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ABSTRACT

The string theory has some beautiful properties, which have bewildered researchers since it’s

inception. One of such properties is the presence of a duality symmetry, which relates large

objects to very small ones. The duality is also called topological or T Duality. T Duality

informally says, strings can not differentiate between objects of radii R and that of Radii

1/R. This allows strings to wind the same way around the two said objects, leading to the

same winding mode quantum numbers. The same modes imply same observables for both

cases, which are otherwise very different. A symmetry of this nature is obscure in other

theories in Physics. There has been extensive research to explore this duality as an explicit

symmetry of a field theory. One such attempt is the Double Field Theory. Turning towards

another area of research in the subject, these rather complex formulations of double field

theory contain the non relativistic Newton Cartan string, which sounds unlikely, but holds

true. The Newton Cartan string theory was first written to discover simpler physics, but

the surprising nature of string theory brings us to this junction. The thesis begins on the

intersection of the two, and we proceed as follows.
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Chapter One

Inception of String Theory

1.1 History

At the turn of the nineteenth century, Lord Kelvin made some rather bold statements that

would not go down well with the history of physics in the years and decades to follow. Kelvin

is rumored to have said, physics is largely solved, and what remains are two clouds. He was

referring to the failure of Michelson Morley experiment, and blackbody radiation. The two

ambiguities he implied towards, were discovered by the researchers in early twentieth cen-

tury. They became the two cornerstones of science of the century - firstly quantum mechanics

and second, special relativity. Inside a decade or two, the paradigm of physics and research

in physics shifted into a new direction. The next few decades were spent on studying and

building quantum mechanics extensively. The quest to explain blackbody radiation led to

the postulates of a quantum theory. The foundations of quantum mechanics were established

during the first half of the twentieth century by Max Planck, Niels Bohr, Schrödinger, and

others. In 1905, while working at a swiss patent office, Einstein published his research about

special relativity. Special relativity as well, on the other hand gave rise to general relativity.

Both these theories - quantum theory and relativity, were successful in not just describing

existing phenomena in greater detail, but also predicting new phenomena and leading to new

discoveries. But there was an underlying inconsistency- the two theories were not compatible
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Inception of String Theory

with each other. In the pursuit of a theory of quantised gravity, in early 1970s, a new theory

came into existence - String theory.

The string theory is one of the most popular theories and a front line contender for a modern

scientist’s approach to a theory of everything. It is a theory that aims at unification of all

fundamental forces, gravity, electromagnetism and weak and strong interactions. The incep-

tion of string theory was in late 1960s, when physicists made attempts to explain the SU(3)

or strong interaction forces of nature. Even though the approach did not succeed in explain-

ing the strong forces, the theory became an accepted topic for discussion and research, as it

consisted another very promising feature - string theory could reconcile gravity with quan-

tum physics. String theory has extra dimensions that are needed to achieve mathematical

consistency. For example, bosonic string theory is described with 26 dimensions, and the

superstring theory is described with 10 dimensions.

1.2 Fundamentals of String Theory

One of the most fundamental differences between any particle theory and string theory is,

strings are linear objects. A particle sweeps out a worldline on Minkowski space. Whereas,

a string sweeps out a worldsheet. The background of Minkowski spacetime is referred to

as target space. String theory describes the propagation of this worldsheet on the target

space. The length scale of string theory, as determined by other fundamental scales is

referred to as the Planck length. At distances larger than the Planck length, a string behaves

like an ordinary particle whose properties are determined by the vibrations of the inherent

string. Since the theory is laden with extra dimensions, it becomes important to offer an

interpretation of the same. Compactification is one of such ways to explain the presence of

extra dimensions. The assumption is, some of the existing dimensions correspond to some

form of gauging which results in them curling upon themselves, like circles. In a theory

where the compact dimensions become very small, say, comparable to the least possible
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length scales, one can effectively ignore their presence. For a relativistic bosonic string,

to be quantised in a flat Minkowski background, we have 26 dimensions. Upon addition

of fermionic modes to the theory, one arrives at the so- called superstring theory. In the

superstring theory, the number of critical dimensions is limited to 10. The lowest state of

superstring theory is the massless state. This contains among many, three massless fields -

G,Bandφ, a topic which is discussed in fair light later in the second chapter. The choice of

adding fermions results in five independent classifications of the theory, namely Type I, Type

II A, Type II B, Heterotic SO(32),and Heterotic E8× E8. These different classes of string

theory were believed to be independent for a long time, until it was realised they are linked

via two special, non trivial dualities. A duality refers to a symmetry where two apparently

different systems show equivalence. The two theories can be moulded into each other upon

mathematical transformations. These 5 theories are found to be connected using S and T

duality. We explore T duality in the next chapter, and make an attempt to make this non

trivial duality manifest.
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Chapter Two

Introduction to Newton Cartan

2.1 NC Geometry

What is NC geometry and why is it important?

Einstein discovered the general theory of relativity in the beginning of the nine-

teenth century. This discovery led to a new understanding of space and time,

and opened doors to many new concepts and questions, which are being an-

swered to this day. A decade before general relativity, Einstein had shattered

common beliefs of absolute nature of time, which used to be a common point of

agreement of philosophers and scientists alike. The theory of General Relativ-

ity established gravity as a property of spacetime, and showed that spacetime

is curved. It was the first frame independent formulation of gravity. General

Relativity was verified in multiple observations and paved way for new horizons

of research. General Relativity successfully not only extends the applicability

of gravity, but also reduces to Newtonian physics in appropriate limits. The

same indicates that Newtonian physics should not be considered wrong, but
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just falls short under certain regimes of study. This allows for a reformula-

tion of Einstein’s gravity under Newtonian limit, i.e sending the speed of light

in vacuum to infinity. The covariant, or frame independent reformulation of

Newtonian gravity was done by Cartan in 1920s[6]. He showed the way to

use differential geometry to rewrite Newtonian gravity, and obtained covariant

equations of motion for the theory. The Minkowski spacetime in relativistic

theories uses Riemannian geometry Poincaré symmetries to describe the the-

ory. In comparison, the tangent space on Newton Cartan spacetime makes use

of Galilean symmetries instead.

2.1.1 Motivation for this thesis

The motivation to study the Newton Cartan geometry is threefold.

• The NC gravity might serve as a way to study quantum gravity. For

years, the quest of a modern physicist has been to understand and unite

all fundamental forces of nature. At current understanding, it remains

to make quantum physics consistent with General Relativity. General

Relativity, as it is, is not very well defined at the Planck scale. Due to

this, in the quantum regime, the quantum fluctuations of spacetime play

a dominant role. A classical theory can be quantised following the rules

of renormalisation techniques under certain conditions. For a theory to
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have a quantum version, it is required that it should be asymptotically

free i, e it should be defined by a finite number of parameters. Gravity,

upon quantisation tends to have infinitely many parameters, or coefficients

in its perturbative renormalisation. This is a reason why relativity can not

be quantised like other theories. Lately, Newton Cartan gravity has been

developed in string theory. Embedding NC gravity in string backgrounds,

which makes Newton Cartan gravity one of the potential candidates to

study non relativistic quantum gravity. Using this, it might be insightful

to study the full relativistic quantum gravity.

• NC gravity finds applications in low energy quantum field theories. In

areas of condensed matter physics, very often relativistic gravity does not

yield useful applications. The reason behind this is, at low energies, sys-

tems exhibit Galilean symmetries. This allows Newton Cartan gravity to

offer a better explanation of things compared to Einstein’s gravity. To

study and calculate partition functions, or say, the energy momentum

tensor, a coupling with a metric is required. Since, the gravity is non rel-

ativistic, and hence a Newton Cartan metric can be useful in explaining

the underlying physics.

• Upon its inception in 1916, General Relativity was put to three classical

tests[5] proposed by Einstein. Some of these tests were based on phenom-

ena unexplained earlier
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Figure 2.1 A cube representing the basic physical theories, and the various path-
ways to arrive at quantum gravity[19]. The cube is parametrised by fundamental
constants along its axes. These constants represent the theory they first charac-
terised. One can look starting at the origin, there are three fundamental theories
-SR, Quantum physics, and Newtonian gravity. by reaching at the corner trying to
couple the theories, one can move towards Quantum gravity. Eg. special relativity
and quantum mechanics give rise to quantum field theory, as so on.
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– The perihelion precession of the orbit of Mercury,

– Deflection of light due to the gravitational field of sun, and

– Gravitational red-shift of light.

Upon the covariant reformulation, Newton Cartan gravity satisfies all of

the aforementioned tests. It explains all things similar to Einsteins grav-

ity, and just falls short of predicting the gravitational waves. This further

establishes Newton Cartan gravity as a low energy limit of General rela-

tivity.

In this thesis, we propose an action for the Newton Cartan theory, under

various parametrisations.
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Chapter Three

Double Field Theory

3.1 T Duality

One of the many things that sets it apart from other theories is the presence

of a duality symmetry, aka the T duality[23]. String theory suggests compact-

ification of dimensions as represented in the following figure. Following from

compactification along a given direction, the worldsheet curls up to a cylindri-

cal form. Let’s take the radius of the cylinder to be R. T duality postulates, a

circle of radius R has indistinguishable physics from one of radius 1/R. Their

equivalence is studied as an operator map between the two theories, while re-

specting all commutation relations. To study T duality on string theory, it is

needed to look at what this duality means for a two dimensional theory, where

one dimension is curled. Let the curled co-ordinate be given by x, such that,

x ∼ x+ 2πR and let y represent the other coordinate, here, which is the length

of this cylinder. This cylinder is shown in the figure. We investigate various

possible strings, starting with open strings. String (a) is the simplest case,
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Figure 3.1 T Duality depicted by various closed strings on cylinder on the left, and
same represented on the surface of cylinder [23]

which does not wrap around the cylinder. Its winding number is zero. The

second is (b), which winds around the worldsheet once, and its winding number

is +1. The winding number of (c) is -1 as it winds around the worldsheet once,

exactly like (b), but in opposite direction. . The string (d) is wrapped around

twice, and so is (e) The winding number for these strings is 2. Taking a look

at the the mass-spectrum for a closed string on a circle of radius R

M 2 = (N + Ñ − 2) + p2 l
2
s

R2
+ p̃2 l

2
s

R̃2
(3.1)

where ls is the string length and R̃ is the radius dual to R, given by R̃ = l2s
R

The mass spectrum is invariant under the transformations

R

ls
↔ R̃

ls
=
ls
R
, p↔ p̃ (3.2)

. This symmetry holds for any observable in DFT.
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3.2 Early work on DFT

Double Field Theory was first discussed as an extension of string field theory.

In a closed string field theory, the string field depends on all zero- modes and

so, can be expanded to give an infinite set of fields on a doubled torus.

What is String Field Theory? It is a gauge invariant formulation of string

dynamics, around any background. T duality is realised as an explicit field

symmetry of this theory [16]. Let us consider a string theory described in

a space with D dimensions. The spacetime has both compactified and non

compactified dimensions. Let xµ represent non compactified and xa represent

compactified dimensions. Together, they are represented as as, xi = xa+xµ, i =

0, 1...D−1. A basic difference between a string and a particle from field theories

is, a string is itself the fundamental building block, unlike fields that give rise

to particles upon quantisation in field theories. A string has the capability

to wind around objects and dimensions. Let the compactified dimension has

a radius given by R. Under the exchange of R → 1
R , this winding number

exchanges in value with the value of momentum. If a string has momentum

p and winding number w, for a radius R, then it acquires a momentum w

and winding numberp for compactification radius 1
R . This establishes winding

should be treated as a new quantum number of the string. The winding numbers

must also associated with a set of coordinates under quantisation, and this

results in a second set of dual to the compact coordinates, given by x̃a. The
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momentum associated with the compact coordinates xa, is given by given by pa.

For winding, the winding modes associated with xa are represented by wa. This

new set of coordinates, which arise due to winding modes, is also referred to as

the new doubled set of coordinates. The non compact set of coordinates is also

ethically doubled, to give rise to x̃µ. This ensures that all initial coordinates

are doubled under the Doubled Field approach. One can think of non compact

coordinates as compactifications with infinitely large radii. When the radius of

compactification is extremely large, the dual coordinates do not play any role.

Thus, coordinates dual to non compact modes can be dropped with ease. These

coordinates do not play any part and do not correspond to any significance.

Thus, any physical field φ in Double Field Theory can be sufficiently described

as φ(xa, x̃a, x
µ).

3.2.1 Construction of a generalised geometry

String theory depicts multiple vibrating modes for the string. These various

vibrating modes lead to different physics. In the first excited state, string theory

can be broken down to three irreducible representations, or three massless fields

such that the string oscillations can be identified with these fields. The fields

are, Gµν, Bµν and φ. The first field, Gµν corresponds to a massless spin 2

particle - which results in gravity. The second, Bµν is an anti symmetric field,

also called Kalb Ramond field. φ represents a scalar field, called dilaton. Thus,

the massless sector of string theory is parameterised by these three fields. For
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simplicity, the massless modes are considered in double field theory. So, the

fields for consideration on DFT are Gµν(x
a, xµ), Bµν(x

a, xµ) and φ(xa, xµ),

where they depend on both compactified and non compactified coordinates. It

is a common practice to use conformal gauge[20] for simpler results. The string

theory low energy action in conformal gauge is given by [20]

S =
1

4πα′

∫
d2σGµν∂αX

µ∂αXν (3.3)

The DFT action consists of an integration over the dual fields xa as well -

S =

∫
dxadx̃adx

µL(xa, x̃a, x
µ) (3.4)

It can be given as,

S = − 1

4π

∫
d2σ

(
ηαβ∂αX

i∂βX
jGij + εαβ∂αX

i∂βX
jBij

)
(3.5)

where,

ηαβ = diag(−1, 1), ε01 = −1, ∂α = (∂τ , ∂σ) (3.6)

X i = (Xa, Xµ) Xa ∼ Xa + 2π, i = 0, . . . , D − 1 (3.7)

The matrices for Gij, Bij span over both compactified and non compactified

dimensions -

Gij =

 Ĝab 0

0 ηµν

 , Bij =

 B̂ab 0

0 0

 , GijGjk = δik

The fields do not simply retain the transformation properties of from string

theory. The reason is introduction of new coordinates. The spacetime is now

15
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expressed in doubled 2D dimensions, instead of D dimensions. The fields Gij,

Bij retain transformation properties of only D out of the 2D dimensions, de-

pending only the usual coordinates, or depending only on dual coordinates or a

mix of both. The sensible thing to demand is, the transformation of fields under

doubled coordinates. One can simply think of a generalised metric arising from

the simple combinations of Gij and Bij. One such simple combination is,

Eij = Gij +Bij =

 Êab 0

0 ηµν

 , with Êab = Ĝab + B̂ab (3.8)

But this combination fails to serve the desired transformation properties. A

generalised metric is needed, which preserves the usual transformation proper-

ties of string theory fields. The choice of a generalised metric is not obvious.

3.2.2 Metric and Lie derivatives

The generalised metric in DFT is given as, HMN M,N... = 1. =, 2, ..., 2D,

which combines the metric tensor and Kalb-Ramond fields as follows (D is the

number of dimensions)

H =

 G−BG−1B BG−1

−G−1B G−1

 =

 1 B

0 1


 G 0

0 G−1


 1 0

−B 1


(3.9)

The Double Field Theory has two local symmetries from string theory -

• Diffeomorphisms, parameterised by ξi ∈ T (M), or the tangent bundles in

the manifoldM
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• Gauge transformations of bij, which are given by one forms, ξ̃i ∈ T ∗(M)

or dual to the tangent bundles inM

In an attempt to formulate a generalised geometry, both the vectors and the

one form are treated at the same footing, so that it makes sense to add them

to an object living in a space which is the sum of a tangent and its dual. This

results in,

ξ + ξ̃ ∈ T (M)⊕ T ∗(M) (3.10)

The generalised metric is an O(D,D) non degenerate, as each of its components

is non degenerate. An O(D,D) invariant metric, η is used to raise and lower

O(D,D) indices. It is defined with constant off-diagonal indices-

η =

 0 1

1 0


It can be easily checked that ηHη = H−1. Th identify it as a metric, the

following index convention is used -

H ↔ HMN

H−1 ↔ HMN

where the O(D,D) indices M,N run over 2D values.
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3.2.3 Strong Constraint

Since the metric now is a 2D × 2D matrix, constructed out of two D × D

matrices, constraints need to be imposed to make the degrees of freedom con-

sistent. The constraint is called "Strong Constraint" or "Section Condition".

In string theory, any given state must satisfy a condition- all states must be

annihilated by L0− L̃0 operator, where L0 + L̃0 is the canonical Hamiltonian of

string theory. The Hamiltonian constraint sets it to zero, and thus, one arrives

at L0 = L̃0. This condition, also called the level matching condition, gives rise

to equal contributions to mass from left and right moving modes. The level

matching condition can be reformulated in Double field theory to obtain the

strong constraint mentioned above. Strong constraint is expressed as

∂A∂
A = 0 (3.11)

The third and last field of mass-less mode of string theory, the scalar dilaton φ.

The dilaton is by demand, invariant under both gauge transformations and dif-

feomorphisms on both standard coordinates and dual coordinates. There is no

linear relation of dilaton that satisfies the property for both set of coordinates.

Non- linearly, the dilaton is generalised as the double field dilaton, d and can

be expressed as

e−2d = e−2φ√−g (3.12)

It can also be understood in the following manner. The coordinates on a

doubled spacetime do not represent the actual physical points in a onetoone

18
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correspondence. The reason for this is a symmetry, called coordinate gauge

symmetry observed on such spacetimes. A physical point should be onetoone

identified with a gauge orbit in a coordinate spacetime. The symmetry can

be represented as xA ∼ xA + φ∂Aξ for any two arbitrary DFT fields φ and

xi. This symmetry also holds for the diffeomorphism parameters V A ∼ V A +

φ∂Aξ. It implies there are more than one transformation rules for the same

diffeomorphism[17]. The Coordinate gauge symmetry is also an equivalence to

the strong constraint in DFT.

3.2.4 Deriving the metric in DFT

The generalised DFT metric is made up of four components, as shown in (3.9).

The components are generalised objects, arising from mass-less string theory

sector. In it’s most general form, the metric is given by[17],

HAB =

 Hµν −HµσBσλ + Y µ
i X

i
λ − Ȳ

µ
ı̄ X̄

ı̄
λ

BκρH
ρν +X i

κY
ν
i − X̄ ı̄

κȲ
ν
ı̄ Kκλ −BκρH

ρσBσλ + 2X i
(κBλ)ρY

ρ
i − 2X̄ ı̄

(κBλ)ρȲ
ρ
ı̄


(3.13)

This further can be formulated to be,

HAB =

 1 0

B 1


 H Yi

(
X i
)T − Ȳi (X̄ i

)T
X i (Yi)

T − X̄ i
(
Ȳi
)T

K


 1 −B

0 1


(3.14)
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Where, the kernels of H and K are spanned by
{
X i
µ, X̄

i
ν

}
and

{
Y µ
j , Ȳ

ν
j

}
re-

spectively.

HµνX i
ν = 0, HµνX̄ ı̄

ν = 0; KµνY
ν
j = 0, KµνȲ

ν
̄ = 0

H,K and Z are porposed solutions to the generalised metric H under certain

constraints designated by the theory. They generate the metric in (3.9).

3.2.5 Buscher Rules

Buscher rules describe how the metric g and other fields change under the

application of T -duality. When the theory has a U(1) isometry, the coordinates

can be split into isometric and non isometric. It is possible to then rewrite the

theory in a form invariant to the isometry, by gauging the symmetry. following

from the symmetry property, the theory now appears in its dual form, and the

transformation can be effectively shown by Buscher Rules. They are used to

perform along a given direction. They are given in terms of transformations

of the metric. These rules are derived using the equation of motion and the

Bianchi identities. Let us consider a spacetime metric gij and a two form bij.

for the kth position along a diagonal matrix[1],

gkk → 1
gkk
, gki → bki

gkk
, gij → gij − gkigkj−bkibkj

gkk

bki → gki
gkk
, bij → bij − gkibkj−bkigkj

gkk

20
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3.3 Deriving the geometry

3.3.1 Connection and Riemann Tensor

The generalised metric, made up of Bµν field, and the metric gµν is given by,

HMN =


gij −gikbkl

bikg
kj gij − bikgklbij

 (3.15)

where the capital indices run over 2D fundamental O(D,D)indices, and

small indices overD spacetime dimensions. HMN satisfies

HMKHKN = δMN , HKN = ηMKηNLHKL, (3.16)

The connection and rest of DFT geometry is derived starting from defining

covariant derivatives. Generalised O(D,D) tensors transform under diffeomor-

phisms and gauge symmetries via generalised Lie derivatives. Generalised Lie

derivative is defined on a vector as[12],

δξA
M = L̂ξAM ≡ ξN∂NA

M +
(
∂MξN − ∂NξM

)
AN

δξAM = L̂ξAM ≡ ξN∂NAM +
(
∂Mξ

N − ∂NξM
)
AN (3.17)

On defining a covariant derivative, the demand is that covariant derivative
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transforms as a generalised tensor.

∇MAN ≡ ∂MAN − ΓKMNAK (3.18)

The second term consists the connection Γ, which is not generalised tensor.

The Riemann tensor for DFT is defined as

[∇M ,∇N ]AK = −RMNK
LAL − TMN

L∇LAK (3.19)

Where,

RMNK
L = ∂MΓLNK − ∂NΓLMK + ΓLMQΓQNK − ΓLNQΓQMK

TKMN = 2ΓK[MN ]

RMNK
L is anti symmetric in the last two indices. Under generalised lie deriva-

tives, the Riemann tensor R or the torsion, T defined above do not transform

as a tensor. Hence, a generalised Riemann tensor is defined to suit the trans-

formation properties. The generalised Riemann tensor is,

RMNKL ≡ RMNKL +RKLMN + ΓQMNΓQKL (3.20)

Constraints on the connection

To derive the connection in terms of physical fields, it should satisfy the follow-

ing constraints[12]

• ηMN and HMN are covariantly constant.

• The partial derivatives in definition of Lie derivative should be replaced

with covariant derivative.
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• The generalised Lie derivatives should stay the same under a change from

∂ → ∇.

These constraints result in symmetry properties on the connections. For ex-

ample, the covariant constancy makes the connection anti symmetric in its last

two indices, and also imposes Bianchi identities. To understand the implication

of these constraints, we digress to look at projectors[13]. Since the relation

HηH = η−1 ⇔ (Hη)2 = (ηH)2 = 1

holds, it can be used to define

P =
1

2
(1−Hη), P̄ =

1

2
(1+Hη), P T =

1

2
(1−ηH) P̄ T =

1

2
(1+ηH)

(3.21)

Projectors make analysis of generalised geometry easier. They are regarded

very fundamental objects in Double Field Theory. Expressing the metric in

terms of the projectors.

PN
M =

1

2

(
δNM −HN

M

)
, P̄N

M =
1

2

(
δNM +HN

M

)
(3.22)

Projectors satisfy a usual projector’s properties-

P∂AP = P∂APP̄ ∂APP = P̄ ∂APP

P 2 = P P̄ = 1− P

Projectors allow us to project onto a ‘left-handed’ or ‘right-handed’ sub-

space[10]. This is the analogue of the factorized tangent space group GL(D)×
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GL(D) in the frame formulation, and equivalence of the two formalisms then

requires the projectors to be covariantly constant. Else, Since both ηandH are

covariantly constant, so are the projectors. Using projectors, the connection

can be written as,

ΓMNK = ΓMNK + ΓMNK̄ + ΓMN̄K + ΓMN̄K̄

+ ΓM̄NK + ΓM̄NK̄ + ΓM̄N̄K + ΓM̄N̄K̄ (3.23)

Using symmetries of connection, and properties of projectors, the exactly de-

termined part of connection in terms of projection operators is,

Γ̂MNK = −2 (P∂MP )[NK] − 2
(
P̄[NPP̄K

]Q − P P
[NP

Q
K]

)
∂PPQM (3.24)

+
4

D − 1

(
PM [NP

Q
K] + P̄M [N P̄

Q
K]

)(
∂Qd+

(
P∂PP

)
[PQ]

)
(3.25)

and in terms of physical fields, it is,

Γ̂MNK =
1

2
HKQ∂MHQ

N +
1

2

(
δP[NH

Q
K] +HP

[Nδ
Q
K]

)
∂PHQM (3.26)

+
2

D − 1

(
ηM [Nδ

Q
K] +HM [NHQ

K]

)(
∂Qd+

1

4
HPM∂MHPQ

)
(3.27)

The constraints respectively result in a connection following usual proper-

ties - it is anti-symmetric in last two indices, obeys Bianchi identities, can be

expressed in terms of, and the value of trace of the connection[12]. The gen-

eralised Riemann tensor is not fully determined, owing to the fact that the
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connection is not fully determined. Upon contracting the Riemann tensor to

obtain the Ricci tensor, it becomes evident that even though the former is not

determined, the Ricci tensor is

RMN
MN = ηMKηNLRMNKL = RMN

MN +RM̄N̄
M̄N̄

which can be further solved to obtain,

R ≡ RMN
MN = −RM̄N̄

M̄N̄

Where R is called the scalar curvature. Using the expression for generalised

Riemann tensor expressed in terms of physical fields, the expression for Ricci

scalar takes the form[11]

R ≡ 4HMN∂M∂Nd− ∂M∂NHMN

− 4HMN∂Md∂Nd+ 4∂MHMN∂Nd

+
1

8
HMN∂MHKL∂NHKL −

1

2
HMN∂MHKL∂KHNL (3.28)

3.3.2 Obtaining the Action

The action in DFT is defined as,

S =

∫
dxdx̃e−2dR (3.29)

It is gauge invariant in nature, and under a variation of metric, it varies as,

δS =

∫
dxdx̃e−2dδHMNKMN
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Where

KMN ≡
1

8
∂MHKL∂NHKL −

1

4
(∂L − 2 (∂Ld))

(
HLK∂KHMN

)
+ 2∂M∂Nd

− 1

2
∂(MHKL∂LHN)K +

1

2
(∂L − 2 (∂Ld))

(
HKL∂(MHN)K +HK

(M∂KHL
N)

)
The field equation is,

RMN = 0

and

RMN ≡
1

4

(
δM

P −HM
P
)
KPQ

(
δQN +HQ

N

)
+

1

4

(
δM

P +HP
M

)
KPQ

(
δQN −HQ

N

)
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Chapter Four

Details of Newton Cartan gravity

4.1 The geometry of Newton Cartan

The task of deriving the differential geometry formulation starts with the clas-

sical equation of motion of a particle[2]. For a classical particle,

ẍi(t) +
∂φ(x)

∂xi
= 0 (4.1)

where xi(t) are spatial coordinates. Under a four dimensional spacetime, this

can be rewritten as,

d2xµ

dt2
+ Γµνρ

dxν

dt

dxρ

dt
= 0 (4.2)

where xµ runs over (t, xi). This kind of connection can be defined for non

degenerate metrics, like in General Relativity. But, NC geometry does not have

a metric that can incorporate both space and time components, because of its

non relativistic nature. As one approaches the limit c → ∞, the Minkowski

27



Details of Newton Cartan gravity

metric becomes

ηµν/c
2 =

 −1 0

0 13/c
2

 , ηµν =

 −1/c2 0

0 13

 (4.3)

gives us two non-invertible or degenerate metrics. Thus, the single spacetime

metric is split into a covariant temporal and contravariant spatial component,

referred to as τµν and hµν respectively[7]. Since the metric τµν has three zero

components, it can be rewritten simply as a vector, such that τµν = τµτν. This

is called the time-like vielbein. The two metrics satisfy orthogonality condition,

i.e hµντν = 0. Due to lack of a Lorentz spacetime metric, the indices cannot

be simply raised or lowered. Thus, the inverse spatial metric hµν, and inverse

temporal metric τ ν are introduced, with the following properties -

hµνhνp = δµρ − τµτρ, τ ντµ = δνµ, hµντν = hµντ
ν = 0 (4.4)

At this point, it is useful to define h̄ij, v̂i, and Φ̃ as

h̄ij ≡ hij−τimj−τjmi, v̂i ≡ τ i−hijmj, Φ̃ ≡ −τ imi+
1

2
hijmimj (4.5)

This gives us the metric as,

gµν =

 hij −v̂i

−v̂j 2Φ̃

 (4.6)

4.1.1 Covariant Derivative and Connections

The geodesic equations of NC gravity correspond to the classical equation of

motion for particles [18]. To derive the geometry, one can start from defining
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the covariant derivatives. A covariant derivative acting on a tensor, Aν
ρ is,

DµA
v
ρ = ∂µA

v
ρ + ΓvσµA

σ
ρ − ΓσρµA

v
σ (4.7)

Like in the case of Riemannian geometry, a reasonable demand is, the deriva-

tive should exhibit metric compatibility[21] which implies,

∇ph
µν = 0, ∇ρτµ = 0. (4.8)

But since the manifold is not lorentzian, it is not possible to attain both metric

compatibility and a fully torsion-less derivative. The derivative is defined up to

a two form we call Fµν[21]. To determine the derivative uniquely, one demands

that the torsion is purely temporal.

The Newton Cartan gravity aims at a causal non relativistic geometry. New-

ton causality can be incorporated by a constraint on the timelike vielbein. The

time difference between two events can be written as,

T =

∫
C

dxµτµ (4.9)

If the time difference is independent of the path C, it can be identified as

absolute time. This can be attained if the curl of timelike vielbein is set to

vanish. This is referred to as ’zero torsion condition’. A necessary and sufficient

condition for Newtonian causality comes from understanding the hypersurface

orthogonality condition[3]. It is based on Frobenius′ Condition which can be

written as, τ ∧ dτ=0.

This condition ensures that there are no points on the spacetime which can
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Figure 4.1 Folliation of spacetime [22]

be reached with spacelike lines. Thus, the required causality is preserved[9].

τ satisfies hypersurface orthogonality if there exists a foliation of spacetime

into hypersurfaces of equal-time slices such that τ is orthogonal to all such

hypersurfaces. The condition takes the form

τ[µ∂ντρ] = 0

where square brackets denote anti-symmetry. This is also known as the twist-

less torsion or temporal torsion Newton Cartan geometry. Torsion Newton

Cartan gravity is defined using the one form τµ, the spatial symmetric tensor

hµν and the U(1) connection term mµ. The U(1) invariant term corresponds

to mass conservation laws in Galilean theories[14].

Newton Cartan geometry can also be obtained by Null reduction of a one

higher dimension theory of General Relativity[4]. Consider the following general
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parametrisation in a d+ 1 dimensional spacetime, with metric g

ds2 = gijdx
idxj = 2τµdx

µ (du−mµdx
µ) + hµνdx

µdxν (4.10)

where u is the null direction. The rank of hµν is d− 1. This kind of parametri-

sation automatically reduces the manifold to a Newton Cartan manifold of d

dimensions. The field mµ is a U(1) term. NC is completely described by the

spatial metric hµν,temporal metric τµ, and U(1) gauge field mµ.

N.C.Geometry = LorentzSpacetime+NullReduction

Owing to this, the most general connection takes the form

Γσµν = τσ∂(µτν) +
1

2
hσρ (∂νhρµ + ∂µhρν − ∂ρhµν) + hσλKλ(µτν) (4.11)

for an arbitrary two from Kµν. The connection is uniquely determined after

gauging the Bargmann algebra[2]. The Bargmann algebra is a central extension

of the Galilean algebra, and is discussed in the following subtopic. It acquires

the form

Kµν = 2∂[µmν] (4.12)

The defined inverse of τν, vν can be thought of as analogous to velocity. This

implies that an acceleration could be defined as

aµ ≡ vvDvv
µ or simply, ar = v̂tFtr

Fµν can be thought of as a field strength tensor of a U(1) connection[15]. Since

the torsion must be temporal, as a condition prior agreed to, it can be conve-
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niently written as,

2Γµ[ρσ] = −2v̂µ∂[ρτσ] = −v̂µFρσ (4.13)

The fields in NC geometry obey the transformation rules under diffeomor-

phisms and Galilean symmetries, as boosts and a U(1) gauge transformation.

4.2 Bargmann algebra

The NC geometry is described using the central extension of Galilean algebra,

known as Bargmann algebra. The algebra is spanned by the usual generators,

Jij, Gi, H,M, andPj, This algebra can be expressed via the following commu-

tation relations -

[Jij, Jkl] = 4δ[i[kJl]j]

[Jij, Gk] = −2δk[iGj]

[Gi, Pj] = −δijM

[Jij, Pk] = −2δk[iPj]

[Gi, H] = −Pi

(4.14)

Where H is Hamiltonian, the generator of time translations, Pi is momentum,

the generator of linear translations, Jij is angular momentum, the generator of

rotations. M is the central charge, and corresponds to mass. A central charge

is an operator which commutes with all other operators of the alegbra. When

M → 0, this reduces to regular Galilean algebra. The gauging of Bargmann

algebra is done by first associating gauges fields with each of its generator.
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Figure 4.2 A pictorial representation of Bargmann spacetime and various condi-
tions imposed on them[9]

Upon imposing constraints on curvature of these gauge fields, and solving, one

obtains the fundamental fields of the gauge theory of Newton Gravity [18].

4.3 Generalised NC Metric

Now, inverse metric gµν can be dualised on the null isometric direction u. The

(3.9) is the standard DFT metric. For simplicity, B is taken to be absent.

This reduces the generalised metric to diag(gµν, gµν). The Newton Cartan

metric, derived in (4.6) can be inserted in the DFT metric. The NC metric

generalised in DFT parametrisation can be achieved as follows Following out

Buscher transformations[1] along the null direction.
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From [4] the generalised Newton Cartan metric can be given as given as,

(HNC)MN =



h̄ij 0 0 τi

0 2Φ̃ −v̂j 0

0 −v̂i hij 0

τj 0 0 0


(4.15)

Once this metric is achieved, this can be used with the DFT action to give

the equations of motion.
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Chapter Five

Action and Equations of Motion

We here describe the actions and equations of motions we observed for vari-

ous settings. We started out with exploring the NC geometry and used the

technique developed in DFT to arrive at the action. We can then either vary

the action with respect to all the fields, or write the equations of motion di-

rectly from DFT. Comparing both the processes, we observe that we do not

obtain all equations of motion by just varying the action. We here enlist the

results obtained for a general connection. A general connection can always be

split into a symmetric and an anti-symmetric component. Upon using such a

general connection to obtain the results, it can be proven that the the action

and equations of motion are devoid of a contribution from the symmetric part.

Thus, under a general connection, the action and equations of motion are co-

variant. After proving covariance, the general connection can be parameterised

for torsion, using the relation (4.12). The relations for acceleration in terms of

Fµν By setting the constraints for TNC, the action and equations of motion for

TNC are obtained. To obtain the Action and equations of motion for twistless
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torsion Newton Cartan, metric compatibility is used. It might a useful reminder

that both metric compatibility and fully determined covariant derivative do not

co-exist in TNC geometry, as previously explained. Torsion Newton Cartan is

characterised by the two form Fµν of the timelike vector τ .

F ≡ dτ (5.1)

5.1 Action and Equations of Motion for Torsional New-

ton Cartan

The action for torsional Newton Cartan is expressed in terms of the Field

strength tensor.

The action is

S =

∫
ddxe−2d(hmnRmn −

5

2
a2 − 2hmnDman)

The Equations of Motion are -

Equation of motion for the metric hµν
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8Rmn− 4aman−Dman− 3Dnam− 2h̄mnDpaqh
pq + 2v̂pDpanτm + 2DpDnv̂

pτm

+ 8apDnv̂
pτm + 2amDpv̂

pτm − 2h̄nrDpDqv̂
rhpqτm − 6aph̄nrDqv̂

rhpqτm

− 2v̂pDpamτn + 2DpDmv̂
pτn + 8apDmv̂

pτn − 2amDpv̂
pτn − 2h̄mrDpDpv̂

rhpqτn

− 6aph̄mrDqv̂
rhpqτn + 4v̂pDqDpv̂

qτmτn + 24apDqΦh
pqτmτn + 12Dpaqh

pqτmτnΦ

+ 32a2τmτnφ = 0

Equation of motion for the inverse metric hµν

4Dpaqh
mqhnp + 4apaqh

mqhnp + 2Dpaqh
mnhpq − 8Rpqh

mqhnp = 0

Equation of motion for the temporal one form τµ

Dmanh
mn +

a2

2
= 0

Equation of motion for Newton potential

Rmnv̂
nv̂m − 7

2
amv̂

nDnv̂
m − 2amDnΦh

mn − 4a2 − a2Φ = 0

Where Φ is the Newton Potential.

Equation of Motion

1

8
FmnFpqh

mphnq = 0 (5.2)
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5.2 Action and equations of motion for twistless torsion

Newton Cartan geometry.

Since the theory is derived from a reduction of GR, this action is the Null

Reduction of the Einstein Hilbert action in General Relativity. It has an ac-

celeration term a, which stands for geodesic acceleration and parametrises the

twistless torsion. This action does not give all equations of motion upon the

vairation. Ther results here are verified from [8].

S =

∫
ddxe−2d(hmnRmn +

a2

2
) (5.3)

The equations of motion are obtained directly from the results in DFT. Anal-

ogous to the Einstein’s Equation,

R(mn) + 2D(mDn)φ = htph̄tp(mDn)at +
aman

2
− a2Φτmτn (5.4)

Equation of motion for torsion,

D · a+ a2 = 2(a ·Dφ) (5.5)

Newton’s law modified with advection and mass.

D2Φ + 3(a ·DΦ) +m2
ΦΦ = ρκ (5.6)

Where, the Newton Potential Mass m2
Φ, extrinsic curvature tensor K and
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curvature density ρ are introduced as,

m2
Φ ≡ a2 + 4a ·Dφ

ρK ≡ KrsKtwhrthsw − v̂nDn (Krshrs)

Kmn ≡ −
1

2
Lv̂h̄mn = −1

2

[
v̂tDth̄mn + h̄mtDnv̂

t + h̄ntDmv̂
t − 4Φa(mτn)

]
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