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Abstract

In this thesis, there is a study of four-dimensional black holes in type IIA string
theory. The black holes are studied via a dimensional reduction from ten to five-
dimensions through Kaluza-Klein reduction and from five to four-dimensions via a
Scherk-Schwarz reduction. This reduction can partially break the initial N = 8
supersymmetry to N = 6, 4, 2, and 0. Specifically, there is a study of the vector
fields supporting four distinct black holes and an analysis of which black holes survive
which Scherk-Schwarz reduction.



Contents

1 Introduction 4
1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 String theory 7
2.1 Bosonic string theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Superstring theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 String and Einstein frame . . . . . . . . . . . . . . . . . . . . 9
2.3 Branes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 p-branes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 NS5-brane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 F1-brane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.4 D-branes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Compactification 13
3.1 Arraying branes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Kaluza-Klein reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Kaluza-Klein tower . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Dimensional reduction of metric . . . . . . . . . . . . . . . . . 15
3.2.3 Dimensional reduction of the dilaton . . . . . . . . . . . . . . 15
3.2.4 Dimensional reduction of a p-form . . . . . . . . . . . . . . . 16
3.2.5 Dimensional reduction of a pp-wave . . . . . . . . . . . . . . . 16

3.3 String theory dualities . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Scherk-Schwarz reduction . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1 Dimensional reduction of scalar fields . . . . . . . . . . . . . . 18

4 Supergravity 20
4.1 Supersymmetry algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 N = 1 supersymmetry algebra . . . . . . . . . . . . . . . . . . 21
4.1.2 Extended supersymmetry algebra . . . . . . . . . . . . . . . . 21

4.2 Massless multiplets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Dimensional reduction and supersymmetry breaking 24
5.1 Hodge duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 Dimensional reduction of type IIA in string theory . . . . . . . . . . . 25
5.3 Supersymmetry breaking . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3.1 Massless multiplets . . . . . . . . . . . . . . . . . . . . . . . . 27

1



5.3.2 Multiplets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 The mass matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Black holes 33
6.1 Schwarzschild metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Reissner-Nordström metric . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3 Black holes, D-branes and a gravitational wave . . . . . . . . . . . . 35

6.3.1 Compactification of black holes . . . . . . . . . . . . . . . . . 36
6.3.2 Black hole with D4a, D4b, D4c and D0 . . . . . . . . . . . . . . 38
6.3.3 Black hole with D4a, D4b, D2a and D2b . . . . . . . . . . . . . 40
6.3.4 Black hole with D6, D2a, D2b and D2c . . . . . . . . . . . . . . 42
6.3.5 Black hole with D-branes and a pp-wave . . . . . . . . . . . . 44

6.4 Black hole thermodynamics . . . . . . . . . . . . . . . . . . . . . . . 45
6.4.1 Macroscopic entropy . . . . . . . . . . . . . . . . . . . . . . . 46

6.5 Near-horizon geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.5.1 Near-horizon geometry of Reissner-Nordström black hole . . . 47

7 Black holes and supersymmetry breaking 49
7.1 Five-dimensional theory . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2 Supersymmetry breaking and black holes in four-dimensions . . . . . 53

8 Conclusion 56
8.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

A Roots and root generators of five-dimensional lagrangian 57

B The 27-representation of E6 63

C Vector masses from Scherk-Schwarz reduction 65



List of Tables

5.1 Analytical description of the field content of type IIA reduced on a
four-torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Field content of type IIA reduced on a four-torus . . . . . . . . . . . 25
5.3 Analytical description of the field content of type IIA reduced on a

five-torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4 Field content of type IIA reduced on a five-torus . . . . . . . . . . . . 26
5.5 Analytical description of the field content of type IIA reduced on a

six-torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.6 Field content of type IIA reduced on a six-torus . . . . . . . . . . . . 27
5.7 Eigenvalues of mass matrix and corresponding five-dimensional fields

[17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.8 Massless five- and four-dimensional fields in N = 8 supergravity . . . 28
5.9 Massless five- and four-dimensional fields in N = 6 supergravity . . . 29
5.10 Massless five- and four-dimensional fields in N = 4 supergravity . . . 29
5.11 Massless five- and four-dimensional fields in N = 2 supergravity . . . 29
5.12 Eigenvalues of mass matrix and corresponding four-dimensional fields

[14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

C.1 Four-dimensional vectors with corresponding masses from mass
matrix (5.7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

C.2 Four-dimensional vectors with corresponding masses from mass
matrix (5.10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66



Chapter 1

Introduction

A black hole is formed when a star with large enough mass reaches the end of its
lifetime. This is called a progenitor star. To specify, if the mass of the star is bigger
than sixteen solar masses, it will become an unstable neutron star. This unstable
neutron star will collapse immediately to a black hole. But, even if the mass of
the progenitor star is less than sixteen solar masses, it can still end up collapsing
to a black hole, even though it will first become a white dwarf or a stable neutron
star. For example, if the mass of the progenitor star is less than sixteen but more
than eight solar masses, it will collapse to a stable neutron star, which can become
unstable after gaining mass (Tolman-Oppenheimer-Volkoff limit [41], [53], [54]). If
the mass of the progenitor star is less than eight solar masses, it will collapse to a
white dwarf, which in turn may become a stable neutron star, after gaining more
than 1.44 solar mass (Chandrasekhar limit [11], [38]). More information can be
found in [45], [46].

A theory of quantum gravity has to include black holes, thus black holes can be
studied through string theory. In this thesis, black holes will be described using
branes, which are extended objects parallel to a number of spatial dimensions. The
superstring theory perspective is consistent in a ten-dimensional spacetime, hence
several steps are needed to view these ten-dimensional black holes from the perspec-
tive of our four-dimensional world. In addition to that, the second aim of this thesis
is to partially break supersymmetry from N = 8 to N = 6, 4, 2 and 0.

Only extremal BPS black holes will be studied in this thesis. An extremal electrically
charged black hole has the smallest possible mass compatible with its charge. In
supersymmetry algebras when the bound between mass and charge is saturated then
BPS states are obtained. The entropy of extremal or near-extremal black holes has
been studied extensively and some results have even been confirmed microscopically
[8], [23], [35], [52].

To compactify ten-dimensional black holes, the branes that are used to describe
them will be wrapped around an object on the directions of compactification. There
are many ways and many manifolds on which this can be done, but for this thesis,
the focus will be on a Kaluza-Klein reduction on a five-torus and a Scherk-Schwarz
reduction on a circle. A five-torus is a product of five circle reductions.

To perform the reduction from five- to four-dimensions, a mass matrix will be in-
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serted in the theory. The parameters of said matrix are mi, i = 1, 2, 3, 4, which
will become mass parameters in four-dimensions. After the Scherk-Schwarz com-
pactification, some of the vector fields supporting the four-dimensional black hole
may gain mass. However, the fields supporting a specific black hole should remain
massless after supersymmetry breaking for the black hole to survive the twist. It is
of particular interest to see what happens to type IIA black holes compactified from
ten to four-dimensions in N = 8, 6, 4, 2, and 0.

There is a lot of separate literature regarding Scherk-Schwarz reduction and black
holes. However, not many papers combine both ideas. This is the goal of this
thesis. An article studying black holes in type IIB string theory compactified to
five-dimensions was recently written [25]. One can also read more on type IIB black
holes in the thesis [51].

1.1 Outline

In chapter 2, there is a general introduction of string and superstring theory. There
is a discussion of the action of supergravity in ten-dimensions in both Einstein and
string frame. An introduction for D-branes and p-branes, is given. Branes are
essential in constructing black holes.

Chapter 3 introduces the compactification theories of Kaluza-Klein and Scherk-
Schwarz. In addition to that, there is a discussion of dualities between different
D-branes.

In chapter 4 there is a general introduction of supersymmetry algebra and multiplets
in supergravity.

Chapter 5 depicts how to reduce the field spectrum of type IIA string theory from
ten-dimensions on a five-torus and the massless five-dimensional spectrum acquired.
There is also a study on the massless and massive multiplets produced from the
reduction of five-dimensions to four-dimensions with a Scherk-Schwarz twist. A tool
that will prove to be vital when studying the field strengths of black holes is the
Hodge duality discussed in section 5.1.

In chapter 6 there is a review of the Schwarzschild and Reissner-Nordström black
holes. Four additional black holes are shown: D4a/D4b/D4c/D0, D4a/D4b/D2a/D2b,
D6/D2a/D2b/D2c, and D6/NS5/D2/W , and their corresponding compactification.
These reduced black holes are written in both string and Einstein frame. There is a
short summary of black hole thermodynamics and a calculation of the macroscopic
entropy of all four black holes. There is also a summary of near-horizon geometry
of black holes followed by an example.

In chapter 7, there is an analysis on which types of supergravities the previous black
holes survive after a Scherk-Schwartz twist from five-dimensions to four-dimensions
in N = 8, 6, 4, 2 and 0.



1.2 Conventions

The units used, are set such that c = kB = } = 1 and the ten-dimensional Newton
constant is 8πG

(10)
N = κ210. The D-dimensional Newton’s constant is defined in

terms of the Newton constant in ten-dimensions and the volume of the compactified
manifold: (2π)10−DG

(D)
N V10−D = G

(10)
N .

The signature for the Minkowski metric is ηµν = diag(−1, 1, .., 1) and εµ1..µn is the
Levi-Civita symbol and ε̄µ1..µn the Levi-Civita tensor, related by:

ε̄µ1..µn =
√
|g|εµ1..µn . (1.1)

The Hodge star operator acting on an (n− p)-form F :

(∗F )µ1..µn−p =
1

p!
ε̄ν1..νpµ1..µn−pFν1..νp . (1.2)

The Hodge duality will be discussed in detail in section 5.1.



Chapter 2

String theory

Originally, string theory aimed to explain hadrons and their interactions, but it
was later replaced by quantum chromodynamics as a theory for strong interactions.
String theory faced some difficulties in its aspiration of being a theory of hadrons,
such as containing a massless particle with spin two, which is inconsistent with the
hadronic world. This problem ended up giving new perspectives to string theory
as a popular candidate for quantum gravity after Scherk and Schwarz suggested
identifying this mysterious particle as the graviton. This particle obeys the laws
of general relativity at low energies. So far, on-going research in string theory has
provided us with remarkable answers for some problems, but others remain unsolved.

Matter according to string theory consists of tiny loops of string instead of point-
particles. A string is a one-dimensional object. It propagates through space and
time. Polchinski later shed light on D-branes, topological defects on which open
strings can end [43], [44]. They are non-perturbative objects in the weakly coupled
string theories. Every object in a string theory description is a composition of
strings and branes. There are two types of strings, open and closed and their main
difference is that the former has two-endpoints. Any open string theory contains
both open and closed strings, and the particle identified as graviton can be found
in the spectrum of closed strings, thus it is inevitably in all string theories. There
are also other massless fields that appear in string spectra, such as the dilaton φ,
a scalar of particular interest for this thesis. There are five types of string theories
in ten-dimensions, which are related to each other through dualities. Some great
books and lecture notes on string theory are found in [7], [29], [43], [44], and [55].

The main focus in section 2.1 is the bosonic string theory and in 2.2 the superstring
theory. The principal theory examined in this thesis is type IIA string theory which
will be introduced in section 2.2 and in 2.2.1 there is a discussion of its action from
string to Einstein frame. In section 2.3 one can find a detailed description of branes
and specifically the relation between p-branes from supergravity and D-branes from
string theory. These branes will later be needed to construct black holes.
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2.1 Bosonic string theory

Bosonic string theory was developed in the late 1960s and it was the first version
of string theory. The bosonic string theory only includes bosons and it is physically
consistent only in twenty-six dimensions. The bosonic string theory falls short in
its consistency with the physical world because it does not include fermions and
it predicts tachyons, particles with imaginary mass. On the contrary, superstring
theory which includes both fermions and bosons does not include tachyons.

The embedding of a string in spacetime is described by the worldsheet. The world-
sheet is a two-dimensional manifold parameterized by a timelike and a spacelike coor-
dinate, τ , and σ, respectively. The worldsheet coordinates are σα = (τ, σ), a = 0, 1
and the surface sweeped out by the string, defines a map Xµ(σ, τ), µ = 0, .., D − 1
from the worldsheet to Minkowski spacetime. In the closed string description, σ is
periodic and it takes values from zero to 2π and Xµ(σ, τ) = Xµ(σ + 2π, τ). The
spatial coordinate σ of an open string takes values from zero to π. The string tension
is:

T =
1

2πl2s
, (2.1)

where ls is called the characteristic string length scale and α′ = l2s .

A popular form of the string action is the Polyakov action. Assume strings propagate
in a flat background, then the target manifold metric will just be the Minkowski
spacetime metric, ηµν . The Polyakov action, in this case, is:

S = − 1

4πα′

∫
d2σ
√
−ggαβ∂αXµ∂βX

νηµν , (2.2)

where g is the determinant of the worldsheet metric. The symmetries of the Polyakov
action are Poincaré invariance, reparameterization invariance (diffeomorphisms) and
Weyl invariance. A Weyl transformation is a local metric rescaling.

2.1.1 Boundary conditions

Boundary conditions explain how the endpoints of open strings move. There are
Neumann and Dirichlet boundary conditions. The Neumann boundary condition
allows the endpoints of an open string to move freely by imposing:

∂σX
µ = 0 at σ = 0, π. (2.3)

In contrast, the Dirichlet boundary condition keeps the end of the string at a fixed
position in space using the condition:

Xµ = cµ, (2.4)

which can also be expressed as:

δXµ = 0 at σ = 0, π. (2.5)
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2.2 Superstring theory

Superstring theory in ten-dimensions includes both bosons and fermions. Different
versions of superstring theory emerge from M-theory in eleven-dimensions [55]. Even
though the bosonic string theory is unique, there are five perturbative superstring
theories. Type II has both left- and right-moving worldsheet fermions. Heterotic
theories have superstrings with only right-moving fermions. Type I has both closed
strings with left and right-moving fermions and open strings with Neumann bound-
ary conditions [46], [55].

Fermions can either have periodic or antiperiodic boundary conditions. The periodic
boundary condition corresponds to the sector R and the anti-periodic, to the sector
NS. After combining two open strings into a closed string, one can obtain one of the
following combinations: R-R, NS-R, R-NS, NS-NS. These periodic conditions are
chosen independently for left- and right-moving superstrings.

The cases which will be more of interest in this thesis are the type II theories. Type
IIA is non-chiral and type IIB is chiral. The massless bosonic fields are included in
the NS-NS sector (Neveu-Schwarz) and the R-R sector (Ramond). Additionally, the
sectors R-NS and NS-R contain fermions.

The NS-NS sector contains a graviton G (also written as Gµν), a 2-form field called
Kalb-Ramond B2 (also written as Bµν) and a scalar field φ, the dilaton. The R-R
sector is different for the two type II theories. Type IIA has a 1-form potential, C1

(Cµ) and a 3-form C3 (Cµνρ) . Type IIB has a scalar C0, a 2-form potential C2 (Cµν)
and a 4-form C4 (Cµνρσ) [55].

2.2.1 String and Einstein frame

In this thesis different configurations of black holes will be studied. These black
holes should be able to be expressed in both string and Einstein frame. The same is
true for type IIA string theory. The action for type IIA in ten-dimensions, in string
frame is [7], [13]:

SIIA =
1

2κ210

∫
d10x

√
−g(s)[e−2φ(R(s) + 4|dφ|2 − 1

2

1

3!
|H3|2)

−1

2

1

2!
|F2|2 −

1

2

1

4!
|F̃4|2] +

1

4κ210

∫
dC3 ∧ dC3 ∧B2,

(2.6)

where F2 = dC1, F̃4 = dC3 − dB2 ∧ C1 and H3 = dB2. The action in the Einstein
frame in ten-dimensions can be obtained by substituting the metric, the transformed
Ricci scalar and the p-forms into the string frame (2.6).

The metric for the string frame will be denoted by g
(s)
µν and the metric for the Einstein

frame by g
(E)
µν . The relation between them is given by:

g(s)µν = g(E)
µν e

4
D−2

φD , (2.7)

where φD is the D-dimensional dilaton. This relation originates from the Weyl
rescaling formula. The following relation between the square root of the determi-
nant of the two metrics is found by first calculating the relation between the two



CHAPTER 2. STRING THEORY 10

determinants in ten-dimensions and then taking their square root:√
−g(s) =

√
−g(E)e

5
2
φ10 , (2.8)

where φ10 is the ten-dimensional dilaton.

The notation which will be used for a p-form field strength is:

1

p!
|Fp|2 =

1

p!
Fµ1..µpF̄ν1..νpg

(s)µ1ν1 ..g(s)µpνp , (2.9)

where F̄ is the complex conjugate of F . The relation between the fields in Einstein
|Fp|E and string |Fp|s frame, is obtained when substituting the metric from (2.7) in
ten-dimensions:

|Fp|2s = (e−
1
2
φ10)p|Fp|2E (2.10)

The Ricci scalar can be calculated in string frame in terms of the Ricci scalar in
Einstein frame using the transformation between the two metrics g(s) → g(E)e2h,
which gives the following relation [9]:

R(s) = e−2h(R(E) − 2(D − 1)∇2(h)− (D − 2)(D − 1)∂µh∂
µh). (2.11)

To find the ten-dimensional Ricci scalar, one has to substitute D = 10 and h = 2 φ10
D−2

in (2.11), to obtain:

Rs = e−
1
2
φ10(RE − 9/2∇2φ− 9/2∂µφ∂

µφ) (2.12)

Finally, one should substitute (2.8), (2.10), and (2.12) in (2.6) to obtain the Einstein
frame of type IIA ten-dimensional action:

SIIA =
1

2κ210

∫
d10x

√
−g(E)[R(E) − 1

2
|dφ|2 − 1

2

1

3!
e−φ|H3|2

−1

2

1

2!
e

3
2
φ|F2|2 −

1

2

1

4!
e

1
2
φ|F̃4|2] +

1

4κ210

∫
dC3 ∧ dC3 ∧B2

(2.13)

2.3 Branes

Branes are hypersurfaces which are fundamental in both supergravity and string
theory. In supergravity, one encounters p-branes, which are the generalized version
of Dp-branes from string theory. In both cases, p denotes the spatial dimension
of the object. Another example of a p-brane is the NS5 and F1-branes, which are
S-dual to D5 and D1, respectively. Dualities will be discussed later in the thesis in
section 3.3.

2.3.1 p-branes

The p-branes are solutions to the actions of type IIA and IIB. The p-brane in
Minkowski spacetime in D-dimensions causes the Lorentz group decomposition
SO(1, D − 1) → SO(1, p) × SO(D − p − 1), where (D − p − 1) are the directions
which have rotational symmetry. These directions are perpendicular to the brane.
One can use spherical coordinates in these directions. This decomposition allows the
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coordinate system in ten-dimensions, to be written in terms of time, p-coordinates
on which the p-brane lies and (9− p) spherical coordinates [55]. In this thesis only
extremal branes will be used.

The extremal p-branes are 1/2 BPS solutions, which means their presence breaks
half of supersymmetry. The metric of extremal p-branes in string frame is:

ds2 = H−1/2p [−dt2 + dx21 + ..+ dx2p] +H1/2
p [dr2 + r2dΩ2

8−p]

= H−1/2p [−dt2 + dx21 + ..+ dx2p] +H1/2
p [dx2p+1 + ..+ dx29]

eφ = H
3−p
4

p

C0..p = H−1p − 1.

(2.14)

The harmonic function is given by Hp = 1 + Qp
r7−p

, where Qp is the p-brane charge
and

r2 = x2p+1 + ..+ x29. (2.15)

The charge can also be written as the multiplication of the charge of a single brane
with the number of p-branes: cp Np. A C0..p is a (p+ 1)-form potential that belongs
in the R-R sector and φ is the dilaton. There are restrictions on the value that p can
take depending on which type II the theory is. Type IIA only contains even values
of p and hence odd potentials and the opposite happens at type IIB. The branes
NS5 and F1 are exempt from this rule.

The (p + 1)-potential couples to the p-brane electrically. The field strength of the
(p + 1)-form potential is Fp+2 = dCp+1. The Hodge star operator takes Fp+2 to
F ′D−p−2. F

′ denotes the dualized field strength. By definition F ′D−p−2 = dCD−p−3,
which is magnetically coupled to a (D− p− 4)-brane. The p-brane and (D− p− 4)-
brane are related from this duality [46].

The p-brane has an event horizon in r = 0 in the isotropic coordinates. [7].

2.3.2 NS5-brane

The 2-form Bµν from the Neveu-Schwarz sector couples to F1 electrically and to NS5

magnetically. Both of these branes, just like the potential Bµν appear in both type
IIA and type IIB string theories. The NS5-brane breaks half of supersymmetry.
The metric of NS5 brane parallel to the spatial directions x1, .., x5 in string frame
is given by:

ds2 = [−dt2 + dx21 + ..+ dx5] +Hns5[dx
2
6 + ..+ dx29]

eφ = H
1/2
ns5

Hµνρ =
1

2
εµνρλ∂λHns5, µ, ν, ρ, λ = 6, 7, 8, 9[7]

= −1

2
ε̄ λ
µνρH

−1
ns5∂λHns5, µ, ν, ρ, λ = 6, 7, 8, 9[44]

(2.16)

The harmonic function is Hns5 = 1 + Qns5
r2

, and

r2 = x26 + ..+ x29. (2.17)



2.3.3 F1-brane

The metric of a fundamental string F1, parallel to the spatial direction x1 in string
frame is given by:

ds2 = H−11 [−dt2 + dx21] + [dx22 + ..+ dx29]

eφ = H
−1/2
1

Hµ01 = ∂µH
−1
1 , [7]

(2.18)

where the harmonic function is H1 = 1 +
Qf1
r6

, and

r2 = x22 + ..+ x29. (2.19)

2.3.4 D-branes

In string theory when the dynamics of open strings are discussed, then D-branes
emerge. Both open and closed strings are described by the Polyakov action, with the
difference that the open string has endpoints, thus boundary conditions. Consider
the following parametrization for the spatial coordinate of a string:

σ ∈ [0, π]. (2.20)

In the following example, the endpoints of an open string lie in a Dp-brane, a
(p+ 1)-dimensional hypersurface:

∂σX
α = 0 for α = 0, .., p

XI = cI for I = p+ 1, .., D − 1.
(2.21)

A D-brane is a dynamical object, which is infinite in space [28] [29], [30], [55].



Chapter 3

Compactification

Compactification is the reduction of a number of spatial dimensions on a compact
manifold. Different manifolds can either preserve all supersymmetry or a fraction
of it. For example, an untwisted n-torus, also denoted as T n, preserves all super-
symmetry and a Calabi-Yau manifold can preserve supersymmetry only partially.
Kaluza-Klein is such a method of compactifying a theory. An intuitive idea on how
to compactify spacetime directions is that they can be wrapped on a circle with a
radius so small that it cannot be observed. For example, a two-dimensional plane
wrapped in a circle becomes a cylinder. If this cylinder is wrapped again on a circle
it will become a torus. An observer from far away will only see a line when looking
at the cylinder and a circle when looking at the torus. It appears that the other
dimensions are hidden from him.

To calculate the compactification of black holes, one needs to know how arraying
branes works. This is discussed in detail in section 3.1. After that, a theoretical
background is given for Kaluza-Klein in section 3.2, and Scherk-Schwarz in 3.4. In
section 3.3 the dualities between different types of string theories are discussed.

3.1 Arraying branes

A solution of a theory in ten dimensions that obeys periodic boundary conditions,
can also be a solution to the compactified theory. Assume that periodicity is obeyed
in the y-direction such that y ∼ y + 2πnR, n ∈ Z. To compactify on a Dp-brane
which is pointlike in the y-direction, one must replace this Dp-brane with an array
of BPS branes to satisfy the periodicity. The array is placed in the transverse y-
direction and the distance of the branes in the array is 2πR. This lattice has a
harmonic function:

Hp = 1 +
∑
i

Qp

|~r − ~ri|7−p
, (3.1)

where the brane labeled as i, has a respective position ~ri.

Branes have a repulsive force from gauge forces and an attractive force from gravi-
tational and dilatonic forces. These forces cancel against each other for BPS branes,
bringing an array of BPS branes to a static equilibrium.
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As discussed, the radii of a circle on which extra dimensions are wrapped on should
be very small. This allows the summation to be replaced with an integral and to
generalize, assume that there are more than one transverse directions. Thus the
integral will have measure dn~y, where n are the transverse directions on the Dp-
brane. Thus, the harmonic function becomes:

Hp = 1 +
Qp

r7−p−n
. (3.2)

Instead of arraying branes, it is also mentioned in the literature as smearing of
branes [6], [21], [51].

3.2 Kaluza-Klein reduction

Assume a (D + 1)-dimensional theory, with coordinates xµ̂ that decompose as the
coordinates xµ of a D-dimensional Minkowski spacetime and a coordinate y on a
circle. Then the higher-dimensional theory coordinates can be written as xµ̂ =
(xµ, y), where µ = 0, .., D − 1. The coordinate on the circle y, has a periodicity
y ∼ y + 2πnR, where R is the circle radius. This allows the (D + 1)-dimensional
metric to be rewritten in terms of the D-dimensional metric:

dŝ2 = e2αDφds2 + e2βDφ(dy +Aµdxµ)2, (3.3)

where αD, βD are constants which depend on the dimension of the compactified
theory in Einstein frame and they remain constant in all dimensions in string frame.

3.2.1 Kaluza-Klein tower

The example of a massless scalar can be used to show what a Kaluza-Klein tower
is. A massless scalar on a (D + 1)-dimensional space obeys:

∂µ̂∂µ̂φ̂ = 0 (3.4)

and the relation between the (D + 1)-dimensional to a D-dimensional scalar is:

φ̂(xµ, y) =
∑
z∈Z

φz(x
µ)e

izy
R (3.5)

By substituting (3.5) to (3.4), the following equation is obtained:

∂µ∂µφz −
z2

R2
φz = 0, (3.6)

where z ∈ Z. From the above equation, it can be seen that the lower-dimensional
scalars have masses |z|

R
, and that the scalar corresponding to z = 0 is massless.

This is called the Kaluza-Klein tower. These masses depend on the radius of the
compactified dimensions, which is assumed to be very small leading to very large
masses. In fact, these masses are so large that the massive modes can be neglected.
Thus one can only consider the case for z = 0 corresponding to a massless scalar.
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3.2.2 Dimensional reduction of metric

Using the coordinates xµ̂ = (xµ, y), the higher dimensional metric gD+1
µ̂ν̂ is reduced

to the lower dimensional metric gDµν , a vector Aµ given by gDµy and a scalar gDyy. This
can be shown using the Kaluza-Klein ansatz:

gD+1
µ̂ν̂ =

[
e2αDφgDµν + e2βDφAµAν e2βDφAµ

e2βDφAν e2βDφ

]
, (3.7)

where gD+1
µ̂ν̂ is the (D + 1)-dimensional metric and gDµν is the D-dimensional metric.

The parameters α and β are βD = −(D− 2)αD in Eistein frame or α = 0 and β = 1
in string frame.

In the rest of this chapter, all higher dimensional objects will be denoted with a hat,
or their dimension will be specified. Using the Kaluza-Klein ansatz (3.7) in Einstein
frame to find αD for each separate circle, one has to consider the relation between
the higher and lower dimensional Ricci scalars:

R̂ = e−2αDφR + .. (3.8)

and the relation between the determinant of the higher and lower dimensional met-
rics: √

−ĝ =
√
−ge

2βD+2αDD

2
φ (3.9)

The value of αD in D-dimensions has to satisfy
√
−ĝR̂ =

√
−gR after substituting

the relation between βD and αD in D-dimensions. Thus, αD is [13], [34]:

α2
D =

1

2(D − 1)(D − 2)
. (3.10)

3.2.3 Dimensional reduction of the dilaton

Now that some familiarity has been established with the Kaluza-Klein ansatz, the
dimensions will be dropped from the metrics gD+1, and gD and instead denote them
as ĝ and g, respectively. The dimensions will only be denoted from now on if they
play an important part in the rest of the formula. From (3.7), the relation between
the determinant of the (D + 1)-dimensional metric with the D-dimensional metric
in string frame is: √

−ĝ =
√
−geφ. (3.11)

It is important to establish a relation between the D- and ten-dimensional dila-
tons. This can be done using the ten-dimensional metric. There is a change in the
Newton constant, which can be balanced out by replacing the value for the dila-
ton, specifically in the case of the ten-dimensional dilaton the following equation
becomes:

e−2φD =
√
g10DD..g

10
99e
−2φ10 , (3.12)

where φD is the D-dimensional dilaton, and φ10 the ten-dimensional dilaton.



CHAPTER 3. COMPACTIFICATION 16

3.2.4 Dimensional reduction of a p-form

Potentials in (D + 1)-dimensions can be written as:

F̂n = dĈn−1, (3.13)

where F̂n is an antisymmetric tensor field. The y-coordinate cannot occur more
than once in the indices of the field potential (at most once), which decomposes the
(D+1)-dimensional potential into two reduced fields, independent of the coordinate
y. The initial (n− 1)-form potential is written as:

Ĉn−1(x, y) = Cn−1(x) + Cn−2(x) ∧ dy. (3.14)

Then the fiend strength is written as F̂n = dCn−1 + dCn−2 ∧ dy. Dimensional
reduction gives terms such as tensors coupled to Kaluza-Klein vector fields, thus
giving the field strength with a Chern-Simons correction:

F̂n = Fn + Fn−1 ∧ (dy +A), (3.15)

where A is the Kaluza-klein potential from the dimensional reduction of the metric
and Fn = dCn−1 − dCn−2 ∧ A, Fn−1 = dCn−1 [50].

The (D+1)-dimensional field strength will be reduced toD-dimensional field strengths
and when they are inserted in a D-dimensional lagrangian term in Einstein frame,
the reduced fields can be expressed as:
√
−ĝ
n!

F̂ 2
n =

√
−g
n!

e(−2αDφ)ne2αDφF 2
n −

√
−g

(n− 1)!
e(−2αDφ)(n−1)e2αDφe−2βDφF 2

n−1

=

√
−g
n!

e(−2αDφ)ne2αDφF 2
n −

√
−g

(n− 1)!
e2αD(−n+D)φF 2

n−1

(3.16)

3.2.5 Dimensional reduction of a pp-wave

A (D + 1)-dimensional plane-fronted gravitational wave that has parallel rays (pp-
wave) with D > 3 has the following metric [40]:

dŝ2 = (−1 +K)dt2 + d~x2 + (1 +K)dy2 −Kdydt−Kdtdy. (3.17)

The metric of the pp-wave in the string frame for the use of this thesis, has the
same format as in (3.17), but it is delocalized at the spatial direction which will
be compactified on a circle after the Scherk-Schwarz reduction. To find the D-
dimensional metric of the pp-wave, one has to use the Kaluza Klein ansatz:

ĝµν =

gµν + e2φAµAν e2φAµ

e2φAν e2φ

 =

ĝ00 ĝ0y

ĝy0 ĝyy

 (3.18)

The following relations are obtained:

ĝyy = 1 +K = e2φ

ĝ0y = −K = e2φA0 = (1 +K)A0

ĝ00 = −1 +K = g00 + e2φA0A0

= g00 + (1 +K)(−K/(1 +K))2

(3.19)
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Hence g00 = −1/(1 +K). The D-dimensional metric is:

ds2 = −(1 +K)−1dt2 + d~x2, (3.20)

where the harmonic function of the pp-wave is:

HK = 1 +K(r) (3.21)

3.3 String theory dualities

The different types of string theories mentioned in section 2.2 are related to each
other with dualities. These dualities are S-duality, T-duality, and U-duality. Type I
is related to type SO(32) heterotic through S-duality, the latter is related to E8×E8

heterotic through T-duality. E8×E8 heterotic and Type IIA are related to M-theory
via S-duality and the latter is related to type IIB via T-duality. Lastly, type IIB
theory has the property of being related to itself via S-duality, this means that it can
be proven that two string theories of type IIB string theory with coupling constant
gs and 1/gs are equivalent [46]. Even though this is a property mostly studied for
type IIB string theory, it is also important to keep in mind when studying type IIA
as well, since branes such as F1, NS5 are present in both theories. This is also true
for background fields such as W , which was introduced in 3.2.5 and it is used in the
black hole in 6.3.5. Their difference, as mentioned before is that type IIA has only
even branes from D0 to D8, and Type IIB has only odd branes from D−1 to D9.

S-duality sends D1 to F1, D5 to NS5, and vice versa. D3 remains unchanged under
this transformation and the case of D7 is examined in [20] , but it is not needed in
this thesis.

T-duality is applied in the coordinates on which a Dp-brane is tangent or trans-
verse, the result will be a Dp−1-brane or Dp+1-brane, respectively [19]. This duality
switches the chirality of right-moving fermions, which allows calculations from type
IIA, compactified on a circle of radius R to be T-dual to type IIB theory compacti-
fied on a radius α′/R [44]. U-duality is the symmetry group including both S-duality
and T-duality [26], [39].

T-duality can be seen in the string mass. Assume a dimensional reduction was
applied in coordinate y, resulting in the quantization of the string momentum in the
direction of y-coordinate:

Py =
z

R
, z ∈ Z. (3.22)

The compact direction obeys y ∼ y + 2πR, where R is the circle radius on which
it was compactified. This means that there is a winding around this direction
y → y + 2πnR, n ∈ Z. Both the winding number n and quantized momentum
contribute to the string mass which is:

M2 = α′[(
z

R
)2 + (

nR

α′
)2] + 2NL + 2NR − 4, (3.23)

with the restriction that the levels of left- and right-moving oscillations NL, NR :
NR − NL = zn. Both the restriction and (3.23) are invariant when interchanging
n with z and R with α′/R. Regarding open strings, T-duality can swap Neumann
with Dirichlet boundary conditions [4], [28].
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3.4 Scherk-Schwarz reduction

Contrary to the Kaluza-Klein reduction, the Scherk-Schwarz reduction [47], [48]
makes use of symmetries in the uncompactified theory to give masses in the reduced
dimension. In general, the introduction of the masses in the theory comes from the
y-dependence of the fields in the higher-dimensional theory. Usually the fields in
non-trivial representations of the group G will gain mass.

Consider a theory coupled to gravity with a generic field ψ in (D + 1)-dimensions,
which possesses a global symmetry g ∈ G, and g acts on this generic field as g(ψ).
The ansatz for the Scherk-Schwarz reduction is:

ψ(xµ, y) = g(y)ψ(xµ), (3.24)

where g(y) is a symmetry transformation. A Scherk-Schwarz reduction on the scalars
leads to a scalar potential.

The group element g is written as an exponential of M and the y-coordinate. M is
an element of the lie algebra of group G, and it is proportional to the mass matrix
of the lower-dimensional theory:

g(y) = exp(
My

2πR
). (3.25)

The goal is, to begin with a generalized field that depends on the compact direction
and by using the symmetry of the higher-dimensional theory, to get the equations
of motion in the lower-dimensional theory which are independent of this direction.
The transformation depending on the compact direction is not periodic but by going
around the circle of the compact coordinate, a twist is generated which is a power
of the monodromy, M . The monodromy M is g(2πR)g−1(0), for M∈ G:

M = exp(M). (3.26)

The matrix M is independent of y [15], [27].

Instead of applying the Scherk-Schwarz reduction on a circle, it is also possible to
obtain D-dimensional theory from an initial (D+E)-dimensional theory, where the
E-dimensional manifold is compact. This is a generalization of what was described
above, hence a symmetry from the higher dimensional theory is used again to define
the y-dependence of the fields and transformation laws. To be exact, this dependence
should be chosen in a way that the fields define continuous fiber bundles on the E-
dimensional space. The coordinates of y have to be related to an E-dimensional
lie group. This dependence of the coordinate y, as expected from the previous
description, gives mass terms in the lower dimensional theory of D-dimensions. [47].

3.4.1 Dimensional reduction of scalar fields

The difference between applying a Kaluza-Klein compactification (M = I) on a
circle and then gauging the resulting global symmetry, and doing a Scherk-Schwartz
compactification is that in the latter case, a potential appears which can be applied
to the theory to give mass to scalar fields. The former case also has a potential
introduced to satisfy specific requirements but it does not occur naturally [60].
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The (D + 1)-dimensional scalars take values in the coset G/K, where usually K
is a maximal compact subgroup of G and G a non-compact group. G denotes the
global symmetry of the theory and K the local symmetry. Then these scalars can
be represented by a vielbein V(x) which transforms as:

V → k(x)Vg, (3.27)

where k and g are elements of K and G, respectively. Let the vielbein be a real
matrix and η a K-invariant metric. Define H as:

H = VTηV , (3.28)

and transforms as:
H → gTHg, (3.29)

then H is K-invariant. The kinetic term of the scalar fields is proportional to:

tr[∂µ̂H−1∂µ̂H], (3.30)

and the dimensional reduction gives the potential, from the ansatz H(φ(x), y) =
MT (y)H(φ(x))M(y):

V = e
6

(D−1)(D−2)
φtr[M2 +MTHMH−1], (3.31)

where T denotes either the transpose or Hermitian conjugate, depending on the
maximal compact subgroup of the theory [15].



Chapter 4

Supergravity

Supergravity combines supersymmetry and general relativity. In supersymmetry
theories one encounters gravitinos that have spin 3/2 and they are the supersym-
metric fermionic partners of gravitons. In fact, supersymmetry provides a unified
description of fermions and bosons in a supermultiplet. Supergravity actions can
be viewed as the low-energy effective theories of string theory. In supersymmetry
theories, the number of supersymmetries and gravitinos contained in the theory are
the same. Extended supersymmetry theories have N > 1.

In section 4.1 there is an overview of the structure of the supersymmetry algebra
and in section 4.2 there is a detailed account of massless multiplets which will be
needed later on.

4.1 Supersymmetry algebra

An operatorQ that generates supersymmetric transformations can transform fermionic
to bosonic states and vice-versa. This is an anti-commuting spinor generatorQA

i , Q̄
A
i′ ,

A = 1, ..,N . In addition the Poincaré generators P µ,Mµν are needed to describe
the supersymmetry algebra.

Define:

(σµν) ji =
i

4
(σµσ̄ν − σν σ̄µ) ji

(σ̄µν) j
′

i′ =
i

4
(σ̄µσν − σ̄νσµ)i

′

j′ ,
(4.1)

where σµ = (I, ~σ), σ̄µ = (I,−~σ), I is the identity matrix and ~σ are the Pauli
matrices.
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4.1.1 N = 1 supersymmetry algebra

The commutation relations from the Poincaré algebra are known [33], [58] and the
additional ones needed to describe the supersymmetry algebra are:

[Qi, P
µ] = [Q̄i′ , P µ] = 0

[Qi,M
µν ] = (σµν) ji Qj

{Qi, Qj} = 0

{Qi, Q̄j′} = 2(σµ)ij′Pµ,

(4.2)

where Q†i = Q̄i′ and (σµQ̄)†i = (Qσµ)i′ . The indices i, j belong in the fundamental
representation and i′, j′ in the conjugate representation. The last commutator to
consider is the one for Qi with the generators of internal symmetry, which is zero
except when considering R-symmetry. R-symmetry is the U(1)automorphism of the
supersymmetry algebra. The commutation relations between them are:

[Qi, R] = Qi

[Q̄i′ , R] = −Q̄i′ .
(4.3)

Define pµ as the operator eigenvalues of P µ.
To find the massless multiplets, let pµ = (E, 0, 0, E), thus:

{Qi, Q̄j′} = 4E

[
1 0
0 0

]
ij′
. (4.4)

Resulting in Q2 = 0.

For massive supermultiplets, let pµ = (m, 0, 0, 0), thus:

{Qi, Q̄j′} = 2mIij′ . (4.5)

4.1.2 Extended supersymmetry algebra

For extended supersymmetry algebras, the spinor generators also need additional
labels A,B = 1, 2, ..,N and the only commutation relations that change are:

{QA
i , Q̄j′B} = 2(σµ)ij′Pµδ

A
B

{QA
i , Q

B
j } = εijZ

AB,
(4.6)

where εij is defined at section 1.2 and it will be discussed further in (5.1). ZAB are
antisymmetric central charges. They commute with all generators.

To obtain the massless supermultiplets, again let pµ = (E, 0, 0, E), thus:

{QA
i , Q̄j′B} = 4E

[
1 0
0 0

]
ij′
δAB. (4.7)

That leads to QA
2 = 0 and from (4.6), ZAB = 0. The massless multiplets have 2N

states.
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The same applies for massive multiplets, let pµ = (m, 0, 0, 0), thus:

{QA
i , Q̄j′B} = 2m

[
1 0
0 1

]
ij′
δAB. (4.8)

There are two distinct cases regarding central charges. They can either be zero,
meaning that half generators will simply vanish, QA

2 = 0. The multiplets for this
case have 22N states. In the other case the central charges are non-zero. If ZAB is
non-zero, then for even N it can be expressed as:

ZAB =



0 q1 0 0 ...
−q1 0 0 0 ...

0 0 0 q2 ...
0 0 −q2 0 ...
...

...
...

...
. . .

0 qN
2

−qN
2

0


. (4.9)

In this case, there is a bound for m ≤ 1
2N tr(

√
Z†Z). The states for which, m takes

the minimum value are called BPS states. In this case, the multiplets have 2N states
[18], [31], [37].

4.2 Massless multiplets

Multiplets are irreducible representations of the supersymmetry algebra and they
contain both fermions and bosons. There are equal numbers of bosonic and fermionic
degrees of freedom on-shell in any supersymmetry algebra of the following form:
{Q,Q} = P . In the off-shell case, this equality is not always guaranteed. Particles
that belong in the same supermultiplet have the same weak isospin, electric charges,
and color degrees of freedom since supersymmetry generators commute with the
generators of gauge transformations in supersymmetry algebra [37].

There are several types of massless multiplets. Define s as the maximum spin in
the representation. In four-dimensions, there is the graviton multiplet(s = 2) which
contains a graviton, N gravitinos, and in extended supergravity theories, additional
fields. The vector (gauge) multiplet (s = 1) exists only for supergravities less or equal
than four and there are also the chiral multiplets and hypermultiplets (s = 1/2).
Chiral multiplets exist in N = 1 and hypermultiplets in N = 2, they do not exist
for higher supergravities.

Assume Pµ are the momentum operators. The massless representations Pµ satisfy
P 2 = 0. In N = 2 supergravity, the s = 2 multiplet contains a graviton, two
gravitinos, and a vector. Additionally, the s = 3/2 multiplet contains a gravitino,
two vectors, and a spin 1/2 fermion, the s = 1 multiplet contains a vector, two spin
1/2 fermions, and 1+1 scalars. Finally, the s = 1/2 multiplet contains two spin 1/2
fermions and 2 + 2 scalars.

In N = 4 supergravity theory, the s = 2 multiplet contains a graviton, four grav-
itinos, six vectors, four spin 1/2 fermions and 1 + 1 scalars. The s = 3/2 multiplet



contains a gravitino, four vectors, 6 + 1 spin 1/2 fermions and 4 + 4 scalars. The
s = 1 multiplet contains a vector, four spin 1/2 fermion and six scalars

In N = 6 supergravity, the s = 2 multiplet has a graviton, six gravitinos, 15 + 1
vectors, 20 + 6 spin 1/2 fermions and 15 + 15 scalars. The s = 3/2 multiplet has
one gravitino, six vectors, fifteen spin 1/2 fermions, and twenty scalars.

In N = 8 supergravity, the s = 2 multiplet contains one graviton, eight gravitinos,
twenty-eight vectors, fifty-six spin 1/2 fermions and seventy scalars [18].

One can use superalgebra to construct the particle content of supersymmetric the-
ories. In non-supersymmetric particle physics, particles are usually defined to be
irreducible representations of the Poincare algebra. Since the Poincaré algebra is
a subalgebra of the supersymmetry algebra, any irreducible representation of the
supersymmetry algebra is a representation of the Poincaré algebra.



Chapter 5

Dimensional reduction and
supersymmetry breaking

In this chapter dimensional reductions will be discussed in further detail. In section
5.2, there will be an analysis of reductions of the field content of type IIA. In section
5.3 the reduction of the five-dimensional theory on a circle using the Scherk-Schwarz
mechanism is discussed giving the number of massless and massive fields, which
can be grouped in multiplets. Finally, in section 5.4 the mass matrices and their
corresponding monodromy are shown.

5.1 Hodge duality

The Levi-Civita symbol is a completely antisymmetric object with the property:

εµ1..µn =


+1 if µ1µ2..µn is an even permutation of 01..(n− 1)
-1 if µ1µ2..µn is an odd permutation of 01..(n− 1)

0 otherwise
(5.1)

The Levi-Civita symbol εµ1..µn is related to the Levi-Civita tensor ε̄µ1..µn by:

ε̄µ1..µn =
√
|g|εµ1..µn (5.2)

The Levi-Civita symbol is called a symbol because it does not transform as a tensor
under coordinate transformations, it only behaves as a tensor in flat spacetime in
inertial coordinates.

The Hodge star operator is defined as a mapping from p-forms to (n− p)-forms:

(∗F )µ1..µn−p =
1

p!
ε̄ν1..νpµ1..µn−pFν1..νp . (5.3)

By taking the Hodge dual twice:

∗ ∗F = (−1)s+p(n−p)F, (5.4)

where s in the amount of negative eigenvalues of F . Most of the definitions in this
paragraph can be found in the book [10].
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5.2 Dimensional reduction of type IIA in string

theory

As mentioned in chapter 2, type IIA string theory in ten-dimensions has a field
spectrum Gµν , Bµν , φ from the NS-NS sector and Cµ and Cµνρ from the R-R sector.
The spacetime coordinates in ten-dimensions are µ, ν, ρ = 0, 1, .., 9. To compactify
n-dimensions of this initial theory, one can use the methods described in chapter
3 and perform n different reductions on a circle S1 × S1 × .. × S1 or a reduction
on an n-torus. Upon compactification on an n-torus, the lower-dimensional theory
obtained is a (10 − n)-dimensional theory containing the reduced fields. To find
these reduced fields, one ought to keep in mind that the (D+ 1)-dimensional metric
reduced on a circle gives a D-dimensional metric, 1-form and scalar. In addition a
(D + 1)-dimensional p-form produces a D-dimensional p-form and an (p − 1)-form
and the (D + 1)-dimensional scalar reduces to a D-dimensional scalar.

The six-dimensional theory is obtained via a compactification of the ten-dimensional
theory on a four-torus and the results of the compactification are shown in table
5.1 analytically. To reduce the graviton one should keep in mind that the graviton
also represents the string metric. The reduction of the graviton Gµν produces a
metric, four vectors and ten scalars in six-dimensions. The 2-form Bµν decomposes
into a six-dimensional 2-form, four vectors and six scalars, and the ten-dimensional
scalar φ leads to a six-dimensional scalar. The R-R fields Cµ and Cµνρ reduce to four
scalars each, a vector and six vectors, respectively. The 3-form Cµνρ also reduces to
four 2-forms and a 3-form.

Type IIA on T 4 Gµν Bµν φ Cµ Cµνρ Total
scalars 10 6 1 4 4 25
1-form 4 4 1 6 15
2-form 1 4 5
metric 1 1
3-form 1 1

Table 5.1: Analytical description of the field content of type IIA reduced on a
four-torus

The compactification from the initial ten-dimensional theory on a four-torus leads
to a theory in six-dimensions, which is subject to dualities explained in section 5.1.
The 3-forms from table 5.1 are dual to 1-forms. The final theory is shown at table
5.2.

Type IIA on T 4 Total
scalars 25
1-form 16
2-form 5
metric 1

Table 5.2: Field content of type IIA reduced on a four-torus
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The compactification of a ten-dimensional theory on a five-torus provides a collec-
tion of fields in the five-dimensional perspective depicted in table 5.3. The ten-
dimensional metric provides the lower-dimensional theory with fifteen scalars, five
vectors, and a metric. From the NS-NS sector 2-form there are ten scalars, five
vectors and one 2-form in five-dimensions and the ten-dimensional scalar reduces to
a five-dimensional scalar. The 1-form becomes five scalars and one 1-form from the
five-dimensional perspective and the 3-form in ten-dimensions reduces to ten scalars
and vectors, five 2-forms and one 3-form.

Type IIA on T 5 Gµν Bµν φ Cµ Cµνρ Total
scalars 15 10 1 5 10 41
1-form 5 5 1 10 21
2-form 1 5 6
metric 1 1
3-form 1 1

Table 5.3: Analytical description of the field content of type IIA reduced on a five-
torus

The dualities in the field content of type IIA in five-dimensions are between 2-forms
and vectors, and scalars and 3-forms, resulting in forty-two scalars and twenty-seven
vectors shown in table 5.4.

Type IIA on T 5 Total
scalars 42
1-form 27
metric 1

Table 5.4: Field content of type IIA reduced on a five-torus

The last field reduction shown in this chapter is on a six-torus, where the higher-
dimensional metric reduces to a four-dimensional metric, six vectors and twenty-one
scalars. The 2-form reduces to fifteen scalars, six vectors and one 2-form and the
ten-dimensional scalar to a four-dimensional scalar. The 1-form from the R-R sector
produces six scalars and one 1-form. In addition, the 3-form from the R-R sector
decomposes to twenty scalars, fifteen vectors, six 2-forms and one 3-form in four-
dimensions. The fields acquired are shown analytically at table 5.5.

Type IIA on T 6 Gµν Bµν φ Cµ Cµνρ Total
scalars 21 15 1 6 20 63
1-form 6 6 1 15 28
2-form 1 6 7
metric 1 1
3-form 1 1

Table 5.5: Analytical description of the field content of type IIA reduced on a six-
torus
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In four-dimensions 2-forms are dual to scalars and the 3-form is the cosmological
constant. The final four-dimensional theory in shown at table 5.6.

Type IIA on T 6 Total
scalars 70
1-form 28
metric 1

Table 5.6: Field content of type IIA reduced on a six-torus

The main interest of this thesis lies in the fields acquired from compactification up
to a six-torus, but the field content of lower-dimensional theories can be obtained
following the same procedure.

5.3 Supersymmetry breaking

After acquiring the five-dimensional field content in section 5.1, the goal is, to begin
with an N = 8 theory and partially break the supersymmetry to N = 6, 4, and 2 in
four-dimensions. The field content of N = 0 will only be mentioned and not listed
explicitly. This circle reduction is done using the Scherk–Schwarz mechanism and
breaks the supersymmetry partially. Once the four-dimensional fields are obtained,
they can be grouped into multiplets for each type of supergravity.

The global symmetry group in five-dimensions is E6(6) and the R-symmetry group
is USp(8). To partially break supersymmetry one has to consider a mass matrix in
the lie algebra of USp(8). This lie algebra is Lie(USp(8)) = usp(8).

5.3.1 Massless multiplets

The mass matrix of the theory, as an element of usp(8), depends on the choice of
the symplectic metric. Further analysis will be given in section 5.4. For this section,
consider the symplectic metric:

Ω =

[
0 I
−I 0

]
, (5.5)

which results in the mass matrix:

M(mi) =
4∑
i=1

miµi

µi = a⊗ sii, a =

[
0 1
−1 0

]
.

(5.6)

The matrix sii is the 4 × 4 matrix with 1 in the position of intersection of the ith
row with ith column of the matrix. The eigenvalues of iM(mi) are given by [17]:
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Five-dimensional spin Eigenvalues of iM(mk)
J = 2 0
J = 3/2 ±mi

J = 1 3(0),±(mi ±mj); i < j
J = 1/2 2(±mi),±(mi ±mj ±mk); i < j < k
J = 0 2(0),±(mi ±mj),±(m1 ±m2 ±m3 ±m4); i < j

Table 5.7: Eigenvalues of mass matrix and corresponding five-dimensional fields
[17]

The five-dimensional fields correspond to specific eigenvalues of the mass matrix.
This correspondence can be verified using (3.24)-(3.26) and substituting the mass
matrix (5.6). The results are shown in table 5.7. Table 5.7 depicts that in five-
dimensions, the graviton corresponds to an eigenvalue zero, meaning that it remains
massless. The gravitino has spin 3/2, and its corresponding eigenvalue from the
mass matrix is ±mi. There are three zero eigenvalues, and ±(mi ±mj) for vectors.
The spin 1/2 fermion has two ±mi and ±(mi±mj±mk) eigenvalues, and the scalar
has two zero eigenvalues, ±(mi ±mj) and ±(m1 ±m2 ±m3 ±m4), where as stated
i < j < k in each case.

The five-dimensional massless sector for N = 8, 6, 4 and 2 is calculated from the
eigenvalues that become or were already found to be zero when setting N /2 pa-
rameters of the mass matrix to zero. In N = 0, all mass parameters are non-zero.
The four-dimensional products of these five-dimensional fields are the actual fields
that the Scherk-Schwarz mechanism, will leave massless. The same applies for the
five- and four-dimensional massive fields. The five-dimensional fields are used to
identify how the Scherk-Schwarz mechanism will act on the four-dimensional field
spectrum when it is applied in the initial theory. A list of the number of these
fields will be given in the tables below. The rest of the fields will gain masses and
will be divided into multiplets, in section 5.3.2. In general, the R-symmetry group
in four-dimensions for N is U(N ) and in five-dimensions it is USp(N ) [18]. The
branching rules between these groups can be found in [49], [59].

The massless sector of N = 8 is obtained by setting m1 = m2 = m3 = m4 = 0
in all eigenvalues of table 5.7. This statement stems from the fact that there are
eight massless gravitinos in N = 8, so all masses have to be set to zero to find eight
massless eigenvalues corresponding to spin J = 3/2 in table 5.7.

Spin Massless five-dimensional fields Massless four-dimensional fields
J = 2 1 1
J = 3/2 8 8
J = 1 27 28
J = 1/2 48 56
J = 0 42 70

Table 5.8: Massless five- and four-dimensional fields in N = 8 supergravity

In N = 8, the massless five-dimensional fields are one graviton as expected, eight
gravitinos, twenty-seven vectors, forty-eight spin 1/2 fermions and forty-two scalars.
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The massless fields in four-dimensions can be found by reducing the ones in five-
dimensions and the result is one graviton, eight gravitinos, twenty-eight vectors,
fifty-six spin 1/2 fermions and seventy scalars as shown in table 5.8. The fields in
four-dimensions are contained in one graviton multiplet of N = 8 supergravity.

Spin Massless five-dimensional fields Massless four-dimensional fields
J = 2 1 1
J = 3/2 6 6
J = 1 15 16
J = 1/2 20 26
J = 0 14 30

Table 5.9: Massless five- and four-dimensional fields in N = 6 supergravity

The five-dimensional massless fields ofN = 6 can be found by setting three arbitrary
masses to zero. Without loss of generality after setting m1 = m2 = m3 = 0 there is
one graviton, six gravitinos, fifteen vectors, twenty spin 1/2 fermions and fourteen
scalars. The corresponding fields in four-dimensions are one, six, sixteen, twenty-six
and thirty as indicated in table 5.9. The resulting theory has one graviton multiplet
in N = 6 in four-dimensions.

Spin Massless five-dimensional fields Massless four-dimensional fields
J = 2 1 1
J = 3/2 4 4
J = 1 7 8
J = 1/2 8 12
J = 0 6 14

Table 5.10: Massless five- and four-dimensional fields in N = 4 supergravity

The massless sector of N = 4 is obtained by setting two masses out of four to
be zero. Assume m1 = m2 = 0. From table 5.7, there is one zero eigenvalue for
the five-dimensional graviton, four for gravitinos, seven for vectors, eight for spin
1/2 fermions and six for scalars. In four-dimensions, there is one graviton, four
gravitinos, eight vectors, twelve spin 1/2 fermions and fourteen scalars. These fields
in N = 4 in four-dimensions are included in one graviton and two vector multiplets.

Spin Massless five-dimensional fields Massless four-dimensional fields
J = 2 1 1
J = 3/2 2 2
J = 1 3 4
J = 1/2 4 6
J = 0 2 6

Table 5.11: Massless five- and four-dimensional fields in N = 2 supergravity
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The massless sector of N = 2 is obtained by setting only one mass to zero and
keeping the other three non-zero, without loss of generality assume m1 = 0. The
massless five-dimensional fields are one graviton, two gravitinos, three vectors, four
spin 1/2 fermions, and two scalars and the corresponding fields in four-dimensions
are one, two, four, six, and six. In four-dimensions, the fields are contained in one
graviton and three vector multiplets in N = 2.

The mass spectrum of the four-dimensional theory is directly given by [14]:

Four-dimensional spin Eigenvalues of iM(mk)
J = 2 0
J = 3/2 ±mk

J = 1 4(0),±(mi ±mj); i < j
J = 1/2 2(±mk),±(mi ±mj ±mk); i < j < k
J = 0 6(0),±(mi ±mj),±(m1 ±m2 ±m3 ±m4); i < j

Table 5.12: Eigenvalues of mass matrix and corresponding four-dimensional fields
[14]

To find the massless fields, it should be considered in table 5.12 that the 1/2-spin
fermions have one additional ±mk eigenvalue from the gravitinos and the scalars
have one additional ±(mi ±mj) eigenvalue from the vectors. The massless fields in
N = 8 in four dimensions are the same with the four-dimensional part of table 5.8.
For N = 6, 4 and 2 the number of fields obtained from the table 5.12, are the same
with numbers in the tables 5.9 - 5.11.

The fields for N = 0, can be obtained easily from both tables 5.7 or 5.12 since all
mi, i = 1, 2, 3, 4 are non-zero.

5.3.2 Multiplets

Of particular interest are also the massive multiplets obtained from a dimensional
reduction. The massive multiplets can be found from table 5.7.

There are no massive multiplets obtained for N = 8, since all four masses will be
set to zero. The massless fields were already calculated in the previous section and
they all form one graviton multiplet.

In N = 6 only three arbitrary masses out of a total of four are set to zero. There is
also only one massless multiplet consisting of the fields found in table 5.9. In addtion,
there are two massive multiplets with mass |m| of one gravitino, six vectors, fourteen
spin 1/2 fermions and fourteen scalars.

To obtain the multiplets of N = 4 half of the masses parameters are set to zero. The
massless fields found in the previous section are grouped into three multiplets. One
massless multiplet consists of a graviton, four gravitinos, six vectors, four spin 1/2
fermions and two scalars and there are also two other multiplets, each one consisting
of one vector, four spin 1/2 fermions and six scalars. There are also four massive
multiplets with mass |mi| (two for a fixed i) each containing one gravitino, four
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vectors, six spin 1/2 fermions and four scalars. The last two massive multiplets
have mass |mi±mj|, each having one vector, four spin 1/2 fermions and five scalars.

For the N = 2 only one arbitrary mass has to be set to zero. There are four massless
multiplets, the first one has a graviton, two gravitinos, and one vector. The other
three contain the same number of fields, each has one vector, two spin 1/2 fermions
and two scalars. There are six multiplets (two for fixed i) with mass |mi| with one
gravitino, two vectors and one spin 1/2 fermion. In addition, there are also six
more multiplets with mass |mi| (two for fixed i) with one spin 1/2 fermion and two
scalars, each. There are six in total multiplets with mass |mi±mj| (two for fixed i)
each consisting of one vector, two spin 1/2 fermions and a scalar. The last multiplet
is obtained two times for mass |mi ±mj ±mk| with one spin 1/2 fermion and two
scalars.

5.4 The mass matrix

The mass matrix with respect to the symplectic metric (5.5) used in (5.6) is explicitly
given by:

M =



0 0 0 0 m1 0 0 0
0 0 0 0 0 m2 0 0
0 0 0 0 0 0 m3 0
0 0 0 0 0 0 0 m4

−m1 0 0 0 0 0 0 0
0 −m2 0 0 0 0 0 0
0 0 −m3 0 0 0 0 0
0 0 0 −m4 0 0 0 0


. (5.7)

The monodromy of (5.7) is:

M=



cos(m1) 0 0 0 sin(m1) 0 0 0
0 cos(m2) 0 0 0 sin(m2) 0 0
0 0 cos(m3) 0 0 0 sin(m3) 0
0 0 0 cos(m4) 0 0 0 sin(m4)

−sin(m1) 0 0 0 cos(m1) 0 0 0
0 −sin(m2) 0 0 0 cos(m2) 0 0
0 0 −sin(m3) 0 0 0 cos(m3) 0
0 0 0 −sin(m4) 0 0 0 cos(m4)


, (5.8)

where mi, i = 1, 2, 3, 4 are real mass parameters.

The mass matrix with respect to the symplectic metric:

Ω =



0 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0


, (5.9)



is the matrix:

M =



0 m1 0 0 0 0 0 0
−m1 0 0 0 0 0 0 0

0 0 0 m2 0 0 0 0
0 0 −m2 0 0 0 0 0
0 0 0 0 0 m3 0 0
0 0 0 0 −m3 0 0 0
0 0 0 0 0 0 0 m4

0 0 0 0 0 0 −m4 0


. (5.10)

Then the exponential of this matrix is:

M=



cos(m1) sin(m1) 0 0 0 0 0 0
−sin(m1) cos(m1) 0 0 0 0 0 0

0 0 cos(m2) sin(m2) 0 0 0 0
0 0 −sin(m2) cos(m2) 0 0 0 0
0 0 0 0 cos(m3) sin(m3) 0 0
0 0 0 0 −sin(m3) cos(m3) 0 0
0 0 0 0 0 0 cos(m4) sin(m4)
0 0 0 0 0 0 −sin(m4) cos(m4)


,

(5.11)

The matrices M , and M are elements of the lie algebra usp(8) and group USp(8),
respectively. Both of these matrices will be considered in chapter 7.



Chapter 6

Black holes

String theory is a promising candidate as a theory for quantum gravity, which means
string theory should be capable of describing black holes. Simple perturbative string
theory is not sufficient to describe them because black holes have a strong coupling.
To solve this problem, D-branes are used, whose non-perturbative properties en-
hance their ability to describe black holes [36]. The initial ten-dimensional black
holes in this section are solutions of N = 2 supergravity. In this chapter, all of
the previously discussed theoretical tools are applied in black holes. At first, in
sections 6.1 and 6.2 some famous examples of black holes are discussed. Later in
section 6.3 different black holes are created and their potentials, and metric after the
compactification are given, as well as their equivalent Einstein frame. In section 6.4
there will be a brief introduction in black hole thermodynamics and the calculation
of the entropy for all examples of black holes. Finally, in section 6.5 the notion of
near-horizon geometry for extremal black holes is discussed.

6.1 Schwarzschild metric

The Einstein-Hilbert action in D-dimensions is:

SEH =
1

16πGD
N

∫
dDx
√
−gR, (6.1)

where D is the spacetime dimension, g the determinant of the metric, and R the
Ricci scalar. The Schwarzschild metric is the unique, spherical solution of the action
(6.1) in a vacuum:

ds2 = −(1− 2GNM

r
)dt2 + (1− 2GNM

r
)−1dr2 + r2dΩ2, (6.2)

where dΩ2 = dθ2 + sin2θdφ2, M is the mass of the gravitational object, the black
hole, and GN the gravitational constant.

The Minkowski spacetime with metric ds2 = −dt2 + dr2 + r2dΩ2 is obtained as
M approaches zero. Additionally, as the radius of the Schwarzschild metric ap-
proaches infinity, then the Minkowski metric is acquired again. This property is
called asymptotic flatness.

The horizon of this black hole is found at the radius that satisfies: grr = 0. The
event horizon is at r = 2GM distance from the black hole center [10].
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6.2 Reissner-Nordström metric

The Reissner-Nordström metric is the exact solution of electrically and magnetically
charged black holes, which are spherically symmetric. The metric is:

ds2 = −∆dt2 + ∆−1dr2 + r2dΩ2, (6.3)

where ∆ is defined in terms of the black hole mass and electric charge:

∆(r) = 1− 2GNM

r
+
GN(Q2 + P 2)

r2
, (6.4)

and M is the black hole mass, GN the gravitational constant, Q the total electric
charge and P the total magnetic charge. It also has a gauge field with non-zero
components:

Frt =
Q

r2

Fθφ = Psinθ.
(6.5)

The event horizon is located at the values of r that satisfy the equation ∆(r) = 0,

r± = GNM ±
√
G2
NM

2 −GN(Q2 + P 2). (6.6)

The square root of (6.6) indicates three separate cases:

GNM
2 < Q2 + P 2 (6.7)

GNM
2 > Q2 + P 2 (6.8)

GNM
2 = Q2 + P 2. (6.9)

The cosmic censorship conjecture, states that singularities should be hidden from
an observer by the event horizon, there cannot be naked singularities. The case
(6.7) indicates that there is no event horizon. This establishes an argument that
this black hole is not a physically possible solution. The case (6.8) has two event
horizons and it is expected to be found in nature. The third case, (6.9) is called the
extreme solution. Extremal black holes are unstable, with only one event horizon,
but they are a very useful theoretical model, since all calculations become much
more simple. For example, some symmetries are left unbroken in supersymmetry.

To find the coordinate system in isotropic coordinates of the extremal black hole,
one can substitute ρ = r−GNM in (6.3). This leads to an event horizon located at
ρ = 0 and the extremal black hole metric in isotropic coordinates is given by:

ds2 = −H(ρ)−2dt2 +H(ρ)2(dr2 + r2dΩ2
2), (6.10)

where H is a harmonic function given by:

H(ρ) = 1 +
GNM

ρ
. (6.11)
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6.3 Black holes, D-branes and a gravitational wave

In this section, the objects used to construct a black hole are only D-branes and
the aim is to find extremal four-dimensional black holes via the reduction of six-
dimensions. To reduce the corrections needed for the low energy solution, the moduli
and dilaton should be finite at the horizon and to be able to manage quantum
corrections, and a fraction of the initial supersymmetry has to be preserved. A
finite moduli condition means having a finite metric on the torus dimensions. For
these conditions to be satisfied, some amount of calculation is needed to find all
possible configurations. Even though the explanation and results can already be
found in literature [2], the next three paragraphs will serve as an overview of this.

Consider a Dp and a Dp′-brane. These branes in type IIA string theory, lie in an
even number of spatial dimensions, with the exception of branes that couple to
the NS-NS sector field Bµν with field strength Hµνρ. The supersymmetry condition
concludes that in a configuration of a Dp-brane and a D′p-brane: p+p′−2k = 0 mod
4, where k is the number of dimensions the two branes intersect. Additionally, to
construct a black hole with non-vanishing and finite entropy, one needs to consider
four D-branes.

After applying all these restrictions, one can obtain the three possible black holes.
The first black hole (case A) consists of one D0-brane and three D4, the second one
(case B) with two D4 and two D2 and the third (case C) with one D6 and three D2.
The moduli condition plays a significant role in the spatial dimensions that these
branes will be parallel to.

After acquiring a configuration of black holes, one has to address how to combine the
D-branes. As it was already mentioned, the metric and dilaton of these D-branes
are expressed via their equivalent harmonic functions. The harmonic function rule
[56] states that the metric components of the summation of D-branes can be written
as the product of the metric components for each different D-brane. For example,
in the case of three D4-branes and one D0-brane, from (2.14) the corresponding g00
components are:

H
−1/2
4a dt2, H

−1/2
4b dt2, H

−1/2
4c dt2 and H

−1/2
0 dt2, (6.12)

thus using the harmonic function rule, the g00 component for the whole system of
D-branes is:

dt2(H
−1/2
4a H

−1/2
4b H

−1/2
4c H

−1/2
0 ). (6.13)

The same rule also applies to the dilaton. The three cases of black holes with only
D-branes are studied further below.

The fourth black hole (case D) consists of D6, D2, NS5 and the pp-wave introduced
in section 3.2.5. This wave adds momentum on the direction it lies and all of the
branes in the configuration are parallel in that direction.

The dimensions marked with × are the ones where the branes lie on, and the spatial
dimensions x1, .., x6 are the dimensions which will be compactified. The spatial
dimensions denoted with a dot, along with time dimension will be the dimensions
of the four-dimensional black hole.
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6.3.1 Compactification of black holes

First the ten-dimensional black hole will be reduced on a five-torus resulting on a
black string. Finally, a compactification on a circle on x6 will give a four-dimensional
black hole. The three dimensions denoted with a dot, and the time x0 are the
dimensions that will survive the compactification.

D = 10
x1, x2, .., x5 on T 5

D = 5
x6 on S1

D = 4

Black string Black hole

The fields that support a black hole are 1-forms, 3-forms and one 2-form, Bµν from
the NS-NS sector. The reduction of the ten-dimensional 3-form is shown in the
following diagram.

D = 10 D = 5 D = 4

Cµνρ

µ = 0, 1, 2, .., 9

Cµνρ

Cµνa

Cµab

Cabc

µ = 0, 6, 7, 8, 9

a = 1, 2, 3, 4, 5

Cµνρ

Cµν6

Cµνa

Cµa6

Cµab

Cab6

Cabc

µ = 0, 7, 8, 9

a = 1, 2, 3, 4, 5

The reduction of the 2-form is given below.

D = 10 D = 5 D = 4

Bµν

µ = 0, 1, 2, .., 9

Bµν

Bµa

Bab

µ = 0, 6, 7, 8, 9

a = 1, 2, 3, 4, 5

Bµν

Bµ6

Bµa

Ba6

Bab

µ = 0, 7, 8, 9

a = 1, 2, 3, 4, 5

Finally, the ten-dimensional 1-form and its reduced five- and four-dimensional po-
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tentials are given in the following diagram.

D = 10 D = 5 D = 4

Cµ

µ = 0, 1, 2, .., 9

Cµ

Ca

µ = 0, 6, 7, 8, 9

a = 1, 2, 3, 4, 5

Cµ

C6

Ca

µ = 0, 7, 8, 9

a = 1, 2, 3, 4, 5

Following the above diagrams, one can see how potentials reduce. Keep in mind
that some of these five-dimensional fields, when reduced to four-dimensional fields
with a Scherk-Schwarz reduction may gain masses.

An example of a reduced potential followed from these diagrams is the potential
coupled with a D2-brane, the ten-dimensional potential Cµνρ, where µ = 0, .., 9,
with non-zero entries: C025 = 1

2
(H−12 − 1). In five-dimensions only the five-vector of

type Cµab is non-zero and specifically the five-vector Cµ25. The only non-zero entry of
this vector is C025 = 1

2
(H−12 − 1), at µ = 0. In four-dimensions, only the four-vector

Cµ25 is non-zero with the same non-zero entry as the five-vector, at µ = 0.

Another interesting example is that of a D2-brane with ten-dimensional potential
C016 = 1

2
(H−12 − 1). From the diagram, only the 2-form Cµν1 is non-zero in five-

dimensions, with non-zero entries at µ, ν = 0, 6, µ 6= ν, where C016 = 1
2
(H−12 − 1).

For the purpose of this thesis, the dualized vector of this 2-form will be used. In
four-dimensions, only the four-vector with the form Cµ16 is non-zero, with non-zero
entry at µ = 0, C016 = 1

2
(H−12 − 1).

An example will be given on how to reduce a field-strength written as F ′µνρσ in
ten-dimensions, with indices µ, ν, ρ, σ = 5, 6, 7, 8, 9. These field strengths will be
encountered often in the rest of the thesis from the dualization of the fields of a
black hole. The compactification from ten- to five-dimensions is:

F ′µνρσ in ten-dimensions → F ′µνρ5 in five-dimensions, for µ, ν, ρ = 6, 7, 8, 9

All the possible terms of F ′µνρ5 are:

F ′µνρ5

∂µCνρ5dx
µ ∧ dxν ∧ dxρ ∧ dx5

∂νCρ5µdx
ν ∧ dxρ ∧ dx5 ∧ dxµ

∂ρC5µνdx
ρ ∧ dx5 ∧ dxµ ∧ dxν

∂5Cµνρdx
5 ∧ dxµ ∧ dxν ∧ dxρ

The solution ∂5Cµνρdx
5∧dxµ∧dxν∧dxρ is zero, since x5-direction was compactified.

Thus the only possible reduction is of the form Cµνa.

To find the field in four-dimensions, one should compactify on a circle on direction
6.
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F ′µνρσ in ten-dimensions → F ′µν56 in four-dimensions, for µ, ν = 7, 8, 9

The field strength F ′µν56 can be written in terms of the potential Cµνρ as:

F ′µν56

∂µCν56dx
µ ∧ dxν ∧ dx5 ∧ dx6

∂νC56µdx
ν ∧ dx5 ∧ dx6 ∧ dxµ

∂5C6µνdx
5 ∧ dx6 ∧ dxµ ∧ dxν

∂6Cµν5dx
6 ∧ dxµ ∧ dxν ∧ dx5

With the same logic as the five-dimensional field, some terms are zero. This proce-
dure is done for all reduced fields.

The reduction of a pp-wave was shown in section 3.2.5.

6.3.2 Black hole with D4a, D4b, D4c and D0

The first black hole comprised of three D4-branes and one D0-brane, has the follow-
ing configuration:

Case A 0 1 2 3 4 5 6 7 8 9
D4a × × × × × . . .
D4b × × × × × . . .
D4c × × × × × . . .
D0 × . . .

To derive the metric of this configuration, the harmonic function rule should be
used to combine the metrics of D4a, D4b, D4c and D0 from (2.14). The metric of
this black hole, dilaton and potentials in string frame, are given below.

ds210 =− dt2(H−1/24a H
−1/2
4b H

−1/2
4c H

−1/2
0 )

+ (dx21 + dx22)(H
−1/2
4a H

1/2
4b H

−1/2
4c H

1/2
0 )

+ (dx23 + dx24)(H
−1/2
4a H

−1/2
4b H

1/2
4c H

1/2
0 )

+ (dx25 + dx26)(H
1/2
4a H

−1/2
4b H

−1/2
4c H

1/2
0 )

+ (dx27 + dx28 + dx29)(H
1/2
4a H

1/2
4b H

1/2
4c H

1/2
0 )

eφ =H
3
4
0 H

−1
4

4a H
−1
4

4b H
−1
4

4c

C01234 =
1

2
(H−14a − 1)

C̃03456 =
1

2
(H−14b − 1)

C̃̃01256 =
1

2
(H−14c − 1)

C̃̃̃0 =
1

2
(H−10 − 1)

(6.14)
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A tilde will be used to differentiate between potentials corresponding to different
branes. The harmonic functions of the branes are given by:

H0 =1 +
Q0

r
,

H4a =1 +
Q4a

r
,

H4b =1 +
Q4b

r
,

H4c =1 +
Q4c

r

(6.15)

Where Qp is the charge of a Dp-brane. The harmonic function of the whole system

of D-branes has a rotational symmetry on directions 7, 8, and 9: Hp = 1+ Qp
r

, where
r2 = x27 + x28 + x29. This is true for all four black holes in this thesis.

One first has to rewrite the gauge fields in forms compatible with string theory,
either 2- and 4-form field strengths, or with their equivalent 1- and 3-form potentials:
F2 = dC1 and F4 = dC3.

The first three gauge fields has to be written in a dual form. The gauge field:

C5 = C01234dx
0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4 (6.16)

can be rewritten as:

F6 = dC5 = ∂µC01234dx
µ ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4 (6.17)

and

∂µC01234 = −1

2
H−24a ∂µH4a, (6.18)

in this case µ = 5, 6, 7, 8, 9, because the rotational symmetry is in the directions that
the brane does not lie as discussed in the section of p-branes. As one can see from
the table of Case A, each brane has a rotation symmetry in different directions,
for example, the brane D4b has rotational symmetry in µ = 1, 2, 7, 8, 9, but after
compactification, all branes will posses rotational symmetry only in the directions
µ = 7, 8, 9.

Afterwards, one must find the Hodge dual of F6. All the dualized field strengths
will be written as F ′, which is defined as ∗F6 = F ′4. F

′
4 can be written in terms of

F6, using the levi-civita symbol ε and levi-civita tensor ε̄ and equations (5.2), (5.3):

F ′µνρσ =
1

6!
ε̄τ1..τ6µνρσFτ1..τ6

= ε̄λ01234µνρσFλ01234, where λ, µ, ν, ρ, σ = 5, 6, 7, 8, 9.
(6.19)

Using this calculation for the rest of the potentials that need to be dualized and
defining ε01234λµνρσ as ελµνρσ, one will obtain:

F ′µνρσ =− 1

2
ελµνρσ∂λH4a, λ, µ, ν, ρ, σ = 5, 6, 7, 8, 9

F ′˜ µνρσ =− 1

2
ελµνρσ∂λH4b, λ, µ, ν, ρ, σ = 1, 2, 7, 8, 9

F ′˜̃ µνρσ =− 1

2
ελµνρσ∂λH4a, λ, µ, ν, ρ, σ = 3, 4, 7, 8, 9

C̃̃̃0 =
1

2
(H−10 − 1)

(6.20)
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When the metric in ten-dimensions is diagonal one is allowed to just erase the metric
components of the compactified dimensions. The compactified metric is obtained
by first compactifying in T 5 for x1, ..x5, this gives out a black string. Afterwards,
compactify on S1.

Then the metric for the black string in case A in five-dimensions is:

ds25 =− dt2(H−1/24a H
−1/2
4b H

−1/2
4c H

−1/2
0 )

+ (dx26)(H
1/2
4a H

−1/2
4b H

−1/2
4c H

1/2
0 )

+ (dx27 + dx28 + dx29)(H
1/2
4a H

1/2
4b H

1/2
4c H

1/2
0 )

(6.21)

The metric for the black hole in four-dimensions for case A is:

ds24 =− dt2(H−1/24a H
−1/2
4b H

−1/2
4c H

−1/2
0 )

+ (dx27 + dx28 + dx29)(H
1/2
4a H

1/2
4b H

1/2
4c H

1/2
0 )

(6.22)

To perform a Scherk-Schwarz reduction and analyze which vector fields remain mass-
less in four dimensions, the five-dimensional fields needed are 1-forms and 2-forms,
which can be dualized to 1-forms. This dualization of fields is done after performing
the field reduction [34].

Coupled to the D4a-brane the five-dimensional vector fields are the dualized fields
from Cµνa. In four-dimensions this is Cµa6, where a = 5. For D4b-brane and D4c-
branes, the vector field potentials in both five and four-dimensions are Cµab, where
a, b = 1, 2 and a, b = 3, 4, respectively. For D0-brane after compactification one
obtains a five-vector in five-dimensions and a four-vector in four-dimensions Cµ,
with only non-zero element C0 = 1

2
(H−10 − 1).

To find the metric in Einstein frame, one has to first calculate the relation with the
metric in string frame using (2.7). In four-dimensions, it becomes:

g(s)µν = g(E)
µν e

2φ4 , (6.23)

where φ4 is the four-dimensional dilaton. This formula applies to all three black
holes with D-branes. After the compactification on directions x1, x2, .., x6:

e2φ4
√
g
(s)
11 g

(s)
22 ..g

(s)
66 = e2φ10 . (6.24)

The expressions for e2φ10 and g
(s)
11 g

(s)
22 ..g

(s)
66 are taken from (6.14), resulting in e2φ4 = 1.

This means that g
(s)
µν = g

(E)
µν , thus the metric in Einstein frame is:

ds24 =− dt2(H−1/24a H
−1/2
4b H

−1/2
4c H

−1/2
0 )

+ (dx27 + dx28 + dx29)(H
1/2
4a H

1/2
4b H

1/2
4c H

1/2
0 )

eφ4 =1.

(6.25)

6.3.3 Black hole with D4a, D4b, D2a and D2b

The second case (case B) of a black hole consists of two D4-branes and two D2-
branes.
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Case B 0 1 2 3 4 5 6 7 8 9
D4a × × × × × . . .
D4b × × × × × . . .
D2a × × × . . .
D2a × × × . . .

To derive the metric of case B, the harmonic function rule and the metrics of D4a,
D4b, D2a and D2b from (2.14) must be used. The metric of the black hole in string
frame is: 

ds210 =− dt2(H−1/24a H
−1/2
4b H

−1/2
2a H

−1/2
2b )

+ (dx21)(H
−1/2
4a H

1/2
4b H

−1/2
2a H

1/2
2b )

+ (dx22)(H
−1/2
4a H

1/2
4b H

1/2
2a H

−1/2
2b )

+ (dx23 + dx24)(H
−1/2
4a H

−1/2
4b H

1/2
2a H

1/2
2b )

+ (dx25)(H
1/2
4a H

−1/2
4b H

1/2
2a H

−1/2
2b )

+ (dx26)(H
1/2
4a H

−1/2
4b H

−1/2
2a H

1/2
2b )

+ (dx27 + dx28 + dx29)(H
1/2
4a H

1/2
4b H

1/2
2a H

1/2
2b )

eφ =H
−1
4

4a H
−1
4

4b H
1
4
2aH

1
4
2b

C01234 =
1

2
(H−14a − 1)

C̃03456 =
1

2
(H−14b − 1)

C̃̃016 =
1

2
(H−12a − 1)

C̃̃̃025 =
1

2
(H−12b − 1)

(6.26)

The harmonic functions of the D4- and D2-branes are given by:

H4a =1 +
Q4a

r

H4b =1 +
Q4b

r

H2a =1 +
Q2a

r

H2b =1 +
Q2b

r

(6.27)

Only the gauge fields from the D4-branes have to dualized. Following the calculation
mentioned in (6.16) - (6.19) one obtains:

F ′µνρσ =− 1

2
ελµνρσ∂λH4a, λ, µ, ν, ρ, σ = 5, 6, 7, 8, 9

F ′˜ µνρσ =− 1

2
ελµνρσ∂λH4b, λ, µ, ν, ρ, σ = 1, 2, 7, 8, 9

C̃̃016 =
1

2
(H−12a − 1)

C̃̃̃025 =
1

2
(H−12b − 1)

(6.28)
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The reduced metric on a five-torus for case B is:

ds25 =− dt2(H−1/24a H
−1/2
4b H

−1/2
2a H

−1/2
2b )

+ (dx26)(H
1/2
4a H

−1/2
4b H

−1/2
2a H

1/2
2b )

+ (dx27 + dx28 + dx29)(H
1/2
4a H

1/2
4b H

1/2
2a H

1/2
2b )

(6.29)

A further compactification on a circle gives:

ds24 =− dt2(H−1/24a H
−1/2
4b H

−1/2
2a H

−1/2
2b )

+ (dx27 + dx28 + dx29)(H
1/2
4a H

1/2
4b H

1/2
2a H

1/2
2b )

(6.30)

In case B, there are two D4-branes and two D2-branes. The field F ′µνρσ of D4a-brane
is the potential of the 2-form Cµνa in five-dimensions and Cµa6 in four-dimensions,
where a = 5. The D4b-brane is charged by the potential Cµab, a = 1, b = 2 in
both four and five-dimensions. The D2a-brane is coupled to the potential Cµν1 in
five-dimensions and Cµ16 in four-dimensions. The D2b-brane has potential Cµab, a =
2, b = 5 in both reduced dimensions, with the difference that it is a five-vector in
five-dimensions and a four-vector in four-dimensions. The only non-zero element of
the potential for D2a-brane in both reduced dimensions is C016 = 1

2
(H−12a − 1) and

for D2b-brane, it is C025 = 1
2
(H−12b − 1).

Repeating the calculation of case A, the string and Einstein frame metrics are the
same for case B. Hence, in Einstein frame the metric is:

ds24 =− dt2(H−1/24a H
−1/2
4b H

−1/2
2a H

−1/2
2b )

+ (dx27 + dx28 + dx29)(H
1/2
4a H

1/2
4b H

1/2
2a H

1/2
2b )

eφ4 =1

(6.31)

6.3.4 Black hole with D6, D2a, D2b and D2c

The last case of a black hole consisting of only D-branes (case C) is that of a D6-
brane and three D2-branes.

Case C 0 1 2 3 4 5 6 7 8 9
D6 × × × × × × × . . .
D2a × × × . . .
D2b × × × . . .
D2c × × × . . .

The metric of this configuration in string frame is given using the harmonic function
rule and the metric of each of the branes D6, D2a, D2b and D2c from (2.14):
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ds210 =− dt2(H−1/26 H
−1/2
2a H

−1/2
2b H

−1/2
2c )

+ (dx21 + dx22)(H
−1/2
6 H

−1/2
2a H

1/2
2b H

1/2
2c )

+ (dx23 + dx24)(H
−1/2
6 H

1/2
2a H

−1/2
2b H

1/2
2c )

+ (dx25 + dx26)(H
−1/2
6 H

1/2
2a H

1/2
2b H

−1/2
2c )

+ (dx27 + dx28 + dx29)(H
1/2
6 H

1/2
2a H

1/2
2b H

1/2
2c )

eφ =H
−3
4

6 H
1
4
2aH

1
4
2bH

1
4
2c

C0123456 =
1

2
(H−16 − 1)

C̃012 =
1

2
(H−12a − 1)

C̃̃034 =
1

2
(H−12b − 1)

C̃̃̃056 =
1

2
(H−12c − 1)

(6.32)

The corresponding harmonic functions are:

H2a =1 +
Q2a

r

H2b =1 +
Q2b

r

H2c =1 +
Q2c

r

H6 =1 +
Q6

r

(6.33)

The configurations for cases A,B and C are T-dual to each other, and one might say
that there is a unique black hole in four-dimensions up to T-duality [2].

The D6-brane gauge is the only one that has to be dualized:



F ′µν =− 1

2
ελµν∂λH4a, λ, µ, ν = 7, 8, 9

C̃012 =
1

2
(H−12a − 1)

C̃̃034 =
1

2
(H−12b − 1)

C̃̃̃056 =
1

2
(H−12c − 1)

(6.34)

Finally, the compactification for case C in five-dimensions:

ds25 =− dt2(H−1/26 H
−1/2
2a H

−1/2
2b H

−1/2
2c )

+ (dx26)(H
−1/2
6 H

1/2
2a H

1/2
2b H

−1/2
2c )

+ (dx27 + dx28 + dx29)(H
1/2
6 H

1/2
2a H

1/2
2b H

1/2
2c )

(6.35)
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The compactified black hole in four-dimensions is for case C:

ds24 =− dt2(H−1/26 H
−1/2
2a H

−1/2
2b H

−1/2
2c )

+ (dx27 + dx28 + dx29)(H
1/2
6 H

1/2
2a H

1/2
2b H

1/2
2c )

(6.36)

In the case C, the D6-brane vector potential is Cµ in both four and five-dimensions.
The branes D2a and D2b are coupled to the vector field Cµab in both four and five-
dimensions, with respective values a = 1, b = 2 and a = 3, b = 4. Their respective
non-zero values are C012 = (H−12a − 1) and C034 = (H−12b − 1). The potential of D2a-
brane is Cµνa in five-dimensions and Cµa6 in four-dimensions, a = 5. It has non-zero
value C056 = 1

2
(H−12c − 1).

The metric in Einstein frame is:

ds24 =− dt2(H−1/26 H
−1/2
2a H

−1/2
2b H

−1/2
2c )

+ (dx27 + dx28 + dx29)(H
1/2
6 H

1/2
2a H

1/2
2b H

1/2
2c )

eφ4 =1.

(6.37)

6.3.5 Black hole with D-branes and a pp-wave

In this section, an example with a pp-wave, W is studied. This wave was introduced
and compactified in section 3.2.5. In this black hole, there is momentum to the
direction x6.

Case D 0 1 2 3 4 5 6 7 8 9
D6 × × × × × × × . . .
NS5 × × × × × × . . .
D2 × × × . . .
W × → . . .

The metric of the above configuration can be found in string frame using the har-
monic function rule, the D-brane metric (2.14), the NS5 metric and the metric of
the pp-wave (3.17). The metric of the above configuration in string frame [36]:



ds210 =H
−1/2
2 H

−1/2
6 [dt2(K − 1) + dx26(K + 1)−Kdtdx6 −Kdx6dt]

+ dx21(H
−1/2
6 H

−1/2
2 Hns5)

+ (dx22 + dx23 + dx24 + dx5)(H
−1/2
6 H

1/2
2 )

+ (dx27 + dx28 + dx29)(H
1/2
6 H

1/2
2 Hns5)

eφ =H
−3
4

6 H
1
4
2 H

1
2
ns5

C0123456 =1/2(H−16 − 1)

H̃
′
µνρ =

1

2
εµνρλH

−1
ns5∂λHns5, µ, ν, ρ, λ = 1, 7, 8, 9

C̃̃016 =1/2(H−12 − 1)

(6.38)
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The harmonic functions of the D-branes and the pp-wave are: The corresponding
harmonic functions are:

H6 =1 +
Q6

r

Hns5 =1 +
Qns5

r

H2 =1 +
Q2

r

HK =1 +K(r) = 1 +
QK

r

(6.39)

The potentials and field strengths of this black hole are [36]:
F ′µν =− 1

2
ελµν∂λH6, λ, µ, ν = 7, 8, 9

H̃
′
µνρ =

1

2
εµνρλH

−1
ns5∂λHns5, λ, µ, ν, σ = 1, 7, 8, 9

C̃̃016 =
1

2
(H−12 − 1)

(6.40)

The compactification on the five-torus is easy since the metric is diagonal in those
coordinates. The previous procedure can be used (6.23) - (6.25) to obtain:

ds25 =H
−1/2
2 H

−1/2
6 [dt2(K − 1) + dx26(K + 1)− 2Kdtdx6]

+ (dx27 + dx28 + dx28)(H
1/2
6 H

1/2
2 Hns5)

(6.41)

Compactifying again on a circle was calculated in section 3.2.5.:

ds24 = −H−1/22 H
−1/2
6 (1 +K)−1dt2 + (dx27 + dx28 + dx29)(H

1/2
6 H

1/2
2 Hns5) (6.42)

An additional Kaluza-Klein field is acquired from the pp-wave. The process for
compactifying potentials is the same as before and the results it yields are for D2-
brane are Cµνa in five-dimensions and Cµa6 in four-dimensions, a = 1. The NS5-
brane has Cµa in both five and four-dimensions with a = 1. The D6-brane has Cµ
potential in both reduced dimensions.

The metric in Einstein frame is:

ds24 =− (H2H6(1 +K)Hns5)
−1/2dt2

+ (dx27 + dx28 + dx29)(H6H2Hns5(1 +K))1/2

eφ4 =(1 +K)−1/4H
1/4
ns5

(6.43)

6.4 Black hole thermodynamics

Black holes are thermal systems. They have thermodynamic entropy and obey the
laws of thermodynamics. Their thermodynamic entropy is proportional to the area
of the event horizon, which increases in classical processes since the area itself is a
property of a classical solution [5].

There are four laws, the zeroth law denotes that the surface gravity κ̂ for a stationary
black hole, is constant over the horizon. The first law is expressed as:

dM = κ̂
dA

8πG
+ ωHdJ + ΦedQ, (6.44)
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where M is the black hole mass, A the event horizon area, κ̂ the surface gravity, ωH
the angular velocity at the horizon, J the angular momentum, Φ the electrostatic
potential, and dQ the electric charge. The second law says that the horizon area
cannot decrease due to any (classical) process. The assumption for this law is the
weak energy condition. The weak energy condition states that the matter density
observed for every timelike vector is always non-negative. Finally, the third law
states that it is impossible to have a vanishing κ̂ through a physical process or a
physical sequence of operations [42].

The black hole entropy is non-zero for both extremal and non-extremal black holes
[3]. The Bekenstein-Hawking entropy has been formulated by Bekenstein up to a
proportionality constant [5] and derived exactly by Hawking [22]:

SBH =
A

4GN

, (6.45)

for kB = } = c = 1.

6.4.1 Macroscopic entropy

The formula (6.45) is the same in both ten- and D-dimensional perspectives, since

the ten-dimensional Newton’s constant is written as: G
(10)
N = (2π)10−DG

(D)
N V10−D

and the ten-dimensional area is written in terms of the D-dimensional area as:
A(10) = (2π)10−DA(D)V10−D. It is more convenient then, to use the four-dimensional
metric in Einstein frame to calculate the area of the event horizon.

The area of the event horizon for the D2, D6, NS5 and W black hole (6.38), (6.43)
is:

A(4) =

∫
S2

√
g77g88|r=0

=
√
H2Hns5H6(1 +K)4πr2|r = 0

=4πr2
√

(1 +
Q2

r
)(1 +

Qns5

r
)(1 +

Q6

r
)(1 +

QK

r
)|r = 0

=4π
√
Q2Qns5Q6QK

(6.46)

The area of the event horizon for the four-dimensional case A (6.14), (6.25) is [2]:

A(4) =

∫
S2

√
g77g88|r=0

=
√
H4aH4bH4cH04πr

2|r = 0

=4πr2
√

(1 +
Q4a

r
)(1 +

Q4b

r
)(1 +

Q4c

r
)(1 +

Q0

r
)|r = 0

=4π
√
Q4aQ4bQ4cQ0.

(6.47)

The area of the black hole horizon for the four-dimensional case B (6.26), (6.31) is
found with the same calculation [2]:

A(4) = 4π
√
Q4aQ4bQ2aQ2b. (6.48)
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Finally, for the case C (6.32), (6.37) the area of the event horizon is [2]:

A(4) = 4π
√
Q6Q2aQ2bQ2c. (6.49)

As mentioned in section 2.3.1, Qp = cpNp, thus the area in (6.46), can be written
as:

A(4) =4π
√
c2N2cns5Nns5c6N6cKNK , (6.50)

where the product of the charges was explicitly calculated in [46]:

c2cns5c6cK = 4(G
(4)
N )2, (6.51)

thus the entropy of this black hole is [36]:

S = 2π
√
N2Nns5N6NK . (6.52)

Similarly, the entropy for the case A is:

S = 2π
√
N4aN4bN4cN0, (6.53)

the entropy for case B is:

S = 2π
√
N4aN4bN2aN2b, (6.54)

and the entropy for case C is:

S = 2π
√
N6N2aN2bN2c. (6.55)

6.5 Near-horizon geometry

The near-horizon geometry is the spacetime geometry that occurs near the event
horizon of a black hole. The concept of near-horizon geometry is well defined for
extremal black holes. In more than four-dimensions, the near-horizon geometry is
important in the classification of black holes. The problem that might arise when
one is only working with near-horizon geometries is that their existence does not
necessarily provide the corresponding existence of an extremal black hole [32].

6.5.1 Near-horizon geometry of Reissner-Nordström black
hole

The near-geometry of the Reissner-Nordstrom Black Hole can be found by taking
the limit of the coefficients of the metric in isotropic coordinates to zero, this means,
taking the limit at the horizon. Then a simple substitution of this limit will give the
form of AdS2×S2 geometry. Consider the metric (6.3), (6.4) of Reissner-Nordström
black hole without a magnetic field. The metric at isotropic coordinates is (6.10),
(6.11).

The limit of ρ-coordinate at the event horizon of the black hole is:

lim
ρ→0

(1 +
GNM

ρ
)−2 = (

GNM

ρ
)−2, and lim

ρ→0
(1 +

GNM

ρ
)2 = (

GNM

ρ
)2. (6.56)



After substituting these limits to the metric of the extremal Reissner-Nordström
black hole (6.10) the metric becomes:

ds2 = −(
GNM

ρ
)−2dt2 + (

GNM

ρ
)2dρ2 + (GNM)2dΩ2. (6.57)

For the near-horizon geometry to emerge in the form needed, one has to substitute

r′ = (GNM)2

ρ
, dr′ = − (GNM)2

ρ2
dρ in (6.57):

ds2 = −(
GNM

r′
)2dt2 + (

r′

GNM
)2dr′2 + (GNM)2dΩ2

= (
GNM

r′
)2(−dt2 + dr′2) + (GNM)2dΩ2

(6.58)

The resulting metric has a geometry of AdS2 from the first summand and a two-
sphere from the second one, this proves that the near-horizon geometry is:

AdS2 × S2 [1]. (6.59)



Chapter 7

Black holes and supersymmetry
breaking

This chapter aims to study which of the previously studied black holes will survive
a Scherk-Schwarz twist in N = 8, 6, 4, 2 and 0. In section 7.1, the five-dimensional
theory is studied, and in section 7.2, the results of the compactification to four-
dimensions and their impact is shown on the black holes of chapter 6.

7.1 Five-dimensional theory

The five-dimensional action is obtained from the ten-dimensional action (2.13) com-
pactified on a T 5, or from the eleven-dimensional theory compactified on T 6, using
Kaluza-Klein compactification. The eleven-dimensional action is given by:

L11 =
1

2κ211

∫
d11x
√
−g(R− 1

48
|F̃4|2) +

1

12κ211

∫
dC3 ∧ dC3 ∧ C3, (7.1)

where the 4-form F̃4 = dC3 − dB2 ∧ C1, is denoted with a tilde to not be confused
with F4 = dC3.

From (3.10), define i as the reduction step from eleven dimensions to aD-dimensional
theory i = 11−D, then:

2αi =

√
2

2(10− i)(9− i)
(7.2)

The labels m,n are defined to denote the coordinates of the five-torus from the
ten-dimensional theory, m,n = 1, .., 5 and i, j as defined, are the six-torus directions
from the eleven-dimensional theory.

After compactification of the eleven-dimensional theory once on a circle, the ten-
dimensional IIA theory is obtained. The fields Bµν , Cµνρ and Cµ, from the R-R
and NS-NS sector emerge. The reduced fields coming from Cµνρ, will be denoted
with (3) and the ones coming from Cµ will be denoted with the label (1). First the
lagrangian reduced from the eleven-dimensional theory case will be shown, using
the indices i, j, and identifying the ten-dimensional field spectrum among the fields.
Then the reduction of the ten-dimensional theory to five-dimensions will be shown.
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This process allows one to match the results found in the literature with the desired
ones from ten- to five-dimensions since the black holes constructed in chapter 6 are
ten-dimensional. The kinetic term of the Lagrangian in Einstein frame is written as
[34]:

L =R− 1

2
|d~φ|2 − 1

2

1

4!
e~a·

~φ|F̃4|2 −
1

2

1

3!
e ~a1·

~φ|dB̃µν1|2 −
1

2

1

3!

6∑
i=2

e~ai·
~φ|F̃3,i|2

− 1

2

1

2!

∑
2≤j≤6

e~a1j ·
~φ|dB̃µ1j|2 −

1

2

1

2!

∑
2≤i<j≤6

e~aij ·
~φ|d ˜C(3)

µij|2 −
1

2

1

2!
e
~b1·~φ|d ˜C(1)

µ|2

− 1

2

1

2!

6∑
i=2

e
~bi·~φ|dg̃iµ|2 −

1

2

∑
2≤j<k≤6

e~a1jk·
~φ|dB̃1jk|2 −

1

2

∑
2≤i<j<k≤6

e~aijk·
~φ|dC̃(3)

ijk |
2

− 1

2

∑
2≤j≤6

e
~b1j ·~φ|dC̃(1)

j
1|2 − 1

2

∑
2≤i<j≤6

e
~bij ·~φ|dg̃ij|2,

(7.3)

where the dilaton vectors considered are given in the appendix A, ~φ = (φ0, φ1, φ2, φ3, φ4, φ5),
~H = (H0, H1, H2, H3, H4, H5). The p-form field strengths are denoted with a tilde,
because they correspond to a big expression which is explicitly given below [34]:

F̃4 =dC(3)
µνρ − γ1j dBµν1 ∧Dj

ρ − γijdC
(3)
µνi ∧Dj

ρ +
1

2
γ1kγ

j
l dBµ1j ∧Dk

ν ∧Djlρ

+
1

2
γikγ

j
l dC

(3)
µij ∧Dk

ν ∧Dl
ρ −

1

6
γ1l γ

j
mγ

k
ndB1jk ∧Dl

µ ∧Dm
ν ∧Dn

ρ

− 1

6
γilγ

j
mγ

k
ndC

(3)
ijk ∧D

l
µ ∧Dm

ν ∧Dn
ρ

dB̃µν1 =dBµν1 + γj1dC
(3)
µνj + γkl dBµ1k ∧Dl

ν + γkl γ
l
ndB1kl ∧Dm

µ ∧Dn
ν

F̃3,i =γji dC
(3)
µνj + γji γ

k
l dC

(3)
µjk ∧D

l
ν + γji γ

k
mγ

l
ndC

(3)
jkl ∧D

m
µ ∧Dn

ν

dB̃µ1j =γljdBµ1l − γ1i γljγmn dB1lm ∧Dn
µ

dC̃
(3)
µij =γki γ

l
jdC

(3)
µkl − γ

k
i γ

l
jγ

m
n dC

(3)
klm ∧D

n
µ

dC̃(1)
µ =dC(1)

µ − γ
j
kdC

(1)
µ ∧Dk

µ

dg̃iµ =dgiµ − γ
j
kdg

i
j ∧Dk

µ

dB̃1jk =γ11γ
m
j γ

n
k dB̃1mn

dC̃
(3)
ijk =γliγ

m
j γ

n
k dC

(3)
lmn

dC̃(1)
µ =γkj dC

(1)
µ

dg̃ij =γkj dg
i
k

(7.4)

where:

Di
ρ =

{
C(1)
µ , i = 1

giµ, i = 2, .., 6,
(7.5)

and γij = (1 + E−1)ij, where:

Ei
j =

{
C

(1)
j , i = 1

gij, i = 2, .., 6.
(7.6)
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The variables Ei
j, are only defined for i ≤ j.

The second term of (7.1) in five-dimensions becomes [13],[34]:

1

12
(dB̃µν1 ∧ dC̃(3)

ρjkC
(3)
lmn)ε̄1jklmn +

1

12
(dC̃

(3)
µνi ∧ dB̃ρ1kC

(3)
lmn)ε̄i1klmn

+
1

12
(dC̃

(3)
µνi ∧ dC̃

(3)
ρjkdB1mn)ε̄ijk1mn +

1

48
(dB̃µ1j ∧ dC̃(3)

νkl
(3)
ρmn)ε̄1jklmn

+
1

48
(dC̃

(3)
µij ∧ dB̃ν1l ∧ C(3)

ρmn)ε̄ij1lmn +
1

48
(dC̃

(3)
µij ∧ dC̃

(3)
νkl ∧Bρ1n)ε̄ijkl1n

− 1

72
(dB̃1jk ∧ dC̃(3)

lmn ∧ dC
(3)
µνρ)ε̄

1jklmn − 1

72
(dC̃

(3)
ijk ∧ dB̃1lm ∧ dC(3)

µνρ)ε̄
ijk1lm

(7.7)

The ten-dimensional fields are reduced to five-dimensions as mentioned in section
3.2.4. To apply (7.8) in ten-dimensional black holes reduced on a five-torus with
torus coordinates m,n = 1, .., 5, then the fields should be written in terms of these
coordinates. If one ignores interaction terms, with [13] then five-dimensional la-
grangian reads:

L =R− 1

2
|d~φ|2 − 1

2

1

4!
e~a·

~φ|dC̃(3)
µνρ|2 −

1

2

1

3!
e ~a1·

~φ|dB̃µν |2 −
1

2

1

3!

5∑
m=1

e~a(m+1)·~φ|dC̃(3)
µνm|2

− 1

2

1

2!

∑
1≤m≤5

e~a1(m+1)·~φ|dB̃µm|2 −
1

2

1

2!

∑
1≤m<n≤5

e~a(m+1)(n+1)·~φ|dC̃(3)
µmn|2

− 1

2

1

2!
e
~b1·~φ|dC̃(1)

µ |2 −
1

2

1

2!

5∑
m=1

e
~bm+1·~φ|dg̃mµ |2 −

1

2

∑
1≤m<n≤5

e~a1(m+1)(n+1)·~φ|dB̃mn|2

− 1

2

∑
1≤m<n<r≤5

e~a(m+1)(n+1)(r+1)·~φ|dC̃(3)
mnr|2 −

1

2

∑
1≤m≤5

e
~b1(m+1)·~φ|dC̃(1)

m |2

− 1

2

∑
1≤m<n≤5

e
~b(m+1)(n+1)·~φ|dg̃mn |2,

(7.8)

where the tilde denotes similar expressions as in (7.4). But for the E6(6) invariance
to manifest in this lagrangian, the maximum amount of scalars and vectors should
be considered, so the 4- and 3-forms should be dualized to a scalar and vectors,
respectively. For example, the first two irreducible representations of E6(6) are 1 and
27. In this theory there are twenty-one vectors and six 2-forms, but after dualizing
the 2-forms there are twenty-seven vectors belonging in the 27 representation of
E6(6).

In five-dimensions, the Hodge dual of the 3-form will result in a scalar:

∗|dC(3)
µνρ|2 =− 2|db|2 (7.9)

The hodge dual of 2-forms in five-dimensions gives vectors:

∗|dBµν |2 =2|∂µBν |2

∗|F3,m|2 =2[|∂µC(3)
νm − ∂µBν ∧ dC(1)

m |2 + |∂µC(3)
νm − ∂νBm ∧ dC(1)

µ |2

+ |∂µC(3)
νm − ∂µBm ∧ dC(1)

ν |2]
(7.10)
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To substitute these dualizations correctly in the five-dimensional lagrangian, a Bianchi
multiplier imposing the Bianchi identity should also be considered. This was done
in [13] in detail, but to find which vectors gain masses it is more important to find
where these fields are located in the 27-representation of E6(6) with respect to the
vielbein. Their full expression can be absorbed in redefinitions.

The scalars are described in the coset E6(6)/USp(8) and the coset is described by
the vielbein [13], [34]:

V =e
1
2
~φ· ~H

∏
1≤m≤5

eC
(1)
m Em+1

1

∏
1≤m<n≤5

eg
m
n E

n+1
m+1

e
∑

2≤m<n≤5BmnE
1(m+1)(n+1)+

∑
1≤m<n<r≤5 C

(3)
mnrE

(m+1)(n+1)(r+1)

ebJ
(7.11)

The commutation relations are given by:

[ ~H,Ej
i ] =~bijE

j
i

[ ~H,Eijk] =~aijkE
ijk

[Ej
i , E

l
k] =δjkE

l
i − δilE

j
k

[Em
l , E

ijk] =− 3δ
[i
l E
|m|jk]

[ ~H, J ] =− ~αJ
[Ej

i , J ] =0

[Eijk, J ] =0

[Eijk, Elmn] =− εijklmnJ

(7.12)

The εijklmn is defined at (5.1). The root generators are given in the Appendix A.
The kinetic term of the lagrangian for the scalar fields can also be rewritten in terms
of [15]:

H = V†ηV , (7.13)

and kinetic term of the scalar fields becomes:

Lscalars =
1

4
Tr[∂µH−1∂µH]. (7.14)

Accordingly, the kinetic term of the lagrangian for the vectors is [14]:

Lvectors = −1

8
gµρgνσΩacΩbdVabαβVcdγδFαβ

µν F
γδ
ρσ , (7.15)

where α, β, .. = 1, .., 8 are pairs of E6(6) and a, b, .. = 1, .., 8 are USp(8) indices.
The vectors lie in Aαβµ which belongs in the 27-representationf of E6(6), as seen in
Appendix B.

The vectors and scalars gain masses from the matrix M , by substituting M = eMy

in the five-dimensional lagrangian [14]:

Aαβµ (x, y) =Mα
γ (y)Mβ

δ (y)Aγδµ (x)

Vabαβ(x, y) =(M−1(y))γα(M−1(y))δβVabγδ(x)
(7.16)
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7.2 Supersymmetry breaking and black holes in

four-dimensions

Using (A.13) and (7.8) to match the dilaton vectors from the lagrangian to the
Cartan generators, it should be noted that aij and bi remain the same, and ai
becomes −ai, due to the 2-forms which were dualized to vectors, it is paired with.
The twenty-seven five-dimensional vectors after dualization, can be found in the
27-vector J with the order given below:

J = (Bµ, C
(3)
µ1 , C

(3)
µ2 , C

(3)
µ3 , C

(3)
µ45, C

(3)
µ4 , C

(3)
µ35, C

(3)
µ5 , C

(3)
µ25, C

(3)
µ34, C

(3)
µ15,

C
(3)
µ24, Bµ5, C

(3)
µ14, C

(3)
µ23, Bµ4, C

(3)
µ13, Bµ3, C

(3)
µ12, Bµ2, C

(1)
µ , g1µ, Bµ1, g

2
µ,

g3µ, g
4
µ, g

5
µ)

(7.17)

The mass spectrum for the mass matrix (5.7), (B.2) - (B.6), and solving for (7.16)
is shown in Appendix C, table C.1. The black hole D4a/D4b/D4c/D0 can survive
the reduction in N = 6 and N = 4. To obtain N = 4, m3 and m4 should be set to
zero. The four-dimensional massless vectors C

(1)
µ , C

(3)
µ46, C

(3)
µ23 and C

(3)
µ15 correspond

to D0 and D4a, D4b and D4c, respectively. The directions on which these branes lie,
however should be changed. The D4a brane corresponding to C

(3)
µ46 sits in directions

(1235), D4b should sit in (1456) and D4c should be in (2346). This configuration
should then be:

Case A’ 0 1 2 3 4 5 6 7 8 9
D4a × × × × × . . .
D4b × × × × × . . .
D4c × × × × × . . .
D0 × . . .

The same fields forN = 4, can be used in the black hole for Case C,D6/D2a/D2b/D2c

but again, with a different configuration:

Case C’ 0 1 2 3 4 5 6 7 8 9
D6 × × × × × × × . . .
D2a × × × . . .
D2b × × × . . .
D2c × × × . . .

The black hole in Case B, D4a/D4b/D2a/D2b survives up to N = 6, when three mass

parameters are set to be zero, m1 = m2 = m3 = 0. The four-dimensional fields C
(3)
µ16,

C
(3)
µ35, C

(3)
µ15 and C

(3)
µ56 corresponding to D2a, D2b, D4b and D4a, resulting to the new

configuration:

Case B’ 0 1 2 3 4 5 6 7 8 9
D4a × × × × × . . .
D4b × × × × × . . .
D2a × × × . . .
D2b × × × . . .

Finally, the case D: D6/NS5/D2/W black hole has massless fields up to N = 6,

with m1 = m3 = m4 = 0. The fields C
(1)
µ , C

(3)
µ16, Bµ1 correspond to D-branes D6,

D2, NS5, with the same configuration as (6.38).
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The mass matrix from (5.10), (B.8) and (B.9) gives the mass spectrum shown in
Appendix C, table C.2. This mass matrix shows better results for case D. The black
hole D6/NS5/D2/W survives up to N = 4 for m1 = m4 = 0 with corresponding

fields C
(1)
µ , Bµ5 and C

(3)
µ56 and the massless field obtained from the reduction g6µ. The

configuration should also be different than the one in chapter 6, it should be:

Case D’ 0 1 2 3 4 5 6 7 8 9
D6 × × × × × × × . . .
NS5 × × × × × × . . .
D2 × × × . . .
W × → . . .

All of these black holes can survive to N = 2, meaning that their reduced vectors
can remain massless in N = 2, if the parameters of the mass matrix can be taken to
be a linear combination of each other. This can be done using any of the two mass
matrices. To be more specific, assume the mass matrix (5.10) and one example will
be given for each case. To study cases A and C, set m3 = 0 and m1 = m2 = m4 =
m 6= 0, leading to C

(1)
µ , C

(3)
µ13, C

(3)
µ24 and C

(3)
µ56 are massless, then with these fields,

both cases can be re-written as:

Case A” 0 1 2 3 4 5 6 7 8 9
D4a × × × × × . . .
D4b × × × × × . . .
D4c × × × × × . . .
D0 × . . .

Case C” 0 1 2 3 4 5 6 7 8 9
D6 × × × × × × × . . .
D2a × × × . . .
D2b × × × . . .
D2c × × × . . .

By setting m4 = 0 and m1 = −m2 = m3 = m 6= 0, then C
(3)
µ56, C

(3)
µ12, C

(3)
µ16 and C

(3)
µ25

are massless. Thus, the black hole D4a/D4b/D2a/D2b can survive at N = 2, but
with the following configuration:

Case B” 0 1 2 3 4 5 6 7 8 9
D4a × × × × × . . .
D4b × × × × × . . .
D2a × × × . . .
D2b × × × . . .

Let m2 = 0 and m1 = m4 = m 6= 0, then C
(3)
µ56, Bµ5 and C

(1)
µ are massless, then the

configuration of case D’, can survive up to N = 2.

At N = 0, all masses are non-zero. Setting m1 = m2 = m3 = m4 = m 6= 0 in (5.10),
then all four black holes survive, with the configurations of case A, case B”’, case C
and case D’. In fact, case D’ can survive with only the restriction between two mass
parameters: m1 = m4 = m 6= 0. Case B”’ is given below:



Case B”’ 0 1 2 3 4 5 6 7 8 9
D4a × × × × × . . .
D4b × × × × × . . .
D2a × × × . . .
D2a × × × . . .

There are other possible configurations that result in the same four-dimensional
extremal black hole.



Chapter 8

Conclusion

The objective of this thesis is to study the untwisted reduction of a black hole from
type IIA in ten-dimensions to five-dimensions and then to reduce with a twist to
four-dimensions. The supergravity is partially broken from five- to four-dimensions
from N = 8 to N = 6, 4, 2, and 0. To summarize, the reduction of ten-dimensional
type IIA supergravity on T 5 × S1, was studied with a Scherk-Schwarz twist on S1

and untwisted T 5.

In section 5.2, the dimensional reduction was studied from IIA in ten-dimensions to
six-, five- and four-dimensions. In section 5.3, the reduction with a twist on a circle
was presented from five- to four-dimensions. The massive and massless fields were
obtained.

In chapter 6, the black holes with D-brane configurations: D4a/D4b/D4c/D0,
D4a/D4b/D2a/D2b, D6/D2a/D2b/D2c and D6/NS5/D2/W were studied. Their di-
mensional reduction was also shown.

In chapter 7, there is an analysis on which fields become massive in four-dimensions
using two different mass matrices. The previously studied black holes are shown to
survive in N = 6 or up to N = 4, but after changing the directions their branes
are parallel to. By writing the non-zero entries of the mass matrix in be a linear
combination of each other, these black holes can even be found in N = 2 and N = 0.

8.1 Outlook

Further analysis can be done on the scalars and fermionic fields that remain massless
after a Scherk-Schwarz twist from five- to four-dimensions. The outcome of this
analysis can be implemented on four-dimensional black holes. In addition, more
mass matrices that can be studied.

Another similar research can be done for near-extremal black holes. Are there twists
that allow four-dimensional near-extremal black holes to survive up to N = 2 or 0?

In this thesis, the macroscopic entropy of the four-black holes was calculated. Addi-
tional analysis can be done on their microscopic entropy. The microscopic entropy
can be calculated by counting the brane configurations.



Appendix A

Roots and root generators of
five-dimensional lagrangian

The vectors ~g, ~fi are given [13], [34]:

~g =3(α1, α2, .., α6)

~fi =(0, .., 0, (10− i)αi, αi+1, .., α6),
(A.1)

where there are (i − 1) zeroes in ~fi. The values of α1, .., α6, used in (A.1) can be

obtained from (7.2). The vectors ~a, ~ai, ~aij, ~aijk, ~bi, ~bij can be calculated from [13],
[34]:

~a =− ~g
~ai =~fi − ~g
~aij =~fi + ~fj − ~g
~aijk =~fi + ~fj + ~fk − ~g
~bi =− ~fi

~bij =− ~fi + ~fj

(A.2)

The dilaton vectors in the five-dimensional lagrangian are obtained after dimension-
ally reducing via Kaluza-Klein, the initial lagrangian. The dilaton vector associated
with the four-form is:
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The dilaton vectors of Cµ and gµm are:
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(A.4)

The dilaton vectors of Cm and gmn are the following:
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The dilaton vectors of the 2-forms Bµν and C ′µνm are:
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The dilaton vector of Bµm and Cµmn are:
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The dilaton vectors of the scalars Bmn and C ′mnr are:
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The root generators for the nodes in the dynkin diagram: b12, b23, b34, b56 and a123
are found in the adjoint representation with respect to a linear combination of a
basis of root generators. To find the rest of them, the roots have to be written as a
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sum of the roots corresponding in the dynkin diagram [24], [57]:

E 2
1 = s1,2 + s11,13 + s14,16 + s17,18 + s19,20 + s21,22

E123 = s4,5 + s6,7 + s8,10 + s19,21 + s20,22 + s23,24

E 3
2 = s2,3 + s9,11 + s12,14 + s15,17 + s20,23 + s22,24

E 4
3 = s3,4 + s7,9 + s10,12 + s17,19 + s18,20 + s24,25

E 5
4 = s4,6 + s5,7 + s12,15 + s14,17 + s16,18 + s25,26

E 6
5 = s6,8 + s7,10 + s9,12 + s11,14 + s13,16 + s26,27

(A.10)

E 3
1 = s1,3 + s19,23 + s21,24 − s9,13 − s15,18 − s12,16

E 4
1 = s1,4 + s21,25 − s15,20 + s7,13 + s10,16 − s17,23

E 5
1 = s1,6 + s21,26 + s10,18 − s5,13 + s12,20 + s14,23

E 6
1 = s1,8 + s21,27 − s5,16 − s7,18 − s9,20 − s11,23

E 4
2 = s2,4 + s15,19 + s22,25 − s7,11 − s10,14 − s18,23

E 5
2 = s2,6 + s22,26 − s10,17 + s5,11 − s12,19 + s16,23

E 6
2 = s2,8 + s22,27 + s5,14 + s7,17 + s9,19 − s13,23

E 5
3 = s3,6 + s10,15 + s24,26 − s5,9 − s14,19 − s16,20

E 6
3 = s3,8 + s24,27 − s5,12 − s7,15 + s11,19 + s13,20

E 6
4 = s4,8 + s5,10 + s25,27 − s9,15 − s11,17 − s13,18

E124 = s6,9 + s8,12 + s23,25 − s3,5 − s17,21 − s18,22
E125 = −s4,9 + s8,15 + s23,26 − s3,7 + s14,21 + s16,22

E126 = −s4,12 − s6,15 + s23,27 − s3,10 − s11,21 − s13,22
E134 = −s8,14 + s20,25 − s6,11 − s2,5 − s15,21 + s18,24

E135 = s4,11 − s8,17 + s20,26 − s2,7 + s12,21 − s16,24
E136 = s4,14 + s6,17 + s20,27 − s2,10 − s9,21 + s13,24

E145 = s8,19 + s2,9 + s18,26 + s3,11 + s10,21 + s16,25

E146 = s2,12 + s18,27 + s3,14 − s6,19 − s7,21 − s13,25
E156 = −s2,15 − s3,17 + s16,27 − s4,19 − s5,21 + s13,26

E234 = s6,13 + s8,16 + s19,25 − s1,5 + s15,22 + s17,24

E235 = −s4,13 + s8,18 + s19,26 − s1,7 − s12,22 − s14,24
E236 = −s4,16 − s6,18 + s19,27 − s1,10 + s9,22 + s11,24

E245 = s8,20 + s3,13 − s17,26 − s1,9 + s10,22 − s14,25
E246 = s3,16 − s17,27 − s1,12 − s6,20 − s7,22 + s11,25

E256 = s3,18 − s1,15 + s11,26 + s4,20 + s5,22 + s14,27

E345 = s8,23 − s1,11 + s15,26 − s2,13 + s10,24 + s12,25

E246 = −s1,14 + s15,27 − s2,16 − s6,23 − s7,24 − s9,25
E356 = −s1,17 − s2,18 − s9,26 + s4,23 + s5,24 − s12,27
E456 = −s1,19 − s2,20 + s5,25 − s3,23 + s7,26 + s10,27

J = s4,25 + s6,26 + s1,21 + s2,22 + s3,24 + s8,27

(A.11)

where sa,b is the matrix with 1 in the (a, b) position and zero elsewhere. It is
easy to see that the root generators satisfy (7.12). Combining the root generator
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representations, and the general equation for roots:

[Hi, E
k
j ] = (εj − εk)(Hi)E

k
j , (A.12)

the Cartan generators are:

Hi = diag(− f1(i) + g(i),−f2(i) + g(i),−f3(i) + g(i),−f4(i) + g(i),

f5(i) + f6(i)− g(i),−f5(i) + g(i), f4(i) + f6(i)− g(i),

− f6(i) + g(i), f3(i) + f6(i)− g(i), f4(i) + f5(i)− g(i),

f2(i) + f6(i)− g(i), f3(i) + f5(i)− g(i), f1(i) + f6(i)− g(i),

f2(i) + f5(i)− g(i), f3(i) + f4(i)− g(i), f1(i) + f5(i)− g(i),

f2(i) + f4(i)− g(i), f1(i) + f4(i)− g(i), f2(i) + f3(i)− g(i),

f1(i) + f3(i)− g(i),−f1(i),−f2(i), f1(i) + f2(i)− g(i),−f3(i),
− f4(i),−f5(i),−f6(i))

, (A.13)

where i = 1, .., 6.



Appendix B

The 27-representation of E6

The vectors Aαβµ , where [12], [14] α, β = 1, .., 8 have the properties: Aαβµ = A∗µαβ =

−Aβαµ and they are traceless. A map can be constructed with respect to the sym-
plectic metric:

Ω =

[
0 I
−I 0

]
(B.1)

from the real representation of E6(6), J = (x1, x2, .., x27) to a matrix A of Aαβµ , with
a suitable choice of basis. This matrix A can be written as [16]:

A =

[
B + iC S + iD
−S + iD B − iC

]
, (B.2)

with the properties A∗γδ = (ΩγαA
αβΩT

βδ)
∗ = Aγδ and Aβα = −Aαβ and Aαα = 0, which

result in BT = −B,CT = −C,DT = −D and ST = S and tr(S) = 0. Hence the
matrices B, C and D have six independent elements and S has nine. The matrix A
can be written as:

B =


0 x1 x2 x3
−x1 0 x4 x5
−x2 −x4 0 x6
−x3 −x5 −x6 0

 . (B.3)

S =


x7 x8 x9 x10
x8 x11 x12 x13
x9 x12 x14 x15
x10 x13 x15 −x7 − x11 − x14

 . (B.4)

C =


0 x16 x17 x18
−x16 0 x19 x20
−x17 −x19 0 x21
−x18 −x20 −x21 0

 . (B.5)

and

D =


0 x22 x23 x24
−x22 0 x25 x26
−x23 −x25 0 x27
−x24 −x26 −x27 0

 . (B.6)



A similar map can be taken for the symplectic matrix:

Ω =



0 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0


, (B.7)

A = F + iG, where:

F =



0 x1 x2 x3 x4 x5 x6 x7
−x1 0 −x3 x2 −x5 x4 −x7 x6
−x2 x3 0 x8 x9 x10 x11 x12
−x3 −x2 −x8 0 −x10 x9 −x12 x11
−x4 x5 −x9 x10 0 x13 x14 x15
−x5 −x4 −x10 −x9 −x13 0 −x15 x14
−x6 x7 −x11 x12 −x14 x15 0 −x1 − x8 − x13
−x7 −x6 −x12 −x11 −x15 −x14 x1 + x8 + x13 0


(B.8)

G =



0 0 x16 x17 x18 x19 x20 x21
0 0 x17 −x16 x19 −x18 x21 −x20
−x16 −x17 0 0 x22 x23 x24 x25
−x17 x16 0 0 x23 −x22 x25 −x24
−x18 −x19 −x22 −x23 0 0 x26 x27
−x19 x18 −x23 x22 0 0 x27 −x26
−x20 −x21 −x24 −x25 −x26 −x27 0 0
−x21 x20 −x25 x24 −x27 x26 0 0


(B.9)



Appendix C

Vector masses from
Scherk-Schwarz reduction

The mass matrix (5.7) results in the following vectors to gain the corresponding
masses shown in the table below:

Fields Mass

C
(3)
µ35, C

(3)
µ15, C

(3)
µ14, g

6
µ massless

Bµ6, Bµ4 |m1 +m2|
C

(3)
µ56, g

1
µ |m1 −m2|

C
(3)
µ16, C

(3)
µ13 |m1 +m3|

C
(3)
µ25, Bµ1 |m1 −m3|

C
(3)
µ26, Bµ3 |m1 +m4|
C

(3)
µ34, g

2
µ |m1 −m4|

C
(3)
µ36, C

(3)
µ12 |m2 +m3|

C
(3)
µ24, g

3
µ |m2 −m3|

C
(3)
µ45, Bµ2 |m2 +m4|
Bµ5, g

4
µ |m2 −m4|

C
(3)
µ46, C

(1)
µ |m3 +m4|

C
(3)
µ23, g

5
µ |m3 −m4|

Table C.1: Four-dimensional vectors with corresponding masses from mass matrix
(5.7)

The second mass matrix (5.10) results in the following massive vectors:
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Fields Mass

Bµ6, C
(3)
µ56, Bµ5 g

6
µ massless

C
(3)
µ16, Bµ4 |m1 +m2|

C
(3)
µ26, C

(3)
µ13 |m1 −m2|

C
(3)
µ36, Bµ3 |m1 +m3|

C
(3)
µ45, C

(3)
µ12, |m1 −m3|

C
(3)
µ46, Bµ2 |m1 +m4|

C
(3)
µ35, C

(1)
µ |m1 −m4|

C
(3)
µ25, g

1
µ |m2 +m3|

C
(3)
µ34, Bµ1 |m2 −m3|
C

(3)
µ15, g

2
µ |m2 +m4|

C
(3)
µ24, g

3
µ |m2 −m4|

C
(3)
µ14, g

4
µ |m3 +m4|

C
(3)
µ23, g

5
µ |m3 −m4|

Table C.2: Four-dimensional vectors with corresponding masses from mass matrix
(5.10)
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