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Abstract

We begin with an overview of fractional derivatives, which have many different definitions, not
all of which are equivalent. For some of the most commonly used definitions, we present a
few properties and techniques for solving fractional differential equations. Furthermore, we show
some of the key differences when solving identical equations using a different definition. There are
already applications of fractional derivatives, but each application requires a critical assessment
for which definition is most suitable. We show a new application of fractional derivatives in
the field of glasses, making use of Caputo fractional derivatives. An analytical solution of the
fractional Langevin equation is obtained, where the first-order friction term is replaced by a
Caputo fractional derivative of order s. Then, we show that for 0 < s < 0.1, the ground state of
the fractional Langevin solutions exhibits emergent periodic glassy behaviour, thus characterising
the recently conjectured time glass. Finally, we present a semi-classical microscopic model, which,
in the low-temperature limit, is effectively described by the fractional Langevin equation, thus
establishing the link between sub-ohmic open systems and fractional derivative equations.
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Introduction

After Newton’s Principia Mathematica (1687) and the simultaneous work of Leibniz [1], laying
the foundations of the modern Calculus, Leibniz first proposed the idea of fractional calculus in a
letter to l’Hôpital in 1695 [2]. As natural as it sounded, they did not manage to give a mathematical
foundation. Euler only came so far as introducing the Gamma function in 1738 [3], and only in 1822
came the first mathematical proposal by Fourier [4], after which Liouville laid the proper foundations
in 1832 [5]1. In 1847, Riemann managed to encapsulate Liouville’s results into a new formulation
using ordinary integrals [8]. Finally, Grünwald understood the deep relation to integrals only in
1867, 172 years after Leibniz’s first proposal [9]. Another century passed before Caputo found new
applications using his newly found definition in 1969 [10]. From here, many more mathematicians
picked up interest in the topic, and more and more applications are still being found today [11–14].

An even older problem is the theoretical description of glasses. Though glasses have been used for
many centuries, the microscopic states have been puzzling researchers in condensed matter physics
ever since [15]. Under the microscope, researchers have great difficulty to distinguish a glass from a
liquid because the atoms show a random structure [16]. As we can simply see with the eye that glass
is much more solid than liquid like, we therefore need a theory which is microscopically liquid based,
yet provides an overall solid structure. One of these theories uses many hard spheres [17]: At low
density, spheres are free to move around as Brownian motion and thus form a liquid. However, at
high density, the in principle free to move spheres are prohibited from moving past its neighbours as
there is no space left between them, thus effectively caging all spheres in their place. More recently,
the Gardner phase [18] was found to occur in this hard sphere model when the density is increased
even further [19]. In doing so, the spheres show collective behaviour where a sphere is not only
moving inside its own cage, but the cage of neighbouring spheres begins to move as a collective
particle inside an even larger cage of neighbours. This caging has been shown to occur in a fractal
manner [20], which is a key property of the Gardner phase.

Another recent example of such collective behaviour has been found in the so called time crystal.
This is a phase in which the ground state shows an emergent periodicity in time, similar to how an
ordinary crystal shows emergent periodicity in space. These phases do require some sort of external
energy in the form of either a thermal bath or a driving force, as eternal movement without energy
is still impossible. These time crystals were first conjectured by Wilczek [21], and have already been
observed [22] and with this success Wilczek [23] also proposed several other types of time materials,
including time glass.

In this thesis, we aim to provide a comprehensive introduction to fractional calculus, including
many comparisons between (and properties of) some of the most commonly used definitions. After
a summary for physicists, we show some of the key solving methods and differences in solutions
when choosing a particular definition for an application. After a short introduction to Brownian
motion, glasses, time crystals, and an extensive introduction to the Caldeira-Leggett model, we
show a new application in the field of glasses with the emergence of a time glass from the fractional
Langevin equation with white noise, including a generalisation of the Caldeira-Leggett model to
show the connection of a two-level systems bath to the fractional Langevin equation. We finish
with an overview of several existing applications in physics, which can all be described by a single
general equation, which we call the fractional-kinetics Langevin equation.

1Only recently [6], it was understood that Abel was actually already working on Caputo derivatives and Riemann-
Liouville integrals in his first paper in 1823 [7], where he showed these two operators are inverses of each other.
However, he (and his then small audience) did not realise that he was working with fractional derivatives.
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1 An overview of fractional derivatives

There are many definitions of fractional derivatives [24]. This occurs because it is an extension of
classical derivatives with not enough constraints to only have one logical definition. Some of them
are equivalent, but some are not. In this chapter, we will give an overview of the most commonly
used definitions of fractional derivatives, their properties, which are equivalent and which are not,
and consider which definitions are the most physical and what applications they are most suited
for. Definitions are based on Hilfer et al. [2] and Podlubny [25], although there are many other good
sources such as Refs. [13, 14, 26–30].

1.1 Mathematical tools

We start with some tools that will be used for defining fractional derivatives.

Definition 1.1.1. The (Euler-)Gamma function is defined as Γ(z) =
∫∞

0 e−ttz−1 dt with Re(z) > 0.

In fact, one can even enter complex numbers as seen in Figure 1, and with an analytical extension
the Gamma function can be defined as a meromorphic function on the complex plane. The poles
of this function lie at z = 0,−1,−2, . . . .

Arg[ Γ(z) ]

0

2

4

6

Figure 1: A plot of Γ(z) in the complex plane, where the colour indicates the complex phase
arg[Γ(z)].

Lemma 1.1.2. The Gamma function satisfies Γ(z + 1) = zΓ(z).

Proof. Integration by parts gives

Γ(z + 1) =

∫ ∞
0

e−ttz dt = [−e−ttz]t=∞t=0 + z

∫ ∞
0

e−ttz−1 dt = zΓ(z).
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Since Γ(1) =
∫∞

0 e−t dt = [−e−t]t=∞t=0 = 1, A simple consequence of this Lemma is that for n ∈ N

Γ(n+ 1) = n!

Accordingly, the Gamma function is often used as the generalisation of the factorial for integers.

Definition 1.1.3. The Beta function is defined by

B(z, w) =

∫ 1

0
τ z−1(1− τ)w−1 dτ (Re(z) > 0, Re(w) > 0).

The Beta function can also be extended to negative values of z and w, although with many poles,
and a plot of this extension is shown in Figure 2.

|B(z,w)|

0 10 20 30 40

(a) Absolute value of B(z, w), centred at (0,0).

B(z,w)

0 0.1 0.2 0.3 0.4 0.5 0.6

(b) Rescaled positive sector.

Figure 2: A plot of the Beta function extension with colour indicating height. All the poles lie at
points where either z or w ∈ {0,−1,−2, ...}. Without the absolute value, each alternating valley
on the negative side will be positive and negative, similar to the Gamma function for negative real
values.

The Beta function is defined to have a related structure to the Gamma function and, from this
structure, we can derive the following Lemma.

Lemma 1.1.4. For Re(z) > 0 and Re(w) > 0, the following property holds:

B(z, w) =
Γ(z)Γ(w)

Γ(z + w)
.



1 AN OVERVIEW OF FRACTIONAL DERIVATIVES 4

Proof. We make a change of basis in the double integral Γ(z)Γ(w) =
∫∞

0

∫∞
0 e−(t+s)tz−1sw−1 dt ds.

Set t = xy and s = x(1− y), then the boundary conditions become 0 < x <∞ and 0 < y < 1. The

Jacobian of this transformation is J = det

∣∣∣∣ y x
1− y −x

∣∣∣∣ = −xy − x + xy = −x, or |J | = x, which

gives

Γ(z)Γ(w) =

∫ 1

0

∫ ∞
0

e−x(xy)z−1[x(1− y)]w−1x dx dy

=

∫ ∞
0

e−xxz+w−1 dx

∫ 1

0
yz−1(1− y)w−1 dy

= Γ(z + w)B(z, w).

This Lemma also implies that B(w, z) = B(z, w). Although the above calculation is only valid for
positive values of z and w, we can still use it to interpret the many poles in Figure 2. As the formula
with Gamma functions suggests that we would have poles whenever z or w is a negative integer.

Another important function in classical derivatives is the exponential function ex =
∑∞

k=o
xk

k! . A
generalisation to a similar function for fractional derivatives is the following.

Definition 1.1.5. The one parameter Mittag-Leffler function is defined by

Eα(z) =

∞∑
k=0

zk

Γ(αk + 1)
.

The two parameter Mittag-Leffler function is defined by

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
.

Observe that Eα(z) = Eα,1(z) and that E1(z) = E1,1(z) = ez. Some examples of Mittag-Leffler
functions for different values of α and β have been plot in Figure 3. Notice that Eα,β(0) = 1

Γ(β) and

how E2(t) shows oscillating behaviour for negative t.

Another important result for us is the Leibniz integral rule:

Theorem 1.1.6. (Leibniz integral rule, [31]) The derivative of an integral with variables in both
the integral and in the boundary terms is given by:

d

dx

(∫ b(x)

a(x)
f(x, t)dt

)
= f(x, b(x)) · d

dx
b(x)− f(x, a(x)) · d

dx
a(x) +

∫ b(x)

a(x)

∂

∂x
f(x, t)dt. (1.1)

1.1.1 Fourier transforms

Often used in physics, the Fourier transform is a useful concept in analysing functions. Also for
Partial Differential Equations (PDE’s), Fourier transforms can play an important role in construct-
ing solutions. A natural question to ask then, is how Fourier transforms interact with (fractional)
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E 1
10

(z)

E1 (z)

E2 (z)

E
1, 1
10

(z)

E1,1.8 (z)

2 4 6 8 10
z

20

40

60

80 -100 -80 -60 -40 -20
z

-1.0

-0.5

0.5

1.0
Eα,β (z)

-1.5 -1.0 -0.5 0.5 1.0 1.5
z

1

2

3

4
Eα,β (z)

Figure 3: A plot of some Mittag-Leffler functions of different parameters and in different regions.
Upper inset: A zoom-in of the negative z values, some values show oscillations. Lower inset: A
zoom-in of the region around z = 0.

derivatives. For either a periodic function or a function f(t) ∈ L2(R), where

L2(R) =

{
f(x) |

(∫ ∞
−∞
|f(x)|2 dx

)1/2

<∞

}
,

we define the Fourier transform2 as

f(ω) =
1

2π

∫ ∞
−∞

f(t)e−iωt dt. (1.2)

Its inverse Fourier transform is then defined as

f(t) =

∫ ∞
−∞

f(ω)eiωt dω. (1.3)

2There are several conventions, but for our purposes, of combining derivatives with Fourier transforms, the one
used here will be the most convenient.
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Indeed, checking if this is the inverse transform, we find∫ ∞
−∞

f(ω)eiωt dω =
1

2π

∫ ∞
−∞

∫ ∞
−∞

f(t′)e−iωt
′
dt′eiωt dω

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

f(t′)eiω(t−t′) dt′ dω

=

∫ ∞
−∞

f(t′)δ(t− t′) dt′

= f(t),

where we used that

1

2π

∫ ∞
−∞

eiω(t−t′) dω = δ(t− t′). (1.4)

Let us now see how derivatives interact with these Fourier transforms. Let n ∈ N, then

dn

dtn
f(t) =

dn

dtn

∫ ∞
−∞

f(ω)eiωt dω =

∫ ∞
−∞

(iω)nf(ω)eiωt dω

and we find that f (n)(ω) = (iω)nf(ω). Since this notation can sometimes be a bit confusing, we
will also denote the Fourier transform as f(ω) = F (f(t);ω) and the inverse Fourier transform as
f(t) = F−1 (f(ω); t). In this notation, we see that

F
(
dn

dtn
f(t);ω

)
= (iω)nF (f(t);ω) . (1.5)

We can also do the above for an n-fold integral
∫ t
a

∫ t1
a . . .

∫ tn−1

a f(tn) dtn . . . dt2 dt1, and it is quickly
seen that this gives

F
(∫ t

a

∫ t1

a
. . .

∫ tn−1

a
f(tn) dtn . . . dt2 dt1;ω

)
= (iω)−nF (f(t);ω) . (1.6)

1.1.2 Laplace transforms

Definition 1.1.7. The Laplace transform of a function f(t) defined on [0,∞), denoted by either
F (s) or L (f(t); s), with s ∈ C, is given by

F (s) = L (f(t); s) =

∫ ∞
0

f(t)e−st dt

And the inverse Laplace transform is given by

f(t) = L−1 (F (s); t) =

∫ c+i∞

c−i∞
F (s)est ds,

where c ∈ R is chosen such that all singularities of F (s) lie to the left of the line Re(s) = c.

Example 1.1.8. Let f(t) = ta for some a ∈ R, then

L (ta; s) =

∫ ∞
0

tae−st dt = s−(a+1)

∫ ∞
0

tae−t dt = s−(a+1)Γ(a+ 1).

4
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The Laplace transformation is one-to-one if f(t) is continuous. As already mentioned, there may
be values of s for which F (s) has a singularity, i.e. the integral is not convergent, but these are, in
fact, the most important points for the inverse transform. The inverse transform can be tricky to
work with. However, one can often use a few basic transformation tables to see what it should be
thanks to many properties of the Laplace transform.

Definition 1.1.9. A convolution of two functions f and g is given by

f(t) ∗ g(t) =

∫ t

0
f(t− τ)g(τ) dτ.

Lemma 1.1.10. Let f and g be two functions and suppose F (s) and G(s) both exist, then

L (f(t) ∗ g(t); s) = F (s)G(s). (1.7)

Proof. A direct calculation of Equation (1.7) gives

L (f(t) ∗ g(t); s) =

∫ ∞
0

f(t) ∗ g(t)e−st dt

=

∫ ∞
0

∫ t

0
f(t− τ)g(τ)e−st dτ dt

=

∫ ∞
0

∫ ∞
τ

f(t− τ)g(τ)e−st dt dτ

[set t = ξ + τ ] =

∫ ∞
0

∫ ∞
0

f(ξ)g(τ)e−s(ξ+τ) dξ dτ

=

∫ ∞
0

f(ξ)e−sξ dξ

∫ ∞
0

g(τ)e−sτ dτ

= F (s)G(s).

We show some basic and more advanced example transformations.

Example 1.1.11. Let n ∈ N, then, assuming the integrals exist, repeated integration by parts gives

L
(
dn

dtn
f(t); s

)
=

∫ ∞
0

dnf(t)

dtn
e−st dt

= −f (n−1)(0) + s

∫ ∞
0

dn−1f(t)

dtn−1
e−st dt

= −f (n−1)(0)− sf (n−2)(0) + s2

∫ ∞
0

dn−2f(t)

dtn−2
e−st dt

= . . .

= snF (s)−
n−1∑
k=0

sn−1−kf (k)(0).

4
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Example 1.1.12. Observe that

L (−tf(t); s) =

∫ ∞
0
−tf(t)e−st dt =

d

ds

∫ ∞
0

f(t)e−st dt =
d

ds
L (f(t); s)

and that this relation can be generalised to

L ((−t)nf(t); s) =
dn

dsn
L (f(t); s) .

4

Example 1.1.13. Recall the two parameter Mittag-Leffler function Eα,β(t) =
∑∞

k=0
tk

Γ(αk+β) . We
can compute its Laplace transform as

L (Eα,β(t); s) =

∫ ∞
0

∞∑
k=0

tk

Γ(αk + β)
e−st dt =

∞∑
k=0

1

Γ(αk + β)

∫ ∞
0

tke−st dt

=
∞∑
k=0

(−1)k

Γ(αk + β)

dk

dsk
L (1; s) =

∞∑
k=0

(−1)k

Γ(αk + β)

dk

dsk
s−1

=
∞∑
k=0

Γ(k + 1)

Γ(αk + β)
s−k,

where we used that

L (1; s) =

∫ ∞
0

e−st dt =

[
−1

s
e−st

]∞
t=0

=
1

s
.

4

Example 1.1.14. Following a calculation along the lines of Kisela [32, p.11], it is possible to find
a formula whose Laplace transform gives a more general fraction than simply 1

s . This will be very
useful when trying to transform back solutions of fractional differential equations obtained with
Laplace transforms. For m ∈ N and −1 < t < 1, we see that

m!

(1− t)m+1
=

dm

dtm
1

1− t
=

dm

dtm

∞∑
k=0

tk =
∞∑
k=0

dm

dtm
tk =

∞∑
k=m

k!

(k −m)!
tk−m

[shift k → k +m] =

∞∑
k=0

(k +m)!

k!
tk.

Next, consider the mth integer order derivative of the Mittag-Leffler function:

E
(m)
α,β (t) =

dm

dtm

∞∑
k=0

tk

Γ(αk + β)
=
∞∑
k=m

k! tk−m

(k −m)! Γ(αk + β)
=
∞∑
k=0

(k +m)!

k!

tk

Γ(αk + αm+ β)

and consider this as an independent function, in the sense that E
(m)
α,β (f(t)) = E

(m)
α,β (ξ)

∣∣∣
ξ=f(t)

, so that

we do not get extra terms from the derivative of a composition, such as with f(g(t)). Let α, β > 0,
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a ∈ R, m ∈ N, and |a| < Re(sα), then we get the following Laplace transform:

L
(
tαm+β−1E

(m)
α,β (atα); s

)
= L

(
tαm+β−1

∞∑
k=0

(k +m)!

k!

(atα)k

Γ(αk + αm+ β)
; s

)

=

∞∑
k=0

(k +m)!

k!

ak

Γ(αk + αm+ β)
L
(
tαm+β−1+αk; s

)
=

∞∑
k=0

(k +m)!

k!

akΓ(αm+ β + αk)

Γ(αk + αm+ β)
s−(αm+β+αk) =

∞∑
k=0

(k +m)!

k!

ak

sαm+β+αk

= s−αm−β
∞∑
k=0

(k +m)!

k!

( a
sα

)k
=

m! s−αm−β

(1− a/sα)m+1
=

m! sα−β

(sα − a)m+1
.

Although this is still far from a general fraction, this will often be useful in two-term fractional
differential equations. 4

1.2 Riemann-Liouville fractional derivative

In order to generalise the order of derivatives and integrals we should first find some structure in
ordinary integrals and derivatives. We can then look for places where a generalisation could make
sense. We will mostly focus on functions which depend on a time t.

Remark 1.2.1. Let n ∈ N. Then, taking the nth integral of a function f , we find

(Ina+f)(t) =

∫ t

a

∫ t1

a
. . .

∫ tn−1

a
f(tn) dtn . . . dt2 dt1 =

1

(n− 1)!

∫ t

a
(t− τ)n−1f(τ) dτ.

The subscript a+ indicates that the integral has a as its lower limit. This equality may be proven
by induction. This formula can be used to define a fractional integral.

Definition 1.2.2. Let α > 0. Then, we define the Riemann-Liouville fractional integral of order α
with lower limit a < t to be

RL
a+D−αt f(t) =

1

Γ(α)

∫ t

a
(t− τ)α−1f(τ) dτ

and the Riemann-Liouville fractional integral of order α with upper limit b > t to be

RL
b−D−αt f(t) =

1

Γ(α)

∫ b

t
(t− τ)α−1f(τ) dτ.

Definition 1.2.3. Let −∞ ≤ a < t < b ≤ ∞. The Riemann-Liouville fractional derivative of order
α ≥ 0 is defined to be

RL
a+Dα

t f(t) =
dn

dtn
RL
a+Dα−n

t f(t) =
dn

dtn
1

Γ(n− α)

∫ t

a
(t− τ)n−α−1f(τ) dτ,

RL
b−Dα

t f(t) = (−1)n
dn

dtn
RL
b−Dα−n

t f(t) =
dn

dtn
(−1)n

Γ(n− α)

∫ b

t
(t− τ)n−α−1f(τ) dτ,

where n is an integer such that n− 1 ≤ α < n.3

3For non-integer α, this is just the ceiling, but for integer α we have n = α+ 1.
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Note that α = 0 simply gives the identity operator. An equivalent definition would be to let m ∈ Z
such that m ≤ α < m+ 1 and to have

RL
a+Dα

t f(t) =
dm+1

dtm+1
RL
a+Dα−m−1

t f(t) =
dm+1

dtm+1

1

Γ(m− α+ 1)

∫ t

a
(t− τ)m−αf(τ) dτ,

RL
b−Dα

t f(t) = (−1)m+1 d
m+1

dtm+1
RL
b−Dα−m−1

t f(t) =
dm+1

dtm+1

(−1)m+1

Γ(m− α+ 1)

∫ b

t
(t− τ)m−αf(τ) dτ.

What we are doing in this definition comes down to generalising integrals, and then defining the
fractional derivatives by integrating the smallest amount such that we are an integer amount of n
integrals away from the αth derivative and then applying n derivatives to get to the correct order
α.

Remark 1.2.4. There are many notations used for fractional derivatives. We will mostly follow
the notation of Podlubny [25], which is RL

aD
α
t f(t), where α < 0 is interpreted as an integral and

α > 0 as a derivative. We also omit the + and − from the notation for convenience, but you should
be aware of whether or not a is bigger than t.

Example 1.2.5. Let us try our definition on a simple power function f(t) = (t − a)ν . Then, for
α > 0, we obtain

RL
aD
−α
t f(t) =

1

Γ(α)

∫ t

a
(t− τ)α−1(τ − a)ν dτ

[set τ = a+ z(t− a) ] =
1

Γ(α)

∫ 1

0
[(1− z)(t− a)]α−1[z(t− a)]ν(t− a) dz

=
1

Γ(α)
(t− a)ν+α

∫ 1

0
(1− z)α−1(z)ν dz

=
1

Γ(α)
(t− a)ν+αB(α, ν + 1)

=
Γ(ν + 1)

Γ(ν + α+ 1)
(t− a)ν+α.

Similarly, for α > 0 and say n− 1 ≤ α < n, we obtain

RL
aD

α
t f(t) =

dn

dtn
1

Γ(n− α)

∫ t

a
(t− τ)n−α−1(τ − a)ν dτ

[set τ = a+ z(t− a) ] =
dn

dtn
1

Γ(n− α)

∫ 1

0
[(1− z)(t− a)]n−α−1[z(t− a)]ν(t− a) dz

=
dn

dtn
(t− a)n+ν−α 1

Γ(n− α)

∫ 1

0
(1− z)n−α−1zν dz

=
dn

dtn
(t− a)n+ν−α 1

Γ(n− α)
B(n− α, ν + 1)

=
Γ(n+ ν − α+ 1)

Γ(ν − α+ 1)
(t− a)ν−α

Γ(n− α)Γ(ν + 1)

Γ(n− α)Γ(n− α+ ν + 1)

=
Γ(ν + 1)

Γ(ν − α+ 1)
(t− a)ν−α.
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Figure 4: A plot of RL0D
α
t t

2 for α as indicated in the legend. Dashed lines are ordinary integer
derivatives and integrals, while the full lines are of fractional order. Notice how the different orders
cross each other and how the fractional orders fit between the integer orders. Inset: Zoom-in on
the small t values.

Observe that these extensions of integer derivatives of an exponent are in line with using Γ(z+1) = z!
for z ∈ N as the extension of the factorial. Visually, they also seem to have a natural place in Figure
4 compared to the integer order derivatives, with the exception of α = 2.5 where one would, perhaps
intuitively, expect the zero function as it is a higher order derivative than the power of t. 4

Example 1.2.6. Suppose that f(t) = eω(t−a), then

RL
aD

α
t e
ω(t−a) = RL

aD
α
t

∞∑
k=0

(ω(t− a))k

k!

=

∞∑
k=0

ωk

Γ(k + 1)
RL
aD

α
t (t− a)k

=

∞∑
k=0

ωk

Γ(k + 1)

Γ(k + 1)

Γ(k − α+ 1)
(t− a)k−α

= (t− a)−α
∞∑
k=0

(ω(t− a))k

Γ(k − α+ 1)

= (t− a)−αE1,1−α(ω(t− a)).

This might look different from what one could expect of a classical derivative with dn

dtn e
ω(t−a) =

ωneω(t−a) for integer n. However, if we assume α ∈ Z then we can shift the sum in the Mittag-Leffler
function to recover the ordinary integer derivative. 4
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There are some fundamental properties that we would like derivatives to have; for example, we want

dn

dtn

(
dmf(t)

dtm

)
=

dm

dtm

(
dnf(t)

dtn

)
=
dn+mf(t)

dtn+m
, (1.8)

the additivity property of derivatives. This is not true if we want to have this property hold for
integrals too, as we get extra polynomials in the boundary terms, in the sense that

∫ x
a f
′(y) dy =

f(x)− f(a). Let us investigate in what sense the fractional orders are additive.

Consider n ∈ Z positive, k ∈ Z and 0 < α ≤ 1, then by definition we have

dn

dtn
RL
aD

k−α
t f(t) =

1

Γ(α)

dn+k

dtn+k

∫ t

a
(t− τ)α−1f(τ) dτ.

Denoting p = k − α, we then find that

dn

dtn
RL
aD

p
t f(t) = RL

aD
p+n
t f(t).

Lemma 1.2.7. Suppose that 0 ≤ m ≤ p < m+ 1, then

RL
aD

p
t f(t) =

m∑
k=0

f (k)(a)(t− a)k−p

Γ(k − p+ 1)
+

1

Γ(m− p+ 1)

∫ t

a
(t− τ)m−pf (m+1)(τ) dτ

=
m∑
k=0

f (k)(a)(t− a)k−p

Γ(k − p+ 1)
+ RL

aD
p−m−1
t f (m+1)(t),

where the second line is just entering the definition because p−m− 1 < 0.

Proof. Repeated integration by parts and differentiation gives

RL
aD

p
t f(t) =

dm+1

dtm+1

1

Γ(m− p+ 1)

∫ t

a
(t− τ)m−pf(τ) dτ

=
dm

dtm
1

Γ(m− p+ 1)

∫ t

a
(m− p)(t− τ)m−p−1f(τ) dτ

=
dm

dtm
1

Γ(m− p+ 1)

([
−(t− τ)m−pf(τ)

]t
τ=a
−
∫ t

a
−(t− τ)m−pf (1)(τ) dτ

)
=

dm

dtm
1

Γ(m− p+ 1)

(
(t− a)m−pf(a) +

∫ t

a
(t− τ)m−pf (1)(τ) dτ

)
= . . .

(keeping the boundary term and repeating the steps above m times with the integral)

= . . .

=
1

Γ(m− p+ 1)

(
m∑
k=0

dm−k

dtm−k
(t− a)m−pf (k)(a) +

∫ t

a
(t− τ)m−pf (m+1)(τ) dτ

)
The terms in the summation can now be calculated directly, namely

dm−k

dtm−k
(t− a)m−pf (k)(a) =

Γ(m− p+ 1)

Γ(k − p+ 1)
(t− a)k−pf (k)(a).
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Hence,

RL
aD

p
t f(t) =

1

Γ(m− p+ 1)

(
m∑
k=0

dm−k

dtm−k
(t− a)m−pf (k)(a) +

∫ t

a
(t− τ)m−pf (m+1)(τ) dτ

)

=
1

Γ(m− p+ 1)

(
m∑
k=0

Γ(m− p+ 1)(t− a)k−pf (k)(a)

Γ(k − p+ 1)
+

∫ t

a
(t− τ)m−pf (m+1)(τ) dτ

)

=
m∑
k=0

(t− a)k−pf (k)(a)

Γ(k − p+ 1)
+

1

Γ(m− p+ 1)

∫ t

a
(t− τ)m−pf (m+1)(τ) dτ.

Let us try to apply the above Lemma to some simple cases.

Example 1.2.8. Suppose m = p = 1, then

RL
aD

1
t f(t) =

f (0)(a)(t− a)−1

Γ(0)
+
f (1)(a)(t− a)0

Γ(1)
+ RL

aD
−1
t f (2)(t)

= 0 + f (1)(a) +
1

Γ(1)

∫ t

a
(t− τ)0f (2)(τ) dτ

= f (1)(a) + f (1)(t)− f (1)(a) = f (1)(t),

where we note that Γ(0) =∞ causes the first fraction to vanish. 4

Example 1.2.9. Suppose now that m = p = 2 then we have

RL
aD

2
t f(t) =

f (0)(a)(t− a)−2

Γ(−1)
+
f (1)(a)(t− a)−1

Γ(0)
+
f (2)(a)(t− a)0

Γ(1)
+ RL

aD
−1
t f (3)(t)

= 0 + 0 + f (2)(a) +
1

Γ(1)

∫ t

a
(t− τ)0f (3)(τ) dτ

= f (2)(a) + f (2)(t)− f (2)(a) = f (2)(t).

4

It is quite remarkable how these formulas seem to work out, but for non-integer p the first m terms
will remain.

Example 1.2.10. Take m = 0 and p = 1/2, then we get

RL
aD

1/2
t f(t) =

f(a)√
π(t− a)

+ RL
aD
−1/2
t f (1)(t).

4

Example 1.2.11. Take m = 3 and p = π, then we get

RL
aD

π
t f(t) =

f(a)(t− a)−π

Γ(1− π)
+
f (1)(a)(t− a)1−π

Γ(2− π)
+
f (2)(a)(t− a)2−π

Γ(3− π)

+
f (3)(a)(t− a)3−π

Γ(4− π)
+ RL

aD
π−4
t f (4)(t).

4
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Lemma 1.2.12. For p > 0 we have lim
p→0

RL
aD
−p
t f(t) = f(t).

Proof. Integration by parts gives

RL
aD
−p
t f(t) =

1

Γ(p)

∫ t

a
(t− τ)p−1f(τ) dτ

=
1

Γ(p)

([
−1

p
(t− τ)pf(τ)

]t
τ=a

−
∫ t

a

−1

p
(t− τ)pf ′(τ) dτ

)

=
1

pΓ(p)

(
(t− a)pf(a) +

∫ t

a
(t− τ)pf ′(τ) dτ

)
=

1

Γ(p+ 1)

(
(t− a)pf(a) +

∫ t

a
(t− τ)pf ′(τ) dτ

)
and, taking the limit now, gives

lim
p→0

RL
aD
−p
t f(t) = lim

p→0

1

Γ(p+ 1)

(
(t− a)pf(a) +

∫ t

a
(t− τ)pf ′(τ) dτ

)
= f(a) +

∫ t

a
f ′(τ) dτ = f(t).

Lemma 1.2.13. Suppose p < 0, then RL
aD

q
t

(
RL
aD

p
t f(t)

)
= RL

aD
p+q
t f(t) for any q ∈ R.

Proof. Remark that q = 0 is trivial. Next, take q < 0, then

RL
aD

q
t

(
RL
aD

p
t f(t)

)
=

1

Γ(−q)

∫ t

a
(t− τ)−q−1

(
RL
aD

p
t f(τ)

)
dτ

=
1

Γ(−q)Γ(−p)

∫ t

a
(t− τ)−q−1

∫ τ

a
(τ − ξ)−p−1f(ξ) dξ dτ

=
1

Γ(−q)Γ(−p)

∫ t

a

∫ t

ξ
(t− τ)−q−1(τ − ξ)−p−1f(ξ) dτ dξ

[substitute τ = ξ + z(t− ξ)] =
1

Γ(−q)Γ(−p)

∫ t

a
(t− ξ)−p−q−1f(ξ)

∫ 1

0
(1− z)−q−1z−p−1 dz dξ

=
B(−p,−q)

Γ(−q)Γ(−p)

∫ t

a
(t− ξ)−p−q−1f(ξ) dξ

=
1

Γ(−p− q)

∫ t

a
(t− ξ)−p−q−1f(ξ) dξ

= RL
aD

p+q
t f(t).

Now, consider q > 0 and suppose that 0 < n ≤ q < n + 1 with n an integer. Then, we see that
q = (n+ 1) + (q − n− 1) with q − n− 1 < 0. Hence, it follows that

RL
aD

q
t (
RL
aD

p
t f(t)) =

dn+1

dtn+1

(
RL
aD

q−n−1
t (RLaD

p
t f(t))

)
=

dn+1

dtn+1

(
RL
aD

p+q−n−1
t f(t)

)
= RL

aD
p+q
t f(t).
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A consequence of this Lemma is that, for p > 0, we have RL
aD

p
t (
RL
aD
−p
t f(t)) = f(t).

Lemma 1.2.14. Let n ∈ Z positive and p > 0, then

RL
aD

p
t f

(n)(t) = RL
aD

p+n
t f(t) +

n−1∑
k=0

f (k)(a)(t− a)k−p−n

Γ(k − p− n+ 1)
.

Proof. Let m ≤ p < m+ 1 then, using Lemma 1.2.7, we have

RL
aD

p
t f

(n)(t) =
m∑
k=0

f (k+n)(a)(t− a)k−p

Γ(k − p+ 1)
+ RL

aD
p−m−1
t f (n+m+1)(t).

Now, since m+ n ≤ p+ n < m+ n+ 1, we have

RL
aD

p+n
t f(t) =

m+n∑
k=0

f (k)(a)(t− a)k−p−n

Γ(k − p− n+ 1)
+ RL

aD
p−m−1
t f (n+m+1)(t)

[relabelling k = l + n] =
m∑

l=−n

f (l+n)(a)(t− a)l−p

Γ(l − p+ 1)
+ RL

aD
p−m−1
t f (n+m+1)(t).

Hence,

RL
aD

p
t f

(n)(t) =
m∑
k=0

f (k+n)(a)(t− a)k−p

Γ(k − p+ 1)
+ RL

aD
p−m−1
t f (n+m+1)(t)

= RL
aD

p+n
t f(t) +

−1∑
l=−n

f (l+n)(a)(t− a)l−p

Γ(l − p+ 1)

[relabelling k = n− l] = RL
aD

p+n
t f(t) +

n−1∑
k=0

f (k)(a)(t− a)k−p−n

Γ(k − p− n+ 1)
.

Lemma 1.2.15. Let p > 0 and k − 1 ≤ p < k, then

RL
aD
−p
t

RL
aD

p
t f(t) = f(t)−

k∑
j=1

(
RL
aD

p−j
t f

)
(a)

(t− a)p−j

Γ(p− j + 1)
.

Proof. Integrating by parts and using the additivity of orders when the right derivative has negative
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order, we find

RL
aD
−p
t

RL
aD

p
t f(t) =

d

dt
RL
aD
−p−1
t

RL
aD

p
t f(t)

=
d

dt

[
1

Γ(p+ 1)

∫ t

a
(t− τ)p RLaDτ

p
f(τ) dτ

]
=

d

dt

[
1

Γ(p+ 1)

∫ t

a
(t− τ)p

dk

dτk
RL

aDτ
p−k

f(τ) dτ

]
=

d

dt

[
(−1)k

Γ(p+ 1)

∫ t

a

(
dk

dτk
(t− τ)p

)
RL

aDτ
p−k

f(τ) dτ

−
k∑
j=1

(
dk−j

dtk−j
RL
aD

p−k
t f

)
(a)

(t− a)p−j+1

Γ(2 + p− j)


=

d

dt

[
1

Γ(p− k + 1)

∫ t

a
(t− τ)p−k RLaDτ

p−k
f(τ) dτ

−
k∑
j=1

(
RL
aD

p−j
t f

)
(a)

(t− a)p−j+1

Γ(2 + p− j)


=

d

dt

RL
aD
−(p−k+1)
t

RL
aD

p−k
t f(t)−

k∑
j=1

(
RL
aD

p−j
t f

)
(a)

(t− a)p−j+1

Γ(2 + p− j)


=

d

dt

RL
aD
−1
t f(t)−

k∑
j=1

(
RL
aD

p−j
t f

)
(a)

(t− a)p−j+1

Γ(2 + p− j)


= f(t)−

k∑
j=1

(
RL
aD

p−j
t f

)
(a)

(t− a)p−j

Γ(1 + p− j)
.

Lemma 1.2.16. For p, q > 0 and k − 1 ≤ q < k we have

RL
aD
−p
t

RL
aD

q
tf(t) = RL

aD
q−p
t f(t)−

k∑
j=1

(
RL
aD

q−j
t f

)
(a)

(t− a)p−j

Γ(p− j + 1)
.

Proof. We have

RL
aD
−p
t

RL
aD

q
tf(t) = RL

aD
q−p
t

RL
aD
−q
t

RL
aD

q
tf(t)

= RL
aD

q−p
t

f(t)−
k∑
j=1

(
RL
aD

q−j
t f

)
(a)

(t− a)q−j

Γ(1 + q − j)


= RL

aD
q−p
t f(t)−

k∑
j=1

(
RL
aD

q−j
t f

)
(a)

(t− a)p−j

Γ(1 + p− j)
.
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Lemma 1.2.17. Take p, q > 0 and let n,m ∈ Z be such that n − 1 ≤ q < n and m − 1 ≤ p < m.
Then

RL
aD

p
t
RL
aD

q
tf(t) = RL

aD
p+q
t f(t) +

n∑
j=1

(
RL
aD

q−j
t f

)
(a)

(t− a)−p−j

Γ(−p− j + 1)
.

Proof. Since p = (p− n) + n, with p− n < 0, and applying Lemma 1.2.16, we have

RL
aD

p
t
RL
aD

q
tf(t) =

dm

dtm
RL
aD

p−m
t (RLaD

q
tf(t))

=
dm

dtm

RL
aD

p+q−m
t f(t)−

n∑
j=1

(
RL
aD

q−j
t f

)
(a)

(t− a)m−p−j

Γ(1 +m− p− j)


=

dm

dtm

RL
aD

p+q−m
t f(t)−

n∑
j=1

(
RL
aD

q−j
t f

)
(a)

(t− a)m−p−j

Γ(1 +m− p− j)


= RL

aD
p+q
t f(t) +

n∑
j=1

(
RL
aD

q−j
t f

)
(a)

(t− a)−p−j

Γ(−p− j + 1)
.

In conclusion, combining Lemmas 1.2.13, 1.2.16, and 1.2.17, we have the following Theorem.

Theorem 1.2.18. For p, q > 0 and n− 1 ≤ q < n with n ∈ Z we have the following properties:

RL
aD

p
t
RL
aD

q
tf(t) = RL

aD
p+q
t f(t) +

n∑
j=1

(
RL
aD

q−j
t f

)
(a)

(t− a)−p−j

Γ(−p− j + 1)
(1.9)

RL
aD
−p
t

RL
aD

q
tf(t) = RL

aD
q−p
t f(t)−

n∑
j=1

(
RL
aD

q−j
t f

)
(a)

(t− a)p−j

Γ(p− j + 1)
(1.10)

RL
aD

p
t
RL
aD
−q
t f(t) = RL

aD
p−q
t f(t) (1.11)

RL
aD
−p
t

RL
aD
−q
t f(t) = RL

aD
−p−q
t f(t). (1.12)

Lemma 1.2.19. The Laplace transform of the Riemann-Liouville derivative with a = 0, p > 0, and
n− 1 ≤ p < n, is given by:

L
(
RL

0D
−p
t f(t); s

)
= s−pF (s);

L
(
RL

0D
p
t f(t); s

)
= spF (s)−

n−1∑
k=0

sk
(
RL

0D
p−k−1
t f

)
(0).

Proof. Let p > 0 and n ∈ N, with n− 1 ≤ p < n, then

RL
0D
−p
t f(t) =

1

Γ(p)

∫ t

0
(t− τ)p−1f(τ) dτ =

tp−1 ∗ f(t)

Γ(p)
.
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Therefore, the Laplace transform is given by

L
(
RL

0D
−p
t f(t); s

)
= L

(
tp−1 ∗ f(t)

Γ(p)
; s

)
=

1

Γ(p)
L
(
tp−1; s

)
L (f(t); s)

= s−pF (s).

Now, consider RL
0D

p
t f(t) = dn

dtn
RL

0D
p−n
t f(t), then the Laplace transform is given by

L
(
RL

0D
p
t f(t); s

)
= L

(
dn

dtn
RL

0D
p−n
t f(t); s

)
= snL

(
RL

0D
p−n
t f(t); s

)
−
n−1∑
k=0

sn−1−k
(
dk

dtk
RL

0D
p−n
t f(t)

)
t=0

= spF (s)−
n−1∑
k=0

sn−1−k
(
RL

0D
p+k−n
t f

)
(0)

[set j = n− 1− k] = spF (s)−
n−1∑
j=0

sj
(
RL

0D
p−j−1
t f

)
(0)

Remark 1.2.20. It should be mentioned that, in the above Lemma, we get an extra term compared
to ordinary derivatives if we set p ∈ N. However, this term is equal to spf (−1)(0), which means that
as long as f(t) is continuous at 0, which it has to be anyway if we want to talk about derivatives
there, then f (−1)(0) = lim

t→0

∫ t
0 f(τ) dτ = 0.

1.3 Liouville fractional derivative

A specific case of the Riemann-Liouville definition is the Liouville definition, in which we take
a = −∞ as our lower bound and denote LDα

t f(t) = RL
−∞Dt. However, it is not just as simple as

putting a = −∞, since some of the properties of the Riemann-Liouville definition have terms like
(t − a)α. This is not a problem if α ≤ 0, but α > 0 is where the problem lies. There is, however,
a relatively easy solution by imposing conditions on the functions that we use. Specifically, if we
impose that

lim
x→−∞

xαf (k)(x) = 0, (1.13)

for all k ∈ N with k < K for sufficiently large K and α4, then we can deduce from Lemma 1.2.7
that for 0 ≤ m ≤ p < m+ 1, we obtain

LDp
t f(t) = LDp−m−1

t f (m+1).

Furthermore, for 0 ≤ m ≤ p < m+ 1 and k ∈ N, we have

dk

dtk
LDp

t f(t) =
dk+m+1

dtk+m+1
LDp−m−1

t f(t) = LDk+p
t f(t).

4K and α should be bigger than the orders of the derivatives that will be applied to f(x).
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Because of Equation (1.13), we can also see that, for any p, we obtain

LDp
t f

(k)(t) = LDp+k
t f(t)

by Theorem 1.2.18. Hence, for any p and 0 ≤ n− 1 ≤ q < n, we have

LDp
t
LDq

tf(t) = LDp
t
LDq−n

t f (n)(t) = LDp+q−n
t f (n)(t) = LDp+q

t f(t),

whenever f(t) satisfies Equation (1.13). Since the above result was already true for q < 0, we can
thus conclude that, for any p, q ∈ R:

LDp
t
LDq

tf(t) = LDp+q
t f(t), (1.14)

whenever f(t) satisfies Equation (1.13).

Example 1.3.1. Suppose f(t) = eωt with 0 < ω ∈ R and α > 0, then

LD−αt eωt =
1

Γ(α)

∫ t

−∞
(t− τ)α−1eωτ dτ[

set τ = t− z

ω

]
=

1

Γ(α)

∫ ∞
0

(z/ω)α−1e−z+ωt
1

ω
dz

= eωt
ω−α

Γ(α)

∫ ∞
0

zα−1e−z dz

= ω−αeωt.

4

In order to apply this to Fourier transforms, we would like such a statement with iω rather than ω.
By Dirichlet’s convergence theorem, we can see that for 0 < α < 1 the integral is still convergent
when ω ∈ R. Therefore, we find, for a Fourier transform and 0 < α < 1:

LD−αt f(t) = LD−αt

∫ ∞
−∞

f(ω)eiωt dω

=
1

Γ(α)

∫ t

−∞
(t− τ)α−1

∫ ∞
−∞

f(ω)eiωτ dω dτ

=
1

Γ(α)

∫ ∞
−∞

f(ω)

∫ t

−∞
(t− τ)α−1eiωτ dτ dω

=

∫ ∞
−∞

f(ω)(iω)−αeiωt dω.

Accordingly, we see that, for 0 < α < 1, we have

F
(
LD−αt f(t);ω

)
= (iω)−αF (f(t);ω) .

We can then combine the additivity of differential orders with the fact that the Fourier transform
combines with integer derivatives, to get

F
(
LDα

t f(t);ω
)

= (iω)αF (f(t);ω) for all α ∈ R. (1.15)
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1.4 Grünwald-Letnikov fractional derivative

The idea of this approach, on the other hand, is to start from the basic limit definition for derivatives,
and trying to generalise from there: We do not introduce non-integer numbers until we have an
integral formulation, which will turn out to be equivalent to the Riemann-Liouville definition.

Lemma 1.4.1. A general formula for the nth integer derivative is given by

f (n)(t) = lim
h→0

∑n
r=0(−1)r

(
n
r

)
f(t− rh)

hn
.

Proof. For n = 0 the statement is trivially true. By the induction hypothesis, we now suppose it is
true for n, then the following holds:

f (n+1)(t) = lim
h→0

f (n)(t)− f (n)(t− h)

h

= lim
h→0

∑n
r=0(−1)r

(
n
r

)
f(t− rh)−

∑n
l=0(−1)l

(
n
l

)
f(t− (l + 1)h)

hn+1

= lim
h→0

∑n
r=0(−1)r

(
n
r

)
f(t− rh) +

∑n
l=0(−1)l+1

(
n
l

)
f(t− (l + 1)h)

hn+1

= lim
h→0

∑n
r=0(−1)r

(
n
r

)
f(t− rh) +

∑n+1
l=1 (−1)l

(
n
l−1

)
f(t− lh)

hn+1

= lim
h→0

f(t) + (−1)n+1f(t− (n+ 1)h) +
∑n

r=1(−1)r(
(
n
r

)
+
(
n
r−1

)
)f(t− rh)

hn+1

= lim
h→0

f(t) + (−1)n+1f(t− (n+ 1)h) +
∑n

r=1(−1)r
(
n+1
r

)
f(t− rh)

hn+1

= lim
h→0

∑n+1
r=0 (−1)r

(
n+1
r

)
f(t− rh)

hn+1
,

which proves the statement.

Here, the n in
(
n
r

)
= n(n−1)...(n−r+1)

r! can be trivially changed to p ∈ N to get

f
(p)
h (t) =

1

hp

n∑
r=0

(−1)r
(
p

r

)
f(t− rh). (1.16)

If we assume that p ≤ n, then

lim
h→0

f
(p)
h (t) = lim

h→0

1

hp

p∑
r=0

(−1)r
(
p

r

)
f(t− rh) = f (p)(t)

because
(
p
r

)
= 0 if r > p.

Now, consider p ∈ Z and let us denote[
p

r

]
=
p(p+ 1) . . . (p+ r − 1)

r!
,

then we have

(−1)r
[
p

r

]
=
−p(−p− 1) . . . (−p− r + 1)

r!
=

(
−p
r

)
.
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This allows us to replace p > 0 in Equation (1.16) by −p, and we find

f
(−p)
h (t) = hp

n∑
r=0

[
p

r

]
f(t− rh). (1.17)

For fixed n, this is quite an uninteresting limit as h→ 0, but taking a limit along the lines of Riemann
integration, and writing nh = t− a, with a some real constant, we can define the following:

Definition 1.4.2. The Grünwald-Letnikov fractional integral for p ∈ N is defined as

GL
aD

(−p)
t f(t) = lim

h→0
nh=t−a

f−ph (t) = lim
h→0

nh=t−a

hp
n∑
r=0

[
p

r

]
f(t− rh).

The Grünwald-Letnikov fractional derivative for p ∈ N is defined as

GL
aD

p
t f(t) = lim

h→0
nh=t−a

f
(p)
h (t) = lim

h→0
nh=t−a

1

hp

n∑
r=0

(−1)r
(
p

r

)
f(t− rh).

Let us evaluate these limits.

Lemma 1.4.3. For p ∈ N, we have

GL
aD
−p
t f(t) =

1

(p− 1)!

∫ t

a
(t− τ)p−1f(τ) dτ.

Proof. For p = 1, then, by classical Riemann integration, we have

GL
aD
−1
t f(t) = lim

h→0
nh=t−a

1

h

n∑
r=0

[
1

r

]
f(t− rh) = lim

h→0
nh=t−a

1

h

n∑
r=0

f(t− rh)

=

∫ t−a

0
f(t− z) dz =

∫ t

a
f(τ) dτ.

Now, by induction, assume it is true for some p. If we set f1(t) =
∫ t
a f(τ) dτ , then

GL
aD
−(p+1)
t f(t) = lim

h→0
nh=t−a

1

hp+1

n∑
r=0

[
p+ 1

r

]
f(t− rh)

= lim
h→0

nh=t−a

1

hp

n∑
r=0

[
p+ 1

r

]
(f1(t− rh)− f1(t− (r + 1)h))

= lim
h→0

nh=t−a

(
1

hp

n∑
r=0

([
p

r

]
+

[
p+ 1

r − 1

])
f1(t− rh)− 1

hp

n+1∑
r=1

[
p+ 1

r − 1

]
f1(t− rh)

)

= GL
aD
−p
t f1(t) + lim

h→0
nh=t−a

1

hp

([
p+ 1

−1

]
f1(t)−

[
p+ 1

n

]
f1(t− (n+ 1)h)

)

= GL
aD
−p
t f1(t)− (t− a)p lim

n→∞

1

np

[
p+ 1

n

]
f1

(
a− t− a

n

)
,
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where we used5 that
[
p+1
−1

]
= 0. Now, observe that

lim
n→∞

f1

(
a− t− a

n

)
= lim

n→∞

∫ a− t−a
n

a
f(τ) dτ = 0

and

lim
n→∞

[
p+ 1

n

]
1

np
= lim

n→∞

(p+ 1)(p+ 2) . . . (p+ n)

npn!
=

1

Γ(p+ 1)
, (1.18)

where the latter identity can be found in [25, p. 4]. Combining the results of these limits, we now
find that

GL
aD
−(p+1)
t f(t) = GL

aD
−p
t f1(t)− 0

=
1

(p− 1)!

∫ t

a
(t− τ)p−1f1(τ) dτ

and, using integration by parts, we get

GL
aD
−(p+1)
t f(t) =

[
−(t− τ)pf1(τ)

p!

]t
τ=a

+
1

p!

∫ t

a
(t− τ)pf(τ) dτ

=
1

p!

∫ t

a
(t− τ)pf(τ) dτ.

Remark 1.4.4. A consequence of the above proof is that

GL
aD
−p
t f(t) = GL

aD
−(p−1)
t

∫ t

a
f(τ) dτ = · · · =

∫ t

a
· · ·
∫ t

a︸ ︷︷ ︸
p times

f(τ) dτ.

In order to get a more generalisable integral form out of the limit, we need the following Theorem.

Theorem 1.4.5. (Letnikov, [25, p. 49]) Let αn,k and βk be sequences such that

lim
k→∞

βk = 1, lim
n→∞

αn,k = 0 for all k,

lim
n→∞

n∑
k=1

αn,k = A for all k,

n∑
k=1

|αn,k| < K for all n,

with K and A real numbers. Then

lim
n→∞

n∑
k=1

αn,kβk = A.

If we want to apply this theorem to

GL
aD
−p
t f(t) = lim

h→0
nh=t−a

hp
n∑
r=0

[
p

r

]
f(t− rh),

5We only defined
[
p
r

]
for positive r, but it is a reasonable extension to put r < 0 values to 0.
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we first have to rewrite GL
aD
−p
t f(t) as

GL
aD
−p
t f(t) = lim

h→0
nh=t−a

hp
n∑
r=0

[
p

r

]
f(t− rh)

=
1

Γ(p)
lim
h→0

nh=t−a

n∑
r=0

Γ(p)

rp−1

[
p

r

]
h(rh)p−1f(t− rh)

=
1

Γ(p)
lim
n→∞

n∑
r=0

Γ(p)

rp−1

[
p

r

]
t− a
n

(
r
t− a
n

)p−1

f

(
t− r t− a

n

)
,

and take

βr =
Γ(p)

rp−1

[
p

r

]
and αn,r =

t− a
n

(
r
t− a
n

)p−1

f

(
t− r t− a

n

)
.

Again, using Equation (1.18), we see that

lim
r→∞

βr = lim
r→∞

rp−1 r!

p(p+ 1) . . . (p+ r − 1)rp−1

[
p

r

]
= lim

r→∞

rp−1 r!

p(p+ 1) . . . (p+ r − 1)rp−1

p(p+ 1) . . . (p+ r − 1)

r!

= 1.

Combining this with

lim
n→∞

n∑
r=0

αn,r = lim
n→∞

n∑
r=0

t− a
n

(
r
t− a
n

)p−1

f

(
t− r t− a

n

)

= lim
h→0

nh=t−a

n∑
r=0

h(rh)p−1f(t− rh)

=

∫ t

a
(t− τ)p−1f(τ) dτ,

we conclude that

GL
aD
−p
t f(t) =

1

Γ(p)

∫ t

a
(t− τ)p−1f(τ) dτ = RL

aD
−p
t f(t)

is the generalised form of the Grünwald-Letnikov integral and that it is equal to the Riemann-
Liouville integral.
Let us now consider and generalise the derivatives

GL
aD

p
t f(t) = lim

h→0
nh=t−a

f
(p)
h (t) = lim

h→0
nh=t−a

1

hp

n∑
r=0

(−1)r
(
p

r

)
f(t− rh).

Using the binomial property
(
p
r

)
=
(
p−1
r

)
+
(
p−1
r−1

)
, we can write
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f
(p)
h (t) =

1

hp

n∑
r=0

(−1)r
(
p

r

)
f(t− rh)

=
1

hp

n∑
r=0

(−1)r
(
p− 1

r

)
f(t− rh) +

1

hp

n∑
r=1

(−1)r
(
p− 1

r − 1

)
f(t− rh)

=
1

hp

n∑
r=0

(−1)r
(
p− 1

r

)
f(t− rh) +

1

hp

n−1∑
r=0

(−1)r+1

(
p− 1

r

)
f(t− (r + 1)h)

= (−1)n
(
p− 1

n

)
1

hp
f(a) +

1

hp

n−1∑
r=0

(−1)r
(
p− 1

r

)
∆f(t− rh),

where ∆f(t− rh) = f(t− rh)−f(t− (r+ 1)h). Repeating the above steps m times, we end up with

f
(p)
h (t) =

m∑
k=0

(−1)n−k
(
p− k − 1

n− k

)
1

hp
∆kf(a+ kh) +

1

hp

n−m−1∑
r=0

(−1)r
(
p−m− 1

r

)
∆m+1f(t− rh),

(1.19)
where ∆k is ∆ applied k times. With this, we want to evaluate the limits, but let us do it for each
term separately:

lim
h→0

nh=t−a

(−1)n−k
(
p− k − 1

n− k

)
1

hp
∆kf(a+ kh)

= lim
h→0

nh=t−a

(−1)n−k
(
p− k − 1

n− k

)
(n− k)p−k

(
n

n− k

)p−k
(nh)k−p

∆kf(a+ kh)

hk

= (t− a)k−p
(

lim
n→∞

(−1)n−k
(
p− k − 1

n− k

)
(n− k)p−k

)(
lim
n→∞

(
n

n− k

)p−k)
lim
h→0

∆kf(a+ kh)

hk

=
f (k)(a)(t− a)k−p

Γ(k − p+ 1)
.

This last equality is true since the separate limits give

lim
n→∞

(−1)n−k
(
p− k − 1

n− k

)
(n− k)p−k = lim

n→∞

(k − p+ 1)(k − p+ 2) . . . (−p+ n)

(n− k)k−p(n− k)!
=

1

Γ(k − p+ 1)
,

lim
n→∞

(
n

n− k

)p−k
= 1

and

lim
h→0

∆kf(a+ kh)

hk
= f (k)(a).
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The other terms in Equation (1.19) are given by

lim
h→0

nh=t−a

1

hp

n−m−1∑
r=0

(−1)r
(
p−m− 1

r

)
∆m+1f(t− rh)

= lim
h→0

nh=t−a

1

Γ(m− p+ 1)

n−m−1∑
r=0

(−1)rΓ(m− p+ 1)

(
p−m− 1

r

)
rp−mh(rh)m−p

∆m+1f(t− rh)

hm+1
.

Applying Theorem 1.4.5 with βr = (−1)r Γ(m−p+1)
(
p−m−1

r

)
rp−m and αn,r = h(rh)m−p∆m+1f(t−rh)

hm+1

(again using h = (t− a)/n), we check that, using Equation (1.18), we have limr→∞ βr = 1. We can
also see that if m− p > −1,

lim
n→∞

n−m−1∑
r=0

αn,r = lim
h→0

nh=t−a

n−m−1∑
r=0

h(rh)m−p
∆m+1f(t− rh)

hm+1

=

∫ t

a
(t− τ)m−pf (m+1)(τ) dτ.

With this, we can finally conclude that

GL
aD

p
t f(t) = lim

h→0
nh=t−a

f
(p)
h (t)

=
m∑
k=0

f (k)(a)(t− a)k−p

Γ(k − p+ 1)
+

1

Γ(m− p+ 1)

∫ t

a
(t− τ)m−pf (m+1)(τ) dτ,

with m ≤ p < m+ 1. Now, by Lemma 1.2.7 we conclude that

GL
aD

p
t f(t) =

m∑
k=0

f (k)(a)(t− a)k−p

Γ(k − p+ 1)
+

1

Γ(m− p+ 1)

∫ t

a
(t− τ)m−pf (m+1)(τ) dτ = RL

aD
p
t f(t)

and, therefore, that
GL
aD

p
t f(t) = RL

aD
p
t f(t) for all p ∈ R. (1.20)

1.5 Caputo fractional derivative

The Caputo derivative is similar in flavour to the Riemann-Liouville definition, but it interchanges
the integral and differential order when we look at fractional derivatives.

Definition 1.5.1. The Caputo fractional derivative for non-integer α ∈ R is given by

C
aD

α
t f(t) =

1

Γ(n− α)

∫ t

a

f (n)(τ)

(t− τ)α−n+1
dτ with n− 1 < α < n.

The first question is what happens if we take a limit of α going to an integer and if it will coincide
with the regular derivative on integers. For α→ n− 1, we have

lim
α→n−1

C
aD

α
t f(t) = lim

α→n−1

1

Γ(n− α)

∫ t

a

f (n)(τ)

(t− τ)α−n+1
dτ

=
1

Γ(1)

∫ t

a
f (n)(τ) dτ

= f (n−1)(t)− f (n−1)(a).
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For α→ n, we first integrate by parts to get

C
aD

α
t f(t) =

1

Γ(n− α)

∫ t

a

f (n)(τ)

(t− τ)α−n+1
dτ

=
f (n)(a)(t− a)n−α

Γ(n− α+ 1)
+

1

Γ(n− α+ 1)

∫ t

a

f (n+1)(τ)

(t− τ)α−n
dτ.

Now, simply taking the limit, we obtain

lim
α→n

C
aD

α
t f(t) = lim

α→n

f (n)(a)(t− a)n−α

Γ(n− α+ 1)
+

1

Γ(n− α+ 1)

∫ t

a

f (n+1)(τ)

(t− τ)α−n
dτ

= f (n)(a) +

∫ t

a
f (n+1)(τ) dτ

= f (n)(t).

We, therefore, find that the Caputo derivative is discontinuous at the integer derivatives, namely,

lim
α↑n

C
aD

α
t f(t) = lim

α↓n
C
aD

α
t f(t) + f (n)(a) = f (n)(t). (1.21)

Let us consider some examples.

Example 1.5.2. The Caputo derivative of the power function f(t) = (t− a)ν is given by

C
aD

α
t (t− a)ν =

1

Γ(n− α)

∫ t

a

dn

dτn (τ − a)ν

(t− τ)α−n+1
dτ.

We can now see that if ν is an integer smaller than n, then we have C
aD

α
t f(t) = 0. If this is not the

case, then we have

C
aD

α
t (t− a)ν =

1

Γ(n− α)

∫ t

a

Γ(ν + 1)

Γ(ν − n+ 1)
(τ − a)ν−n(t− τ)−α+n−1 dτ

[ set τ = a+ z(t− a) ] =
Γ(ν + 1)

Γ(n− α)Γ(ν − n+ 1)

∫ 1

0
(z(t− a))ν−n((1− z)(t− a))−α+n−1(t− a)dτ

=
Γ(ν + 1)

Γ(n− α)Γ(ν − n+ 1)
(t− a)ν−α

∫ 1

0
zν−n(1− z)−α+n−1 dτ

=
Γ(ν + 1)

Γ(n− α)Γ(ν − n+ 1)
(t− a)ν−αB(ν − n+ 1, n− α)

=
Γ(ν + 1)

Γ(ν − α+ 1)
(t− a)ν−α,

which is the same as for the Riemann-Liouville definition. 4

By Lemma 1.2.7, we can see a relation between the Caputo and Riemann-Liouville definitions. In
case that 0 ≤ n− 1 < p < n, namely,

RL
aD

p
t f(t) =

n−1∑
k=0

f (k)(a)(t− a)k−p

Γ(k − p+ 1)
+

1

Γ(n− p)

∫ t

a
(t− τ)n−p−1f (n)(τ) dτ

=
n−1∑
k=0

f (k)(a)(t− a)k−p

Γ(k − p+ 1)
+ C

aD
p
t f(t),
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which means that for 0 ≤ n− 1 < p < n,

C
aD

p
t f(t) = RL

aD
p
t f(t) ⇐⇒ f (k)(a) = 0 for all k = 0, 1, . . . , n− 1. (1.22)

We can also see from the definition that

RL
aD

p−n
t

dn

dtn
f(t) =

1

Γ(n− p)

∫ t

a
(t− τ)n−p−1f (n)(τ) dτ = C

aD
p
t f(t). (1.23)

If we try to combine integer order derivatives with the Caputo derivatives, we can quickly find the
following result. For n− 1 < α < n and 0 ≤ n,m ∈ Z, then n+m− 1 < α+m < n+m. Thus,

C
aD

α+m
t f(t) =

1

Γ[(n+m)− (α+m)]

∫ t

a

f (n+m)(τ)

(t− τ)(α+m)−(n+m)+1
dτ

=
1

Γ(n− α)

∫ t

a

f (n+m)(τ)

(t− τ)α−n+1
dτ

= C
aD

α
t f

(m)(t).

To put this result in contrast, with Riemann-Liouville we find

RL
aD

α+m
t f(t) = RL

aD
α
t f

(m)(t)−
m+1∑
j=1

f (m−j)(a)
(t− a)−α−j

Γ(−α− j + 1)

by Theorem 1.2.18.

If we now interchange the orders, then, for the Caputo derivative, we have

dm

dtm
C
aD

α
t f(t) =

dm

dtm
1

Γ(n− α)

∫ t

a
(t− τ)n−α−1f (n)(τ) dτ

=
1

Γ(n− α)

∫ t

a

Γ(n− α)

Γ(n− α−m)
(t− τ)n−α−m−1f (n)(τ) dτ

=
1

Γ(n− α−m)

([
(t− τ)n−α−m

n− α−m
f (n)(τ)

]t
τ=a

+

∫ t

a

(t− τ)n−α−m

n− α−m
f (n+1)(τ) dτ

)

=
1

Γ(n− α−m+ 1)

(
−(t− a)n−α−mf (n)(a) +

∫ t

a
(t− τ)n−α−mf (n+1)(τ) dτ

)
= −(t− a)n−α−mf (n)(a)

Γ(n− α−m+ 1)
− (t− a)n−α−m+1f (n+1)(a)

Γ(n− α−m+ 2)

+
1

Γ(n− α−m+ 2)

∫ t

a
(t− τ)n−α−m+1f (n+2)(τ) dτ

= . . .

= −
m−1∑
k=0

(t− a)n−α−m+kf (n+k)(a)

Γ(n− α−m+ k + 1)
+

1

Γ(n− α)

∫ t

a
(t− τ)n−α−1f (n+m)(τ) dτ

= −
m−1∑
k=0

(t− a)n−α−m+kf (n+k)(a)

Γ(n− α−m+ k + 1)
+ C

aD
α
t f

(m)(t).
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Accordingly, if f (k)(a) = 0 for k = n, n+ 1, . . . , n+m− 1, then we obtain

dm

dtm
C
aD

α
t f(t) = C

aD
α
t f

(m)(t) = C
aD

α+m
t f(t). (1.24)

In contrast, with Riemann-Liouville, we do have dm

dtm
RL
aD

p
t f(t) = RL

aD
p+m
t f(t), but

RL
aD

p
t f

(m)(t) = RL
aD

p+m
t f(t) +

m−1∑
k=0

f (k)(a)
(t− a)k−p−m

Γ(k − p−m+ 1)
.

Therefore, if f (k)(a) = 0 for k = 0, 1, . . . ,m− 1, we arrive at

dm

dtm
RL
aD

α
t f(t) = RL

aD
α
t

dm

dtm
f(t) = RL

aD
α+m
t f(t). (1.25)

Remark 1.5.3. It is important to note that these last two results are in disagreement with Podlubny
[25, p. 81].

Lemma 1.5.4. The Laplace transform of the Caputo derivative of order α > 0 and initial time
a = 0, is given by

L
(
C
0D

α
t f(t); s

)
= sαF (s)−

n−1∑
k=0

sα−1−kf (k)(0) (1.26)

Proof. Suppose n − 1 ≤ α < n for n ∈ N, then C
0D

α
t f(t) = RL

0D
α−n
t f (n)(t). Therefore, by Lemma

1.2.19 and Example 1.1.11, we find

L
(
C
0D

α
t f(t); s

)
= L

(
RL

0D
α−n
t f (n)(t); s

)
= sα−nL

(
f (n)(t); s

)
= sα−n

(
snF (s)−

n−1∑
k=0

sn−1−kf (k)(0)

)

= sαF (s)−
n−1∑
k=0

sα−1−kf (k)(0).

1.6 Weyl fractional derivative

The Weyl fractional integral is based on the idea of Fourier transforms. To start with ordinary
derivatives, as seen in Section 1.1.1, the derivative of order n ∈ Z can be given in Fourier space by

F (Dnf(t);ω) = (iω)nF (f(t);ω) .

Clearly, this only works for functions which are Fourier transformable, i.e. f(t) ∈ L2(R) :={
f(x) |

(∫∞
−∞ |f(x)|2 dx

)1/2
<∞

}
, and periodic functions. For these functions, the derivative

can be easily generalised to non-integer n.
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Definition 1.6.1. For f(t) ∈ L2(R) =

{
g(t) |

(∫∞
−∞ |g(t)|2 dt

)1/2
<∞

}
, the Weyl fractional in-

tegral of order α ∈ R is given by

WDα
t f(t) = F−1 ((iω)αF (f(t);ω) ; t) =

1

2π

∫ ∞
−∞

∫ ∞
−∞

(iω)αf(τ)eiω(t−τ) dτ dω.

Lemma 1.6.2. The Weyl definition is equivalent to the Liouville definition (from Section 1.3), if
f(t) satisfies Equation (1.13).

Proof. We have already seen that F
(
LDα

t f(t);ω
)

= (iω)αF (f(t);ω). Therefore, we find that

LDα
t f(t) = F−1

(
F
(
LDα

t ;ω
)

; t
)

= F−1 ((iω)αF (f(t);ω) ; t)

= WDα
t f(t).

In particular, we can see that any definition that is compatible with Fourier transforms under
particular conditions is in fact equivalent to the Weyl definition, under those same conditions. It
also means that, any definition that is compatible with Fourier transforms has to “know” about the
entire past of a function.

Lemma 1.6.3. Let α, β ∈ R. Then

WDβ
t
WDα

t f(t) = WDα+β
t f(t).

Proof. Using the fact that the Fourier transform is invertible, we find

WDβ
t
WDα

t f(t) = WDβ
t F−1 ((iω)αf(ω); t)

= F−1
(

(iω)βF
(
F−1 ((iω)αf(ω); t) ;ω

)
; t
)

= F−1
(

(iω)β(iω)αf(ω); t
)

= F−1
(

(iω)α+βf(ω); t
)

= WDα+β
t f(t).

Remark 1.6.4. This is actually quite a remarkable Lemma, as this is not true for ordinary de-
rivatives. The main reason this Lemma works is due to the restriction that f(t) ∈ L2(R). This
prohibits one from adding any polynomial, like we have seen before with Riemann-Liouville and
Caputo derivatives, since polynomials do not tend to 0 at infinity.
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1.7 A summary of fractional derivatives

We use the notation X
aDtf(t) for the fractional derivative named after Riemann-Liouville, Liouvile,

Grünwald-Letnikov, Caputo, and Weyl, with notation X ∈ {RL,L,GL,C,W}; for Liouville and
Weyl, we omit the a = −∞ from the notation to stress the need for the extra restrictions these
definitions have. Here, we show various properties of fractional derivatives, the details of which can
all be found in Sections 1.2-1.6.

• The following list is an overview of which formulas have been proven, in such order that, any
one formula can be proven using only the formulas that came before it. Let p, q > 0, ν ∈ R,
n−1 ≤ p < n, and m−1 ≤ q < m, with n,m ∈ N. Then, for the Riemann-Liouville derivative,
we have

RL
aD
−p
t f(t) =

1

Γ(p)

∫ t

a
(t− τ)p−1f(τ) dτ, (1.27)

RL
aD

p
t f(t) =

dn

dtn
RL
aD

p−n
t f(t), (1.28)

RL
aD

p
t (t− a)ν =

Γ(ν + 1)

Γ(ν − p+ 1)
(t− a)ν−p, (1.29)

dn

dtn
RL
aD
±q
t f(t) = RL

aD
n±q
t f(t), (1.30)

RL
aD

p
t f(t) =

n−1∑
k=0

f (k)(a)
(t− a)k−p

Γ(k − p+ 1)
+ RL

aD
p−n
t f (n)(t), (1.31)

RL
aD
±q
t

RL
aD
−p
t f(t) = RL

aD
±q−p
t f(t), (1.32)

RL
aD

q
tf

(n)(t) = RL
aD

n+q
t f(t) +

n−1∑
k=0

f (k)(a)(t− a)k−q−n

Γ(k − q − n+ 1)
, (1.33)

RL
aD
−p
t

RL
aD

p
t f(t) = f(t)−

n∑
j=1

(
RL
aD

p−j
t f

)
(a)

(t− a)p−j

Γ(p− j + 1)
, (1.34)

RL
aD
−p
t

RL
aD

q
tf(t) = RL

aD
q−p
t f(t)−

m∑
j=1

(
RL
aD

q−j
t f

)
(a)

(t− a)p−j

Γ(p− j + 1)
, (1.35)

RL
aD

p
t
RL
aD

q
tf(t) = RL

aD
p+q
t f(t) +

m∑
j=1

(
RL
aD

q−j
t f

)
(a)

(t− a)−p−j

Γ(−p− j + 1)
, (1.36)

L
(
RL

0D
−p
t f(t); s

)
= s−pF (s), (1.37)

L
(
RL

0D
p
t f(t); s

)
= spF (s)−

n−1∑
k=0

sk
(
RL

0D
p−k−1
t f

)
(0). (1.38)

• A particular case of the Riemann-Liouville definition is when a = −∞, called the Liouville
fractional derivative. As one can see from the formulas above, one has to be careful with a
possible divergence of the integrals when a → −∞. For this, it is necessary to assume that
lim

t→−∞
f (n)(t)tα = 0, for all n = 0, 1, . . . ,K and all α < K with K larger than the orders of the
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derivatives. Whenever a function satisfies this condition and is Fourier transformable6, the
Liouville derivative is compatible with Fourier transformations7, in the sense that

F
(
LDα

t f(t);ω
)

= (iω)αF (f(t);ω) for all α ∈ R. (1.39)

• The Grünwald-Letnikov derivative is equal to the Riemann-Liouville derivative as long as
the functions are smooth enough8. It can be a particularly useful definition for numerical
purposes, both by itself and for numerical calculations with Riemann-Liouville derivatives as
they can be calculated faster with Grünwald-Letnikov derivatives as shown in MacDonald
et al. [33] and Weilbeer [34].

• The Caputo definition is only valid for derivatives, while its integral form can be seen as the
regular Riemann-Liouville integral. Another important property that one has to be careful
with is when changing the order of Caputo derivatives, as it is discontinuous at the integers:

lim
α↑n

C
aD

α
t f(t) = lim

α↓n
C
aD

α
t f(t) + f (n)(a) = f (n)(t). (1.40)

• A relation between the Riemann-Liouville and Caputo derivatives exists, and is given by

RL
aD

p
t f(t) =

n−1∑
k=0

f (k)(a)(t− a)k−p

Γ(k − p+ 1)
+ C

aD
p
t f(t). (1.41)

This implies that the two definitions are equal if f (k)(a) = 0 for all positive integers k < p,
with p the order of the derivative. The Laplace transform of the Caputo derivative of order
n− 1 ≤ p < n with n ∈ N, is given by

L
(
C
0D

p
t f(t); s

)
= spF (s)−

n−1∑
k=0

sp−k−1f (k)(0). (1.42)

Remark the difference with Riemann-Liouville, we essentially moved the fractional term from
the order of the derivative to the power of s.

• The Weyl definition is directly based on Fourier transforms, which also implies one needs
the entire history of a function in order to use it. As long as a function satisfies both the
requirements of the derivative definition and is Fourier transformable, any definition that is
compatible with Fourier transforms can be shown to be equivalent to the Weyl definition for
those functions.

6Neither condition implies the other.
7Note, that this is not generally the case for Riemann-Liouville derivatives.
8They should be continuously differentiable up to an order higher than the order of the derivative
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2 Fractional differential equations

One of the main applications of fractional derivatives can be found in fractional differential equations
(FDE’s). Before we discuss these, let us first give a reminder about ordinary differential equations
(ODE’s) and how some can be solved. We will then look at which initial conditions are needed for
FDE’s and solve some examples with different definitions and techniques. Finally, we will see which
impacts the choice of definition has on the solution of an FDE.

2.1 Ordinary differential equations

Let us start by examining some properties of ODE’s.

Example 2.1.1. Suppose u′(t) = cu(t), for some constant c ∈ R and function u(t). Let us denote
the formal power-series expansion of u(t) by

u(t) =
∞∑
k=0

uk
tk

k!
.

If we substitute this expansion in the ODE, we find

∞∑
k=0

uk+1
tk

k!
=
∞∑
k=0

cuk
tk

k!

and we can see the recursive relation uk+1 = cuk for k > 0. This solves to uk = cku0, which gives

u(t) =

∞∑
k=0

u0
(ct)k

k!
= u0e

ct,

where u0 = u(0) is the initial condition. 4

Example 2.1.2. Suppose u′′(t) = cu(t) for some constant c < 0 and function u(t). Taking the
Fourier transform of both sides, we find −ω2u(ω) = cu(ω), or (c + ω2)u(ω) = 0. Hence, either
ω = ±i

√
c or u(ω) = 0. This admits a solution of the form u(ω) = A δ(ω − i

√
c) + B δ(ω + i

√
c),

for some constants A and B. We, therefore, find that

u(t) =

∫ ∞
−∞

u(ω)eiωt dω

=

∫ ∞
−∞

(
A δ(ω − i

√
c) +B δ(ω + i

√
c)
)
eiωt dω

= Ae
√
ct +Be−

√
ct.

If we want to solve for A and B, using initial conditions, we need to set u(0) = u0 and u′(0) = u′0.

These conditions give A + B = u0 and
√
c(A − B) = u′0, which has the solution A =

√
cu0+u′0
2
√
c

and

B =
√
cu0−u′0
2
√
c

. Hence,

u(t) =

√
cu0 + u′0
2
√
c

e
√
ct +

√
cu0 − u′0
2
√
c

e−
√
ct = u0

(
e
√
ct + e−

√
ct

2

)
+ u′0

(
e
√
ct − e−

√
ct

2
√
c

)
.
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Remark that this solution actually also works for c > 0, but our solving method does not work then,
as ω = ±i

√
c is not a solution, since both ω and

√
c are real-valued. This is due to the restriction

of Fourier transformable functions that they have to be integrable over R, which is not the case for
real exponents.

Now, suppose c = −k2, then
√
c = ik and we obtain

u(t) = u0 cos(kt) + u′0 sin(kt).

4

Example 2.1.3. Let us consider a similar equation as the previous example: u′′(t) = cu(t), but

now with c > 0. Let us use the formal power series in order to solve it. We write u(t) =
∑∞

k=0 uk
tk

k!
and plugging this into the ODE we find

∞∑
k=0

uk+2
tk

k!
=

∞∑
k=0

cuk
tk

k!
,

which gives the recursive relation uk+2 = cuk. Separating even and uneven indices, we find that
u2k = cku0 and u2k+1 = cku1. This gives us the solution

u(t) =
∞∑
k=0

u0
(t
√
c)2k

(2k)!
+
u1√
c

(t
√
c)2k+1

(2k + 1)!
= u0

(
e
√
ct + e−

√
ct

2

)
+ u1

(
e
√
ct − e−

√
ct

2
√
c

)
.

Note, that this is equal to the solution of the previous example. 4

Notice how the number of initial conditions is equal to the order of the derivative taken. Indeed, this
is a property which holds for all ODE’s. This property can be seen more generally in the following
Example:

Example 2.1.4. (Initial conditions) Suppose we want to obtain f(t) = g(t) from dn

dtn f(t) =
dn

dtn g(t) for a given g(t). We can take the nth integral, with initial time t = 0, to obtain

f(t) = g(t) +
n−1∑
k=0

fkt
k

k!
, (2.1)

with fk some arbitrary constants. Since we want f to be equal to g, we have to demand that
f (k)(0) = g(k)(0), for all k = 0, 1, . . . , n− 1, to remove the extra polynomial. 4

2.2 Initial conditions for FDE’s

Let us use the setup of Example 2.1.4, but for fractional order. Suppose α > 0, n− 1 ≤ α < n, for
some n ∈ Z, and we want to obtain f(t) = g(t) by solving RL

0D
α
t f(t) = RL

0D
α
t g(t). We can integrate

this equation, using Theorem 1.2.18, to get

f(t) = g(t) +
n∑
j=1

fj
tα−j

Γ(α− j + 1)
. (2.2)

This means that, for non-integer α, we need the initial conditions (RL0D
α−j
t f)(0) = (RL0D

α−j
t g)(0)

for j = 1, 2, . . . , n to get f(t) = g(t).
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Example 2.2.1. Suppose we want to solve f(t) = g(t) from RL
0D

1/2
t f(t) = RL

0D
1/2
t g(t), then we

need the initial condition (RL0D
−1/2
t f)(0) = (RL0D

−1/2
t g)(0). Observe that this is a condition on a

fractional integral rather than a derivative. 4

Suppose we want to do the same as before, but now with Caputo derivatives rather than Riemann-
Liouville derivatives. Recall the relation between the two derivatives of order α > 0 with n − 1 ≤
α < n:

C
0D

α
t f(t) = RL

0D
α−n
t f (n)(t).

This combined with Theorem 1.2.18 implies that

RL
0D
−α
t

C
0D

α
t f(t) = RL

0D
−α
t

RL
0D

α−n
t f (n)(t) = D−nf (n)(t) = f(t)−

n−1∑
k=0

f (k)(0)tk

k!
. (2.3)

This means that solving C
0D

α
t f(t) = C

0D
α
t g(t), will give

f(t) = g(t) +
n−1∑
k=0

fkt
k

k!
,

and we need the initial conditions f (k)(0) = g(k)(0), for k = 0, 1, . . . , n− 1.

Example 2.2.2. Suppose we want to solve f(t) = g(t) from C
0D

1/2
t f(t) = C

0D
1/2
t g(t), then, by the

above argument, we only need f(0) = g(0) as the initial condition. 4

Suppose we want to solve f(t) = g(t) from WDα
t f(t) = WDα

t g(t), then, since any orders directly
add up, we directly get f(t) = g(t) by integration. Interestingly, there is no need for any boundary
conditions due to the restrictions needed for Fourier transforms to be used. The functions f(t) and
g(t) need to go to 0 quickly enough for t → ±∞, restricting us from adding any polynomial, since
these do not go to 0 when t→ ±∞.

2.3 Some example fractional differential equations

As seen in Section 2.1, there are many ways to solve ODE’s. Which method works best is highly
dependant on the type of equation one is dealing with. In particular for FDE’s, some methods do not
even work with some definitions of fractional derivatives. As shown in Chapter 1, Fourier transforms
are only compatible with Weyl and Liouville transformations, while Laplace transformations only
work with Riemann-Liouville and Caputo derivatives with initial time a = 0. In this Section, we
will try some different methods with all nonequivalent compatible derivatives that we discussed in
Chapter 1.

2.3.1 Solutions obtained by Fourier transformations

Let us start with t0 = −∞ as the initial time of a system and use Weyl fractional differential
operators. Let α, β, γ, a, b, c ∈ R and g(t) some Fourier transformable function, then we can use
Fourier transforms to solve the following examples:
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Example 2.3.1. Suppose that
aWDα

t f(t) = g(t),

then the Fourier transform of both sides gives

f(ω) = (iω)−α

a g(ω), or f(t) = 1
a
WD−αt g(t). 4

Example 2.3.2. Suppose that

aWDα
t f(t) + bWDβ

t f(t) = g(t),

then the Fourier transform of both sides gives a(iω)αf(ω) + b(iω)βf(ω) = g(ω), or

f(ω) =
g(ω)

a(iω)α + b(iω)β
.

Fourier transforming back, we find

f(t) =

∫ ∞
−∞

g(ω)eiωt

a(iω)α + b(iω)β
dω =

1

2π

∫ ∞
−∞

∫ ∞
−∞

g(τ)eiω(t−τ)

a(iω)α + b(iω)β
dτ dω.

4

Example 2.3.3. Suppose that

WD2
t f(t) + WD

1/2
t f(t) = sin(t).

The Fourier transform of the sine is given by

sin(ω) =
1

2π

∫ ∞
−∞

sin(t)e−iωt dt =
1

4iπ

∫ ∞
−∞

(
eit − e−it

)
e−iωt dt

=
1

4iπ

∫ ∞
−∞

(
ei(1−ω)t − e−i(1+ω)t

)
dt =

δ(1− ω)− δ(1 + ω)

2i
.

By Example 2.3.2, we thus find that

f(t) =

∫ ∞
−∞

(δ(1− ω)− δ(1 + ω))eiωt

2i(−ω2 + (iω)1/2)
dω

=
1

2i

(
eit

−1 +
√
i
− e−it

−1 +
√
−i

)
=

1

2i

(
i sin(t) + cos(t)

−1 +
√
i

+
i sin(t)− cos(t)

−1 +
√
−i

)
=

1

2

(
1

−1 +
√
i

+
1

−1 +
√
−i

)
sin(t)

+
1

2i

(
1

−1 +
√
i
− 1

−1 +
√
−i

)
cos(t)

=
−1

2
sin(t) +

−(1 +
√

2)

2
cos(t).

Remark that, even though many complex numbers appear in the calculation, the final answer is a
real-valued function. A plot of this solution can be seen in Figure 5, and one can see it behaves like
a shifted sine. 4
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Figure 5: A plot of the solution of Example 2.3.3.

Example 2.3.4. Suppose that
WD

1/2
t f(t)− f(t) = sin(t),

then, by the last two examples, we find

f(t) =

∫ ∞
−∞

(δ(1− ω)− δ(1 + ω))eiωt

2i((iω)1/2 − 1)
dω

=
eit

2i(
√
i− 1)

− e−it

2i(
√
−i− 1)

=
1

4
(−(
√

2 + 1) + i)eit − 1

4
(
√

2 + 1 + i)e−it

=
1

4

(
−2 sin(t)− 2(

√
2 + 1) cos(t)

)
=
−1

2
sin(t)− 1

2(
√

2 + 1)
cos t.

4

Example 2.3.5. Suppose that

aWDα
t f(t) + bWDβ

t f(t) + c = g(t).

The Fourier transform of a constant c can be found as c(ω) = 1
2π

∫∞
−∞ ce

−iωtdt = c δ(ω). Hence, the

Fourier transform of the equation gives a(iω)αf(ω) + b(iω)βf(ω) + c δ(ω) = g(ω), or

f(ω) =
g(ω)

a(iω)α + b(iω)β + c δ(ω)
=

{
g(ω)

a(iω)α+b(iω)β
, for ω 6= 0

0, for ω = 0

and one can take the inverse Fourier transform of f(ω) to get the final solution

f(t) =

∫ ∞
−∞

g(ω)eiωt

a(iω)α + b(iω)β + c δ(ω)
dω.

4
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2.3.2 Solutions obtained by power series expansions

Formal power series can be a useful method for constructing solutions of ODE’s [35, 36]. On the
other hand, they only work in a few particular cases for FDE’s. The main problem using them
in FDE’s comes from the property of Example 1.2.5, namely that RL

0D
α
t t
n = n!

Γ(n−α+1) t
n−α, which

means that we can no longer match up coefficients of tn with n ∈ N. The specific cases where we
can use them are those where all derivative orders in the FDE are an integer multiple of some real
number p 6= 0. In that case, we can make a formal power series

f(t) =
∞∑
k=0

ak
tpk

Γ(pk + 1)

so that we can still match up all coefficients.

Example 2.3.6. Suppose we want to solve

aRL0D
np
t f(t) + bRL0D

mp
t f(t) = g(t)

for n,m ∈ N, n > m, 0 6= a, b, p ∈ R, and g(t) some function which can be represented by a

formal power series g(t) =
∑∞

k=0 gk
tpk

Γ(pk+1) . We can introduce the formal power series f(t) =∑∞
k=0 fk

tpk

Γ(pk+1) and substitute this into the FDE to find

∞∑
k=0

fk

(
a

tp(k−n)

Γ(p(k − n) + 1)
+ b

tp(k−m)

Γ(p(k −m) + 1)

)
=
∞∑
k=0

gk
tpk

Γ(pk + 1)
.

We can then match up the powers to get

∞∑
k=−n

afk+n
tpk

Γ(pk + 1)
+

∞∑
j=−m

bfj+m
tpj

Γ(pj + 1)
=
∞∑
k=0

gk
tpk

Γ(pk + 1)
.

This gives three separate cases:

• For −n ≤ k < −m, then afk+n = 0. In other words: fk = 0 for k = 0, 1, . . . , n−m− 1.

• For −m ≤ k < 0, then afk+n + bfk+m = 0, or fk = − b
afk−n+m for k = n−m, . . . , n− 1.

• For k ≥ 0, then afk+n + bfk+m = gk, or fk =
gk−n−bfk+m−n

a for k ≥ n.

Note that the first case has n−m conditions while the second case has m conditions. That means
that in total there are n explicit conditions while the rest is recursively generated by the last case.

If we take a specific case, like RL
0D

2
t f(t)+RL

0D
1/2
t f(t) = g(t), then we have p = 1

2 , n = 4, and m = 1.
We thus get fk = 0 for k = 0, 1, 2, f3 = −f0 = 0, and fk = gk−4 − fk−3 for k ≥ 4. Evaluating the
first few values, we see a pattern emerging in Table 1. Namely, that fk = gk−3− gk−6 + gk−9−· · ·+
g(k mod 3), or if we suppose that k = 3s+ r for s ∈ N and r ∈ {0, 1, 2}, then

f3s+r =

s−1∑
j=0

(−1)jg3(s−j−1)+r.
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f0 = 0 f1 = f2 = 0 f3 = −f0 = 0

f4 = g0 − f1 = g0 f5 = g1 − f2 = g1 f6 = g2 − f3 = g2

f7 = g3 − f4 = g3 − g0 f8 = g4 − f5 = g4 − g1 f9 = g5 − f6 = g5 − g2

f10 = g6 − f7 = g6 − g3 + g0 f11 = g7 − f8 = g7 − g4 + g1 f12 = g8 − f9 = g8 − g5 + g2

Table 1: The first few fk in the formal power series in Example 2.3.6.

Therefore, we find that

f(t) =
∞∑
k=0

fkt
k/2

Γ(k/2 + 1)
=
∞∑
s=0

f3st
3s/2

Γ(3s/2 + 1)
+

f3s+1t
(3s+1)/2

Γ((3s+ 1)/2 + 1)
+

f3s+2t
(3s+2)/2

Γ((3s+ 2)/2 + 1)

=

∞∑
s=0

s−1∑
j=0

(−1)j

(
g3(s−j−1)t

3s/2

Γ(3s/2 + 1)
+
g3(s−j−1)+1t

(3s+1)/2

Γ((3s+ 1)/2 + 1)
+
g3(s−j−1)+2t

(3s+2)/2

Γ((3s+ 2)/2 + 1)

)
.

Although this is a correct answer, it might not be the most insightful one.

4

Remark 2.3.7. We should ask which functions can be expressed as the power series that we used
in this example. To see this, let us consider a function f(t) that is smooth on (0,∞). In this case,

we know that we can write it as a Taylor series f(t) =
∑

k≥0 f
(k)(1) (t−1)k

k! . Now, for p 6= 0, we

can write f(t) = f
(
(tp)1/p

)
= fp(t

p) where we define fp(t) = f(t1/p). Since fp is again a smooth

function on (0,∞), we can write fp as a Taylor series fp(t) =
∑

k≥0 f
(k)
p (1) (t−1)k

k! , where we choose
1 ∈ (0,∞) as the expansion point. This now allows us to find

f(t) = fp(t
p) =

∑
k≥0

f (k)
p (1)

(tp − 1)k

k!
=:
∑
k≥0

ak
tpk

Γ(pk + 1)
, (2.4)

where the ak can be found by expanding all powers and collecting all corresponding terms by their
order of t. More precisely, we can use the binomial theorem to see that

f(t) =
∑
k≥0

k∑
j=0

(
k

j

)
(−1)k−jf (k)

p (1)
tpj

k!
=
∑
k≥0

k∑
j=0

(−1)k−jf
(k)
p (1)

j!(k − j)!
tpj .

Thus, collecting all equal order terms, we see that

an =
Γ(pn+ 1)

n!

∑
k≥n

(−1)k−nf
(k)
p (1)

(k − n)!

and we can see that we need an infinite amount of terms to know a single an. One might wonder
why we do not just use a fractional derivative Taylor series at 1 then, as this only requires a single
derivative of f . However, if we use the fractional derivative RL

0Dt, then we have

RL
0D

α
t (t− 1)ν 6= Γ(ν + 1)

Γ(ν − α+ 1)
(t− 1)ν−α.

The reason this is no longer equal is mostly due to the integral no longer giving the Beta function
for the prefactor: not using (t − 0) but (t − 1) will change the lower integration boundary in the
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(a) The first 7 orders of the exponential.
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(b) Some of the first orders from 1 to 25 of the sine, skipping 3 at a time.

Figure 6: Some fractional power series expansions of et (Fig. (a)) and sin(t) (Fig. (b)) around

t = 1, with p = 0.5. These are expansions of the form f1/2(1) + f
(1)
1/2(1)(

√
t− 1) + f

(2)
1/2(1)(

√
t− 1)2 +

f
(3)
1/2(1)(

√
t− 1)3 + · · ·+ f

(n)
1/2(1)(

√
t− 1)n with n as indicated in the legends.

integral from 0 to 1/(1− t). This property makes it impossible to make nice relations between the
coefficients in the power series and the derivatives of f .

We can, however, properly examine the fractional expansion at 1 using fp. The first few orders of
these expansions have been plotted in Figure 6 for the exponential and sine functions for p = 0.5.
These seem to indicate that the fractional power series can be cut off quite nicely around the
expansion point t = 1.

One might wonder if, similarly to a Taylor series, it is possible to write the fractional expansion
in terms of fractional derivatives (i.e. write f(t) =

∑∞
k=0(Dpk

t f)(1)(t − 1)pk/Γ(pk + 1) for some
fractional derivative). El-Ajou et al. [37] have proven Theorem 2.3.8 which is close to this idea.
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Theorem 2.3.8. [37, Theorem 3.5] Suppose that f has a fractional power series expansion at t0 of
the form:

f(t) =

∞∑
n=0

cn(t− t0)nα, 0 ≤ m− 1 < α ≤ m, t0 ≤ t < t0 +R, (2.5)

with m ∈ N and R > 0. If f(t) is continuous on [t0, t0 + R) and
(
C
t0D

α
t

)n
f(t) are continuous on

(t0, t0 +R) for n ∈ N, then the coefficients cn have the form

cn =

(
C
t0D

α
t

)n
f(t0)

Γ(nα+ 1)
, (2.6)

where
(
C
t0D

α
t

)n
= C

t0D
α
t · Ct0D

α
t · ... · Ct0D

α
t is the Caputo derivative at t0 of order α repeated n-times.

Proof. By assumption we know that f(t) =
∑∞

n=0 cn(t − t0)nα. Plugging in t = t0, we find that
c0 = f(t0). Taking the derivative of the function we also see that

C
t0D

α
t f(t) = c1Γ(α+ 1) + c2

Γ(2α+ 1)

Γ(α+ 1)
(t− t0)α + c3

Γ(3α+ 1)

Γ(2α+ 1)
(t− t0)2α + . . . ,

on the domain [t0, t0 + R). Plugging in t = t0 again, we find that C
t0D

α
t f(t0) = c1Γ(α + 1) or

c1 =
C
t0
Dα
t f(t0)

Γ(α+1) . Taking another derivative we find that

(
C
t0D

α
t

)2
f(t) = c2Γ(2α+ 1) + c3

Γ(3α+ 1)

Γ(α+ 1)
(t− t0)α + c4

Γ(4α+ 1)

Γ(2α+ 1)
(t− t0)2α + . . . .

At t = t0 this gives c2 =
(Ct0D

α
t )

2
f(t0)

Γ(2α+1) . Repeating the above steps n times gives us the formula

cn =
(Ct0D

α
t )
n
f(t0)

Γ(nα+1) , which completes the proof of the generalised Taylor series formula

f(t) =
∞∑
n=0

(
C
t0D

α
t

)n
f(t0)

Γ(nα+ 1)
(t− t0)nα. (2.7)

Remark 2.3.9. The generalised Taylor formula in Theorem 2.3.8 only works with the Caputo
derivative. This is due to its property that the Caputo derivative of a constant is always zero.
Using this property and repeated differentiation rather than higher order differentiation, recall that
orders do not simply combine in fractional derivatives, allows us to get rid of lower order terms and
keep only the term of the order that we have differentiated to. This is what makes the proof work
here.

Corollary 2.3.10. Combining the result of Remark 2.3.7 that all smooth functions have a power
series expansion around t0 ∈ (0,∞) with the result of Theorem 2.3.8 that all such functions have a
generalised Taylor series, we can conclude that all smooth functions have a generalised Taylor series
of the form

f(t) =

∞∑
n=0

(
C
t0D

α
t

)n
f(t0)

Γ(nα+ 1)
(t− t0)nα. (2.8)
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2.3.3 Solutions obtained by Laplace transformations

Laplace transformations can be a powerful tool when analysing linear FDE’s. The biggest drawback,
though, is the need to transform back to f(t) from F (s). This can be, depending on the FDE,
relatively easy or very hard to find a closed form. We present some examples where we make use

of Example 1.1.14, which showed that L
(
tpm+q−1E

(m)
p,q (atp); s

)
= m! sp−q

(sp−a)m+1 , or in particular

L
(
tq−1Ep,q(at

p); s
)

=
sp−q

sp − a
. (2.9)

We have seen that both Riemann-Liouville and Caputo are the main (nonequivalent) derivatives
compatible with Laplace transformations. Therefore, we will try some examples with both types of
derivatives.

Example 2.3.11. Suppose that

aRL0D
α
t f(t) + bRL0D

β
t f(t) = g(t)

for some function g(t) and α, β > 0 with n− 1 ≤ α < n and m− 1 ≤ β < m. Applying the Laplace
transform and using Lemma 1.2.19, we obtain

asαF (s) + bsβF (s)− a
n−1∑
k=0

sk
(
RL

0D
α−k−1
t f

)
(0)− b

m−1∑
j=0

sj
(
RL

0D
β−j−1
t f

)
(0) = G(s).

Denoting ak = a
(
RL

0D
α−k−1
t f

)
(0) and bj = b

(
RL

0D
β−j−1
t f

)
(0), this can be rewritten to

F (s) =
G(s) +

∑n−1
k=0 s

kak +
∑m−1

j=0 sjbj

asα + bsβ
. (2.10)

Here, we can see the limitations of Laplace transforms, as calculating the inverse transform of this
F (s) is quite troublesome, specifically with the denominator being a sum of different powers of

s. For some specific combinations of powers there are known inverses, such as L−1
(

a
a2+s2

; t
)

=

sin(at), but there is no general formula for finding L−1
(

1
F (s) ; t

)
. To see this, we first remark that

L (δ(t); s) =
∫∞

0 δ(t)e−st dt = e0 = 1, and thus that L−1 (1; t) = δ(t). Now, if L (δ(t); s) = 1 =

F (s)G(s) = L (f(t) ∗ g(t); s), then finding L−1
(

1
F (s) ; t

)
is equivalent to finding a function g(t) such

that f(t) ∗ g(t) = δ(t).

If we choose some specific values, say RL
0D

1/2
t f(t)− bf(t) = g(t), then F (s) becomes

F (s) =
G(s) + a0

s1/2 − b
.

Using Equation (2.9) and plugging in a0, we then find that

f(t) = g(t) ∗
(

1√
t
E 1

2
, 1
2
(b
√
t)

)
+ a

(
RL

0D
−1/2
t f

)
(0)

1√
t
E 1

2
, 1
2
(b
√
t). (2.11)

Choosing another specific value, say RL
0D

2
t f(t)− bRL0D

β
t f(t) = g(t), with 0 < β < 1, then

F (s) =
(G(s) + a0 + a1s+ b0) s−β

s2−β − b
.
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Again, using Equation (2.9), we then find that

f(t) = (a0 + b0)tE2−β,2(bt2−β) + a1E2−β,1(bt2−β) + g(t) ∗
(
tE2−β,2(bt2−β)

)
. (2.12)

In fact, Equation (2.9) is general enough to solve the general FDE that we started with: aRL0D
α
t f(t)+

bRL0D
β
t f(t) = g(t) with the Laplace solution as in Equation (2.10), then we can rewrite it as

F (s) =
G(s)

a

s−β

sα−β + b/a
+

n−1∑
k=0

ak
a

sk−β

sα−β + b/a
+

m−1∑
j=0

bj
a

sj−β

sα−β + b/a
.

Now, we can simply fill in the transforms to find

f(t) =
1

a

[
g(t) ∗

(
tα−1Eα−β,α

(
− b
a
tα−β

))
+
n−1∑
k=0

akt
α−k−1Eα−β,α−k

(
− b
a
tα−β

)

+
m−1∑
j=0

bjt
α−j−1Eα−β,α−j

(
− b
a
tα−β

) , (2.13)

where we remind that ak = a
(
RL

0D
α−k−1
t f

)
(0) and bj = b

(
RL

0D
β−j−1
t f

)
(0). 4

Example 2.3.12. We will consider the same type of FDE as the previous Example, but now with
Caputo derivatives:

a C0D
α
t f(t) + b C0D

β
t f(t) = g(t)

for some function g(t) and α, β > 0 with n−1 ≤ α < n and m−1 ≤ β < m. The Laplace transform
with the Caputo derivatives gives us asαF (s)+bsβF (s)−a

∑n−1
k=0 s

α−k−1f (k)(0)−b
∑m−1

j=0 sβ−j−1f (j)(0) =
G(s) which can be rewritten into

F (s) =
G(s) + a

∑n−1
k=0 s

α−k−1f (k)(0) + b
∑m−1

j=0 sβ−j−1f (j)(0)

asα + bsβ
. (2.14)

To use Equation (2.9), we can rewrite this into

F (s) =
G(s)

asα + bsβ
+
n−1∑
k=0

af (k)(0)
sα−k−1

asα + bsβ
+
m−1∑
j=0

bf (j)(0)
sβ−j−1

asα + bsβ

=
G(s)

a

s−β

sα−β + b/a
+

n−1∑
k=0

af (k)(0)

a

sα−β−k−1

sα−β + b/a
+

m−1∑
j=0

bf (j)(0)

a

s−j−1

sα−β + b/a
.

Now, with Equation (2.9), we can see that the inverse transform is given by

f(t) =
1

a

[
g(t) ∗

(
tα−1Eα−β,α

(
− b
a
tα−β

))
+

n−1∑
k=0

af (k)(0)tkEα−β,k+1

(
− b
a
tα−β

)

+
m−1∑
j=0

bf (j)(0)tα−β+jEα−β,α−β+j+1

(
− b
a
tα−β

) . (2.15)
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Taking a look at the same particular cases as the previous Example, we find that the FDE
C
0D

1/2
t f(t)− bf(t) = g(t) solves to

f(t) = g(t) ∗
(

1√
t
E 1

2
, 1
2

(
b
√
t
))

+ f(0)E 1
2
,1

(
b
√
t
)
, (2.16)

while C
0D

2
t f(t)− b C0D

β
t f(t) = g(t), with 0 < β < 1, solves to

f(t) = g(t) ∗
(
tE2−β,2

(
bt2−β

))
+ f(0)E2−β,1

(
bt2−β

)
+ f (1)(0)tE2−β,2

(
bt2−β

)
− bf(0)t2−βE2−β,3−β

(
bt2−β

)
(2.17)

4

To the best of our knowledge, these general closed-form solutions shown here in Example 2.3.11 and
2.3.12 are the first time the solutions are shown in this shape with finitely many terms and a single
convolution, although solutions with infinitely many terms have been found before. This new form
has the big advantage that it allows for many calculations that use the solution to be done much
more easily. This form with two variable derivative orders also allows for a very general application.

2.4 Differences between definitions

In Section 2.3, we have seen some solutions for particular FDE’s with different definitions of frac-
tional derivatives and now we aim to see what impact the choice of definition will have on the
final solution. We already know that the definition will have an impact on which initial conditions
are required, but in this section we investigate if we can still obtain equal solutions for different
fractional derivatives, if they give fundamentally different solutions or closely related solutions.

Example 2.4.1. Let us begin with comparing solutions of the FDE

D
1/2
t f(t)− bf(t) = g(t). (2.18)

We have seen some solutions for this equation using different definitions:

• For the Caputo derivative

fC(t) = g(t) ∗
(

1√
t
E 1

2
, 1
2

(
b
√
t
))

+ f(0)E 1
2
,1

(
b
√
t
)
.

• For the Riemann-Liouville derivative:

fRL(t) = g(t) ∗
(

1√
t
E 1

2
, 1
2

(
b
√
t
))

+
(
RL

0D
−1/2
t f

)
(0)

1√
t
E 1

2
, 1
2

(
b
√
t
)
.

• For the Weyl derivative:

fW (t) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

g(τ)eiω(t−τ)

√
iω − b

dτ dω.
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Clearly, the first terms of fC and fRL are equal. Indeed, we expect them to be equal, as this part is
independent of initial conditions and the two definitions are equivalent when the initial conditions
are zero. Their second terms, although similarly structured, are not equal:

1√
t
E 1

2
, 1
2

(
b
√
t
)

=

∞∑
k=0

bkt(k−1)/2

Γ(k/2 + 1/2)

[shift k → k + 1] =

∞∑
k=−1

bk+1tk/2

Γ(k/2 + 1)

=

∞∑
k=0

bk+1tk/2

Γ(k/2 + 1)
+
b0t−1/2

Γ(1/2)

= bE 1
2
,1

(
b
√
t
)

+
1√
πt
.

Notice how the extra term will vanish for large t which means that, for large t, the two solutions

fC and fRL will tend to the same value if bf(0) =
(
RL

0D
−1/2
t f

)
(0). It is also clear that they will

differ significantly for small t, as the difference scales with t−1/2.

We also solved a specific case for the Weyl derivative with b = 1 and g(t) = sin(t), which gave

fW (t) =
−1

2
sin(t)− 1

2(
√

2 + 1)
cos t.

All three solutions for this case have been plotted in Figure 7a with some initial conditions such
that we can compare fC with fRL. Since fW has no initial conditions, another logical comparison
is with the initial conditions for fC and fRL to be the value of fW . This has been done in Figure
7b where we can see that fW still behaves quite differently from the other solutions. This might
be a consequence of the sign of the second term in the FDE. Classically this sign would change the
solution from a periodic function to an exponential one. Therefore, we should see what happens if
we choose b to be negative.

In the case b = −1, for example, we find

fW (t) =

∫ ∞
−∞

(δ(1− ω)− δ(1 + ω))eiωt

2i((iω)1/2 + 1)
dω

=
eit

2i(
√
i+ 1)

− e−it

2i(
√
−i+ 1)

=
1−
√

2− i
4

(i sin(t) + cos(t)) +
1−
√

2 + i

4
(−i sin(t) + cos(t))

=
1

2
sin(t) +

1−
√

2

4
cos(t),

fC(t) = g(t) ∗
(

1√
t
E 1

2
, 1
2

(
−
√
t
))

+ f(0)E 1
2
,1

(
−
√
t
)
,

and

fRL(t) = g(t) ∗
(

1√
t
E 1

2
, 1
2

(
−
√
t
))

+
(
RL

0D
−1/2
t f

)
(0)

1√
t
E 1

2
, 1
2

(
−
√
t
)
.
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As one can see Figure 8a and 8b, this time all the solutions match up quite nicely for initial conditions
equal to fW . For initial conditions set to 1, we see in Figure 8c that they start a bit differently, but
for large t they converge to the same solution again. The conclusion then, is that even the signs in
an FDE can be the determining factor for the relation between the different definition solutions.

4

0.2 0.4 0.6 0.8 1.0
t
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8

f(t)

C

RL

W

(a) f(0) = 1 and
(
RL

0D
−1/2
t f

)
(0) = 1. fC and fRL go towards each other

asymptotically.
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W

(b) f(0) = fW (0) = − 1
2(
√
2+1)

and
(
RL

0D
−1/2
t f

)
(0) =

(
RL

0D
−1/2
t fW

)
(0) = 0.

fC and fRL no longer go towards each other asymptotically. Remark that fRL

is in this case the null initial condition solution for both fC and fRL.

Figure 7: A comparison of the solutions fC , fRL and fW of Equation (2.18) with b = 1 and
g(t) = sin(t) and initial conditions as stated .
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(a) Beginning of the solutions.
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(b) Behaviour over a few periods.

Figure (a,b): f(0) = fW (0) = 1−
√

2
4 , and

(
RL
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)
(0) =

(
RL

0D
−1/2
t fW

)
(0) = 0.
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(c) f(0) = 1, and
(
RL

0D
−1/2
t f

)
(0) = 1. Although slowly, they all seem co

converge to the same solution for large t.

Figure 8: A comparison of the solutions fC , fRL and fW of Equation (2.18) with g(t) = sin(t),
b = −1, and initial conditions as stated.
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Example 2.4.2. Now, we compare solutions of the FDE

D2
t f(t) + D

1/2
t f(t) = g(t). (2.19)

Using the different definitions we have found the following solutions:

• For the Caputo derivative:

fC(t) = g(t) ∗
(
tE3/2,2

(
−t3/2

))
+ f(0)E3/2,1

(
−t3/2

)
+ f (1)(0)tE3/2,2

(
−t3/2

)
+ f(0)t3/2E3/2,5/2

(
−t3/2

)
.

• For the Riemann-Liouville derivative:

fRL(t) = g(t) ∗
(
tE3/2,2

(
−t3/2

))
+ f(0)E3/2,1

(
−t3/2

)
+ f (1)(0)tE3/2,2

(
−t3/2

)
+
(
RL

0D
−1/2
t f

)
(0)tE3/2,2

(
−t3/2

)
.

• For the Weyl derivative:

fW (t) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

g(τ)eiω(t−τ)

−ω2 −
√
iω

dτ dω.

Like mentioned in the previous example, the first terms of fC and FRL are equal. The next two
terms are actually also identical, since these come from the initial conditions of the ordinary second
order derivative, which makes the last term the only difference between them, whilst fW is again
completely different.

Since we have seen an exact solution for fW with g(t) = sin(t), let us focus on that specific case in
order to compare the solutions. As seen in Example 2.3.3, we then have

fW (t) = −1

2
sin(t)− 1 +

√
2

2
cos(t).

Plotting this with fC and fRL with all initial conditions set to 1, we get Figure 9a and 9b. We could
also compare with zero initial conditions, in which case Riemann-Liouville and Caputo derivatives
are equal, this case can be seen in Figure 9c and 9d. If we try to set initial conditions to match

up with fW , then we use fW (0) = −1+
√
t

2 , f
(1)
W (0) = −1

2 , and
(
RL

0D
−1/2
t fW

)
(0) = 0, which gives

Figure 9e and 9f.

In all non-zero initial condition cases (Figure 9a, 9b, 9e, and 9f), we see that fC seems to keep
its distance from the other solutions while fRL tends to fW in all cases. This difference is due to
the fractional initial condition of fC : f(0)t3/2E3/2,5/2

(
−t3/2

)
, which tends to f(0) as t → ∞. As

the other initial conditions match with fRL, while the fractional initial condition of fRL, although
slowly, does tend to 0 at infinity. This makes for an interesting situation where the attempt to
match up fW (0) = fC(0) specifically causes them to differ by the constant fW (0) at large t. In
fact, the fractional initial condition f(0)t3/2E3/2,5/2

(
−t3/2

)
does not even contribute to fC(0) as it

vanishes there. This term really is the result of the non-local properties of fractional derivatives.

4
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(a) Beginning of the solutions.
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(b) Behaviour at t ≈ 1000.

Figure (a,b): All initial conditions set to 1. At large t, we see that fRL(t) ≈ fW (t) while fC(t)
stays above the other two solutions, even though it behaves similarly.
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(c) Beginning of the solutions.
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Figure (c,d): All initial conditions set to 0. At large t, we see that fRL(t) = fC(t) ≈ fW (t).
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(e) Beginning of the solutions.
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(f) Behaviour at t ≈ 1000.

Figure (e,f): All initial conditions set to be equal to those of fW . At large t, we see that
fRL(t) ≈ fW (t) while fC(t) stays below the other two solutions, although it behaves similarly.

Figure 9: A comparison of the solutions fC , fRL and fW of Equation (2.19) with g(t) = sin(t) and
initial conditions as stated below each Figure.
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Example 2.4.3. We can actually show a bit more general case that includes all the previous
examples. Namely, the equation

aDα
t f(t) + bDβ

t f(t) = g(t), (2.20)

for g(t) = sin(t), a, b ∈ R, 1 < α ≤ 2, and 0 < β ≤ 1. This allows us to solve the integral for fW :

fW (t) =

∫ ∞
−∞

(δ(1− ω)− δ(1 + ω))eiωt

2i(a(iω)α + b(iω)β)
dω

=
eit

2i(aiα + biβ)
− e−it

2i(a(−i)α + b(−i)β)

=
eit

2i(aeiπα/2 + beiπβ/2)
− e−it

2i(ae3iπα/2 + be3iπβ/2)
.

This leads to the three solutions

fW (t) =
eit

2i(aeiπα/2 + beiπβ/2)
− e−it

2i(ae3iπα/2 + be3iπβ/2)
,

fC(t) =
1

a

[
g(t) ∗

(
tα−1Eα−β,α

(
− b
a
tα−β

))
+ af(0)Eα−β,1

(
− b
a
tα−β

)
+ af (1)(0)tEα−β,2

(
− b
a
tα−β

)
+ bf(0)tα−βEα−β,α−β+1

(
− b
a
tα−β

)]
,

fRL(t) =
1

a

[
g(t) ∗

(
tα−1Eα−β,α

(
− b
a
tα−β

))
+ a

(
RL

0D
α−1
t f

)
(0)tα−1Eα−β,α

(
− b
a
tα−β

)
+ a

(
RL

0D
α−2
t f

)
(0)tα−2Eα−β,α−1

(
− b
a
tα−β

)
+ b

(
RL

0D
β−1
t f

)
(0)tα−1Eα−β,α

(
− b
a
tα−β

)]
.

Notice that the attempt of comparing these solutions is a 9 dimensional problem when we include
initial conditions. For some specific values for the constants and with one parameter left as a
variable, we have made Figure 10. Both plots show one side with very similar solutions, and one
side where they all seem to behave differently. 4

Remark 2.4.4. Figure 10 includes some solutions that we have seen in earlier examples. We can
see the solutions of Example 2.4.1 for both b = 1 and b = −1 in Figure 10a, which also shows the
sign of b is very important for similarity of solutions. We can also see solutions of Example 2.4.2
in Figure 10b and see how this FDE solution changes for different values of 0 < β < 1. Note that
the endpoints β ∈ {0, 1} in Figure 10b represent solutions of the equations f ′′(t) + f(t) = sin(t)
and f ′′(t) + f ′(t) = sin(t), which respectively can be seen as equations representing respectively
a particle in a square potential and a free particle in a viscous fluid, both with a sine force being
applied.
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RL/C

W

(a) β = 1/2 and −2 < b < 2, with all initial conditions set to zero.

RL

C

W

(b) b = 1 and 0 < β < 1, with all initial conditions set to those of fW .

Figure 10: A flow of the solutions fRL, fC and fW of Equation (2.20) for different values of b and
β, with a = 1, α = 2, and initial conditions as specified. Small parts of the boundaries have been
left out because this gave clear numerical errors.
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3 Quantum many-body systems

In this chapter, we lay the foundations upon which we will be building a fractional theory of time
glasses. We will discuss Brownian motion, the Caldeira-Leggett model, a TLS bath, RFOT theory,
the Gardner phase, and time Crystals. Brownian motion is a classical example of many-body
interactions, where a mean field approach allows it to be described in a single particle formulation
with a stochastic external force. Its quantized form is described by the Caldeira-Leggett model [38–
43] where a particle is coupled to a bath of harmonic oscillators. Truncating these oscillators gives
a bath of two-level systems [44] which will give an effective description in the form of the fractional
Langevin equation in the ultra-cold limit. An important theory in the description of glasses is
the RFOT theory [17], which effectively describes a glass as a collection of hard spheres, where the
packing density plays a critical role. Although the Gardner phase was first discovered in spin-glasses
[18], it was much more recently found to occur in normal hard-sphere glass, where a more collective
behaviour starts to occur at very high density [19]. Time crystals, first described by F. Wilczek [21,
45], are crystalline structures not in space but in time, thus breaking time-translation symmetry.
All these structures show collective effects which will be important in our study of time glass.

3.1 Classical Brownian motion

Brownian motion was already observed by the Romans9 [46], but it is mostly credited to Robert
Brown, who observed it in 1827 while he was studying pollen. The pollen were suspended in
water and released their spreads, which executed a jittery motion. Classically, we can imagine a
microscopic ball in a bath of some fluid, with a mass M ≥ 0 of roughly an order of magnitude
larger than the mass m ≥ 0 of the molecules composing the fluid (M � m). The particles in the
bath move around due to their thermal energy, accordingly, every so often a particle will collide
with the ball and bounce off exerting a force on the ball in the direction of movement. Since this
thermal movement is randomly distributed as a Gaussian, this force is on average zero, but it will
change the velocity of the ball between collisions due to the relatively similar masses. If we look at
timescales larger than the timescale between collisions, then we can model this “random force” as
f(t) described by a Gaussian probability density10

P [f(t)] =
1√
2σπ

ef(t)2/2σ2
, (3.1)

with the standard deviation σ to be determined by physical quantities such as temperature and
mass. We can summarise these variables in the properties

〈f(t)〉 =

∫ ∞
−∞

f(t)P [f(t)] df(t) = 0 (3.2)

and

〈f(t)f(t′)〉 =

∫ ∞
−∞

∫ ∞
−∞

f(t)P [f(t)]f(t′)P [f(t′)] df(t) df(t′) = Kδ(t− t′), (3.3)

where the latter describes that collisions happen instantaneously and are completely uncorrelated.
We can then describe this movement by M d2

dt2
q(t) = f(t), where q(t) is the position of the ball at

9In the philosophical poem De rerum natura by Titus Lucretius Carus (c. 60 BC) about the motion of dust
particles in the air.

10We see f(t) as a stochastic variable f with an index t.
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time t. We can also include a friction term η ddtq(t), with η > 0, to model the friction of the ball
moving through the fluid, and a potential term V ′[q(t)] to model energetically favourable positions
in space. All these combined give the so called Langevin equation:

M
d2

dt2
q(t) + η

d

dt
q(t) + V ′(q(t)) = f(t), where

{
〈f(t)〉 = 0,

〈f(t)f(t′)〉 = Kδ(t− t′).
(3.4)

For at most quadratic potentials V (q), this equation is a well-understood second-order linear or-
dinary differential equation, with a stochastic term f(t). It can even be solved to an integral form,
which allows for a straightforward calculation of statistical properties of q(t). For higher-order
potentials, the Langevin equation becomes non-linear and thereby much more complicated to solve.

Example 3.1.1. Suppose that V (q) = a+ bq + c
2q

2, then the Langevin equation becomes

M
d2

dt2
q(t) + η

d

dt
q(t) + b+ cq(t) = f(t).

Taking the Laplace transform, we find

Ms2Q(s)−Msq(0)−Mq′(0) + ηsQ(s)− ηq(0) +
b

s
+ cQ(s) = F (s)

and rearranging the expression gives

Q(s) =
F (s)− b

s + (Ms+ η)q(0) +Mq′(0)

Ms2 + ηs+ c
.

To simplify the fraction, we factorise and decompose it as

1

Ms2 + ηs+ c
=

1

M

(
s− −η+

√
η2−4Mc

2M

)(
s− −η+

√
η2−4Mc

2M

)
=

A(
s− −η+

√
η2−4Mc

2M

) +
B(

s− −η−
√
η2−4Mc

2M

)

= M

A

(
s− −η−

√
η2−4Mc

2M

)
+B

(
s− −η+

√
η2−4Mc

2M

)
Ms2 + ηs+ c

=
M(A+B)s+ (A+B)η2 + (A−B)

√
η2−4Mc

2

Ms2 + ηs+ c
.

This implies that A + B = 0 and A − B = 2√
η2−4Mc

. Therefore, we find that A = 1√
η2−4Mc

and

B = −1√
η2−4Mc

. Hence, we get

Q(s) =
F (s)− b

s + (Ms+ η)q(0) +Mq′(0)√
η2 − 4Mc

 1(
s− −η+

√
η2−4Mc

2M

) − 1(
s− −η−

√
η2−4Mc

2M

)
 .
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Recall from Example 1.1.14 that we have

L−1

(
1

s− a
; t

)
= E1,1(at) = eat, (3.5)

L−1

(
s

s− a
; t

)
= t−1E1,0(at) = aeat, (3.6)

L−1

(
s−1

s− a
; t

)
= tE1,2(at) =

eat − 1

a
. (3.7)

We thus find that

q(t) =

f(t) ∗
(
e
−η+
√
η2−4Mc
2M

t − e
−η−
√
η2−4Mc
2M

t

)
− b

e−η+√η2−4Mc
2M

t − 1

−η+
√
η2−4Mc

2M

− e
−η−
√
η2−4Mc
2M

t − 1

−η−
√
η2−4Mc

2M


+Mq(0)

(
−η +

√
η2 − 4Mc

2M
e
−η+
√
η2−4Mc
2M

t − −η −
√
η2 − 4Mc

2M
e
−η−
√
η2−4Mc
2M

t

)

+
(
ηq(0) +Mq′(0)

)(
e
−η+
√
η2−4Mc
2M

t − e
−η−
√
η2−4Mc
2M

t

)]
1√

η2 − 4Mc
. (3.8)

Some physical observations about this solution:

• The choice of zero energy level a does not change the solution;

• The increase of η will damp movement faster;

• The linear potential term b induces a drift in the opposite direction;

• The convolution with f consists of two parts: An integral over f , which is the direct result of
classical mechanics, and a damping term.

4

If we set V = 0 in the above example, we find the free particle solution

q(t) =
1

η
f(t) ∗

(
1− e

−ηt
M

)
+ q(0) +

M

η
q′(0)

(
1− e

−ηt
M

)
. (3.9)

From this, we can determine the expected position

〈q(t)〉 = q(0) +
M

η
q′(0)

(
1− e

−ηt
M

)
, (3.10)

the velocity

q′(t) =
1

M
f(t) ∗ e−

ηt
M + q′(0)e−

ηt
M , (3.11)
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and thus the mean square velocity (MSV)

〈q′(t)2〉 =

〈(
1

M
f(t) ∗ e−

ηt
M + q′(0)e−

ηt
M

)2
〉

=
e−

2ηt
M

M2

∫ t

0

∫ t

0
〈f(τ)f(τ ′)〉e

η(τ+τ ′)
M dτ dτ ′ +

2q′(0)e−
ηt
M

M
〈f(t)〉 ∗ e−

ηt
M + q′(0)2e−2 ηt

M

=
e−

2ηt
M

M2

∫ t

0

∫ t

0
Kδ(τ − τ ′)e

η(τ+τ ′)
M dτ dτ ′ + q′(0)2e−

2ηt
M

=
Ke−

2ηt
M

M2

∫ t

0
e

2ητ
M dτ + q′(0)2e−

2ηt
M

=
K

2ηM
+ e−

2ηt
M

(
q′(0)2 − K

2ηM

)
,

which gives insight into the typical velocity of a particle. At large t, where we expect thermal
equilibrium, we find that the mean square velocity becomes constant:

〈q′(t)2〉eq =
K

2ηM
. (3.12)

In the thermal kinetics picture, we know that the kinetic energy 1
2mv

2 is related to the temperature.
Indeed, from the equipartition theorem [47], we know that a thermal system in equilibrium must
have

〈q′(t)2〉eq =
kBT

M
. (3.13)

This means that we need to set K = 2ηkBT if we want the MSV to describe a physical system.
Particularly, if we want the system to be in equilibrium from the start, then this also demands that
〈q′(0)2〉 = K

2ηM .

We can also look at the mean square displacement (MSD), which provides an indication of the most
likely displacement that one can expect a particle to have in a certain time. In the free particle
case, the MSD is given by

〈[q(t)− q(0)]2〉 =

〈[
1

η
f(t) ∗

(
1− e

−ηt
M

) q′(0)M

η

(
1− e

−ηt
M

)]2
〉

=
1

η2

∫ t

0

∫ t

0
〈f(τ)f(τ ′)〉

(
1− e−

ητ
M

)(
1− e−

ητ ′
M

)
dτ dτ ′

+
〈q′(0)2〉M2

η2

(
1− 2e

−ηt
M + e2−ηt

M

)
=
K

η2

∫ t

0

(
1− e−

ητ
M

)2
dτ +

MK

2η3

(
1− 2e

−ηt
M + e2−ηt

M

)
.

Evaluating the integral then gives

〈[q(t)− q(0)]2〉 =
K

η2
t+

2MK

η3
e−

ηt
M − MK

2η3
e−

2ηt
M − 3MK

2η3
+
MK

2η3

(
1− 2e

−ηt
M + e2−ηt

M

)
=
K

η2
t+

MK

η3
e−

ηt
M − MK

η3
.
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The small-t behaviour of the MSD is given by

〈[q(t�M/η)− q(0)]2〉 ≈ K

η2
t+

MK

η3

(
1− ηt

M
+
η2t2

2M2

)
− MK

η3
=

Kt2

2ηM
=
kBT

M
t2, (3.14)

while the large-t behaviour is given by

〈[q(t�M/η)− q(0)]2〉 ≈ K

η2
t− MK

η3
. (3.15)

3.2 The Caldeira-Leggettt model

We will closely follow Ref. [38] in this Section to characterise the Caldeira-Leggett model, used
to describe quantum dissipation. Since Lagrangian dynamics obey conservation of energy and
dissipation removes energy from a particle, we have to look at both the system of interest and the
bath, which is exerting friction onto the system. We, therefore, take a Lagrangian of the form

L = LS + LB + LI + LCT , (3.16)

where

LS =
1

2
Mq̇2 − V (q), (3.17)

LB =
∑
j

1

2
mj q̇

2
j −

1

2
mjω

2
j q

2
j , (3.18)

LI =
∑
j

Cjqjq, (3.19)

LCT = −
∑
j

1

2

C2
j

mjω2
j

q2, (3.20)

are respectively the Lagrangian of the system of interest LS with position q, the bath LB, the inter-
action LI , and a counter-term LCT . The bath LB is composed of many non-interacting harmonic
oscillators with coordinates qj , masses mj and natural frequencies ωj ; all oscillators are interacting
with the system through LI by a coupling constant Cj . The classical equations of motion are given
by the Euler-Lagrange equation in the form

Mq̈ = −V ′(q) +
∑
j

Cjqj −
∑
j

C2
j

mjω2
j

q, (3.21)

mj q̈j = −mjω
2
j qj + Cjq. (3.22)

The Laplace transform of Eq. (3.22) can be rewritten into

qj(s) =
q̇j(0)

s2 + ω2
j

+
sqj(0)

s2 + ω2
j

+
Cjq(s)

mj(s2 + ω2
j )

=
q̇j(0)

s2 + ω2
j

+
sqj(0)

s2 + ω2
j

+
Cjq(s)

mj

(
1

ω2
j

− 1

ω2
j

s2

s2 + ω2
j

)
, (3.23)
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where we have extracted a term which will cancel out with the counter term later. We can now see
that the solution qj(t) is given by

qj(t) =
q̇j(0)

ωj
sin(ωjt) + qj(0) cos(ωjt) +

Cjq(t)

mjω2
j

− L−1

(
Cjq(s)

mjω2
j

s2

s2 + ω2
j

; t

)

=
q̇j(0)

ωj
sin(ωjt) + qj(0) cos(ωjt) +

Cjq(t)

mjω2
j

− d

dt
L−1

(
Cjq(s)

mjω2
j

s

s2 + ω2
j

; t

)

=
q̇j(0)

ωj
sin(ωjt) + qj(0) cos(ωjt) +

Cjq(t)

mjω2
j

− d

dt

{
Cj
mjω2

j

q(t) ∗ cos(ωjt)

}
. (3.24)

We can now insert this solution into Eq. (3.21) to find

Mq̈ + V ′(q) +
∑
j

d

dt

{
C2
j

mjω2
j

q(t) ∗ cos(ωjt)

}
=
∑
j

Cj

[
q̇j(0)

ωj
sin(ωjt) + qj(0) cos(ωjt)

]
, (3.25)

where we see that the counter term has cancelled with the extracted term from the harmonic
oscillators. Next, we consider the spectral function given by the retarded dynamical susceptibility
of the bath

J(ω) = ImF

−iθ(t− t′)〈[∑
j

Cjqj(t),
∑
j′

Cj′qj′(t
′)
]〉 . (3.26)

Taking the Fourier transform of Eq. (3.22), we see that

qj(ω) = − Cj
mj(ω2 − ω2

j )
q(ω), (3.27)

which means that the dynamical susceptibility of the interaction strength
∑

j Cjqj(t) to the system
is given by

χB(ω) = −
∑
j

C2
j

mj(ω2 − ω2
j )

=
∑
j

(
C2
j

2mjωj(ω + ωj)
−

C2
j

mjωj(ω − ωj)

)
. (3.28)

We now shift ω ± ωj → ω ± ωj + iε with ε→ 0 which gives the identity

Im
1

(ω ± ωj) + iε
= −πδ(ω ± ωj). (3.29)

Inserting this into the dynamical susceptibility, we find that the spectral function is given by

J(ω) = ImχB(ω) =
π

2

∑
j

C2
j

mjωj
(δ(ω − ωj)− δ(ω + ωj)) =

π

2

∑
j

C2
j

mjωj
δ(ω − ωj), (3.30)

where the latter identity is because both ω and ωj are positive. We will see that the summation in
the LHS of Eq. (3.25) can be interpreted as a friction term Ffr. To show this, we rewrite

Ffr :=
∑
j

d

dt

{
C2
j

mjω2
j

q(t) ∗ cos(ωjt)

}

=
d

dt


∫ t

0
dτ

∫ ∞
0

dω
∑
j

C2
j

mjω2
j

δ(ω − ωj) cos[ω(t− τ)]q(τ)


=

d

dt

{
2

π

∫ t

0
dτ

∫ ∞
0

dω
J(ω)

ω
cos[ω(t− τ)]q(τ)

}
. (3.31)
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For an Ohmic bath, the spectral function can be effectively described by

J(ω) =

{
ηω if ω < Ω

0 if ω > Ω,
(3.32)

where Ω is a high-frequency cutoff. Inserting this spectral function into Eq. (3.31) and taking the
limit Ω→∞, we find that

Ffr =
2η

π

d

dt

{∫ t

0
dτ

∫ ∞
0

dω cos[ω(t− τ)]q(τ)

}
= 2η

d

dt

{∫ t

0
dτδ(t− τ)q(τ)

}
= ηq̇(t), (3.33)

which is indeed a classical friction term. Next, we focus on the RHS of Eq. (3.25), which can be
interpreted as a force

f(t) :=
∑
j

Cj

[
q̇j(0)

ωj
sin(ωjt) + qj(0) cos(ωjt)

]
(3.34)

that depends on all microscopic states of the bath. Assuming the bath is in thermodynamic equi-
librium, we know that the oscillators follow the equipartition theorem. In the classical limit, we
therefore know that we have

〈qj(0)〉 = 〈q̇j(0)〉 = 〈q̇j(0)qj(0)〉 = 0, (3.35)

〈q̇j(0)q̇j′(0)〉 =
kBT

mj
δjj′ , (3.36)

〈qj(0)qj′(0)〉 =
kBT

mjω2
j

δjj′ . (3.37)

Using these relations we see immediately that 〈f(t)〉 = 0 by linearity of the expectation. However,
for the mean square force we find

〈f(t)f(t′)〉 =

〈∑
j j′

CjCj′

[
q̇j(0)

ωj
sin(ωjt) + qj(0) cos(ωjt)

] [
q̇j′(0)

ωj′
sin(ωj′t

′) + qj′(0) cos(ωj′t
′)

]〉

=
∑
j j′

CjCj′

[
1

ωjωj′

〈
q̇j(0)q̇j′(0)

〉
sin(ωjt) sin(ωj′t

′) +
〈
qj(0)qj′(0)

〉
cos(ωjt) cos(ωj′t

′)

+
1

ωj

〈
q̇j(0)qj′(0)

〉
sin(ωjt) cos(ωj′t

′) +
1

ωj′

〈
qj(0)q̇j′(0)

〉
cos(ωjt) sin(ωj′t

′)

]
=
∑
j j′

CjCj′

[
1

ωjωj′

kBT

mj
δjj′ sin(ωjt) sin(ωj′t

′) +
kBT

mjω2
j

δjj′ cos(ωjt) cos(ωj′t
′)

]
, (3.38)



3 QUANTUM MANY-BODY SYSTEMS 58

where we have used the linearity in the expectation and plugged in the expectations for the oscil-
lators. Using the delta functions we find

〈f(t)f(t′)〉 = kBT
∑
j

C2
j

mjω2
j

[
sin(ωjt) sin(ωjt

′) + cos(ωjt) cos(ωjt
′)
]

= kBT
∑
j

C2
j

mjω2
j

cos[ωj(t− t′)]

= kBT

∫ ∞
0

dω
∑
j

C2
j

mjω2
j

δ(ω − ωj) cos[ω(t− t′)]

=
2kBT

π

∫ ∞
0

dω
J(ω)

ω
cos[ω(t− t′)], (3.39)

where we have identified the spectral function. Plugging in the macroscopic form J(ω) = ηω, where
we remember the limit Ω→∞, we then get

〈f(t)f(t′)〉 =
2ηkBT

π

∫ ∞
0

dω cos[ω(t− t′)] = 2ηkBTδ(t− t′), (3.40)

which means that f(t) is a white-noise force. Finally, plugging Eq. (3.33) and (3.40) into (3.25),
we find the well-known Langevin equation

Mq̈ + V ′(q) + ηq̇ = f(t), (3.41)

with 〈f(t)〉 = 0 and 〈f(t)f(t)〉 = 2ηkBTδ(t− t′).

3.3 Two-level systems bath

The spectral function plays a crucial role in the Caldeira-Leggett model. An interesting question
is therefore which other spectral functions are possible, and how this changes the physics. A two-
level systems (TLS) bath is, among other properties, a bath which is known to have a temperature
dependent spectral function, and has been previously discussed in Refs. [44, 48, 49]. Each particle in
this bath consists of a sort of TLS — such as a spin-1/2 medium, a particle in a double well potential,
or a truncated harmonic oscillator. Although any of these systems can be equally described, we will
use the spin-1/2 formulation for this problem. In Ref. [44], they take a Hamiltonian

H =
p̂2

2M
+ V (x) +

∑
j

~ωj
2
σzj − x

∑
j

Cjσxj , (3.42)

where the first two terms are for a particle at position x in a potential V (x), the third term
characterises the TLS bath and the last term describes the interaction between the TLS bath and
the particle. Furthermore, Cj is the interaction strength, ωj is the natural frequency, and σzj/xj are
the Pauli matrices, all indexed for each TLS in the bath.

As we have seen in the previous section, the spectral function is crucial for determining the friction
and stochastic terms in the Langevin equation. For this TLS bath, Ref. [48] shows that the spectral
function is given in microscopic quantities as

J(ω, T ) =
∑
j

πC2
j tanh

(
~ωj

2kBT

)
δ(ωj − ω). (3.43)
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Ref. [48] then continues with the assumption that the spectral function is effectively given by

J(ω, T ) =

{
π
2 ηω

s tanh
(

~ωj
2kBT

)
if ω < Ω

0 if ω > Ω,
(3.44)

where the microscopic variables are encapsulated into a single macroscopic quantity η, Ω is a cutoff
frequency, and the tangent-hyperbolic term retains the temperature dependence.

In Chapter 4, we will take a low-temperature limit of this system. This will yield a simpler power
relation J(ω) ∼ ωs, which will allow us to derive the fractional Langevin equation including a
Caputo fractional derivative. In comparison, Ref. [44] analyses the system for finite temperatures
and finds “dynamical localisation”. We will show that the low-temperature limit will give a glassy
behaviour in the form of a time glass described by fractional dynamics.

3.4 Glasses, Gardner phase & time crystals

In this Section, we show some systems with a very strong collective behaviour. We begin with a
discussion of some of the theories in the research field of glasses, before showing how one of these
theories can produce a fractal collective behaviour, and how periodic behaviour can occur in time
instead of space. Glasses have an amorphous11 structure, yet they behave as a solid. This makes for
an interesting theory, as the particles seem to be best described as flowing, but the overall structure
has to remain solid.

One attempt to describe this glass phase begins with a hard-sphere model, where each sphere can
freely move around in a vacuum, but the spheres cannot pass through each other, which can cause
a global jamming (or caging) in the right circumstances12, for more theories and descriptions see
Refs. [15, 16, 50–54]. Next, we will describe the Gardner phase, recently understood to occur in
glasses [19, 55]. Its main feature is a fractal structure in the energy landscape [20], which can be
related to a fractal hierarchy of cages inside cages [56]. We will then show how a similar, but finite,
structure can emerge out of the fractional Langevin equation.

The key-feature of the glasses is a temporary and extreme slowdown of dynamics. There are several
types of theories which achieve this in different ways. They can be roughly categorised into three
types [57]:

• Low-temperature phase transition:

These involve phases where there are liquid and solid like regions and the temperature
governs the size of these regions. Below a transition temperature TC the liquid regions become
sparse enough that the overall structure becomes solid.

• High-temperature critical points:

These involve a preferred local structure inside a liquid. Upon cooling this liquid, clusters
start to grow locally. However, once it has grown large enough to meet other clusters, boundary
layers form due to the misalignment of crystal structure, creating regions of frustration.

• Theories without dynamical or thermodynamic transitions:

These theories show no singularities at any temperature and include many different ideas.
An example is an amorphous phase with configurational excitations.

11Amorphous meaning that there is no long-range spacial order.
12Such as high pressure or density.
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It should be mentioned that none of these theories has been completely successful in their descrip-
tion. All theories so far have their strengths and weaknesses and there are different conditions in
which one theory might work better than another. We will, however, only highlight a theory with a
low-temperature phase transition, namely, the RFOT theory, as this theory is most relevant for the
dynamics that we will encounter when analysing the fractional Langevin equation in the sub-Ohmic
regime.

Random first-order transition theory

In Random first-order transition (RFOT) theory, we view a glass as a liquid that is composed of
hard spheres, i.e., each particle has a fixed radius R and two particles are not allowed to get closer
to each other than 2R. The particles can be effectively modelled by a potential

Vi,j(|xi − xj |) =

{
∞ if |xi − xj | < 2R

0 if |xi − xj | > 2R,
(3.45)

for each pair of particles i and j. The particles can thus be described by Newtonian dynamics,
where every collision between two particles exchanges momentum according to Newton’s laws of
motion.

Figure 11: Extracted from Ref. [58, Fig. 4]. A schematic representation of the energy landscape
of hard spheres. The glass phase occurs at the bottom of a meta-basin, where there is an enormous
energy required to jump to the crystalline global minimum, where there is optimal sphere packing.

Examining the extreme cases, we can imagine that at very low densities a particle will flow for a
while before hitting another particle; this low density limit describes a liquid state, as illustrated in
the left column of Figure 12. On the other hand, increasing the density past a critical φd, we can
imagine that the spheres become highly packed and they become trapped by their neighbours, as
there is physically no space to pass between them. The highest density state is the crystal state in
which the spheres form an exact hexagonal packing. What makes this transition from liquid to solid
interesting, however, is that it is a very unlikely process to go from a less-efficient randomly-packed
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state to the crystal state. The randomly-packed states are therefore meta-stable, meaning that the
state is in a local energy minimum, instead of the global energy minimum, as illustrated in Figure
11. Given enough time, however, will allow for random events to happen in the system and slowly
shift the phase towards the crystalline phase [17].

In the meta-stable glass states, the spheres will have some wiggle room because the packing is not
optimal. This means that the MSD, which encapsulates this type of movement, will have a typical
shape where, at first, the particle can move freely, until it bumps into its neighbours. Hence, the
MSD will start off as ∼ t2 and, after some time, it will saturate at the typical cage size, as illustrated
in the middle column of Figure 12.

Figure 12: Extracted from Ref. [19, Fig. 3]. Three phases of hard spheres: The liquid or Brownian
phase in which the hard spheres are free to move around. The MSD shows a ballistic start until the
particles have time to hit other particles and the MSD becomes linear with diffusion constant D.
Increasing the density φ past the critical density φd we enter the normal glass phase. In this phase,
the hard spheres are dense enough that they can no longer freely move around. Instead, they jiggle
inside a cage formed by their neighbours. This can also be seen in the MSD where the particle
shows ballistic motion until it hits the cage size ∆t where it saturates. Increasing the density over
the critical density φG, we enter the marginal glass phase. In this phase, although particles are still
trapped by their neighbours, there is collective movement of these neighbours (red spheres). This
collective movement happens in a fractal manner with cages inside cages inside cages (with cage
sizes ∆k). In the MSD this will show as infinitely many meta-stable plateaus with ballistic motion
between plateaus. These plateaus also occur periodic in time.
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Gardner phase

The Gardner phase was first discovered by Elisabeth Gardner in spin-glasses making use of replica
symmetry breaking [18]. Over 30 years later, it was understood that the Gardner phase occurs in
many more materials. Here, we will focus on the Gardner phase in glasses, sometimes also called
marginal glass. It occurs when a hard-sphere glass model, such as RFOT, is put under sufficiently
high density or pressure. In Ref. [19], the authors show marginal glass in the hard-sphere RFOT
model, and we encourage the interested reader to find more about it there.

In Figure 12, three important regimes of hard-sphere models have been shown: The liquid, glass, and
marginal glass phases. They can be characterised by the density of spheres φ with critical densities
φd (Figure 12 left transition) between a liquid and a glass and φG (Figure 12 right transition)
between a glass and a marginal glass. In the low-density liquid-phase, the MSD shows a ballistic
start until the particles have time to hit other particles and the MSD becomes linear with diffusion
constant D. Increasing the density past the critical density φd, we enter the normal glass phase. In
this phase, the hard spheres are dense enough that they can no longer freely move around. Instead,
they jiggle inside a cage formed by their neighbours. This can also be seen in the MSD, where the
particle shows ballistic motion until it hits the cage size ∆t, and then saturates.

Increasing the density over the critical density φG, the system enters the marginal glass phase. In
this phase, although particles are still trapped by their neighbours, there is collective movement with
these neighbours. This collective motion happens in a fractal manner with cages inside cages. In the
MSD this will show as infinitely many meta-stable plateaus, with ballistic motion between plateaus.
These plateaus occur periodically in time (right column Figure 12). The most important feature
of the Gardner phase is the fractal structure in the energy landscape [20]. This fractal structure
makes for infinitely many meta-stable states. The existing theory is, however, only exactly solvable
in infinite dimension, but critical properties of jamming have been shown to be independent of
dimension [20] and these results are therefore still applicable to finite-dimensional systems. There
have also been experiments claiming to have observed the Gardner phase [59, 60], with the data
showing all expected features of the Gardner phase, even though they have only measured during
a finite time.

Time crystals

Time crystals were first conjectured by Wilczek [21]. They are materials which in their ground
state feature not periodicity in space, like a crystal, but periodicity in time. In other words, there
is spontaneous time-translation symmetry breaking. After its proposal, there was much debate on
the possibility of its existence, as people thought that it could cause for possible perpetual motion
machines. It turns out, however, that this is not possible and a time crystal will always need an
energy source. The physics involved show that such a time crystal would only be possible in two
kinds of systems [61, 62].

The first system, most related to the perpetual motion question, is a driven system. As external
energy is required to keep the system in periodic motion, this should not sound surprising. How-
ever, what is interesting is that these systems can show emergent frequencies that are different from
(but perhaps related to) the driving frequency. The second possible case is in open systems, where
there is a bath surrounding the system and energy exchange is allowed. This is a method to keep
enough energy available for the system to stay in periodic motion without actively forcing energy
in. Periodicity in these systems is completely emergent as the bath has no inherent periodicity.
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The first experimental observation of a discrete time crystal was done in Ref. [22] in a spin chain
of trapped atomic ions under the influence of a periodic Floquet many-body localisation Hamilto-
nian. Furthermore, discrete time crystals have also received much attention recently [63–65], as the
discreteness makes them more feasible for experimental setups.
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4 Time glass: A fractional calculus approach

In this chapter, we show a new contribution to the field of glasses and time materials, making use
of fractional Caputo derivatives. We begin with analysing the solution of the fractional Langevin
equation with static and thermal initial conditions. We show how exponents emerge, which depend
on the order of the fractional derivative, and how the mean square displacement will saturate for
a low enough order. In this range, we show how a periodicity emerges with several meta-stable
plateaus before an overall freezing. Finally, we conclude how this phase is describing the recently
conjectured time glass. This original contribution can also be found in Ref. [66].

4.1 Solution of the fractional Langevin equation

Although we have found more general solutions, we will first focus on the simpler cases before
considering the more general case in the next chapter. If we look at the fractional Langevin equation
with α = 2 and potential V (q) = 0, then we have

M
d2q(t)

dt2
+ ηDβ

t q(t) = f(t), (4.1)

with 〈f(t)〉 = 0 and 〈f(t)f(t′)〉 = Kδ(t− t′). If we use Riemann-Liouville derivatives, set 0 ≤ β < 1
and start the system at t = 0, then Example 2.3.11 gives us the solution

q(t) =
1

M

[
f(t) ∗

(
tE2−β,2

(
− η

M
t2−β

))
+Mq(0)E2−β,1

(
− η

M
t2−β

)
+
(
Mq′(0) + η RL0D

β−1
t q(0)

)
tE2−β,2

(
− η

M
t2−β

)]
. (4.2)

If we use Caputo derivatives, set 0 ≤ β < 1 and start the system at t = 0, then Example 2.3.12
gives us the solution

q(t) =
1

M

[
f(t) ∗

(
tE2−β,2

(
− η

M
t2−β

))
+Mq(0)E2−β,1

(
− η

M
t2−β

)
+ Mq′(0)tE2−β,2

(
− η

M
t2−β

)
+ ηq(0)t2−βE2−β,3−β

(
− η

M
t2−β

)]
. (4.3)

4.1.1 Static initial conditions

Since zero initial conditions live in the realm where Caputo and Riemann-Liouville derivatives are
equal, it is interesting to analyse this regime. This would in practice mean that the bath is connected
to the system at zero Kelvin. If we thus assume our particle to have been sitting completely still
at the origin, i.e. q(t ≤ 0) = 0, then the solutions obtained with Riemann-Liouville and Caputo
derivatives are equal and given by

q(t) =
1

M
f(t) ∗

(
tE2−β,2

(
− η

M
t2−β

))
. (4.4)

We can do some quick simulations using this formula, modelling the random impacts as delta
functions and generate some random numbers for the mean time between collisions and the strength
of the force applied. In Figure 13, two of these simulations are shown for the values β = 1 (yellow)
and β = 0.5 (blue). These are respectively classical diffusion and subdiffusion and the simulations
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Figure 13: Two simulations of a random walk for M = η = 1, with β = 1 (yellow) and β = 0.5
(blue). The same randomly generated force is being applied to both particles. Particles in the
sub-diffusive range (β < 1) typically stay more localised compared to ordinary Brownian motion.

indicate that this is indeed the case: the yellow particle is moving in one direction for a long time,
while the blue particle remains closer to the starting position.

Analysing the statistics of this solution, we see that the average value of the position

〈q(t)〉 =
1

M
〈f(t)〉 ∗

(
tE2−β,2

(
− η

M
t2−β

))
=

1

M
0 ∗
(
tE2−β,2

(
− η

M
t2−β

))
= 0 (4.5)

and, assuming t ≤ t′, that the position-position correlation

〈q(t)q(t′)〉 =
1

M2

〈[
f(t) ∗

(
tE2−β,2

(
− η

M
t2−β

))] [
f(t′) ∗

(
t′E2−β,2

(
− η

M
t′

2−β
))]〉

=
1

M2

〈∫ t

0
f(t− τ)τE2−β,2

(
− η

M
τ2−β

)
dτ

∫ t′

0
f(t′ − τ ′)τ ′E2−β,2

(
− η

M
τ ′

2−β
)
dτ ′

〉

=
1

M2

∫ t

0

∫ t′

0

〈
f(t− τ)f(t′ − τ ′)

〉
τE2−β,2

(
− η

M
τ2−β

)
τ ′E2−β,2

(
− η

M
τ ′

2−β
)
dτ dτ ′

=
1

M2

∫ t

0

∫ t′

0
Kδ
(
(t− τ)− (t′ − τ ′)

)
τE2−β,2

(
− η

M
τ2−β

)
τ ′E2−β,2

(
− η

M
τ ′

2−β
)
dτ dτ ′

=
K

M2

∫ t

0
τE2−β,2

(
− η

M
τ2−β

) (
τ − (t− t′)

)
E2−β,2

(
− η

M

(
τ − (t− t′)

)2−β)
dτ.

In particular, for t = t′, we get the mean square displacement (MSD)

〈q(t)2〉 =
K

M2

∫ t

0

(
τE2−β,2

(
− η

M
τ2−β

))2
dτ. (4.6)

We can calculate the behaviour at small t using the power series of the Mittag-Leffler function,
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which for |t| � (M/η)1/(2−β) gives

〈q(t)2〉 =
K

M2

∫ t

0

(
τ
∞∑
k=0

(
− η
M τ

2−β)k
Γ((2− β)k + 2)

)2

dτ

≈ K

M2

∫ t

0

(
τ

Γ(2)

)2

dτ

=
Kt3

3M2
.

Here, we have found a universal t3 behaviour for diffusion, which is also found in Richardson’s law
for quantum turbulence [67].

Numerical evaluation of the MSD for some small values of beta are given in Figure 14a, while Figure
14b shows the behaviour for more general values between zero and one.

In Figure 14b and 15, one observes that for small β , the MSD seems to saturate at some point.
Particularly, Figure 15 presents the transition from β = 1 to β = 0, which highlights a very non-
linear interpolation with a lot of structure and seemingly saturating values. We would like to
understand when this saturating behaviour occurs but for this we will need the following Theorem:

Theorem 4.1.1. (Wang, Zhou and O’Regan [68, Lemma 1.1] or Gorenflo et al. [69, Theorem
4.3]) Let α ∈ (0, 2) and 0 < β ∈ R be arbitrary. Then, for p = bβ/αc, the following asymptotic
expansions hold:

Eα,β(z) =
1

α
z(1−β)/α exp

(
z1/α

)
−

p∑
k=1

z−k

Γ(β − αk)
+O

(
z−1−p) as z →∞; (4.7)

Eα,β(z) = −
p∑

k=1

z−k

Γ(β − αk)
+O

(
|z|−1−p) as z → −∞. (4.8)

Applying this theorem to the results of the MSD, we can get a long term behaviour. Namely, for
0 < β < 2, but β 6= 1

2 , t > tl � 1 and η/M > 0, we have

〈q(t)2〉 =
K

M2

∫ t

0

(
τE2−β,2

(
− η

M
τ2−β

))2
dτ

= 〈q(tl)2〉+
K

M2

∫ t

tl

(
τE2−β,2

(
− η

M
τ2−β

))2
dτ

≈ 〈q(tl)2〉+
K

M2

∫ t

tl

(
τ

η
M τ

2−βΓ(2− (2− β))

)2

dτ

= 〈q(tl)2〉+
K

η2Γ(β)2

∫ t

tl

τ2β−2 dτ

= 〈q(tl)2〉+
K

(2β − 1)η2Γ(β)2

(
t2β−1 − t2β−1

l

)
=

(
〈q(tl)2〉 −

Kt2β−1
l

(2β − 1)η2Γ(β)2

)
+

Kt2β−1

(2β − 1)η2Γ(β)2
,
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Figure 14: Numerical evaluation of the MSD for K = M = η = 1 and β as indicated in the legend.

while for β = 1
2 , we have

〈q(t)2〉 ≈ 〈q(tl)2〉+
K

η2Γ(1/2)2

∫ t

tl

τ−1 dτ

= 〈q(tl)2〉+
K

η2π
ln

(
t

tl

)
.
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Figure 15: Numerical evaluation of the MSD for K = M = η = 1, as a function of β and time.

In particular, this means that the MSD will stop growing at large timescales only if 0 < β < 1/2.

Some interesting cases are β = 1 and β = 0, as these correspond to known physical systems. For
β = 1, we retrieve the classical Langevin equation and we have the static solution

q(t) =
1

M
f(t) ∗ tE1,2

(
− η

M
t
)

=
1

η
f(t) ∗

(
1− e−

η
M
t
)
, (4.9)

which is indeed equal to the classical solution.
For β = 0, we get the equation

M
d2q(t)

dt2
+ ηq(t) = f(t),

which is a particle moving in a square potential V (q(t)) = ηq(t)2/2. This gives a harmonic oscillator
type solution

q(t) =
1

M
f(t) ∗ tE2,2

(
− η

M
t2
)

=
1

M
f(t) ∗ t

sinh
(√
− η
M t

2
)

√
− η
M t

2

=
1√
Mη

f(t) ∗ sin

(√
η

M
t

)
.

4.1.2 Thermal initial conditions

In the physical world, static initial conditions only arise at zero Kelvin, or by connecting the thermal
bath instantaneously to the system of interest. Since this is difficult to achieve, it is more realistic to
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assume a non-zero initial velocity, although the initial position can still be chosen to be zero, based
on the chosen axis positions. We will therefore assume the initial conditions q(0) = 0 and q̇(0) = v0.
In equilibrium, the equipartition theorem would then imply that 〈v0〉 = 0 and 〈v2

0〉 = kT/M . In
this section, however, we will replace the fractional derivative order β by s to avoid confusion with
the use of β = 1/kT in statistical physics.

Using these initial conditions, we will have to utilise a fractional derivative that allows for ordinary
boundary conditions. Hence, here we will utilise the Caputo derivative. Substituting these initial
conditions into Eq. (4.3), we find that

q(t) =
1

M
f(t) ∗

[
tE2−s,2

(
− η

M
t2−s

)]
+ v0tE2−s,2

(
− η

M
t2−s

)
. (4.10)

Applying the usual statistical mechanics tools, we can find the MSD

〈q(t)2〉 =

〈{
1

M
f(t) ∗

[
tE2−s,2

(
− η

M
t2−s

)]}2
〉

+
[
v0tE2−s,2

(
− η

M
t2−s

)]2

+ 2v0tE2−s,2

(
− η

M
t2−s

)
× 1

M
〈f(t)〉 ∗

[
tE2−s,2

(
− η

M
t2−s

)]
=

K

M2

∫ t

0

[
τE2−s,2

(
− η

M
τ2−s

)]2
dτ +

[
v0tE2−s,2

(
− η

M
t2−s

)]2
. (4.11)

If we now analyse the new v0 term compared to the static initial conditions, we can see that its
expansion for t� (M/η)s−2 is given by[

v0tE2−s,2

(
− η

M
t2−s

)]2
≈ v2

0t
2 1

Γ(2)
= v2

0t
2. (4.12)

Since this is bigger than the t3 contribution from the static MSD, we find the new short-term
expansion 〈

q

(
t�

(
M

η

)s−2
)2〉

= v2
0t

2, (4.13)

or in other words, the short-time expansion yields a ballistic motion.

The long-term expansion remains unchanged, however. This can be easily seen because the ex-
pression is similar to the static MSD, but without being integrated in time. Hence, the expansion
of the new term will be 1 order of t lower (hence t2s−2) and thus negligible for any s < 1 and
t � (M/η)s−2. Therefore, we retain the logarithmic expansion for s = 0.5, and else the expansion
is given by 〈

q

(
t�

(
M

η

)s−2
)2〉

∼ Kt2s−1

(2s− 1)η2Γ(s)2
. (4.14)

Remark that, for s < 0.5, this exponent is negative, which means that the system will stop growing
and saturate at long times. This will be crucial for the following Section.

4.2 Time glass

We now come to the most important scientific contribution of this thesis, also available in Ref. [66].
Time glasses have been recently conjectured by Wilczek [23]. With a time glass, we mean a system
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which in equilibrium has an overall glassy structure, in the sense that the MSD is finite at infinite
times, but which also shows a periodic glassy behaviour. To better understand this, we first recall
that the MSD of a glass shows ballistic behaviour followed by saturation (recall Figure 12). The
periodic glassy behaviour can then be encapsulated in a staircase-like MSD with plateaus followed
by ballistic motion, similar to the Gardner phase in glass. An important difference, however, is that
the Gardner phase shows an infinite staircase MSD. This is therefore not an overall glassy state, as
this will blow up as time goes on.

Figure 16: Left: A free energy landscape with fractal-like metastable minima. Right: A hierarchy
of cages inside cages. Here, the total energy landscape (purple) has four local minima corresponding
to the total number of large orange cages. Zooming in on one of these minima, we see five smaller
local minima implying five smaller green cages inside this orange cage. Moreover, inside one green
cage there are 3 red cages, and so forth.

The Energy landscape in Fig. 16 of this time-glass system is very closely related to the Gardner
phase in glass. The most important difference is that the fractality in the landscape is only to finite
depth, increasing in generation when s→ 0. The local minima in the energy landscape correspond
to the cages on the right. A local minimum inside a larger local minimum will effectively act as a
cage inside a cage. The particle will first only explore the larger cage before being trapped in the
smaller cage.

In Fig. 17, the MSD of the fractional Langevin equation (see Eq. 4.11) has been plotted for several
values of s from zero to one. It shows ballistic short-time behaviour in all cases. For s = 1, we
retrieve the conventional Langevin equation, which describes Brownian motion. The MSD shows a
crossover from a ballistic (∼ t2) to a linear dependence in time, characteristic of a liquid [Fig. 17(a)].
For s . 0.5, instead, the MSD saturates at large times, thus describing a glass [Fig. 17(b)]. We find
that a particularly interesting regime is provided by small values of s, in the interval 0 < s . 0.1.
In this case, a sequence of small metastable plateaus characterises a finite-depth fractal glass phase,
before the conventional glass regime is reached at larger times [Fig. 17(c)]. For s = 0, the “marginal
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Figure 17: The exact MSD for different values of s. (a) A regular Brownian motion. (b) A usual
glassy behaviour, exhibiting ballistic motion at short times and localisation at longer times. (c)
An unconventional glass, displaying ballistic motion at short times, but also an intermediate regime
with a set of small plateaus, before the long-time plateau sets in. (d) A particle in a quadratic
potential. Here, the friction term vanishes and an infinite collection of plateaus appear. The overall
slope is however finite, reminiscent of a liquid behaviour. The analytical asymptotes for t→ 0 and
t→∞ are drawn next to the plots.

glass” phase, proposed by Gardner, is realised, with an infinite number of metastable plateaus and
finite average slope (∼ t), typical of liquids. This is an asymptotic phase, in which the fractal glass
acquires infinite depth [Fig. 17(d)].

Now, we concentrate on the region 0 < s . 0.1, which describes a finite-depth fractal glass, remin-
iscent of the Gardner phase. The evolution of the MSD upon varying s is depicted in Fig. 18. At
short times (0 < t < π

√
M/η), there exists a universal regime, in which all curves collapse into a

single one. Afterwards, the small plateaus regime sets in, but the overall slope of the intermediate-
time behaviour increases as s is reduced, thus showing a gradual transition from an overall glass to
liquid phase. At sufficiently long times, there is saturation, except for s = 0. This freezing occurs
on increasingly longer timescales as s is reduced. More interestingly, the length of these plateaus
is constant in time, as promptly visualised in a linear scale plot (inset of Fig. 18). This emergent
frequency indicates that we are observing a time-glass phase.

The periodicity in the MSD can be calculated with the observation that the period is independent
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Figure 18: The MSD for several small values of s, as indicated in the legend. The inset shows
a linear scale plot to highlight the periodicity in the anomalous glass phase, characterising a time
glass.

of s. We can therefore use a simpler model with s = v0 = 0, to get

〈x(t)2〉 =
K

M2

∫ t

0

[
τE2,2

(
− η

M
τ2
)]2

dτ

=
K

Mη

∫ t

0
sin2

(√
η

M
τ

)
dτ

=
K

2Mη

[
t+

1

2

√
M

η
sin

(
2

√
η

M
t

)]
, (4.15)

where the relation between the Mittag-Leffler function and the sine can be seen using their Taylor
expansions. This yields a periodicity of π

√
M/η in time. For non-zero s, the same period applies

only in a finite time-window before freezing.

The position and velocity auto-correlation functions (PACF and VACF, respectively) have been
plotted alongside a normalised MSD for several values of s in Fig. 19. Here, we can observe a
clear relation between the plateaus in the MSD and the oscillations in the PACF and VACF. Upon
lowering s from one, we see small oscillations forming for a short initial period. These oscillations
then become larger and remain for longer times, until at s = 0 they become a sine function in the
harmonic oscillator. We want to highlight the striking similarity in the PACF with Ref. [70], even
though their system is different with a coloured noise and external harmonic potential.
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Figure 19: Normalised MSD (Green, Dotdashed), PACF (Orange, Line), VACF (Blue, Dashed).
The dashed vertical lines are at multiples of the emergent periodicity π

√
M/η.
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The analytical forms of the PACF and VACF for t0 � (M/η)s−2 are given by

〈x(t0)x(t0 + t)〉
〈x(t0)2〉

=
K

M2〈x(t0)2〉

∫ t0

0
τE2−s,2

(
− η

M
τ2−s

)
×

(t+ τ)E2−s,2

(
− η

M
(t+ τ)2−s

)
dτ (4.16)

〈v(t0)v(t0 + t)〉
〈v(t0)2〉

=
K

M2〈v(t0)2〉

∫ t0

0

[
d

dτ
τE2−s,2

(
− η

M
τ2−s

)]
×[

d

d(t+ τ)
(t+ τ)E2−s,2

(
− η

M
(t+ τ)2−s

)]
dτ. (4.17)

Since we have computed the analytical long-time exponent of the MSD, given by t2s−1, one might
expect a universality in a rescaling regime. By rescaling the MSD with t1/(2s−1) we would expect
a universal linear long-time exponent. However, this is not always the case, as the exponent is
negative for s < 1. This would thus result in a flip of the time axis13, making the universal exponent
show in the short-time regime for these values of s. We, therefore, rescale with the absolute value
t1/|2s−1|. This rescaling is presented in Figure 20 for some small s values. We observe that the final
saturation of the MSD is retained by this rescaling. Indeed, this is expected since the MSD will be
approximately constant in this regime, and a constant function does not change upon rescaling the
input.
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Figure 20: A plot of the MSD rescaled with t1/|2s−1| for several small s values.

4.3 Microscopic model

Now, we will follow the same steps of the Caldeira-Leggett calculation, but using the TLS Bath
instead of the harmonic oscillators, to show a microscopic model for the time glass. Therefore, we
have to revisit both the computation of the friction term and of the force term, as these are the
terms that depend on the spectral function. We will use the same model as Ref. [44], but in a

13Similar to t→ 1/t.
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low-temperature limit, kT � ~Ω in combination with the limit Ω → ∞. Recall that the spectral
function of the two-level systems bath is given by

J(ω, T ) =

{
π
2 ηω

s tanh
(

~ωj
2kT

)
if ω < Ω

0 if ω > Ω.
(4.18)

Taking the limit kT � ~Ω will therefore send the tangent hyperbolic to its limiting value of 1. After
the limit Ω→∞, this results in an effective spectral function given by

J(ω) = η(s)ωs, (4.19)

where we allow η to depend on the value of s. In this way, we aim to produce an effective fractional
Langevin equation for the description the of particle.

Starting with the friction term in Eq. (3.31), we insert the new spectral function for the sub-Ohmic
case, where 0 < s < 1, to find

Ffr =
d

dt

{
2

π

∫ t

0
dτ

∫ ∞
0

dω
J(ω)

ω
cos[ω(t− τ)]q(τ)

}
=

d

dt

{
2η(s)

π

∫ t

0
dτ

∫ ∞
0

dωωs−1 cos[ω(t− τ)]q(τ)

}
=

d

dt

{
2η(s)

π

∫ ∞
0

dωωs−1 cos(ω)

∫ t

0
dτ(t− τ)−sq(τ)

}
=

2η(s)

π

∫ ∞
0

dωωs−1 cos(ω)
d

dt

∫ t

0
dτ(t− τ)−sq(τ), (4.20)

where, in the third line, we shifted ω → ω/(t − τ). Although this shift is only valid for t 6= τ , the
expression before the shift has a pole of order s at t = τ , identical to the pole we get after the shift
at the boundary t = τ . We therefore conclude that the shift ω → ω/(t − τ) is valid on the entire
domain.

In the last line of Eq. (4.20), we can now recognise a Riemann-Liouville fractional derivative up
to the constant from the gamma function. However, assuming that q(0) = 0, we know that the
Riemann-Liouville derivative is equal to the Caputo derivative and so that

Ffr =
2η(s)

π
Γ(1− s)

∫ ∞
0

dωωs−1 cos(ω) C0D
s
tq(t). (4.21)

Focusing on the remaining integral, we expand the cosine into its exponential form and do a re-
parametrisation ω = ±iν to see that∫ ∞

0
ωs−1 cos(ω) dω =

1

2

∫ ∞
0

ωs−1eiω dω +
1

2

∫ ∞
0

ωs−1e−iω dω

=
is

2

∫ −i∞
0

νs−1e−ν dν +
i−s

2

∫ i∞

0
νs−1e−ν dν. (4.22)

From Eq. (4.22), we note that we can make two-quarter circle complex-contour integrations and
combine this with the Cauchy-integral theorem to conclude that both integrals are equal to the
integral from 0 to ∞ when s < 1. We therefore find that∫ ∞

0
ωs−1 cos(ω) dω =

is + i−s

2

∫ ∞
0

νs−1e−ν dν = cos
(πs

2

)
Γ(s), (4.23)
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and thus

Ffr =
2η(s)

π
Γ(1− s)Γ(s) cos

(πs
2

)
C
0D

s
tq(t). (4.24)

We can further simplify Eq. (4.24) using Euler’s reflection formula:

Γ(s)Γ(1− s) =
π

sin(πs)
∀s /∈ Z. (4.25)

To absorb the constants, we now define

η(s) =
ηs sin(πs)

2 cos
(
πs
2

) = ηs sin
(πs

2

)
, (4.26)

such that we have
Ffr = ηs

C
0D

s
tq(t). (4.27)

The change in spectral function also has consequences for the correlation of the noise term. As we
saw in Eq. (3.34), the force is given in microscopic variables by

f(t) =
∑
j

Cj

[
qj(0) cos(ωjt) +

q̇j(0)

ωj
sin(ωjt)

]
(4.28)

and, since equipartition breaks down at low temperatures, we assume the following rescaled micro-
scopic correlations:

〈qj(0)〉 = 〈q̇j(0)〉 = 〈q̇j(0)qj′(0)〉 = 0, (4.29)

〈qj(0)qj′(0)〉 =
kBT

mjω
s+1
j

δjj′ , (4.30)

〈q̇j(0)q̇j′(0)〉 =
kBT

mjω
s−1
j

δjj′ . (4.31)

We will show that these correlations lead to a white-noise force. We can quickly see that the average
force is still zero, but the force squared correlation in this model is now given by

〈f(t)f(t′)〉 =

〈∑
j

Cj

[
qj(0) cos(ωjt) +

q̇j(0)

ωj
sin(ωjt)

]∑
j′

Cj′

[
qj′(0) cos(ωj′t

′) +
q̇j′(0)

ωj′
sin(ωj′t

′)

]〉

=
∑
jj′

CjCj′

[
〈qj(0)qj′(0)〉 cos(ωjt) cos(ωj′t

′) +
〈q̇j(0)q̇j′(0)〉

ωjωj′
sin(ωjt) sin(ωj′t

′)

+
〈qj(0)q̇j′(0)〉

ωj′
cos(ωjt) sin(ωj′t

′) +
〈q̇j(0)qj′(0)〉

ωj
sin(ωjt) cos(ωj′t

′)

]
=
∑
jj′

CjCj′

[
kBT

mjω
s+1
j

δjj′ cos(ωjt) cos(ωj′t
′) +

kBT

mjωjωj′ω
s−1
j

δjj′ sin(ωjt) sin(ωj′t
′)

]
,

(4.32)
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where we have used the linearity in the expectation and plugged in the new expectations for the
“oscillators”, given by Equations (4.30) and (4.31). Now, using the delta functions and extracting
the form of the spectral function, we find

〈f(t)f(t′)〉 =
∑
j

C2
j

kBT

mjω
s+1
j

[
cos(ωjt) cos(ωjt

′) + sin(ωjt) sin(ωjt
′)
]

= kBT
∑
j

C2
j

mjω
s+1
j

cos[ωj(t− t′)]

= kBT

∫ ∞
0

dω
∑
j

C2
j

mjω
s+1
j

δ(ω − ωj) cos[ωj(t− t′)]

= kBT
2

π

∫ ∞
0

dω
J(ω)

ωs
cos[ω(t− t′)]. (4.33)

Since the low-temperature limit provides an effective J(ω) = ηs sin (πs/2)ωs, we can see that for
any s, it only remains left with an integral over the cosine, which provides the effective correlation

〈f(t)f(t′)〉 = 2ηskBT sin
(πs

2

)
δ(t− t′). (4.34)

Observe that the limit s → 1 retrieves the familiar formula for Brownian white-noise. However,
for 0 < s < 1, we see that the bath of semi-classical truncated oscillators, with energies rescaled
by ω1−s, in a low-temperature limit gives rise to the fractional Langevin equation as its effective
description. We have thus found a connection between quantum motion and Caputo fractional
derivatives.
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5 Applications of the fractional (kinetics) Langevin equation

The original Langevin equation has a second and first order derivative, which we generalised to a
second and β order derivative in Chapter 4, changing the friction term to a viscoelastic term. Now,
we will also generalise the Newtonian second order derivative to a fractional derivative of order α,
which we will call fractional kinetics. Although this lays the interpretation of the external force
open, we will see how this even more general fractional-kinetics Langevin equation can still be solved
analytically and how it will give rise to many different kinds of systems found in Nature.

5.1 Fractional-kinetics Langevin equation

Suppose that we want to have an even more general equation than the fractional Langevin equation,
replacing the second order derivative (kinetic term) with a fractional order derivative, allowing us
to put more systems into the same class of equations. We thus consider the fractional-kinetics
Langevin equation

MDα
t q(t) + ηDβ

t q(t) = f(t), (5.1)

where f(t) is the random “force”14, and we will assume that α > β ≥ 0 for all the following
calculations.

We have already derived the general solution of Equation (5.1) for both Riemann-Liouville and
Caputo fractional derivatives in Examples 2.3.11 and 2.3.12. Here, we will do some statistical
analysis for static initial conditions, in which case, the choice of definition will not matter and in
either case we find the solution

q(t) =
1

M
f(t) ∗

[
tα−1Eα−β,α

(
− η

M
tα−β

)]
. (5.2)

Applying the same statistics on f(t) as in the original fractional Langevin equation allows us to
find that

〈q(t)〉 = 0, (5.3)

〈q(t)2〉 =
K

M2

∫ t

0

[
τα−1Eα−β,α

(
− η

M
τα−β

)]2
dτ. (5.4)

The small t expansion of the MSD is given by

〈q(t)2〉 =
K

M2

∫ t

0

[
τα−1Eα−β,α

(
− η

M
τα−β

)]2
dτ

≈ K

M2

∫ t

0

[
τα−1

Γ(α)

]2

dτ

=

{
K

M2Γ(α)(2α−1)
t2α−1 if α 6= 1/2,

K
M2Γ(α)

ln(t) if α = 1/2.

In particular this implies a negative exponent if α < 1/2.

14Since we have changed the Newtonian term of f = ma, f(t) is in first principle not a force, but we will keep the
name “force” to indicate the properties of the function f(t). We can take the 2−α derivative of the fractional-kinetics
equation to see D2−α

t f(t) as a force.
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The large-time expansion is also similar to the original fractional Langevin equation. There is,
however, a new restriction when using Theorem 4.1.1 for the asymptotic behaviour. We need the
first index of the Mittag-Leffler function to be between 0 and 2. For this MSD, that means that we
need 0 < α − β < 2, or β < α < 2 + β, in order to use Theorem 4.1.1. In that case, however, we
find that for β 6= 1

2 , t > tl � 1 and η/M > 0, we have

(a) (b)

Figure (a,b): Two viewpoints of the MSD with α = 1.6 (red) and α = 2.2 (blue) and β varying
between 0.3 and 1.5.

(c) (d)

Figure (c,d): Two viewpoints of the MSD with β = 0.3 (red) and β = 0.9 (blue) and α varying
between 1 and 2.2.

Figure 21: A comparison of the MSD for two choices of derivative orders and the other derivative
order varying with K = η = M = 1. Note that we plot the logarithm of the MSD and the time
axis has logarithmic scaling.
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〈q(t)2〉 =
1

M
f(t) ∗

[
tα−1Eα−β,α

(
− η

M
tα−β

)]
= 〈q(tl)2〉+

K

M2

∫ t

tl

[
τα−1Eα−β,α

(
− η

M
τα−β

)]
dτ

≈ 〈q(tl)2〉+
K

M2

∫ t

tl

(
− τα−1

− η
M τ

α−βΓ(α− (α− β))

)2

dτ

= 〈q(tl)2〉+
K

η2Γ(β)2

∫ t

tl

τ2β−2 dτ

= 〈q(tl)2〉+
K

(2β − 1)η2Γ(β)2

(
t2β−1 − t2β−1

l

)
=

(
〈q(tl)2〉 −

Kt2β−1
l

(2β − 1)η2Γ(β)2

)
+

Kt2β−1

(2β − 1)η2Γ(β)2
,

while for β = 1
2 , we have

〈q(t)2〉 ≈ 〈q(tl)2〉+
K

η2Γ(1/2)2

∫ t

tl

τ−1 dτ

= 〈q(tl)2〉+
K

η2π
ln

(
t

tl

)
.

Remarkably, we find that this is, up to the extra condition required for the statement to hold,
exactly the same formula as for the original fractional Langevin equation. In other words, the long
term MSD behaviour is, for β < α < 2 + β, independent of α. Combining this with the observation
that the short-term behaviour is completely determined by α and independent of β, we get the
opportunity to tune both short- and long-term exponents of the MSD simply by tuning the orders
of derivatives used in the differential equation. In Figure 21, we can see this property graphically.
In 21(a,b), where we have two different α, we can see that the short-term MSD is very different
while the long term MSD looks very similar. In Figure 21(c,d), where we have two different β, we
can see that the short term MSD looks very similar, while the long term MSD is different. We
can also observe this behaviour by looking at the slope in the direction of the varying parameter:
In Figure 21(a,b) we see very little change while varying β for small t, whereas we can see a clear
change for large t. The opposite holds for Figure 21(c,d).

5.2 Applications to physical systems

The fractional-kinetics Langevin equation (Eq. 5.1) can give rise to many different forms, depending
on the choice of α and β. In this Section, we will highlight several areas of physics where sub-cases
of this analytically solved equation have been shown to describe some physical system. We begin
with the integer-order cases, followed by the fractional Langevin equation with a different type of
noise. Next, we compare our analytical solution to some numerical work on the relaxation oscillation
equation, where-after we discuss the Bagley-Torvik equation.
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Integer cases

Equation (5.1) has two free parameters, α and β, to tune to any pair of real numbers. Beside the
main purpose of expanding outside of integer orders, this also allows to encapsulate many different
ordinary differential equations into one class of solutions. Some of the most basic physical systems
such as Newton’s second law, the motion of a harmonic oscillator mẍ + kx = Fext, or Brownian
motion using the classical Langevin equation mẍ+ηẋ = Fext are all just specific cases of this general
equation. Another example includes the Abraham-Lorentz equation to describe the self-radiation
reaction of a charged particle (see Ref. [71] for a historic overview on self-radiation descriptions):

m
d2

dt2
x−mτ d

3

dt3
x = Fext, (5.5)

where τ = 2e2/3mc3 provides a time scale, e is the charge of the particle, c the speed of light,
m the mass, and Fext is an external force. For a white-noise force, the MSD has been plotted
in Figure 22. Although all these equations have been solved independently, the idea to combine
them using the differential orders as continuous parameters seems intriguing. For example, in
the fractional Langevin equation we obtained the integer limits of Brownian motion and a driven
harmonic oscillator. In the intermediate regime, we found much more structure than from a simple
linear interpolation. It would be interesting to try similar fractional transitions to other systems
which can fall in the same class according to this fractional derivative scheme.

0.5 1 5 10 50 100
t

10-5

0.001

0.100

10

1000

105

〈x(t)2〉

Figure 22: A log-log plot of the MSD for the Abraham-Lorentz equation, subjected to a white-noise
force, with all zero initial conditions. The short-time exponent is t5 and the long-time exponent is
t3.

Fractional Langevin equation with coloured noise

In this thesis, we have mostly been describing the fractional Langevin equation with a white-noise
force. However, much attention has been given to the same equation with coloured noise [72–76],
i.e.,

〈f(t)f(t′)〉 = K(t− t′)−β. (5.6)
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This coloured noise depends on the order of the fractional derivative. The reasoning behind this
choice comes from the fluctuation-dissipation theorem, which relates the thermodynamic fluctu-
ations to the dissipation constant, thus allowing to describe systems at higher temperatures. Note
that the solution of the fractional Langevin equation is identical in either case, since the change will
only show up once the statistics play a role. We can compare many results of our work with this
coloured noise, simply by dimensional analysis. Since the dimension of a delta function is equal to
the inverse of its input, the dimensional difference between white noise and coloured noise is an order
of t1−β. Hence, the exponent of quantities such as the MSD will change from 2β − 1 to just β with
coloured noise. An important implication of this is that this means that the fractional Langevin
equation shows only regular sub-diffusion for β < 1, without any saturation in the MSD. This is also
a direct proof for why the coloured noise cannot describe a time glass. This system has, however,
been linked to a microscopic model of a tracer particle in a one-dimensional many-particle system
with a general two-body interaction potential [73]. In Ref. [74], the solution of the coloured-noise
fractional Langevin equation is also compared with experiments in Ref. [77] with protein molecules.

Comparison with numerical work on the relaxation-oscillation equation

In this thesis, we have only focused on analytical results. However, numerical tools have been of
great use for many applications. During this thesis, Dr. Varese S. Timóteo from Universidade
Estadual de Campinas (UNICAMP) visited the group of Prof. Morais Smith. During this time,
we had a discussion on fractional derivative equations. Dr. Timoteo had recently looked into this
topic and utilised numerical techniques from Podlubny [25, Ch.8] to solve the relaxation-oscillation
equation

RL
0D

α
t x(t) +Ax(t) = f(t), (5.7)

with 1 < α ≤ 2, f(t) any function, and x(0) = x′(0) = 0, which has also been discussed in Refs. [78,
79]. Since this equation also fits within the scope of the fractional-kinetics Langevin equation, we
can directly compare the numerical result with the analytical result derived in Example 2.3.11. For
this, we have chosen two functions to compare to, namely, f(t) = sin(t) sin(2t) and a white noise,
and we have compared these two functions in the equation

RL
0D

3/2
t x(t) + 2x(t) = f(t). (5.8)

The two solutions of this equation have been plotted in Figure 23. The results for the numerical
solution are 1000 points interpolated, while the analytical results are 100 dots. We can see a clear
agreement between numerical and analytical values, but what is interesting is that the numerical
solution evaluates around 90 times faster in Mathematica than the analytical solution with the
white noise, although it is only a factor of 6 for the sine like function. This long evaluation time is
due to the integral in the analytical solution. This requires a numerical integral for each point, thus
resulting in 100 numerical integrals for a single plot. In comparison, the numerical methods change
the problem into a linear algebra problem, which can be evaluated very quickly. The drawback,
however, is that the precision becomes more difficult at larger t, as errors might accumulate. In
contrast, the numerical evaluation of the analytical solution does not accumulate errors, as each
point is evaluated independently, thus only acquiring errors from the numerical integration which
allows to check the accumulation errors from the numerical methods. Furthermore, if we were to
do some statistical analysis in the white-noise case, this would require many evaluations of the
numerical solution, which will still not yield reliable long-time result simply averaging over the
iterations, while we can simply apply the statistics directly on the analytical solution and retrieve
exact results.
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(a) f(t) = sin(t) sin(2t)
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(b) f(t) = randomly generated white noise

Figure 23: A comparison of our analytical solution (100 blue dots), obtained by using Laplace
transforms, to the numerical solution (1000 points interpolated red line) for the first 10 units of t,
obtained by Timóteo [80] using the numerical methods in Podlubny [25, Ch.8], of Eq. (5.8) with
f(t) indicated below the figures.
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(a) f(t) = 1 analytical (b) f(t) = 1 numerical
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(c) f(t) = te−t analytical (d) f(t) = te−t numerical

Figure 24: Analytical (left) and numerical (right) solutions of Eq. (5.9) with f(t) indicated below
each plot. The right figures are extracted from Ref [25, Sec. 8.4] where the numerical solutions are
presented using a short-memory principle.

We can go further into a numerical comparison with Podlubny [25, Sec. 8.4], where numerical
solutions using the “Short-Memory” principle are provided, which means that effectively the long
tail of the memory kernel is neglected. In Ref. [25], numerical solutions to the equation

RL
0D

3/2
t x(t) + x(t) = f(t), with x(0) = x′(0) = 0 (5.9)

are given for four different functions f(t). Ref. [25], however, only compares the short-memory
principle with other numerical results and shows how the shorter memories retain a reasonable
amount of accuracy while computing much faster. In Figures 24 and 25, we show the analytical
solutions to these problems beside the numerical solutions obtained by Ref [25]. In particular, we
can see that Figures 24a, 24c, and 25c agree very well with the numerical solutions from Ref [25].
However, Figure 25a is quite different from the numerical solutions presented by Ref. [25], shown in
Figure 25b. This might be due to a problem with the numerical methods or even a simple typo in
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(a) f(t) = t−1e−1/t analytical (b) f(t) = t−1e−1/t numerical
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Figure 25: Analytical (left) and numerical (right) solutions of Eq. (5.9) with f(t) indicated below
each plot. The right figures are extracted from Ref [25, Sec. 8.4] where the numerical solutions are
presented using a short-memory principle. Note that Fig. (a) shows quite different behaviour from
Fig. (b).

his formula, since changing the function from f(t) = t−1e−1/t into f(t) = t−1e−t already provides
more similar results.

Bagley-Torvik equation

The Bagley-Torvik equation was first introduced in Ref. [81], where they show that the motion
of a rigid plate immersed in a Newtonian fluid and connected to a massless spring of stiffness C
connected to a fixed point is described by the equation

Aẍ(t) +B C
0D

3/2
t x(t) + Cx(t) = f(t), (5.10)



5 APPLICATIONS OF THE FRACTIONAL (KINETICS) LANGEVIN
EQUATION 86

where f(t) is an external force, A is the mass of the plate, and B is related to the shear stress of the
fluid. The fractional derivative arises from the collective behaviour of the fluid caused by the shear
stress. Although the analytical solution has been found in terms of an infinite series in Ref. [82]
and much numerical work has been done by Diethelm and Ford [83], we can connect some of the
limiting cases to the fractional-kinetics Langevin equation. For this, we have three interesting limits.
Setting the mass A of the plate to zero, we retrieve a particular case of the relaxation-oscillation
equation with α = 3/2. If the shear stress of the liquid becomes zero (B = 0), then we find the
driven harmonic oscillator, while, if we omit the spring connected to the plate (C = 0), then we
find a particular super-diffusive case of the fractional Langevin equation with β = 3/2.



6 CONCLUSION 87

6 Conclusion

Fractional derivatives have been fascinating scientists ever since the discovery of calculus. Here,
we have provided an introduction into this field, with an extensive description of many relevant
properties. We have presented five of the most used definitions: Riemann-Liouville, Liouville,
Grünwald-Letnikov, Caputo, and Weyl, and have shown how they can be different or related. In
particular, we have discussed several different solution methods for fractional differential equations,
involving Fourier transformations, Laplace transformations, and fractional power series, where we
have proven that any smooth function admits a fractional power series expansion. We have then
compared the solutions of fractional differential equations given a different choice of fractional
derivative and found that small differences, such as the derivative order or a sign of a constant, can
give very different relations between the various definitions.

Next, we talked about several quantum many-body systems, beginning with classical Brownian
motion and its relation to a particle coupled to many harmonic oscillators in the context of the
Caldeira-Leggett model, and showed how a two-level systems bath can change some of the results
in that model such as the spectral function. We have also given an overview of glasses, both normal
and in the Gardner phase, and briefly talked about time crystals, all very useful for putting time
glasses into context.

One of the main contributions of this thesis is the theoretical description of time glasses. Recently
conjectured, these periodic glassy properties are shown to emerge from the analytical solution of the
fractional Langevin equation in the regime 0 < s < 0.1, where the mean square displacement shows
several intermediate plateaus before there is a total saturation. These intermediate plateaus occur
periodically, thus characterising the time glass. We have shown how the phenomenological fractional
Langevin equation is related to a two-level systems bath coupled to a semi-classical system, thus
establishing the relation between a fractional derivative and a sub-Ohmic system.

Finally, we have investigated the fractional-kinetics Langevin equation and have shown several
existing physics theories, with both ordinary- and fractional derivatives, which can all be described
as limiting cases of this fractional differential equation, for which we derived the analytical solution.
Here, we also compare our analytical solution to some results obtained by numerical methods.

As an outlook, it would be interesting to extend these results to other types of equations with
friction terms, as e.g. the Landau-Lifshitz-Gilbert equation describing magnetism, or to include
non-linear potentials in the fractional Langevin equation
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