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Abstract

Standard Model Effective Field Theory (SMEFT) provides an elegant mathematical framework
that lets us capture imprints of new physics in a model independent way. Considering the Standard
Model (SM) as a low energy approximation of a more fundamental theory allows for the addition
of higher dimensional operators to the SM Lagrangian. By fitting these operators to high precision
data from the Large Hadron Collider (LHC), we can simultaneously constrain a plethora of models
beyond the SM (BSM). Here, information about BSM physics gets implicitly encoded in a set of
Wilson coefficients. In order to extract these constraints, UV complete models need to be matched
onto the SMEFT. In this thesis, we present the matching equations at tree level for a heavy scalar
and a heavy vector boson in the Warsaw basis. We derive bounds for the associated couplings
and masses by combining the matching equations with a SMEFT fit to LHC top quark data. As
an alternative approach, we also derive bounds for the same UV parameters from an explicit BSM
phenomenology analysis using differential cross sections for tt̄-production in pp-collisions at

√
s = 13

TeV. Our study shows that an EFT approach is more versatile and provides sensitivity for higher
energies than direct BSM searches.

As a second piece of this work, we quantify the degree to which the SMEFT fitting degrees of
freedom can be constrained from top-quark processes by performing a sensitivity study. It highlights
experiments that are particularly suitable to constrain SMEFT degrees of freedom.



Acknowledgements

This thesis could not have been completed without the help of the following people. First of all, I
would like to thank my supervisor Juan Rojo for inspiring me along this journey, and giving me the
freedom to explore the world of particle physics. A special thanks also goes to Jake Ethier of course
for all the interesting conversations that we have had over the last year and for always making time
for me whenever I had questions. I would also like to thank Prof. Eric Laenen for putting me in
contact with Juan’s research group. In addition I thank my office friends at Nikhef for the many
fruitful discussions and the occasional banter.

It goes without saying that I could not have done all this without the people that stand closest
to me. Thank you, Maartje, for always being supportive and showing interest in what I do. Thank
you, mom and dad, for making me live the life I live and your endless love and support. Finally, to
Pauline, thank you for giving my life colour every day, it means so much to me.

i



Contents

1 Introduction 1

2 The Standard Model 3

3 Effective Field Theories 5
3.1 Fermi’s Theory of Weak Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 The SM as an EFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Observables in SMEFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Example: Top-Quark Decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5 Warsaw-basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 SMEFT Fitting Framework 20
4.1 Nested Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Operator Definitions and Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Dimensional Reduction: Sensitivity 25
5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 The Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6 Top-quark Matching 36
6.1 Model: Heavy Scalar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1.1 NLO Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Model: Heavy Vector Boson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Phenomenology of UV Extensions 51
7.1 Standard Model Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.1.1 Partonic Cross Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.1.2 Differential Hadronic Cross Section . . . . . . . . . . . . . . . . . . . . . . . . 56

ii



CONTENTS iii

7.1.3 Dynamical Renormalization Scale . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.1.4 Conversion to Bins and Conventions . . . . . . . . . . . . . . . . . . . . . . . 58

7.2 Beyond the Standard Model Contribution . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2.1 Heavy Scalar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2.2 Heavy Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.2.3 Interference SM and BSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.3 FastNLO and MadGraph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.4 χ2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.4.1 Heavy Scalar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.4.2 Heavy Vector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8 Conclusion 76

A Warsaw Basis 78

B Fierz Identities 80

C Decay Widths 82
C.1 Heavy Scalar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
C.2 Heavy Vector Boson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



Chapter 1

Introduction

The discovery of the Higgs boson at the Large Hadron Collider (LHC) in 2012 [1], has caused a
vast increase in the search for new physics beyond the standard model (BSM). Given that there is
no direct evidence of new physics directly around the corner, the LHC’s program is largely focused
on high precision measurements. Here, the hope is to find statistically significant deviations from
the standard model (SM) that provide evidence for new interactions or particles beyond the LHC’s
reach. These imprints can most conveniently be captured by the standard model effective field
theory (SMEFT). When faced with separation of scales, or significant energy gaps, SMEFT provides
a convenient mathematical framework for parameterising new physics in a model-independent way
[2]. This makes it an incredibly valuable tool in our search for new physics.

In the SMEFT, the SM gets extended by higher dimensional operators that can capture high
energy effects as imprints below a certain cutoff scale Λ. Above Λ, new particles or interactions
are believed to exist. The operators are weighted by a priory unknown coefficients, the Wilson
coefficients. Without assuming any particular ultraviolet (UV) extension, these coefficients can
only be determined by performing fits to high precision data from the LHC. New physics will
then be detected as non-vanishing Wilson coefficients, thereby constraining a large class of possible
extensions of the SM. A big part of current research in particle physics is devoted to inferring these
Wilson coefficients from the data and putting confidence level bounds on their values.

Many attempts in this direction have already been made, predominantly by the SMEFiT col-
laboration [3], but a fully global fit that incorporates all relevant experimental data has yet to be
performed. The work presented in [3] focuses on the top-quark sector of the SM and introduces a
novel framework called SMEFiT to constrain and find bounds on the 34 degrees of freedom that
are relevant in the study of top-quark interactions at the LHC. Future attempts will include the
extensions of this work to the Higgs-sector and possibly the electroweak sector of the SM as well.
This will increase the number of degrees of freedom entering the fit, which makes it an even more
statistically and computationally challenging problem.

Naturally, a second step that should be carried out alongside the SMEFT analysis involves

1



CHAPTER 1. INTRODUCTION 2

connecting the parameters appearing in explicit UV extensions to the SMEFT degrees of freedom
(Wilson coefficients). This is done through what is called matching. It restores the model depen-
dence and, as a result, bounds can be found on the UV parameters, which are primarily masses
and couplings. So both the SMEFT fitting problem as well as matching computations play central
roles. Together, they provide a powerful and diverse framework that enables one to search for new
physics at energies beyond those that are currently accessible.

In this thesis, we study and carry out this two-step process. Using bounds on the SMEFT
degrees of freedom, we constrain two specific UV extensions of the SM – a heavy scalar and heavy
vector model. The goal is to add to the class of UV-extensions a set of bounds that helps to constrain
potentially new physics.

The remainder of this work is structured as follows. First, we present the necessary background
material aimed at the level of a student with experience in quantum field theory. This covers a
quick introduction to the SM in chapter 2, followed by an introduction to effective field theories in
chapter 3. In section 3.4, we carry out a detailed calculation that shows how the decay of the top-
quark gets modified in the SMEFT with respect to the SM. This is both insightful and instructive.
After introducing the basics behind the SMEFT fitting framework in chapter 4, we then move on
to presenting new material developed as part of this thesis.

Chapter 5 presents a new statistical measure applied to the SMEFT, called the sensitivity. It
turns out that not every SMEFT degree of freedom is as sensitive to experimental data as others.
Therefore, the sensitivity helps to distinguish between these cases and highlights experiments that
are particularly important for constraining the SMEFT degrees of freedom. The main part of this
thesis is covered by chapters 6 and 7. There, we present new results that show how to match
explicit UV extensions onto the SMEFT for two different models: a heavy scalar and a heavy
vector extension. We specifically take care here to present our results in the so-called Warsaw-
basis. This gives bounds on the parameters that characterise the UV-extension, such as masses and
couplings, from an effective field theory perspective. The analysis done in chapter 7, on the other
hand, offers an alternative approach for obtaining bounds on the same UV-parameters by working
within the UV-extension itself. This relies on minimising a figure of merit, the famous chi-squared.
A comparison between the different approaches in chapters 6 and 7 then forms our main result.
Finally, in chapter 8 we summarise our main conclusions and outline future research ideas that
build on this work.



Chapter 2

The Standard Model

We start this thesis by giving a lightning introduction to the Standard Model of particle physics.
Considering the vastness of this subject, we focus only on those areas that are important for the
upcoming chapters. For further details, many good references exist, such as [4, 5]. The content in
this chapter primarily serves to fix our notation, and is based around the introductory discussion
in [6].

The SM is a quantum field theory that transforms under the gauge group

SU(3)c × SU(2)L × U(1)Y , (2.0.1)

where the subscripts c, L, and Y stand for colour, left (chirality) and hypercharge respectively. The
associated Lagrangian is given by

LSM = LGauge + LDirac + LYukawa + LHiggs. (2.0.2)

Here, LGauge describes the kinetic terms for the Gauge fields, written as

LGauge = −1

4
BµνB

µν − 1

4
W I
µνW

I µν − 1

4
GAµνG

A µν , (2.0.3)

where

Bµν = ∂µBν − ∂νBµ

W I
µν = ∂µW

I
ν − ∂νW

I
µ + gf IJKW J

µW
K
ν

GAµν = ∂µG
A
ν − ∂νG

A
µ + gsf

ABCGbµG
c
ν

define the field strength tensors and Bµ, W I
µ and GAµ denote the gauge fields of the groups U(1)Y ,

SU(2)L and SU(3)c respectively. The kinetic terms for the fermionic fields are described by LDirac:

LDirac =
∑
i

q̄iL /Dq
i
L +

∑
i

l̄iLi /Dl
i
L +

∑
i

ūiRi /Du
i
R

+
∑
i

d̄iRi /Dd
i
R +

∑
i

ēiRi /De
i
R, (2.0.4)

3



CHAPTER 2. THE STANDARD MODEL 4

where qL and lL transform in the fundamental representation of SU(2), with components

qL =

(
uL

dL

)
and lL =

(
νL

eL

)
. (2.0.5)

The symbols u, d and e generally denote up-type quarks, down-type quarks and charged leptons
respectively. The subscripts L/R refer to left/right-handed fermionic fields that transform as dou-
blets/singlets under SU(2). Starting from a four component Dirac spinor ψ, its left and right-handed
fields are obtained by acting with the projection operators

PL =
1

2

(
1− γ5

)
and PR =

1

2

(
1 + γ5

)
. (2.0.6)

The superscript i = 1, 2, 3 labels the generations. Furthermore, in order to make sure the terms in
LDirac transform covariantly under the SM gauge group, we define the covariant derivative as

Dµ = ∂µ − ig′Y Bµ − ig
τ I

2
W I
µ − igs

λA

2
GAµ . (2.0.7)

Here, Y , τ I/2 and λA/2 denote the generators of the abelian group U(1), and the non-abelian
groups SU(2) and SU(3) respectively.

In order to get mass terms for the fermionic fields they are coupled to the Higgs field ϕ according
to

LYukawa = −Y ij
d d̄

i
Rϕ

†qjL − Y ij
u ū

i
Rϕ̃

†qjL − Y ij
e ē

i
Rϕ

†ljL + h.c. (2.0.8)

Here, ϕ defines the Higgs field that transforms as a doublet under SU(2)L and is written as

ϕ =

(
ϕ+

ϕ0

)
, (2.0.9)

where φ+ and φ0 are complex scalars. Furthermore, Y ij
l , with l ∈ {d, u, e}, define the Yukawa

matrices in generation space. The Lagrangian describing the Higgs field itself is given by

LHiggs = Dµϕ(D
µϕ)† − V (ϕ), (2.0.10)

where V (ϕ) defines the potential of the Higgs fields, responsible for spontaneous symmetry breaking.
All terms in the SM Lagrangian are Lorentz and gauge invariant. Furthermore, it only includes

marginal operators and can therefore make predictions to arbitrarily large energies down to the
Planck scale. With this quick overview of the SM, we will now turn to effective field theories.
Combining this with the SM itself will then lead to the Standard Model Effective Field Theory
(SMEFT).



Chapter 3

Effective Field Theories

A striking result in (high energy) physics is that one can get away with knowing very little. For
instance, the hydrogen spectrum can be calculated in quantum mechanics quite precisely without
referring to the existence of quarks and gluons inside the proton. As a second example, the orbits
of planets can be accurately described without having to worry about their sizes or constituents.
Also, the multipole expansion in electrodynamics describes a collection of electric charges from a
far away region regardless of their precise distribution. These three observations are collectively
captured by the notion of separation of scales. In short, this says that any physics that takes place
at one particular energy scale, is describable without having detailed knowledge of physics outside
this energy regime. In field theoretic language this means that short-distance (ultra-violate) physics
decouples from large-distance (infrared) physics, as also formally stated by Appelquist’s theorem
[7].

The mathematical translation of this set of ideas is captured by an effective field theory (EFT).
Given a physical system, the first step towards building an effective field theory is to identify the
relevant degrees of freedom at the scale that one considers. Let us start with a full theory that
contains two fields, one light field φ and one heavy field ψ with masses mφ and mψ respectively. We
can now construct an effective theory that gives an adequate description at energy scales smaller
than mψ and that only features the light field φ. The heavy field is said to be “integrated out”, see
figure 3.1.

Despite the fact that the EFT will no longer carry any explicit dependence on ψ, the heavy
field still leaves indirect effects on scales E < mψ that can be approximated to arbitrary accuracy.
Therefore, an EFT provides a framework that allows us to capture the right amount of physics to
have both a simple description and an accurate one, in the sense that high energy corrections can
be added to the effective theory through an expansion in a small ratio of scales.

To make the abstract introduction above concrete, we begin this chapter with an extremely
modest example: Fermi’s theory of weak decay. It is the prime example when discussing effective
field theories. It also provides us with an early example of matching.

5
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Energy to lo
n

my µ

Full theory y 4

Jnf too heavy cannot

be produced kinematically
Integrate out

Ecc My lo f

Effective theory to
to do

Figure 3.1: The conceptual picture behind effective field theories. The full theory depends on the light
and heavy fields φ and Ψ respecitvely. At energies E < mψ the effective theory gives an accurate
description which features φ only. The heavy field is said to be “integrated out”.

3.1 Fermi’s Theory of Weak Decay

Before the theory of weak-interactions was fully understood, Enrico Fermi proposed the idea of
a four-fermion interaction in order to explain the phenomenon of neutron beta decay [8]. With
hindsight, we know that this model is incomplete, as it does not include the W -bosons. However, it
provides an accurate phenomenological description at low energies. In other words, Fermi’s theory
of Weak Decay can be derived as an effective theory starting from the SM Lagrangian.

Within the SM, the decay n → p + e− + ν̄e happens through coupling of the W -bosons to the
quarks and leptons according to

LW =
g√
2
Vij q̄iγ

µPLqjW
±
µ +

g√
2
ēγµPLνeW

±
µ + . . . , (3.1.1)

where Vij are the CKM matrix elements, and PL = 1
2(1− γ5) is the left-handed projector operator.

Let us now consider the process d→ u+ e− + ν̄e. Its amplitude at tree level is given by

M =

(
ig√
2

)2

Vdu(d̄γ
µPLu)(ēγ

νPLνe)×
−igµν

p2 −M2
W

, (3.1.2)

In the regime p2 � M2
W , with p the momentum of the W -boson, W cannot be kinematically

produced, and the matrix element can be simplified by Taylor expanding the propagator:

1

p2 −M2
W

= − 1

M2
W

(
1 +

p2

M2
W

+ . . .

)
Therefore, at leading order the matrix element becomes

M =
i

M2
W

(
ig√
2

)2

Vdu(d̄γ
µPLu)(ēγµPLνe) +O

(
1

M4
W

)
. (3.1.3)
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This same matrix element can also be obtained by the following effective Lagrangian:

Leff = −4GF√
2
Vdu(d̄γ

µPLu)(ēγµPLνe), (3.1.4)

where GF is called Fermi’s constant, which can be related to the UV-parameters g and MW via
matching. In general, matching connects the EFT parameters to the parameters of the full theory
by demanding the EFT to produce the same matrix element as the full theory. In the case of Fermi’s
theory described by the Lagrangian in (3.1.4), this requirement leads to:

GF√
2
=

g2

8M2
W

. (3.1.5)

We will see a more detailed examples of matching in chapter 6. In principle the effective theory can
now be made more accurate by going to higher orders in the ratio of scales p2/M2

W , but for now
this simple example suffices.

3.2 The SM as an EFT

The SM was introduced in chapter 2 and is a renormalisable theory from which we can construct
effective theories through perturbative matching, as we just saw in section 3.1. However, let us now
take a different viewpoint and consider the SM itself as an effective theory of some other, more
fundamental theory. This is an interesting statement by itself. So far, all the effective theories
we have considered, are only valid up to some finite energy scale. Beyond this, the EFT breaks
down and we have to resort to the full theory again. The SM, in contrast, is valid all the way
down to the Planck scale, where quantum gravity is thought to take over. However, there are clear
indications that the SM is incomplete. For example, it does not feature any candidates for dark
matter particles, and the neutrinos are assumed massless even though they exhibit oscillations [9].
Inspired by the idea of effective field theories, we now require the SM to be valid only up to E ' Λ,
with Λ � mH (125 GeV). Consequently, there is no need anymore to restrict ourselves to only
marginal operators (having mass-dimension equal to four), and we can write down the following
effective Lagrangian:

LSMEFT ≡ LSM +
1

Λ

Nd5∑
i=1

C
(5)
i O(5)

i +
1

Λ2

Nd6∑
i=1

C
(6)
i O(6)

i + . . . (3.2.1)

This defines the SMEFT-Lagrangian, where the dots represent higher order terms in 1/Λ. It is a
series expansion in the energy scale Λ where the SM stops being valid. Beyond Λ, new particles, or
forces, are believed to appear. The idea is to capture these new interactions as imprints at energies
below Λ by effective, or higher dimensional, operators. The superscript k in the operators O(k)

i

indicates the operator’s mass dimension and the C(k)
i are the Wilson coefficients. As far as the

latter are concerned, there are two options. One, the Wilson coefficients can be fixed by the full
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theory if it is known to us (this is called the top-down approach). Two, in case the full theory is
unknown (bottom-up approach), like in the SMEFT, they can only be constrained from experimental
data.

The only dimension-five operator one can write down violates lepton number conservation [10,
11], and the same goes for all dimension-seven operators. Therefore, the first new physics corrections
are parameterised by dimension-six operators. As for dimension-eight operators, a complete and
non-redundant set has recently been claimed to be found in ref. [12]. However, this still needs to be
processed and implemented in fitting codes. So in practice, the SMEFT-Lagrangian is truncated
after dimension six:

LSMEFT ≡ LSM +
1

Λ2

Nd6∑
i=1

C
(6)
i O(6)

i . (3.2.2)

Why should we bother writing down an effective field theory in the first place? There are a
couple of important reasons as to why this could be of interest to us. First of all, every theory can
be thought of as an EFT, as long as we consider it as a low energy approximation of some underlying
more complete UV theory. Secondly, EFTs oftentimes simplify calculations by dealing with only
one scale at at a time and including only the relevant degrees of freedom. Most importantly though,
they can parameterise additions to new physics, as in the case of SMEFT. This allows for a model
independent description of new physics that is systematically improvable by going to higher orders.

Requirements

Not just any higher dimensional operator can be written down in the SMEFT-Lagrangian. They
need to fulfill a number of conditions. First of all, they should be composed of SM-fields only.
Secondly, the operators should be invariant under the SM gauge group SU(3) × SU(2) × U(1)

and under Lorentz transformations. For example, the following is a valid SMEFT-operator at
dimension-six:

O1(ijkl)
qq = (q̄iγ

µqj)(q̄kγµql). (3.2.3)

It has dimension six indeed, as the quark field q carries mass dimension 3/2. Furthermore, it is
a Lorentz scalar, so Lorentz invariance is trivially met. Lastly, the quark fields transform in the
fundamental representation of SU(3) and (3.2.3) is thus invariant under the SM gauge group.

3.3 Observables in SMEFT

Having defined the SMEFT-Lagrangian in equation (3.2.2), we can ask ourselves the question how
observables, such as cross sections and decay rates, get modified due to the higher dimensional
operators. In general, observables are modified with respect to their SM prediction according to

σ = σSM +

Nd6∑
i

κi
C

(6)
i

Λ2
+

Nd6∑
i

κ̃ij
C

(6)
i C

(6)
j

Λ4
, (3.3.1)
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pt − pb

W+

t

b

e+

νe

Figure 3.2: Top quark decay in the SM at tree level

where we have only kept terms up to quadratic order in the SMEFT corrections, i.e. up to Λ−4. In
principle, dimension-eight operators do also contribute at order Λ−4, but, as we mentioned before, a
complete set of non-redundant operators has not yet been implemented. The last term in equation
(3.3.1) therefore originates in its entirety from SMEFT-corrections, as opposed to the middle term,
which accounts for interference effects with the SM. The κi’s present kinematical factors that can
be calculated exactly in the SMEFT. It is both interesting and illuminating to see how explicit
expressions for the κi’s arise, and for that reason, we consider top-quark decay in the SMEFT as
an example in the next section.

3.4 Example: Top-Quark Decay

The goal of this section is to provide an explicit calculation in full detail that shows how to obtain
expressions for the κi’s appearing in equation (3.3.1). We consider the decay of the top-quark [13]
and we will be working at order Λ−2.

Top-quark decay occurs in the SM at tree level according to figure 3.2, where the decay products
are formed by a bottom-quark, a positron and an electron-neutrino. If we take all fermions but the
top-quark to be massless, the only two independent dimension-six operators that contribute at tree
level and modify the Wtb-vertex turn out to be given by [13, 14]:

O(3)
ϕq = (ϕ†i

↔
D I
µ ϕ)(q̄τ

Iγµq) (3.4.1)

QtW = (q̄σµνt)τ I ϕ̃W I
µν , (3.4.2)

where the Hermitian derivative is defined as

ϕ†i
↔
D I
µ ϕ ≡ iϕ†

(
τ IDµ −

←
Dµτ

I
)
ϕ with ϕ†←Dµϕ ≡ (Dµϕ)

†ϕ. (3.4.3)

Hence, O(3)
ϕq can also be written as

O(3)
ϕq = −i(Dµϕ)

†τ Iϕ(q̄γµτ Iq) + i(ϕ†τ IDµϕ)(q̄γ
µτ Iq)

= −i(Dµϕ)
†τ Iϕ(q̄γµτ Iq) + h.c. (3.4.4)

Furthermore, in equations (3.4.1) and (3.4.2), ϕ denotes the SU(2) Higgs-doublet and ϕ̃i = εijϕ
j∗ ,

with ε the completely anti-symmetric Levi-Civita tensor. The SU(2) generators τ I/2 are the usual
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Pauli-matrices, Dµ = ∂µ − ig′Y Bµ − ig τ
I

2 W
I
µ − igs

λA

2 G
A
µ is the SM covariant derivative, q denotes

a left-handed quark doublet transforming in the fundamental representation of SU(2) and W I
µν is

the field-strength tensor, defined as

W I
µν = ∂µW

I
ν − ∂νW

I
µ − gεIJKW J

µW
K
ν . (3.4.5)

Finally, the field t is a right-handed quark singlet that transforms trivially under SU(2).
With the notation set, we can now go on and note that the SMEFT-Lagrangian from equation

(3.2.2) takes the following simple form:

LSMEFT = LSM +
C

(3)
ϕq

Λ2
O(3)
ϕq +

CtW
Λ2

OtW . (3.4.6)

Here, the coefficients C(3)
ϕq and CtW are the Wilson-coefficients, which we ultimately want to con-

strain using experimental data. After spontaneous symmetry breaking, i.e. when the Higgs field
ϕ attains a non-zero vacuum expectation value (VEV), O(3)

φq and OtW turn out to give rise to the
following terms in the SMEFT-Lagrangian:

LSMEFT = LSM +

(
−2

CtW
Λ2

vb̄σµνtR∂νW
−
µ + h.c.

)
+

(
C

(3)
ϕq

Λ2

gv2√
2
b̄γµtLW

−
µ + h.c.

)
. (3.4.7)

As an intermediate step towards our ultimate goal of computing the κi’s in equation (3.3.1), let us
pause to show that equation (3.4.7) indeed follows from (3.4.6).

The SMEFT Lagrangian

We first consider the operator O(3)
ϕq . Starting with its expanded form in equation (3.4.4), we write

the Higgs field and the covariant derivative as

ϕ =
1√
2

(
0

v

)
and Dµ = ∂µ − ig

1

2
τ IW I

µ . (3.4.8)

With this, the following factor in O
(3)
ϕq is seen to take the form

−i(Dµϕ)
†τ Iϕ = −i

(
−ig1

2
τJW J

µ

1√
2

(
0

v

))†

τ I
1√
2

(
0

v

)

= g
v2

4

((
W 3
µ W 1

µ − iW 2
µ

W 1
µ + iW 2

µ −W 3
µ

)(
0

1

))†

τ I

(
0

1

)

= g
v2

4

(
W 1
µ + iW 2

µ −W 3
µ

)
τ I

(
0

1

)
.
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If we insert this into (3.4.4), we get

O
(3)
φq = g

v2

4

(
W 1
µ + iW 2

µ −W 3
µ

)
τ I

(
0

1

)
q̄γµτ Iq + h.c

= g
v2

4

(
W 1
µ + iW 2

µ −W 3
µ

)
τ I

(
0

1

)(
t̄L b̄L

)
γµτ I

(
tL

bL

)
+ h.c, (3.4.9)

where the sum over the repeated index SU(2)-index I is left implicit. Note that the contribution
coming from the term I = 3 does not involve W−

µ , and can thus be ignored. We are only interested
in Wtb-interactions after all. However, I = 1 and I = 2 do contribute, and give respectively

I = 1 :
gv2

4

(
W 1
µ + iW 2

µ −W 3
µ

)(0 1

1 0

)(
0

1

)(
t̄L b̄L

)
γµ

(
0 1

1 0

)(
tL

bL

)
+ h.c =

gv2
√
2

4
W−
µ

(
t̄L b̄L

)
γµ

(
bL

tL

)
+ h.c =

gv2
√
2

4
W−
µ (t̄Lγ

µbL + b̄Lγ
µtL) + h.c

I = 2 :
gv2

4

(
W 1
µ + iW 2

µ −W 3
µ

)(0 −i
i 0

)(
0

1

)(
t̄L b̄L

)
γµ

(
0 −i
i 0

)(
tL

bL

)
+ h.c =

− gv2
√
2

4
W−
µ (t̄Lγ

µbL − b̄Lγ
µtL) + h.c

Adding the terms I = 1 and I = 2 then gives:

O
(3)
φq =

gv2√
2
b̄Lγ

µtLW
−
µ + h.c.+ . . .

=
gv2√
2
b̄γµPLtW

−
µ + h.c.+ . . . , (3.4.10)

where in going from the first to the last line, we have used that

b̄Lγ
µtL = (PLb)

†γ0γµPLt = b†PLγ
0γµPLt = b̄PLt.

So O(3)
ϕq contributes to LSMEFT by

C
(3)
ϕq

Λ2
O(3)
ϕq =

C
(3)
ϕq

Λ2

gv2√
2
b̄γµPLtW

−
µ + h.c (3.4.11)
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We now move on to the other operator, OtW . After the Higgs acquires a VEV, this takes the
following form:

QtW = (q̄σµνt)τ I ϕ̃W I
µν

=
(
t̄L b̄L

)
σµν(PRt)τ

I 1√
2

(
v

0

)
W I
µν

=
(
t̄L b̄L

)
σµν(PRt)τ

I 1√
2

(
v

0

)
(∂µW

I
ν − ∂νW

I
µ − gεIJKW J

µW
K
ν ) (3.4.12)

where we have plugged in the definition of the field strength tensor W I
µν , equation (3.4.5). Let us

separately consider the contributions I = 1 and I = 2. Again, the term I = 3 does not result in a
Wtb-interaction, and can thus be ignored.

I = 1 :
(
t̄L b̄L

)
σµνtR

(
0 1

1 0

)
1√
2

(
v

0

)
(∂µW

1
ν − ∂νW

1
µ − gW 2

µW
3
ν + gW 3

µW
2
µ) =

v√
2
b̄Lσ

µνtR(∂µW
1
ν − ∂νW

1
µ − gW 2

µW
3
ν + gW 3

µW
2
µ)

I = 2 :
(
t̄L b̄L

)
σµνtR

(
0 −i
i 0

)
1√
2

(
v

0

)
(∂µW

2
ν − ∂νW

2
µ − gW 3

µW
1
ν + gW 1

µW
3
µ) =

iv√
2
b̄Lσ

µνtR(∂µW
2
ν − ∂νW

2
µ − gW 3

µW
1
ν + gW 1

µW
3
µ)

We now add the terms I = 1 and I = 2 to arrive at

OtW = vb̄Lσ
µνtR(∂µW

−
ν − ∂νW

−
µ ) + . . .

= −2vb̄Lσ
µνtR∂νW

−
µ + . . .

= −2vb̄σµνtR∂νW
−
µ + . . . (3.4.13)

Therefore, the operator OtW contributes to the SMEFT-Lagrangian by the term

CtW
Λ2

OtW = −2
CtW
Λ2

vb̄σµνtR∂νW
−
µ + h.c (3.4.14)

Adding the results (3.4.11) and (3.4.14) gives us the Lagrangian from equation (3.4.7) indeed:

LSMEFT = LSM +

(
−2

CtW
Λ2

vb̄σµνtR∂νW
−
µ + h.c.

)
+

(
C

(3)
ϕq

Λ2

gv2√
2
b̄γµtLW

−
µ + h.c.

)
. (3.4.15)

The squared amplitude - SM

Having obtained an expression for the SMEFT-Lagrangian after spontaneous symmetry breaking,
we are ready to calculate the t→ be+ν squared amplitude at tree level and see how it gets modified
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with respect to the SM prediction. Let us first consider the MSM contribution alone, using the
Feynman rules given in (3.4.16). We will see later how this prediction gets modified due to the
dimension-six operators in (3.4.1) and (3.4.2).

W+

t

b

=
igVtb

2
√
2
γµ(1− γ5)

W+

e+

νe

=
ig

2
√
2
γµ(1− γ5)

W+
=

i

s−m2
W

(
−gµν +

pµpν
m2
W

)
(3.4.16)

Applying the Feynman rules in (3.4.16) readily gives

iMSM =

(
igVtb√

2
ū(pb)γµPLu(pt)

)
· i

s−m2
W

(
−gµν +

pµpν
m2
W

)
·
(
ig√
2
ū(pν)γνPLv(pe)

)
.

However, the term pµpν does not contribute, as can be understood from the following:

v̄2γ
µu1pµ = v̄2γ

µu1pµ

= v̄2/pu1

= v̄2(/p1 + /p2)u1

= v̄2(m−m)u1 = 0, (3.4.17)

where we have used that /pu = mu and v̄/p = −mv̄. Therefore,

iMSM =
ig2

2
Vtb

1

(s−m2
W )

[ū(pb)γµPLu(pt)ū(pν)γ
µPLv(pe)] . (3.4.18)

From this we can straightforwardly find |MSM |2 by writing

MSM =
g2Vtb

2(s−m2
W )

[ū(pb)γµPLu(pt)ū(pν)γ
µPLv(pe)]

M†
SM =

g2Vtb
2(s−m2

W )
[v̄(pe)PRγ

νu(pν)ū(pt)PRγνu(pb)] .
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Hence,

|MSM |2 =
g4V 2

tb

4(s−m2
W )2

[ū(pb)γµPLu(pt)] [ū(pt)PRγνu(pb)] [ū(pν)γ
µPLv(pe)] [v̄(pe)PRγ

νu(pν)]

(3.4.19)
In going from the first to the second line we used that for two general spinors ψ1 and ψ2 it holds
that

(ψ̄1γ
µPLψ2)

† = (ψ†
1γ

0γµPLψ2)
†

= ψ†
2PL(γ

µ)†γ0ψ1

= ψ†
2PLγ

0γµψ1

= ψ†
2γ

0PRγ
µψ1

= ψ̄2PRγ
µψ1

Since the initial state has no average polarization, we will have to sum over the quark spins and
take its average. Up to a factor of of 1/2 that accounts for the average value, we thus get:∑

s,s′

[
ūs

′
(pb)γµPLu

s(pt)
] [
ūs(pt)PRγνu

s′(pb)
]
=
∑
s′

ūs
′
(pb)γµPL

(∑
s

us(pt)ū
s(pt)

)
PRγνu

s′(pb)

=
∑
s′

ūs
′
β (pb)(γµPL)βδ(/pt +mt1)δl(PRγν)lαu

s′
α (pb)

= (/pb +mb1)αβ(γµPL)βδ(/pt +mt1)δl(PRγν)lα

= Tr
[
/pbγµPL(/pt +mt)PRγν

]
This can be simplified further by using that PLPR = 0 and PR = 1

2(1 + γ5):∑
s,s′

[
ūs

′
(pb)γµPLu

s(pt)
] [
ūs(pt)PRγνu

s′(pb)
]
= Tr

[
/pbγµPL/ptPRγν

]
= Tr

[
/pbγµ/ptPRγν

]
=

1

2
Tr
[
/pbγµ/ptγν

]
+

1

2
Tr
[
/pbγµγ

5
/ptγν

]
(3.4.20)

Analogously, we now perform the sum over the outgoing lepton spins:∑
s,s′

[
ūs

′
(pν)γ

µPLv
s(pe)

] [
v̄s(pe)PRγ

νus
′
(pν)

]
=
∑
s′

ūs
′
(pν)γ

µPL

(∑
s

vs(pe)v̄
s(pe)

)
PRγ

νus
′
(pν)

=
∑
s′

ūs
′
β (pν)(γ

µPL)βδ(/pe −me1)δl(PRγ
ν)lαu

s′
α (pν)

= (/pν +mν1)αβ(γ
µPL)βδ(/pe −me1)δl(PRγ

ν)lα

= Tr
[
/pνγ

µPL/pePRγ
ν
]

= Tr
[
/pνγ

µ
/pePRγ

ν
]

=
1

2
Tr
[
/pνγ

µ
/peγ

ν
]
+

1

2
Tr
[
/pνγ

µ
/peγ

5γν
]
. (3.4.21)



CHAPTER 3. EFFECTIVE FIELD THEORIES 15

Combining equations (3.4.20), (3.4.21) and (3.4.19) leads to the following expression for the scat-
tering amplitude:

1

2

∑
spins

|MSM |2 =
g4V 2

tb

32(s−m2
W )2

(
Tr
[
/pbγµ/ptγν

]
+ Tr

[
/pbγµγ

5
/ptγν

])
×
(

Tr
[
/pνγ

µ
/peγ

ν
]
+ Tr

[
/pνγ

µ
/peγ

5γν
])

(3.4.22)

Note that

Tr
[
/pbγµ/ptγν

]
= pρbp

σ
t Tr[γργµγσγν ]

= 4pρbp
σ
t (gρµgσν + gρνgµσ − gρσgµν)

is symmetric in µ and ν, whereas

Tr
[
/pνγ

µ
/peγ

5γν
]
∝ pσpρε

νσµρ

is anti-symmetric in µ and ν. Therefore, the cross-terms in equation (3.4.22) vanish and we are left
with:

1

2

∑
spins

|MSM |2 =
g4V 2

tb

32(s−m2
W )2

(
Tr
[
/pbγµ/ptγν

]
· Tr

[
/pνγ

µ
/peγ

ν
]

+ Tr
[
/pbγµγ

5
/ptγν

]
· Tr

[
/pνγ

µ
/peγ

5γν
])

(3.4.23)

Let us now focus on the first term in equation (3.4.23). This gives

Tr
[
/pbγµ/ptγν

]
· Tr

[
/pνγ

µ
/peγ

ν
]
= 16 [pµνp

ν
e + pννp

µ
e − pνeg

µν ] [(pb)µ(pt)ν + (pb)ν(pt)µ − gµνpbt] ,

where we have introduced the shorthand notation pij = (pi)µ(pj)
µ. Expanding this then gives

Tr
[
/pbγµ/ptγν

]
· Tr

[
/pνγ

µ
/peγ

ν
]
= 16(pνbpet + pνtpeb − pνepbt + pνtpeb+

pνbpet − pνepbt − pbtpνe − pbtpνe + 4pνepbt)

Simplifying further leads to

Tr
[
/pbγµ/ptγν

]
· Tr

[
/pνγ

µ
/peγ

ν
]
= 32(pbνpet + pbeptν) (3.4.24)

In order to evaluate the second term in equation (3.4.23), we use the FeynCalc package in Mathe-
matica [15–17], which gives the following identity

Tr
[
/pbγµγ

5
/ptγν

]
· Tr

[
/pνγ

µ
/peγ

5γν
]
= −32(pbνpet − pbeptν). (3.4.25)

Substituting identities (3.4.24) and (3.4.25) into equation (3.4.23) yields after a bit of algebra:

1

2

∑
spins

|MSM |2 =
2g4V 2

tb

(s−m2
W )2

pbeptν
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We can now use the Mandelstam variables to eliminate the momenta:

s = (pt − pb)
2 = (pv + pe)

2 = m2
t − 2ptb = 2pνe

t = (pt − pν)
2 = (pb + pe)

2 = m2
t − 2pνt = 2pbe

u = (pt − pe)
2 = (pb + pν)

2 = m2
t − 2pet = 2pνb

This results in
1

2

∑
spins

|M|2 =
g4V 2

tb

2(s−m2
W )2

t(m2
t − t), (3.4.26)

which concludes the derivation of the squared amplitude in the SM. We now move on to the SMEFT
correction terms.

The squared amplitude - SMEFT

The effective Lagrangian from equation (3.4.7) comes with a new set of Feynman rules for the
Wtb-vertex, see (3.4.27). The operator O(3)

ϕq is seen to only rescale the SM Wtb-vertex by an overall
factor, whereas the correction induced by the operator OtW brings down a momentum dependence.

OtW ,W
+

t

b

= −iCtW
Λ2

vσµν(pt − pb)
ν(1 + γ5)

Oϕq,W
+

t

b

=
C

(3)
ϕq

Λ2

gv2

2
√
2
γµ(1− γ5) (3.4.27)

Due to these new vertices the squared amplitude changes with respect to its SM prediction:

|M|2 = |MSM +MtW +Mϕq|2 = |MSM |2 + (M†
SM (MtW +Mϕq) + h.c.) +O

(
1

Λ4

)
,
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where MtW and Mϕq denote the t→ be+νe amplitude induced by OtW and O
(3)
ϕq respectively. Let

us first compute Mϕq:

iMϕq =

(
C

(3)
ϕq

Λ2

gv2√
2
ū(pb)γµPLu(pt)

)
·
(

−igµν

s−m2
W

)
·
(
ig√
2
ū(pν)γνPLv(pv)

)

=
C

(3)
ϕq

Λ2

v2

Vtb
MSM . (3.4.28)

Therefore, the contribution of Mϕq to the total squared amplitude M2 is given by:

1

2

∑
spins

[
(MSM )†(Mϕq) + (M†

ϕq)(MSM )
]
=

2C
(3)
ϕq

Λ2

v2

Vtb

1

2

∑
spins

|MSM |2

=
C

(3)
ϕq Vtbv

2

Λ2

g4t(m2
t − t)

(s−m2
W )2

, (3.4.29)

where we have used that C(3)
ϕq is real. Next, we want to find MtW . Using the Feynman rule from

figure ??, we find:

iMtW =

(
−2i

CtW
Λ2

vū(pb)σµν(pt − pb)
νPRu(pt)

)(
−igµρ

s−m2
W

)(
ig√
2
ū(pν)γρPLv(pe)

)
=

−
√
2iCtW vg

Λ2(s−m2
W )

(pt − pb)
ν [ū(pb)σµνPRu(pt)ū(pν)γ

µPLv(pe)] .

Defining for convenience

A =
−
√
2iCtW vg

Λ2(s−m2
W )

,

lets us write the above as

iMtW = A · (pt − pb)
ν [ū(pb)σµνPRu(pt)ū(pν)γ

µPLv(pe)] . (3.4.30)

Recalling the SM amplitude from equation (3.4.19) and defining

B =
ig2Vtb

2(s−m2
W )

,

leads to

iMSM =
ig2Vtb

2(s−m2
W )

[ū(pb)γµPLu(pt)ū(pν)γ
µPLv(pe)]

= B [ū(pb)γµPLu(pt)ū(pν)γ
µPLv(pe)] . (3.4.31)

The interference term between the SM and OtW is thus given by:

(MSM )†(MtW ) + h.c. = AB [v̄(pe)PRγ
µu(pν)ū(pt)PRγµu(pb)]

× (pt − pb)
ν [ū(pb)σρνPRu(pt)ū(pν)γ

ρPLv(pe)] + h.c. (3.4.32)
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Or, after reordering terms:

(MSM )†(MtW ) = AB(pt − pb)
ν [ū(pb)σρνPRu(pt)] [ū(pt)PRγµu(pb)]

× [ū(pν)γ
ρPLv(pe)] [v̄(pe)PRγ

µu(pν)] . (3.4.33)

Again, since the incoming state is unpolarized, we perform the sum over spins. For the quarks we
get: ∑

ss′

[
ūs

′
(pb)σρνPRu

s(pt)
] [
ūs(pt)PRγµu

s′(pb)
]
= Tr

[
/pbσρνPR(/pt +mt)PRγµ

]
= mtTr

[
/pbσρνPRγµ

]
.

Likewise for the lepton spins we get∑
ss′

[ū(pν)γ
ρPLv(pe)] [v̄(pe)PRγ

µu(pν)] = Tr
[
/pνγ

ρ
/pePRγ

µ
]
.

Hence,

1

2

∑
spins

(MSM )†(MtW ) = mt
AB

2
Tr
[
/pbσρνPRγµ

]
· Tr

[
/pνγ

ρ
/pePRγ

µ
]
(pt − pb)

ν .

We evaluate the Dirac traces using the package FeynCalc in Mathematica [15–17]. The result reads

1

2

∑
spins

(MSM )†(MtW ) = mtAB (3pbνpet − 2pbepbν + pbtpeν − pbeptν)

− iABmt(pb)µ(pe)ν(pt)ρ(pν)σε
µνρσ. (3.4.34)

After adding the hermitian conjugate the imaginary part cancels and we are left with:

1

2

∑
spins

[
(MSM )†(MtW ) + h.c.

]
= 2mtRe(AB)(3pbνpet − 2pbepbν + pbtpeν − pbeptν)

Expressed in terms of the Mandelstam variables this equals

=
1

2
Re(AB)mt

[
3u(m2

t − u)− 2tu+ s(m2
t − s)− t(m2

t − t)
]

and after using that t = m2
t − s− u and canceling terms, we arrive at

=
1

2
Re(AB)mtus. (3.4.35)

Reinserting the definitions of A and B, gives

1

2

∑
spins

[
(MSM )†(MtW ) + h.c.

]
=

Re(CtW )VtbmtmW√
2Λ2

g2su

(s−m2
W )2

. (3.4.36)
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Collecting all contributions to |M|2, we finally find:

1

2

∑
spins

|M|2 =
V 2
tbg

4t(m2
t − t)

2(s−m2
W )2

+
C

(3)
ϕq Vtbv

2

Λ2

g4t(m2
t − t)

(s−m2
W )2

+
Re(CtW )VtbmtmW√

2Λ2

g2su

(s−m2
W )2

. (3.4.37)

From here we can readily read off the κ′is:

κ1 ≡ Vtbv
2 g

4t(m2
t − t)

(s−m2
W )2

(3.4.38)

κ2 ≡ VtbmtmW
g2su√

2(s−m2
W )2

. (3.4.39)

3.5 Warsaw-basis

Obviously, the operators O(3)
ϕq and OtW are not the only operators we can write down at dimension

six. Imposing baryon-number conservation, there are a total of 59 independent dimension-six op-
erators [14]. We list all of them, including the four B-violating operators, in Tables A.2 and A.1
of appendix A, taken from [14]. Finding a complete set of independent dimension-six operators
has been an active field of study. The first attempt was made by W. Buchmüller and D. Wyler
[18]. However, B. Grzadkowski et al. showed that some of these operators are in fact redundant,
since they can be related by Fierz identities, the SM Equations of Motion (EOM) and integration
by parts [14]. Tables A.2 and A.1 are classified according to their field content. The symbols
X,ϕ,D, ψ denote field strength tensors, the Higgs fields, the covariant derivate and fermionic fields
respectively. Fermions that transform as a left-handed doublet under SU(2) are denoted by L,
whereas the right-handed singlets under SU(2) are denoted by R. Fermion generations are labelled
by p, r, s, t, and isospin and colour indices are denoted by j = 1, 2 and α = 1, 2, 3 respectively. For
further details we refer to ref. [14]. In our analysis of the top-quark sector we shall only be needing
a subset of the operators in Tables A.2 and A.1. These are all operators that involve at least one
top-quark. For an exhaustive list here, we refer to appendix A in [3].



Chapter 4

SMEFT Fitting Framework

In this chapter, we present a short overview of the SMEFT fitting framework that is used to obtain
bounds on the SMEFT degrees of freedom. The idea is to fit the modified cross sections in the
SMEFT to high precision data from the LHC. We can distinguish between two methods as far as
obtaining the best-fit parameters in the SMEFT analysis is concerned. We can either use Monte
Carlo (MC) fit, which functions by performing gradient-based optimization on a cost function, or
Nested Sampling (NS) [19]. The latter provides us with a method that relies on pure sampling
techniques only. Consequently, it is more efficient than MC fit in case the parameter space is not
too big, i.e. the number of parameters is less than 50.

4.1 Nested Sampling

In this section, we present the NS-algorithm and explain how it is used in our SMEFT-analysis.
The starting point is Bayes’ theorem, which states that

P(θ|D) =
Pr(D|θ)Pr(θ)

Pr(D)
, (4.1.1)

where Pr(θ|D) is the posterior probability density and Pr(D|θ) ≡ L(θ) denotes the likelihood of the
data given the hypothesis, which is parameterised by θ. The prior probability density Pr(θ) ≡ π(θ)

encodes our initial belief in the hypothesis, and Pr(D) is the overall likelihood of the data, and
serves to normalize the posterior. This is also called the Bayesian Evidence Z, and can be found
by integrating the likelihood over the whole prior volume Ωθ:

Z =

∫
Ωθ

L(θ)π(θ)dθ. (4.1.2)

Determining Z thus faces us with a high-dimensional integral over the entire parameter space,
which makes it a computationally high-demanding problem. MC methods do exist however that find
a way around this problem. One of these methods is Nested Sampling. Not only does it allow us to

20
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Figure 4.1: Conceptual picture behind how Nested Sampling works. Left: contours in prior space of
equal likelihood. Right: L(X) as a function of X, the integrated area within a particular contour.
Taken from [19]

.

determine the Bayesian evidence, it also gives a sample of the posterior probability as a convenient
byproduct. Considering that we want to find the SMEFT-coefficients in a region close to maximum
likelihood, we apply NS with this particular goal in mind.

The key idea underlying NS is to map a high-dimensional problem onto an easy one-dimensional
one. It sorts nested likelihood contours by their enclosed prior mass, which subsequently allows
MC integration methods to determine Z. Let us go through these steps in more detail. First, we
introduce the survival function X(λ), corresponding to the integrated region in prior space such
that its associated likelihood is greater than λ:

X(λ) =

∫
{θ:L(θ>λ)}

π(θ)dθ. (4.1.3)

Note that X(∞) = 0 and X(0) = 1. In general, a higher λ results in a smaller prior volume. Given
the survival function, we can recover Z by recalling that an expectation value of a non-negative
random variable can be found by integrating its associated survival function. This specifically
applies here, since the Bayesian evidence Z can be thought of as the likelihood averaged over the
prior space. Hence,

Z =

∫ ∞

0
X(λ)dλ (4.1.4)

Assuming the likelihood function L(θ) is continuous, we can define L(X) as the inverse of X(λ).
With this, equation (4.1.4) can be equivalently written as

Z =

∫ 1

0
L(X)dX. (4.1.5)

Before continuing, let us pause to see what is going on visually. Figure 4.1 (left) shows a cartoon
of the sampling space with several contours of the likelihood. Consider the contour L = L1, which
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encloses the prior volume X1. As we move to regions of higher likelihood, i.e. from L1 to L2, the
enclosed prior space decreases from X1 to X2. So nested shells of prior volume get sorted by their
likelihood, see figure 4.1 (right).

In principle, if the likelihood is known exactly, we can approximate Z from equation 4.1.5 by
evaluating L(Xi) for the sequence

XN < · · · < X2 < X1 < X0 = 1, (4.1.6)

and writing

Z ≈ Z̃ =

N∑
i

L(Xi)wi, (4.1.7)

where the weights wi are given by an appropriate quadrature method and thus depend on Xi.
In practice, however, we cannot find Xi exactly and the above method will not be applicable.
Instead, we employ the following iterative procedure. We start by drawing Nlive points from the
prior distribution π(θ), known as live points and evaluate their corresponding likelihoods. In the
next iteration, say iteration i, we drop the sample with the smallest likelihood, denoted Li, and
draw a new one from the prior distribution under the constraint that its corresponding likelihood
is higher than Li. This procedure is repeated until the entire prior space has been covered, and
each time the live points get replaced by samples of higher likelihood. So the algorithm ends by
giving a set {θ(k)}, where k = 1, . . . , Nlive, that corresponds to the region of maximum-likelihood.
In this respect, Nested Sampling is not different from the MC fit method. That is, both end up
with samples that either maximize the likelihood, or minimize a cost-function. However, Nested
Sampling achieves this by pure sampling techniques, without doing any fits, as opposed to MC
fit. This makes them them two orthogonal methods that can be compared in order to yield useful
cross-checks of the Wilson-coefficients at 95% confidence level.

4.2 Operator Definitions and Experiments

In this last section, we introduce the notation that is used throughout this work to denote the
SMEFT operators. We then classify the different experiments that have been used to constrain the
SMEFT degrees of freedom.

Operators

We can distinguish between three different classes of operators: four heavy-quark operators
(QQQQ), two-heavy-two-light operators (QQqq) and operators that couple two heavy-quarks to
either the Higgs field or the Gauge fields (QQ+ V,G, φ). The complete list of the SMEFT degrees
of freedom that enter our fit can be found in Table 4.1. This notation will later also be used in
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chapter 5.

Experiments

A total number of 33 experiments have been used to constrain the SMEFT degrees of freedom
from Table 4.1. They can be classified by the different processes they describe. Tables 3.1 − 3.3

in ref. [3] provide an exhaustive overview, and we invite the reader to go there for further details.
In short, we include the following processes: inclusive tt̄-production, tt̄-production in association
with two heavy quarks/the Higgs boson or a weak vector boson, single t-production and single
t-production in association with vector bosons.
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Class Notation Degree of Freedom Operator Definition

QQQQ

OQQ1 c1QQ 2C
1(3333)
qq − 2

3C
3(3333)
qq

OQQ8 c8QQ 8C
3(3333)
qq

OQt1 c1Qt C
1(3333)
qu

OQt8 c8Qt C
8(3333)
qu

OQb1 c1Qb C
1(3333)
qd

OQb8 c8Qb C
8(3333)
qd

Ott1 c1tt C
(3333)
uu

Otb1 c1tb C
1(3333)
ud

Otb8 c8tb C
8(3333)
ud

OQtQb1 c1QtQb C
1(3333)
quqd

OQtQb8 c8QtQb C
8(3333)
quqd

QQqq

O81qq c1,8Qq C
1(i33i)
qq + 3C

3(i33i)
qq

O11qq c1,1Qq C
1(ii33)
qq + 1

6C
1(i33i)
qq + 1

2C
3(i33i)
qq

O83qq c3,8Qq C
1(i33i)
qq − C

3(i33i)
qq

O13qq c3,1Qq C
3(ii33)
qq + 1

6 (C
1(i33i)
qq − C

3(i33i)
qq )

O8qt c8tq C
8(ii33)
qu

O1qt c1tq C
1(ii33)
qu

O8ut c8tu 2C
(i33i)
uu

O1ut c1tu C
(ii33)
uu + 1

3C
(i33i)
uu

O8qu c8Qu C
8(33ii)
qu

O1qu c1Qu C
1(33ii)
qu

O8dt c8td C
8(33ii)
ud

O1dt c1td C
1(33ii)
ud

O8qd c8Qd C
8(33ii)
qd

O1qd c1Qd C
1(33ii)
qd

QQ+ V,G, ϕ

OtG ctG Re{C(33)
uG }

OtW ctW Re{C(33)
uW }

ObW cbW Re{C(33)
dW }

OtZ ctZ Re{−sWC
(33)
uB + cWC

(33)
uW }

Off cϕtb Re{C(33)
ϕud}

Ofq3 c3ϕQ C
3(33)
ϕq

OpQM c−ϕQ C
1(33)
ϕq − C

3(33)
ϕq

Opt cϕt C
(33)
ϕu

Otp ctϕ Re{C(33)
uϕ }

Table 4.1: The notation that will be used to present results in this work. The operators are divided
into three classes: four heavy-quark operators (QQQQ), two-heavy-two-light operators (QQqq) and
operators that couple two heavy-quarks to either the Higgs field or the Gauge fields (QQ+ V,G, φ).
The operator definition is given in the last column and should be read alongside Tables A.1 and A.2
in appendix A. Table taken from [3].



Chapter 5

Dimensional Reduction: Sensitivity

So far, in order to retain a model independent description of new physics beyond the standard
model, we have adopted the framework of effective field theory. Following a bottom-up approach, we
have parameterised deviations from the standard model by the addition of dimension-six operators
expressed in terms of SM fields. Since the full UV-theory is not known a priory, the Wilson
coefficients can only be determined from experimental data. However, already within the top-
quark sector alone, we are faced with 34 dimension-six operators. Therefore, a fit to experimental
data is a high dimensional problem. Considering our future wish to not only include processes that
involve the top-quark sector, but also include processes within the Higgs-sector for example, the high
dimension of the parameter space will soon become a significant problem. This motivates the search
for methods that reduce the dimension of this parameter space. With this in mind, we explore a new
statistical measure, called the sensitivity [20], that measures the influence of empirical information
on the SMEFT-parameters. More specifically, the sensitivity puts a quantitative measure on the
degree to which a SMEFT-parameter can be constrained by a given data set. Even though many
operators do in in principle enter a particular process, not all of these will be equally ‘sensitive’ to
the data. That is, some SMEFT degrees are more sensitive to processes of a particular kind than
others, where ‘sensitive’ will be given a precise quantitative meaning in the upcoming sections. Let
us start by outlining some necessary preliminaries.

5.1 Preliminaries

Using Nested Sampling, as described in section 4.1, we can obtain a collection {c(k)l } that consists of
Nrep samples, labeled by k, of the SMEFT-parameter cl. This allows for the introduction of various
statistics. Let us define these using a generic collection {X(k)} that consists of Nrep samples. Firstly,

25
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the expectation value 〈X〉 is defined by

〈X〉 ≡ 1

Nrep

Nrep∑
k=1

X(k). (5.1.1)

Secondly, we define the resulting Monte-Carlo uncertainty on X as

∆MCX ≡

 1

Nrep − 1

Nrep∑
k=1

(
X(k) − 〈X〉

)21/2

. (5.1.2)

Lastly, the correlation between X and another collection Y of Nrep samples can be constructed as

Corr[X,Y ] ≡ 〈XY 〉 − 〈X〉 〈Y 〉
∆MCX∆MCY

. (5.1.3)

Given the SMEFT-parameters {c(k)l }, we can compute theoretical predictions beyond the standard
model. Denoting the ith theoretical prediction of data point Di by Ti, we define the residual ri, or
fitting deviation, as

ri({c(k)l }) ≡
Ti({c(k)l })−Di

σi
, (5.1.4)

where σi is the total uncorrelated uncertainty, obtained by adding the systematic and statistical
uncertainties in quadrature.

5.2 The Sensitivity

In this section, we develop the statistical measure, called the sensitivity SE(cl), that quantifies to
which degree a SMEFT degree of freedom cl is sensitive for experiment E. Rather than giving its
full definition now, we will first introduce its various parts and see what each of these these tell us
separately.

Continuing from section 5.1, let us apply equation (5.1.3) and consider the correlation between
a SMEFT degree of freedom cl and the residual ri for data point i:

Corr[cl, ri] =
〈cl · ri〉 − 〈cl〉 〈ri〉

∆cl ·∆ri
. l = 1, . . . Nops (5.2.1)

This measures whether there may be a predictive relationship between the SMEFT coefficient cl and
the goodness of fit of the ith point. It can also be thought as measuring the response of ri({c(k)l }) to
the variations in the SMEFT coefficients. Whenever the correlation is close to zero, the coefficient
cl has little effect on the goodness of fit. In contrast, if the correlation is close to one, or minus
one, the coefficient has a large impact on the goodness of fit. This already gets across the intuitive
notion of what we mean by sensitivity. However, as it stands, equation (5.2.1) is insensitive to
experimental uncertainties. Even when the correlation in (5.2.1) comes out high, the experimental
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data point might not result in a significant contribution to the χ2 if the errors are large. However,
if new measurements were to be reported with fairly tight uncertainties, we would typically want
the sensitivity of theoretical predictions for this measurement to increase. To remedy this issue, we
modify equation (5.2.1) by multiplying with a factor that takes the experimental uncertainties into
account, which will be our working definition of sensitivity:

Si(cl) ≡ ∆ri · Corr[cl, ri]. (5.2.2)

Here, ∆ri is the MC-uncertainty on the residual of the ith data point:

∆ri =
∆Ti({c(k)l })

σi
. (5.2.3)

So if the experimental uncertainties σi are small compared to the theory error ∆Ti({c(k)l }), these
data points will have a high associated sensitivity according to definition (5.2.2).

5.3 Results

In this section, we present our results for the correlation and sensitivity, defined in (5.2.1) and
(5.2.2) respectively. As we mentioned before in section 4.2, we use the experiments listed in Tables
3.1-3.3 of ref. [3]. We consider two separate cases:

1. Single data set results: NS is only run for one data set at a time. The coefficients thus obtained
are data set dependent.

2. Global data set results: NS is run for all data sets simultaneously. Extra care was taken to
make sure the final samples had smooth distributions, see figures 5.6 up to 5.8. These shows
all the 34 SMEFT degrees of freedom that enter the global analysis and together with their
associated distributions as obtained by NS. It is important that the distributions have smooth
tails in order to make sure enough statistics enter the analysis.

Let us first present the single data set results. Figure 5.1 shows the absolute value of the correlation
in (5.2.1) averaged over the data points. Any area in white indicates that those operators do not en-
ter that particular data set. For instance, the Otp-operator can only be constrained by tt̄H-processes,
and hence only shows up in the experiments ATLASTTBARHTOT13TEV and CMSTTBARHMU13TEV. Figure
5.2 shows the absolute value of the sensitivity from equation (5.2.2), averaged over the data points.
In both cases we used theory predictions at order Λ−2.

We now move on to presenting the global results. Here, we used NS results whose mutual
correlation is shown in figure 5.3. The analogue of figures 5.1 and 5.2 in the global case are shown
in figures 5.4 and 5.5 respectively.
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Figure 5.1: The average absolute correlation 〈|Corr[cl, ri]|〉 between the SMEFT parameter cl and
the residual ri for the ith data point in experiment E in case of single data set NS results at order
O
(
Λ−2

)
. Any region in white indicates that that particular SMEFT parameter does not enter the

theory prediction of data set E.
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Figure 5.2: The average absolute sensitivity 〈|Si(cl)|〉 as defined in equation (5.2.2) between the
SMEFT parameter cl and the residual ri for the ith data point in experiment E in case of single
data set NS results at O

(
Λ−2

)
.
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Figure 5.3: The values of the correlation coefficient between the SMEFT-parameters cl, as obtained
from a global NS run at O

(
Λ−4

)
.
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Figure 5.4: The average absolute correlation 〈|Corr[cl, ri]|〉 between the SMEFT parameter cl and
the residual ri for the ith data point in experiment E in case of global data set NS results at O

(
Λ−4

)
.

The theory predictions are also at O
(
Λ−4

)
.
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Figure 5.5: The average absolute sensitivity 〈|Si(cl)|〉 as defined in equation (5.2.2) between the
SMEFT parameter cl and the residual ri for the ith data point in experiment E in case of global
data set NS results at O

(
Λ−4

)
. The theory predictions are also at O

(
Λ−4

)
.
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Figure 5.6: Histograms of the SMEFT-parameters OtG up to O1qd that were sampled using a global
NS run. Note that OtG is relatively well constrained due to the fact that it enters in all top-quark
production processes except for single-top and single-top in association with a W -boson.
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Figure 5.7: Continued from figure 5.6. Histograms of the SMEFT-parameters OtW up to Ofq3 that
were sampled using a global NS run.
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Figure 5.8: Continued from figure 5.7. Histograms of the SMEFT-parameters Opt up to ObW that
were sampled using a global NS run.

5.4 Discussion

It is good to make a few remarks regarding the results we presented in figures 5.1-5.5.

• From figure 5.3 we observe that Ofq3 is strongly correlated with O13qq with a correlation
coefficient of at least 0.6. This means that experiments that are sensitive for Of3q in a single
data set fit, are likely to also be sensitive for O13qq in case of a global fit. Indeed, from figure 5.4
we observe that the tt̄W -experiments ATLASTOTTW8TEV, CMSTOTTW8TEV, ATLASTOTTW13TEV

and CMSTOTTW13TEV are sensitive for both Ofq3 as well as O13qq, even though these data sets
cannot constrain O13qq in case of an individual (single data set) fit.

• Experiments with a high averaged absolute correlation 〈|Corr[cl, ri]|〉, can nonetheless have a
low sensitivity if its uncertainties are high compared to the theory error. If this is the case,
the factor ∆ri is small, and thus suppresses the large contribution coming from Corr[cl, ri].
This explains how figure 5.5 is related to figure 5.4. For instance, the operator OtG has a
relatively large correlation in the inclusive tt̄-production data sets, whereas figure 5.5 shows
that it is almost insensitive for these data sets. Intuitively, it means that data sets with large
experimental uncertainties will do a poor job at constraining its associated SMEFT degrees
of freedom.

• The tt̄H-experiments ATLASTTBARHTOT13TEV and CMSTTBARHMU13TEV are highly sensitive for
the operator Otp, as can be seen from figure 5.5. This is to be expected, since Otp constrains
tt̄-production in association with the Higgs boson.

As written, equation (5.2.2) does not take into account the number of data points that are
present in the experiment. However, all of the tt̄W , tt̄Z, tt̄H and tt̄ in association with two heavy
quarks data sets contribute by only one data point. Therefore, their contribution to the overall χ2

of the global SMEFiT analysis is small and can fluctuate by a lot. Therefore, if new experiments
with more data points were to be reported, we would typically want the SMEFT degrees of freedom
to be relatively sensitive for these. In future studies, we should therefore accommodate for the
number of data points and its associated spreading.



Chapter 6

Top-quark Matching

In this chapter, we study several explicit extensions of the SM and match these onto the SMEFT.
We start with a relatively simple extension, in which a heavy scalar particle S is coupled to the SM
quarks. By integrating out S, we obtain an effective theory that lets us relate the Wilson coefficients
to the UV parameters. Here, the UV parameters are typically either masses or couplings of the
heavy particle. It turns out that the matching procedure generates higher dimensional operators
that are not part of the Warsaw basis. Therefore, a large part of the upcoming sections is devoted
to re-expressing the generated operators in the Warsaw basis. Next, we move on to a slightly more
complex model, the heavy vector model, and perform the same exercise there. That is, we integrate
out the heavy vector boson from the UV theory and match it to the SMEFT. This is part of section
6.2. In both cases, our goal is to translate the SMEFiT bounds to the UV parameters in order to
constrain these specific models.

Alternatively, we can choose to work with the SM extensions directly and compare its predictions
to experiment. This can become a tedious route to finding new physics, since it requires computing
numerous cross sections and decay widths. Although this is a straightforward exercise in principle,
the model-independent nature of effective field theories makes them the method of choice in the
search for new physics. Nevertheless, chapter 7 presents a detailed analysis of this alternative, more
direct, approach.

Zooming out, we can thus distinguish between two different ways of finding constraints on new
physics. On the one hand, we can use the bounds on the Wilson coefficients to look for new physics,
which is much more efficient due to the model independence nature of SMEFT. That is, single
bounds on the Wilson coefficients can constrain a plethora of SM extensions. On the other hand,
UV-completions can also be constrained by comparing to experimental data directly.

After these introductory remarks, let us move on the first SM extension: the heavy scalar.

36
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6.1 Model: Heavy Scalar

In this section, we match a heavy scalar to the SMEFT. Not only will this prove useful later on in
chapter 7, it also gives us the opportunity to discuss the matching procedure in a concrete setting.

We extend the SM by a complex heavy scalar S that transforms under the SM gauge group as

S ∼ (1, 2)1/2, (6.1.1)

where (Rc, RL)Y denote the representation Rc under SU(3)c, the representation RL under SU(2)L

and the hypercharge Y respectively. In other words, the scalar S transforms as a doublet under
SU(2). This is the simplest scalar extension of the SM that can couple to the SM quarks while
preserving gauge invariance [21]. The associated Lagrangian is given by

LUV = LSM + ∂µS
†∂µS +m2

SS
†S − J†

SS − S†JS , (6.1.2)

where

JS ≡ cS b̄Rq
3
L + cSiσ2q̄

3T

L tR

= cS b̄R

(
tL

bL

)
+ cS

(
0 1

−1 0

)(
t̄L

b̄L

)
tR

= cS b̄R

(
tL

bL

)
+ cS

(
b̄L

−t̄L

)
tR (6.1.3)

defines the scalar current. For now, we have chosen to couple the heavy scalar to only one generation
in order to simplify our notation. We generalise this later to also include the light generations. In
the unitary gauge we can write S† =

(
0 S

)
, and the interaction part of the Lagrangian then takes

the following simple form:

S†JS + h.c. = S†cS b̄R

(
tL

bL

)
+ S†cS

(
b̄L

−t̄L

)
tR + h.c.

= cS b̄RbLS − cS t̄LtRS + h.c.

= −cSS(t̄t− b̄b). (6.1.4)

Hence, we see that the scalar particle contributes to top-quark production. Our Feynman rule is to
simply associate a factor ±icS to the q̄fqfS-vertices:

S

t̄

t

= icS .
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Next, we derive the effective theory by integrating out S. To this end, we first determine its
EOM via the Euler-Lagrange equations:

∂L
∂S† = ∂µ

∂L
∂(∂µS†)

=⇒ m2
SS − JS = ∂2S. (6.1.5)

Hence,

S = − JS
∂2 −m2

S

and S† = −
J†
S

∂2 −m2
S

. (6.1.6)

By substituting the classical solution (6.1.6) back into LUV , we eliminate S to obtain

LUV = LSM − S†(∂2 −m2
S)S − J†

SS − S†JS

= LSM −
J†
SJS

∂2 −m2
S

+
J†
SJS

∂2 −m2
S

+
J†
SJS

∂2 −m2
S

= LSM +
J†
SJS

∂2 −m2
S

. (6.1.7)

In the EFT-regime, we have p2S � m2
S , with pS the scalar particle’s momentum. Consequently, we

can expand the scalar propagator as follows:

1

∂2 −m2
S

= − 1

m2
S

(
1− ∂2

m2
S

)
+O

(
1

m4
S

)
.

The UV-Lagrangian (6.1.7) can thus be written as

Leff = LSM − 1

m2
S

J†
SJS +O

(
1

m4
S

)
. (6.1.8)

Let us now substitute the scalar current (6.1.3) in order to express J†
SJS in terms of the SM-fiels:

J†
SJS = c2S

((
t̄L b̄L

)
bR + t̄R

(
bL −tL

))(
b̄R

(
tL

bL

)
+ cS

(
b̄L

−t̄L

)
tR

)

= c2S

((
t̄L b̄L

)
bRb̄R

(
tL

bL

)
+
(
t̄L b̄L

)
bR

(
b̄L

−t̄L

)
tR + t̄R

(
bL −tL

)
b̄R

(
tL

bL

)

+t̄R

(
bL −tL

)( b̄L

−t̄L

)
tR

)
= c2S

(
t̄LbRb̄RtL + b̄LbRb̄RbL + t̄LbRb̄LtR − b̄LbRt̄LtR

−t̄RtLb̄RbL + t̄RbLb̄RtL + t̄RtLt̄LtR + t̄RbLb̄LtR
)

(6.1.9)

Therefore, at leading order in the EFT-expansion, we have

Leff = LSM − c2s
m2
S

(
t̄LbRb̄RtL + b̄LbRb̄RbL + t̄LbRb̄LtR − b̄LbRt̄LtR

−t̄RtLb̄RbL + t̄RbLb̄RtL + t̄RtLt̄LtR + t̄RbLb̄LtR
)
. (6.1.10)
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As it stands, the coefficients in front of the operators appearing in (6.1.10) cannot yet be matched
to the SMEFT coefficients. We first have to convert these operators to the Warsaw basis, since the
SMEFT results in [3] are presented with this choice of basis. A list of definitions of operators in the
Warsaw basis is provided in appendix A. We use this notation.

It is convenient to take a backwards approach here and start by simply giving the effective
Lagrangian in the Warsaw basis. We then prove its correctness by showing that it equals the
original effective Lagrangian (6.1.10). Expressed in the Warsaw basis, we have [22]

Leff = LSM −
c2S
6m2

S

(
Q(1)
qd +Q(1)

qu

)
−

c2S
m2
S

(
Q(8)
qd +Q(8)

qu

)
+

c2S
m2
S

(
Q(1)
quqd + h.c.

)
. (6.1.11)

Proof of (6.1.11)
Our strategy is to consider the operators in (6.1.11) in turn, and show, after a little manipulation,
that they give the operators in (6.1.10). Let us start with the operator Q(1)

qd . Making the colour
indices (α, β) explicit, we have

Q(1)
qd = (q̄LγµqL) (b̄Rγ

µbR)

= (t̄αLγµt
α
L)(b̄

β
Rγ

µbβR) + (b̄αLγµb
α
L)(b̄

β
Rγ

µbβR)

= 2t̄αLb
β
Rb̄

β
Rt
α
L + 2b̄αLb

β
Rb̄

β
Rb

α
L, (6.1.12)

where on the last line we used the following Fierz identity:

[ψ̄L1ψR2 ][ψ̄R3ψL4 ] =
1

2

[
ψ̄L1γ

µψL4

] [
ψ̄R3γµψR2

]
. (6.1.13)

We refer to appendix B for a derivation here. Similarly to Q(1)
qd , we can show that

Q(1)
qu = 2t̄αLt

β
Rt̄
β
Rt
α
L + 2b̄αLt

β
Rt̄
β
Rb

α
L. (6.1.14)

The operators Q(8)
qd and Q(8)

qu are less straightforward to convert. We first need that

TAαβT
A
κλ =

1

2
δαλδκβ −

1

6
δαβδκλ .

With this, we obtain:

Q(8)
qd = (q̄LγµTAqL)

(
b̄Rγ

µTAbR
)

= (t̄LγµTAtL)
(
b̄Rγ

µTAbR
)
+
(
b̄LγµTAbL

) (
b̄Rγ

µTAbR
)

=
(
t̄αLγµt

β
L

)(
b̄κRγµb

λ
R

)(1

2
δαλδκβ −

1

6
δαβδκλ

)
+
(
b̄αLγµb

β
L

)(
b̄κRγµb

λ
R

)(1

2
δαλδκβ −

1

6
δαβδκλ

)
=

1

2

(
t̄αLγµt

β
L

)(
b̄βRγ

µbαR

)
− 1

6
(t̄αLγµt

α
L)
(
b̄βRγ

µbβR

)
1

2

(
b̄αLγµb

β
L

)(
b̄βRγ

µbαR

)
− 1

6

(
b̄αLγµb

α
L

) (
b̄βRγ

µbβR

)
.
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Finally, using again the Fierz identity (6.1.13) to remove the gamma-matrices, we find

Q(8)
qd = t̄LbRb̄RtL − 1

3
t̄αLb

β
Rb̄

β
Rt
α
L + b̄LbRb̄RbL − 1

3
b̄αLb

β
Rb̄

β
Rb

α
L. (6.1.15)

Similarly, we obtain

Q(8)
qu = t̄LtRt̄RtL − 1

3
t̄αLt

β
Rt̄
β
Rt
α
L + b̄LtRt̄RbL − 1

3
b̄αLt

β
Rt̄
β
Rb

α
L (6.1.16)

Now, what remains is to convert the operator Q(1)
quqd. Carrying out the multiplication, gives

Q(1)
quqd =

(
q̄jLtR

)
εjk

(
q̄kLbR

)
= t̄LtRb̄LbR − b̄LtRt̄LbR. (6.1.17)

Having converted all the Warsaw operators to a form that resembles the operators in (6.1.10), we
can now plug our results (6.1.12)-(6.1.17) into the effective Lagrangian from (6.1.11) to find

Leff = LSM −
c2S
m2
S

(
1

3
t̄αLb

β
Rb̄

β
Rt
α
L +

1

3
b̄αLb

β
Rb̄

β
Rb

α
L +

1

3
t̄αLt

β
Rt̄
β
Rt
α
L +

1

3
b̄αLt

β
Rt̄
β
Rb

α
L

+ (t̄LbRb̄RtL)−
1

3
t̄αLb

β
Rb̄

β
Rt
α
L + (b̄LbRb̄RbL)−

1

3
b̄αLb

β
Rb̄

β
Rb

α
L + (t̄LtRt̄RtL)

−1

3
t̄αLt

β
Rt̄
β
Rt
α
L + (b̄LtRt̄RbL)−

1

3
b̄αLt

β
Rt̄
β
Rb

α
L − (t̄LtRb̄LbR − b̄LtRt̄LbR + h.c.)

)
. (6.1.18)

Finally, canceling common terms and writing out the hermitean conjugate leaves us with

Leff = LSM −
c2S
m2
S

(
t̄LbRb̄RtL + b̄LbRb̄RbL + t̄LtRt̄RtL + b̄LtRt̄RbL

−t̄LtRb̄LbR + b̄LtRt̄LbR − b̄RbLt̄RtL + b̄RtLt̄RbL
)
, (6.1.19)

which is seen to equal (6.1.10) and thus proves (6.1.11). End of proof.

We would like to generalise our model to include other fermionic families as well. This can be
straightforwardly done by carefully keeping track of the generation-indices. The coupling cS now
gets replaced by a 3× 3-matrix (cS)ij in generation space:

Leff = LSM −
∑
ijkl

(cS)kj(cS)il
6m2

S

(
Q(1)ijkl
qd +Q(1)ijkl

qu

)
−
∑
ijkl

(cS)kj(cS)il
m2
S

(
Q(8)ijkl
qd +Q(8)ijkl

qu

)
+
∑
ijkl

(cS)ij(cS)kl
m2
S

(
Q(1)ijkl
qud + h.c.

)
. (6.1.20)

If we furthermore impose that the scalar particle S couples with equal strength only to quarks that
have the same flavour, we get that (cS)ij = cSδij and (6.1.20) simplifies to

Leff = LSM − c2S
∑
ijkl

δkjδil
6m2

S

(
Q(1)ijkl
qd +Q(1)ijkl

qu

)
− c2S

∑
ijkl

δkjδil
m2
S

(
Q(8)ijkl
qd +Q(8)ijkl

qu

)
+ c2S

∑
ijkl

δijδkl
m2
S

(
Q(1)ijkl
qud + h.c.

)
. (6.1.21)
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The correct generalisation of the current JS (6.1.3) to all generations can be written as

JS ≡ cS
∑
i,j

d̄iRq
j
Lδij + cSiσ2

∑
i,j

q̄i
T

L u
j
Rδij , (6.1.22)

where we have taken again (cS)ij = cSδij . The current (6.1.22) then leads to

S†JS + h.c. = −cSS(ūu− d̄d+ c̄c− s̄s+ t̄t− b̄b), (6.1.23)

which shows that the q̄fqfS-vertices again get associated a factor ±icS .
As becomes apparent from the effective Lagrangian in (6.1.21), we generate two different kinds

of four fermionic operators upon going to the EFT. For i, j, k, l = 3, we have the four-heavy quark
operators, and when exactly two generation indices equal three, we get the two-light-two-heavy
(2L2H) operators. As for the latter, they come in the pattern (i33i) or (3ii3), where i = 1, 2 refers
to a light quark. However, the SMEFT fitting basis used in ref. [3] (see Table 4.1 in chapter 4)
only includes 2L2H operators of the kind (ii33) or (i33i). This can be traced back to the flavour
assumptions that were made in [3]. They assume a U(2)q×U(2)u×U(2)d flavour symmetry among
the first two generations, which excludes four-fermionic operators of the kind (i33i) and (3ii3)

[23]. The bottom line of this observation is that we cannot use the 2L2H bounds from SMEFiT to
constrain the UV-parameters cS and mS .

What about the four-heavy quark operators? In the effective Lagrangian (6.1.21), the contri-
bution with generation indices i, j, k, l = 3 results in the operators O(1)3333

qd ,O(1)3333
qu ,O(8)3333

qd and
O(8)3333
qu . In contrast to the 2L2H operators, we now do generate operators that are part of our

SMEFT fitting basis. This therefore allows us to study how the SMEFT bounds carry over to the
BSM parameters.

Using Nested Sampling (NS, chapter 4), we construct 95% CL bounds for the above mentioned
four-heavy quark operators. The operators are fit individually, i.e. constrained one at a time, since
this leads to more stringent bounds due to the absence of cross-correlations. The results, at SMEFT
order O

(
Λ−4

)
are shown in Table 6.1. For completeness, we also present the SMEFT bounds for

the 2L2H operators in Table 6.2, although these will not be used for the above-mentioned reason.
Here, results are shown at both order O

(
Λ−2

)
and O

(
Λ−4

)
.

Let us now use the bounds on the four-heavy operators to constrain the ratio c2S/m2
S . Identifying

the coefficients appearing in front of the operators in (6.1.21) with the SMEFT coefficients in Table
6.1, results in the following constraints:
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−0.595 < −
c2S
6m2

S

< −0.0448 TeV−2

−0.0150 < −
c2S
6m2

S

< 0.145 TeV−2

−3.128 < −
c2S
m2
S

< −1.982 TeV−2

−0.802 < −
c2S
m2
S

< −0.473 TeV−2.

(6.1.24)

Keeping only the upper bounds on c2S/m
2
S , we can write (6.1.24) as:

c2S
m2
S

< 3.570 TeV−2

c2S
m2
S

< 0.0900 TeV−2

c2S
m2
S

< 3.128 TeV−2

c2S
m2
S

< 0.802 TeV−2,

(6.1.25)

where we have kept the same order as in (6.1.24). Therefore, the most stringent bound, or best
bound, is given by

c2S
m2
S

< 0.0900 TeV−2 (Best). (6.1.26)

This concludes the discussion about the heavy scalar model for now. We return to this model in
chapter 7, where it is used in the context of BSM phenomenology.

QQQQ O(Λ−4)

OQb1 = C
(1)3333
qd [−0.595,−0.0448]

OQt1 = C
(1)3333
qu [−0.0150, 0.145]

OQb8 = C
(8)3333
qd [−3.128,−1.982]

OQt8 = C
(8)3333
qu [−0.802,−0.473]

Table 6.1: The 95% confidence level intervals (in units of TeV −2, with Λ = 1 TeV) for the four-heavy
operators appearing in the effective Lagrangian (6.1.20).
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2L2H O(Λ−2) O(Λ−4)

O1qd = C
(1)33ii
qd [0.919, 1.037] [0.0281, 0.0475]

O1qu = C
(1)33ii
qu [0.951, 1.002] [0.0807, 0.0951]

O1qt = C
(1)ii33
qu [0.090, 0.191] [0.00268, 0.0144]

O8qd = C
(8)33ii
qd [−1.261,−1.163] [−0.394,−0.342]

O8qt = C
(8)ii33
qu [0.047, 0.091] [−0.0293,−0.00176]

O8qu = C
(8)33ii
qu [−1.627,−1.528] [−0.240,−0.202]

Table 6.2: The 95% confidence level intervals (in units of TeV −2, with Λ = 1 TeV) for the two-
light-two-heavy (2L2H) operators appearing in the effective Lagrangian (6.1.20). at order O

(
Λ−2

)
and O

(
Λ−4

)
.

S

g

g

t

t̄

g

g

t

t̄

OtG

Figure 6.1: In the heavy scalar model, the chromomagnetic operator OtG is generated in the EFT
(right) at NLO in QCD (left).

6.1.1 NLO Effects

In the previous section we matched a heavy scalar extension of the SM onto the SMEFT at leading
order (LO) in QCD. That is, we only considered diagrams in the full theory that did not include any
loops. However, the heavy scalar S also contributes to tt̄-production at next-to-leading order (NLO)
in QCD, as can be understood from figure 6.1. If we were now to integrate out S here, we would
additionally also generate the chromomagnetic operator OtG [24], which contributes to tt̄-production
at LO in the EFT. Considering that OtG is constrained by many different processes (i.e. all the
top-quark production mechanisms except for single top production and single top production in
association with a Z-boson), it is relatively tightly constrained [3]. Therefore, matching at NLO
would possibly give more stringent constraints on the UV parameters cS and mS .
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6.2 Model: Heavy Vector Boson

Having extended the SM with a heavy scalar particle S in section 6.1, we now consider a slightly
more complex BSM theory. Following [25], let us add a heavy vector boson Bµ to the SM with the
following representation under the SM gauge group:

Bµ ∼ (1, 1)0.

Here, (Rc, RL)Y again denote the representation Rc under SU(3)c, the representation RL under
SU(2)L and the hypercharge Y respectively. Note that Y = 0 implies that we are dealing with a
real representation. The associated Lagrangian is given by

LUV = LSM + LB + LB−SM + nonlinear, (6.2.1)

where LB contains terms quadratic in the vector boson Bµ (i.e. the kinetic term and the mass
term), and LB−SM contains terms involving Bµ that are linearly coupled to the SM. To be explicit,

LB = −1

2
DµB

†
νD

µBν − 1

2
DµB

†
νD

νBµ +
1

2
M2
BB

†
µB

µ (6.2.2)

LB−SM = −1

2
(Bµ†JBµ + h.c.). (6.2.3)

Here, JBµ defines the vector current, which couples the heavy vector boson to the quarks according
to

JBµ = (gqB)ij q̄
i
Lγµq

j
L + (guB)ij ū

i
Rγµu

j
R + (gdB)ij d̄

i
Rγµd

j
R. (6.2.4)

Let us now derive the effective Lagrangian. Similarly to the scalar case in (6.1.8), we integrate out
the heavy vector Bµ. This gives

Leff = LSM − 1

2M2
B

(JBµ )†JBµ +O
(

1

M4
B

)
.

Working at leading order, and substituting the vector current (6.2.4) into the above, we thus obtain

Leff = LSM − 1

2M2
B

(
(gqB)ij q̄

i
Lγµq

j
L + (guB)ij ū

i
Rγµu

j
R + (gdB)ij d̄

i
Rγµd

j
R

)
(
(gqB)klq̄

k
Lγµq

l
L + (guB)klū

k
Rγµu

l
R + (gdB)kld̄

k
Rγµd

l
R

)
≡ LSM +

∑
i

αi
M2
B

Oi, (6.2.5)

where the operators Oi are in the “Buchmüller”-basis [26] (not the Warsaw-basis!). The coefficients
αi are collected in appendix B of ref. [25]. From there we deduce that∑

i

αi
M2
B

Oi = −
(gqB)ij(g

q
B)kl

M2
B

O(1,1)ijkl
qq −

(guB)ij(g
u
B)kl

M2
B

O(1)ijkl
uu −

(gdB)ij(g
d
B)kl

M2
B

O(1)ijkl
dd

−
2(gdB)ij(g

u
B)kl

M2
B

O(1)ijkl
du +

2(gqB)il(g
u
B)kj

3M2
B

O(1)ijkl
qu +

(gqB)il(g
u
B)kj

M2
B

O(8)ijkl
qu

+
2(gqB)il(g

d
B)kj

3M2
B

O(1)ijkl
qd +

(gqB)il(g
d
B)kj

M2
B

O(8)ijkl
qd . (6.2.6)
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So we have generated eight dimension-six operators in total by integrating out the heavy vector
boson. The operators Oi in (6.2.6) are defined in Table 6.3. Some of these are already in the
Warsaw basis, in which case this is indicated by a tick in the second column together with the
relevant operator. Here, generation indices i, j, k, l are left implicit, and can be easily restored. For
example, O(1,1)ijkl

qq = 1
2(q̄

i
Lγµq

j
L)(q̄

k
Lγ

µqlL). The notation O(1)
ud and O(1)

du is used interchangeably, since
they refer to the same operator.

Operator (“Buchmüller”-basis) Warsaw

1. O(1,1)
qq ≡ 1

2(q̄LγµqL)(q̄Lγ
µqL)

1
2Q

(1)
qq

2. O(1)
uu ≡ 1

2(ūRγµuR)(ūRγ
µuR)

1
2Quu

3. O(1)
dd ≡ 1

2(d̄RγµdR)(d̄Rγ
µdR)

1
2Qdd

4. O(1)
ud ≡ (ūRγµuR)(d̄Rγ

µdR) Q(1)
ud

5. O(1)
qu ≡ (q̄LuR)(ūRqL) ×

6. O(8)
qu ≡ (q̄LTAuR)(ūRTAqL) ×

7. O(1)
qd ≡ (q̄LdR)(d̄RqL) ×

8. O(8)
qd ≡ (q̄LTAdR)(d̄RTAqL) ×

Table 6.3: Dimension-six operators generated in the heavy vector boson EFT (6.2.5). The Warsaw
operators are denoted by Q to distinguish them from the “Buchmüller” operators Oi. We refer the
reader to appendix A for a definition of the Warsaw operators. Generation indices i, j, k, l are left
implicit.

The idea is now to convert operators 5 − 8 to the Warsaw basis. Let us start with operators 5

and 7. Applying the Fierz identity from equation (6.1.13), we find

O(1)ijkl
qu = (q̄iLu

j
R)(ū

k
Rq

l
L) =

1

2
(q̄iLγµq

l
L)(ū

k
Rγ

µujR) =
1

2
Q(1)ilkj
qu

O(1)ijkl
qd = (q̄iLd

j
R)(d̄

k
Rq

l
L) =

1

2
(q̄iLγµq

l
L)(d̄

k
Rγ

µdjR) =
1

2
Q(1)ilkj
qd . (6.2.7)
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Next, we convert operator 6:

O(8)ijkl
qu = (q̄iLTAu

j
R)(ū

k
RTAq

l
L)

= (q̄αLT
A
αβu

β
R)(ū

κ
RT

A
κλq

λ
L)

= (q̄αLu
β
R)(ū

κ
Rq

λ
L)(

1

2
δαλδκβ −

1

6
δαβδκλ)

=
1

2
(q̄αLu

β
R)(ū

β
Rq

α
L)−

1

6
(q̄αLu

α
R)(ū

β
Rq

β
L)

= −1

6
(q̄LuR)(ūRqL)

= − 1

12
(q̄LγµqL)(ūRγ

µuR)

= − 1

12
Q(1)ilkj
qu . (6.2.8)

Let us comment on the various steps we take in (6.2.8). We leave the generation indices implicit
in going from the first to the second line and the colour indices are denoted by the Greek-letters
α, β, κ, λ. We furthermore use on the third line that

TAαβT
A
κλ =

1

2
δαλδκβ −

1

6
δαβδκλ

and the first term on the fourth line in (6.2.8) vanishes, because q̄αLqαL projects to zero. Also, in
order to remove the gamma-matrices we apply the Fierz identity from (6.1.13) on the second to last
line. Finally, we restore the generation indices again on the last line.

Converting operator 8 proceeds analogously, and so we find

O(8)ijkl
qd = − 1

12
Q(1)ilkj
qd . (6.2.9)

Having converted all the operators to the Warsaw basis, let us give an overview of our results
in Table 6.4. It is a conversion Table that shows how to go from the “Buchmüller”-basis to the
Warsaw-basis.

Continuing, we substitute operators (6.2.7) − (6.2.9) into the effective Lagrangian from (6.2.5)
together with (6.2.6), to obtain

Leff = LSM −
(gqB)ij(g

q
B)kl

2M2
B

Q(1)ijkl
qq −

(guB)ij(g
u
B)kl

2M2
B

Qijkl
uu −

(gdB)ij(g
d
B)kl

2M2
B

Qijkl
dd

−
2(gdB)ij(g

u
B)kl

M2
B

Q(1)ijkl
du +

(gqB)il(gB)kj
3M2

B

Q(1)ilkj
qu −

(gqB)il(g
u
B)kj

12M2
B

Q(1)ilkj
qu

+
(gqB)il(g

d
B)kj

3M2
B

Q(1)ilkj
qd −

(gqB)il(g
d
B)kj

12M2
B

O(1)ilkj
qd . (6.2.10)

Gathering common terms, and relabeling generation-indices, finally gives

Leff = LSM −
(gqB)ij(g

q
B)kl

2M2
B

Q(1)ijkl
qq −

(guB)ij(g
u
B)kl

2M2
B

Qijkl
uu −

(gdB)ij(g
d
B)kl

2M2
B

Qijkl
dd

−
2(gdB)ij(g

u
B)kl

M2
B

Q(1)ijkl
du +

(gqB)ij(g
u
B)kl

4M2
B

Q(1)ijkl
qu +

(gqB)ij(g
d
B)kl

4M2
B

Q(1)ijkl
qd . (6.2.11)
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Operator (“Buchmüller”-basis) Warsaw

1. O(1,1)ijkl
qq

1
2Q

(1)ijkl
qq

2. O(1)ijkl
uu

1
2Q

ijkl
uu

3. O(1)ijkl
dd

1
2Q

ijkl
dd

4. O(1)ijkl
ud Q(1)ijkl

ud

5. O(1)ijkl
qu

1
2Q

(1)ilkj
qu

6. O(8)ijkl
qu − 1

12Q
(1)ilkj
qu

7. O(1)ijkl
qd

1
2Q

(1)ilkj
qd

8. O(8)ijkl
qd − 1

12Q
(1)ilkj
qd

Table 6.4: Conversion Table that shows how to the conversion from the “Buchmüller”-operators to
the Warsaw operators. The generation-indices i, j, k, l are written explicitly.

The effective Lagrangian (6.2.11) then defines our final working expression in the Warsaw-basis.
We can now use the SMEFiT bounds to put bounds on the UV-parameters in the heavy vector

model. From the operators appearing in equation (6.2.11), the ones that have corresponding SME-
FiT bounds are presented in Table 6.5. Note how we are able to use the 2L2H operators in this case,
as opposed to before in the heavy scalar model from section 6.1. This will lead to more stringent
bounds on the UV-parameters, since the 2L2H operators are sensitive to more top-quark processes
than the four-heavy quark operators. Again, The SMEFiT bounds are obtained by a NS-run (see
Chapter 4) when only one operator is constrained at a time1.

Identifying the coefficients in equation (6.2.11) with the coefficients in Table 6.5, therefore results
in the following bounds on the UV-parameters gqB, guB, gdB and MB at order O

(
Λ−2

)
:

1When the Warsaw operators are linear combinations of the SMEFT degrees of freedom, we have propagated the
95% CL by the standard formula Var(z) =

(
∂f(x,y)

∂x

)2

Var(x) +
(

∂f(x,y)
∂y

)2

Var(y), with z ≡ f(x, y). In general, the
95% CL for operator X is determined from the NS samples by computing X̄ ± 1.96 · σ̂/

√
n, where X̄ is the sample

mean, σ̂ the estimator of the standard deviation of the sample mean and n the number of NS samples.
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2L2H O(Λ−2) O(Λ−4)

1
4(O81qq +3O83qq)= C

(1)i33i
qq [−1.415,−1.341] [−0.205,−0.185]

O11qq −1
6O81qq= C

(1)ii33
qq [−0.732,−0.645] [0.0371, 0.0498]

1
2O8ut = Ci33iuu [−0.441,−0.421] [−0.374,−0.354]

O1ut −1
6O8ut= Cii33uu [−0.00317, 0.00643] [−1.223,−1.200]

O1dt = C
(1)33ii
ud [−1.311,−1.188] [−0.0338,−0.0152]

O1qu = C
(1)33ii
qu [0.951, 1.002] [0.0807, 0.0951]

O1qt = C
(1)ii33
qu [0.090, 0.191] [0.00268, 0.0144]

O1qd = C
(1)33ii
qd [0.919, 1.037] [0.0282, 0.0475]

Table 6.5: The 95% confidence level intervals (in units of TeV−2, with Λ = 1 TeV) for the dimension-
six operators appearing in the effective Lagrangian (6.2.11) at order O

(
Λ−2

)
and O

(
Λ−4

)
. The

bounds are obtained by a NS-run when only a single operator is constrained at a time.

−1.415 < −
(gqB)i3(g

q
B)3i

2M2
B

< −1.341 TeV−2

−0.732 < −
(gqB)ii(g

q
B)33

2M2
B

< −0.645 TeV−2

−0.441 < −
(guB)i3(g

u
B)3i

2M2
B

< −0.421 TeV−2

−0.00317 < −
(guB)ii(g

u
B)33

2M2
B

< 0.00643 TeV−2

−1.311 < −
2(guB)33(g

d
B)ii

M2
B

< −1.188 TeV−2

0.951 <
(gqB)33(g

u
B)ii

4M2
B

< 1.002 TeV−2

0.090 <
(gqB)ii(g

u
B)33

4M2
B

< 0.191 TeV−2

0.919 <
(gqB)33(g

d
B)ii

4M2
B

< 1.037 TeV−2.

(6.2.12)

Note how the signs work out consistently here in all cases, so that the ratio g2B/M2
B always has a

positive upper bound (as is required for obvious reasons). As in the scalar case, we now specify to
the case (gqB)ij = (guB)ij = (gdB)ij ≡ gBδij . That is, we assume diagonal couplings of equal strength
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gB. Writing only the upper bounds, (6.2.12) then becomes

g2B
M2
B

< 2 · 1.415 = 2.829 TeV−2

g2B
M2
B

< 2 · 0.733 = 1.463 TeV−2

g2B
M2
B

< 2 · 0.441 = 0.882 TeV−2

g2B
M2
B

< 2 · 0.00317 = 0.00633 TeV−2

g2B
M2
B

<
1

2
· 1.311 = 0.656 TeV−2

g2B
M2
B

< 4 · 1.002 = 4.008 TeV−2

g2B
M2
B

< 4 · 0.191 = 0.764 TeV−2

g2B
M2
B

< 4 · 1.037 = 4.148 TeV−2.

So we get multiple different bounds for the ratio g2B/M2
B, depending on which SMEFiT bound we

use. In order to see how stable the results are, we consider the best, worst, and average upper
bound:

g2B
M2
B

< 0.00633 TeV−2 Best, order O
(
Λ−2

)
(6.2.13)

g2B
M2
B

< 4.148 TeV−2 Worst, order O
(
Λ−2

)
(6.2.14)

g2B
M2
B

< 1.845 TeV−2 Average, order O
(
Λ−2

)
. (6.2.15)

We can also work at order O
(
Λ−4

)
if we use the higher order bounds from Table 6.5. Repeating

the same steps as at order O
(
Λ−2

)
, we obtain

g2B
M2
B

< 0.0107 TeV−2 Best, order O
(
Λ−4

)
(6.2.16)

g2B
M2
B

< 2.446 TeV−2 Worst, order O
(
Λ−4

)
(6.2.17)

g2B
M2
B

< 0.581 TeV−2 Average, order O
(
Λ−4

)
. (6.2.18)

So comparing the results at O
(
Λ−2

)
and O

(
Λ−4

)
we conclude that they both give bounds of

approximately the same order of magnitude, except for the average bound. Note that the bound on
operator C(1)ii33

qq at order O
(
Λ−4

)
leads to an inconsistency, since 0.0371 < −g2B/2M2

B < 0.0498 is
not allowed for obvious reasons. Therefore, we have decided to drop this contribution and exclude
it from the average bound reported here.
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Let us conclude this chapter by deriving the Feynman rules for the heavy vector model. We
again assume (gqB)ij = (guB)ij = (gdB)ij ≡ gBδij and consider

LB−SM = −1

2

(
Bµ†JBµ = h.c.

)
= −BµJBµ , (6.2.19)

with the vector field Bµ taken real. Substituting the vector current (6.2.4), we thus obtain

LB−SM = −gBBµ
(
t̄γµt+ b̄γµb+ c̄γµc+ s̄γµs+ ūγµu+ d̄γµd

)
. (6.2.20)

Therefore, the Feynman rule for the q̄fqfBµ-vertices is given by:

Bµ

q̄f

qf

= igBγ
µ.

Finally, the heavy vector boson propagator is given by

p

µ ν =
i

p2 −M2
B

(
−gµν +

pµpν
M2
W

)
.



Chapter 7

Phenomenology of UV Extensions

In addition to translating the constraints on the Wilson coefficients to bounds on the UV parameters
via matching, the latter can also be constrained by experimental data directly. This chapter follows
this alternative approach and we study whether it leads to consistent results compared to what we
found in chapter 6. We will derive results for both the heavy scalar and the heavy vector boson,
introduced in sections 6.1 and 6.2 respectively.

This chapter is structured as follows. We first calculate the differential cross section for tt̄-production
in a proton-proton collision at

√
s = 13 TeV in the SM. Later, in section 7.2 we study how this result

gets modified by the BSM terms. We are ultimately interested in comparing the BSM prediction
to experimental data via a χ2-test in section 7.4, which then puts us in the position to find BSM
bounds on the UV-parameters cS , mS , gB and MB that were introduced in sections 6.1 and 6.2. We
end this chapter with comparing the resulting BSM bounds and the EFT bounds that we derived
in chapter 6.

7.1 Standard Model Contribution

In order to find theoretical predictions for tt̄-production, one starts with considering the relevant
subprocesses at the partonic level. These are formed by either two quarks or two gluons in the
initial state (see figure 7.1). The first step is to calculate the associated partonic cross section,
denoted σ̂, at leading-order in QCD. In general, partonic variables will carry a hat to distinguish
them from their hadronic counterparts. Following this, the partonic cross section will be converted
to the hadronic cross section σ by convolution with the parton distribution functions (PDFs):

σ(p(P1)+p(P2) → tt̄+X) =

∫ 1

0
dx1

∫ 1

0
dx2

∑
f

ff (x1)fff̄ (x2)σ̂(qf (x1P )+ q̄f (x2P )) → tt̄). (7.1.1)

Here, the sum runs over all species of quarks and anti-quarks (that is, u, d, ū, d̄, . . . ) except for the
top quark, for which there exists no PDF. The PDFs, denoted ff (xi), encode the fraction xi of the

51



CHAPTER 7. PHENOMENOLOGY OF UV EXTENSIONS 52

nine II x E

i
Figure 7.1: Production mechanisms for tt̄-production in the SM at LO. Above: two gluons forming
the initial state of tt̄-production. Below: two quarks forming the initial state of tt̄-production. Note
that the diagram below has been drawn with an up-quark, but holds in general for any flavour except
for the top-quark.

total hadronic momentum that is carried by a parton with flavour f . The X denotes any byproducts
resulting from the proton-proton collision. Let us now move on and compute the partonic cross
sections of the processes in figure 7.1.

7.1.1 Partonic Cross Sections

Quark-quark initial state

The differential cross section is related to the incoming flux Φ, the matrix element M and the
Lorentz Invariant Phase Space factor (or LIPS for short) as follows:

dσ̂ =
1

Φ
|M|2dΠLIPS , (7.1.2)

where
dΠLIPS = (2π)4δ4(Σp)

d3pt
(2π)3

1

2Et

d3pt̄
(2π)3

1

2Et̄
(7.1.3)

and
Φ = 4

√
(pq · pq̄)2 −m2

qm
2
q̄ . (7.1.4)

The delta-function in equation (7.1.3) ensures that 4-momentum is conserved and q denotes one of
the incoming quarks. Furthermore, since the masses of the incoming quarks are negligible compared
to the top quark’s mass, they can be put to zero. With this, the invariant flux Φ simplifies to
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p1

p2

g

p3

p4

Figure 7.2: Feynman diagram associated to the amplitude in (7.1.10).

Φ = 4pq · pq̄ = 2ŝ (massless case), (7.1.5)

where ŝ denotes the partonic CM energy squared. The LIPS-factor can also be simplified. Adopting
the partonic center of mass (CM) frame, one has Et = Et̄ and |pt| = |pt̄|. Integrating over the
4-momentum pt̄ using the delta function, and writing the phase space integral in terms of angular
variables, leaves one with

dΠLIPS =
1

(2π)2
δ(Et + Et̄ − ECM )

d3pt
4E2

t

=
1

16π2
dΩ

∫
dpt

p2t
E2
t

δ(2Et − ECM ), (7.1.6)

where pt = |pt| for convenience and Et = Et̄ =
√
p2t +m2

t . In order to evaluate the integral in
equation (7.1.6) further, it is convenient to change variables to x ≡ 2Et − ECM . The associated
Jacobian of this transformation is

dx

dpt
=

d

dpt
(2Et − ECM ) =

2pt
Et

. (7.1.7)

Hence,

dΠLIPS =
1

16π2
dΩ

∫ ∞

2mt−ECM

dx
pt

ECM
δ(x)

=
1

16π2
dΩ

pt
ECM

Θ(ECM − 2mt), (7.1.8)

where the Heaviside-function Θ ensures that no top-quarks can be produced below threshold. With
these simplifications in place, the cross section differential from equation (7.1.2) becomes:

dσ̂ =
1

2ŝ
|M|2 1

16π2
dΩ

pt
ECM

θ(ECM − 2mt). (7.1.9)

The last missing piece is to calculate the matrix element M. Applying the SM Feynman rules
to the diagram in figure 7.2, gives:

iM = v̄(p2)(igsγ
µtAij)u(p1)

(
−igµν
ŝ

δAB
)
ū(p3)(igsγ

νtBkl)v(p4)

= ig2s t
A
ijt

A
kl

1

ŝ
[v̄(p2)γ

µu(p1)ū(p3)γµv(p4)], (7.1.10)
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where A,B label the generators of SU(3) in the fundamental representation of SU(3). Therefore,

M = g2s t
A
ijt

A
kl

1

ŝ
[v̄(p2)γ

µu(p1)ū(p3)γµv(p4)], (7.1.11)

where the product tAijtAkl forms the colour factor. Apart from this factor, the matrix element M is
identical to the corresponding process e+e− → µ+µ− in QED. Since one cannot observe individual
colours, and spin is not measured, the matrix element squared must include the average and sum over
incoming and outgoing colours/spins respectively and shall henceforth be denoted |M̄|2. Explicitly,

|M̄|2 = 1

3
· 1
3
· 1
2
· 1
2

∑
colour

∑
spin

|M|2

=

1

9

∑
i,j,k,l

(tAijt
A
kl)(t

B
ijt

B
kl)

∗

 ·

1

4

∑
spin

g4s
ŝ2

|v̄(p2)γµu(p1)ū(p3)γµv(p4)|2
 (7.1.12)

Using that the SU(3) generators are Hermitean, the first term in parenthesis (i.e. the colour factor)
evaluates to

1

9

∑
i,j,k,l

(tAijt
A
kl)(t

B
ijt

B
kl)

∗ =
1

9

∑
i,j,k,l

tAijt
A
klt

B
jit

B
lk

=
1

9
Tr(tAtB)Tr(tAtB)

=
2

9
. (7.1.13)

The second term in parenthesis in equation (7.1.12), or the QED part, can be evaluated using Dirac
traces as will be shown now.

1

4

∑
spin

g4s
ŝ2

[v̄(p2)γ
µu(p1)ū(p3)γµv(p4)] · [v̄(p4)γνu(p3)ū(p1)γνv(p2)]

=
g4s
4ŝ2

Tr[(/p4 −m4)γν(/p3 +m3)γµ] · Tr[(/p1 +m1)γ
ν(/p2 −m2)γ

µ]

Using that m1 = m2 = 0 and m3 = m4 = mt, gives

=
g4s
4ŝ2

Tr[(/p4 −mt)γν(/p3 +mt)γµ] · Tr[(/p1)γ
ν(/p2)γ

µ]

Since the trace over an odd number of gamma matrices vanishes, one obtains

=
g4s
4ŝ2

(Tr[/p4γν/p3γµ]−m2
tTr[γνγµ]) · 4(pν1p

µ
2 + pµ1p

ν
2 − p12g

νµ)

where we used that Tr[γργνγσγµ] = 4(gρνgσµ + gρµgνσ − gρσgνµ). The notation pij is short for
(pi)

µ(pj)µ. Using this identity for the first term as well, and noting that Tr[γµγν ] = 4gµν , results in

=
g4s
4ŝ2

(4(p4νp3µ + p4µp3ν − p34gνµ)− 4m2
t gµν) · 4(pν1p

µ
2 + pµ1p

ν
2 − p12g

νµ)
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Expanding terms, performing contractions and cancelling common terms, gives

=
8g2s
ŝ2

(p14p32 + p13p24 +m2
t p12)

In the CM-frame, one has p1 = (E, 0, 0, E), p2 = (E, 0, 0,−E), p3 = (E, ~pt) and p4 = (E,−~pt).
Substituting these into the above, yields

=
8g2s
ŝ2

(
(E2 + E

√
E2 −m2

t cos θ)
2 + (E2 − E

√
E2 −m2

t cos θ)
2 + 2m2

tE
2

)
=

8g2s
ŝ2

· 2
(
E4 + E2(E2 −m2

t ) cos
2 θ +m2

tE
2
)

Upon using 4E2 = ŝ to rewrite everything in terms of the Mandelstam variable ŝ, the above takes
the following form:

= g2s

(
1 +

4m2
t

ŝ
+

(
1− 4m2

t

ŝ

)
cos2 θ

)
. (7.1.14)

So, the following is seen to hold:

1

4

∑
spin

g4s
ŝ2

|v̄(p2)γµu(p1)ū(p3)γµv(p4)|2 = g2s

(
1 +

4m2
t

ŝ
+

(
1− 4m2

t

ŝ

)
cos2 θ

)
. (7.1.15)

Substituting equations (7.1.15) and (7.1.13) into equation (7.1.12), then finally gives for the squared
amplitude

|M̄|2 = 2

9
· g2s

(
1 +

4m2
t

ŝ
+

(
1− 4m2

t

ŝ

)
cos2 θ

)
. (7.1.16)

Recall equation (7.1.2) for the differential cross section. With the matrix element |M|2 just derived,
this becomes:

dσ̂ =
1

2ŝ

1

16π2
pt√
ŝ
· 2
9
g2s

(
1 +

4m2
t

ŝ
+

(
1− 4m2

t

ŝ

)
cos2 θ

)
dΩ

=
2

9

g2s
64π2ŝ

√
1− 4m2

t

ŝ

(
1 +

4m2
t

ŝ
+

(
1− 4m2

t

ŝ

)
cos2 θ

)
dΩ. (7.1.17)

Lastly, the partonic cross section ŝ can now be straightforwardly found by integrating the scattering
angle over the full phase space:

σ̂ =

∫
dσ̂

dΩ
dΩ = 2π

∫
dσ̂

dΩ
sin θdθ

=
2

9
· g4s
12πŝ

√
1− 4m2

t

ŝ

(
1 +

2m2
t

ŝ

)
. (7.1.18)

Equivalently, one can express the above in terms of the QCD coupling constant αs = g2s/4π to end
up with

σ̂ =
2

9

4πα2
s

3ŝ

√
1− 4m2

t

ŝ

(
1 +

2m2
t

ŝ

)
. (7.1.19)
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Gluon-gluon initial state

So far only the quark-quark initial state has been considered. However, the process gg → tt̄

makes up the dominant contribution to top-pair production in fact. It is therefore essential to go
through a similar analysis as before, but this time with two gluons forming the initial state. The
derivation of the partonic cross section σ̂(gg → tt̄) is quite involved however, so a full derivation
will not be given here. Instead, the result is adopted from [27] and reads:

dσ̂(gg → tt̄)

dt̂
=
πα2

S

64ŝ2

[
12Mss +

16

3
(Mtt +Muu)−

2

3
Mtu + 6(Mst +Msu)

]
, (7.1.20)

with

Mss =
4

ŝ2
(t̂−m2

t )(û−m2
t )

Mtt =
2

(t̂−m2
t )

2

[
(t̂−m2

t )(û−m2
t )− 2m2

t (û+m2
t )
]

Mtu =
4m2

t

(t̂−m2
t )(û−m2

t )
(ŝ− 4m2

t )

Mst =
4

ŝ(t̂−m2
t )

[
m4
t − t̂(ŝ+ t̂)

]
,

and Muu = Mtt{t ↔ u},Msu = Mst{t ↔ u}. The conversion of the differential partonic cross
section to a total cross section proceeds via an integration over the Mandelstam variable t̂. In order
to find its associated integration range, note that

t̂ = (pg − pt)
2 = m2

g +m2
t − 2pg · pt = m2

t − 2E2 + 2~pg · ~pt = m2
t − 2E2 + 2|~pg||~pt| cos θ,

Upon using the relativistic dispersion relation we find that t̂ lies between tmin and tmax, with

tmax,min = m2
t − 2E2 ± 2E

√
E2 −m2

t . (7.1.21)

Hence, the total partonic cross section is given by

σ̂(gg → tt̄) =

∫ tmax

tmin

dσ̂(gg → tt̄)

dt̂
dt̂, (7.1.22)

with dσ̂(gg → tt̄)/dt̂ given by equation (7.1.20).

7.1.2 Differential Hadronic Cross Section

In experiments, hadronic cross sections are often presented as differentials in particular kinematic
variables such as the invariant mass, rapidity or transverse momentum. Therefore, equation (7.1.1)
needs to be manipulated so as to arrive at a differential cross section instead. Here, the aim is
to derive an expression for the hadronic cross section as a differential in the invariant mass of the
outgoing parton pair.
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Taking equation (7.1.1) as a starting point, the first step is to change variables from x1, x2 to ŝ
and the rapidity Y :

x1 ≡
√
ŝ

s
eY and x2 ≡

√
ŝ

s
e−Y .

The associated Jacobian of the transformation equals

∂(x1, x2)

∂(ŝ, Y )
=

1

s
=
x1x2
ŝ

, (7.1.23)

where we used that ŝ = x1x2s. Hence, equation (7.1.1) can be rewritten as

σ(pp→ tt̄) =
∑
f

∫
dŝ

∫
dY

∂(x1, x2)

∂(ŝ, Y )
ff (x1)ff̄ (x2)σ̂(qf + q̄f → tt̄),

Consequently,

dσ

dŝ
=

∫
dY

1

s

∑
f

σ̂(qf + q̄f → tt̄)ff (x1)ff̄ (x2) (7.1.24)

=

∫
dY

1

s

∑
f

σ̂

(
qf

(√
ŝ

s
eY

)
+ q̄f

(√
ŝ

s
e−Y

)
→ tt̄

)
ff

(√
ŝ

s
eY

)
ff̄

(√
ŝ

s
e−Y

)
.

Since the incoming quarks are taken massless, the partonic σ̂ is independent of the incoming flavour
and can thus be pulled outside the sum. Taking this into account, and presenting the result as a
differential in

√
ŝ instead, one arrives at

dσ

d
√
ŝ
=

2
√
ŝ

s

∫ 1
2
ln s

ŝ

− 1
2
ln s

ŝ

dY σ̂(qf + q̄f → tt̄)
∑
f

ff

(√
ŝ

s
eY

)
ff̄

(√
ŝ

s
e−Y

)
, (7.1.25)

where the integration limits ensure that the argument of the PDFs do not exceed one, i.e. remain
within the physical region. The above did not yet include the gluon-gluon initial state. Adding this
contribution, simply gives:

dσ

d
√
ŝ
=

2
√
ŝ

s

∫
dY σ̂(qf + q̄f → tt̄)

∑
f

ff

(√
ŝ

s
eY

)
ff̄

(√
ŝ

s
e−Y

)
+

2
√
ŝ

s

∫
dY σ̂(gg → tt̄)fg

(√
ŝ

s
eY

)
fg

(√
ŝ

s
e−Y

)
. (7.1.26)

This concludes the derivation of the hadronic cross section differential in the invariant mass of the
outgoing top quarks. The following subsection is devoted to a short discussion about dynamical
renormalization scales, a feature carried by the PDFs.

7.1.3 Dynamical Renormalization Scale

The parton distribution functions f(xi;µR) do not only depend on the fraction of momentum xi,
but also on the renormalization scale µR. This can be either set fixed, or allowed to run as a
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function of the kinematics. Here, one particular choice of scale shall be discussed in anticipation of
upcoming results that use this same scale. Consider letting µR grow proportionally to the sum of
the partonic transverse masses, denoted HT :

µR =
HT

4
=

1

4

(√
m2
t + p2T,t +

√
m2
t̄
+ p2

T,t̄

)
, (7.1.27)

where pT denotes the transverse momentum, defined as the momentum in the direction transverse
to the incoming beam’s axis:

pT =

√
ŝ

4
−m2

t sin θ. (7.1.28)

To accommodate this choice of dynamical scale, one needs to retain information about the scattering
angle θ in the derivation of the partonic cross section. In other words,

dσ

d
√
ŝ
=

2
√
ŝ

s

∫
dθ

∫
dY
∑
f

f1(x1;HT /4)f2(x2;HT /4)
dσ̂

dθ
. (7.1.29)

In the case of a quark-quark initial state, dσ̂/dθ can be readily read off from equation (7.1.17):

dσ̂(qf + qf̄ → tt̄)

dθ
= 2π sin θ · 2

9

g2s
64π2ŝ

√
1− 4m2

t

ŝ

(
1 +

4m2
t

ŝ
+

(
1− 4m2

t

ŝ

)
cos2 θ

)
. (7.1.30)

As for the gluon-gluon initial state, the differential with respect to t̂ in equation (7.1.20) can be
converted to a differential in θ by applying the chain rule:

dσ̂(gg → tt̄)

dθ
=
dσ̂(gg → tt̄)

dt̂

dt̂

dθ
=
dσ̂(gg → tt̄)

dt̂

√
ŝ

(
ŝ

4
−m2

t

)
. (7.1.31)

As a result, equation (7.1.29) together with (7.1.30) and (7.1.31) allow for the implementation of a
dynamical renormalization scale.

7.1.4 Conversion to Bins and Conventions

Experimental data of differential cross sections are presented in terms of bins. Consequently, in
order to compare to experiment, we need to average the semi-analytical result over the relevant bin.
The bins are divided according to

bins[] = [300, 360, 430, 500, 580, 680, 800, 1000, 1200, 1500, 2500] GeV

The conversion within the ith bin is straightforward:(
dσ

d
√
ŝ

)
i

=
1

bin[i+ 1]− bin[i]

∫ bin[i+1]

bin[i]

dσ

d
√
ŝ
d
√
ŝ. (7.1.32)

Throughout this work, the semi-analytical calculations use the following settings. The top
quark’s mass is always set to 173.3 GeV and the proton-proton center of mass energy is

√
s = 13

TeV. Furthermore, we use the NNPDF31_lo_as_0118 PDF with µR = µF = HT /4.
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Figure 7.3: tt̄-production in the heavy scalar boson model from section 6.1.

7.2 Beyond the Standard Model Contribution

In this section, we derive the BSM contribution to tt̄-production as predicted by the two models
from sections 6.1 and 6.2, i.e. the heavy scalar and heavy vector model. Let us discuss these in
turn, starting with the heavy scalar.

7.2.1 Heavy Scalar

Let us adopt the Lagrangian from equation (6.1.2) as our model and consider top-pair production.
The only ingredient that changes compared to the SM calculation done in section 7.1 is the matrix
element M, shown in figure 7.3. Apart from this, the entire derivation is completely analogous.
Following the Feynman rules, the squared amplitude for qq̄ → S → tt̄ in the BSM is given by

iM = v̄(pq)cSu(pq̄)
1

ŝ−m2
S

ū(pt)cSv(pt̄)

=
c2S

ŝ−m2
S

v̄(pq)u(pq̄)ū(pt)v(pt̄). (7.2.1)

Hence, the squared amplitude is given by

|M|2 =
(

c2S
ŝ−m2

S

)2

[v̄(pq)u(pq̄)][ū(pt)v(pt̄)][v̄(pt̄)u(pt)][ū(pq̄)v(pq)] (7.2.2)

Since the incoming beam of particles is unpolarised we again average over the polarisations, giving
two factors of two downstairs. Also, since we don’t measure spin in the outgoing beam we sum over
it. Using Dirac trace technology we then obtain

|M̄|2 = 1

4

∑
spins

|M|2 = 1

4

(
c2S

ŝ−m2
S

)2

Tr[/pq̄/pq]Tr[(/pt +mt)(/pt̄ −mt̄)]

=
1

4

(
c2S

ŝ−m2
S

)2

4pq̄ · pq(4pt · pt̄ − 4mtmt̄),

which after some algebra simplifies to

|M̄|2 =
(

c2S
ŝ−m2

S

)2

ŝ(ŝ− 4m2
t ). (7.2.3)
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Figure 7.4: tt̄-production in the heavy vector boson model from section 6.2.

Substituting this into equation (7.1.9) for the differential cross section, yields

dσ̂BSM (qf q̄f → tt̄) =
1

2ŝ

(
c2S

ŝ−m2
S

)2

ŝ(ŝ− 4m2
t )

1

16π2
dΩ

pt√
ŝ

=
1

4

(
c2S

ŝ−m2
S

)2

(ŝ− 4m2
t )

3/2 1

16π2
√
ŝ
dΩ, (7.2.4)

which implies that the full partonic cross section is given by

σ̂BSM (qf q̄f → tt̄) =
c4S

16π
√
ŝ

(ŝ− 4m2
t )

3/2

(ŝ−m2
S)

2 + Γtotm2
S

, (7.2.5)

where we have installed the total decay width Γtot (see appendix C for a derivation):

Γtot =
3c2S
8π

mS

(
1− 4m2

t

m2
S

)3/2

+
15c2S
8π

mS . (7.2.6)

Finally, plugging this into equation (7.1.25) gives the differential cross section in
√
ŝ at the hadronic

level in the BSM:

dσBSM

d
√
ŝ

=
2
√
ŝ

s

c4S
16π

√
ŝ

(ŝ− 4m2
t )

3/2

(ŝ−m2
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2 + Γtotm2
S

∫ 1
2
ln s

ŝ

− 1
2
ln s

ŝ

dY
∑
f

ff

(√
ŝ

s
eY

)
ff̄

(√
ŝ

s
e−Y

)
(7.2.7)

7.2.2 Heavy Vector

We now turn to our second model, i.e. the heavy vector. Adopting the Lagrangian from equation
(6.2.1) as our model, the heavy vector boson’s contribution to tt̄-production is shown in figure 7.4.
Recalling the Feynman rules presented at the end of chapter 6, we find that the associated matrix
element M is given by

iM = [v̄2iγ
µgBu1]

i

ŝ−M2
B

(−gµν +
pµpν
M2
B

) [ū3iγ
νgBv4] . (7.2.8)
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Using that in general /pu = mu and v̄/p = −mv̄, we conclude that the second term in parenthesis
does not contribute:

v̄2γ
µu1pµ = v̄2γ

µu1pµ

= v̄2/pu1

= v̄2(/p1 + /p2)u1

= v̄2(m−m)u1 = 0. (7.2.9)

As a result, the total squared amplitude becomes:

|M̄|2 ≡ 1

4

∑
spin

|M|2 =
g4B

4(ŝ−M2
B)

∑
spin

[ū1γµv2] [v̄2γνu1] [ū3γ
νv4] [v̄4γ

µu3] , (7.2.10)

which resembles expression (7.1.15). Inspired by this correspondence, we can immediately write
down the squared amplitude in the heavy vector model:

|M̄|2 =
g4B

(ŝ−M2
B)

2
(ŝ2 + 4m2

t ŝ+ cos2(θ)(ŝ2 − 4ŝm2
t )). (7.2.11)

Taking the by now usual phase space factors into account, this leads to the following BSM partonic
cross section:

σ̂BSM =
g4B
12π

√
1− 4m2

t /ŝ
(
1 + 2m2

t /ŝ
)

(ŝ−M2
B)

2 + ΓtotM2
B

, (7.2.12)

where Γtot is the total decay width, given by:

Γtot =
5g2B
12π

MB +
g2B
12π

M2
B + 3m2

t

MB

√
1− 4m2

t

M2
B

. (7.2.13)

We again refer to appendix C for a derivation of equation (7.2.13).

7.2.3 Interference SM and BSM

One might worry about interference effects between the SM and the BSM in the calculation of |M̄|2

for tt̄-production. Although this is a legitimate concern, the interference term in fact vanishes due
to colour effects, as we show now.

Including the sum over colours, the interference term is proportional to∑
colour

M†
SMMBSM ∝

∑
i,j,k,l

[
(tAji)(tA)kl

]∗
δijδkl, (7.2.14)

where the delta functions carry indices in colour space resulting from the fact the scalar particle S
nor the vector boson Bµ are charged under SU(3). Hence,∑

colour
M†

SMMBSM ∝
∑
i,j,k,l

[(tA)ii(tA)ll]
∗ = 0, (7.2.15)

since Tr(tA) = 0. This shows that the interference term between the SM and BSM vanishes.
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√
ŝ [GeV] dσ/d

√
ŝ [pb GeV−1]

√
ŝ [GeV] dσ/d

√
ŝ [pb GeV−1]

300-360 0.284 680-800 0.327

360-430 2.405 800-1000 0.129

430-500 1.977 1000-1200 0.437 · 10−1

500-580 1.230 1200-1500 0.140 · 10−1

580-680 0.671 1500-2500 0.173 · 10−2

Table 7.1: FastNLO results at LO for tt̄-production as differential in the invariant mass of the
outgoing top-quark pair at

√
s = 13 TeV. The results were obtained with the following settings.

PDF: NNPDF30_nnlo_as_0118, mt = 173.3 GeV, µR = µF = HT /4. The inclusive cross section
is 569.130 pb.

7.3 FastNLO and MadGraph

In addition to finding theoretical predictions for tt̄-production along a semi-analytical route as was
done in section 7.1 and 7.2, they can also be directly obtained using FastNLO [28] or MadGraph
[29].

The FastNLO-framework allows for quick computations of top-quark pair differential distribu-
tions using the fastNLO Tables at LO, NLO or NNLO. The corresponding results are shown in Table
7.1 and 7.2 and were obtained withmt = 173.3 GeV, µR = µF = HT /4 and NNPDF30_nnlo_as_0118.
From this, the QCD K-values can be read off as the ratio of the NNLO over the LO result, shown
in Table 7.3. These are useful for converting LO results to NNLO accuracy.

MadGraph is a Monte-Carlo event generator that allows one to obtain differential distributions
for various processes, such as pp → tt̄. We have generated 100.000 events of pp → tt̄ at

√
s = 13

TeV (LO), and constructed the resulting differential distribution in the partonic center of mass
energy. The results are shown in figure 7.5. Care was taken to let MadGraph run with the same
settings as the semi-analytical calculation. That is, with mt = 173.3 GeV, µR = µF = HT /4 and
PDF NNPDF31_lo_as_0118. The total inclusive cross section predicted by MadGraph is 568.3

pb. Figure 7.5 also shows the standard model semi-analytical result as computed in section 7.1.
This gives an inclusive cross section of 556.47 pb.

Comparing the two, we conclude that the semi-analytical prediction gives an accurate repre-
sentation of the pp → tt̄ differential cross section. The difference between MadGraph and the
semi-analytical prediction increases towards the tail of the distribution, but this is merely due to
the fact that MadGraph has not collected enough statistics there.
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√
ŝ [GeV] dσ/d

√
ŝ [pb GeV−1]

√
ŝ [GeV] dσ/d

√
ŝ [pb GeV−1]

300-360 0.509 680-800 0.477

360-430 3.527 800-1000 0.191

430-500 2.808 1000-1200 0.652 · 10−1

500-580 1.754 1200-1500 0.211 · 10−1

580-680 0.966 1500-2500 0.265 · 10−2

Table 7.2: FastNLO results at NNLO for tt̄-production as differential in the invariant mass of the
outgoing top-quark pair at

√
s = 13 TeV. The results were obtained with the following settings.

PDF: NNPDF30_nnlo_as_0118, mt = 173.3 GeV, µR = µF = HT /4. The inclusive cross section
is 828.395 pb.

√
ŝ [GeV] K-value

√
ŝ [GeV] K-value

300-360 1.792 680-800 1.458

360-430 1466 800-1000 1.475

430-500 1.420 1000-1200 1.488

500-580 1.427 1200-1500 1.508

580-680 1.440 1500-2500 1.531

Table 7.3: QCD k-values: the ratio of the NNLO result over the LO result. The following settings
were used. PDF: NNPDF30_nnlo_as_0118, mt = 173.3 GeV and µR = µF = HT /4.
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√
ŝ [GeV] dσ/d

√
ŝ [pb GeV−1]

√
ŝ [GeV] dσ/d

√
ŝ [pb GeV−1]

300-360 0.215 680-800 0.313

360-430 2.259 800-1000 0.114

430-500 2.051 1000-1200 0.346 · 10−1

500-580 1.285 1200-1500 0.099 · 10−1

580-680 0.678 1500-2500 0.103 · 10−2

Table 7.4: Binned semi-analytical SM prediction.

Figure 7.6 shows a comparison between the semi-analytical SM prediction and the FastNLO
results, both at LO and NNLO.

7.4 χ2 Analysis

The measurements of differential cross sections for tt̄-production in proton-proton collisions at 13

TeV are shown in figure 7.7, which are also included in the SMEFiT analysis in [3]. This experiment
was conducted by the CMS collaboration [30] and their results are presented at the partonic level,
which means that the signal has been unfolded to the the parton level. Here, the top-quarks can
effectively be considered as final state particles. The measured inclusive cross section reported in
[30] is 240.581 pb. Since only top quarks that decayed into either e/µ or jets have been detected,
this result needs to be divided by 2/3 times the branching ratio BR(tt̄ → jets + leptons) in order
to arrive at the full inclusive cross section:

σexp =

[
2

3
·BR(tt̄→ jets + leptons)

]−1

· 240.581 = 823.908 pb,

where we used that BR(tt̄ → jets + leptons) = 0.438 according to [31]. Accounting for this con-
version factor, allows us to compare the data for the differential cross section in [30] to our own
semi-analytical calculation (at NNLO via QCD K-factors) done in section 7.1. The result is shown
in figure 7.8, which also shows the data residuals. We will now start adding the BSM contributions.

7.4.1 Heavy Scalar

Figure 7.9a and 7.9b show the SM and BSM contributions in the heavy scalar model, alongside with
the FastNLO and CMS data at cS = 0.1 and mS = 1000, 3000 GeV respectively. The BSM is given
in the continuous case as well as binned. One can clearly see that the spike, located at

√
ŝ = mS ,
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Figure 7.5: Differential cross section in
√
ŝ of tt̄-production in a proton-proton collision at

√
s = 13

TeV, as predicted by the semi-analytical calculation (solid line) and a MadGraph simulation (in
dots). Both use mt = 173.3 GeV, µR = µF = HT /4 and PDF NNPDF31_lo_as_0118. The
inclusive cross sections are 556.47 pb (semi-analytical) and 568.3 pb (MadGraph).
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Figure 7.6: FastNLO versus binned semi-analytical SM prediction (PDF: NNPDF31_lo_as_0118)
at 13 TeV at LO (Fig. (a)) and NNLO (Fig. (b)). At NNLO, the inclusive cross sections are
804.998 pb (SA) and 825.432 pb (FastNLO).
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Figure 7.7: Differential cross section at the parton level as a function of the invariant mass mtt̄.
Taken from [30].

makes up the dominant contribution to the BSM prediction. At large values of mS , the CMS data
loses sensitivity, and the SM + BSM prediction essentially reduces to the SM, see figure 7.9b.

Let us now introduce the following figure of merit, a simple χ2 test, defined by

χ2(cS ,mS) =
∑
bins

(
σSM + σBSM (cS ,mS)− σexp

δexp

)2

. (7.4.1)

A contour plot of equation (7.4.1) is shown in figure 7.12 at the 95% confidence level (CL) interval.
The region in white here represents the pair of points (cS ,mS) that are excluded at 95% confidence.
From the χ2-landscape, we can determine bounds on the UV-parameters cs and mS . We shall refer
to these as bounds from the BSM model. We also include Table 7.6 that gives an overview of the
χ2 in the SM, BSM and FastNLO.

At this stage we can compare the bounds from the BSM model and the bounds from the EFT,
which we obtained in section 6.1 of chapter 6 via matching. Let us first recall the best bound that
we found there from a four-heavy quark operator (same as equation 6.1.26):

c2S
m2
S

< 0.0900 TeV−2 (EFT bound from matching). (7.4.2)
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Figure 7.8: Semi-analytical prediction (at NNLO) versus FastNLO (at NNLO) and experimental
data from CMS [30], including the data residuals of the semi-analytical SM prediction.
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Figure 7.9: Semi-analytical prediction (SM and BSM) versus FastNLO (at NNLO) and experimental
data from CMS [30]. The BSM prediction is given for cS = 0.1 and mS = 1000, 3000 GeV in figure
(a) and (b) respectively. Note that the CMS data has no sensitivity around the BSM resonance at
ms = 3000 GeV.
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We now consider the following two cases:

• Fixing cS lets us infer lower bounds on mS . For example, in a maximally strongly coupled
UV-theory, we know that the coupling constant cS = 1, since cS > 1 corresponds to the
non-perturbative regime. Therefore, putting cS = 1, we deduce

c2S
m2
S

=
1

m2
S

< 0.0900 TeV−2 =⇒ mS > 3.33 TeV.

From the χ2 in figure 7.12 we get a less stringent BSM bound on mS if cS = 1: mS > 2.503

TeV.

• Next, consider putting Λ = mS . This gives an EFT bound on the coupling cS :

c2S
m2
S

< 0.0900 TeV−2 =⇒ cS < 0.3mS with mS its numerical value in TeV.

We can also read off BSM bounds on cS at the 95% CL from the χ2-landscape in figure 7.12. A
comparison between these BSM bounds and the EFT bounds is shown in figure 7.10. It shows
quite interesting behaviour, for the following reason. Recall that our BSM phenomenology
only relied on CMS data from tt̄ production. However, the bounds from the EFT were derived
from the four-heavy quark operators QQQQ, which are only constrained from tt̄tt̄ and tt̄bb̄

production. So going to the EFT allows us to use experimental data from other production
mechanisms than the one we are explicitly considering; the EFT relates different processes.
Conversely, this implies that the heavy scalar model also modifies the cross-section for tt̄tt̄ and
tt̄bb̄ production. Indeed, figure 7.11 shows that this is the case. The upshot of this discussion
is that an EFT approach proves to be much more versatile than direct BSM searches, since
the latter relates different processes and hence maximally exploits the available experimental
data to constrain UV physics.

In order to get a quick overview of how the BSM bounds compare to the EFT bounds, we include
Table 7.5 that shows a couple of benchmark points at cS = 0.25, 0.50, 0.75 and 1.00.

7.4.2 Heavy Vector

Let us repeat the same analysis also in the case of the heavy vector. Recall equation (6.2.13) from
section 6.2 that gave an upper bound on the ratio g2B/M2

B at order O
(
Λ−2

)
:

g2B
M2
B

< 0.00633 TeV−2 (EFT bound from matching).

We now consider the same cases as in section 7.4.1.
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Figure 7.10: A comparison of the upper bounds on the heavy scalar coupling cS that follow from
either a direct χ2-analysis on the level of the BSM model or from an EFT analysis. The bounds
from the EFT originate from the four-heavy quark operators.
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Figure 7.11: The heavy scalar S contributes to tt̄tt̄ and tt̄bb̄ production.
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EFT (TeV) BSM (TeV)

cS = 0.25 Λ > 0.833 mS > 0.946

cS = 0.50 Λ > 1.667 mS > 1.934

cS = 0.75 Λ > 2.500 mS > 2.389

cS = 1.00 Λ > 3.333 mS > 2.503

Table 7.5: A comparison between the bounds on Λ in the EFT and MB in the scalar BSM model
for the four benchmark points cS = 0.25, 0.50, 0.75 and 1.00.
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Figure 7.12: χ2 of the SM + BSM (heavy scalar) prediction at 95% CL as a function of the UV
parameters cS and mS. The region in white is excluded at 95% CL and the SM is located at the line
cS = 0.
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Model χ2/N

SM 1.521

SM + BSM (cS = 0.1,mS = 3mt) 1.541

FastNLO@NNLO (LO PDF) 0.928

FastNLO@NNLO (NNLO PDF) 2.127

Table 7.6: χ2/N for N = 10 data points in the standard model (SM), beyond the standard model
(BSM, heavy scalar) and FastNLO (LO PDF)

• In a maximally strongly coupled UV-theory, we again have that the coupling constant gB = 1.
Putting gB = 1, we thus get

g2B
M2
B

=
1

M2
B

< 0.00633 TeV−2 =⇒ MB > 12.57 TeV.

From the χ2 in figure 7.14 we get a less stringent bound on mS if gB = 1: MB > 2.522 TeV.

• Next, we put Λ =MB. This gives a bound on the coupling gB:

g2B
M2
B

< 0.00633 TeV−2 =⇒ gB < 0.0796MB with MB its numerical value in TeV.

Again, we can also read off the bounds on gB at the 95% CL from the χ2 in figure 7.14.
A comparison between the χ2 bound and the one that follows from the SMEFiT analysis is
shown in figure 7.13. Note that the BSM-bound blows up at MB ≈ 2500 GeV, which is a
result of the fact that the CMS data has no sensitivity beyond 2500 GeV.

We also present Table 7.7 with benchmark results that show the lower bounds on Λ and MB

for gB = 0.25, 0.5, 0.75 and 1.0 in the EFT and BSM model respectively. It tells us that the EFT
gives stronger constraints on Λ than the BSM model, which is simply because the CMS data has
no sensitivity beyond 2.5 TeV. In general, this is also what one would expect; an EFT can provide
sensitivity for higher values of Λ than direct searches from experiment. This is yet another advantage
of an EFT.
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Figure 7.13: A comparison of the uppers bound on the heavy vector coupling gB that follow from
either a direct χ2-analysis on the level of the BSM model or from an EFT analysis. The bounds
from the EFT originate from the two-light-two-heavy operators.

EFT (TeV) BSM (TeV)

gB = 0.25 Λ > 3.14 MB > 1.57

gB = 0.50 Λ > 6.28 MB > 2.35

gB = 0.75 Λ > 9.43 MB > 2.51

gB = 1.00 Λ > 12.57 MB > 2.52

Table 7.7: A comparison between the bounds on Λ in the EFT and MB in the vector BSM model
for the four benchmark points gB = 0.25, 0.50, 0.75 and 1.00.

.
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Figure 7.14: χ2 of the SM + BSM (heavy vector) prediction at 95% CL as a function of the UV
parameters gB and MB, with nine data points. The SM is located at the line gB = 0.



Chapter 8

Conclusion

In this thesis, we have focused on matching UV-completions of the SM onto the SMEFT. By
considering the SM to only be valid up to a finite energy scale Λ, we could extend the SM Lagrangian
by higher dimensional (irrelevant) operators. In this framework, the unknown high-energy effects
manifested themselves at energy scales below Λ as interactions that were previously not allowed in
the SM. Specifically, we showed how high-energy imprints could be captured by including dimension-
six operators in the Warsaw basis. In this sense, the SMEFT parameterises high energy effects in
a model-independent way; no assumptions about the UV-completions are made. Differential cross
sections were also seen to change in the SMEFT, and by comparing these to the high precision data
from the LHC we were able to derive bounds on the Wilson coefficients. Specifically, we used Nested
Sampling to sample the prior volume in order to locate the region close to maximum likelihood.

Furthermore, we argued in chapter 6 that matching UV-completions onto the SMEFT is another
crucial ingredient in our search for new physics. Matching could be carried out alongside the SMEFT
bottom-up analysis and restored the model-dependence. We studied two specific UV-completions:
the heavy scalar model and the heavy vector model. In both cases, we showed there is no a priory
reason the UV completions generate dimension-six operators in the Warsaw basis upon going to
the effective regime. However, we were able to express the matching equations in the Warsaw
basis nonetheless by making use of the Fierz identities and the relation among the the matrices
of the fundamental representation of SU(3). Consequently, we could use the bounds on the four-
heavy quark operators to constrain the heavy scalar extension. The heavy vector extension could
be constrained by the two-light-two-heavy operators, which led to to tighter constraints than in
the heavy scalar model. This was explained by noting that more cross section measurements are
sensitive to 2L2H operators than to four-heavy quark operators.

A complementary approach that we studied in chapter 7 in order to find bounds on the UV-
parameters involved an explicit BSM phenomenology analysis. Here, we compared the BSM pre-
dictions at NNLO with experimental data from CMS for tt̄ differentials in the invariant mass of
the top-quark pair in pp-collisions at 13 TeV. This direct analysis took only 10 measurements into
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account, as opposed to the more than 100 cross section measurements that constrain dimension-six
operators in the EFT of the top-quark sector. Using the χ2 as our figure of merit, we then derived
bounds on the UV-parameters.

We ended chapter 7 with comparing the bounds that resulted from the two different methods
that we adopted; an explicit BSM phenomenology study and an EFT analysis complemented by
the matching equations. The main conclusion is that an EFT analysis provides sensitivity for
higher energies than direct searches for new physics. This is one of the big advantages of the EFT-
programme. It offers a model-independent, and hence efficient, way of parameterising new physics,
while at the same time providing more sensitivity than direct searches. This might come as no
surprise, as the EFT programme strives to take into account all available data relevant to specific
processes.

As an outlook for possible future research, higher order matching calculations in the heavy scalar
model should be considered in order to exploit the relatively stringent bounds on the operator OtG.
It would be interesting to see how NLO results relate to our current LO predictions. Naturally,
one could generalise the BSM phenomenology study by allowing also for off-diagonal couplings in
generation space; the current matching equations presented in this work already incorporate this.
The ultimate goal would be to automate the whole procedure of matching UV-completions onto
the SMEFT at tree level by developing a suitable algorithm. This would automate the search for
new physics from two complementary sides; an efficient global EFT fit to high precision data and
an automatic matching procedure that subsequently translates the resulting bounds to the UV-
parameters. This then efficiently scans the whole landscape of BSM theories; a big step towards
our dream of finding new physics.



Appendix A

Warsaw Basis

In this first appendix, we provide the complete set of operators that together make up the Warsaw
basis that is referred to in chapters 5 and 6 [14]. The four-fermion operators are shown in Table
A.1, which are further classified by their chirality (L/R). All other operators, that in addition
also include the Higgs-field and/or bosonic fields, can be found in Table A.2. Let us comment on
the notation that is used here. The Roman subscripts p, r, s, t represent the generation indices,
and the superscripts i, j denote the SU(2) indices (in superscript). Left-handed lepton-doublets
are denoted by ljLp and the right-handed lepton singlets by eRp. As for the quarks, left-handed
quark-doublets are denoted by qαjLp, where the Greek-index α refers to the colour d.o.f, and right-
handed up-type/down-type quark fields are denoted by respectively uαRp and dαRp. The Higgs field
is represented by ϕj . When colour-indices are not explicitly written, a contraction within the same
bilinear is assumed.

In Table A.2, X stands for GA,W I or B, corresponding to the different gauge field strength
tensors. In this thesis, we primarily use the four-fermionic operators from Table A.1.
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(L̄L)(L̄L) (R̄R)(R̄R) (L̄L)(R̄R)

Qll (l̄pγµlr)(l̄sγ
µlt) Qee (ēpγµer)(ēsγ

µet) Qle (l̄pγµlr)(ēsγ
µet)

Q
(1)
qq (q̄pγµqr)(q̄sγ

µqt) Quu (ūpγµur)(ūsγ
µut) Qlu (l̄pγµlr)(ūsγ

µut)

Q
(3)
qq (q̄pγµτ

Iqr)(q̄sγ
µτ Iqt) Qdd (d̄pγµdr)(d̄sγ

µdt) Qld (l̄pγµlr)(d̄sγ
µdt)

Q
(1)
lq (l̄pγµlr)(q̄sγ

µqt) Qeu (ēpγµer)(ūsγ
µut) Qqe (q̄pγµqr)(ēsγ

µet)

Q
(3)
lq (l̄pγµτ

I lr)(q̄sγ
µτ Iqt) Qed (ēpγµer)(d̄sγ

µdt) Q
(1)
qu (q̄pγµqr)(ūsγ

µut)

Q
(1)
ud (ūpγµur)(d̄sγ

µdt) Q
(8)
qu (q̄pγµT

Aqr)(ūsγ
µTAut)

Q
(8)
ud (ūpγµT

Aur)(d̄sγ
µTAdt) Q

(1)
qd (q̄pγµqr)(d̄sγ

µdt)

Q
(8)
qd (q̄pγµT

Aqr)(d̄sγ
µTAdt)

(L̄R)(R̄L) and (L̄R)(L̄R) B-violating

Qledq (l̄jper)(d̄sq
j
t ) Qduq εαβγεjk

[
(dαp )

TCuβr
] [
(qγjs )TClkt

]
Q

(1)
quqd (q̄jpur)εjk(q̄

k
sdt) Qqqu εαβγεjk

[
(qαjp )TCqβkr

] [
(uγs )

TCet
]

Q
(8)
quqd (q̄jpT

Aur)εjk(q̄
k
sT

Adt) Qqqq εαβγεjnεkm
[
(qαjp )TCqβkr

] [
(qγms )TClnt

]
Q

(1)
lequ (l̄jper)εjk(q̄

k
sut) Qduu εαβγ

[
(dαp )

TCuβr
] [
(uγs )

TCet
]

Q
(3)
lequ (l̄jpσµνer)εjk(q̄

k
sσ

µνut)

Table A.1: Four-fermion operators. Taken from [14].

X3 ϕ6 and ϕ4D2 ψ2ϕ3

QG fABCGAν
µ GBρ

ν GCµ
ρ Qϕ (ϕ†ϕ)3 Qeϕ (ϕ†ϕ)(l̄perϕ)

QG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ Qϕ� (ϕ†ϕ)�(ϕ†ϕ) Quϕ (ϕ†ϕ)(q̄purϕ̃)

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ QϕD

(
ϕ†Dµϕ

)? (
ϕ†Dµϕ

)
Qdϕ (ϕ†ϕ)(q̄pdrϕ)

Q
W̃

εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

X2ϕ2 ψ2Xϕ ψ2ϕ2D

QϕG ϕ†ϕGA
µνG

Aµν QeW (l̄pσ
µνer)τ

IϕW I
µν Q

(1)
ϕl (ϕ†i

↔
Dµ ϕ)(l̄pγ

µlr)

QϕG̃ ϕ†ϕ G̃A
µνG

Aµν QeB (l̄pσ
µνer)ϕBµν Q

(3)
ϕl (ϕ†i

↔
D I

µ ϕ)(l̄pτ
Iγµlr)

QϕW ϕ†ϕW I
µνW

Iµν QuG (q̄pσ
µνTAur)ϕ̃G

A
µν Qϕe (ϕ†i

↔
Dµ ϕ)(ēpγ

µer)

Q
ϕW̃

ϕ†ϕW̃ I
µνW

Iµν QuW (q̄pσ
µνur)τ

I ϕ̃W I
µν Q

(1)
ϕq (ϕ†i

↔
Dµ ϕ)(q̄pγ

µqr)

QϕB ϕ†ϕBµνB
µν QuB (q̄pσ

µνur)ϕ̃ Bµν Q
(3)
ϕq (ϕ†i

↔
D I

µ ϕ)(q̄pτ
Iγµqr)

QϕB̃ ϕ†ϕ B̃µνB
µν QdG (q̄pσ

µνTAdr)ϕG
A
µν Qϕu (ϕ†i

↔
Dµ ϕ)(ūpγ

µur)

QϕWB ϕ†τ IϕW I
µνB

µν QdW (q̄pσ
µνdr)τ

IϕW I
µν Qϕd (ϕ†i

↔
Dµ ϕ)(d̄pγ

µdr)

Q
ϕW̃B

ϕ†τ IϕW̃ I
µνB

µν QdB (q̄pσ
µνdr)ϕBµν Qϕud i(ϕ̃†Dµϕ)(ūpγ

µdr)

Table A.2: Dimension-six operators other than the four-fermion ones. Taken from [14].



Appendix B

Fierz Identities

Fierz transformations enable one to reorder a product of four Dirac spinors, a trick which we used
in chapter 6 to convert dimension-six operators to the Warsaw basis. In this appendix, we provide
some background material on this transformation and specifically derive identity 6.1.13 from the
main-text:

[ψ̄L1ψR2 ][ψ̄R3ψL4 ] =
1

2

[
ψ̄L1γ

µψL4

] [
ψ̄R3γµψR2

]
, (B.0.1)

where L,R denote the chirality of the Dirac spinor.
Our starting point is to note that the 4×4 Dirac matrices γµ together with appropriate products

span the space of all 16 × 16 dimensional matrices [32]. Taking the following quadrilinears as our
basis,

eS(1234) ≡ [ψ̄1ψ2][ψ̄3ψ4]

eV (1234) ≡ [ψ̄1γ
µψ2][ψ̄3γµψ4]

eT (1234) ≡ [ψ̄1σµνψ2][ψ̄3σ
µνψ4]

eA(1234) ≡ [ψ̄1γ
µγ5ψ2][ψ̄3γµγ5ψ4]

eP (1234) ≡ [ψ̄1γ5ψ2][ψ̄3γ5ψ4] (B.0.2)

we define F as a 5×5 matrix that swaps positions 2 and 4 (or equivalently, 1 and 3, as the ordering
of the bilinears is irrelevant):

e(1234) = Fe(1432), (B.0.3)

with e(1234) = (eS(1234), eV (1234), eT (1234), eA(1234), eP (1234))
T. The exact form of F is derived

in ref. [32] and is copied here for convenience:

F =
1

4



1 1 1
2 −1 1

4 −2 0 −2 −4

12 0 −2 0 12

−4 −2 0 −2 4

1 −1 1
2 1 1


. (B.0.4)
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Let us now use equation (B.0.3) to prove (B.0.1). Taking ψ̄1 = ψ̄L1 , ψ2 = ψR2 , ψ̄3 = ψ̄R3 and
ψ4 = ψL4 in equation (B.0.2), we find

eS(1234) = [ψ̄L1ψR2 ][ψ̄R3ψL4 ]

=
1

4
[eS(1432) + eV (1432) +

1

2
eT (1432)− eA(1432) + eP (1432)]

=
1

4
[ψ̄L1ψL4ψ̄R3ψR2 + ψ̄L1γ

µψL4ψ̄R3γµψR2 +
1

2
ψ̄L1σµνψL4ψ̄R3σ

µνψR2

− ψ̄L1γ
µγ5ψL4ψ̄R3γ

µγ5ψR2 + ψ̄L1γ5ψL4ψ̄R3γ5ψR2 ]

=
1

4
[ψ̄L1γ

µψL4ψ̄R3γµψR2 − ψ̄L1γ
µγ5ψL4ψ̄R3γ

µγ5ψR2 ], (B.0.5)

where we have used that ψ̄LψL = 0, ψ̄LσµνψL = 0 and ψ̄Lγ5ψL = 0. The last term in equation
(B.0.5) can be cast in a similar form as the first term, by using that ψ̄Lγµγ5ψL = −ψ̄LγµψL and
ψ̄Rγ

µγ5ψR = ψ̄Rγ
µψR. With this, we obtain:

eS(1234) =
1

4
[ψ̄L1γ

µψL4ψ̄R3γµψR2 + ψ̄L1γ
µψL4ψ̄R3γµψR2 ]

=
1

2
[ψ̄L1γ

µψL4 ][ψ̄R3γµψR2 ], (B.0.6)

which proves equation (B.0.1).



Appendix C

Decay Widths

In this last appendix, we consider a particle with mass M that decays into two particles with
identical mass m. In that case, the decay width Γ is given by [33]

dΓ

dΩ
=

|M|2

32π2s
|pf | =

|M|2

32π2s

1

2
M

√
1− 4m2

M2
, (C.0.1)

where |pf | is the norm of the ougoing particle’s momentum. We will now apply (C.0.1) to two
special cases that were used in the main-text.

C.1 Heavy Scalar

The heavy scalar particle S, introduced in section 6.1, can decay into two quarks. Here, we derive
its correspondng total decay width Γtot. We define

iM ≡ S

q̄

q
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Since the vertex factor is simply icS , we straightforwardly derive

|M̄|2 ≡
∑
spins

|M|2

= c2S
∑
s,s′

[v̄s2u
s′
1 ][ū

s′
1 v

s′
2 ]

= c2STr[(/p1 +m2)(/p2 −m2)]

= c2S(4p1 · p2 − 4m2
q)

= c2S(2m
2
S − 8m2

q)

= 2c2Sm
2
S

(
1−

4m2
q

m2
S

)
.

Including the number of colours, we get:

|M̄|2 = 6c2Sm
2
S

(
1−

4m2
q

m2
S

)
. (C.1.1)

Substituting this into equation (C.0.1), gives

dΓ

dΩ
=

|M|2

32π2s
|pf | = c2S

3mS

32π2

(
1−

4m2
q

m2
S

)3/2

. (C.1.2)

Performing the integration over the angular variable Ω, gives an extra factor of 4π:

Γ =
3c2S
8π

mS

(
1−

4m2
q

m2
S

)3/2

. (C.1.3)

So the total decay width is given by

Γtot =
3c2S
8π

mS

(
1− 4m2

t

m2
S

)3/2

+
15c2S
8π

mS . (C.1.4)

C.2 Heavy Vector Boson

The heavy vector boson Bµ, as first introduced in section 6.2, can decay into two quarks of the
same flavour. Here, we derive the associated matrix element M. We define

iM ≡ Bµ

q̄

q
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The vertex factor is igBγµ, and contracting with the polarization vector, we thus get

iM = εµ(q)ū3iγµgBv4,

which leads to
|M|2 = g2B [ū3γµv4] [v̄4γνu3]ε

µ(q)εν(q)∗ (C.2.1)

Averaging over the incoming polarizations, and summing over the outgoing fermion spins, gives

|M̄|2 ≡ 1

3

∑
pol

∑
spins

|M|2

=
g2B
3

∑
pol

∑
ss′

[
ūs3γµv

s′
4

] [
v̄s

′
4 γνu

s
3

]
εµ(q)εν(q)∗

=
g2B
3

∑
pol

Tr
[
(/p3 +mq)γµ(/p4 −mq)γν

]
εµ(q)εν(q)∗. (C.2.2)

Using ∑
pol

ε∗µ(q)εν(q) = −
(
gµν −

qµqν
M2
B

)
, (C.2.3)

we now sum over the three polarizations to get

|M̄|2 = −
g2B
3
Tr
[
(/p3 +mq)γµ(/p4 −mq)γν

](
gµν − qµqν

M2
B

)
= −

g2B
3

(
pρ3p

σ
4Tr [γργµγσγν ]−m2

qTr [γµγν ]
)(

gµν − qµqν

M2
B

)
= −

g2B
3
(4pρ3p

σ
4 (gρµgσν ) + gρνgµσ − gρσgµν − 4m2

qgµν)(g
µν − qµqν

M2
B

). (C.2.4)

Contracting the Lorentz-indices then gives

|M̄|2 = −
4g2B
3

(
p34 + p34 − 4p34 − 4m2

q − 2
(p3 · q)(p4 · q)

M2
B

+
p34q

2

M2
B

)
=

4g2B
3

(
p34 + 4m2

q + 2
(p3 · q)(p4 · q)

m2
B

)
. (C.2.5)

Let us now use that in the CM-frame we have pµ3 = (MB/2, ~p3), pµ4 = (MB/2,−~p3) and qµ = (MB, 0).
Then

|M̄|2 =
4g2B
3

(
M2
B

2
−m2

q + 4m2
q +

M2
B

2
)

=
4g2B
3

(M2
B + 3m2

q). (C.2.6)

Substituting equation (C.2.6) into equation (C.0.1), subsequently gives upon integration

Γ =
g2B
12π

M2
B + 3m2

q

MB

√
1−

4m2
q

M2
B

. (C.2.7)
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Summing over all quark flavours, and recalling that all quarks are massless except for the top-quark,
we finally arrive at

Γtot =
5g2B
12π

MB +
g2B
12π

M2
B + 3m2

t

MB

√
1− 4m2

t

M2
B

. (C.2.8)
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