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1 Introduction

In 1915 Einstein presented his theory of general relativity. Here, spacetime is dynamical and cur-
vature in spacetime causes gravity. In the same period of time physicists started understanding
the microscopic world better and better by formulating the theory of quantum mechanics. This
understanding then took a flight in the next 50 years, resulting in the standard model of particle
physics of which the last missing piece, the Higgs boson, was discovered experimentally in 2011. One
big open question, however, is how to combine Einstein’s theory of curved spacetime with the mi-
croscopic quantum mechanical world. Whereas the first normally describes massive and long-range
phenomena, the second generally describes phenomena on a small scale. In extreme situations, such
as in black holes, these two regimes meet. We then need a theory combining quantum mechanics
with general relativity: quantum gravity.

Before Einstein published his theory of general relativity , he started with a more modest theory:
special relativity. Inspired by Maxwell his theory on electromagnetism, Einstein postulated that
the speed of light is the same for all observers, regardless of their motion. One then gets a theory
that is invariant under Lorentz transformations (rotations and boosts). Whereas uniting general
relativity with quantum mechanics remains problematic, special relativity was incorporated with
quantum mechanics in quantum field theory. One can think of general relativity as a combination of
Newtonian gravity and special relativity, whereas quantum field theory combines special relativity
with quantum mechanics. The ultimate goal would be to have a theory encompassing gravity, special
relativity, and quantum mechanics. The idea of these three basic theories; quantum mechanics,
special relativity, and Newtonian gravity, that can be unified in different combinations, is visualized
by the Bronstein cube in Figure 1. This cube is of course a huge simplification of the idea it
represents: one cannot express all of modern theoretical physics in one picture, but it serves as
a nice way to visualize the different approaches.! The traditional way to quantum gravity is to
take this cube literally and try to quantize general relativity?. While many useful insights have
been found this way, one quickly realizes that arriving at a theory of quantum gravity is not as
straightforward as simply quantizing spacetime.

A more sophisticated approach is taken by string theory, which does not simply go from corner to
corner in the cube of Figure 1. We will treat string theory in detail in Section 3, where we will see
that a quantized field which can be associated to the spacetime metric, appears naturally. String
theory gives us a theory of quantum gravity [3], but it comes with its own limitations [2]. The
consistency of the theory requires the spacetime dimension to be D = 26 in bosonic string theory
and D = 10 or D = 11 in superstring theory. The extra dimensions can then be compactified to
arrive at our observed four-dimensional spacetime. This compactification can be done in many ways,
such that it is not (yet) possible to unambiguously arrive at a four-dimensional theory from the
original D-dimensional string theory. In this thesis, we will only focus on a perturbative approach
to string theory, but in strong coupling regimes, one needs a non-perturbative description. There
is no general way to describe string theory in a non-perturbative fashion. From QCD we know that
interesting effects such as quark confinement cannot be explained by a perturbative approach. One
would expect that to totally understand string theory, a non-perturbative description is needed [3].
These limitations are still a very active field of research.

!See [1] for a modern approach to the Bronstein cube.
2Here quantize means to use whatever quantization method is available. A review of the different methods can be
found in [2].
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Figure 1: The Bronstein cube, showing the possible combinations of the three regimes in physics
that we want to combine. Newtonian gravity is characterized by Newton’s constant G, quantum
mechanics by Planck’s constant 4, and special relativity by the inverse speed of light 1/¢. The figure
is taken from https://beyondspacetime.net/2013/09/29/live-blogging-butterfield-2/

One recent approach that might give some insight into these issues is to take a step back and look at
the Bronstein cube (Figure 1) again. Two corners of this cube, the one combining special relativity
and Newtonian gravity resulting in general relativity and the one combing quantum mechanics
and special relativity resulting in quantum field theory, are together responsible for almost all the
achievements in high energy physics in the twentieth century. Would taking a look at the third
corner: the one combining Newtonian gravity with quantum mechanics, lead to equally interesting
results?

When special relativistic effects are ignored, one can investigate how to combine quantum mechanics
and gravity into a theory of non-relativistic quantum gravity. It is possible to examine a dynamical
spacetime that is not Lorentz invariant, but has a classical Galilean invariance. This line of thought
was first followed by Elie Cartan in 1924 [4]. He described gravity as an emergent phenomenom from
curved spacetime in much the same way as Einstein did, but did this with an underlying Galilean
invariance instead of Lorentz invariance. The resulting theory gives an underlying geometrical
structure to Newtonian gravity called Newton-Cartan (NC) geometry.

In recent years there has been a renewed interest in Newton-Cartan geometry in the context of
string theory. This started with a paper by Gomis and Ooguri in 2000 [5], in which string theory is
described in an underlying NC geometry. The hope is that the absence of special relativistic effects,
such as gravitational waves, will lead to a better understanding of the problems of ordinary string
theory described above. It also turns out that a lot of the triumphs of general relativity do not rely
on special relativity. When Einstein published his theory of general relativity, he also presented
three tests on the theory. Namely the precision of the perihelion of Mercury’s orbit, deflection of
light by the sun, and gravitational redshift. Quickly after the publication of Einstein’s ideas, all
three of these were confirmed by experiments and general relativity continues to withstand these
tests to date [6]. It turns out that all three of these effects can also be explained by Newton-
Cartan geometry, as shown by Hansen et al. in [7]. They are thus manifestations of space-time
being dynamical and not of the absolutivity of the speed of light. Recently, it has been shown
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that more advanced results from general relativity also hold in NC geometry. These include the
Schwarzschild metric and the Friedmann-Lemaitre-Robertson—Walker spacetime [8]. Furthermore,
non-relativistic geometry and Newton-Cartan geometry also sees applications in condensed matter
physics, for example in describing the fractional quantum Hall effect [9]. Thus, NC gravity and NC
string theory might be interesting on their own and not just as an approximation to relativistic
quantum gravity and string theory.

Newton-Cartan geometry can be extended to include torsion [10, 11]. To find the most general non-
relativistic bosonic string we will examine the string in torsional Newton-Cartan (TNC) geometry.
We will find that the geodesic equation of the bosonic string only allows a special kind of torsion
called twistless torsion. In [12] it is argued that a conformal field theory where torsion is not twistless
violates causality.

As we will see in Section 3, the bosonic string is invariant under worldsheet reparametrizations. This
is called Weyl invariance and it is the main focus of this thesis. By demanding that the quantized
bosonic string is also Weyl invariant, one arrives at Einstein’s equation [3]

ERG,U,V - %TMIM (1)

RW_Z ct

where R, and R are the spacetime Ricci tensor and scalar respectively, G, is the spacetime
metric and T}, is the energy-momentum tensor on spacetime. The goal of this thesis is to examine
the consequences of Weyl invariance of the quantized bosonic string in NC geometry. This Weyl
invariance can be parametrized in so-called g-functions: functions that all have to be zero separately
for the theory to be Weyl invariant. In the Riemannian bosonic string, there are three such functions,
which we compute in Section 3 following the excellent review by Callan and Thorlacius [13]. In the
TNC case, there are six S-functions of which five were computed in [14]. In this thesis we will focus
on the last of these functions: the dilaton S-function. This function is more complicated to compute
than the other five because the worldsheet can no longer be taken as flat and one needs to go one
order in perturbation theory higher than for the other functions. We mostly follow [14] in that we
take the same Lagrangian and quantize it with the same background field quantization method.
Where [14] examined the Weyl invariance of the TNC bosonic string using an approach involving
operator product expansions, we will examine it through a perturbation theory with Feynman
diagrams, much in the same way as in the review by Callan and Thorlacius [13].

This thesis is organized as follows: In Section 3 we will start with a review of bosonic string theory
and the Weyl anomaly. Then, we will do an extensive calculation of the Weyl anomaly. For this
calculation and for the same calculation in TNC geometry, we will heavily rely on integral expressions
that we determine in Appendix B. In Section 4.1 we will review Newton-Cartan geometry. This is
followed by describing the bosonic string in this geometry, by performing a null-reduction on a one
dimensional higher Lorentz invariant spacetime. In the subsequent sections, we repeat the steps of
the Riemannian bosonic string in the TNC case. This leads to an expanded action in Section 6, from
which Feynman diagrams can be constructed. Using these Feynman diagrams one can determine all
the contributions to the Weyl anomaly. In this thesis we will focus on the contributions that were
not yet computed in [14]: the part parametrized by the dilaton S-function. Finally, the diagrams
contributing to this function are presented in Section 8. Their integral expressions are listed in
Appendix C and a general way of calculating these integrals is provided in Appendices B and C.
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2 The bosonic string

String theory starts with the radical assumption that the basic building blocks of the universe are not
zero-dimensional point particles, but one-dimensional strings. We will label the spacelike coordinate
of this string by o. Strings can be either open or closed, but in this thesis, we will only consider
closed strings. Furthermore, we will take o to be periodic, such that o € [0,27) and o(27) = o(0).
The time coordinate of the string is labeled by 7. Together o
and 7 sweep out a two-dimensional surface called the worldsheet
(see Figure 2). ¢ and 7 are the flat worldsheet coordinates. We \I<~f-_—17-77-—:—_-i"\
will refer to general worldsheet coordinates by &¢, where the \‘\

first few letters of the Greek alphabet are used for curved world- ‘
sheet coordinates. The surface swept out by ¢ and 7 can be de- 4

scribed by the two-dimensional worldsheet metric 7,4. This two- VA SO
dimensional worldsheet is embedded in a D-dimensional space- / =
time and we can define a map from the worldsheet to spacetime: “

XH(&). One can then define the action of the string as the area - \
of the swept out surface by using the pull-back of the Minkowski
metric,

AXH HXV X2 XxX.x
_ ( ) @)

Job = pga 9B M T\ X . x1 X7
Figure 2: The worldsheet swept
out by a closed string as it moves

o o - o | e - e in time. The Figure is taken from
5= T/d oV —detg = T/d U\/ X2XZ+(X-X)% David Tong’s lecture notes [3]
(3)

which is called the Nambu-Goto action for a relativistic string.
Here, T is the tension of the string and is usually written as

T—_ 1 (4)

2T

The action is given by

where o = 2, the squared string length I,. There is one symmetry in the Nambu-Goto action (3)
that is worth mentioning. If the worldsheet coordinates are changed by

§4 = £ +v%(¢), (5)

the action (3) does not change. This is called reparametrization invariance.

The square root in the Nambu-Goto action makes it difficult to quantize the theory. We can
eliminate this square root by using the worldsheet metric v, as a dynamical field in the action

1
/d20\/—77°"36aX“8/3X”GW. (6)

4o/

Sp=—

This is the Polyakov action. It is also invariant under reparametrizations (5). By using the equations
of motion found by variating this action, one can eliminate the worldsheet metric from Equation (6)
and recover the Nambu-Goto action (3). Hence, both actions are physically the same; by adding %
we have created a redundancy in the description of the theory: a gauge symmetry. This symmetry
manifests itself by considering local changes of scale in the worldsheet metric

Yab — ef(é)’}’ab- (7)
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The change in the worldsheet metric under this transformation is

6Yab = —0f (&) Vab- (8)

The Polyakov action (6) is invariant under the transformation (8). This symmetry is called Weyl
invariance and will be the main study of this thesis. We will make use of this symmetry by choosing
a gauge: we use the redundant degrees of freedom to make the theory easier to describe. We will
then find that the theory is no longer invariant under Weyl transformations (8) after quantization.
This phenomenon where a classical symmetry fails to hold at the quantum level is called an anomaly.
The Weyl anomaly in bosonic string theory is related to the appearance of negative norm states,
called ghosts [3]. A theory with negative norm states is a big problem as it causes states with a
negative probability, which is unphysical. Put differently, a theory with negative norm states is no
longer unitary. To avoid all of this, we want the theory to retain Weyl invariance at the quantum
level. This can be done by putting restrictions on the background fields of the theory. For the
Polyakov action (6), the calculation is relatively simple. Including the Faddeev-Popov ghosts (see
David Tong’s lecture notes [3]) leads to the restriction D = 26. Quantizing the Polyakov string and
setting the contribution to the Weyl anomaly to zero, gives a leading order requirement that [3]

O/R,uu =0, (9)

where R, is the Ricci tensor of the spacetime metric G,,. This tells us spacetime should be
Ricci flat; it should obey the Einstein vacuum equations. Accordingly, quantizing string theory and
demanding consistency of Weyl symmetry gives us the equations of gravity that we are so familiar
with: this is a great result!

This is not all however, Equation (9) is only the leading order contribution and there are infinitely
more terms in an o power series. And what about matter? The normal Einstein equation does
not have zero on the right-hand side, but the energy-momentum tensor. To get a spacetime with
matter we need to add matter to our string action.

In a quantum field theory, renormalization brings in all terms with the same dimension as Sp.
We can now add terms to the Polyakov action that are both reparametrization invariant and have
worldsheet dimension two, of which two such terms exist®. The first involves the antisymmetric
Kalb-Ramond field B, and is given by

1
4o/

Sas = / d*€e0, X" 0y X" By, (10)

where € is the Levi-Civita symbol. The second term involves the dilaton scalar field ¢(X),

Sp =4 [ PEVRO(X), (11)

Note that Sag is Weyl invariant, but Sp is not. As we will see later, o’ is the loop counting
parameter. It then immediately follows that Sp will enter at the first loop order of Sp and Sag.
The Weyl anomaly will thus receive contributions from the tree level of Sp and from the loop level
of Sp and S4g5. This also means that for the first-order to Sp, we need second order connections

30ne could also add a dimension zero term involving the Tachyon, but as we will work in dimensional regularization,
this term will not show up since it only contains quadratic divergences. Dimensional regularization only produces
logarithmic divergences and therefore the Tachyon term can be set to zero at the start and be neglected[15].
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coming from Sp and S4g. Setting the total contribution to zero for each order of o/, would cancel the
Weyl anomaly. This gives conditions on the the coupling functions G, B, and ¢ which provide
equations of motion that the coupling functions should obey for the Weyl anomaly to cancel.

We have now encountered the three massless, first excited states of bosonic string theory[3], but
what about higher excited states? These have an associated vertex operator of worldsheet dimension
greater than 2. Terms like this can always be generated by redefining the dimension 2 vertex
operators of the metric, the Kalb-Ramond field and the dilaton [15], such that these higher excited
states can be ignored.

It is convenient to examine the bosonic string in the conformal gauge. Using reparametrization
invariance (5), we can choose the two degrees of freedom in £* such that two of the three degrees
of freedom of the worldsheet metric are removed,

Yab = 2ef(g)(sab- (12)

This is called the conformal gauge. Note that the worldsheet metric is now completely determined
by the factor f(£). The line element of the worldsheet can be written in the following form by using
complex coordinates (z, ),

ds® = 2¢f dzdz. (13)

=< (1 5)- (14)

Then the worldsheet Ricci scalar in the conformal gauge can be written as
VYR, = —20.0:f. (15)
Furthermore the covariant derivative on a vector also takes a simple form,
Vsv® = 0507,
V.,v*° = 0,v° + 9, fv*®.

We will now derive some results for the quantum bosonic string that will be of use later on. Consider
a general classical action A[X]. The generating functional can then be written as

Z[] = / DXe AKX
e~Whi

The metric then takes the form

(16)

(17)

Performing the path integral over the fields X* gives an effective action W[v]. This effective action
should be invariant under worldsheet reparametrizations (5). That is

oW
2 a,b b, ay _
/d § g (V0! + V0% = 0. (18)
In the conformal gauge we can use Equation (16) to write this as
oW W _. . oW .
2 2,2 Z,Z2 z 02 —
/d 5[757sz v VI = G (Va4 Vi )| =o. (19)

By partial integration and the fact that this should hold for any of the arbitrary functions v* and

v?, we find that
1 oW 1 oW
V(LW _ge( LW 20
(ﬁ 5f) <mw> (20)

For the antiholomorphic z we find a similar equation.
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3 The Weyl anomaly in Riemannian geometry

In this section we determine the S-functions characterizing the Weyl anomaly in the bosonic string
on a Riemannian manifold. To this end we closely follow the TASI lecture notes of Callan and
Thorlacius[13] and try to reproduce their results. While Callan and Thorlacius skip over some of
the more complicated details in calculating Feynman diagrams, here and in Appendix B these are
treated in detail.

3.1 The background field quantization

All three of the coupling functions G, (X), By (X) and ¢(X) transform covariantly under general
spacetime coordinate transformations. We want to choose a perturbative expansion where this
spacetime symmetry remains manifest. This can be done by using the covariant background field
expansion as in [13, 16]. We separate the fields in a background part and a quantum part,

X&) = X§(§) + V(). (21)

Now the path integral can be performed over the quantum fields Y# in (17). Since this is a linear
coordination transformation the Jacobian does not change.

The quantum fields Y#(€) are defined as a coordinate difference between the full fields X*(¢) and
the background fields X{/(¢). Therefore they do not transform as a vector under general coordinate
transformations. To keep Lorentz invariance explicit we need to replace Y* with a spacetime vector
in the path integral. A natural choice for this is the tangent vector to the spacetime geodesic A\*(s)
that connects X} with X} + Y*. The affine parameter s can be chosen such that M (0) = X}'(€)
and M (1) = X} (&) + Y#(€). We then define Y# = M(0), which is the tangent vector of A“(s) at
X}'. We can now use the geodesic equation for \(s) [17]

A2\ dx? dx°
e 4 At
ds? t o ds ds

=0 (22)
and its derivatives to expand M (s) around s = 0 [13],

1 1 1
M(s) = X&) +YHs — §r/pﬁ,wws? - év;rgawwws?’ - ﬁv;vgrgYPYUYTws‘*. (23)
Here the covariant derivative V' only works on the lower indices of the connection. At s =1
Equation (23) defines the quantum field Y# as a power series of the new covariant field Y#. If
we would have done this derivation with Y# as the original field, the expansion (23) tells us that
I'he = 0 and v’(aj...vgﬂrgzgl) = 0. Because of this, the coordinates Y* are called Riemann normal

coordinates. In these coordinates the Riemann tensor simplifies to

R:,,, = 0,TY, — 0,TL,. (24)

vop

One can then derive the following simplification in the Riemann normal coordinate system [13, 18],

LR, + R, (25)

aI/F‘L,écr = 3 ovp
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In the normal coordinate system we can expand an arbitrary tensor as

o0
Tpon X0 +Y) =Y %(a,,l...ayme,,,un (Xo)) Y.y (26)
m=0
This expression can be covariantized by writing the partial derivatives as covariant derivatives minus
connection terms. In the Riemann normal coordinate system any derivatives of the connection can
be written in terms of the Riemann curvature tensor using Equation (25) and I = 0. Following
[18] we can expand a rank (0, 2) tensor to second-order in Y#. With every order Y we get the same
number of spacetime derivatives. As in general relativity, we will only consider contributions up to
second-order in spacetime derivatives on the geometric functions.

) 1 1 1
T(Xo + V) = T (X0) + V, T (X0) Y7 + [V,,VUTW — SR T = SR T | Y7YPL (27)

This expansion was done in the normal coordinate system, but since it is completely covariant it
is valid in any coordinate system. This expression can now be used to expand the metric and
the Kalb-Ramond field to second-order. Since the covariant derivative is metric compatible, the
expansion of the spacetime metric is particularly simple.

~ 1
Ghur(Xo +Y) = G (X0) + 5 Rypon VY. (28)

We also want to expand 9, X" = 9,(X} 4+ Y*) and to achieve this we take the 9, derivative of
Equation (23). This gives

- 1
Do (XH + Y1) = 0, X5 + Vo Y + §R“WaaX@YPYC’. (29)

Any higher-order terms only involve three or more spacetime derivatives on the metric, which we
do not treat here. We can now expand the Polyakov action in the Riemann normal coordinates Y*
to second-order in spacetime derivatives:

1
4o/

Sp = / d*¢\ /P [aaxgaﬁngW(XU) 4 2G, 00 XUV 3YY + 0a XL 05 XY Ryupor Y Y7

4 1
+ G VaY'VsY" + 2 Ry Oa XE VY YPY 7 + gRWVvawvgwwya]. (30)

If we choose our background fields X/} to obey the classical equations of motions, then the linear
term in Y# in the above expansion can be set to zero. The term involving G, (Xo)VoY#VgY" is
the kinetic term for the Y* fields. It is, however, not diagonal for a general spacetime metric, and
thus the propagator cannot be determined straight away. To get around this problem we introduce
a vielbein efm with which we can refer vectors to a local Euclidean frame: Y = eL(XO)Y“. Using
this vielbein we can write the spacetime metric as

G (Xo) = €},(Xo)el,(Xo)di;- (31)

The kinetic term is now diagonal in the local Euclidean frame coordinates,
G (X0) VoYV Y'Y = (VoY ){(VpY) 65 (32)
and the covariant derivative} now involves a spin connection waj: (Va)i =0,Y"' + wffaaXé‘ YJ. The
combination w9, X} = A (Xo) can be seen as a gauge potential of the SO(D — 1,1) general



3 THE WEYL ANOMALY IN RIEMANNIAN GEOMETRY 9

coordinate invariance in spacetime. Any physical results should not depend on this gauge potential.
We do break the general coordinate invariance by defining the propagator for the Y’ fields, but in
the end all insertions of the gauge potential A7 have to combine to give gauge covariant objects.
We now change variables in the path integral to the local Euclidean frame coordinates Y. The path
integral measure is spacetime coordinate invariant, such that we are free to do this. In practice this
just replaces any Greek indices p, v, ... on the quantum fields to Latin indices ¢, j, .... Since all these
indices are contracted, each resulting vielbein has a corresponding inverse vielbein and nothing else
changes.

The action involving the antisymmetric Kalb-Ramond field (10) can also be expanded in Riemann
normal coordinates. It reads

Sas[Xo+ Y] = / d*¢e’ [aaxg‘abngW + 2V Y 0, X By + 0. X500 XE (VB )Y

4
+ Vo YEVYY B,y + 20, X5V Y (V2B )Y

1
+ 50 XEOXGY YN (Y, VB + Ry, B + R(;A,,BW)] . (33)
We can once again change from general coordinates Y* to local Euclidean frame coordinates Y*.
Since all of these indices contract, the corresponding vielbeins cancel and we can rewrite (33) with
local Euclidean frame indices on all the quantum fields Y. We can rewrite this into a U(1)-invariant
form by introducing the field strength H = dB,

1

Sas[Xo+Y] = O(< Y?)+ 4

1 o1 o
— / d2§€ab [HmjﬁaX{beYzYJ+§V¢HWJ-8QX6‘81,X6’Y”YJ+

Hij YV, Y9 VbYk] .
4o

(34)
Here we have only written down the > ) that appear in the diagrams we will cover.

Since the dilaton is a scalar in spacetime, expanding its action is simple,

Sp[Xo+Y] = ;/dﬁﬁ(Rm(Xo) + R, V¢(Xo)Y" + %vaivjqb(xg)yiyj) +0O(Y3). (35)

3.2 Calculation of the Weyl anomaly

Classically the actions Sp and Sg are invariant under a change in the metric §7% = —fy®. We
will see that this no longer holds at the quantum level. To find the quantum expectation value of

the Weyl anomaly we write
58 _ ab 58 _ ﬁ a
(57) = (" am) =~ o), )

We see that the Weyl anomaly manifests itself in the trace of the energy-momentum tensor. On the
classical level T, is traceless, but on the quantum level this is no longer the case. We can make an
ansatz for how the trace of the energy-momentum tensor should look like by noting that it should
have the following criteria [15]:

¢ Worldsheet dimension 2

e Spacetime dimension 0
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Scalar under worldsheet diffeomorphisms

Invariant under spacetime diffeomorphisms

o U(1)p invariant

Local in X and polynomial in derivatives of Xg

Invariant under constant shifts in ¢

The trace of Ty can then be parametrized by three unknown functions?

T = QX4 OhXE (85, (X0 + B (X0)e®) + B%(Xo) R, (37)

BW, L and (% have the same structure around them as G, By and ¢ have in their respective
actions and therefore get the suggestive label. These [-functions are related but not equal to
the familiar S-functions from renormalization group theory. We will, however, not focus on the
renormalization group and simply view them as functions to be determined. See, for example, the
review by Callan and Thorlacius [13] for a precise treatment of this relation to the renormalization
group. These B functions can now be determined by calculating contributions to 7'¢ and grouping
these in ﬁm,, » and (?. Each B-function is then put to zero for each order of o, providing us with
consistency equatlons on the fields G\, By, and ¢.

In the conformal gauge the trace of the energy-momentum tensor takes the form 7¢ = 27", _. The
energy-momentum conservation Equation (20) can be written as

VA(Ts,) + V{(T,.) = 0. (38)
The Fourier transform of this results in

g+ (Ty-) + ¢ (T4 ) = 0. (39)

We can then find the contribution of the Weyl anomaly to the trace of the energy-momentum tensor,
(T4—), by considering (T’ 1) and linking the two through energy-momentum conservation (39).

3.3 The symmetric and anti-symmetric g-functions

The contribution to (T'y1) from Sp to first-order can be computed by inserting (7' ;) in the first-
order diagram coming from the expanded Polyakov action (30). The energy-momentum tensor in
the conformal gauge is given by Ty, = (V,Y)(VY)?d;5, where the covariant derivative has a piece
involving the spin connection. Any term involving the spin connection would have to combine into a
curvature tensor to form a covariant result. However, this would give a contribution that is fourth-
order in spacetime derivatives as the one-loop diagram coming from Sp already has a Riemann
tensor. This one-loop diagram with the energy-momentum insertion is shown in Figure 3. The
contribution of this diagram is

d*l =1y (L + CI+
ot 2(l+¢q

dilH(H +q+)

{R,uklua X,uaaXl/}( 5kl {RNVa XuaaXO}( )/ o1 l2(l+q)2

(40)

40ne could construct one more term: 5,‘f (Xo)'y“bvaabXé‘. However, since Xg is invariant under the addition of
any vector (Lorentz invariance), this term can be ignored. [15]
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l+q
0+Y'0,Y76;; Ryiju(X0)0, XL 0° XY Y7

l

Figure 3: One-loop contribution from Sp to (T4 _). The straight lines denote the quantum fields
Y, the wiggly lines denote the classical background fields X}'. The energy-momentum tensor T} _
is inserted at the cross with momentum ¢. The diagrams in this thesis are made with the help of
the TikZ-Feynman LaTeX package [19].

€ H ;0. X0 Y'YV
l+p

0,Y10, Y5,

l
€U H 110 XY Y FY!

Figure 4

Here {} denotes the Fourier transform. Since we will not use these terms that need to be Fourier
transformed, we leave them like this until we transform back to position space at the end of the
calculation. This integral can be solved using the integrals in Appendix B. We then find the following
expression for it
lq

- Zq%{R;waanaan}(Q)7 (41)
where we have used that ¢> = 2¢,¢_. The contribution from this diagram to (T'y_) can now be
determined through the energy-momentum conservation (39). Once this has been done, we go back

to position space,
1

(T+—(8)) = 7 Ry (X0)0a X ()0 X5 (€)- (42)

As this term is proportional to %9, X/ 0, XY it contributes to ny in Equation (37). Similarly, we
can construct two terms from Sg that contribute to the Weyl anomaly at lowest order. These are
shown in diagrams 4 and 5.

For the diagram in Figure 4 we would need a three-point standard integral. So far we have failed to
find a standard integral for this, some links to the literature and possible approaches are discussed
in Appendix B.2.

Another first loop diagram from Sag (33) is given in Figure 5. Here, the momentum has been
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0+Y' 0, Y655 2eVH ;0. X 0, XYY

Figure 5: One of two contributions of S4g to (T_).

inserted in the same way as for the Sp diagram (Figure 3). Its contribution is

Lok UL (L +g4)
— —{V*H 0, X0, XY / . 43
AV HunduXg 0 X5} | o g (43)

The momentum loop is exactly the same as in Equation (40). We thus find the following contribution
to the anomaly,

1
(Ty_(¢)) = —ge“bkaWk(?aX(‘fBng. (44)

We now turn to the dilaton action (11). It is not Weyl invariant and it enters the calculations
at one order of o’ higher than contributions from Sp and Sag. The tree-level contribution of the
dilaton will then cancel the one-loop results that we found in the above treatment. For simplicity
we will take our worldsheet to be flat, the dilaton action would then disappear as it depends on
the worldsheet curvature R,. The energy-momentum tensor, however, is found by variating the
worldsheet metric. So even when we take our metric to be flat, v = 1%, there will still be some
contribution coming from variating the dilaton action.

p_ A 05D
ab \ﬁé’)’ab Yab="ab

where [, denotes the d’Alembertian on the worldsheet. The trace of this part of the energy-
momentum tensor is non-vanishing,

= 040pP — apl 10, (45)

TP, = 0,6(X). (46)

To couple this to our results of the previous section we need this trace in the background field X{f .
Equation (46) then becomes

0,¢(Xo) = OX{0,0(Xo) + 0, X} 0°X(§0,0,0(Xo). (47)
This can be rewritten using the equation of motion for X*, as we are on a flat worldsheet the

only relevant actions are Sp (6) and Sag (10). After variating these actions we contract with the
spacetime metric to find

1
OX) = T 0, X30"X§ + 5 Ho0a X0, XG e (48)
Inserting this into (47) we arrive at a spacetime covariant result,

0,6(Xo) = V. V,6(X0)du X5 0 XY + V’\qb(Xo)H,\W(Xo)a X0, XEe® (49)
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This now has the same form as the results of the previous section. Taking (49) together with the
results (42), (44) and Figure 4 we find for the trace of the energy-momentum tensor.

1 1
(T ) = 5 (B +2V,V06 + . )0 XEO" X — o (V Hn — 2V 0 H ) ) €0, X0 X5 (50)

The functions inside the brackets are the beta functions that we used to parametrize the Weyl
anomaly in equation (37). We used the dots to denote the unknown result coming from the diagram
of Figure 4 For the theory to be anomaly free we require each of them to vanish, namely

5 = ,uu +2V Vu¢ + - 07 (51)
D = VAH,WA — 2V ¢ H) 0 = 0. (52)

3.4 The dilaton g-function

As we saw in Equation (37), there is one more function to be found: the dilaton S-function. As
the dilaton enters one loop counting parameter o/ higher then the metric and the Kalb-Ramond
field we have to consider contributions up to O(a’) here, these come from the two-loop order of Sp
and Sag and the one-loop order of Sp. In our previous arguments we could take the worldsheet
to be flat, but to take into account the contribution coming from the dilaton action (35) itself we
need to take the worldsheet to be curved. A curved worldsheet brings in complications however,
but we can consider the following trick to circumvent these complications. We can always write a
two dimensional metric as a conformal scale factor times the flat metric, Y45 = g5 As we saw in
equation (36), Weyl invariance implies that the trace of the energy-momentum tensor is zero. At
the very least the first variation of the expectation value of the energy-momentum trace should be
zero. Evaluating this on a flat worldsheet gives

o _ 0Olog(2)

— T_.(0 . 53

57 o o/ a7 =+ On] (53)
The second term contains the trace of the energy-momentum tensor on a flat worldsheet, which
is zero if we demand the S-functions (51) and (52) to hold. By using Equation (36) to write the
variation of the action to f as the energy-momentum tensor we find

(T-+(0))ess,,

1 55 _g

0 R

—(T_4+(0 = T_.T_ 54
5f< +(0))ers,, o o (T 4T )s,, (54)
We will now attempt to find the dilaton S-function by considering the energy-momentum two-point
function and then we can use Equation (54) to get to the anomaly. There is one O(a’?) diagram
contributing to 4%, given in Figure 6. This diagram corresponds to the following loop integral

oy (L +q1)%1%
Tosl=0Tesle) =20 [ @i o (55)
Using integrals from Appendix B.1 we find that this is equal to
wD q3
(T (=) T4 (q)) = ——. (56)

6 q_
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l+q
0,.Y' 0, Y 0ij 0LYT0LY 56,4

l

Figure 6: O(a/°) contribution to 3%.

Using the momentum conservation equation (39) twice this becomes

D

(Th-(a)T4-(a)) = ~=d+a-- (57)

In position space the ¢? factor becomes the d’Alembertian of the delta function

wD

(T (T (0)) = ~"205(6). (58)
We now use Equation (54) to find
e T Oarsy| = =4 T4 ©T(0) (59)
af(e) Tt by T g T A e
Using Equation (58) to integrate (59) we find for the trace of the energy-momentum tensor,
D
(T (€))essy = 20 (60)

As we saw in Equation (15) the d’Alembertian of the scale factor can be written as the worldsheet
Ricci scalar, we then find for the contribution to the Weyl anomaly of Diagram 6

(T (€))ersy = ~ VTR (61)

This is the only O(a/?) contribution to the dilaton S-function. To set it to zero it appears that the
dimension of spacetime should be set to zero. This is not true however, as we have not taken the
ghost fields into account. As the ghost fields do not couple to the ordinary matter of the bosonic
string, we do not consider them here. If one does compute the contribution of the ghost fields to the
Weyl anomaly (a clear treatment of this is given in David Tong’s lecture notes [3]) a second term to
Equation (61) is found which puts the dimension of the spacetime to 26. Accordingly, consistency
of Weyl invariance at the quantum level gives us the critical dimension of bosonic string theory.

We now turn to O(a’) contributions to 4?. These come from the two-loop level of Sp and Sag
and the one-loop level of Sp. Let’s start with diagrams coming from Sp, in the expanded action
(30) there is one three-point vertex and one four-point vertex. Only the four-point vertex gives
contributions to 4. Two diagrams can be constructed with this vertex, they are given in Figure 7
and 8. The diagram in Figure 7 has the following contribution to the Weyl anomaly,

{R}d/ L (= p) n 4+(q—p)
ir pg/dlﬁ’(p—w;/d P

where we properly symmetrized the vertex to get the correct result. Note that there was a factor
of % coming from the four-point vertex a that the diagram has a symmetry factor of 24 associated

(62)
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q+p l+p
0+Y'10, Y75, 0,Y0,Y 55

q l

Figure 7: Two—loop contribution of Sp to B%. The vertex in the middle has an associated vertex

factor of {5 Rijlej Yk99Y"9,Y". Again p is the external momentum and ! and ¢ the loop momenta.

with it. It is straightforward to solve these two integrals by using the expressions in Appendix B.1.
After expanding for small e = 2 — n we find

4
(T4 () T4 (~p)) = o' R) 5+ O(0). (63)

Going through the same steps as in Equations (58) to (61) we find the contribution to the Weyl
anomaly of Figure 7 to be

(T () = %;ﬁRGV/YRw~ (64)

Note that both the worldsheet Ricci scalar, R, and the spacetime Ricci scalar, Rg appear in this
expression.

The second diagram coming from Sp is given in Figure 8. It is divergent so we will have to cancel
this divergence with a counterterm later. The loop integral is relatively easy and we quickly find
the following contribution

4

T @Trst-0) = 5 (R [y [a S0 — iy (65)
The 0(e) divergence coming from S in Equation (65) can be canceled by inserting a two-point
counterterm vertex in place of the vacuum loop in Figure 8. We will also encounter a convergence
in the H? proportional part of the Weyl anomaly, this can also be absorbed by the same counterterm.
We will thus first determine the two-loop diagrams coming from the expanded antisymmetric action
(33) before we turn to this counterterm.

Sag produces two diagrams that contribute to the o' level of the dilaton beta function. The first
is given in Figure 9. The vertices in this diagram have to be symmetrized to get the right result.
Each vertex has an additional factor of % associated to it. At first sight, this diagram is harder
to solve than what we saw before. However, by computing the worldsheet contractions first, some
of the denominators can be removed to simplify matters. There are four momentum terms in the
numerator coming from the worldsheet derivatives in the vertices. Each vertex also adds an epsilon
tensor to the equation, these can be written as

6abﬁcal — f(n)(,yad,ybc _ ,ya,c,ybd)‘ (66)

Here the dimension dependent function f(n) appears because the epsilon tensor is only defined
in two dimensions. By going to n = 2 — € dimensions through dimensional regularization some
regularization scheme needs to be added to this relation. Here we follow Metsaev and Tseytlin [20]
and set f(n) = 1 +ef1 + O(e?), where we keep fi arbitrary for now. Note that the O(e) term gives
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R Y Yk92Y9,Y!

l+p l+p

DY LY "6 ALY ™Y "6

l

Figure 8: Diagram constructed from fourth-order vertex term in Equation (30), note that it is
proportional to the divergent vacuum loop, which we parameterized by the function S. (259)

ab l m n
l+p € HlmnY 8aY 8bY q+p

0+Y'10, Y75, 0+Y'0,Y 75,5

€A Hpyr YPOY 105"

Figure 9: One of two contributions of Ssg to the o’ order of 3?. The loop momenta are [ and ¢, p
is the external momentum with which (7%, ) is inserted.
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a finite contribution when one encounters divergent results that are then subtracted. After writing
the contracting terms in the numerator in terms of the denominator powers we find the following
expression for the diagram in Figure 9,

{Hz}/dQ /dz li+pl2—li—217[)iq$(q t(flp)? [(l_q)Q(l2_2p2+<l+p)2

T+ (g +p)? = (1= 0)%) + P+ p)? - Pla+p)P+Pla+p)? — BU+p))], (67)

where H? = H;; H ik Each term in the square brackets cancels at least one denominator. To keep
the calculation clear we will split this integral in three parts. We denote the integral proportional
to the (I — ¢)?(..) term in the square brackets by J;. Note that the second and fourth term are
the same when we relabel [ and ¢, the same goes for the third and last term. We will denote the
integral resulting from the ¢2(I + p)? term by Jo and the integral resulting from the ¢%(¢ + p)? term
by J3. In Jy the (I — ¢)? term cancels the connecting propagator and these integrals are reduced to
products of one-loop integrals. Some of these have to be zero by dimensional analysis, we are left
with

2 2 .
" f(n){HQ}/dQ /d2 Lt p)sarla+p)+) [ 12 (; jgm;;(il_(g)? -’ = l)212112(P— q)>2
=3y 2 ;(IZD_Jpl );}335) b
(68)

with the scalar integrals I[1] and S as defined in Equations (251) and (255). The Jo integral can
be expressed in the so-called sunset integrals (Appendix B.3),

I+(I +p) +q+(q+p)
I = {HQ}/dQ/ e e e -

:{H2}877T*( S ad] = 2p4 s [Bay ] + P2 L[l g4 ),

with the I integrals expressed in Equation (281), (282) and (283). The final integral, J3, can be
expressed as

_ 2) 2 [ g2 l+l+p +q+(q +p)+
Js = I /d /d ¢*(l — q)*(q +p)? (70)
_ ( ){HQ}a TL(TL B 2) [ ]p - 2S)Sp+
T 36(n? — 1)p?

We can now take the results (68), (69) and (70) together to find the total contribution of the diagram
in Figure 9 to the Weyl anomaly. After performing the epsilon expansion and setting f(n) = 1— fie
we find

{H?}a'mp} (} 7T—3h

2
e (e T e+ 21050 +log(m), ()

(T 1 (P)T44(=p)) = —

where vg is the Euler-Mascheroni constant.
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l+q+0p
€ Hppn Y0, Y MO, Y " € Hpy YPO,Y 10,YT
q+p pP+q
04Y'0,.Y 55 0+Y'0,Y 5,5
q

Figure 10: Second contribution of Sag to the o/ order of 4. The loop momenta are [ and q. (Ty)
is inserted with external momentum p.

Another diagram with the same S4g vertex is given in Figure 10. It has the following contribution,

(1 l l
(H2}eobeed / I / g (I+q+ p) b(q +P)e dq2+(2q +p)+q+(a+p)+
¢*(q+p)*(q¢ +p)**(L+ g+ p)?
We can treat the integral over [ as a normal one—loop integral with external momentum ¢ + p. We
again shift the momentum from [ to —I, the [ integral is then of the following form,

/dnl (g+p—1Dalbla

Plp+q—1)*"
The l,lplg contribution is symmetric in a and b and thus cancels when contracted with the antisym-
metric €?®. By Lorentz invariance the integral with (g +p)alylg in the numerator is a combination of
a term proportional to its external momentum, (p+¢q)s(p+¢q)q, and a term containing the worldsheet
metric vpq. The entire integral is multiplied with (p 4+ ¢)., such that the momentum contribution
vanishes when contracted with the epsilon tensors. The part proportional to the metric can be
found using the integral expressions from Appendix B.1, such that the [ integral reduces to

ny (@ +Dalpla 25 — I[1]p?
/ﬁlﬂw+q—m2‘( Ty

(72)

(73)

Vod- (74)

This worldsheet metric then contracts with the epsilon tensors through yuqe®e® = — f(n)y2°
can be derived from Equation (66). Then ¢ combines with (¢+p).(¢+p). to cancel a propagator.
The ¢ integral can then be solved with the integrals in Appendix B.1. The total contribution of
Figure 10 is then found to be

n II(n)G(n,1,1) 28
{H2}/d (qz(qup)Q(Hﬁ/Q) - q2(p+q)2>(q+(Q+p)+Q+(Q+p)+
){Hz}

m (H(”)G(’m L 1)I[g+(q4+ — p+)a+(a+ — p4), L1+ €/2] (75)

—%M%Mywﬂﬁ@—me®-
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M;;0,Y 0, Y Iy

0, YTDLY 5, 01 Y O, Y "6

Figure 11: Counterterm to remove H? dependent divergences. The blob denotes the vertex, pro-
portional to some tensor M;;, that we are free to determine

We can now take this result together with the integrals resulting from Figure 9 (Equations (68),
(69) and (70) to find the total H? proportional contribution to (Ty; Ty, ). This turns out to still
be convergent. To deal with this we can construct a counterterm diagram, which is given in Figure
11. After solving its Feynman integral we find for it

1
p
(T4 Tht) = {M}WQO/]T;» (76)

where M = M;;6%. We can now choose M such that it cancels the divergences coming from the
other diagrams and other unwanted terms. To this end we will parametrize M as

1
M = (hez + hyvE + hsS)H? + 75SR. (77)

Taking the results of Equation (65), (71), (75) and (76) together we find in total

2 16he+3 41 Wa’pi
2 P+ 2
24p € 144p

4 80he + 51 — 121og p(3 + 8he) + 6log 7(16h, — 8he — 3) + 16R(6Srs + S + 54) + 1728R) +O(e).

(78)

(T Ty = —7a (H2 [~ 18f1+6y(16h, —8h, —3)+ 245 (4hs+2h, — 1)

Now we see that by picking the following values for the parameters of M gets rid of the divergent
terms

3 3 11 1

he=——, hy=hy=—, hg=—, =——, 79
16 " 320 T3 T TG (79)
We then get as finite result

WO‘,P%F 2 2 2

The log p cannot be renormalized away and its dimension is wrong: we cannot have a logarithm of a
non-scalar object. To fix the dimensionality problem a mass scale u should be added to all diagrams
[21], in practice this would replace logp by logp/u, which is dimensionless. We then have a Weyl
anomaly that is dependent on the arbitrary external momentum p. This is a result of an infrared
divergence, as it will diverge for p — 0. To handle infrared divergences adequately an infrared
regulator mass should be added to the problem. This is done for example in [20], there it is found
that this regulator mass drops out at the end and makes not contribution to the end result. Here we
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l+p
0 YT0, Y56, ViV;p0: Y0, Y7

l

Figure 12: higher-order 7%  insertion in one-loop diagram.
Vo OX) e—eo V,¢0X§

Figure 13: two-point function of Tf_ with itself.

chosen to follow the review by Callan and Thorlacius [13] and not take these infrared divergences
into account at all. By going through the steps as we did to get from Equation (58) to Equation
(61) we find the contribution of the two-loop diagrams (Figures 7, 9 and 10) to the Weyl anomaly ,

Oé/

(T4~ (&))ets,, = a( —2H?+ fiH? — 48R)\/7R,. (81)

There is also a one-loop diagram contributing to the o’ order of the dilaton S-function. Until now we
have taken the lowest order in the insertions of 7'y ., but consider now diagram 12, where one of the
inserted energy-momentum tensors has instead a term coming from its background field expansion.

The one-loop diagram contributing to 3% involves an energy-momentum insertion in a graph with
the vertex of the expanded dilaton action (35). The diagram is given in Figure 12.1t can be expressed
as

4
(Ty 4 (p)Ty 4 (—p)) = —4m/{v2¢}f7; (82)

We subsequently make use of the energy-momentum conservation equation (38) and then go through
the same steps as we did to get from Equation (58) to Equation (61). Thereupon, we find as
contribution of Figure 12 to the Weyl anomaly

(T, () = 30/ V*0y /AR, (83)

There is also a contribution of the tree-level two-point function of Tf_ with itself, shown in Figure
13. We consider X{' as a quantum field here, its propagator cancels one of the d’Alembertians, the
Weyl anomaly contribution of this diagram is

(T (©)) = 3o/ (Vo) ARy, (34)

We now have all contributions to the dilaton S-function, together Equation (81), (83) and (84) give
us

B¢ =d (- éfﬂ + %6le2 —3R+2(Ve)* —2V?9). (85)
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4 The bosonic string in Newton-Cartan geometry

4.1 Newton-Cartan geometry

Newton-Cartan geometry is characterized by a symmetric spatial metric h,,,, or equivalently, a
pair of vielbeins {Ts,ei} that define the metric through h,,, = efne%éij. From these an inverse
vielbein pair {—v"™, €'} can be constructed, which is defined by its action on the normal vielbeins:
7s¢; = 0 and 7,0° = —1. The inverse vielbein e]" defines the symmetric inverse spatial metric as
hmn = elmefléij. The Galilean data {hpp, tm, K", v"™} obeys the following completeness relation,

hpm ™™ — 0", = 6. (86)

We would now like to construct a covariant derivative that is compatible with the Galilean data
{Tm,h™}, e.g. Dpr = 0 and D, h"™ = 0. The most general form of this metric compatible
connection is[11]

1
= —v"071s + ihm"(&«hm + Oshyp, — Onhys) + hm”n(TKs)n, (87)
where K, is an arbitrary two-form. This connection has torsion,
T =17 — T = 0™ (0s7 — OpTs). (88)

Because of this torsion we refer to the background as Torsional Newton-Cartan (TNC) geometry.
One can also derive the identity [11]

Knn = 2hy, Dy v°. (89)

Upon introducing the shorthand notations
hrs = hrs — Toms — My, (90)
oM =u"™ — W mg. (91)

The connection can be written in the form [14]

1 _ _ _
7 = ™8, 7, + 5hmt (Oyhst + Oshyr — Oihys). (92)
The Riemann tensor of this connection is defined in the usual way,
R e = Ly + Tl — (0 <— q). (93)

To derive the geodesic equation on a TNC background consider the action of a point particle in a
TNC background [22],

m 1-
= mn.m'na 4
S Q/d)\Nh "E (94)

where N = 71,4°. Variating this action with respect to the field 2P gives the equations of motion for
a point particle moving on a TNC background, or in other words; the geodesic equation,

n 1, - = TOhmn = honFpr o N oy 1o o
" hpn, = §8phmn — Omhpn + 2 mn2N UL L L ﬁTphmn] "z + N (thnx" + Tpazmm"hmn),
(95)
where we have defined F' = dr. Contracting with hP! greatly simplifies the geodesic equation,
N ., hpnFph®P
R S ey A (96)

with the metric compatible connection 'Y, as defined in (92).
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4.2 The bosonic string in Newton-Cartan geometry

We can arrive at a D + 1 dimensional Newton-Cartan geometry from a D + 2 dimensional Lorentz
invariant geometry via a null reduction, this was first done in [23]. In the remainder of this section
we closely follow the treatment of Gallegos, Giirsoy and Zinnato [14]. Let Gj;n denote the spacetime
metric of the D + 2 dimensional manifold. We now impose a null isometry on the u direction, the
metric can then be decomposed as

GundzMdzY = 27, (du — meda®) + hppdz™dz™, (97)

where the lower case Latin indices take values from 1 to D + 1. In this decomposition we recognize
the fields that characterize a Newton-Cartan spacetime: hyy,, and 7,,. Using the inner product (97)
we can find the form of the Polyakov action for the bosonic string(6),

Sp=— APE/=A7P (hop + 27405 X ™), (98)

47r
where h was defined in Equation (90) and the Greek indices on the Newton-Cartan fields denote
their pullback to the worldsheet, e.g. hog = hypp0a X0 X". The string has non-zero momentum
along the null direction X" and by demanding this momentum to be conserved, we demand that
the Newton-Cartan string is independent of the null direction . The momentum current can be

determined by
oL N
Pa: I 04/8 99
v T 90X | 2mal | (99)

We now consider a Lagrangian where this momentum is conserved off-shell,

Lp= ) (\/ B, — P 1) Ag. (100)

47l

Here we have introduced a Lagrange multiplier A, which conserves the momentum off-shell through
its constraints

V=75 = =0, (101)

Using Equation (99) these constraints give P = 4730/ eaﬁagn. From which we see that P is
conserved, 0, P = 0. Thus the Lagrangian (100) enforces off-shell momentum conservation. This
Lagrangian can be seen to be equal to the one from Equation (98) if one solves the equation of
motion for 7. This gives eaﬁﬁaAg = 0, which is solved by A, = 0,x with x a scalar field. Upon
identifying x = X" we recover the original Lagrangian (98).

We can rewrite the constraints (101) by introducing the worldsheet zweibein e ¢ and its inverse,

1
@ = geaﬁeﬁbeba, (102)

e =

where e = eo‘ﬁecge !, These zweibeins can be used to go from curved worldsheet indices {a, 8} to

flat worldsheet indices {a,b}. The worldsheet metric and its inverse can then be written as
Yo = nabeaaeﬂb , P = n“beo‘aeﬁb. (103)
Using these definitions we have \/—v = e. The constraints (101) can then be written as

en®e®, e’ W73 = —€ BYan. (104)
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We can also consider the antisymmetric tensor on a flat worldsheet 8 = ee“be"‘aeﬁ »» here e appears
because the Levi-Civita symbol €? is not a tensor but a tensor density [17]. With this the constraints
(104) can be written as

n“beﬁbm = —e“beﬁbﬁgn. (105)

Following [23] we redefine the two components of the Lagrange multiplier as
1 0o, 1 1
Aa = Mgy + 5()\_1,_ — )\_)ea + 5()\4_ + A_)Ca s (106)

such that Ay now take on the role of Lagrange multipliers. With the redefinition (106), the constraint
(105) and by writing the worldsheet tensors as zweibeins, the Lagrangian (100) can be written as

e

Lp

= (= 9 R + A€ (0 + 7a) + A (Da — 7a) ), (107)
where e§ = eff £ef. This is a Polyakov-type Lagrangian for the bosonic string in a Newton-Cartan
background without matter.

This action can be generalized to include the matter actions S4g and Sp that we encountered in
Section 3. We start with a null reduction of Sp + Sag, the dilaton term can be added later. We
again use the inner product (97) to write the Polyakov action (6) and the Kalb-Ramond action (10)
in a Newton-Cartan background,

1 _ _
Lo+ Las=—7— (\/—Waﬁ (hag + 27*P7a05X") + €B(Bap — 2Na85X“)>, (108)
where
No = Bua, (109)
Bag = Bag — 28[ymy. (110)

The momentum along the null direction can again be computed as

oL 1
pe — _ T oaaB afs
Y90 XW) 2770/( VYT T e Nﬁ)' (111)

This momentum can be conserved off-shell through the constraint of the Lagrange multiplier Ay,

1 — _
L= - (Mvaﬁhaﬁ + ea’BBa/g + 2(\/—7776“67'0[ — e“Bf,n — EQBNQ)A[g). (112)

Which is again identical to the original Lagrangian (108) through the equation of motion of the 7
field. This constraint reads,

\/TW’YQBTQ - Gaﬁaaﬁ - eaﬁNa =0. (113)

By making the same field field redefinition as in (106) and by using the worldsheet zweibeins (102)
we can write the Lagrangian (112) as

e — _
Lonatter = P [ — 1P has — €PBap + Ay e (0an + Na + 7o) + A_eF (an + No — Ta)]. (114)

We would like to rewrite this Lagrangian a little bit further before we start quantizing it. Just
as for the Riemannian bosonic string we will use dimensional regularization to investigate the
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Weyl anomaly. A requirement for using dimensional regularization is that the theory is manifestly
covariant. The Ay terms in the above theory are not manifestly covariant as they have an explicit
+ and — coordinate. This will cause problems when we want to go from 2 worldsheet dimensions
to n = 2 — e worldsheet dimensions. By recognizing the + and — terms in (114) as lightcone
coordinates we can use write (114) in a manifestly covariant form. To do this we can write

1
(R + Do) A + A-e) = =5 (N + Bam)y"Aac. (115)

and )
To(Aped — A_ef) = 757046“17)\@6?. (116)

The complete TNC Lagrangian can now be written as

e - - 1 1
Liatter = m |: - 7a6ha5 - faﬂBaﬁ - i(Na + aan)’yab/\ael? - iTaEab)\aeba . (117)

Here the Latin letters a and b denote the flat worldsheet coordinates, we will take them to be in
lightcone coordinates for the remainder of this thesis.

4.3 Symmetries of the TNC action

In the D + 2 dimensional Lorentz invariant spacetime the Kalb-Ramond field introduces a U(1)
symmetry in the action of the bosonic string. The action is invariant under

ABunN :8MAN—8NAM. (118)

This symmetry is still present after the null reduction (97). The TNC background fields then
transform as [14],

aBrmn = OmAy — OnAp, (119)
AN = Om Ay, (120)

where u is the null direction of the D 4+ 2 dimensional Lorentz manifold Gpsy. Just as in the
Lorentzian case, the action (114) is invariant under (119). To have invariance under (120) one
needs to impose that the worldsheet field 7 transforms as dpn = —A,[14].

A different U(1) symmetry comes from the my field. The action (117) is invariant under [14]
ms — Mg + O0s0. (121)

A good final check on our expanded actions in Section 5 6 and the TNC S-functions would be to
check for U(1) invariance, but this is a time consuming task which is not carried out in this thesis.
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5 Quantizing the TNC bosonic string

5.1 Background field expansion

Along the same lines as Section 3.1 we will now do the background field quantization [13, 14] for
the string embeddings X*, A\, and 7. Let

X" =X{" +1,Y™,
Ao = A+ 1A, (122)
n=mno+lE.
Here X7*, A2 and 7° denote the classical (background) fields and Y™, A, and E denote the quantum
perturbations on them. As before Y is not covariant and we have to replace it somehow. Since A,
and E are spacetime scalars they automatically transform the right way and we do not have to make
any replacements for these fields. To replace Y™ we again consider the geodesic connecting X" and
X'+ Y™ as in Section 3.1. This time we consider the geodesic equation in a TNC background,

which we found in Equation (96). The following expansion is a solution to that geodesic equation
and satisfies 2™ (0) = X", 2™ (1) = X" + ;Y™ and 2™ (0) = [,Y™ [14],

)\2
2™(A\) = X+ ANY™ + 7531@” +0(13), (123)

where Y5" is a function yet to be determined. Inserting the solution (123) into the geodesic equation
(96) we find the relation,

YO T + YO Y YT — L FopRTY ™Y YT

Yi4+TL YY" = v, (124)
Following [14] we find that this is solved by
Yi=-Tt Y™™ -G Y™Y™ (125)
where the tensor GY,,, satisfies
TGy = TsGlmndry — %B(mnFr)shSt. (126)

Some interesting TNC properties can be derived from Equation (126). We can first contract the
r and the ¢ index and then contract with h"A™" to find 7,G3,,h"9h™P = 0. Alternatively we can
first contract Equation (126) with A"™?h™P and then contract the r-index with the ¢-index to find

Fpnh™h™1 = 0. (127)

This is the twistless torsion condition. It enforces causality in torsional Newton-Cartan geometry
[12] and we see that it arises naturally when demanding that the bosonic string follows a geodesic.
Using the twistless torsion condition (127) one can show that

1_
G, = ihmnash“ (128)
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is a solution to Equation (126) if we take the torsion to be twistless, in other words, if Equation
(127) holds. We have defined the acceleration as = z:;tFtS. Inserting the solution for Y5™ (125) into
(123) with A = 1 we can express the quantum field Y™ in terms of the covariant vector Y™,

Yy =ym %zs ITm+Gm)Y'Ys+ ... (129)

This suggests that it is useful to consider a new connection,

. 1
., =T + —0'Fp, + Gl

2 mn?

(130)

which is symmetric in its lower indices, and thus torsion free. It is also invariant under the U(1),,
transformation of Equation (121). This new connection is no longer compatible with the Galilean

metric data h™" and 7,,, but has the following action on them:
. 1 .
Do = 5Fmn o D™ = a7, (131)

With this new connection(130) and the twistless torsion condition(127) we can rewrite the geodesic
equation (96) into

BTt EmE" = 0. (132)
This looks very much the same as the standard geodesic equation on a Riemannian manifold (22).
One would again be tempted to look at equation (129) and note that, when we are in the Riemann
normal coordinate system, I‘,’T‘S should be zero, but this is not the case. The new connection now
has a tensorial part, such that it cannot be set to zero in one coordinate system.

The geometric data of the action (108) can be expanded to fourth-order in Is since we only go up
to two spacetime derivatives on the geometric fields most of these expansions quickly terminate.
Because the geodesic equation (132) has the same form as in the Riemannian case, we can express
the quantum field as

- 1 . 1 0o,
Y=Y L TRYTY - élﬁv;rjﬁsytyrys + ., (133)

where again V' denotes the covariant derivative on lower indices only.

5.2 Expanding the TNC fields

With the new covariant coordinate Y (133) in hand we can start a covariant expansion of the
action (114) in the quantum fields (122). In Section 3 we saw that we need up to expand this action
up to fourth-order to calculate the first-order quantum correction of the dilaton action. Here we
will expand the action to second-order in spacetime derivatives. It turns out that this only gives
terms up to fourth-order in the quantum fields, as any terms that are fifth order in the quantum
fields would have to contain at least three spacetime derivatives.

First of, the expansion for the derivative of the string embedding is easily found by first taking the
derivative of (133) and then replacing partial derivatives by covariant ones.

OaX™ = 0o X" + (VoY ™ = TY*0,XE) = B[[1AVaY Y + S (L7 — 211, )Y 7Y *0,.X
1 o o, o o, o o
= (O =TT = D) Va (VYY) (134)
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to second-order in spacetime derivatives. We then want to expand all spacetime dependent fields of
the action (117), these are all pullbacks of either vectors or rank (0,2) tensors. A rank (0,2) tensor
can be expanded as

. 1 .
Winn(Xo + V) = Winn(Xo) + L0y Winn Y + 513 (0,05 W — O Wi I ) YT Y8

= Winn (Xo) + 1Y (ViWann + L5 Wi + 13 Wont) + 512 (ViV W + 205,V W,

+ 200 VWit + Wi Ry + Win R + 0D Wi + 0,05 Wiy + 21 T3 Wi, ) Y'Y

& (135)

Jin Jjim

to second-order in spacetime derivatives. We then take the expansions (134) and (135) together to
find the expansion for the pullback of a rank (0-2) tensor. All connection terms either cancel each
other or combine to form curvature tensors, such that the end result is covariant,

Woap = Was(Xo) + s [Wmn(Xo) (VoY ™05Xy + 0a X'V 5Y™) + aaxgnaﬁxg%wmnyi}

1 0 . , ,
+ 2 [5 (ViV Wi + Wi R, + Wi, R

im) Y Y0, X0 X0 + 00 X'V 5Y "V WiV

+ XV Y VWi Y+ Wmﬁaym%w]

° o . o 1 o o o 1 o o L
+13 [vaymvﬁynwviwmn + 50a X5 VY (ViViWn + §szRZ~m + Win R, ) Y'Y
1
3

1. . e 1. . 1. .
+ UV VY Y Y [viijmn + S Wotli s, + gmanﬂm}

1 e e & o ° i
+ 58]3X0 VoY (vzv]Wmn + Wmllein + I/Vl”Rlﬂm)Y YJ:|

(136)

There are no higher-order terms in 2 as these have at least three spacetime derivatives. One consis-
tency check on this expansion is to see if it matches the expansion of the Riemannian Polyakov action
(30). When we plug in the pullback of the spacetime metric G, in (136), these two expansions
give the same result.

We also need the expansion for a vector, following the same steps as above we first find

~ o ° 1 o o o o °
Vin(Xo+Y™) = Vin(X0)Hs (Vi Vi 4 Lo V)Y "5 12 (V,VSVerVZRZSTeramfls,,VZ+2FlsmvrVl>YTYS
(137)
to second-order in spacetime derivatives. The pullback of this vector to worldsheet can then be
found by multiplying (137) with (134). To second-order in worldsheet derivatives we find
V(X0 +Y) = Va(X0) + I (Vi Vi Y0 XJ' + Vi Vo Y™)
, . 1 o &
12 [vnvmwvaym + 5 (VeViViu + lesrm)Wysa&Xﬂ
1 o o 1 .
+ ng’ (VeViVi + gRls,,mvl)Wysvaym. (138)

The expansions (136) and (138) agree with what was found in [14]. There the expansion was
performed up to second-order in [s, here we supplement this with results up to fourth-order in Is.

We can now find explicit expressions for the expansions of the couplings in action (114). The
couplings that need to be worked out are —y®? i_zag, —eB Bag, 'yab/\aef g, 'y“b/\aef Ng and e“b)\aef 73.
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To this end we use the background field quantization for the X™, A\, and 7 fields as given in (122)
and the expansions for the pullback of an arbitrary rank (0,2) tensor (136) and that of the pullback
of an arbitrary vector (138). The n — A\, term can be expanded as

1 1 o~ - - o~
- §7ab/\ael?aa77 = _§7ab )‘2658&770 + s (AgegvaE + Aael?aano) + lgAael?vaE} . (139)

The O(ls) can be set to zero by demanding that the fields 7 and A, obey their equations of motion.
We now turn to the h,g coupling.

— Y has(Xo + V) = =P hap(Xo) — 1y [2hmn VoY "0 XY + 00 X5 05 X3V il Y]
— 12408 [(%%ﬁjﬁmn + R b)Y YT 0, X 05 X8 + 200 X'V 5Y " Vilimn Y + Bmﬁaym%w}
= By VY "NV Y Vi + 00 XV 5Y " (ViV jhnn + %Bm,lejm)yiyf}
- %zgyaﬁﬁaym%www (ViV R + %élﬁmﬁln). (140)

Furthermore, we find the following expansions for the vector couplings
_ Leaby,eo (X +)~/’)——1“b0‘/\0 Xo) + 1[N (2 By Ym0, X7 VaY™) 4+ Ag7a(X
9 a€p Ta\A0 = 26 €y aTa( 0)+ s[ a(2 mn aXg T TmVa )+ aToc( 0)
1 o o < 1 .
+ 12 b)\g (FnnY ™Va¥™ + Vi FynY Y *0aX5") + Ra (5 FnY " 0a X5 + V™)
1 4o o 1~ . .
43 [gkgersmY’"YSVaYm + R (FnY VoY " + VTFsmYTYSGQX{)”)}
1 ,~ = °
+§Z§AaVrFsmYTYSVaYm}. (141)
Here we have used Equation (131) and the relation ]%l(sr Tl = [@m,ﬁ(r}@) = —%%T)Fm(s. We
have also introduced the field strength F' = d7. Similarly f)or the A — N coupling we find
1 ~ 1 . -
— 37" A€ Ra(Xo+Y ) = —iyab{AgegNa(Xo)Hs [Ageghmnymaaxg—va(Ageg)NmYerAaegNa(Xo)}
1 . . 1. o -
2| SN0 (VY Y *0a X5 + Y "VaY ™) = SVRY Y V(AR5 + Aach himnY 00 X7
° ~ 1 ° ° 1 o o o
- Nmymva(Aaeg)] 43 [gxgegvrhsmyrwvaw — YV, VR Va (M)
1
2
1-~ ° ° 1 o o o ~
+ 14 [gAaeg‘“vrhsmyrysvaym - EYTYSYmVrVSNmVa(Aae?)} } (142)

Aol (Bmn Y™ VoY + Vb YTY 0, X

N |

6TNSYTYS%(Aaeg)]

where partial differentiation has been used to write the N field in its field strength h = dN. The
total derivatives resulting from this partial differentiation are dropped since (142) appears in the
action, such that any boundary terms are zero as the string is periodic. Note that in the action
(114) we have the combination —%vab)\ae’g N5 = AR5, Terms involving %52)\5 are then zero by
the equation of motion for A (342).

Finally we have the coupling

_ ~ o 1o 1 ° °
—€PBag(Xo+Y) = —e*PI2 HmklaaX{J”V5Yle+§Vkanl(9aX6”85X6‘Yle —geaﬁngkmnY’@vameY",
(143)
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where we have only written down the O(> [2) terms that will contribute to the dilaton beta function.
The expansion (143) is invariant under the U(1)p symmetry of the B field (119). In section 4.3 we
saw that the fields N,,, and 7 also transform under these U(1) transformations through (120). Most
of the N terms in (142) combined into its field strength b, which is invariant under (120). The only
part of (142) that is not manifestly U(1) invariant is

1 ~ ~ o 1. - 1450 o
— ilivabAaeg‘ + Aaef)Va (R Y™ + Sl ViRYTY* 4 6zﬁvrvsmnyrysw). (144)

The n — A term expansion (139) also has a part that transforms under U(1) transformations. As
we noted in section 4.3, the 7 field has to transform as dyn = —A, under U(1) transformations. It
then follows that its quantum field transforms as

~ o 1 - - 150 o o
ONE = =Vihy = 1V VA YTV — gzgvtvrvszxuwysw + 0. (145)

This precisely cancels the part coming from (144)! Therefore it makes sense to define the U(1)p
invariant field

N ~ 1 - 150 o
E=E+Rp Y™+ SLVRYTY® 4 LV, VR YV Y™ (146)

The expanded action can now be written completely in the U(1)p invariant fields Hunr, Hmn and
E. By making the substitution (146) the quantum coordinates are changed from {Y™ Ay, E}
to {Ym,]\i, E‘} The original coordinates are independent of each other and only F is redefined,
consequently the Jacobian of this transformation is one. With this new field we can write the action
in a manifestly U(1) invariant form. Taking all the couplings together we find the TNC action with
matter, expanded to second-order in spacetime derivatives,

1 — o o 1 1
Smatter - m /dQO— 6{ lz |: - fyaﬁhmnVaYmV/an — §7abAa€bv E — iﬁabAaeb va Ym

N 1 o - 5
Aaeg‘(§e“men Y0 ) Y00 XE — (29 Vil + €° Hyppi) YV Y ™05 X

° 1.
+ 2 (= AN Fpy + SX 010 ) YV Y™ — (7P i, + €7 5vkﬂmm)YkYlao)(g)”agxg

w\»—lw\»—lw\H

5 (= ANV, Fy + TV, ) VY0, X

413 [ - Zyab]\ae,?hmnYm%Y" - iy“b]\aegﬁmsmwwaaxgl - %eab]\aegymFmNaY”
- ie“bAaegﬁrFsmWYSaaxg% — 4 D Y Y IV g Y 00 X
+ %(—AX’@TFM + AV, b)) YTY Vo Y™ — (v i, + %eaﬂﬂkmn)%aym%wyﬂ

1 ~ o ° 1 ~ o o ° o
1| = SRV B YTV VoY ™ = Sy R Vb YTV VoY ™ = 9 B VoY VY YT }

(147)
where
Chimn = thmn + R mPnyss (148)
Ditmn = ViVihn + fRs(kl) Bins, (149)
Ersmn = V Vshumn + R(m)(mh " (150)
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6 Flat index expansion

The action in Equation 147 contains the kinetic terms of the theory, but for general h,,, these are
not diagonal, such that constructing a propagator is non-trivial. By going to a local Lorentz frame
through the vielbein formalism, Y™ = €7 my ! these kinetic terms become diagonal. We can then
write the spatial metric as

Ponn = nryel el (151)

and its inverse as
= pllemen, (152)

In the Riemannian case, this came down to swapping curved indices with flat ones, as the vielbein
was compatible with the covariant derivative and contracting indices resulted in contracting a
vielbein with its inverse. Because our covariant derivative is not metric compatible, the derivative
of a vielbein is also non-zero. This results in extra terms. To organize these expansions we consider
the different orders of I; in Equation 147 separately by writing

Smatter = S2( = O(13)) + S3(= O(I)) + Sa(= O(1y)). (153)

Additionally, we further divide this by the amount of spacetime derivatives in each term, such
that S, = S(SO) + S,(ll) + S(SQ), with the number in the brackets denoting the amount of spacetime
derivatives. One can also consider the flat index expansion separately for spatial indices ¢ and time
index 0 by writing,
YO

Y™ = —0™(1,Y%) + el(6Y ThrsYS) =— Am\/ﬁ + YY", (154)
where we have defined Y? = v2®7,YS and V' = 69 egl_"LTSYS. Note that Latin letters ¢ and j are
flat indices ranging from 1 to d, whereas the Latin letters m,n,r, s denoted curved indices ranging
from 0 to d. Here ® plays the role of Newtons potential, it is defined by

1
= —v'my + Shomems (155)

and it is invariant under local Galilean boost and rotations [14]. The vielbein over all indices I can
then be written as e}’ = { \/ﬁ, e; } The zero spatial derivative part of the action is

SO0 = Séo) = /d2a e{ — 'yO‘BT]U%OCYI%gYJ — %’yab]\aeg‘ﬁaﬁ’ — %eabﬂae?TmeTﬁaYl}.
(156)

The last term has the contraction 7,e7", by using Equation (154) this can be written as 1/F60

The last term then describes a propagator between the fields A, and Y?, by redefining A+ = v/2®A

this propagator becomes canonical. We then also have to rescale E = \/LE to make the A, — E

Aol ®

propagator canonical. The covariant derivative in the first term acts on Y by VoV =0,V +uw! Jas
with w!  the SO(D — 1,1) spin connection. As there are no terms involving derivatives of the spin
connectlon, no gauge invariant curvature tensor can be formed. Consequently we can ignore any
terms involving the spin connection because the end result should be gauge invariant. By using the
new fields and dropping the spin connection terms the zero derivative action becomes

1 1
SO — rall? /d2a e{ - Vaﬁﬁuaaylaﬁy‘] - §’YabA €p V E—-S abAaﬁ’ba Yo} (157)
v
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This action now features diagonal, canonical kinetic terms and from we can determine the propaga-
tors of the theory, we will do this in Section 6.1. We also have to rewrite the other actions in terms
of the fields Y!, AL and E. The O(I?), first-order in derivatives action is given by

- 1 o
Sél) /dZO. 6{ B 28@YIYJer}hmnvne}naaX6L + ZvabAaegEvm(log (I))aan]n

47ra
1 1 1
- §eabAae§Tmevnel 0 X§ — 5 Aae) 2<1>(§eamen + Y0 ) Y " 00 X
. 1
— (29*°Vihimn — € Hopi ) ef Y €70, Y 05 X7 — 5(Avan — SA Y ) P Y €50, Y }
(158)

Note that there are also derivatives on the vielbeins coming from terms that were originally of lower
order in spacetime derivatives. For the O(I2), second-order in spacetime derivatives action in terms
of the new fields we find,

52 - . . . - .
st = = | o e{ — B Y YNV, €0V €700 X50° X + (€*° Hopnt, — 277V ki) €Y 1Y IV, €700 X505 X5
o 1 o
+ 5(m%mn = AN Eyun ) e Y TY V€00 X5 — (v° Chtmn + 5 VicHmm) ey Y Y 70, X305 X8
1
+5(- ANV, Fypy + AV, b ) ehes Y Y9, X }

(159)

For the O(I3) action some terms involving the covariant derivative of a vielbein become third-order
in spacetime derivatives and can thus be dropped. The first-order in spacetime derivatives terms
are

l3

Ve

1
Sél) d’o e{ — Z\/2‘I)Aa€? (vabhmn + e“men)eTnglaaYJ
o - 1
— (Y Vihmn + gea’BHkmn)eIeJ enYlo, Y7o YN}. (160)

And the O(I3) terms that are second-order in spacetime derivatives are

13 1 . .
P = / &0 e{ - V20" A e [hmneynyf Y7V, eh00 X5 + Vibameres VY aaxgn]

1 o .
— V2D A e [ane;nyfw Vet 0u Xy + Vy Famehes VY aaxgl}

1

— 7 Dypmeiel e 0. Y NY Y 195 X + g( — ANV, Fyy + SXV, b ) efedens YV 79,7 M

- 1 ° °
— (Y*PVkhmn + §eaﬂH,mn)e';yf (e7V,en0aY YN0 XE + eRV, e Y705 N 0, X7) }
(161)

Finally for the O(I%) part of the action in (147) there are only terms that are second-order in



6 FLAT INDEX EXPANSION 32

spacetime derivatives or higher, as we drop any higher-order terms we are left with

Iy 1 : .
Sy =8P = gh / d’o e{ — 5 V20Maef (YOVrbam + €OV Fom) el e Y Y 0oy M

—vo‘ﬁEmmne?esje”]\}[e%YIYJﬁaYMQBYN}. (162)

6.1 TNC Feynman rules

The propagators of the theory can be found by considering the Fourier transform of the zero spatial
derivative action (157). By taking the following Fourier transforms for the quantum fields,

1 ; 1 ; 1 ;
1 _ = 21, tkoy 1 - 21. tko _ 21, iko
Y(o) = 27T/d ke Y (k) , Aq4(0) 27r/d ke Ao(k) , E(o) 27T/d ke'™° E(k),
(163)
the action (157) can be written as
1 1 1
SO — e / d2k{—ka:ZYI(k)YJ(—k)+§z‘fy“bAa(k)eb°‘kaE(—k)+iie“bAa(k:)eb“kaYO(—k)}. (164)
™

To determine the propagators these fields can be combined into one field ¢4 = {Y% Y% Ay, E} and
we write the action as

SO = [ dhoa(-K1G on(r), (165)

where the indices A and B run over the labels of all fields: 0,4, a, — and 1. The matrix G4 is given
by

k? 0 —tie"k, 0
1 0 —k26;; 0 0
AB _ - ]
G = 4 —iieabkb 0 0 —ii’yabkb (166)
0 0 217"k, 0
To determine the propagators we need the inverse of this matrix,
0 0 Heake 0
0 —50Y 0 0
Gap=4r| 4 K : 167
AB Beack® 0 16(yap — Kekr) —dig, (167)
0 0 Lk 0

The propagators of the fields involving Y are given by the elements of the first two rows of GAB

multiplied by —%.5

) ) 1
Vi Y =g, (168)

1
YO A, = 8mﬁeabkb. (169)

5These Feynman rules for constructing propagators are taken from Volume 1 of the lecture notes by de Wit, Laenen
and Smith [21].
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Note that the actions (158), (159), (160) and (162) all have interaction terms involving the fields
Y instead of Y? and Y?. We thus want to write these propagators in terms of the fields Y7/ as

1

yI——y’ =2x(n! + 5555{)? (170)
and ]
yI—>"" Ay = 8rid} ﬁeabkb. (171)
The A, propagator is given by
Aa ANNNNPPNANNNN A kakb
b = 327 (ya — 1z )- (172)
The F field only couples to A,
- 1
Ag ==~ FE = 85 ka- (173)

7 Locating the Weyl anomaly

Just as in Equation (37) we can make an ansatz for the Weyl anomaly by considering symmetry
and dimensional arguments. As we now have more background fields (A2 and 7g) there are also
more possibilities for the Weyl anomaly [14],

)
of
All of these S-functions have been computed by Gallegos, Giirsoy and Zinnato in [14] except for
(¢, which was only computed at the tree level. The goal of this thesis is to find the last remaining
piece of this expression: 3?. As can be seen from Equation (174) it is a scalar function and that

there are no background fields attached to it. To find it we should examine diagrams with vertices
that do not involve the background fields X" )\2 and 1np.

()= (P85, + €PBL ) 0aXE05XE + (Bny™ + Bme™) 0 XG"A) + BAINY™ + V=R, % (174)

In section 3 we saw that we could get to the Weyl anomaly through the trace of the energy-
momentum tensor. Here we will see that for the TNC string this is a little bit more complicated.
Under a Weyl transformation the worldsheet zweibein and the Lagrange multipliers transform as

et = fed , Ax = fAg, (175)

for any worldsheet function f(£). The action (112) should be invariant under this gauge transfor-
mation, we can decompose the variation of the action as [14]

08 2ra/ S 48 08
— = 7 —A —AX_ ] =0. 176
5 ¢ (ecaeﬁ(m o ) (176)
The first term of (176) is the energy-momentum one-form [14],
. 2md 68
i -
v e 562 (177)

_ 2mdL
e

- _ 1 1
e+ hvﬁebﬁan + Bvﬁebﬁe(:b - 556—/\+ Oy +Ry +7) = §5i)‘* (O3 + Ry = 7),
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where we have used that the variation of the determinant of the zweibein is

0
% = —eel. (178)
C
The second and third variations are given by
2ra’ 68 1

As we can expect Equation (176) vanishes classically, but, as in the Riemannian case, we do not
expect this to hold at the quantum level. To be able to investigate the behavior of % at the
quantum level we want to parametrize it in physical functions. In the Riemannian case, this was
just the trace of the energy-momentum tensor, but here we also have the functions C*. By making
use of the definition of the energy-momentum tensor from the energy-momentum one-form,

Ta’y = ncdengf(y:a (180)
we see that the term eszc is again the trace of the energy-momentum tensor,
657‘5 = UchﬁaegTE = 'YQBTa,B' (181)

The strategy now is to determine T, and C* in terms of the quantum fields of Equation (122)
and to insert them in diagrams constructed from the expanded actions of Section 6 to get their
expectation values. To express the energy-momentum tensor and C* in the quantum fields we have
to repeat the steps of Section 5 and 6.

Let us first calculate the energy-momentum tensor explicitly by

Toy = ncdeiqc
2ra/ L - _ 1 1
= T'Y’yoz + (hwﬁd’ + Bvﬂed))egeincd - 553)‘-%77&162! (8777 + Ry + T’y) - 553-)‘—%(16;[ (8777 + Ry — T’y)-

(182)

The h term reduces to an when performing the contractions. We expect the B term to drop out
altogether to match the Riemannian bosonic string, there the energy-momentum tensor is given by
variating the action to the spacetime metric, such that the Kalb-Ramond field never appears as
its proportional to the epsilon tensor and not the metric. Here we wrote that same action in the
vielbein formalism, but the end result should be the same.

We now want to expand the energy-momentum tensor to second-order in s to be able to find its
expectation value. The diagrams we will need here already have two spacetime derivatives contained
in their vertices, so we can drop any terms that contain spacetime derivatives in this expansion of
the energy-momentum tensor®. For now we omit the B term as it should not be present. We also
ignore the term containing the Lagrangian as it is proportional to the worldsheet metric. We will
examine the Weyl anomaly through insertions of T} and 7T__ in lightcone coordinates. There

SWe are only interested in the dilaton two-loop diagrams in this thesis. These either contain a four quantum field
vertex which is at least of second-order in spacetime derivatives, or two vertices with three quantum fields, which
are both of order one in spacetime derivatives. Then there can be no more derivatives in either the propagators or
the energy-momentum insertion. The question is if this is also the case for one-loop diagrams. One could construct
diagrams which have one spacetime derivative in the energy-momentum tensor and one in a vertex. For the Riemannian
case, this was not relevant as the energy-momentum tensor would contain either zero spacetime derivatives or two.
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the diagonal terms of the metric are zero and thus the term containing the Lagrangian does not
contribute. The relevant terms are

L . 1 S - . - .
Top = O(# 12) + 12 (hmnvaymvﬂyn — iéc_ncdefll (ALVBE + AR, VY™ + Ay 7, VY™)
1 e A - . - .
— 50 ach(R-VsE + AN VY™ = AornVgY™) ) - x yap. (183)
By writing NmﬁgYm = @B(NmYm) + O(Vy) we can absorb the R term into the E field by using

the redefinition of Equation (146) to zeroth order in spacetime derivatives. We then again perform
the flat index expansion through Y = e'}”YI and Equation (154),

Tag = lz (nuaaYI@gY‘]—%éincdei (A+85E+A+85Y0) —%5i7]cd€i (A,agE—A,aﬁYo)) +- - X’}/ag—i—O(;é lg)
(184)

Note that any derivatives on the vielbeins and ® that emerge from this are dropped as we work

only to zeroth order in spacetime derivatives. In flat space the curved Greek indices and the flat

Latin indices belong to the same coordinate system and this can be written as

Top =12 (TUJ(%YI@bYJ - %"77(1 (ALOE+AL0Y") - %ma (A_OvE — AfabYo)) o X nap+ O(# 13).

(185)
We will again go to lightcone coordinates to find a simple expression for the trace of the energy-
momentum tensor, note that the energy-momentum tensor is not necessarily symmetric here. The
flat metric in lightcone coordinates is given by

w=(1p J) (156)

Such that the trace of the energy-momentum tensor in lightcone coordinates can be expressed as
1 1
YT = —§T7+ - §T+,. (187)

We will determine T and 7_ . through energy-momentum conservation as in Equation (39), for
this we will need expressions for T and T _,

~ 1
" =17 (TIIJ3+Y13+Y T+ Z(A+8+E + A+8+Y0)), (188)
- 1
T — 201070y + T(A-0-B - A-9-Y").) (189)
We now perform the same steps to get insertions for C*. From Equation (179) we have
1
ALCE = —ieiAi(aﬁnwﬂ + 75). (190)
This term also appeared in Equation (182), so it is easy to see that

We s _%zg (ALds B+ AL05YO) + O(# 12) (191)

to zeroth order in spacetime derivatives.
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7.1 Energy-momentum conservation

In Section 2 we found a quantum analog for energy-momentum conservation in Equation (20) by
examining worldsheet reparametrizations (5). The TNC action (112) is also reparametrization
invariant. In the derivation leading to Equation (20) the generating functional W was taken to
be general, such that Equation (20) also holds for the TNC case. We can then repeat the steps
that lead to Equation (39), but we should be careful that the TNC energy-momentum tensor is not
symmetric. We will thus arrive at two equations, one connecting (7% _) to (T_) and one connecting

(T—4) to (Ty+).
, (192)
(193)

7.2 Differential equation to get to the dilaton S-function

To get to the dilaton beta function we need to consider (y**T,5) and (C*) on a curved worldsheet.
This brings in complications so instead we use the following trick: We write the curved metric as a
scale factor times the flat metric, vy,3 = ef dag- This can be done because we have reparemetrization
invariance on the worldsheet. For the theory to be Weyl invariant we want the functions charac-
terizing the Weyl anomaly (T and C*) to disappear regardless of what the scale factor f is. As a
minimal requirement its first variation to f should be zero. Using the path integral definition (17)
we can write this variation on the curved worldsheet as

)
5f< aﬁTa5+C+)\++C )\ >ef(5

tly=o~ _<<’YaﬂTaﬁ’7wTv6> +2(7 P TagCHA4) +2(y* TapC™A)

F((CT AN +2(CHALC ALY + <(C‘)\_)2>)6 . (194)
ab
Here any derivatives of the partition function are multiplied by the first-order Weyl anomaly on a
flat worldsheet, which can be set to zero using the first-order S-functions found in [14].

Let us start with constructing the first term of Equation (194), two insertions of the trace of the
energy-momentum tensor. In lightcone coordinates this is

1
(0 Tapn ' Tea) = 7 (T-To) + 2{T-Tp) + (T4 T-4))
K2 K2 (195)
= (kg (T__T_ ) +2(T4 T ) + ) <T++T++>>
where we made use of the energy-momentum conservation equations (192). (T 1) and (T__) are

given in Equation (188) and Equation (189). Note that the ++ and the —— insertions are very
similar, the same is true for the insertions of Cy and C'_. This brings us to the idea to introduce a
tensor M¢? which has the following action,

2 k?

aocC k’
(TopToa) M = =1z 7 (T--T- ) +2(T-_Tyy) + [l (T Thy) - (196)

Similarly, we can combine the second and third term of Equation (194) in

ki k
(TapCeAg) M2 = <k+ (T Ct )\+>+—<T,,C+A+>+—<T++C Aoy + k—’i(T,,C‘)\,>
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And finally the last three terms in Equation (194) can be written as
(CadoCeda) MEET = ((CHA4)2) + 2(CHALC™A) + ((CTA)). (198)

We can then write Equation (194) as

57457/

57 \67 / uss,,
Using Equations (188), (189) and (191), the expectation values in Equation (199) can be expressed
in the quantum fields as

1
= =M T Teg) = M2 (T Ceda) = MEEH(CadvCea) . (199)

f=0

1
(TyyTog) = 12K%, K, [ {nr mMNaanabYJacYMadYN> += <m 10 Y'Y TN O E)

—de (n170aY ' 0Y 7 A0, Y0>+ (MO ENOGE)+PEP) 6 <A YN0 YO)— Pjé <Aaa,,EAca€Y0>]
(200)

Here we introduced the K tensor to produce the momentum factors that appeared because of
energy-momentum conservation (192), its non-zero entries are Kii = i—; and K_~ = Z—j Notice
that the expressions for 7, (188) and 7__ (189) have the same factors in front of every term,
except for a minus sign difference at the 0+Y? term. To capture this behavior the tensor P is
added, which has non-zero entries P = 1 and P~ = —1. The second term in Equation (199) can
be written out as

1
(T Codg) = — z4K ab Re [ (31502Y 1 03Y T ADE)+P] (3150.Y Y A f0Y )+ (AaDh EAD.E)

+ ZPC (MO, EA;OY ) + ip,f (A0 Y N OE) + ipbgpcf (Aa0yY A ;0. Y ") } (201)

Here the R tensor is added to reverse the coordinate of the C insertion. Its non-zero entries are
Rt = R_ = 1. Finally for the last term in Equation (199) we find

(CaryCe)g) = %l;‘RinI [ (MO EAOGE)+ P! (A0 EAROGY ) +PI (A0 Y N Oy E)+ P P! (A0 YO N,0,Y) } .
(202)

We have now covered any special behavior for the + and — coordinates in the tensors Kgcll’ , Pt and

R}. The M tensors of Equations (196), (197) and (198) can then be written as one simple tensor

M which gives the available coordinate combinations. It has non-zero entries M T+ = MTT—~ =

M~—t+* = M~~=~ =1, note that this is exactly the behavior of §*°6®. Taking all of this together

we find for the differential equation of Equation (199) that

5<55>
Of NOF /[ etou | 1=0

+ U (51,0, 0V MDUE) + Ve (51,0,Y 05V A0, Y°) + W (A0, EAdE)  (203)
+ X (MDY MDY + 2 (AaDy EADY®) |,

= l? [Sade <6IJ5MN8QY]86YJ86YMadYN>



8 DILATON S-FUNCTION FEYNMAN DIAGRAMS 38

where
gabed 5“ 5 Kb ,b,K . (204)
gebed — gt ge'd <—8K b K, + K%%,,65 Rd/> (205)
yabee — o't sc'd ( Sk ab PSK, + K ,b,P%R§,> , (206)
wabed — ga't ge'd <—64K b K + Rd,K ab 8¢ — 1Rb,Rg,5g,5g,> , (207)

xaeef — o' ge'd < 64PbeK b KL + :

Pb PSRL K, — Z <, PS, RbRg;K“I;f?) : (208)

abce 1a”c” c 16 cf ca e pc sa e pc sa
abee _ 20 ¥ 5e'd ( PSKC ,b,K,d,+ P RS K® ,b,+§PfRZ,Kaf;,5c, — R RS PS6%, —Rb,Rb/Pa,cSc,).

(209)

8

We have now reduced the problem to determining the six expectation values that appear in Equation
(203). These can be found by inserting the terms inside the expectation value brackets in diagrams
generated by the actions of Section 6. As we saw for the bosonic string, the dilaton beta function
contains the contributions that are proportional to the spacetime Ricci scalar. These result from
terms that have no background fields associated with them. Examining the actions in the flat
index expansion we see that all terms in (161) are proportional to the background field X} or Ay.
Consequently, we only have to consider the actions (162) and (160).

8 Dilaton p-function Feynman diagrams

We now have all the ingredients to start calculating the dilaton S-function. In Equation (203)
we saw that it consists of six different combinations of insertions. We will see that a A dyF in-
sertion is much the same as a A,0,Y" insertion. For this reason it is easier to consider some
of these insertions simultaneously. We have subdivided this section into a subsection covering
<17[ gnun0.Y1o,Y 7 0,YMo,y M >, a subsection covering diagrams with insertions of the form of
<n1 70.Y 1o,y AcadA> and lastly a subsection covering diagrams having insertions of the form
(AyOpAN.O4B). Here A and B are either E or Y. As there are a lot of complicated integrals,
they are listed in Appendix C

8.1 <mJ77MN8aY18bYJ80YM8dYM> diagrams

Let us start with the quadruple Y expectation value <77[JnMN8aY18bYJacYM8dYM>. We will
consider the three topologies of Figure 7, 9 and 10. We expect that for any of these three diagram
forms there will be multiple diagrams in the TNC case. This is because we are dealing with two
extra fields here (A, and E). As we saw in Section 6.1, a Y field can propagate to another Y-field
or to a A-field, furthermore the vertices in the actions of Equation (160) and (162) contain terms
where a A-field is coupled to multiple Y-fields. We then get additional diagrams where we swap
certain Y-lines of the diagrams of Figures 7, 9 and 10 by a A. This can either happen in an internal
line, or in an external line connecting a vertex to the insertion. Note that Y-Y propagator is only
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l+p q+p
aaYUabYVUUV 8CYX8dYZ77XZ

l q

Figure 14: Diagram contributing to the expectation value <77[J77MNaaY18bYJ80YM8dYM>. The
Y -fields are inserted at the crosses. The solid lines stand for a Y-Y propagator, whose form

is found in Equation (170). The dot in the middle represents a vertex with vertex factor
—Ersmne§esje§\”4e?VYIYJBQYM(?“YN.

between spatial Y fields, whereas the Y-A propagator connects a A, to a Y. The Y-Y insertion
that we want to compute here does not mix the components of the Y-fields, as it contracts the Y
fields with the flat metric nyy,. Therefore it is impossible to have one of the two inserted Y-fields
on one insertion propagate into a A-field while the other remains a Y-field. Either both Y-fields
propagate into a A-field and the inserted Y-fields are only the Y° component or none of the Y-fields
change and the inserted Y-fields are only the spatial Y* component. We are now ready to examine
the three diagram shapes of Figure 7, 9 and 10 and see which diagrams we can form with the TNC
fields.

The infinity shaped diagram of Figure 7 has one vertex involving four quantum fields. In the fourth
order action (162) there are two terms that can form such a vertex. One involves four Y fields
and the other couple a A field to three Y fields, but since we cannot have only one inserted Y-field
propagate to a A, this last vertex will not appear in diagrams. The only diagram of this shape that
can be formed is given in Figure 14. This diagram is the same as in the Riemannian case (Figure
7) except that the vertex now contains an extra term involving the derivative of the spatial metric,
which can be traced back to the fact that the covariant derivative is no longer metric compatible.

Next, we turn to diagrams with the shape of Figure 9. These diagrams have two third order vertices.
For these we look at Sél) in Equation (160). This action features one vertex combining three Y
fields and one vertex combining two Y fields with a A-field. Consider first the case where none
of the inserted Y fields flip to a A. We could then have two triple Y vertices with an internal
Y-Y propagator, see Figure 15. Another option is one Y'Y A-vertex, one YYY-vertex and a Y — A
propagator connecting the two. This diagram is shown in Figure 16. Note that a symmetry factor
of 2 appears here as both vertices can be interchanged. Finally we have the case where both vertices
have two Y-fields and one A-field, shown in Figure 17. The internal line connecting the vertices is
then a A-A propagator.

Because A, can only propagate to Y? and Y can only propagate back to a A, the only diagram
where the inserted Y-fields flip to A-fields directly is the one in Figure 18

We now turn to diagrams with the shape of the diagram in Figure 10, just as the previous diagrams
these feature two 3-point vertices of either three Y-fields or two Y-fields and a A-field. Here it is not
possible to let any of the inserted Y-fields flip to a A-field as its partner on the lower leg is directed
connected to another YY-insertion. The only place where we can add A-fields is on the internal
lines connecting the two vertices. Let us start with a diagram where all of the fields are Y-fields,
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(Y Vhimn + e Hygn)eher et Y10 Y70, YN
I+p q+p

2.YY0YVry & D 0YX0.Ynxz

—(ygh@rﬁst + %ethrst)e%efgetTYRﬁgYsﬁhYT
Figure 15: Contribution to the expectation value <nU77MN8aY]BbYJE)CYM8dYM> with only Y prop-

agators. To find the expectation value we insert 9,Y10,Y/n;; twice into a second order diagrams
composed of the vertices and propagators determined in Section 6.

— V2PN (Y B + € Frpp e enY 10, Y 7

[+p q+p
2 YV0YVnuy & ) 0.YX0qYZnxz
l q

—(Y"V by + L9 Hyg)ehes el Y RO, Y 59, Y T

Figure 16: One of the vertices now features a A, which then flips to a Y-field through the Y-A
propagator (171). The diagram should be multiplied by 2 for symmetry because the A could also
be on the lower half of the inner propagator..

l+p q+p

2, YY0YVnuy & ) 0.YX0aYZnxz

— V2PN (VY + €I E ) ehe Y RO Y S

Figure 17: Now both of the vertices have a A-field.
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— V22N (Y b + € Frin)eTe Y10, YY

l+p q+p
2. YY0YVry & & 0YX0,Ynxz
[ q

— V2O (9, + €9 Fry)efel Y RO, Y S

Figure 18: The Y part of the inserted Y-fields can flip to a A, (171). Because the Y'Y insertion
does not mix the Y fields the other inserted Y-field also only has the Y° component. This Y° can
then only flip to A, (171). This double flip can be on any of the two YY insertions, but not on
both as the vertices in action (160) have at most one A-field. The diagram should be multiplied by
two to account for this symmetry.

l+qg+0p

(Y Vil + 3 Hypn)ehe? et Y10, Y70, YN — (Y hgt + Leh H,g)eheteb Y RO Y 50, Y T

l+p l+p

.YV oY Vuy & &) 0.YX04Y 7 nxz

l

Figure 19: Diagram contributing to the expectation value <77U77MN8aY181,YJ8¢YM8dYM> with
only Y fields. This diagram is similar to the diagram of Figure 10 of the Riemannian bosonic
string, but here the vertices also feature a derivative of the spatial metric, which was not present
in the Riemannian case because there the covariant derivative was metric compatible.

this is shown in Figure 19. Next we consider one A-field appearing in the small loop, as shown in
Figure 20. The A-field can be on any of the four internal legs of the loop, thus a symmetry factor
of 4 appears. If we then add a second A-field to the small loop there are two options. It should be
on the other vertex, but it can go to the line connecting to the first A-field or to the opposite side.
These diagrams are shown in Figures 21 and 22 respectively.

Having constructed all the diagrams contributing to <771 Jnun0Y 1o, Y70,y Mo,y M > we can now
start computing the corresponding Feynman integrals. The strategy will mostly be the same as
for the Riemannian bosonic string; the derivatives put momentum factors in the numerator of
an integral. The propagators provide the denominators. In general for two-loop diagrams these
integrals will be too difficult to solve right away because there are too many denominators. By
rewriting the momenta in the numerator in terms of the terms of the denominator we try to simplify
the integral. Separately there are contractions between the TNC fields, as these diagrams contribute
to the dilaton S-function these contractions form spacetime scalars. There are not too many scalar
terms that can be formed this way, for example in the Riemannian case there were only four:
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l+q+p

— V2N (v B + € Frop )eTenY 10, Y (9" hst + 29 Hygp)eleselh Y RO, YS9, YT

l+p l+p

0. Y0 Y Vyy &K Q) 0:.Y X0V nxz

l

Figure 20: Now we put a A-field on one of the legs of the small loop. There are four options, hence
a symmetry factor of 4.

l+q+p

— V2PN (YT i + € Frp e el Y 105 —IV2OA (vys + €M ) el Y RO, Y S

[+p l+p

YV 0Y Vv Q) .Y XY Znxz

l

Figure 21: Now we put a second A-field on one of the legs of the small loop. The option shown here
has the two A-fields connecting with a A-A propagator (172). There is a symmetry factor of 2.

— V2PN (YT B + € Frp e enY 105 Y 7 —1V2A (795 + € Fg)ehel Y RO, Y S

Q) 0.YX0aY%nxz

Figure 22: Lastly there is the option to put the two A-fields on opposite sides in the small loop,
such that they connect with a Y-field of the other vertex. There is a symmetry factor of 2.
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The spacetime Ricci scalar R, the square of the Kalb-Ramond field H? and two ways to put two
spacetime derivatives on the dilaton: (V - ¢) and V2¢.Schematically Figure 14 can be represented
by the following integral,

" l l p (q p)cpd
4 s n 5 § UR VS  XQ .ZP r s m._n
¢ rsmn
/ / l2 l p) (q p)2 UV XZQZ) Qb ¢ d) E 6[6J6M€N|:

— 030308 05 q - (¢ +p) — 67045568 q - (q + p) + 0R0Y 6508 q - (l+p)+---} (210)

where the dots represent the other 21 ways to place the vertex Y-fields. The E-tensor was defined
in Equation (150). Each insertion has a delta tensor connecting two legs. The Y-Y propagator was
just a delta tensor in the Riemannian case, but as we found in Equation (170), in the TNC case it
has a different tensorial structure: ¢’/ = 5!’ + §l6f = §17 — 686J. Each set of derivatives brings
down at most two factors of the loop momenta [ or ¢, so at most we have one-loop integrals with
four momentum factors in the numerator. This is still covered by the integrals of Appendix B.1,
the only problem being that there are 12 different momentum configurations and thus 12 different
integrals to compute. We will first simplify the tensor contractions a bit to see if we can reduce this.
After some algebra we find that an insertion with two connecting propagators combines into an
easier result; nyy eV ¢V = ¢!7. The vertex involves four spatial vielbeins, which contract with the
¢!/ of the insertion plus propagator contraction. This contraction happens in the 24 possibilities of
taking all vertex leg configurations into account. In general ¢'”e e = h" + efeq = h's. This h's
then contracts with the E-tensor appearing in the vertex. From Equation (150) we see that E,.gp, is
symmetric in its last two indices. When it is contracted with two symmetric rank-2 tensors there are
only two distinct terms that can be formed. We can then group the 24 terms appearing in Equation
(210) in terms that have the contraction Eklmnﬁklﬁmn = F; or the contraction Eklmnﬁkmﬁl" = FEs.
This gives two different integrals, one that is proportional to F7 and another that is proportional
to EQ,

167r312/d”l/d" o l§q< p>c(§d [Ev(P+12—q-p—1-p)+p°Es].  (211)
These integrals are fourth order in the1r tensor loop momenta at most, we can thus use the formulas
of Appendix B.1 to calculate them.” To make reporting the Weyl anomaly clear we will write these
diagrams in terms of integrals J, which we then move to Appendix C to be calculated there. The
diagram of Figure 14 can then be represented by

— 16732 (ElJﬁl + EQJ{%). (212)

Next, we move to the second diagram, Figure 15. Again we have to take all vertex leg configurations
into account: We get different momentum factors depending on which fields the derivatives in the
vertices act and contracting both vertices with each other gives different results depending on how
the indices are permuted. Note that we do not get any terms combining H;j;, with %iﬁjk as there
will always be a contraction between a symmetric part and an antisymmetric part. This diagram
is much the same as that of Figure 9. There we first used Equation (66) to rewrite the epsilon
tensors. Secondly, we wrote contractions among the momenta coming from the vertices in terms of
propagators to be able to cancel some of the propagators and to be able to calculate the integral

“In the Riemannian case we were careful with keeping track of the tadpole integral S = [ d™li72. In Appendix
B.1 we note that this integral is either infinite or zero. Any term proportional to S will thus either be zero, or stick
around until the end and be removed by a counterterm. Because of this, no finite results will ever arise from terms
proportional to S. For this reason we will no longer take terms proportional to S into account; effectively we put S
to zero.
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using expressions from Appendix B. By going through these same steps for the diagram of Figure
15 we can express it as

ls UV [, WT Y2 n n l-i-p q+DP)eqd o - o -
(27()5 <47r> R YT RY /d l/d l-|-p (l)_(q)2(q)_|_p)2q2{ — 2V howViuhys [(l—q)4+ ((l+p)2

—(g+p)°) (P =) - (U= (((+p° + P+ (g +p)* + q2)] — VuhawVilys [ —3(l—q)*

=3+ )2+ (g +p)? + (L4 )P0 = 3+ p)Pa + (L= @2 (492 + P+ (g 4+ ) + ¢7)]

+ f(1) Huy Hya [(l '+ (U+p)° = (q+p)) P =) = (1= * (I +p)° + 1 =20+ (¢ +p)* + qQ)} }
(213)

This looks complicated but any terms where only one denominator of either [ or ¢ remains can be
dropped straight away by the arguments of footnote 7. We are then left with only two distinct
integrals, one where (I — ¢)? gets canceled and we are left with two separate one-loop integrals and
one where either ¢?(I + p)? or [?(q + p)? is canceled. Note that these two give the same result as
the rest of the integral is symmetric under exchange of I and ¢.8 The integral then simplifies to

20 R R (VihowVohye 5+ VahoValye TS + Huwy Ho: T35 ) (214)
with the J integrals written out in Appendix C

After taking all vertex configurations into account we find the following integral expression for the
diagram of Figure 16,

1 - -
87012 (Vihiw =V hst)h'“w”( gy eTJVhe>. (215)
Here we have written out h™ = h'™ + epey and subsequently used e = —%, which can be seen

from Equation (154). We then made some simplifications by using the twistless torsion condition
Fonh™h™ = 0 as well as twistless torsion of the b field, b,,, A"*h™" = 0. This last condition is a
result from a different S-function, found in [14]. We then defined the acceleration as = 0t Fys and
the electric field e, = 0hys.

Next we turn to the diagram of Figure 17. There two vertices involve a A-field, which have a
A-A propagator connecting them (172). The diagram can be represented by the following integral
expression,

A7 [auavjfﬁ +egen o + 2auevjfﬂ . (216)
The last diagram of this form is given in Figure 18. After rearranging the momentum terms we find
the following integral expression for it,

w32 pw [4eueva§ + auayJ% — 4aueUJfé°] . (217)

The next diagram to consider is in Figure 19. After taking all possible momentum configurations and
rearranging the momentum contractions we find the following integral expression for this diagram,

23 2R TR B (3V uhiaw Vo hiye — 2V s howValiye + (1) Hywy Hog ) Jio. (218)

8For this symmetry to hold one needs the diagram to be symmetric under exchange of abed <> deba. This is the
case when the diagram is contracted S®*°¢ (204), which is mirror symmetric.
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The next diagram is in Figure 20, after reordering all the contractions we have
8 o - . - - .
7 SR (Vihuy = Viohe,) [angth - 2esJ56Vh] (219)
Moving on, the diagram in Figure 21 has the following integral expression,
S T [auangf +euen S — daye, Jgﬂ . (220)

The final diagram contributing to <77]J77MN8QYIabYJaCYMadYM> is given in Figure 22. After
rearranging we find the following integral expression for it,

T3 12h*Y [agcayJé‘; - emeng] (221)

We can combine all nine of these diagrams into a final result
(N 0aY ' 0,Y 7 0.y Moy MY = w?’zg{—mEl T 16 By T2 4R R Y2V Py Vo Ty (2J1V5h+6J19>
+ BTN Ry Vg <2J1V5h* - 4J19) + BRI s Hogs (2J{§2 +2 f(n)Jlg)
+é(%s/€tu —Vuha ) W00 a, (8J1V6h'“+8J§5%> + é(%sﬁtu —%uﬁst)h”“@%%r(—s,]%h'e - 16J§§h)

Fh®aga, (4Jf72 I Ly [y [ ) Fh®eye, (4J{§+4J{§—8Jgf —ng) Fh®eua, (8Jﬁ€—4J{L§+32J§f) }
(222)

8.2 <n1J8aYI8bYJA08dE> and <n1J8aY185YJAcadYO> diagrams

We now turn to the second expectation value in Equation (203): <77]JaaY18bYJAcadE>. The E-
field can only propagate to a A-field (173), so this limits the possibilities. Before we go into the
possible diagrams note that diagrammatically there is a very small difference between an inserted
E-field and an inserted Y°-field. Both can only propagate to a A-field, this means that atleast
the layout of the diagrams will be exactly the same, regardless of whether we insert an E-field or a
YV-field. The only difference between the two is their propagator with A, the Y°-A propagator (169)
is 87rik—126abk:b, whereas the E-A (173) propagator is —87riki2'yabk:b. To save some time we will draw
general diagrams for <771 70, Y10, Y/ AcadA>, where the A field is either E or Y°. In the Feynman
integrals we use a new worldsheet tensor wy for the E-A propagator, where wg, = €5 for the YO-A
propagator and wg, = —7y4p for the F-A propagator.

We will again consider the three diagram shapes of Figure 7, 9 and 10 one by one. The only diagram
contributing to <m 70, Yo Y AcﬁdA> in the shape of Figure 7 is given in Figure 23. For diagrams
in the shape of Figure 9 there are two options. The inserted A-field has to propagate to a A-field,
this fixes the possibilities for the lower vertex. The upper vertex is either all Y-fields (Figure 24),
or it can have one A-field, which can be either connected to the inserted A (Figure 25), or it can
be on the inner line (Figure 26). It cannot propagate to the Y'Y-insertion because then the other
Y-field would also have to turn into a A-field, which is not possible here.

Next we move to diagrams of the shape of Figure 10. Because there is one line connecting the two
insertions, the options are very limited. We cannot have the A-field on this line because A can only
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l+p q-+0p

2. YV 0,Y Vnuy

l q

Figure 23: Diagram contributing to <771J(9aY18bYJAC(9dE>. The vertex in the middle has vertex

factor —%%\/ 20A, ("yab@rbsm + eab@TFsm) e}"e‘fje}(}YIYJﬁbYM. A straight line is a propagating

Y-field, a wiggly line a A,-field and a dashed line is an A-field, which is either E or Y.

(v Vihn + L6 Hpp)ebem et Y10,V 9, YN
Il+p

2. YV 0Y Vv

—LV20A, (4,5 + €M F ) ehel Y RO, Y S

Figure 24

— V20N (YT + €T Fppp)eenY 10, Y
l+p

.YV 0,Y Vv

— V2O (9 s + €9 Fry)efel Y RO, Y S

Figure 25
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— V2PN (Y O + € Frin)eTen Y10, Y
l+p

YV 0,Y Vv

— V20N (V9,5 + €9 F g )ees Y RO, Y S

Figure 26

l+qg+0p

—LV2BA (YT + €T Frpp)eenY 10, Y7 —LV20A (49,5 + €9 F g )ehel Y RO, Y S

l+p I+p

0.YV0Y Vv AO4E

l

Figure 27: Note that because we want the E-field to go on the leg connecting to the vertex, we
have to flip the diagram. So in this the d and a parts connect to the small loop and b and ¢ are on
the lower leg.

propagate to A. The only option is to place the inserted A on the line connecting the two insertions.
Because A only propagates to Y° and the YY-insertion does not mix up the components of Y, the
other Y-field of this insertion also only has its 0 component, such that it can only propagate to a
A. The inserted A-field also has to propagate to a A-field and this fixes the internal lines, as the
vertices already have the maximum amount of A terms. The resulting diagram is given in Figure
27. We have now drawn all diagrams contributing to <771 70.Y1o Y7 AcadA>, we will express them
in Feynman integrals below.

The diagram in Figure 23 can be represented by the integral

w3z§%@mﬁ“ [V2hom T8 @) + Ve Fam T5F ()] (223)
with the J integrals are given in Appendix C.
Figure 24 can be represented by the integral expression

A . - .
%(vvhxy — VT ) 2RO [auJQZh'“(w) + QeuJQZh'e(w)} . (224)

We then turn to Figure 25, which can be represented by the following expression

— 8320 [ 2epep Jin (W) + apaz IS (w) — 2%%Jgg(w)} . (225)
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The diagram of Figure 26 can be represented as

8312 [%eng«; (W) + agay S (w) + axengg(w)} . (226)

The last diagram to contribute to <n1J8aYI(9bYJAC(9dE> and <771J8QY18bYJA08dYO> is given in
Figure 27, its contribution is

8312 (exengi(w) + agay JE (w) + Jg';t(w)ezay). (227)

In total we have

32 P 32 ~
(1170aY " 0Y 7 A O E) = W3l§{3ﬁthsVrhst2Vg,h(—’7) + 5 OV Fan I35 (<)
4, - 8 . -
+ 5 (Vohay — Vyhow )WY O 0% ay Iy () + 7 (Vohay - Ve )WYV 0% ey Joy e (=)
vx 22 62 22 vT a2 a2 CL2
+h evez‘(_ 16<]25(_’}/) +8J26(_/7) +8J27(_7)) +h avax<—8j25 (—"y) +8‘]26 (—"y) +8J27 (_f}/))

—I—h””avew(lGJgge(—) 8JLE (—y) + +J57(— ))} (228)

and
32 s
(1170.Y " 0pY A 04Y ") = w?’zQ{ DRV g Jag (€) + 5 ORIV Fan Jyy ()
4 ¢ 8 o - .
+ g (Vohay = Vyhuo) V6 0% a3 (€) + G (Vohay = Vyhoa) B0 6 e i ()

n hwevex( — 1675 (€) + 8J% (¢) + &Jgi(e)) + hwavax( — 8L (€) + 8% (€) + 8J% (e))

+ R age, (16Jg;(e> 4 8JLE(€) + +J5-7a(e)) } (229)

9 (ANOyEA.O4EF), <Aa8bEA08dYO> and <Aa8bY0Acé?dY0> diagrams

As was noted in the previous section, £ and Y behave very much the same in a Feynman diagram.
The only difference is in the £ — A/YY — A propagator, this difference be contained in a tensor
wap Which is —v, for the E-field and ¢4 for the Y0-field. We will draw general (A,0,AAN.0qB)
diagrams and compute all three of the expectation values from those. There are four diagrams that
contribute to (A,0pAA.04B). These are given in Figures 28, 29, 30, 31 and 32.

Figure 28 can be represented as
— 32312 h™Y <e$eyJ§;(wA,wB) + aa;angg2 (wa,wR) + acgeyJog' (wa, w3)>. (230)
After taking all momentum contractions into account, it turns out that the diagram of Figure 29 is

always zero by footnote 7. Regardless of whether the A and B field are E or Y?; there is always a
q propagator cancelling, meaning we get a tadpole diagram with no finite contribution.
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— LB (Y9 + M E)ehel Y RO Y S

Figure 28: Diagram contributing to (A,OpFEA.0qF) for {A, B} = {E,E}, to <Aa8bEA08dY0> for
{A, B} = {E,Y°} and to lyly for {A, B} = {Y°,Y"}. The only difference between an E-field and
a YV-field is in the propagator, which has a —v4, for E and a ey, for Y.

l+q+0p o
—3V2PA (VT By + €L Fpp el el Y 05Y 7 —(Y9"V,hg + 29" Hygp)ehelel Y RO Y 50, Y T
l+p, 4 [+p
AaBpA %M Acd4B
=
Figure 29
I+q+p
—1V2PA (Y b + €F Frpp e e} Y195 Y7 — V2PN, (Y s + €9 Fr)epesY 0, Y S
I+p, a l+p

MDA %M AOyB
-

Figure 30
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l+q+p

— V2PN (YT i + € Frp e el Y 105 —IV2OA (v ys + €M) el Y RO, Y S

Figure 31: This diagram has a symmetry factor of 2.

l+q+p
TN b + eemen>e?e3Y’8f;Q¢z¢Ag<vghhrs B et Y oY
l+p, q L+ p
A, OpA A.04B
l
Figure 32

The diagram of Figure 30 can be expressed by

— 64m312he (exengfé(wA, wi) + ey IS (WA, wE) + agey JE (Wi, wE). (231)

We can express the diagram of Figure 31 as

— 64T3I2 Y <exeyJ§i (WA, WB) + gy J% (WA, wB) + agey JE (WA, wB)). (232)

Figure 32 has the following integral expression
647120 (eueu T3 (wa, wB) + 0uau i (Wa,wB) + euau S35 (wa,wp) ). (233)

These integrals simplify considerably when taking w to be v or €. For this reason they are reported
separately in Appendix C.

In total we have
(MO EAOLE) = 32w313{h%ey( — Ja(=7, =) = 2551 (=7, =)
z a? a? a?
+ azayh y( — J3g (=, =) — 2J51 (=, —7) + 2J55 (=, —7)>

+ axeyh”( = 38 (=7 =) = 2050 (=7, =) = 2J51° (=, —7)) } (234)
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(AadhBAOaY") = 32w3l3{hwyexey( = J5(=7€) = 2J50(—7€) — 251 (=7, €))
xy a? a? a? a?
+ azayh < — Jos (=, €) = 2J30 (=, €) — 2J51 (=7, €) + 2J55 (=, 6))
s h (I (<,0) = 255 (7, €) — 255(—,0) + 255 (~7.0)) } (235)
and
(AaBY A0, 0) = 327r3l§{hxyexey< T (e, €) — 205 (6, €) — 205 (€, €) + 255 (e, e))
X a2 a2 a2 a2
+ azayh y( — Jas(€,€) — 2J3 (e, €) — 2J5 (€, €) + 255 (e, 6))

gt b (= T3 (e, €) — 2055 (e, 0) — 2055, ) } (236)

10 Results

We can now take Equation (222), (228), (229), (234), (235) and (236) together to find the right-hand
side of Equation (203). To this end we have to contract all the tensorial integrals with their corre-
sponding tensor S, U, V', W, X or Z. We will denote an integral J contracted with a tensor T" as Jp.

2 (55
Of \Of/ess,,

L X8 V0 A v (2J1Y-,’g ~ Ay S) R R Y2y Hog (2J15 -+ 2f(n)Jig S)

= w?’zg{ 16E1 I g — 16 Ea J 26 4+ W™ W hY*V by Vi hys (2J1V5h5 +6J19 S)
f=0

1 - - o —

5 (Veheu = Vaha 0760 a, (8550 + 855 + ATR (=) + 45(€))
1 . - . o

+ 5 (Vo = Vuha) B 0%0"e, (= 8IS — 167570 + JQZ’};( +8514(6))

" ayay (4T s+ Tk 5851 5+ I8 5~ 85 1 (=) + 85 (=) 857 (=7 >—8J25v<e>+8J;§v<e>
+8.757 v (€)= 3255 1 (=, =) —64J51 1 (=, —7)+64T 5 1 (=7, —7) —32J5% 7(—7,€)—64J55 7 (—, €)
- 64J§L122( ,€) + 64J32 z(=7,€) — 32J28X(€ €) — 64J30X(€a €) — 64J31 x(€¢€) +64J32X(5a 6))

B eyt (475 5 + 4T85 — 8T8 s — S35 — 16055 (=) + 855 1 (=) + 857 1:(=7) = 16753 (¢
+8J561(€) + 857 v (€) — 325w (=7, =) — 6451 (=, —7) — 8255 (=7, €) — 6450 z(—7, €)

—64J31 z(=7,€) — 32=]28X(6 €) — 64J§?)X(€76) _64=]31 x(€€) +64J32X(676)>
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+huveuav(SJf%ES—‘U?éeS“’:S?JgieS"‘16J25U( Y)+8J56 0 (=) ++Jo7 1y (=) +16J55° (€) +8J5"y (€)
J27V() 32J§éew(*%*7)*64J§dew(*’77*7)*64Jgiew(*’7 ) 32J28Z( ) 64J302( )

— G455 (=€) + G457 (=7, €) — 325 (e, €) — 455 e, ) — 64J§fx<e,e>)

32 MRS 32 AN L TS
# SO b (T () + I5 () + S0 o (5 (-0) + IE @) . (21

Now we certainly do not want to write this down a second time, so let us write
=M (238)

5<55>
0f NOF /[ eto | =0

for now. We may not be able to solve all of the integrals in M, but we know that they are worldsheet
scalars and have momentum dimension 2. The only option is that they are proportional to p?. In
section 3 we saw that in position space p? becomes —[15(£). We then have an equation of the form

0 /48
— (= ) = -MO§(§). 239
5 (57 ) = -moie) (239)
We did not write this down explicitly, but all of the TNC spacetime scalars appearing in M are
in Fourier space. We never bothered to compute these TNC fields in Fourier space as we will just
just transform them back into momentum space here. By performing the same steps as we did in
Equation (54) and (60) to solve this differential equation we get

<‘;‘;’:> = —MOf. (240)

We then use equation (15) to write the D’Alembertian of the scale factor as the worldsheet Ricci
scalar,

<‘;§> SMVAR,. (241)

Looking back at Equation (174) we find that the two-loop contribution of the action (117) to the

dilaton S-function is given by

5 = oM, (242)

now to get the full form of 3% one needs to consider term coming from the dilaton action itself, as
well as possible terms involving higher order energy-momentum insertions. In section 11 we discuss
how these two kinds of contributions can be found.

Putting 4¢ to zero along with the other S-functions in Equation (174), ensures that the TNC string
is Weyl invariant at the quantum level. Putting each 5 function to zero gives six different equations
of motion. The first five of these were found in [14]

h'*Vyeas + h"aras =2h" ¢ es + 20 a, Vo,

1 rty sw 1 S
R(mn) - ZH s(m )twh ‘h + 2V ¢ =h'h q(m vn)at + iaman +eh UtT(mHn)ts

1 _
+3 ((2@TmTn — hnn) — emen) — A* @7 T,
1 - . 1
§hrsersmn — thHpmnvrqﬁ :htqhq[mvn] ¢ + UTT[mvn} ¢ = Qmlpn] — iarhmHsmn

1
+ (f)tvtgb - ivt@t)hmn-
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Here we have reintroduced the covariant derivative V and Ricci tensor of the standard TNC con-
nection (92). The condition M = 0 should not be independent of the above equations. This can be
seen from the fact that we can only ¢ for a curved worldsheet. The physics, however, should be
independent of the worldsheet. After calculating all the integrals comprising M we thus expect that
the boxed equations already give the information coming from the condition M = 0. Calculating
the precise form of the equation of motion ensuing from setting 5¢ to zero, is thus a good way to
check the validity of the results found in [14].

11 Discussion and future work

We have found all of the diagrams that contribute to the dilaton S-function and we have expressed
them in two-loop integrals. About one-third of these integrals can be calculated using the standard
integrals of Appendix B.1. Now the other integrals have terms where only one propagator power
gets canceled. To compute these we need to extend the list of Equation 269 through 273 with the
standard integrals I5[lqlplclale, aB] and Ia[lalplclalel s, o, 5], where this notation means

Llalllalely, o, 5] = /d"lm. (243)
We discuss the feasibility of finding these standard integrals at the start of Appendix C, where we
conclude that in principle it should not be too difficult. We make the estimate that one should
diagonalize a 72 dimensional matrix to find Ia[lolplclglels, o, f]. On a first look there do appear
to be some integrals in Appendix C where not even one denominator power can be canceled, an
example is integral J§:* in Equation (315). One would then have to construct a (0,8) tensorial
standard integral. There are however not that many terms where not even one denominator gets
canceled. It could be that on a more careful examination of these few terms they turn out to vanish

by, for example, symmetry arguments.

A different approach to solving the integrals of Appendix C is to construct standard three-point

integrals 0
LT(1),a,B,7] = /dnllza(p T (244)

where T'(1) is some tensorial structure of the loop momentum [, and p and r are external momenta.
This has the advantage that rewriting the numerator to cancel denominator terms is not needed.
Any two-loop integral that we encounter in Appendix C can be expressed in these standard 3-point
integrals right away. However, we have not been able to solve even the most basic integral of this
form, where we have T'(I) =1 and r = %p. Links to the literature on massless 2-dimensional three-
point functions and attempts to calculate this scalar integral are discussed in Appendix B.2. Even
if one would find the scalar integral, then finding tensorial integrals from that is more complicated
then for the two-point function. This is because one now has two external momenta, so more ways
to distribute the Lorentz indices of a tensorial integral over combinations of the metric v, and the
external momenta p, and 7. Even if one were to compute all this it is still preferred to cancel
numerators terms against denominators so as to avoid having to use the standard (0,8) tensorial
integral I3[lalplclalellyly, o, B,7]. For the above reasons, we do not recommend using three-point
functions to calculate the two-loop integrals of Appendix C. One does need three-point integrals for
calculating diagrams that have three external lines, such as the diagram of Figure 4. These diagrams
also show up in some of the other TNC S-functions, but (as has been done in [14]) these S-functions
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can also be calculated by using operator product expansions instead of Feynman diagrams. One
would then only need three-point Feynman diagrams when calculating higher-order corrections to
these S-functions.

Once all of the integrals of Appendix C have been calculated on has to remove any divergences in
them. On a first look only diagrams of the form of Figure 14 are convergent. The others can have
(’)(E%) divergences. To remove these divergences one needs to construct counterterm diagrams. For
the Riemannian bosonic string, there was only one counterterm diagram (Figure 11), but for the
TNC case, we expect that there are many more.

There are two more kinds of terms that contribute to the dilaton S-function that we have not
examined in this thesis. First of all, there are the first-order corrections coming from the dilaton
action, such as the diagram in Figure 13 for the Riemannian bosonic string. These should be
relatively straightforward to calculate as the dilaton action has the same form for the TNC string
as for the Riemannian bosonic string.

The second class of diagrams that should be considered are terms that involve higher-order spacetime
derivatives in the background field expansion of the Weyl anomaly, such as the diagram in Figure 12
for the Riemannian bosonic string. In our present approach we dropped any terms in the background
field expansions of the energy-momentum tensor (183) and Cy (191). For the Riemannian bosonic
string, the only term in the background field expansion of T’ | that is higher in spacetime derivatives
is the one involving the dilaton appearing in the diagram of Figure 12. However, here we could
also have terms showing up with spacetime derivatives on the vielbeins, so this could generate some
extra diagrams.

When the entire form of the dilaton S-function is found it can be compared to the other g-functions
which were found in [14]. As shown in Equation (174), the dilaton S-function is proportional to the
worldsheet Ricci scalar R, which vanishes for the flat worldsheet. For this reason, we expect that
dilaton S-function is not independent of the other S-functions, as the spacetime equations of motion
should be independent of the worldsheet. A different approach to get the O(a’) contributions to the
dilaton S-function was undertaken at the same time as this thesis. There the TNC bosonic string
was described in the framework of double field theory and an expression for the dilaton B-function
was found. Once all integrals have been found it would be a good check on both methods to compare
the results.

A slightly different version of Newton-Cartan strings is also studied, known as string Newton-Cartan
theory. In [24] the S-functions for the Weyl anomaly of this theory are found. It would be interesting
to compare the ensuing equations of motion with the ones that can be found from computing the
full form of 3? (242) combined with the equations of motion found in [14].

Once the TNC spacetime equations of motion have been found and checked by the various meth-
ods described above, one can start working with these equations, for example, in the context of
holography.
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A Conventions

For index conventions we use

a, (3 (first letters of greek alphabet) for curved worldsheet indices
o a, b (first letters of roman alphabet) for flat worldsheet indices

e L, U etc. for curved spacetime indices

e k, m, n etc. for spatial spacetime indices

e I, J for flat spacetime indices

e g, h, i, ]j for flat spatial spacetime indices

The Riemann tensor is defined in the usual way, one can contract two of its indices to find the Ricci
tensor,

Ry =R, (245)
When using zweibeins, the following convention is used
egfe[j) = 2B, e[fe[i] = —f, (246)

We use the following convention for the Levi-Civita symbol: €' = 1, from which it follows that in
lightcone coordinates: e " =2 and e~ = —2.
We use the metric signature: -+-++

The worldsheet has time coordinate 7 and spatial coordinate o. Lightcone coordinates are defined

by

ot =1+o0. (247)

Conformal coordinates on the worldsheet are defined by

z2=-T+0 , Z=T+o0. (248)

In Feynman diagrams a derivative of an outgoing momentum gives a minus sign.

B Dimensional regularization integrals

B.1 One-loop, two-point integrals

A one-loop diagram means we have one internal loop where we integrate over all values of its
momenta. Two-point diagram means we are looking at a diagram with two external lines and
thus, via momentum conservation, only one external momentum. Consider the following one-loop
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Feynman integral with two external lines and some arbitrary numerator f(l/) dependent on the loop
momentum [, we denote this integral by

Sl
I = 2 . 24
2[f(l)7a7ﬁ] /d ll2a(p—l)2ﬁ ( 9)
Let us start with the scalar integral
L[, a,p] = /al”l1 (250)
2|1, & - l2a(p—l)26

By dividing all terms in the numerator and the integral measure by the external momentum p and
scaling the loop momentum by [/p — [ the integral can be made dimensionless, which can then be
solved in terms of hypergeometric functions[25],

L1, a, 8] = (p*)"**PL(n)G(n, o, B), (251)
where
TG -—al(G -fla+5-3) _ (2n)?
G(n,a,B) = —2 F(a)l“(é)l“(n ) Z and  II(n) = OTSTER (252)

In the following we will simplify notation by writing I2[f(l),1,1] = I2[f(l)] as we will not need
general denominator powers until we get to two-loop calculations.

The tensor integrals can be written in terms of this scalar integral using Veltman-Passarino reduction
[26]. The idea is to note that by Lorentz invariance, a rank (0, k) tensorial integral Is[ly, ...lq,]
should be proportional to all possible distinct combinations of the two Lorentz tensors we have at
our disposal, namely the external momentum p, and the worldsheet metric v,,. Each combination
gets an unknown variable, we can then contract both sides with the same tensorial combinations of
the external momentum p® and the inverse metric ¥%°. This gives m equations for the m unknown
variables, which we can then solve for the unknown variables. By contracting Is[lg,...lo,] with
combinations of p® and y?*® we encounter integrals like I3[l - p] and I5[I?]. Integrals of the first type
can be rewritten using (I-p) = 3(—(p — 1)* + 1> + p?),

1 1 1
L[l - :7(— d"l— + [ d"l 2 1). 253
al = 5 (= [ @+ [P R0 (253)
The first two integrals are the same upon shifting the loop momentum, such that they cancel each
other. The last term is the scalar integral of Equation (251). Integrals with just one denominator
like I5[I%] can always be shifted in the loop momentum to obtain something proportional to

L% = / d”zl%, (254)

which obeys the following identity in dimensional regularization[25, 27]

1 n/2+1
— 2T _5(e/2) = S(e/2). (255)

LIFI= | T(n/2)

The § divergence here seems to a problem, but as we will see below, we will only encounter this in
the combination €d(e) which is zero as zd(x) = 0 for all z. To simplify notation we write S(e/2) = S
below, in the two-loop case we will encounter an S(e) term.
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To illustrate the above described method of Veltman-Passarino reduction consider the integral
I5[l4lp]. By Lorentz invariance it has to be proportional to 7., and p,pe,

lal
_ 2 ath
Ll ] = /d I TR + bpape- (256)
We know contract once with v* and once with p®p®. This gives the following two relations,

an + bp? = L[*] = S, (257)
ap® + bp* = L[(1-p)?]. (258)

The integral involving (I - p)? can be found by writing expressing [ - p as denominator powers as in
Equation (253),

Bl = 5 (= Bl P~ 7] + Bl + Pl )

. . (259)
2 4

= — + —p=Ir|1].

2p S 4p 2[1]

To get to the second line Equations (253) and (255) were used. We can now determine a and b in
terms of the known integrals S and I[1]. This method has been repeated up to fourth order in
numerator powers, the results are

1

Llla] = 5palo[1]; (260)

Bli-p) = Jp7Dl1) (261)

L(l-p)*] = %pzs + ip“fz[l], (262)

Illal] = nb[lﬁiiiﬁ}(g — 2>papb + W%b’ (263)

Li(p-1)*) = %p45 + épﬁfz[l], (264)

Llalyl] = (3 4p2n(n__2 ) + 8824221)12[1])%%196 - Wp{a%c}, (265)
Bl )] = 1p Bl + 0, (266)

Lllalylly] = 16(”21 —-1) ((2 o n)p212[1;]92+ An - B+ 7n)spapbpcpd (267)

+p2(p212[1] - 25)7{ab70d} - (n + 2)(])2]2[1] - QS)p{apb7cd}> :

Here Ay, .. q,,} denotes the sum of all symmetrically different combinations of the indices a;...an.
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The above are only valid for = 1 and 5 = 1. For general a and § we have the following results

L[l -p,a, 8] = %pZIQ[l,a,ﬁ} + %IQ[I,O[ —-1,8] - %Ig[l,a,ﬁ —1], (268)
Bfle) = gpo(Bll o)+ 5 Blla 1.6 = 5 Bll.a,6 - 1] (269)
IQ[(Z 'p)maaw@] - 5( - IQKZ 'p)m_laaaﬁ - 1] + IQ[U _p)m—l’a - 1a6] +p212[(l 'p)m_laavﬁ]>7
(270)
N2 2 _
Dollaly, o B] = e _11)102 {nIQ[(l p) ,a,ﬁ]pzp L1, o 1”8]papb v (L[l a— 1,8 — L 'P)z,a,ﬁ])%b},
(271)
Iollalyle, o B] = <n—11>p4{ ((n+ 2Bl )%, 5] = 3D1p o = 1, Blp7) 72 25
+ (Bl pa =1 81p* = B1-p)*, 0. B)piatne (272)

Dllalylela, o, 5] = w{p2<(n+3)lg[(l- P a—1,6p" — (n+2)L[(1- p) a,f)
—L[1,a -2, ﬂ]p4)p{apb'ycd} +p! (12[1, a—2,8p" = 2L[(1-p)* o —1,8p* + L[l p)*, ﬂ])'y{ab%d}

+< - 6(77’ + 2)‘[2[(1 : p)27 a—1, B]p2 + ("Il + 2)(” + 4)12[(l 'p)47 «, 5] + 312[17 a—2, 6]p4)papbpcpd}'

(273)
When considering two-loop integrals we will often encounter the following integral
ol + p q +P)cdd
d"l [ d"q . 274
/ / (l+p)2(—9)¢ (274)

We can perform the ¢ integral first: we then consider [ as the external momentum and use Equation
(260) and (263) to write this integral as

2
2(1+6/2) n la(l—p)b n . l }
/d ! 2l2 1+e/2) ( A(n — 1)lcld 4(n — 1)%d + 2Pcld)- (275)

These are all just one-loop integrals with different values for the a power of the {?> denominator of
Equation (250). We thus find

a(l c
/dn /dn o (H-p) > 212[1]P2(1+€/2)< . *IQUa(l—p)blclmlJrgvl]

(I +p)*(l - 9)%¢? 4(n —1)
— opeballall = Pl L+ S0 Dolla(l — ) & ). (276)
2p02 a D)bld, 27 4(n_1> 2(la pb,27 Yed ) -

B.2 three-point integral

In Figure 4 we have a one-loop integral with three external lines. In general such a diagram would

have as scalar integral
1

L1 = /dnll2(l (TS (277)
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However, this scalar integral is more complicated to solve than the 2-point scalar integral (251).
In [28] an analytic expression for this integral is given in terms of the Appell F4 function. Such a
function is hard to implement in Mathematica because it is not a basic function. One then has to
work with infinite sums of which it is a question if they even converge. For these reasons, we have
chosen to not treat 3-point diagrams in this thesis. Luckily, for the dilaton S-function they are not
needed.

B.3 Sunset integrals

The integrals of chapter 3 are solved using these integrals. Later on, for the treatment of TNC
diagrams, we will take a more direct approach to solve two-loop integrals, as done for example in
Equation (276). The only nontrivial two-loop diagram that we encounter in Section 3 is the so-called
sunset diagram,

L) = [ @ [ a0 (279

We now have two-loops, and thus two independent loop momenta, [ and q. The external momentum
is given by p. We again start with the scalar version of this, this can be solved by performing the

L[] = /d2ll12/d2q12. (279)

¢*p—1-q)
Note that the integral over ¢ is just the one-loop scalar integral, but with external momentum p — .
We can solve it using Equation (251) to find

integrals separately

L[] = H(n)G(n,l,l)/d2llz(p_l;2(1+e/2) = H(n)QG(n,l,l)G(n,l,l+e/2)(p2)21_n/2. (280)

Here the second denominator has a power 2(1 + ¢/2) instead of the usual 2. Luckily Equation (251)
already covers general denominator powers, such that we can easily find the answer in terms of
gamma functions. Integrals with tensorial loop momenta in the numerator can be found using the
same method, they all reduce to the one-loop integrals of the previous section. The integrals that
we will encounter are

1 n—2 n—2
I =1I G’ — 281
ollat) ¢ <p2(1+e) G 8n—1) 4(n—1)p? S(6)>papb oy terms, (281)
n—2 IIG' n—2 S(e
L[lalyge] = IG 6(n = 1) 2079 _ 8(n—1) ;2)]17&1%1% + v terms, (282)
n?(n — 2) n GG’ S(e/2)TIG ~ TIGS(e)
Ls[lalvgeqal = 2 p2(i+e) (n—2) p2(1+e/2) n P2

32(n—1)(n%-1)

S(e/2)?
+2(n —2) (p/2 ) ]papbpcpd + v terms. (283)

Where G = G(n,1,1) and G’ = G(n, 1,1+ €/2). The metric dependent terms are omitted as we
will only encounter integrals with a 4+ + ++ signature.
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2(1+¢/2) n—2 P’
L[lag] = p L[1L[1, 1,1+ ¢€/2] (78(71 PP I 1) l)vab), (284)
2
_ 2(14e/2)[ M — 2 p _
Is[lalyge) = I[1]1[1,1,1 + €/2]p [16(’/1 — l)papbpc + 16(n — 1) (pa’)/bc + PbYac pc’)/ab)} )

(285)

S(e) 1(n—2)
711,20+ /2) _
[1]p S —1) [ 5 PalhPe + PaYoe + PhYac pc’Yab}

Llalogeqa] = Ia[1,1,1 + €/2]p21+</2) [ﬁh laly(p — Delp — Day 1,1+ ¢/2] — 4(;_1)12[5@11), 1, 6/2]%4
gy llalo(o = Delp = Dl (256)

Here I3[1] = I1[1,1,1] as defined in Equation (251). We could simplify I[l,lpqcqq] further by
substituting Equations from Appendix B.1, but it is easier to write it like this in Mathematica
directly.

C TNC Feynman integrals

This lists all of the integrals needed to compute the TNC dilaton S-function. In this treatment, any
integrals that are zero by footnote 7 are already dropped. Apart from the two integrals coming from
Figure 14 and Figure 23 (which give two independent one-loop integrals straight away) all integrals
have five denominators and eight momentum factors in the numerator. These momentum factors
can be the loop momenta [ and ¢, or the external momenta p. It is always a good start to write these
momentum factors in terms of the denominators, such that some cancellations occur. Since there
are always four momenta in the denominator carrying an external Lorentz index, we can cancel at
most two denominators with this method. An integral where two denominators are canceled can
almost always easily be solved, either because the denominator coupling the two-loop momenta gets
canceled, or because we can write it in the form of Equation (276). When only one denominator
gets canceled, one of the integrals can be solved, and the remaining integral can be written in terms
of only two denominators to an arbitrary power. As we can handle any general denominator power
a and ( with the standard integrals of Equations (269), (271), (272) and (273) this can then in
theory be solved. However, because we only canceled two of the eight numerator momentum factors
the second integral can contain terms that have six factors of the same loop momentum. This
is a problem because our standard integrals only go to four numerator loop momentum factors.
We could extend these standard integrals, but the amount of terms needed quickly adds up. A
rough estimate for the standard integral Is[l,lplcl4lc] is that there are 26 different combinations of
combining p, and ygp. For Iy[lalylelglels] this adds up to 76 different combinations. Now, most of
these factors have the same coefficient in front of them by symmetry arguments such that it should
not be too much work to determine them. Diagonalizing a 72x72 matrix might be the hard part of
this.

For the above reasons, we have tried to write part of the numerators of the integrals listed above in
terms of denominator powers. For some integrals, this greatly simplifies the expression, but later
on when we have more index mixing because of A-fields the expressions get very big. The integrals
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can then be reported more compactly if we do not write out any worldsheet contractions and only
perform the spacetime contractions to find the spacetime scalars contributing to the Weyl anomaly.

By lack of flat worldsheet indices (the first eight letters of the Latin alphabet), we started using greek
indices in some of the integrals below. This does not mean that these represent curved worldsheet
coordinates, all of the worldsheet indices below represent flat worldsheet coordinates.

C.1 <771J77MN8aYIabYJ6¢:YM8dYM> integrals

Jﬁl:/dnl/dn T2 (p p)z()q(qp);zd( TP -qp—l-p), (287)

Jﬁ2_/d”l/d" 03 __l e )C‘id 2, (288)

la(l+ p)o(q + P)cda [_ 21— g)* + 2021 +p)2}, (289)

T = /dnl/dnqp(l +p)2(l — 9)*(¢ +p)*¢*
fof

I la(l + p)b(q + P)etd [
TP+ p2(—02(q + )¢

o =t [ 1 [ P e a0 - (=0 =) -2+ 7] )

~3(1— o)t + 2201 —i—p)Q} , (290)

(292)
J6" = f(n)(n—1) /d”l/d” a7 H;er)(q(i;)ﬂ)&qf q>212(q+p)2, (293)
( i .
R fa / e S (g ey + L) (- ) (299
a?® n n l+p) (Q+p)CQd
7 = gy [t [ et M (0= 2)1 - (1 - 0 + ) +z2<q+p>z+c§2
205
g m la(l+p)o(q + P)cqa

J”_/d /d 21+ p)*(L - q)% (q+p)2{—<l—q)2((l—q)2+2p2)+l2(q+P>2+q2(l+(P)?
296

Ji7 —/dn /dn l+;+?)_(§)+p();qip)zeef{(52—qQ)ZleJr (T+p)?*+ 12— (¢+)? — ¢*)leay

+(1? - q2)peqf}- (297)
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la(l 4+ p)p(q + P)eqa
Je2_ /dnl/dn l_ 4 2l— 22_l2 2_l 227
f TPt oo = 0 420 =0 = Plat ) — (4 p)’
(298)
a2 n la(l + p)b(q + P)eqa 4 9 9 4
Jo = d"l I—q)* —4(n—2)(1— —(n—=2|0
18 / / 2l2 q+p (l+p)2(l—q) { ( Q) (TL )( Q) p (TL ){( +p)
—2(1+p)* ((q+p) @)+ (2= )+ =2 +p)* + )]}, (299)
Lo(l + p)b(q + P)cqa
— d"l dn ef . 2] — 2_l 2 l2 2_22
Jis / / 2l2q+p 20+ )20 — )2 {qu(( q9)° = (1+p)* + 1 +p* - 20°)
+(leps + 2eqr) (2(1 — q)* + P —(q+p)2—q2)}- (300)
n o l—i—p )o(l 4+ Dp)ela
Jlg—/d /d el (301)
JEVE = f(n)(n — 1) /d” /d" l+f+éi’;))l , (302)
l—l—p (l+p)cld
th fe
_ o(1 . 303
/ [ s DA e 14y (303
" n l+p L+ p)elyg
J21_/dl/d l+q+p)) , (304)
lez f(n le, (305)
a(l+p)p(l + p)ela
= [ d [ d'g F(l, + pe)gs. 306
Jo / / ler (l+q+p)€ (le + pe)ay (306)
I — /d”l/d” l+§’+éiff)l , (307)
J22 —f )(5”_6)J22 (308)
C.2 (nd.Y'9,Y'A.0,A) integrals
lo(l + p)baaq
T (w —fgce/d”l/d" 9 12¢:p° + 3pp° + 3prqt + 2944° |, 309
wTe l+p (q+p>2[qu psp° +3prg° + (qu} (309)
l+p)quq
Iy (w) = e /d"l/d” I 13p°q" + 3¢°p" + 2p°¢" +2¢°¢"|. (310
F(w) = wi¥cceny ((H_p)g[qurCIerququJ} (310)

here w/9 is —y/9 for the A.04F insertion and w/9 = €/9 for the A9y insertion.
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JVha _ /dnl/dn l2 l+p + )) EI; ) [2(l*(])4+ (l *Q)2p2+ (l+p)2(2(l+p)2
—p? + (g + D) + ¢*) ¢ wee +2((1 +p) — (1= 9)*)qeqeqqw? — 2((1 — 9)* — (I + p)?) (pegeqsw®’

—2lcqq (pfwfg + q]cwgf)}, (311)
Ry o
¢! (Fecqwse +peecewgf))} . (312)
) = [0 [ gy DI (41— 0 (19 042+ 2l 4
+pc((l - Q) —(I+p)? + (¢ +p)*) (2 whe — ¢"wen), (313)

Jss (w /dnl / g 2(1 + p)2(l El;:p)b(q;Jr p)? {qhwch(q +9)" =200+ p)*d"wan(a + p)* — 208¢"wen(q + p)?

+p°q"wen(q +p)* — 2pcq ¢“wen (0 + ) — 20" @eq wen(q + p)? + 8lel°¢  wep (g + p)? + Alep® wep (g + p)?
+2¢"qeq’ win(q + p)? — Aleq®q’wre(q + p)? + 20" (P31 — ¢)* + 1 — ¢°) + qo(3(1 — ¢)* + 17

—(g+D)* — ¢*)whe + 2"¢° (02l — ¢)* = 2(1 +p)* +1° — (¢ +1)° — ) + pc(2(l — ¢)* — 2(l +p)* + p°
g+ )? = ))wne + 200 — 0)*ped" ¢ wen + 40+ P)2Peq" ¢ wen + 212peq" ¢ wen, — 2pep*q" ¢ wen

+2(1 — 9)2q"qeqwen + 4(1 + p)2q"qeqwen + 226" qeqtwen — 2p2qhcheweh}, (314)
la(l +P)bga h 9
= d”l/d”q ¢° ("7 (2(pe + qc)q%€ng + (g + p)ecn)wye
/ 2(1+p)3(l —q)2q2(q+p)2( e J¢eng (@ p) Cen)eos

+q"(—2le(g +p)? = pe((l = 0)* = 1 +p)* + (¢ +9)?) + ge(—( — @)* + (1 +D)* + (¢ +D)?))eesw?,

_qf(q + p)QEwaeh)) + 2lh(_2l€qf((q + p)zece (pc + QC)qg%g)whf - QZepf(pc + QC)Qgeefwhg
+4°(¢/ (g + p)?ecrwne + ((Pe + ) d€ng + (q + p)?ecn)wre) + (ge((l — @)* — (1 +p)? — (¢ +p)?)
+2le(q+p)? + pe((l — @) — (1 +0)* + (¢ +p)?))enswl) + °¢7 (Pe + 4c) @ (enew(—g, —f) — 2€ecqwny)

_(Q+p) €cewhf)))- (315)
l+ P)odd
Je /d”l/d" €ca€PwI (1 — q)pay (™ + ¢ (1 +2p + ¢)e(20 — g
26 l+p —9)2¢2(q + p)? (I = 4)pay( ) Jel( )g
(316)
la(l + P)vga 5 W
T3 d"l | d'q A “+¢7) |20 20" + ¢")ecnegs-
o / / 21+ p)2(1 — q)2¢q (q+p)2€ €CwI(l = q)pay(P™ + ¢ )[ (2p" + q")€eneyy
+eefegh (21th P ot v g ))] (317)
d*l [ d"q ca€”WI (1 — @+ (7 +
/ / 12 l+p l—q) (q+p)2€ w9 (l - q)pgy(p q )(( q

+2p7)(21 — q)gees + €gp (1° + 2p° + > (217 — ¢f). (318)
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(I +p)alp(l +p)a 5
Jo = [ d ees€CwIP10(1 l l 20)e(20 — q)o, (319
2 / / 2+ q+p)2(1 +phzcc “ (I+p)all+p)a(l+q+2p)e(2l — q)g, (319)
l+p lb(l‘i‘])) ) h h h
Iy d"l [ d"q €5 WP (1 + p)a(l + p)g |4 p" + 207 " + 1M1)
b = / / 21+ q+p)2(l+p)i w1 (1 + p)al p)g[ P q
1" — 2" — " [eaneyy, (320)

(L +P)alp(l + p)a 5
= dnl dn . ex gﬁl l o l lf f 2 f 2l o .
s = [ [ g (LG LA e84 )t 4+ ) +of +267) (21— e

+(+q+2p)e(2f - qf)égf] : (321)
(322)

C.3 (A,0,AAN.0;B) integrals

(L + p)pqal®(L+ p)5 (0 + ¢°)as ey g6
J —/dnl/dn €aa€cpW ’ng l—2q—P e 2l_q ) 323
28 l2l+p (l—q) (q+p) BW A B( el )g ( )

n o (L4 p)pgal® (L + p)(p® + ¢%)gs
i = / ¢ l/ T BC P — 0P 1 p)? eances ey | =20 (0" + 20 eancos
+H -+ "o+ 2qf))€ef€gh]u (324)
(I 4 p)ogal®(l + p)y(p° + ¢°)gs ey g
J5E = /d”l/d”q antesww® [ (1IF = pf —2¢5)(219 = ¢9)e,
. @ +p)*( - a)¢*(q+p)? rATE [( ) Jéef
+(1° - p° —2¢%) (2 — qf)egf] (325)

(L + p)olal™(1° + p?) 2
d"l | d"q (1 — (1 (1
T (@, wp) = / /’ Pl+p 0 g g ol TP = )+ p),)

xwipwan, (1° + 2¢° + p°) (19 + 2¢9 + 1Y), (326)

(L + p)plal®(1” + p°) 2 A B
J5 d"l | d"q (! — (! (!
S5 (nn) = [ a1 [ g TR (0, (1 0 = 4 D)ol + )t

x(I+2q+p)y [(lg +2¢° +p%)e + (1° + 2q€pe)6gf] 7 (327)
n n l +p bldla(lﬁ +p6)
J30(wA,wB /d l/d l2 LT ( gc(l+p)2_(l+p)c(l+p)g) égwfa
X [(lfph +2(1 —|—p)fqh)eehegf + (lf(l +p)n +ppon +2(0+ 29 + p)fqh> efedh, (328)

where its good to note that these integrals simplify considerably when the inserted fields are both
an F-field. We then have Jgg(—'y, —y) =0, J§g(—'y, —v) =0 and

(L +p)ola f
IS =2 [d"'l | d"q [+ [+ 9 g€l 399
/ / 21+p)2(l+q+p)q 2L+ p)s( a0+ p)edye (329)
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(1 bldn 4+ +9")as a4 5
d"l [ d"q €92 (1° 4+ 2¢° + p°) (20 + 2p +
ng / / (1+) i q+ EIELE WeaWar€cs € ( g+ p°)( p+q)g, (330)

l+ bldm (*+p)°+p")as 4 B
AR 9B (142 20+ 2 of
& / / 2+ q+pRr)iz Featarter [( +2q+p)s(2l+2p + q)ge

9+ 24°) 2+ 29+ q) e, (331)

NG bldl7 +p )+ 4 B 48 eh
T _/ " / O R g pRU e et 207 pn + 207 + pT)an)eMeys

+(21fzh +20+p) "+ U +p+ 2q)fqh)e€fegh] . (332)
e /d”l g UEPRl TP 2y (333)
32 l+q+p)2l2 ale T Yacl™ ),
Tio(—7, ,7) =0, (334)
T8 (=, =) = 0, (335)
(I+pul +pa 2 ¥ 2 52, .2
Jg al | dig Lole + vael®) (g e ((1 —
i / / 2(1 +p)* l—i—q—i—p)2l2( Y )[ are (4 ) +1°)
—peas (1 +p)2 +12— p2)], (336)
55 (=7, €) =0, (337)
I+ p)p(l+p)g 9
d"l | d*q lle & Yael?). 338
/ / P+ g 7 pylole Tl (33%)
a ny [ o l+p (l+p)a
I (e = 2= w)f0) [ @ / P e e+ ) (339)
l+p (I +p)g 9
"l lle + 7acl?), 4
Tated) = [ [ g PR e (310)
J55 (e ( ,€) = 0. (341)

D Equations of motion for TNC fields
We can vary the Lagrangian (114) to its worldsheet fields X™, A, and n to find the classical
equations of motion. Varying with respect to n we find

00 XA =0, (342)
where Y\* = —%'y“b)\aeg‘. After varying the other fields we find,

ei(aan + Na + Ta) = 07
YP00 X5 X™ (O hmn, — 20mbirn) — 2hryn o X" 4€%P (0y By, — 20mBrn) 0o X ™05 X" (343)
FANFp 00 X™ — (00 AN Ty 4 ZADym0a X™ = 0.
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