B] It, roughly speaking, means that the 3−sphere can be seen as
a 2−sphere, attaching a circle S1 of different size at each point. Now, qquashing
it means to deform it along each fiber [See appendix B]. A lorentzian analog of
this is writing AdS3 as a hopf fibration, AdS3/R = AdS2. Squashing it along one
fiber, one can get

ds2
λ =

1

4

(
− cosh2 θdt2 + dθ2 + λ (du+ sinh θdt)2) (2.19)

with {t, u} ∈ R, θ ∈ [ 0,+∞ ).7
Setting this parameter λ to zero gives empty AdS2. It is an important remark

that the analog is highly non trivial for higher dimensions.8 Setting λ = 1 we just
have empty, homogenous and isotropic AdS3. For other λ the AdS3 is homogenous,
but not isotropic.

Embedding the empty version of this construction (2.19) in empty AdS4 is a
straightforward task.9

ds2 =
l2dr2

r2 + 1
+
l2

4

(
r2 + 1

) [
− cosh2 θdt2 + dθ2 + (du+ sinh θdt)2] (2.20)

with {t, r, u} ∈ R, θ ∈ [ 0,+∞ ).
Now, the term warping refers to a generalization of the Cartesian product of

the y geometry and the x geometry, with the exception that the x part is warped,
7The positivity of θ is mentioned in [25] and has to do with the fact that θ is the radial

coordinate of the AdS3 slices
8It was one of the failed attempts of this thesis to try to do the same construction in one

dimension higher.
9See also chapter 3 for more details on how this parametrization of AdS4 works and how to

add extra coordinates
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meaning that it is rescaled by a scalar function of the other coordinates y, f(y).
A warped geometry is a Riemannian or Lorentzian manifold whose metric tensor
can be written in form

ds2 = gab(y)dyadyb + f(y)gijdx
idxj (2.21)

Warping the metric (2.20) of empty AdS4 in those weird coordinates with arbitrary
functions of the radial coordinate r of AdS4, means that we make it anisotropic
by stretching it as a function of r along several directions. One ends up with the
metric of the wormhole solution (2.2), which has the metric similar to (2.19) at
the conformal coundary. In fact the induced metric on the conformal boundary is
calculated as

ds2
σ =

l2

σ

(
− cosh2 θdt2 + dθ2 +

4

σ
(du+ sinh θdt)2

)
(2.22)

As a matter of fact, the Schwarschild solution or the FLRW metric are examples
of warped geometries as well.

Group structure

The function f(r) breaks the isometry group of the AdS3, SO(2, 2) ' SO(1, 2) ×
SO(1, 2) to R×SO(1, 2). That describes the isometry breaking of the disconnected
boundaries r → ±∞.

Global AdS4 has the isometry group SO(2, 3). In the wormhole solution, the
warping functions f(r) and h(r) together with the fields break this isometry group
of each r−slice to its subgroup SO(2, 1)×U(1)10, generated by the Killing vectors.
Since, the functions only depend on r, they are unaffected by the Killing vecors,
shown in appendix C. The solution is thought of as warped AdS3 embedded in
AdS4.

2.4.3 Distinction from empty AdS

The metric of empty AdS in these weird coordinates seems to have a wormhole as
well. There is, though, a global parametrization leading to the embedding coordi-
nates that define empty AdS, as we shall see later on in chapter 3. Both solutions
solve the same equations of motion and have the same Ricci scalar everywhere
R = −12

l2
and the same cosmological constant. Full information about the curva-

ture fails to be captured in the Ricci scalar. Similar example is the Schwarschild
solution, which is Ricci flat, but has a curvature singularity in the center.

Hence, it is useful to plot the Kretschmann or Weyl invariants for the empty
and the wormhole parametrization to see the differences. The higher curvature
invariants are nowhere singular in the wormhole spacetime, and are zero in the

10Recall that u is identified
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Figure 2.4: (a) Kretschmann invariant for different σ and r for Q = 0.4,m =
0.4, l = 1, P = 0 (b) Kretschmann invariant for different Q and r for σ = 5,m =
0.4, l = 1, P = 0. σ defines different spacetime solutions, while Q defines different
charges for a specific σ

empty case. They show that the wormhole spacetime is highly curved close to the
center, where a throat is expected to hold. The Kretschmann invariant is

K = RµνρσR
µνρσ (2.23)

and the Weyl invariant,
W = CµνρσC

µνρσ (2.24)

where Rµνρσ is the Riemann tensor, Cµνρσ is the Weyl tensor and there expressions
are included in the appendix. For the empty AdS solution in any coordinates, also
in these ones, the invariants are as follows

K =
12

l4
(2.25)

W = 0 (2.26)

For the AdS wormhole solution the Kretschmann invariant is depicted in the figure
2.4, while the Weyl invariant is non-zero and has a similar plot. The Weyl tensor
being non-zero already tells us that this is not an empty AdS solution.

2.4.4 Arguments concerning the wormholeness

As it has been highlighted above, the realization of wormholes in the literature
involve a "radial"11 coordinate and a minimum positive volume of the spatial
sections for each constant value of this radial coordinate. In the maximal analytic
extension of the Schwarchild solution, we saw that the t = 0 slice includes a
wormhole. The spatial sections of constant t, r have a minimal volume instead of
being zero. This is interpreted as a wormhole. In the AdS− like slicing of this

11The term "radial" is used for spherically symmetric spacetimes. Here there is axial symmetry,
but the word radial means that small values of this coordinate brings us to the bulk of the
spacetime, while plus and minus infinity corresponds to the boundary
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solution, there is the exact same picture. The difference lies in the fact that in each
slice of constant r, instead of a compact sphere, there is a non-compact warped
AdS3. The non-zero size of those sections indicate a non vanishing throat.

In [2] the graph representing the existence of such a throat for the values of the
parameters that are allowed is the determinant of the spatial sections of constant
t, r.

Figure 2.5: Determinant of spatial sections of constant t, r with respect to r, i.e
det = f(r)h(r)l−4σ3/4. All plots are made for l = 1,m = 0.4, P = 0. Plot 1 & 2
are for σ = 5, Q = 0.4 and for σ = 8, Q = 0.4. Plots 3 & 4 are for σ = 4, Q = 0
and σ = 9, Q = 0. With these plots we have an indication of wormholeness for
both the charged and uncharged case. For σ > 0 there seems to be two antithroats
and a throat. This means that the size of the throat becomes minimum for small
positive values of r, then experiences a local maximum around zero, and then a
local minimum again, for negative r.

The remarkable aspect is that there seems to be a wormhole even without matter
supporting the throat. Miracoulously, vacuum solution for Q,P = 0 seems to
contain a wormhole as well. This is clearly a feature of AdS spacetime, where, due
to the negative curvature, it is made possible to construct a wormhole maintained
by the geometry itself. This stands as a counterexample to the traditional approach
of wormholes introduced in the historical paper by Missner and Wheeler [1]. In
this paper they discuss assymptotically flat wormholes in Einstein-Maxwell theory,
where the throat can be supported by the existence of electromagnetic field lines.
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Figure 2.6: Historical schematic figure of a wormhole supported by Maxwell elec-
tromagnetic fields. This is a constant time slice, where one spatial dimension is
suppressed. The two dimensional curved and multiply connected space is embed-
ded in a three dimensional Euclidean space in this picture. The two-space inside
the tunnel looks the same as the two-space elsewhere. The field lines are trapped
inside the wormhole topology, they obey Maxwell’s sourceless equations and are
free of singularities. An observer inside the tunnel would faslingly notice two point
charges, without accounting for the topology. In fact, seeing it from outside, elec-
tromagnetic flux going into any bounded surface goes out of the surface intact.
This picture corresponds to unquantized classical charge, and has nothing to do
with the charge thought in elementary particle physics. Electromagnetic energy
around the mouth of the wormhole gives mass to the region. This is what is re-
ferred to as the Weyl idea of using empty curved space to describe gravitation
without gravitation, electromagnetism without electromagnetism, charge without
charge and mass without mass. Figure and explanation taken by [1]

Ideas on confirming the wormholeness

It is, obviously, a rather challenging task to verify the existence of wormhole topol-
ogy in the spacetime solution. Our understanding is that plotting the size of the
spatial cross sections and identifying a coordinate are not enough to prove that
there is a non contractible cycle in the spacetime. It might be the case that this
wormholeness picture is just an artefact of the coordinates. For example, the de-
terminant of the spatial cross sections for the empty case, σ = 4, f(r) = h(r) is
also nowhere vanishing, but as we shall see this case is just empty AdS written in
complicated coordinates.

In order to understand the womrholeness nature of the spacetime solution, one
needs to calculate quantities that are independent of the coordinates, i.e. a topo-
logical invariant. As a matter of fact, the metric cannot capture all topological
aspects of the manifold. A topological invariant of interest, in order to prove that
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there is a non-contractible cycle, is the euler characteristic. This can be computed
as an integral over some geometrical forms by virtue of the Gauss-Bonnet theorem.
This theorem is a special case of the Atiyah-Singer index theorem, which relates
topology and geometry.

Another idea to predict the wormholeness, would be by studying Raychaud-
huri’s equation. This equation studies the behaviour of the flow of a timelike or
null geodesic congruense,12 which initiate orthogonally to a spacelike hypersur-
face. It can, basically, be derived by Einstein’s field equations in a particular
frame. Through this equation, if the null energy condition is satisfied13, one can
predict whether null geodesics, starting orthogonally to a spacelike hypersurface,
will end up focusing. In black hole spacetimes, that is the way to predict coordi-
nate singularities, but not curvature ones. The coordinate system collapses if they
focus. In the case of wormholes, Raychaudhuri’s equation can give a prediction on
whether the null geodesics will focus close to the throat, and there should be, in
principle, something to keep them apart. Since, in this spacetime, there does not
seem to be any exotic matter to keep the throat apart, if the expansion parameter
shows that they should focus, we need to interpret this. So, what keeps the null
geodesics coming through the throat apart? Our naive intuition tells us that the
non-compactness of each slice allows null geodesics to focus in a neighbourhood
close to the throat r ' r0, only in one direction, but be arbitrarily far apart in the
rest of the directions. That picture could explain why they do not coincide.

An alternative way of examining the wormholeness topology would be by cal-
culating the fundamental group of the manifold. This would show whether there
are any holes. However, that would require writing the warped product mani-
fold as a group first, which might be impossible. Writing it as a quotient of two
groups should not be possible, since this is some property that homogenous spaces
have. The calculation of the fundamental group is not an easy task even for simple
manifolds. Hence, it might not even be an option for us.

12There is a version of it for general timelike or null paths. But we are particularly interested
in a congruence of null geodesics.

13There will be a detailed discussion about energy conditions in due time.
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3. Higher dimensional origin

3.1 Motivation from String Theory

String theory is believed to be a theory of quantum gravity, in the sense that it
always involves a massless spin-2 particle, that are interpreted as the graviton[26].
It is, basically, a conformal field theory on the two dimensional worldsheet of a
string1 coupled to background fields that enjoy Lorentz symmetry in D dimensions.
The Polyakov action on the world sheet has the following form

SP = − 1

4πα′

∫
Σ

d2σ
√
−hhαβ∂αXM∂βX

NGMN(X) (3.1)

where σα, α = 0, 1 parametrize the worldsheet Σ of the string, hαβ is the metric
on Σ and h its determinant, α′ is a constant related to the tension of the string,
which has units (length)2, XM , M = 0, . . . , D − 1 are functions attached on each
point of the worldsheet Σ, with target space a spacetime manifoldM with metric
GMN(X).

The background fields that are important are the massless ones, and this has to
do with quantizing the theory and, simoultaneously, preserving Lorentz symme-
try. These are, in fact, irreducible representations of the little group SO(D− 2) of
the Lorentz group SO(1, D − 1), which involve a symmetric tensor Gµν , thought
of as the background spacetime, an antisymmetric one, Bµν , which is called the
Kalb-Ramond field and a scalar one, φ, which is referred to as the dilaton, and
they all generalize the idea of a coupling constant. In superstring theory, one can,
in principle, have all, or some, of these bosonic background fields turned on and
some extra fermionic fields that are there to preserve supersymmetry. The fact
that (super)string theory is a two dimensional conformal field theory on the world-
sheet is crucial, because it is a Weyl invariant theory and its symmetry group has
infinite generators, that might be able to produce all the known particles. Another
important remark, is that in order to properly quantize this conformal field theory,
weyl invariance should be maintained in the quantum regime. This, essentially,
translates to requiring that the beta functions, related to the background fields to
be zero. The beta functions express the running of the coupling constants with

1in analogy to the one dimensional worldline of a point particle
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respect to energy. With this requirement, it turns out that superstrings can be
properly quantized and propagate in backgrounds with D = 10. This is also re-
ferred to as the critical dimension of superstring theory. For another theory called
M-theory, this dimension is D = 11. Hence, superstring theory or M-theory are
candidates capable of unifying in high energies all the interaction theories that
describe our world.

However, spacetime that we live in and observe is, of course, four dimensional.
In order to resolve the discrepancy between the ten dimensions of superstring the-
ory and the four dimensions of our observations, the idea of compactification comes
into the game. For a more detailed and didactic view of the idea of compactifica-
tion in string theory see [27, 28]. The fundamental idea of compactification is that
there exist solutions of the D = 10 theory that can be consistently decomposed,
for example, as a product manifoldM10 = M4×K6, where M4 corresponds to the
four dimensional spacetime and K6 to a compact manifold, also called the inter-
nal manifold on which the reduction happens. In order to explain why the extra
dimensions are not observed in our four dimensional world, they should be much
smaller in size than the characteristic length scales known from particle accelera-
tors. In this way, one can consistently reduce the theory to a lower dimensional
theory, which will have an imprint coming from the 6 dimensional compact mani-
fold. The program that is being used to compactify the extra dimensions is based
on the Kaluza-Klein dimensional reduction, and is a generalization of it.

The Kaluza-Klein idea was an attempt to unify four dimensional gravity and
electromagnetism via describing both interactions as a purely geometrical gravity
theory in one dimension higher. I will try to briefly discuss the Kaluza-Klein hy-
pothesis and the generalization of the idea to dimensional reduction of any theory
in due course, for two reasons. Firstly, this hypothesis was one of our ansatze,
as well, to try to embed the AdS wormhole solution into 5D. Simoultaneously, it
provides the base idea related to how compactifications are done in string theory,
which is useful so as to understand how the wormhole solution can be embeded to
string theory. Recall, that our motivation is that this wormhole solution being a
bosonic solution of a D = 4,N = 2 AdS supergravity action, suggests that it is a
stable solution, and, thus, an important contribution to the path integral of quan-
tum gravity. Finding its higher dimensional origin is important, not only in order
to see the bigger picture of it geometrically, but also to find its non-perturbative
UV completion.

A four dimensional solution can have many UV completions. The term con-
sistent being used in Kaluza-Klein compactifications is linked to the fact that
all solutions of the lower dimensional theory should be solutions of the higher
dimensional one. In fact, after the dimensional reduction, the imprint that the
internal manifold has on the four dimensional one, is an infinite tower of "light"
and "heavy" fields. The four dimensional solution obeys the equations of motion
of the "light" fields only. Therefore, the on shell "light" fields should by no means
source the "heavy" ones, such that after the reduction one can just turn them off
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and have the desired lower dimensional theory that gives the correct equations of
motion. The consistent uplifting of all solutions of D = 4,N = 2 AdS supergravity
theories to D = 11 M-Theory2 has been studied generically and consistently in [4].
In this paper, they prove that any minimal gauged supergravity can be uplifted on
an arbitrary seven-dimensional Einstein-Sasaki manifold. Moreover, in [29] they
study another consistent and generic uplift of AdS D = 4,N = 2 solutions to
type IIB supergravity in two steps. Starting from a braneworld Kaluza Klein
ansatz, the general solutions are consistently uplifted to D = 5,N = 4 gauged
supergravity first and then to type IIB supergravity.

3.1.1 A brief review of Kaluza-Klein reduction on a circle

In this subsection, a very brief explanation of the Kaluza-Klein reduction is in
order.

The Kaluza-Klein hypothesis

Firstly, it is useful to explain the principal idea of describing gravity and elec-
tromagnetism in four dimensions as pure gravity theory in one dimension higher.
The Kaluza-Klein hypothesis uses the 4D metric, the electromagnetic 4−vector,
Aµ and an auxiliary field φ, accompanied by a cylinder condition, in order to con-
struct a 5D metric that solves the vacuum Einstein’s equations. The ansatz is as
follows

g̃MN ≡
(
gµν + φ2AµAν φ2Aµ

φ2Aν φ2

)
(3.2)

The line element can be written as

ds2 = g̃MNdx
MdxN = gµνdx

µdxν + φ2
(
Aνdx

ν + dx5
)2 (3.3)

where M,N = 0, . . . , 5 and µ, ν = 0, . . . , 4.
The cylinder condition suggests that the metric does not depend on the fifth

coordinate
∂g̃MN

∂x5
= 0 (3.4)

The 5D action is the Einstein-Hilbert action in five dimensions is

S =

∫
d5x
√
−g̃R̃ (3.5)

2M-Theory and string theory are dual to each other. The critical dimension for M-Theory is
D = 11.
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The five dimensional vacuum equations of motion decompose to the four dimen-
sional ones as follows

R̃µν −
1

2
g̃µνR̃ = 0 =⇒ (3.6)

Rµν −
1

2
gµνR =

1

2
φ2

(
gαβFµαFνβ −

1

4
gµνFαβF

αβ

)
+

1

φ
(∇µ∇νφ− gµν∂ρ∂ρφ)

(3.7)

The remaining field equations are

R̃55 =⇒ ∂µ∂
µφ =

1

4
φ3FαβFαβ (3.8)

R̃5M = 0 =
1

2
gµN∇µ

(
φ3FMN

)
(3.9)

where quantities that have a tilde on top are associated to the 5D metric and the
quantities that don’t have a tilde are associated to the 4D metric.

Reduction of a scalar field theory in 5D Minkowski

Conversly thinking, the Kaluza-Klein hypothesis is a dimensional reduction of a
gravitational theory, and it will shortly be obvious why this cylinder condition
mentioned above is as effective as identifying the fifth coordinate on a circle and
requiring that its size is zero.

Let us, now, see what happens for the simplest dimensional reduction of a theory
with matter from 5D to 4D.

The 5D action of a massless scalar field in Minkowski background is

S0 = −1

2

∫
d5x∂Mφ∂

Mφ (3.10)

The metric on the 5D spacetime is ηMN = diag(−,+,+,+,+), the five dimensional
manifold can be written as a product M5 = M4 × S1, with M4 being the four
dimensional Minkowski space. We will shortly see that the cylinder condition in
the hypothesis above is imposed for a reason. In the case that it is not imposed, we
shall see the imprint of the reduction from 5D to 4D, on the 4D lower dimensional
theory.

The 5D equations of motion for the scalar field are

∂M∂
Mφ = 0 =⇒ ∂µ∂

µφ+
∂2φ

∂x2
5

= 0 (3.11)

where µ = 0, . . . , 3 and x5 ∈ [0, 2πR] is identified, on a circle S1 of radius R. Since
the fifth coordinate is periodic, one can Fourier expand

φ(x, x5) =
1√
2πR

∞∑
n=−∞

φn(x)einx5/R (3.12)
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Substituting this to the equation of motion (3.11) for the scalar field φ, and using
the orthonormality property of the eigenfunctions 1√

2πR
einx5/R of the operator ∂2

∂x25

on the circle S1, one gets the equations of motion of the modes in four dimensions

∂µ∂
µφn −

n2

R2
φn = 0 (3.13)

The corresponding four dimensional action for the scalar fields after integrating
over the fifth coordinate becomes

S0 = −1

2

∞∑
n=−∞

∫
d4x

[
∂µφn∂

µφ?n +
n2

R2
φ?nφn

]
(3.14)

These scalar fields in the four dimensional action φn are massive, with masses n2

R2 .
Taking the limit R → 0 to make the extra dimension small enough so that it is
not observable in 4D, only the zero mode of the scalar field survives. The light
modes do not source the heavy modes, so one can discard the heavy modes and
keep only the light ones in order to take the four dimensional theory. The zero
mode is the one that survives after the dimensional reduction. The exact same
result of leaving out the heavy modes can be obtained from the cylinder condition
of requiring that φ(xM) is independent of x5.3 In higher dimensional reductions it
is not always the case that the light modes are independent of the heavy modes,
or similarly, that the light modes do not depend on the coordinates of the internal
manifold, on which the reduction happens. This ensures the consistency of the
reduction, as has also been mentioned above, in the manner that all of the lower
dimensional theory solutions are solutions of the full higher dimensional theory as
well.

3.2 Embedding the vacuum wormhole solution in
5D

One of the methods that we initially used to embed the 4D charged wormhole
solution to charge-free 5D was the Kaluza-Klein idea. However, it was a quick
realization that this would not work, since the auxiliary scalar field used in the
Kaluza-Klein idea had to obey some specific equation, which was not possible to
be satisfied in our case. The idea that seems to work for embedding the charge-free
4D wormhole to charge-free 5D is inspired by braneworld scenarios, see [30], which
can also thought as a Kaluza-Klein compactification.

3It is like separating the variables in (3.11), so the equations of motion in four dimensions do
not include any mass term.
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3.2.1 The Kaluza-Klein ansatz

The Kaluza-Klein ansatz generalizes a four dimensional field theory of gravity and
electromagnetism into a five dimensional field theory of gravity without cosmo-
logical constant term. Using the Kaluza-Klein ansatz for the 5D metric we tried
to uplift the 4D charged wormhole solution in the a similar manner, adapted to
a negative cosmological constant term in both the 4D and the 5D equations of
motion.

We used exactly the same ansatz (3.2). In our case, (3.6) will have one more
term corresponding to the cosmological constant term in five dimensions. They
suggest that φ = 1, but that is not possible because of (3.8). One quickly realizes
that the attempt greatly fails to embed the charged wormhole solution to a vacuum
AdS5 solution, without introducing any new fields in the four dimensional theory.

3.2.2 The AdS braneworld ansatz

Another attempt that seemed to work out for the uplift of the uncharged wormhole
into 5D, satisfying the equations of motion of AdS5, uses an ansatz inspired from
braneworld scenarios. These scenarios suggest that the strings have their endpoints
on the D = 4 manifold, seen as a 4− brane and they propagate in the rest of the
dimensions. The fifth dimension is seen as the worldvolume of the 4 − brane.
Before introducing the ansatz that has been generically worked out in [29] for an
exact embedding of any vacuum AdS4 solution to 5D, it is useful to understand
how the foliation works in the empty AdS case first.

Embedding empty AdS4 in empty AdS5

This particular AdS−like slicing of empty AdS4 in slices of AdS3 at each constant
radial coordinate, that has been used in [2], can be generalized. It is always possible
to add a new coordinate to AdSn, in order to go to AdSn+1. The new coordinate
can be interpreted as the new radial coordinate of the AdSn+1. This is a property
that homogeneous spaces have and it has to do with the fact that one can write
the manifold as a quotient of two groups. AdSn is the lorentzian analogue of the
Sn sphere, which can always be embedded to an Sn+1 sphere.

The Embedding Coordinates

AdSn spacetime can be viewed as a Lorentzian hypersurface embedded in a flat
spacetime of one dimension higher, namely (n + 1), which has two timelike coor-
dinates. The equation of the hypersurface is the following:

−X2
0 −X2

1 +X2
2 +X2

3 +X2
4 +X2

5 + . . .+X2
n = −1 (3.15)

where the radius of AdS4, is taken to be equal to one, l = 1. Changing the
parametrization one can reveal some more properties of the spacetime. In the 4D
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case of [3], the parametrization is the following:

X0 = [stshushθ + ctchuchθ]
√
r2 + 1

X1 = [stchuchθ − ctshushθ]
√
r2 + 1

X2 = [stshuchθ − ctchushθ]
√
r2 + 1

X3 = [stchushθ + ctshuchθ]
√
r2 + 1

X4 = r

(3.16)

where st = sin t
2
, ct = cos t

2
, shu = sinh u

2
, chu = cosh u

2
, shθ = sinh θ

2
, chθ = cosh θ

2

Note that this is not the standard way to write empty AdS spacetime. The first
difference from the metric that we are familiar with is that it is a foliation of AdS4

with empty AdS3 in each radial coordinate, instead of having a term of the form
dΩ2 for each radial coordinate. The second and most important difference is those
off diagonal terms, which accomondate the existence of a wormhole once one tries
to warp this spacetime.

We will try to add one extra coordinate to this parametrization, so that it still
obeys the equation of the hyperboloid. Adding the extra coordinate ρ in the trivial
way and converting the coordinate r ≡ shφ gives:

X0 = [stshushθ + ctchuchθ]chφ
√
ρ2 + 1

X1 = [stchuchθ − ctshushθ]chφ
√
ρ2 + 1

X2 = [stshuchθ − ctchushθ]chφ
√
ρ2 + 1

X3 = [stchushθ + ctshuchθ]chφ
√
ρ2 + 1

X4 = shφ
√
ρ2 + 1

X5 = ρ

(3.17)

where st = sin t
2
, ct = cos t

2
, shu = sinh u

2
, chu = cosh u

2
, shθ = sinh θ

2
, chθ =

cosh θ
2
, shφ = sinh φ

2
≡ r, chφ = cosh φ

2
≡
√
r2 + 1

The renaming of the coordinate r has been made so that it can be better shown
that we can interpret the coordinate ρ as the new radial coordinate. This leads to
an empty AdS5 solution written in the AdS− like slicing choice of coordinates.

The line element of the metric written in these coordinates (t, ρ, φ, θ, u) is

ds2 =
l2dρ2

ρ2 + 1
+
l2

4

(
ρ2 + 1

) [
dφ2 + cosh2 φ

2

(
− cosh2 θdt2 + dθ2 + (du+ sinh θdt)2

)]
This solution is just empty AdS5 written in some weird coordinates. It obeys the
vacuum AdS5 Einstein equations and the Kretschmann invariant is, as expected,
everywhere zero. In this picture, AdS4 serves as an embedding of the squashed
AdS3 and we have added a new coordinate ρ that embeds this whole thing in
AdS5. Note that here no warping has been made, which essentially means that it
is indeed just empty wormhole-free AdS5.
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Our initial idea was to make a construction of a wormhole in this AdS5 solution,
in a similar fashion as was done in [2]. The idea of [2] is based on the squashed
AdS3, embedded in AdS4, which is illustrated in the coordinate change (3.16).
The squashed AdS3 is the lorentzian analogue of the squashed 3−sphere, which
corresponds to a description of the 3−sphere as a hopf fibration with base manifold
the 2−sphere and a circle of different size at each point. A more detailed analysis
is illustrated in [25], where there is a comment mentioning that the generalization
to higher dimensions in the lorentzian case is higly non-trivial. Our initial idea
was to use this parametrization of empty AdS4 and AdS5 in order to squash AdS4,
embed it in empty AdS5 and then warp it by arbitrary functions of the new radial
coordinate in order to break the isometries of empty AdS5 and eventually construct
a 5D wormhole. This idea did not work out in the end, and it is highly likely that
it is due to the fact that there cannot exist squashed AdS4. In fact, our attempts
were always leading us to the empty case, in the sense that the two arbitrary
functions had to be the same, in order for the solution to obey the equations of
motion.

The ansatz for embedding the wormhole solution

Another possible attempt, using the knowledge from this parametrization, is the
search for a higher dimensional embedding. As has already been mentioned above,
we used an ansatz based on braneworld scenarios[30] and it will shortly be obvious
how this connects to the standard way of adding new coordinates that has been
illustrated above. The ansatz for adding a new coordinate y is the following

ds2 ≡ ḡABdx
AdxB = e2ζ(y)gµνdx

µdxν + l2dy2 (3.18)

where µ, ν run from 0, 1, 2, 3 and gµν is the 4dmetric, whileA,B run from 0, 1, 2, 3, 4
and ḡAB is the 5d metric. In order for this solution to satisfy the vacuum equations
of motion of AdS5, namely

R̄AB −
1

2
R(5)ḡAB +

3

10
R̄ḡAB = 0 (3.19)

one ends up with a differential equation of the form

e−2ζ(y) = ζ ′′(y) (3.20)
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which is a non-linear second order differential equation, which can be manipulated
in the following way

e−2ζ(y) = ζ ′′(y)

− 2

l2
ζ ′(y)e−2ζ(y) = −2ζ ′(y)ζ ′′(y)

d

dy

(
e−2ζ(y)

)
= − d

dy

(
ζ ′(y)2

)
e−2ζ(y) = −ζ ′(y)2 + C

ζ ′′(y) = −ζ ′(y)2 + C

A general solution of the final differential equation is

ζ(y) = c1 + ln
(

cosh
(√

C(y + c2)
))

(3.21)

Since we are searching for any ζ(y) that can solve this differential equation and
not necessarily the most general one, we are free to choose whatever integration
constants we prefer, as long as it does not make the function trivial. We will choose
C = 1, c1 = c2 = 0. Therefore, a solution to this differential equation is

ζ(y) = ln (cosh y) =⇒ e2ζ(y) = cosh2 y (3.22)

Note that taking C = 1 is like requiring that the radius of AdS5 is unit. The line
element (3.18) becomes

ds2 ≡ ḡABdx
AdxB = cosh2 ygµνdx

µdxν + l2dy2 (3.23)

We have confirmed that this is a solution to the AdS5 equations of motion (3.19).
If we, now, make the following change of coordinates

ρ = sinh y =⇒ dρ = cosh y dy =⇒ dρ2

ρ2 + 1
= dy2 (3.24)

where cosh2 y = ρ2 + 1, the line element of the 5d metric can be written as

ds2 =
l2dρ2

ρ2 + 1
+
(
ρ2 + 1

)
gµνdx

µdxν (3.25)

where ρ ∈ R, is the radial coordinate of assymptotically locally AdS5, which has
a warped 4d wormhole of the kind presented in [2] at each ρ = const slice. We
characterize this solution as assymptotically locally AdS5 because it satisfies the
vacuum equations of motion (3.19) of AdS5, it has non-trivial topology in the bulk
and its boundary will not be topologically S3×R.As shown in the previous section,
this is just the standard way of adding new coordinates to move from empty AdSn
to AdSn+1. The next step is to try to embed the charged 4D solution to 5D.
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4. Traversability and Energy Condi-
tions

There is a deep controversy concerning the class of wormhole solutions in [2, 3].
In general, energy conditions are defined in such a way that they rule out patho-
logical behaviour, such as causal contact of disconnected regions1, also known as
traversability. The contradiction lies in the fact that this wormhole solution seems
to obey the conditions, while at the same time is traversable. In this chapter, we
will go through the energy condition theorems, with concequences about worm-
holes, that exist in the literature, provide some more controversial constructions,
prove the energy conditions for the wormhole spacetime of [2, 3] and present some
indications for the traversability property.

Geometric and Physical form of the Null Energy Condition

For Einstein equations with cosmological constant

Rµν −
1

2
Rgµν + Λgµν = 8πTµν

the null energy condition takes the form

Rµνu
µuν = 8πTµνv

µvν ≥ 0 (4.1)

since, for any null vector v it is true that gµνuµuν = 0. The inequality involving
Rµν is the geometric form of the energy condition, whereas the one involving
Tµν is the matter form. From this, one can readily see that the NEC is satisfied
automatically vacuum solutions with cosmological constant, irrespective of its sign.
It is obvious that the energy condition will solely depend on the matter coupled
to the spacetime.

4.1 Topological censorship theorem

The topological censorship theorem claims that "in a globally hyperbolic, assymp-
totically flat spacetime satisfying the null energy condition, every causal curve

1The connectedness or disconnectedness of the boundary is not something proven yet. We
will discuss the implications in either case.
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from past null infinity to future null infinity is fixed endpoint homotopic to a
causal curve in a topologically trivial neighbourhood of infinity" [15, 31]. In other
words, "no causal path can go through any nontrivial topology" [32].

A straightforward result, by definition, is that when NEC is obeyed in a space-
time, then a wormhole in that spacetime cannot be traversable. Classical matter
respects the NEC, so in spacetimes coupled with only classical matter, traversable
wormholes are ruled out automatically, as an immediate concequence of the topo-
logical censorship theorem. The proof by Friedmann in [31] concerns assymptoti-
cally flat spacetimes.

Figure 4.1: An assymptotically flat manifold is one that admits a conformal com-
pactification, as explained in the relevant section in this thesis. A causal curve
starting from past null infinity, J − ' R × S2, and ending on future null infinity
J + ' R × S2. According to the topological censorship theorem, for spacetimes
that obey the ANEC, it can be continuously deformed to a curve belonging en-
tirely in a simply connected neighbourhood of the boundary J = J −∪J +. Figure
taken from Galloway’s talk on Topological Censorship in AdS [13]

4.1.1 Topological censorship in AdS

A generalization of the theorem for assymptotically locally AdS (AlAdS) space-
times, motivated by AdS-CFT coorespondence, was introduced by Galloway, Schle-
ich, Witt and Woolgar in [33, 34]. In this paper, they prove that if (M, gab) is an
assymptotically locally AdS spacetime which obeys the ANEC, with the domain
of outer communications2 being globally hyperbolic in the AdS sense3, then any

2the region outside of any black holes or white holes that is in causal contact with infinity
3AdS can be made globally hyperbolic with appropriate boundary conditions.
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curve, either causal or not, with end points at the boundary can be continuously
deformed to a curve lying on the boundary. A corollary of the theorem is that
even if conformal infinity has multiple components, the distinct components can
not be in causal contact.

4.2 Energy conditions

Einstein’s equations for General Relativity are simply a complicated and highly
non-linear set of differential equations that directly relate curvature with the pres-
ence of matter. A space-time metric can always be a solution, since one can always
find an energy momentum tensor by varying the action with respect to the metric.
Restrictions are needed, in order to make this energy momentum tensor of matter
reasonable. Energy conditions are constraints imposed on it. This can be viewed
as a relation that it should satisfy as an attempt to capture the idea that “energy
should be positive”[35].4In fact, the global properties of a spacetime solution to
Einstein’s equations can be directly reflected in the energy conditions that are cho-
sen for the local energy density. The fact that there are so many types of energy
conditions in the bibliography is a result of the urge to find the most general one
that forbids all the exotic phenomena, such as traversable wormholes in our case.
Each time that examples with exotic properties that do not violate a condition are
found, an improved condition "takes the reins" from the old one.

One example of this, is the energy conditions required in order to avoid the
existence traversable wormholes. In the classical regime, classical matter, should
obey the pointwise null energy condition (NEC), namely Tµνkµkν ≥ 0 for all null
geodesics, where kµ corresponds to the tangent vector. In the semiclassical regime,
quantum matter on classical background, is allowed to have negative energy up to
the point that the average energy along any null geodesic is positive. In this case,
ruling out traversability requires the Averaged null energy condition (ANEC) over
complete null geodesics to hold, namely

∫ +∞
−∞ Tµνk

µkνdλ ≥ 0, where kµ corresponds
to the tangent vector parametrized by λ. In fact, an even weaker form than that of
the ANEC is also introduced by the name Self-Consistent Achronal Averaged Null
Energy Condition(SCAANEC). It states that there is no self-consistent solution
in semiclassical gravity in which ANEC is violated, on a complete achronal null
geodesic [32]. As a matter of fact, the proposal of genuinely requiring an achronal
null geodesic was first made by Wald and Yurtserver in [36]. Later, the term self-
consistent was introduced in the ANEC discussion for the first time by Penrose,

4However, this is not entirely true since throughout the whole history of general relativity,
there is no adequate definition of a “gravitational” stress-energy tensor. The problem lies in
the fact that stress-energy of purely “gravitational” systems can not be localized, which will be
further discussed in the chapter about the conserved charges in General Relativity. This can
be possibly seen as an obstruction on the physical content of the standard pointwise energy
conditions.
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Sorkin and Woolgar in [37] and it refers to self-consistent solutions which had been
studied by Flanagan and Wald in [38] before.

Some definitions that need to be added to our list are those of achronality and
self-consistency.

• Achronal set : A set S of a manifoldM is called achronal if no timelike curve
intersects the set more than once.

• Achronal null geodesic: It is a curve that obeys the geodesic equation of
motion, has a null tangent vector and does not meet any timelike curves
twice.

• Self-Consistent spacetime: The term roughly refers to a spacetime solution
to Einstein’s equations with the expectation value of the stress energy tensor
on the right hand side[12].

SCAANEC is believed to be the energy condition that prohibits exotic phenom-
ena, such as closed timelike curves and wormholes connecting different assymptotic
regions of spacetime5, in the semiclassical regime[32]. Accordingly, this should be
the energy condition to be violated if one needs to examine the traversability
property of a wormhole that links two disconnected assymptotic regions.

Examples of traversable wormholes supported by nonexotic matter

It is being argued in [39] that the requirement that traversable wormholes should
violate the NEC can be removed in spacetimes with torsion or in conformally trans-
formed spacetimes. The interpretation is that “normal” matter might satisfy the
null energy condition, whilst the geometry can behave like matter via an induced
“geometric” energy-momentum tensor that can violate the NEC. In particular, in
conformally transformed wormholes and wormholes in spacetimes with torsion, the
prescribed “exoticity”, that matter fields, Proca and Rarita-Schwinger fields in this
case, should carry, becomes realized within the geometry of the spacetime itself. In
Riemann-Cartan spacetimes, torsion induces an effective energy-momentum tensor
that can serve as the desired exotic matter that produces a traversable wormhole.
In conformally transformed Riemannian spacetimes, the deformation of the metric
induces an energy-momentum tensor that plays the role of exotic energy condition
violating matter. It is, of course, true that these cases do not apply to the example
presented in this thesis, since the spacetime is torsion-free. Moreover, for Maxwell
fields the NEC, according to [39], should still be satisfied regardless of the fact
that the spacetime has torsion or not. As a consequence, the controversy is still
there.

5In the case of connected boundaries SCAANEC forbids short wormholes. This means that
there should always be a shorter causal path going around and not through the wormhole
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In addition, in [40] traversable wormhole solutions are presented, as a higher
dimensional extension of the Morris-Thorne type of wormholes. In that case, the
throat is supported by ordinary matter, while the extra dimension is responsible
for the violation of NEC. Another example is in [41], where wormhole solutions in
f(R, T ) extended theories of gravity involving nonexotic matter are traversable,
with the violation happening due to the extra degrees of freedom of the extended
theory. There are some more traversable wormhole constructions, linked to non-
commutative geometry[42, 43, 44, 45] and alternative mimetic theories of grav-
ity[46], but let us restrict ourselves to solutions of non-modified theory of gravity.
The wormhole paradigm of [2, 3] is solution to General Relativity with negative
cosmological constant, seems to contain a traversable wormhole and, simultane-
ously, the matter obeys the NEC.6

In all of the aforementioned controversial attempts for traversability there was
some effort to justify why matter is nonexotic, by showing that the violation of
the condition happens due to some notion that takes the role of exotic matter, but
is not usually interpreted as matter. Therefore, it is left as an open question to
attempt to interpret the traversability of the class of wormhole in [2, 3]. Something
needs to violate the energy condition, in order to support the throat long enough so
that it is traversable, and if it is not ordinary matter, in this case we are expecting
that it is something related to the geometry.7

4.2.1 Geometric and physical interpretation of NEC

In order to understand what the meaning of the null energy condition, one needs
to connect it to the experience of an observer that hypothetically travels along null
geodesics.

Using the geodesic deviation equation one can try to calculate an average radial
acceleration Ar of a geodesic γ at a point p, roughly speaking, as the averaged
sum over the magnitudes of the radial component of the relative acceleration in
orthogonal directions to that of γ. A detailed proof of this statement can be found
in the technical appendix of [35].

For null geodesic tangent vectors v this average radial acceleration translates to

Ar = −1

2
Rµνv

µvν (4.2)

which is the LHS of the geometric form of the null energy condition and upon
imposing Einstein’s equations translates to

Ar = −8π

2
Tµνv

µvν (4.3)

6In the charge-free case of [2] there is no matter at all. NEC of matter is tautologically
satisfied

7At this point, it is remarkable to stress out that we think of the cosmological constant term
in Einstein equations as part of the geometry, rather than vacuum energy of quantum fields.
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When the null energy condition is satisfied, the average radial acceleration is neg-
ative or zero, which geometrically means that null geodesic congruences are con-
vergent.

The physical interpretation of the NEC is something that one should be cau-
tious about. It is, basically, claimed that, once NEC is satisfied pointwise, particles
moving along null geodesics should observe that the action of "gravity" on neigh-
bouring particles moving along null geodesics, as well, is locally "non-repulsive".
However, the convergence of all null geodesics at a point, imposed by the NEC,
does not imply the convergence of all timelike geodesics at the same point. A time-
like observer may still see repulsive gravity, at a small neighbourhood of a point
that satisfies the NEC. An important remark, here, is that energy density, as part
of the decomposition of the energy-momentum tensor, is observer-dependent, so
that, even if NEC is obeyed, no accurate physical assumption can be really made
about the nature of energy density.8

4.3 Proof of NEC for the model

In this section, a detailed proof for the null energy condition of the wormhole
solution will be presented, first for a radial null path and then for a general null
path. The averaged null energy condition is automatically satisfied if the null
energy condition is.

4.3.1 Towards the calculation of the NEC

Recall that the null energy condition is satisfied for vacuum solutions with cosmo-
logical constant, and only depends on the matter content, in spacetimes coupled
to matter.

The energy momentum tensor in that case has the form

Tµν =

(
Fµρg

ρσFσν −
1

4
gµνFρσF

σ
ρ

)
(4.4)

In order to check the energy condition for the model we are studying, we will first
calculate the quantity

1

2
Tµνv

µvν = 2FruFrtg
utvrvr + FruFrug

uuvrvr + FurFurg
rrvuvu

+ FrtFrtg
ttvrvr + FrtFθtg

ttvrvθ + FtrFtrg
rrvtvt

+ FtrFurg
rrvtvu + FθtFθtg

ttvθvθ + FθtFrtg
ttvθvr

+ 2FθtFrug
tuvθvr + FtθFtθg

θθvtvt + FurFtrg
rrvuvt

8This is believed to be the core problem regarding the fact that energy conditions seem
to be non-derivable from fundamental principles, which is essential because they play a very
important role in a lot of theorems (singularity theorems, positive energy theorems etc.) in
General Relativity.[35]
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where the fact that gabvavb = 0 directly eliminates one term of the stress-energy
tensor of electromagnetism.

Moving on to the calculation,

Tµνk
µkν = 2F 2

ru

tanh2 θ

h(r)

(
dr

dλ

)2

+ F 2
ru

h(r)− f(r) tanh2 θ

f(r)h(r)

(
dr

dλ

)2

+ F 2
ru

σ2f(r)

4l4

(
du

dλ

)2

− F 2
ru

tanh2θ

h(r)

(
dr

dλ

)2

− FruFθt
sechθ tanh θ

h(r)

dr

dλ

dθ

dλ
+ F 2

ru sinh2 θ
σ2f(r)

4l4

(
dt

dλ

)2

+ F 2
ru sinh θ

σ2f(r)

4l4
dt

dλ

du

dλ
− F 2

θt

sech2θ

h(r)

(
dθ

dλ

)2

− FθtFru sinh θ
sech2θ

h(r)

dθ

dλ

dr

dλ

+ 2FθtFru
sechθ tanh θ

h(r)

dθ

dλ

dr

dλ
+ F 2

θt

1

h(r)

(
dt

dλ

)2

+ F 2
ru sinh θ

σ2f(r)

4l4
du

dλ

dt

dλ

4.3.2 Taking a radial null path for simplicity

One can consider a tangent null vector to a radial geodesic, parametrized as xµ =
(t(λ), r(λ), π

2
, 0), which can be written as kµ =

(
ṫ, ṙ, 0, 0

)
. This tangent vector

should also obey
gµνk

µkν = 0 (4.5)

so that it is null and
d

dλ
(gαβk

β)− 1

2
gµν,αk

µkν = 0 (4.6)

so that it is a tangent vector to a geodesic. Note, that if the first constraint holds,
meaning that the path is null, then the geodesic equation which serves as the
second constraint mentioned should also hold. This can be seen intuitively if one
thinks of the fact that geodesic paths are defined to be the shortest paths, while
null paths are also by definition the shortest ones, but for a light-like particle.

Radial null path condition

The null condition becomes:

gttk
tkt + grrk

rkr = 0 =⇒ (4.7)

and its individual components are

(−h(r) cosh2 θ + f(r) sinh2 θ)

(
dt

dλ

)2

+
4l4

σ2f(r)

(
dr

dλ

)2

= 0 (4.8)
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Geodesic equation of a radial null path

The geodesic equation, split in components, translates as:

d

dλ
(gαβk

β)− 1

2
gµν,αk

µkν = 0 =⇒

d

dλ
(gttk

t) = 0

d

dλ
(grrk

r)− 1

2
grr,rk

rkr − 1

2
gtt,rk

tkt = 0

(4.9)

Let us work on the geodesic equations for t(λ) and r(λ).
For t(λ) we get:

d

dλ

((
−h(r) cosh2 θ0 + f(r) sinh2 θ0

) dt
dλ

)
= 0(

h(r) cosh2 θ0 − f(r) sinh2 θ0

) dt
dλ

= C, C ≥ 0

(4.10)

and, thus, due to the null path condition, it is true that

4l4

σ2f(r)

(
h(r) cosh2 θ0 − f(r) sinh2 θ0

)(dr
dλ

)2

= C2 (4.11)

For r(λ) we get:

d

dλ

(
4l4

σ2f(r)

dr

dλ

)
− 1

2

d

dr

(
4l4

σ2f(r)

)(
dr

dλ

)2

+

+
1

2

d

dr

(
h(r) cosh2 θ0 − f(r) sinh2 θ0

)( dt
dλ

)2

= 0

4l4f ′(r)

σ2f 2(r)

(
dr

dλ

)2

+
4l4

σ2f(r)

d2r

dλ2
− 1

2

4l4f ′(r)

σ2f 2(r)

(
dr

dλ

)2

+

+
1

2

(
h′(r) cosh2 θ0 − f ′(r) sinh2 θ0

)( dt
dλ

)2

= 0

d2r

dλ2
+
σ2C2

8l4

[
f ′(r)(

h(r) cosh2 θ0 − f(r) sinh2 θ0

) + f(r)
h′(r) cosh2 θ0 − f ′(r) sinh2 θ0(
h(r) cosh2 θ0 − f(r) sinh2 θ0

)2

]
= 0

d2r

dλ2
+
σ2C2

8l4

(
f(r)

(
h(r) cosh2 θ0 − f(r) sinh2 θ0

))′(
h(r) cosh2 θ0 − f(r) sinh2 θ0

)2 = 0

(4.12)

Note that each null geodesic path is always a null path anyway. It is sufficient
to just use (4.7) for the proof of the energy condition.
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4.3.3 Simplified conditions

The energy-momentum tensor version of the energy condition becomes:

Tµνk
µkν = 2F 2

ru

tanh2 θ

h(r)

(
dr

dλ

)2

+ F 2
ru

h(r)− f(r) tanh2 θ

f(r)h(r)

(
dr

dλ

)2

− F 2
ru

tanh2 θ

h(r)

(
dr

dλ

)2

+ F 2
ru sinh2 θ

σ2f(r)

4l4

(
dt

dλ

)2

+ F 2
θt

1

h(r)

(
dt

dλ

)2

≥ 0

Substituting the null path constraint gives:

σ2F 2
ru

4l4
(h(r) cosh2 θ − f(r) sinh2 θ)

(
dt

dλ

)2

+

+ F 2
ru sinh2 θ

σ2f(r)

4l4

(
dt

dλ

)2

+ F 2
θt

1

h(r)

(
dt

dλ

)2

≥ 0

=⇒ σ2F 2
ru

4l4
h(r) cosh2 θ

(
dt

dλ

)2

+ F 2
θt

1

h(r)

(
dt

dλ

)2

≥ 0

In this expression each of the terms is positive. This means that pointwise NEC
is automatically satisfied along this radial null path.

4.3.4 Taking a general null path

For a general null path vµ =
(
ṫ, ṙ, u̇, θ̇

)
gtt

(
dt

dλ

)2

+ 2gtu
du

dλ

dt

dλ
+ grr

(
dr

dλ

)2

+ guu

(
du

dλ

)2

+ gθθ

(
dθ

dλ

)2

= 0 (4.13)

(h(r) cosh2 θ − f(r) sinh2 θ)

(
dt

dλ

)2

=
4l4

σ2f(r)

(
dr

dλ

)2

+ 2f(r) sinh θ
du

dλ

dt

dλ
+

+ f(r)

(
du

dλ

)2

+ h(r)

(
dθ

dλ

)2

(4.14)

The energy momentum tensor of Electrodynamics in terms of the field strength
is:

Tµν = − 1

µ0

(
Fµρg

ρσFσν −
1

4
gµνFρσF

σ
ρ

)
(4.15)
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In our solution, the charged matter content is described by the following,

Fru = −Fur =
2(r2 − 1)Q− 4rP

(r2 + 1)2

Frt = −Ftr =
2(r2 − 1)Q− 4rP

(r2 + 1)2
sinh θ = Fru sinh θ

Fθt = −Ftθ =
2Qr + P (1− r2)

r2 + 1
cosh θ

The non-zero metric components are the following:

gtt = −h(r) cosh2 θ + f(r) sinh2 θ, gtu = gut = f(r) sinh(θ),

guu = f(r), grr =
4l4

σ2f(r)
, gθθ = h(r)

The non-zero inverse metric components are the following:

gtt = −sech2θ

h(r)
, gtu = gut =

sechθ tanh θ

h(r)
,

guu =
h(r)− f(r) tanh2 θ

f(r)h(r)
, grr =

σ2f(r)

4l4
, gθθ =

1

h(r)

where,

f(r) =
2

q2σ2

r4 + (6− σ)r2 +mr + σ − 3

r2 + 1
− Q2 + P 2

r2 + 1
, h(r) =

1

2q2σ
(r2 + 1)

The energy condition takes the following form:

1

2
µ0Tµνv

µvν =2FruFrtg
utvrvr + FruFrug

uuvrvr + FurFurg
rrvuvu

+ FrtFrtg
ttvrvr + FrtFθtg

ttvrvθ + FtrFtrg
rrvtvt

+ FtrFurg
rrvtvu + FθtFθtg

ttvθvθ + FθtFrtg
ttvθvr

+ 2FθtFrug
tuvθvr + FtθFtθg

θθvtvt + FurFtrg
rrvuvt

This sum should indeed have 14 non-zero terms.

• For ρ = r: we need σ = r and µ, ν can be either r or t, so this corresponds
to 4 non-zero terms.

• For ρ = u: µ will be for sure r and σ is either u or t. If σ = t, then ν can be
either θ or r. So, this is in total 3 non-zero terms.

• For ρ = t, µ can be either r or θ and σ can be either u or t. For σ = t, ν can
be either θ or r. So, this in total yields 6 non-zero terms.
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• For ρ = θ, σ should be θ and µ, ν should both be t. So, this is only one
non-zero term.

In total, we have 4 + 3 + 6 + 1 = 14 non-zero terms in the sum.
Now, if we only keep Fru and Fθt, by substituting Frt = Fru sinh θ, and, simoul-

taneously, plug in the expressions for the inverse metric components, the energy
condition will become:

1

2
µ0Tµνv

µvν =2F 2
ru

tanh2 θ

h(r)

(
dr

dλ

)2

+ F 2
ru

h(r)− f(r) tanh2 θ

f(r)h(r)

(
dr

dλ

)2

+ F 2
ru

σ2f(r)

4l4

(
du

dλ

)2

−F 2
ru

tanh2θ

h(r)

(
dr

dλ

)2

− FruFθt
sechθ tanh θ

h(r)

dr

dλ

dθ

dλ
+ F 2

ru sinh2 θ
σ2f(r)

4l4

(
dt

dλ

)2

+F 2
ru sinh θ

σ2f(r)

4l4
dt

dλ

du

dλ
− F 2

θt

sech2θ

h(r)

(
dθ

dλ

)2

− FθtFru sinh θ
sech2θ

h(r)

dθ

dλ

dr

dλ

+2FθtFru
sechθ tanh θ

h(r)

dθ

dλ

dr

dλ
+ F 2

θt

1

h(r)

(
dt

dλ

)2

+ F 2
ru sinh θ

σ2f(r)

4l4
du

dλ

dt

dλ

If one observes closely, some terms cancel out and, if one uses the null condition
(4.14), the expression can be simplified as follows:

1

2
µ0Tµνv

µvν =F 2
ru

1

f(r)

(
dr

dλ

)2

+ F 2
ru

σ2f(r)

4l4

(
du

dλ

)2

+ F 2
ru sinh2 θ

σ2f(r)

4l4

(
dt

dλ

)2

+ 2F 2
ru sinh θ

σ2f(r)

4l4
dt

dλ

du

dλ

+ F 2
θt

1

h(r)

(
dt

dλ

)2

− F 2
θt

sech2θ

h(r)

(
dθ

dλ

)2

=F 2
ru

σ2

4l4

[
h(r) cosh2 θ

(
dt

dλ

)2

− h(r)

(
dθ

dλ

)2
]

+ F 2
θt

1

h(r)

[(
dt

dλ

)2

− sech2θ

(
dθ

dλ

)2
]

=

[
F 2
ru

σ2h(r)

4l4
+ F 2

θt

1

h(r) cosh2 θ

][
cosh2 θ

(
dt

dλ

)2

−
(
dθ

dλ

)2
]

The quantity
[
cosh2 θ

(
dt
dλ

)2 −
(
dθ
dλ

)2
]
is positive. We can prove it by using the null

condition (4.14) as shown below:

h(r)

[
cosh2 θ

(
dt

dλ

)2

−
(
dθ

dλ

)2
]

= f(r)

(
du

dλ
+ sinh θ

dt

dλ

)2

+
4l4

σ2f(r)

(
dr

dλ

)2

≥ 0

(4.16)
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The LHS of this equation is positive, due to the fact that demanding f(r) to have
no singularities, makes it automatically positive everywhere. Thus, the RHS is
also positive.

The sign of the quantity
[
F 2
ru
σ2h(r)

4l4
+ F 2

θt
1

h(r) cosh2 θ

]
will be positive, since every-

thing in this expression is. This, essentially, means that pointwise NEC is satisfied
in this spacetime, independently of the choice of parameters. Hence, ANEC is
automatically satisfied for this spacetime solution.

4.4 Indications for traversability of the model

Crossing time from one boundary to the other

What is being computed in [2] as the time that is needed for a light ray to travel
from one boundary to the other, as seen by a geodesic observer with r = θ =
0, u = const, is the time that it takes for a light ray to cross a complete radial null
path θ = φ = 0.9 What is invariant, as always, is ds2. The proper time that this
observer measures between two events that happen at t = tA and t = tB is

∆τ =

∫ B

A

√
−ds2 =

∫ tB

tA

√
h(0)− f(0)dt =

√
P 2 +Q2 − 3l2(σ − 4)

σ2

∫ tB

tA

dt

(4.17)
This geodesic observer wants to measure the time it takes for light to travel from
r → −∞ to r → +∞. Along the radial null path that the lightray takes, the
proper time elapsed is, of course zero, ds2 = 0.

ds2 = 0 =⇒ dt =
2l2

σ

dr√
f(r)h(r)

(4.18)

This means that if the event A corresponds to the light ray starting at one bound-
ary and the event B is when it reaches the other boundary, the time interval
between those two events measured by the geodesic observer is

∆τ =

√
P 2 +Q2 − 3l2(σ − 4)

σ2

2l2

σ

∫ +∞

−∞

dr√
f(r)h(r)

(4.19)

The geodesic observer will observe that a light ray along that path will travel from
one boundary to the other at finite time. Numerically integrating this integral and
plotting it for different allowed σ and X and for fixed m = 0.4, l = 1, we can see
that this crossing time is finite.[see figure 4.2]

9I have not proven myself that those paths are allowed geodesic paths. This statement is
made in [2, 3]
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Figure 4.2: Numerical integration of the integral for the crossing time ∆τ for
different spacetimes defined by different allowed values of σ,Q, with l = 1, P =
0,m = 0.4. This figure just shows that the integral is indeed finite.

4.4.1 Discussion

Overall, the ingredients we have are the following

• The Null Energy Condition is satisfied for this spacetime

• The time that an observer at r = θ = 0, u = const measures for a light ray
going from one boundary to the other is finite.

• Traversability and the Null Energy Condition do not agree due to the Topo-
logical Censorship Theorem

• Either traversability is wrong or something should violate the condition

Traversability that is interesting is the one measured by an assymptotic observer.
That observer has coordinates (t, r, θ, u)

For such an observer the time that it takes for a radial null path, with θ = 0, u =
const, to go from one boundary to the other is found as

ds2 = 0 =⇒ ∆τ =

∫
dt (4.20)

∆τ =
2l2

σ

∫ +∞

−∞

dr√
f(r)h(r)

(4.21)
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Figure 4.3: Crossing time measured by an assymptotic observer. The same values
as in figure 4.2 have been used. For σ = 4, Q = 0 there crossing time is zero.
It seems that in that case the boundaries are connected. Recall that σ = 4
and f(r) = h(r) corresponds to the empty AdS case. However, just the σ = 4
condition does not lead you directly to empty AdS in the bulk, since if one plots
higher curvature invariants for that spacetime with σ = 4 they are not everywhere
flat as in empty AdS4. However, the boundary metric for σ = 4 becomes exactly
that of empty AdS3.

The crossing time as measured from the boundary seems to be finite as well, and
independent from the perspective of the observer. An observer sitting on either of
the conformal boundaries will measure the same crossing time.

An interesting remark is that in empty AdS the affine parameter of a null
geodesic reaching the conformal boundary is infinite, even though the time mea-
sured by an observer on the boundary is finite. This is explained clearly in [12].
This shall not be confusing since, in any case, the interesting crossing time is the
one measured by an observer.
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5. Physical Properties

5.1 Conserved Charges in General Relativity

Defining conserved charges, energy, angular momentum etc, in General Relativity
is a highly non-trivial topic, which has received plenty of attempts, with the very
first one being by Einstein himself. Energy conservation, for example, is one of
the basic principles in physics. However, in general relativity, local energy density
of matter measured by an observer is not an observer-independent quantity, and,
thus, far from being conserved. The main issue lies in the fact that local covariant
conservation law of the matter energy momentum tensor does not imply a global
conservation law, in the general curved case. Conversly thinking, even though
it seems as if in curved spacetime, one needs some local energy conservation of
both the "gravitational field" plus matter, "gravitational field" energy can not
be localized. This can be seen as an immediate concequence of the Principle of
Equivalence, which implies that all physical effects of the gravitational field can be
locally eliminated by choosing an appropriate freely falling reference frame. For
that reason, energy conservation can only be well defined in the whole spacetime.
As for the notion of conservation being used, for the energy of stationary space-
times, this is the conserved quantity associated to the time translation generator.
That is the assymptotically timelike Killing vector ∂t, which is congugate to the
energy in the canonical approach.

While in special relativity the continuity equation for the energy momentum
tensor of matter ∂µT µνmatter = 0 is a conservation equation, in the general curved
case the covariant generalization of the continuity equation ∇µT

µν
matter = 0, which is

required due to the Principle of General Covariance, is not a conservation equation
anymore. More specifically in special relativity, it is straightforward to define the
energy as the conserved quantity associated with time translational invariance on
a spacelike Cauchy hypersurface, namely E =

∫
Σ
Tµνn

µtν , where tν is the timelike
Killing field and nµ is the normal to the hypersurface. The conservation of this
quantity is manifest, by virtue of the continuity equation and the Killing equa-
tion, and it is independent of the choice of finite hypersurface in that case. In the
case of a gravitational field, on the other hand only the total energy, computed by
integrating over the whole volume of timelike hypersurfaces of the whole space-
time, is well defined and independent of the choice of coordinates. In fact, local
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conservation laws require the relation ∂µT µνmatter = 0 to hold, which is only true in
Minkowski spacetime.

Conserved quantities are naturally related to the symmetries of the vacuum
background spacetime at asymptotic infinity. For instance, for assymptotically flat
spacetimes this is the Poincaré group, while for assymptotically AdS4 it is the
SO(2, 3) group.1 This is why we will be interested in the assymptotic behaviour
of fields. Historically, there exist many approaches to the definition of conserved
quantities, with two most important ones being the pseudotensor approach and
the Noether’s approach. It is important to note that different approaches and
derivations work for different backgrounds.

In the pseudotensor approach, also referred to as the traditional approach, the
direction was to search for a gravitational energy-momentum pseudotensor to add
to the matter energy momentum tensor, in order to compensate for the non-
vanishing conservation law ∂µ (

√
−gT µνmatter) 6= 0. Attempts by Landau-Lifshitz in

[47] and Abbott-Deser in [48] work for assymptotically flat spacetimes and space-
times with arbitrary2 assymptotic behaviour respectively. A special case of the
Abbott-Deser approach is the Arnowitt-Deser-Misner (ADM) mass formula, which
was first derived by canonical methods and is still extensively used in assymptot-
ically flat metrics in cartesian coordinates or in assymptotically AdS metrics in
static coordinates.

Noether’s approach is not totally unrelated to the previous approaches. How-
ever, it is more general in the sense that one can define a Noether current for every
vector field, either Killing or not. The invariance of the action under General Co-
ordinate transformations, combined with the Bianchi identity, which serves as a
gauge identity and is related to the invariance, suggests the covariant conservation
of a Noether current jµN(ξ) associated with any vector field ξµ. This Noether cur-
rent can be massaged to be written as a divergence of an antisymmetric tensor,
namely jN(ξ)µν = 2∇[µ ξ ν]. Using this, one can derive a well defined conserved
quantity and express it as a boundary integral with the aid of Stoke’s theorem [see
Appendix A]. In this way one can define a conserved quantity associated to any
vector field, also known as Komar’s formula, which was introduced in [49].

E[ξ] = − 2

χ2

∫
∂Σ

dd−2Σµα∇µξα

where, for d = 4, d2Σµα is the directed two-surface element of the spatial sections
of the boundary and χ2 is the euler characteristic.

All those currents and conserved quantities of the theory correspond to gauge
symmetries, i.e. general coordinate transformations, and, hence, are not all physi-

1The case of the wormhole spacetime that we are studying is slightly more special, in the
sense that it is assymptotically locally AdS4 and preserves only some of the isometries of AdS4.

2By arbitrary here we mean either assymptotically flat or assymptotically Anti-de Sitter or
assymptotically de-Sitter, which are maximally symmetric solutions to vacuum Einstein equa-
tions.
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cal. The directions that one needs to plug into Komar’s formula in order to derive
conserved physical quantities are the Killing vector fields, along which the metric
tensor solution is left invariant, i.e. the Lie derivative of the metric tensor is zero
along these directions. Depending on the symmetries of the spacetime solutions,
these quantities can often be the total mass and angular momentum. Komar’s
formula is extensively used and gives consistent results in the Schwarzschild and
Reissner-Nordstrom solutions, but it has several shortcomings. More precisely, it
does not give the right result for the angular momentum in the Kerr solution and
it requires background subtraction regularization by hand in assymptotically AdS
spacetimes, in order to give the right result. In principle, it can be corrected by
including total derivative boudnary terms in the Noether current.

There exist, historically, a class of approaches dedicated to assymptotically (lo-
cally) AdS spacetimes in the literature. Some remarkable papers were those by
Ashtekar and Magnon [50] about conserved quantities in four dimensional A(l)AdS,
which was later generalized to higher dimensions by Ashtekar and Das[51]. In these
papers, it was shown that conserved charges in assymptotically AdS spacetimes can
be expressed as a d−2 surface integral of a quantity that involves the electric part
of the assymptotic Weyl tensor and the assymptotic Killing field. This approach is
called the Ashtekar-Magnon-Das (AMD) formula, and it will be used in this text.
A more formal proof was provided by the approach of Wald in [52], which goes by
the name "covariant phase space formalism". The AMD formula should, in princi-
ple, be compared and confirmed by other approaches involving canonical formalism
and linearized expansion in AdS background by Henneaux and Teitelboim in [53]
or by Balasubramanian and Kraus in [54]. In this text, those comparisons will not
be considered, since it is already relatively complex to apply the AMD formula to
assymptotically locally AdS spacetimes.

This introduction was inspired by the following readings [55, 56, 7, 57]

5.1.1 Towards the application of the AMD formula

In order to avoid confusion, it is important to note that the ADM and AMD
formalisms are two different approaches. ADM stands for Arnowitt, Deser and
Misner, who worked on the canonical (Hamiltonian) formulation of gravity, with
the perspective of quantizing it in the standard canonical way. Even though this
failed, the decomposition of the spacetime in a foliation of constant time leaves, Σt,
that is used in this formalism is useful in numerical relativity and in the definition
of a conserved notion of energy, also known in literature as ADM mass. The ADM
mass is defined as a function of the deviation of the metric from it’s assymptotic
form. Nevertheless, this canonical approach only works for spacetimes that are
assymptotically flat and Assymptotically AdS in static coordinates. A derivation
of the canonical approach in AdS background can be found in [53]. In contrast,
AMD stands for Ashtekar-Magnon-Das[50, 51], who worked on defining conserved
charges in Assymptotically (locally) AdS spacetimes.
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Ashtekar, Magnon and Das based their method on techniques of conformal com-
pactification introduced by Penrose in [8]. Those techniques are possible for space-
times that have a particular fall-off of the Weyl tensor at infinity. At this point, the
definition of Assymptotically AdS spacetimes (AAdS) and Assymptotically locally
AdS spacetimes (AlAdS) will be handy for a better understanding of the following
sections.

Assymptotically AdS spacetimes

Recall the following definitions from [51, 58] A d-dimensional space-time (M̂, ĝα,β)
is said to be assymptotically anti-de Sitter if there exists a manifoldM with bound-
ary ∂M , equipped with a metric gαβ and a diffeomorphism from M̂ onto M − ∂M
of M (with which M̂ and M −∂M are identified) and the interior of M such that:

1. there exists a function Ω on M for which gαβ = Ω2ĝαβ on M̂

2. ∂M is topologically Sd−2 × R, Ω vanishes on ∂M , but its gradient ∇αΩ is
nowhere vanishing on ∂M

3. On M̂ , ĝαβ satisfies R̂αβ − 1
2
R̂ĝαβ + Λĝαβ = 8πG(d)T̂αβ, where Λ is the

negative cosmological constant. G(d) is Newton’s constant in d−dimensions,
and the matter stress-energy T̂αβ is such that Ω2−dT̂αβ admits a smooth limit
to ∂M

4. the Weyl tensor of gαβ is such that Ω4−dCαβγδ is smooth on M and vanishes
at ∂M

A more detailed explanation on why these conditions are required for assymptoti-
cally anti-de Sitter spacetimes can be found [51].

Assymptotically locally AdS spacetimes

Upon relaxing these conditions, it follows that for the definition of assymptotically
locally anti-de Sitter spacetimes, one needs as all of the above, except for the fact
that the boundary should contain a topological Sd−2 sphere. A more detailed
review can be found in [58]. These conformal completion techniques bring the
boundary ∂M of a D-dimensional AAdS spaceM to a finite distance and formulate
a new unphysical manifold with a conformal boundary. They can also be applied
to AlAdS spacetimes, where the boundary does not have a topology of Sd−2 × R,
provided that there is a "good" radial coordinate that brings you effectively to the
bulk from the conformal boundary.
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5.1.2 Applying AMD formalism

The metric of the wormhole solution is time independent and has a Killing vec-
tor which is always timelike, provided that σ > 4[3]. The canonical foliation of
constant time hypersurfaces exists, is well defined and is going to be used later on
in this text. The fact that there are cross-terms in the metric does not allow us
to apply standard techniques for spherical boundaries. Our boundary is warped
and spherical symmetry is lost. Our case falls in the category of Assymptotically
locally AdS spacetimes, where the boundary is not topologically Sd−2 × R. The
coordinate r is a "good" radial coordinate and the Weyl tensor is smooth in the
bulk and vanishes on the boundary. In that context, everything is consistent in
order to follow techniques applied for Assymptotically (locally) AdS spacetimes.
These techniques were established in [50, 51] and an application of them can be
found in the appendix of [59] or in [57].

We will do a conformal rescaling of the metric

ḡµν = Ω2gµν (5.1)

where Ω = 0, dΩ 6= 0 at the boundary. In fact, Ω is defined up to a scalar
function that is nonzero on the boundary. We choose Ω = l

r
, which is a good

radial coordinate in the sense that it leads us to the bulk of the spacetime for
small r.

The physical(1, 3) Weyl tensor Cµ
νρσ has the property of being invariant un-

der conformal rescalings. The unphysical Weyl tensor C̄µ
νρσ is just the physical

one, but with indices raised and lowered by the conformally rescaled metric ḡµν .
However, the (1, 3) Weyl tensor is invariant

C̄µ
νρσ = Cµ

νρσ (5.2)

The normal 1-form to the boundary is

mµ = ∂µΩ = − l

r2
dr (5.3)

The conformally rescaled one is

m̄µ = Ωmµ (5.4)

It will only have r component and if we raise the index with the rescaled metric it
takes the form

m̄r = − 1

Ω

σ2f(r)

4l3r2
(5.5)

To compute any conserved quantity associated with a Killing field we need to
define the quantity

Ēµ
ν = l2

Ω3−d

d− 3
m̄ρm̄σC̄µ

ρνσ
d=4
=⇒ Ēµ

ν = Ω−3Eµ
ν (5.6)
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This quantity is nothing but the projection of the Weyl tensor on the conformal
boundary, also referred to as the electric part of the Weyl tensor.3 The physical
Weyl tensor is the traceless part of the Riemann curvature tensor and it contains
information about the curvature that is not affected by the equations of motion.
For that reason, the Weyl tensor is usually considered as a representative of “purely
gravitational” degress of freedom. This idea is obvious in the case of Anti -de Sitter
spacetime, for which the Weyl tensor is identically zero. Hence, the vacuum energy
of AdS spacetime is not included in this quantity and this is why this method does
not need any background subtraction, as compared to other approaches. Therefore,
the charges that we are computing only provide information about the additional
structure on top of the vacuum assymptotic solution, which in our case is the
wormhole in the bulk.

According to [51, 50] the following quantity linked to a Killing field ξν is proven
to be conserved and independent of the conformal factor Ω.4.

Q[ξ] =
l

8π

∫
S

Ēµ
νξ
νdS̄µ (5.7)

where
dS̄µ = n̄µdS̄ = ΩnµdS̄ (5.8)

is the directed area element of the spatial section on the conformal boundary,
which in our case is not a 2-sphere. Here nµ is the unit 1-form in the direction
dt. In order to compute the surface element on the conformal boundary we need
the determinant of the rescaled induced metric hµν . For a conformally rescaled 2d
metric with a conformal factor Ω, the determinant is

√
h̄ = Ω2

√
h. This means

that
dS̄µ = Ω3nµdS (5.9)

where dS is the usual surface element on the boundary, from which we can see
that the charge in (5.7) is indeed independent of the conformal rescaling, namely

Ēµ
νξ
νdS̄µ = Eµ

νξ
νdSµ

The conformal rescaling essentially serves as a factor that makes every individual
quantity of the integrand convergent, so that one can perform an expansion around
infinity.

The AMD mass, in particular, will be

Q[K] =
l

8π

∫
S

Ēµ
tK

tdS̄µ (5.10)

3the term "electric part" is used as an analogy to the electromagnetic field strength tensor,
but it does not refer to electric charges or anything related to electromagnetism. It just indicates
which components of the unphysical Weyl tensor are extracted due to this contraction

4There is a comment in [51] mentioning that this charge is conserved, even if the boundary
is not topologically S2 ×R
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We will need to contract Ēµ
ν with the timelike Killing vector Kµ as follows

Ēt
tK

t = l2
1

Ω

1

Ω2

(
σ2f(r)

4l3r2

)2

Ct
rtr =

l

Ω3

(
σ2f(r)

4l3r2

)2

Ct
rtr (5.11)

It is important to note that the Killing vector need not be rescaled, since it belongs
to the asymptotic conformal isometries. It only depends on the equivalence class
of metrics with conformal rescalings as the equivalence relation, that the boundary
metric is part of, and not in any particular representative of the class.

The corresponding electric part of the Weyl tensor has been computed using the
Mathematica package xAct’xTensor are the following

Ct
rtr =

h(r)(−8l4 + σ2f ′(r)h′(r)− σ2h(r)f ′′(r))

12f(r)(h(r))2

+
f(r)(8l4 − σ2(h′(r))2 + σ2h(r)h′′(r))

12f(r)(h(r))2

(5.12)

The constant time hypersurface normal is

nµ =

(
− sechθ√

h(r)
, 0, 0,

tanh θ√
h(r)

)
, nµ =

(√
h(r) cosh θ, 0, 0, 0

)
(5.13)

Then,

Ēµ
tK

tdS̄µ = l

(
σ2f(r)

4l3r2

)2

Ct
rtrh(r)

√
f(r) cosh θdθdu (5.14)

where Ct
rtr is the one shown in the expression (5.12).

Taking the limit r → ±∞ in equation (5.10) should, in principle, commute with
performing the integral, due to the fact that the variable with respect to which we
are taking the limit is different from the variables being integrated. The integral,
then, takes the following form

Q±[K] = ± l

8π

∫ α

0

du

∫ ∞
−∞

dθ
l2m

σ2
cosh θ (5.15)

The indefinite integral of cosh θ is sinh θ, which blows up at infinity. This infinity
should not be worrying, since it is explained due to the infinite volume of the AdS
boundary. The plus sign corresponds to the boundary at r →∞,while the minus
sign corresponds to the boundary at r → −∞.

The total charge is the one coming from the contribution of both components
of the boundary

Q[K] = Q+[K] +Q−[K] = 0 (5.16)

If the same procedure is applied for the Killing vector associated with the angular
momentum, i.e. Jµ = (0, 0, 0, 1), the result is zero. The angular momentum is
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conserved but its magnitude is zero. One can predict this result if one takes a quick
look at the metric, since all the physical parameters have been recognized and there
is no extra parameter that could be associated with some angular momentum. The
result of the calculation will be zero by virtue of the directions of the problem.
More specifically, the direction at which we need to project the tensor Ēµ

ν gives
identically zero.

Q[J ] =
l

8π

∫
S

Ēµ
uJ

udS̄µ = 0 (5.17)

As expected, the spacetime is not rotating.
Similarly, we will try to plug in the two remaining Killing vectors in the formula

(5.10), which, in principle should provide us with a conserved quantity related to
each one of the Killing vectors, ξ2, ξ3, which can be found in Appendix C. The
corresponding AMD conserved quantities are

Q[ξ2] =
l

8π

∫
S

Ēµ
νξ
ν
3dS̄µ (5.18)

Q[ξ3] =
l

8π

∫
S

Ēµ
νξ
ν
3dS̄µ (5.19)

(5.20)

which upon substituting and taking the limit to r → ±∞ become

Q±[ξ2] = ∓αl
3 sin t

8πσ2
m

∫ ∞
−∞

sinh θdθ (5.21)

Q±[ξ3] = ∓αl
3 cos t

8πσ2
m

∫ ∞
−∞

sinh θdθ (5.22)

That gives

Q[ξ2] = 0 (5.23)
Q[ξ3] = 0 (5.24)

5.1.3 Komar mass

In the literature, for the case of assymptotically (locally) AdS spacetimes, both
the Komar formula and the AMD formula are being used and compared. They
are essentially going to give the same result. However, the Komar formula needs
some background subtraction by hand first.

The Komar integral associated with the total energy is the following

ER =
1

4πG

∫
∂Σ

d2x
√
γ|t,r=constnµσν∇µKν (5.25)

where Σ is a spacelike hypersurface and ∂Σ its boundary at infinity, γ(2) is the
induced metric on the boundary, σµ is the unit vector normal to the surface ∂Σ,
nν is the unit vector normal to Σ, Kν = (1, 0, 0, 0) is the timelike Killing vector.
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First, we consider a spacelike hypersurface,Σt, of constant t which has a normal
vector

nµ =
g0µ√
−g00

=

(
− sechθ√

h(r)
, 0, 0,

tanh θ√
h(r)

)
(5.26)

The normal vector to the boundary at spacelike infinity will be

σν =
1√
g11

(0, 1, 0, 0) =

(
0,

2l2

σ
√
f(r)

, 0, 0

)
(5.27)

such that σνσν = +1
The induced metric at spacelike infinity is

(γ|t,r=const)ij dx
idxj =

l2

σ

(
dθ2 +

4

σ
du2

)
(5.28)

Then
d2x
√
γ|t,r=const =

2l

σ
dθdu (5.29)

For the Mass Komar integral we need

nµσν∇µKν = nµσν
(
∂µK

ν + ΓνρµK
ρ
)

= ntσr
(
∂tK

r + ΓrttK
t
)

+ nuσr
(
∂uK

t + ΓrtuK
t
)

=
1

2

sechθ√
h(r)

2l2

σ
√
f(r)

σ2f(r)

4l4
∂r
(
−h(r) cosh2 θ + f(r) sinh2 θ

)
− 1

2

tanh θ√
h(r)

2l2

σ
√
f(r)

σ2f(r)

4l4
∂rf(r) sinh θ

= −1

2

σ

2l2

√
f(r)√
h(r)

∂rh(r) cosh θ

The integral will look like

ER = −2l

σ
lim
r→∞

∫
dθdu

σ

4l2

√
f(r)√
h(r)

∂rh(r) cosh θ (5.30)

This limit is divergent because of the infinite volume of AdS4. Recall that the
empty AdS4 case corresponds to σ = 4 and f(r) = h(r). Upon background
subtraction we get

ĒR =
1

2l
lim
r→∞

∫
dθdu

[
−
√
f(r)√
h(r)

∂rh(r) cosh θ + ∂rh(r)|σ=4 cosh θ

]
(5.31)
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5.1.4 Physical Discussion

The charges defined by the AMD formula seem to be divergent for non-compact
boundaries, but this divergence only has to do with the infinite volume of AdS.
Recall that this solution is constructed in such a way that the boundary is warped
AdS3.

This infinity exists in the on-shell action as well, where it originates from the
determinant of the metric [see appendix C]. It is, thus, convenient to define a total
mass per unit volume of the spatial sections of the warped AdS3 boundary. The
charge can then be written as

Q±[K] ∼ ±m Vol (wAdS3)E (5.32)

where Vol (wAdS3)E is the volume of the warped AdS3 boundary computed upon
Wick rotating the time coordinate and periodically identifying it. The proportion-
ality constant above, therefore, contains the inverse temperature β.5

This volume will be equal to

Vol (wAdS3)E = 2
l2

σ

∫ β

0

dτ

∫ α

0

du

∫ ∞
−∞

cosh θdθ (5.33)

Another remark is that one of the reasons why we needed to do this calculation
was in order to relate the conformal mass to the parameter m in the metric. The
parameter itself is not a physical quantity, if one does not compute the associated
charge. However, the conserved charge defined by the AMD formula is considered
as the conformal mass. This calculation shows that the parameter m can be now
interpreted as a physical parameter.

5.2 Computing the Electric and Magnetic charges

In this section we will use Stokes theorem to express the conserved electric and
magnetic charges as a surface integral at the boundary of a spacelike constant
time hypersurface of the spacetime. Those charges are somewhat different from
the previous ones, in the sense that they are related to the matter content of the
spacetime.

Recall that the metric has the form

ds2 =
4l4

σ2f(r)
dr2 + h(r)

(
− cosh2 θdt2 + dθ2

)
+ f(r) (du+ sinh θdt)2 (5.34)

5Moreover, the factor 1
8π is omitted on purpose here, since it is some normalization factor

from the original AMD paper that was presenting the example of AAdS with boundary that was
topologically R×S2, so after the volume integration there would be a factor 1

2 left.So the correct
factor to have there is just this 1

2 remaining after deviding by the volume.
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with {t, r} ∈ R, θ ∈ [ 0,+∞ ), the coordinate u is identified, u+ α = u, and

f(r) =
4l2

σ2

r4 + (6− σ)r2 +mr + σ − 3

r2 + 1
− Q2 + P 2

r2 + 1
, h(r) =

l2

σ
(r2 + 1)

and the matter content is described by

Fru = −Fur =
2(r2 − 1)Q− 4rP

(r2 + 1)2
(5.35)

Frt = −Ftr =
2(r2 − 1)Q− 4rP

(r2 + 1)2
sinh θ = Fru sinh θ (5.36)

Fθt = −Ftθ =
−2Qr + P (1− r2)

r2 + 1
cosh θ (5.37)

The rest of the details are included in the appendix 5.2.4.

5.2.1 Hypersurface normals and induced metrics

First, we consider a spacelike hypersurface,Σt, of constant t which has a normal
vector

nµ =
g0µ√
−g00

=

(
− sechθ√

h(r)
, 0, 0,

tanh θ√
h(r)

)
, nµ =

(√
h(r) cosh θ, 0, 0, 0

)
(5.38)

such that

nµn
µ = g00(n0)2 + 2g02n

0n2 + g22(n2)2

=
(
−h(r) cosh2 θ + f(r) sinh2 θ

) sech2θ

h(r)
− 2f(r) sinh θ

sechθ√
h(r)

tanh θ√
h(r)

+
f(r)

h(r)
tanh2 θ = −1

This is because if we have some local coordinates (x0, x1, x2, x3) and a hyper-
surface x0 = const, then if a vector X is tangent to the hypersurface, g0a will be
normal to the hypersurface. This is due to the fact that their inner product reads
gabg

0aXb = X0, which will vanish if X is tangent to the hypersurface of constant
x0.

The induced metric for the constant t−slices,

γij|t=constdx
idxj =

4l4

σ2f(r)
dr2 + h(r)dθ2 + f(r)du2 (5.39)

The closed surface bounding the region Σt can be thought of as consisting by two
parts, two surfaces of constant {t, r},one pointing at r → +∞ and one pointing at
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r → −∞,∂Σ1 and ∂Σ2, and one surface of constant {t, θ}, ∂Σ3. We can vizualize
this surface as a cylinder and we will take it to infinity in order to integrate over
the whole spacetime. The normal vector to the constant t, r surface at spacelike
infinity will be

σν =
1√
g11

(0, 1, 0, 0) =

(
0,

2l2

σ
√
f(r)

, 0, 0

)
(5.40)

such that σνσν = +1
The induced metric at the surfaces of constant r is

γij|t,r=constdxidxj = h(r)dθ2 + f(r)du2 (5.41)

Then,
d2x
√
γ|t,r=const =

√
h(r)f(r)dθdu (5.42)

The directed two-surface element to the constant {t, r} two-surfaces,∂Σ1 and ∂Σ2,
will be

dS(1,2)
µν = ±2n[µσν]

√
γ|t,r=constdθdu (5.43)

with the "−" corresponding to the case r →∞ and the "+" to the case r → −∞.
The normal vector to the constant θ slice is

ρν =

(
0, 0,

1√
h(r)

, 0

)
(5.44)

such that ρνρν = +1. The square root of the determinant of the induced metric is
given by √

γ|t,θ=const =
2l2

σ
(5.45)

The induced metric at each slice of constant θ at the boundary is

γij|t,θ=constdxidxj =
4l4

σ2f(r)
dr2 + f(r)du2 (5.46)

The directed two-surface element to the constant {t, θ} two-surface,∂Σ3, will be

dS(3)
µν = −2n[µρν]

√
γ|t,θ=constdrdu (5.47)

5.2.2 Applying Stokes theorem

We have a non-vanishing antisymmetric tensor F µν , defined in the region Σt and
bounded by the surface ∂Σ, which consists of ∂Σ1, ∂Σ2, ∂Σ3. Its divergence ∇µF

µν

is zero everywhere, since it satisfies the sourceless Maxwell’s equations in curved
spacetime.
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We are now all set to apply Stokes theorem, as defined in Appendix A. The
total electric charge is defined as

Qe = −
∫

Σ

∇νF
µνdΣµ = −1

2

∮
∂Σ

F µνdSµν

= −1

2

∫
∂Σ1

F µνdS(1)
µν −

1

2

∫
∂Σ2

F µνdS(2)
µν −

1

2

∫
∂Σ3

F µνdS(3)
µν

(5.48)

The relevant expression for the magnetic charge should be

Qm = −1

4

∮
∂Σ

εµνρσFρσdSµν

= −1

4

∫
∂Σ1

εµνρσFρσdS
(1)
µν −

1

4

∫
∂Σ2

εµνρσFρσdS
(2)
µν −

1

4

∫
∂Σ3

εµνρσFρσdS
(3)
µν

(5.49)

The first two terms in each one of these two expressions,(5.48) and (5.49), do not
give any contribution, since

nµσνF
µν = nµσνFµν = ntσrFtr + nuσrFur

=
sechθ√
h(r)

2l2

σ
√
f(r)

Fru sinh θ − tanh θ√
h(r)

2l2

σ
√
f(r)

Fru = 0
(5.50)

and

1

2
nµσνε

µνρσFρσ =
1

2

√
−gntσr ε̄trρσFρσ +

1

2

√
−gnuσr

√
−gε̄urρσFρσ

=
1

2

√
−g
(
guun

u + gutn
t
)
σr
(
ε̄urtθFtθ + ε̄urθtFθt

)
=

(
f(r)

tanh θ√
h(r)

− f(r) sinh θ
sechθ√
h(r)

)
2l2

σ
√
f(r)

Fθt√
−g

= 0

(5.51)

Here ε̄µνρσ is the fully antisymmetric tensor in 4d or Levi-Civita symbol, which is
not really a tensor, while εµνρσ =

√
−gε̄µνρσ transforms as a tensor and is called

the Levi-Civita tensor[60].
The fact that these terms give zero is due to the direction of the field lines,

which will be studied in the next section.
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The third term of (5.48) and (5.49) will give respectively

Qe = −1

2

∫
∂Σ3

F µνdS(3)
µν = −2

∫ a

0

du

∫ ∞
−∞

dr
√
γ|t,θ=constn

µρνFµν

= −4l2α

σ

∫ ∞
−∞

drntρθFtθ =
4l2α

σ

∫ ∞
−∞

dr sechθ
Ftθ
h(r)

=
4l2α

σ

∫ ∞
−∞

dr
Φ(r)

h(r)
cosh θ sechθ

= 4α

∫ ∞
−∞

dr
−2Qr + P (1− r2)

(r2 + 1)2

= 4α

∫ ∞
−∞

dr
−2Qr + P (1− r2)

(r2 + 1)2
= 0

(5.52)

and

Qm = −1

4

∫
∂Σ3

εµνρσFρσdS
(3)
µν

= −
∫ a

0

du

∫ ∞
−∞

dr
√
γ|t,θ=constn

tρθεtθruF
ru

= −
∫ a

0

du

∫ ∞
−∞

dr
√
γ|t,θ=const

√
−gntρθ ε̄tθruF ru

= −8αl4

σ2

∫ +∞

−∞
drh(r) cosh θ

sechθ√
h(r)

1√
h(r)

σ2f(r)

4l4
1

f(r)
∂rΦ(r)

= −2α

∫ +∞

−∞
drf(r)∂rΦ(r)

= −4α

∫ ∞
−∞

dr
(r2 − 1)Q− 2Pr

(r2 + 1)2
= 0

(5.53)

5.2.3 Understanding the field line profiles

The tensor field on a manifold M can be split in such a way that it respects the
foliation given to the manifold. The metric is already in the form of the canonical
foliation, defined in appendix D. Using this foliation of constant t slices, one can
decompose the field strength Fµν , in order to extract information about the electric
and magnetic fields.

At any point p ∈ Σt, in some local coordinates, Fµν(t,x) can be decomposed
according to the 3 + 1−formalism, into the electric E(t,x) and magnetic B(t,x)
field on the spacelike surface. For more information see 5.2.4 and [61]. These, will
take the form

Eµ(t,x) = Fµν(t,x)nν , Bµ(t,x) =
1

2
εµνρσn

ν(t,x)F ρσ(t,x) (5.54)
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where εµνρσ = ε̄µνρσ√
−g is the four dimensional Levi-Civita symbol. The field strength

can be locally written as

Fµν = nµEν − nνEµ + εµνρσn
ρBσ (5.55)

Let us identify those quantities for a 4d metric

gij = γij, g00 = −N2 + βkβ
k, g0i = gi0 = βi (5.56)

and the inverse metric will be decomposed as

gij = γij − βiβj

N2
, g00 = − 1

N2
, g0i = gi0 =

βi

N2
(5.57)

The displacement vector will be β = f(r) sinh θ∂u and it lives on the hypersurface
Σt. The normal vector n can be found by demanding that the inner product

n · β = 0 (5.58)

so in our case it will be

nµ =

(
− 1

N
, 0, 0,

sinh θ

N

)
=

(
− sechθ√

h(r)
, 0, 0,

tanh θ√
h(r)

)
(5.59)

where the lapse function is N =
√
h(r) cosh θ. The normalisation, here, is such,

that the normal vector is a unit vector.
Thus, the decomposition of the fields reads

Eµ(t,xi) = Fµt(t,x
i)nt + Fµu(t,x

i)nu (5.60)
=
(
0, Frtn

t + Frun
u, Fθtn

t, 0
)

(5.61)

=

(
0, 0,− 1

N
Fθt, 0

)
(5.62)

The electric field will be,

Eθ(r) = −
√
σ

l

P (r2 − 1)− 2Qr

(r2 + 1)
3
2

(5.63)

Moving on to the magnetic field

Bµ(t,xi) = εµtrun
tF ru + εµtθun

tF θu + εµurtn
uF rt + εµuθtn

uF θt (5.64)

=

(
0, 0,

sechθ√
h(r)

√
−gF ru, 0

)
(5.65)

where the factor of 1
2
drops out because of the combination of the antisymmetry

of the Levi-Civita tensor and of the field strength tensor.
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The magnetic field will be,

Bθ(r) = − σ

2l2
Q(r2 − 1)− 2Pr

(r2 + 1)
3
2

(5.66)

Thus,6 locally, on each one of the constant time leaves, the profile of the lines
does not have a radial component, which leads the Komar integral to be zero
on the boundary. The field lines are in the θ direction, which is a coordinate at
each constant r− slice. However, there is no θ dependence and there is only r−
dependence, meaning that their strength changes according to where we are in the
manifold. As can be seen, the field lines don’t blow up anywhere.

5.2.4 Physical Discussion

The boundary of the constant t hypersurface consists of three components of send-
ing r → ±∞ and of sending θ → +∞. The contribution of sending r → ±∞ is
zero because of the orientation of the field lines in the θ direction. The contri-
bution on the constant θ surface is non zero, but once we integrate over all r the
result is zero.

Well, as stated in [1] about the Weyl idea of sourceless fields "But there is
nowhere that one can put his finger and say, “This is where some charge is lo-
cated.” Lines of force never end. This freedom from divergence by no means pre-
vents changes in field strengths. Lines of forces which are not trapped into the
topology can be continuously shrunk to extinction, as in familiar examples of elec-
tromagnetic induction and electromagnetic waves. However, lines of force which
are trapped in wormholes cannot diminish in number. The flux out of the mouth
of a wormhole cannot change with time, no matter how violent the disturbances
in the electromagnetic field, no matter how roughly the metric changes, no matter
how rapidly corresponding wormholes recede or approach, up to the moment when
they actually coalesce and change the topology.". In fact, this discussion in [1]
is mainly about intra-universe wormholes and closed field lines. The connected-
ness or disconnectedness of the boundary is still unclear. Hence, in the first case
scenario, the global solution as mentioned in [3] is indeed the implementation of
Weyl’s hypothesis, with the distrinction that the throat can also be supported on
its own in the anti-de Sitter background.

On the other hand, if one integrates from r → 0+ to r → +∞ and from r → −∞
to r → 0−, the result is two opposite finite charges. The picture we have from this
result is that the solution can be constructed by patching of two semiwormholes of
opposite charges.7 Roughly speaking, cutting the spacetime in half and considering
only half of the wormhole solution, e.g. r > 0, then the other half (r < 0) acts like

6Note, that here the
√
−g is there because εµνρσ =

√
−gε̄µνρσ, where ε̄µνρσ is the totally

anti-symmetric tensor with entries (+1,−1, 0) depending on the even and odd permutations or
the repetition of the indices.

7The conformal mass calculation adds up to this semiwormhole picture, since the contributions
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a static electromagnetic source at r = 0 for the "plus" semiwormhole. The mirror
picture holds for the "minus" semiwormhole. Note that those two semiwormholes
are not separate solutions. Namely, they serve as an interpretation and as an
indication of the disconnectedness of the boundary. The latter, is a fact that has
not been proven yet. In the possible case of disconnectedness, the Weyl idea still
holds for inter-universe wormholes with open sourceless field lines ranging from
−∞ to +∞.

The interpretation of semiwormholes was inspired by a recent paper by S. An-
driolo, T.C. Huang, T. Noumi, H. Ooguri and G. Shiu[62]. In this paper they
present the Giddings-Strominger wormhole, with axionic charge. The picture is
not completely relevant to the AdS wormhole of [2], since the wormhole of [62] is
Euclidean and assymptotically flat. The total charge is zero and the vizualization
is through this story of two glued semiwormholes. [See figure 5.1]

Figure 5.1: Euclidean Giddings-Strominger wormhole connecting two assymptoti-
cally flat regions, with zero total axionic charge, seen as two semiwormholes glued
together, with opposite charges and the same action. The gluing is done at a 3−
sphere of minimal size, corresponding to the throat. If one drops the word "ax-
ionic" and replaces the word "flat" by "locally AdS", then this is the result that
we have computed. Figure taken by [62]

from the two boundaries are of opposite sign. Same reasoning applies to the calculation of the
rest of the charges related to Killing isometries.
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Conclusion

In this thesis, we attempted to better understand stable wormhole solutions in
four dimensions and the possibility of them being supported by non-exotic mat-
ter. Using as our initial point the solutions to free Einstein-Maxwell theory with
a negative cosmological constant, which were introduced in [2] and proven super-
symmetric in [3], we examine closely some physical properties and observe some
interesting implications. More specifically, we explicitly compute the null energy
condition and we find that it is satisfied, which seems to contradict the Topolog-
ical Censorship theorem for AlAdS spacetimes. Moreover, we found that all the
associated conserved charges are zero. However, there is interesting topological
structure in the spacetime, since if we consider only half of the solution some of
the charges are non-vanishing. To be more precise, the total mass is zero, whilst
considering only half of the spacetime reveals that the parameter m in the metric
is related to it. On the other hand, the total angular momentum is calculated
as zero, but this result indeed means that there is no angular momentum in the
solution. Moreover, we compute the electric and magnetic charges, which are by
definition zero because of the divergenceless of the field lines. However, computing
them in the same manner as if there were monopoles in the spacetime, we extract
valuable information. Our interpretation is that the way in which the integration
ends up giving a zero result, encourages a picture of two semi-wormholes, which
serves as an indication, yet not a proof, of the disconnectedness of the boundary.
Last but not least, we find in the literature how these supersymmetric wormholes
can be embedded in string theory. One way in which this can be done is via
consistent Kaluza-Klein compactifications over seven dimensional Einstein-Sasaki
manifolds[4].

These particular results unlock various questions that possibly deserve some
consideration in the future. First of all, this apparent contradiction of the AlAdS
wormhole solution in [2] to the Topological Censorship theorem can lead to some
possible outcomes. Before going to those outcomes, one needs to verify that the so-
lution obeys all of the conditions for the theorem. There is one condition under the
name "the generic condition" in [33] which is left unexplored. Once it is confirmed
that the theorem applies for this solution, the possibilities are the following: (i) for
connected boundary, traversability is allowed, but there is always a shorter path
through the boundary, (ii) for disconnected boundary, either something needs to
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violate the condition or the theorem should be revisited. An immediate question
that arises is whether this contradiction to the Topological Censorship theorem is
a general result of breaking the spherical symmetry and having non compact slices
in a wormhole solution. Moreover, one can test the wormholeness of the worm-
hole by calculating the Raychaudhuri expansion parameter in order to predict the
focusing of null geodesics. Another potential avenue is to study the solution in
the context of AdS-CFT correspondence. One is required to employ holographic
renormalization techniques and ask what are the boundary effects that cause the
non-trivial topology in the bulk of the spacetime. It is surprising how such a simple
model solution of a very well understood theory, leads to so many intriguing and
unanswered contemporary physical questions.8

8

"-Quand sait-on que c’est fini?
-A un moment, on s’arrête."

—Portrait de la jeune fille en feu
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Conventions

• µ0 = c = G = 1

• The metric signature we are using is (−,+,+,+)

• We consider that a Euclidean signature is an independent picture with re-
spect to a Lorentzian signature. Results in the literature that concern Eu-
clidean signature wormholes do not apply in this text.

• Greek indices µ, ν, κ, λ . . . indicate spacetime coordinates, taking values
{0, 1, 2, 3} in a 4d spacetime.

• Latin indices a, b, c, . . . are being used for spatial coordinates in this text,
taking values {1, 2, 3}.9

• Capital Latin indices A,B,C, . . . are being used for coordinates on two-
surfaces that are submanifolds of spacelike hypersurfaces of the spacetime.

• Covariant vectors or tensors are those with indices up V λ, T µν , . . .. The
basis of the tangent space TpM , of some manifold at some point p, in the
coordinate system (t, r, θ, u) that we are using is given by (∂t,∂r,∂θ,∂u)

• Contravariant vectors or tensors are those with indices down Vµ, Tµν , . . ..
The basis of T ∗pM at some point p, is given by the, so called, dual basis
(dt,dr,dθ,du)

• In index free notation a vector is written as n, in bold symbols.

• The covariant derivative acting on a vector based on this signature is

∇µV
ν = ∂µV

ν + ΓνµλV
λ

• Accordingly,
∇µVν = ∂µVν − ΓλµνVλ

9Sometimes it is be more convenient to write the indices using the chosen coordinates, e.g.
t, r, θ, u in this text. We consider these two conventions of writing the indices equivalent, and
both are being used since each one of them serves a different purpose. Those are Latin indices
but they refer to the coordinates.
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• The generalization of this gives the action of the covariant derivative to a
tensor of arbitrary rank (k, l) as follows

∇σT
µ1µ2...µk

ν1ν2...νl
= ∂σT

µ1µ2...µk
ν1ν2...νl

+ Γµ1σλT
λµ2...µk

ν1ν2...νl
+ Γµ2σλT

µ1λ...µk
ν1ν2...νl

+ . . .

− Γλσν1T
µ1µ2...µk

λν2...νl
− Γλσν2T

µ1µ2...µk
ν1λ...νl

− . . .

• The Levi-Civita tensor is

εµνρσ = εabcde
a
µ e

b
ν e

c
ρ e

d
σ

and it takes the values ±e = ±
√
−g
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Dictionary

• The word space and spacetime both refer to a spacetime, unless stated oth-
erwise.

• Vacuum solution is usually used in this text to refer to the wormhole solution
without matter.

• Empty AdS refers to the empty from wormholes, maximally symmetric exact
solution to Einstein’s field equations with negative cosmological constant.
This one is also a vacuum solution, but to avoid confusion, it is convenient
to call it by the name empty AdS.

• The term "radial" is used for spherically symmetric spacetimes. Here there
is axial symmetry, but the word radial means that small values of this coor-
dinate brings us to the bulk of the spacetime, while plus and minus infinity
corresponds to the boundary

• Global hyperbolicity in AdS means global hyperbolicity in the AdS sense, as
explained in the introduction. Roughly speaking, including the boundary, in
the conformally rescaled manifold, and imposing boudnary conditions yields
the spacetime globally hyperbolic.

• The word boundary of AdS usually refers to the conformal boundary.

• Disconnected boundary means that there are two components of the bound-
ary and there is no causal path that belongs entirely on the boundary and
takes you from component of it to another. The itinerary should be through
the bulk.
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Hypersurfaces and the Stokes Theorem

The term hypersurface usually refers to a three dimensional submanifold in a
four dimentional spacetime[63]. However, the concept can be generalized in any
dimensions greater than 2, where it is called just a surface.

It is useful to know how to study the intrinsic geometry of the hypersurface,
how to compute the induced metric on it and how to define a surface element so
that one can integrate vector fields over it. A hypersurface can be characterized
as timelike, spacelike or null depending on whether the normal vector on it is
spacelike, timelike or null respectively. For the purpose of this thesis we will
demonstrate how it is done for timelike and spacelike hypersurfaces, while for null
ones it is slightly more complicated and it is not necessary for us.

Definition

A hypersurface Σ, can be chosen either by restricting the coordinates by an equa-
tion of the form

Φ(xα) = 0

or by using parametric equations of the form

xα = xα (ya)

where ya(a = 1, 2, 3) are the coordinates intrinsic to the hypersurface.

Normal vector

The vector Φ,α is normal to the hypersurface, since the value of this defining
expression for the hypersurface Σ changes only along the direction of the normal
vector to it. The unit normal is given by

nα =
εΦ,α

|gµνΦ,µΦ,ν |1/2

where
ε ≡

{
−1 if Σ is spacelike
+1 if Σ is timelike
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Induced metric

The metric with which one can measure distances on the hypersurface Σ can be
computed by constraining the line element to displacements that happen only
on the hypersurface. If the parametric equations of the hypersurface are xα =
xα (ya), then the vectors eαa = ∂xα

∂ya
are tangent to Σ, while eαanα = 0 for a non-null

hypersurface. This means that for distances on Σ

ds2
Σ = gαβdx

αdxβ

= gαβ

(
∂xα

∂ya
dya
)(

∂xβ

∂yb
dyb
)

= habdy
adyb

where hab = gαβe
α
ae

β
b is the induced metric, or first fundamental form, on Σ. It

is also referred to as a three-tensor, since it behaves as a scalar under spacetime
coordinate transformations xα → xα

′ , but as a tensor under transformations ya →
ya

′ of the hypersurface coordinates.

Integration on hypersurfaces

Directed hypersurface element

The invariant three dimensional volume element on a non-null hypersurface reads

dΣ = |h|1/2d3y

with h ≡ det[hab] and it is referred to as the surface element. The combination
nαdΣ is a directed surface element that points in the direction vertical to the
hypersurface. The convention usially used is the following

dΣα = εnαdΣ

where ε = 1 for timelike and ε = −1 for spacelike hypersurfaces, so that nαdΣα is
positive for spacelike hypersurfaces and negative for timelike ones.

Directed two-surface element

One can define similar quantities for a two-dimensional surface S embedded in a
three-dimensional spacelike hypersurface Σ.

• In the same sense that Σ is described by a constraint equation Φ(xα) = 0,
and/or by parametric equations xα(ya),the two-surface S as a submanifold
of Σ will be described by a constraint equation ψ(ya) = 0, and/or parametric
relations ya(θA), where θA are the coordinates on the two-surface.
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• Analogously, nα ∝ ∂αΦ was the unit normal vector pointing to the future,
and so, σa ∝ ∂aψ will be the outgoing normal direction.

• Additionally, since the vectors eαa = ∂xα

∂ya
lie on the hypersurface Σ, those that

lie on S will be eaA = ∂yα

∂θA
.

• Lastly, the induced metric on Σ is hab = gαβe
α
ae

β
b and for completeness gαβ =

−nαnβ + habeαae
β
b , which means that the metric on the two-surface S will be

γAB = habe
a
Ae

b
B and hab = σaσb + γABeaAe

b
B

Now, the parametric equations describing the coordinates of the spacetime in terms
of the coordinates on Σ and the coordinates on Σ in terms of the coordinates on S
can be combined as a composition of functions in order to give a relation xα(θA).
The latter will be used to embed S in the spacetime. Hence, the tangent vectors
to S, using the chain rule, translate

eαA =
∂xα

∂θA
=
∂xα

∂ya
∂ya

∂θA
= eαae

a
A

while the normal to S is

σα ≡ σaeαa , σαnα = 0

Thus, S admits two normal vectors that are also normal to each other, one timelike
nα and one spacelike σα. The spacelike one will be connected to a gradient,
σα ∝ ∂αΨ, with Ψ(xα) defined as Ψ|Σ = ψ. The induced metric is

γAB = gαβe
α
Ae

β
B

and
gαβ = −nαnβ + σασβ + γABeαAe

β
B

With all these definitions for the embedding of the 2d surface in the 4d speca-
time, one can now define the directed surface element

dSαβ = −2n[ασβ]
√
γd2θ

where γ = det[γAB] and the square brackets denote the antisymmetrization of the
indices.

Gauss-Stokes theorem

For any vector field V µ defined within any finite region A of the spacetime mani-
fold, bounded by a closed hypersurface ∂A it is true that∫

A
∇µV

µ
√
−gd4x =

∮
∂A
V µdΣµ (67)
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Here, dΣµ is the surface element that has been defined above. This is known as
Gauss’s theorem.

For any 3d region Σ, bounded by a closed two surface ∂Σ, for any antisymmetric
tensor field F µν within Σ, it is true that∫

Σ

∇νF
µνdΣµ =

1

2

∮
∂Σ

F µνdSµν (68)

with dSµν being the two-surface element defined above. This is known as Stokes
theorem.
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Fibre Bundle

fibre bundle

base manifold

fibre

Figure 2: A picture representing a fibre bundle. As stated in the text and analyzed
in [25] AdS3 can be written as a fibre bundle with base manifold an AdS2 and
spacelike fibres, R, attached at each point. Then the squashing/stretching is being
done along the spacelike fibres to make AdS3 anisotropic. This stretched AdS3 is
the boundary of the assymptotically locally AdS4 wormhole.
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The Warped AdS Wormhole Solution

We are using the metric of the form

ds2 =
4l4

σ2f(r)
dr2 + h(r)

(
− cosh2 θdt2 + dθ2

)
+ f(r) (du+ sinh θdt)2 (69)

with {t, r} ∈ R, θ ∈ [ 0,+∞ ), the coordinate u is identified, u+ α = u
The non-zero metric components are the following.

gtt = −h(r) cosh2 θ + f(r) sinh2 θ, gtu = gut = f(r) sinh(θ),

guu = f(r), grr =
4l4

σ2f(r)
, gθθ = h(r)

The non-zero inverse metric components are the following:

gtt = −sech2θ

h(r)
, gtu = gut =

sechθ tanh θ

h(r)
,

guu =
h(r)− f(r) tanh2 θ

f(r)h(r)
, grr =

σ2f(r)

4l4
, gθθ =

1

h(r)

with

f(r) =
4l2

σ2

r4 + (6− σ)r2 +mr + σ − 3

r2 + 1
− Q2 + P 2

r2 + 1
, h(r) =

l2

σ
(r2 + 1)

The matter section of the spacetime is characterized by an electromagnetic field
that produces that particular Q2+P 2

r2+1
imprint in the metric

A = Φ(r) (du+ sinh θdt) , Φ(r) =
−2Qr + P (1− r2)

r2 + 1
(70)

The non-zero components of the corresponding field strength tensor Fµν are

Fru = −Fur =
2(r2 − 1)Q− 4rP

(r2 + 1)2
(71)

Frt = −Ftr =
2(r2 − 1)Q− 4rP

(r2 + 1)2
sinh θ = Fru sinh θ (72)

Fθt = −Ftθ =
−2Qr + P (1− r2)

r2 + 1
cosh θ (73)
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There are some bounds on the set of parameters
{
σ,m,X ≡ 3(Q2+P 2)

l2

}
such that

the spacetimes that this metric describes are well defined in terms of singularities
and energy conditions. The bounds we found are matched with the bounds of [3]
and are equivalent.

The Ricci scalar of this spacetime is the same as empty AdS4

R = −12

l2
(74)

From the Ricci scalar one can not extract enough information about the curvature.
One has to look at the higher curvature invariants. The differences between the
empty AdS solution and the wormhole solution will be made visible by the following
invariants.

An important invariant of this spacetime is the Kretsmann invariant

K = RµνρσR
µνρσ =

1

2l8(1 + r2)6
[−24l3m(P 2 +Q2)σ2r(5− 10r2 + r4)

+ 192l5m(−4 + σ)r(3− 10r2 + 3r4)

+ (P 2 +Q2)2σ4(7− 34r2 + 7r4)

+ 24l6m2(−1 + 15r2 − 15r4 + r6)

− 48l4(−33 + 16σ − 2σ2)

+ 6(79 + 5(−8 + σ)σ)r2 − 15(33 + 2(−8 + σ)σ)r4

+ 2(6 + (−8 + σ)σ)r6 − 15r8 − 6r10 − r12)

− 48l2(P 2 +Q2)(−4 + σ)σ2(1 + 5r2(−2 + r2))]

(75)

The contraction of the Weyl tensor with itself is

CµνρσC
µνρσ =

3

l8(1 + r2)6
[−4l3m(P 2 +Q2)σ2r(5− 10r2 + r4)

+ (P 2 +Q2)2σ4(1− 6r2 + r4)

+ 32l5m(−4 + σ)r(3− 10r2 + 3r4)

+ 4l6m2(−1 + 15r2 − 15r4 + r6)

− 16l4(−4 + σ)2(−1 + 15r2 − 15r4 + r6)

− 8l2(P 2 +Q2)(−4 + σ)σ2(1 + 5r2(−2 + r2))]

(76)

As can be clearly seen, neither of those two invariants diverge. The Kretschmann
invariant is constant at infinity, while the Weyl invariant vanishes at infinity, as
expected due to the boundary being a warped empty from wormholes AdS3. The
invariant from the electromagnetic field strength is

FµνF
µν =

2σ2 ((Q2 − P 2)(1− 6r2 + r4))− 8PQr(−1 + r2))

l4(1 + r2)4
(77)
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The action together with the Gibbons-Hawking-York boundary term will be

S = Sbulk + SGHY =

∫
M
d4x
√
−g
(
R− 2Λ +

1

4
FµνF

µν

)
−
∫
∂M

d3x
√
−hΘ

(78)

where Θ is the trace of the extrinsic curvature on the boundary, h is the determi-
nant of the induced metric on the boundary.

Θ =
(σ(h(r)f ′(r) + 2f(r)h′(r))

2l2
√
f(r)h(r)

=
2l3(m+ 3mr2) + 4l2r(3 + 3r4 − 2r2(−7 + σ))− (P 2 +Q2)rσ2

(l2(1 + r2)
√

(4l2(r4 − r2(−6 + σ) + lmr + σ − 3)− (P 2 +Q2)σ2)(1 + r2))

The square root of the determinant of the induced metric at the boundary is

√
−h =

2l3

σ2
cosh θ (79)

The Killing vectors will not be ten anymore, since this solution is no longer the
maximally symmetric one. However, some of the Killing isometries are maintained.
The four Killing vectors are the following

ξ1 = ∂t

ξ2 = sin t∂θ + tanh θ cos t∂t +
cos t

cosh θ
∂u

ξ3 = cos t∂θ − tanh θ sin t∂t −
sin t

cosh θ
∂u

ξ4 = ∂u

(80)

The first three generate the group SO(2, 1), reflecting the isometries preserved by
the warped AdS3 boundary, whereas the fourth one is abelian and commutes with
the rest, reflecting the axial symmetry around the θ = 0 axis.
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The 3+1- formalism in General Relativity

If (M, g) is a 4 dimensional spacetime manifold M equipped with a smooth metric
g, of signature (−,+,+,+), and it is time-orientable and hyperbolic10, then
there exists a globally defined scalar field t, that defines a foliation M ' R × Σ
such that the leaves Σt of constant t are:

Σt = p ∈M : t(p) = t = constant (81)

This is also known as the 3 + 1− formalism in General Relativity[61] and it is
different from the 1+3− formalism, which refers to congruences of one dimensional
curves, rather than congruences of 3 dimensional hypersurfaces[64]. On such a
Manifold M we can define two vector fields and one scalar function to describe
evolution. Those are the following

n := −N∇t, m := Nn, N := [−gµν∇µt∇νt]−
1
2 (82)

where ∇t must be timelike throughout the whole M such that we can evolve the
spacelike submanifold of M. The point p evolves in the direction of the vector field
∂t, defined by

∂t := m + β, gµνβ
µnν = 0 (83)

∂t is the derivative along the adapted time and β ∈ Tp(M) is the displacement
vector of the origin of the coordinates between two infinitesimally close leaves.

Local physical measurements p ∈ Σt on the spacelike hypersurface of constant
t. We can select coordinates xµ = (t, xi) where i = 1, 2, 3 refer to the coordinates
on the spacelike hypersurface.

Any geometrical object on such manifolds, respects its topological structure and
it is possible to be decomposed following the foliation mentioned above. Thus, for
example, the induced metric on the spacelike hypersurface can take the form,

γij = gij (84)

which is just a canonical reduction.
10Even though AdS is not globally hyperbolic, it can be made as such, by imposing appropriate

boundary conditions at all times. Thus, there exists such a foliation and we can still work with
it[34].
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Figure 3: Coordinates on the spacelike hypersurface Σt adapted to the foliation.
Each line xi = const defines the timelike vector ∂t and the shift vector β of the
spacetime coordinates xµ = (t, xi). Figure taken from [64]

A more general way of interpreting this is by acting with a projector on the
tensor g.

P µ
ν := gµν + nµnν , Pµin

µ = 0 (85)
Due to the fact that Σt can be seen as a hypersurface embedded in a manifold

M one dimension higher, its extrinsic curvature, or second fundamental form on
the hypersurface, can be defined as follows

Kij := P µ
i P

ν
j ∇µnν , K := γijKij (86)

where ∇µ is the four dimensional covariant derivative. Here, metric compatibility
is assumed in both the metric onM and the induced metric on Σt. Following that,
the line element can be decomposed as follows

ds2 = −N2dt2 + γij
(
dxi + βidt

) (
dxj + βjdt

)
(87)

This method can now be applied in other objects onM , in order to project them on
Σt, such as the electromagnetic field, for example. In this way, one can decompose
it with respect to the foliation. Let us identify those quantities for a 4d metric

gij = γij, g00 = −N2 + βkβ
k, g0i = gi0 = βi (88)

and the inverse metric will be decomposed as

gij = γij − βiβj

N2
, g00 = − 1

N2
, g0i = gi0 =

βi

N2
(89)

The displacement vector will be β = g0i

N2∂i and it lives on the hypersurface Σt.
The normal vector n can be found by demanding that the inner product

n · β = gµνβ
µnν = 0 (90)

This decomposition is extensively used in Numerical Relativity and in ADM
formalism.
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Proving that the constraints (3.9) of [3] are the same
as those in (2.12)

We need to prove that this set of constraints

0 ≤ X < 1

24 + 12
√

1−X
3 +X

≥ σ >
6− 6

√
1−X

X

0 ≤ |m| <
√

2

3
√

3

√
18 (−48 + 24σ − (3 +X)σ2) + σ3

(
1 + 3X + (1−X)

√
1−X

)
(91)

is the same as this set of constraints
0 ≤ X < 1

12 + 12
√

1−X
1 +X +

√
1−X

≥ σ >
12− 6

√
1−X

1 +X +
√

1−X

0 ≤ |m| <
√

2

3
√

3

σ(6− σ)
√

1−X + 24σ − σ2 (1 +X)− 72√
σ
(
1 +
√

1−X
)
− 6

(92)

We will use the fact that
1

1 +X +
√

1−X
=

1 +X −
√

1−X
X(X + 3)

(93)

Let us first prove that the bounds on σ are the same:

12− 6
√

1−X
1 +X +

√
1−X

=
(1 +X −

√
1−X)(12− 6

√
1−X)

X(X + 3)

=
18 + 6X − 18

√
1−X − 6X

√
1−X

X(X + 3)

=
6(3 +X)− 6(3 +X)

√
1−X

X(X + 3)

=
6− 6

√
1−X

X

(94)
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and

12 + 12
√

1−X
1 +X +

√
1−X

=
(1 +X −

√
1−X)(12 + 12

√
1−X)

X(X + 3)

=
24X + 12X

√
1−X

X(X + 3)

=
24 + 12

√
1−X

(X + 3)

(95)

Those expressions are indeed equivalent. For the bound on |m|, since the quantities
are positive for positive X, we can take the squares to prove that they are equal.σ(6− σ)

√
1−X + 24σ − σ2 (1 +X)− 72√
σ
(
1 +
√

1−X
)
− 6

2

=
σ2(6− σ)2(1−X) + 242σ2 + σ4 (1 +X)2 + 722

σ
(
1 +
√

1−X
)
− 6

+
48σ2(6− σ)

√
1−X + 144σ2 (1 +X)− 48σ3(1 +X)

σ
(
1 +
√

1−X
)
− 6

+
−2σ3(6− σ)(1 +X)

√
1−X − 2× 24× 72σ − 144σ(6− σ)

√
1−X

σ
(
1 +
√

1−X
)
− 6

(96)

The numerator of (96) is

σ2(6− σ)2(1−X) + 242σ2 + σ4 (1 +X)2 + 722

+ 48σ2(6− σ)
√

1−X + 144σ2 (1 +X)− 48σ3(1 +X)

− 2σ3(6− σ)(1 +X)
√

1−X − 24× 144σ − 144σ2(6− σ)
√

1−X

= σ4
(

1 + 2X +X2 + 2(1 +X)
√

1−X + (1−X)
)

+ σ3
(
−2(1−X)− 48(1 +X)− 48

√
1−X − 12(1 +X)

√
1−X

)
+ σ2

(
6(1−X) + 242 + 6× 48

√
1−X + 144(1 +X)− 6× 144

√
1−X

)
+ σ

(
−24× 144− 6× 144

√
1−X

)
+ 722

(97)
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Now it is left to prove that this expression is the same as the numerator of (96)(
σ
(

1 +
√

1−X
)
− 6
)(

σ3
(

1 + 3X + (1−X)
√

1−X
)

+ 18
(
24σ − (3 +X)σ2 − 48

))
= σ

(
1 +
√

1−X
)
σ3
(

1 + 3X + (1−X)
√

1−X
)

+ σ
(

1 +
√

1−X
)

18
(
24σ − (3 +X)σ2 − 48

)
− 6σ3

(
1 + 3X + (1−X)

√
1−X

)
− 6× 18

(
24σ − (3 +X)σ2 − 48

)
= σ4

(
2 + 2

√
1−X +X + 2X

√
1−X +X2

)
+ σ3

(
−18(3 +X)− 18(3 +X)

√
1−X − 6

(
1 + 3X + (1−X)

√
1−X

))
+ σ2

(
18× 24 + 18× 24

√
1−X − 6× 18(3 +X)

)
σ
(
−18× 48− 18× 48

√
1−X − 6× 18× 24

)
+ 6× 18× 48

(98)

The expressions in (97) and (98) are indeed the same.

85



Bibliography

[1] Charles W Misner and John A Wheeler. “Classical physics as geometry”. In:
Annals of physics 2.6 (1957), pp. 525–603.

[2] Andrés Anabalón and Julio Oliva. “Four-dimensional traversable wormholes
and bouncing cosmologies in vacuum”. In: Journal of High Energy Physics
2019.4 (2019), p. 106.

[3] Andres Anabalon, Bernard de Wit, and Julio Oliva. “Supersymmetric
traversable wormholes”. In: arXiv preprint arXiv:2001.00606 (2020).

[4] Jerome P Gauntlett, Eoin Ó Colgáin, and Oscar Varela. “Consistent Kaluza-
Klein reductions and supersymmetric AdS solutions”. In: AIP Conference
Proceedings. Vol. 957. 1. American Institute of Physics. 2007, pp. 317–320.

[5] Ingemar Bengtsson. “Anti-de Sitter space”. In: Lecture notes 118 (1998).

[6] Stephen W Hawking and George Francis Rayner Ellis. The large scale struc-
ture of space-time. Vol. 1. Cambridge university press, 1973.

[7] Tomás Ortín. Gravity and strings. Cambridge University Press, 2004.

[8] Roger Penrose. “Asymptotic properties of fields and space-times”. In: Phys-
ical Review Letters 10.2 (1963), p. 66.

[9] R Penrose. “Conformal treatment of infinity. In deWitt, CM, de-Witt, B.(Eds.)
Relativity, groups and topology”. In: Les Houches Summer School. 1963,
pp. 565–587.

[10] Roger Penrose. “Zero rest-mass fields including gravitation: asymptotic be-
haviour”. In: Proceedings of the Royal Society of London. Series A. Mathe-
matical and physical sciences 284.1397 (1965), pp. 159–203.

[11] Jean-Philippe Nicolas. “The conformal approach to asymptotic analysis”.
In: From Riemann to Differential Geometry and Relativity. Springer, 2017,
pp. 571–609.

[12] Edward Witten. “Light rays, singularities, and all that”. In: arXiv preprint
arXiv:1901.03928 (2019).

[13] Galloway. Topological censorship. url: https://www.math.miami.edu/
~galloway/talks/topcen.pdf.

86

https://www.math.miami.edu/~galloway/talks/topcen.pdf
https://www.math.miami.edu/~galloway/talks/topcen.pdf


BIBLIOGRAPHY

[14] Caroll S. THE SCHWARZSCHILD SOLUTION AND BLACK HOLES Cal-
tech lectures website. url: https://ned.ipac.caltech.edu/level5/
March01/Carroll3/Carroll7.html.

[15] Diandian Wang. Traversable Wormholes. http://web.physics.ucsb.edu/
~diandian/resources/worm.pdf. 2019.

[16] Matt Visser. “Traversable wormholes: Some simple examples”. In: Physical
Review D 39.10 (1989), p. 3182.

[17] Enrico Rodrigo. The Physics of Stargates: Parallel Universes, Time Travel,
and the Enigma of Wormhole Physics. Eridanus Press, 2010.

[18] S Hawking. “Space and time warps (public lecture)”. In: (2015).

[19] Michael S Morris, Kip S Thorne, and Ulvi Yurtsever. “Wormholes, time
machines, and the weak energy condition”. In: Physical Review Letters 61.13
(1988), p. 1446.

[20] Homer G Ellis. “Ether flow through a drainhole: A particle model in general
relativity”. In: Journal of Mathematical Physics 14.1 (1973), pp. 104–118.

[21] KA Bronnikov and BRONNIKOV KA. “Scalar-tensor theory and scalar
charge”. In: Acta. Phys. Pol (1973), B4.

[22] Juan Maldacena and Leonard Susskind. “Cool horizons for entangled black
holes”. In: Fortschritte der Physik 61.9 (2013), pp. 781–811.

[23] Ping Gao, Daniel Louis Jafferis, and Aron C Wall. “Traversable wormholes
via a double trace deformation”. In: Journal of High Energy Physics 2017.12
(2017), p. 151.

[24] Juan Maldacena, Alexey Milekhin, and Fedor Popov. “Traversable worm-
holes in four dimensions”. In: arXiv preprint arXiv:1807.04726 (2018).

[25] Ingemar Bengtsson and Patrik Sandin. “Anti-de Sitter space, squashed and
stretched”. In: Classical and Quantum Gravity 23.3 (2006), p. 971.

[26] David Tong. “Lectures on string theory”. In: arXiv preprint arXiv:0908.0333
(2009).

[27] Anamarıa Font and Stefan Theisen. “Introduction to string compactifica-
tion”. In: Geometric and Topological Methods for Quantum Field Theory.
Springer, 2005, pp. 101–181.

[28] Ralph Blumenhagen, Dieter Lüst, and Stefan Theisen. Basic concepts of
string theory. Springer Science & Business Media, 2012.

[29] IY Park, CN Pope, and A Sadrzadeh. “AdS and dS braneworld Kaluza–Klein
reduction”. In: Classical and Quantum Gravity 19.23 (2002), p. 6237.

[30] AC Amaro De Faria et al. “Gravitational waves in braneworld scenarios with
AdS background”. In: Modern Physics Letters A 27.05 (2012), p. 1250022.

87

https://ned.ipac.caltech.edu/level5/March01/Carroll3/Carroll7.html
https://ned.ipac.caltech.edu/level5/March01/Carroll3/Carroll7.html
http://web.physics.ucsb.edu/~diandian/resources/worm.pdf
http://web.physics.ucsb.edu/~diandian/resources/worm.pdf


BIBLIOGRAPHY

[31] John L Friedman, Kristin Schleich, and Donald M Witt. “Topological cen-
sorship”. In: Physical Review Letters 71.10 (1993), p. 1486.

[32] Noah Graham and Ken D Olum. “Achronal averaged null energy condition”.
In: Physical Review D 76.6 (2007), p. 064001.

[33] Gregory J Galloway et al. “Topological censorship and higher genus black
holes”. In: Physical Review D 60.10 (1999), p. 104039.

[34] Gregory J Galloway et al. “The AdS/CFT correspondence and topological
censorship”. In: Physics Letters B 505.1-4 (2001), pp. 255–262.

[35] Erik Curiel. “A primer on energy conditions”. In: Towards a theory of space-
time theories. Springer, 2017, pp. 43–104.

[36] Robert Wald and Ulvi Yurtsever. “General proof of the averaged null energy
condition for a massless scalar field in two-dimensional curved spacetime”.
In: Physical Review D 44.2 (1991), p. 403.

[37] Roger Penrose, Rafael D Sorkin, and Eric Woolgar. “A positive mass theorem
based on the focusing and retardation of null geodesics”. In: arXiv preprint
gr-qc/9301015 (1993).

[38] Eanna E Flanagan and Robert M Wald. “Does back reaction enforce the
averaged null energy condition in semiclassical gravity?” In: Physical Review
D 54.10 (1996), p. 6233.

[39] Fayçal Hammad, Étienne Massé, and Patrick Labelle. “Revisiting wormhole
energy conditions in Riemann-Cartan spacetimes and under Weyl transfor-
mations”. In: Physical Review D 98.12 (2018), p. 124010.

[40] Peter KF Kuhfittig. “Traversable wormholes sustained by an extra spatial
dimension”. In: Physical Review D 98.6 (2018), p. 064041.

[41] PHRS Moraes, W de Paula, and RAC Correa. “Charged wormholes in f (R,
T)-extended theory of gravity”. In: International Journal of Modern Physics
D 28.08 (2019), p. 1950098.

[42] Farook Rahaman et al. “Wormhole inspired by non-commutative geometry”.
In: Physics Letters B 746 (2015), pp. 73–78.

[43] Peter KF Kuhfittig. “A note on wormholes in slightly modified gravitational
theories”. In: arXiv preprint arXiv:1311.3275 (2013).

[44] Remo Garattini and Francisco SN Lobo. “Self-sustained traversable worm-
holes in noncommutative geometry”. In: Physics Letters B 671.1 (2009),
pp. 146–152.

[45] Everton Abreu and Nélio Sasaki. “Noncommutative wormholes and the en-
ergy conditions”. In: arXiv preprint arXiv:1207.7130 (2012).

[46] Ratbay Myrzakulov et al. “Static spherically symmetric solutions in mimetic
gravity: rotation curves and wormholes”. In: Classical and quantum gravity
33.12 (2016), p. 125005.

88



BIBLIOGRAPHY

[47] Lev Davidovich Landau. The classical theory of fields. Vol. 2. Elsevier, 2013.

[48] Larry F Abbott and Stanley Deser. “Stability of gravity with a cosmological
constant”. In: Nuclear Physics B 195.1 (1982), pp. 76–96.

[49] Arthur Komar. “Covariant conservation laws in general relativity”. In: Phys-
ical Review 113.3 (1959), p. 934.

[50] Abhay Ashtekar and Anne Magnon. “Asymptotically anti-de Sitter space-
times”. In: Classical and Quantum Gravity 1.4 (1984), p. L39.

[51] Abhay Ashtekar and Saurya Das. “Asymptotically anti-de Sitter spacetimes:
conserved quantities”. In: Classical and Quantum Gravity 17.2 (2000), p. L17.

[52] Robert MWald and Andreas Zoupas. “General definition of “conserved quan-
tities” in general relativity and other theories of gravity”. In: Physical Review
D 61.8 (2000), p. 084027.

[53] Marc Henneaux and Claudio Teitelboim. “Asymptotically anti-de Sitter spaces”.
In: Communications in Mathematical Physics 98.3 (1985), pp. 391–424.

[54] Vijay Balasubramanian and Per Kraus. “A stress tensor for anti-de Sitter
gravity”. In: Communications in Mathematical Physics 208.2 (1999), pp. 413–
428.

[55] Kip S Thorne, Charles W Misner, and John Archibald Wheeler. Gravitation.
Freeman, 2000.

[56] Robert M Wald. General relativity. University of Chicago press, 2010.

[57] Dileep P Jatkar et al. “Conformal mass in AdS gravity”. In: Physical Review
D 89.12 (2014), p. 124010.

[58] Sebastian Fischetti, William Kelly, and Donald Marolf. “Conserved charges
in asymptotically (locally) AdS spacetimes”. In: arXiv preprint arXiv:1211.6347
(2012).

[59] Chiara Toldo. “Anti-de Sitter black holes in gauged supergravity. Super-
gravity flow, thermodynamics and phase transitions”. PhD thesis. Utrecht
University, 2014.

[60] Sean M Carroll. Spacetime and geometry. Cambridge University Press, 2019.

[61] Ion V Vancea. “Field Line Solutions to the Einstein-Maxwell Equations”. In:
arXiv preprint arXiv:1911.04920 (2019).

[62] Stefano Andriolo et al. “Duality and Axionic Weak Gravity”. In: arXiv preprint
arXiv:2004.13721 (2020).

[63] Eric Poisson. “An advanced course in general relativity”. In: lecture notes at
University of Guelph (2002).

[64] Eric Gourgoulhon. “3+ 1 formalism and bases of numerical relativity”. In:
arXiv preprint gr-qc/0703035 (2007).

89


	Introduction
	Preliminaries
	Einstein-Maxwell theory
	AdS spacetimes
	AdS as solutions to Einstein's field equations
	Conformal Compactification

	Causality
	Causality in Minkowski
	Causality in AdS
	Global Hyperbolicity in AdS


	Wormhole solutions
	Realization of wormholes in the literature
	The peculiar property of traversability
	Notable wormhole constructions in the literature
	Introducing the model
	On the definition of the metric
	Construction and Group Structure
	Distinction from empty AdS
	Arguments concerning the wormholeness


	Higher dimensional origin
	Motivation from String Theory
	A brief review of Kaluza-Klein reduction on a circle

	Embedding the vacuum wormhole solution in 5D
	The Kaluza-Klein ansatz
	The AdS braneworld ansatz


	Traversability and Energy Conditions
	Topological censorship theorem
	Topological censorship in AdS

	Energy conditions
	Geometric and physical interpretation of NEC

	Proof of NEC for the model
	Towards the calculation of the NEC
	Taking a radial null path for simplicity
	Simplified conditions
	Taking a general null path

	Indications for traversability of the model
	Discussion


	Physical Properties
	Conserved Charges in General Relativity
	Towards the application of the AMD formula
	Applying AMD formalism
	Komar mass
	Physical Discussion

	Computing the Electric and Magnetic charges
	Hypersurface normals and induced metrics
	Applying Stokes theorem
	Understanding the field line profiles
	Physical Discussion


	Conclusion
	Conventions
	Dictionary
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E

