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1 INTRODUCTION 1

1 Introduction

The discovery and isolation of graphene in 2014, by Andre Geim and Konstantin Novoselov
[21], had a profound influence in condensed-matter physics. Graphene, an allotrope of car-
bon, and a remarkably perfect realization of a two-dimensional material, is a one-atom-thick
electron system consisting of carbon atoms on a honeycomb lattice. With the subsequent
discovery of massless Dirac fermions in graphene [22], interesting new avenues into the study
of quantum electrodynamics, which until then was restricted to high-energy physics, have
been opened up ([1], p. 1)([25], p. 625)([22], p. 197).

The intriguing properties of graphene are, however, not restricted to real graphene alone.
Researchers have shown analogous properties in a number of artificial systems with sixfold
symmetry, ranging from molecules on copper [7] [8] [10] [14] [25] [26] [29], to atoms trapped
in crystals of light [5] [4] [25] [26] [31], and further to patterned semiconductor structures [12]
[24] [25] [26] [32]. These ’artificial graphene’ systems, however different from each other, share
the quality that their structure is far more pliable than that of real graphene. As artificial
systems, their properties can be tuned in ways that are impossible in real graphene. This
makes the artificial graphene structures ideal candidates to study the exciting properties of
graphene and other honeycomb lattice materials ([25], p. 625)([26], p. 422-423).

Due to the size and complexity of these artificial systems, particularly when studying devi-
ations from the perfect honeycomb lattice, complete analytical treatment is often unfeasible.
On the other hand, experimental research, though without a doubt ultimately necessary,
is not only prone to all kinds of error, but can also be time and resource consuming. De-
veloping numerical methods that can produce approximate solutions for quantum systems,
like the artificial graphenes, can aid the detection of interesting behaviours, and is a time-
and resource-efficient way of studying these systems. Approximate numerical methods are a
powerful addition to both the analytical and empirical study of the promising new artificial
graphene materials ([3], p. 714).

In this thesis, we develop a number of numerical methods to model one- and two-
dimensional, non-interacting, electron systems with arbitrary potentials in the Python pro-
gramming language. These methods are then tested on a number of well-known systems
in order to verify whether the code runs as expected. Finally, using the numerical meth-
ods developed here, we model a number of scanning tunneling microscope (STM) patterned
indium arsenide structures, which, like the other patterned semiconductor structures men-
tioned above, can be used to create artificial graphene systems. The ambition of this thesis
is to develop a set of numerical methods that can successfully model STM patterned indium
arsenide structures, and particularly those with slight deviations from the perfect honeycomb
lattice.
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2 Overview of the Field of Research

In the endeavour to study the behaviour of electrons in graphene, a number of different
artificial lattices mimicking the honeycomb structure of graphene have been proposed and
studied. Three such honeycomb lattices, ranging over length scales of just a few nanometres
to multiple millimeters, will be discussed here in more detail, in order to contextualize and
introduce the artificial lattice studied in this work, namely STM patterned indium arsenide.

Figure 1: Overview of several artificial, graphene-like lattices, as adapted from Reich [26].

2.1 Carbon Monoxide on Copper

Some of the smallest graphene-like artificial lattices to date are constructed by manip-
ulating the positions of carbon monoxide molecules over a copper surface, as described in
Gomes et al. [10]. In particular, carbon monoxide molecules are adsorbed on the surface of a
clean copper Cu(111) surface, after which the positions of the carbon monoxide molecules are
manipulated individually using the tip of an STM. Here, (111) are the Miller indices describ-
ing the lattice plane that the Cu(111) surface follows. As this artificial graphene consists of
carbon monoxide molecules, the system is also referred to as molecular graphene. By manip-
ulating the constituents of the artificial lattice individually at the atomic level, graphene-like
lattices can be constructed at the scale of just a few nanometres ([10], p. 306)([26], pp.
422-423).

One of the reasons Cu(111) is chosen as the surface for the carbon monoxide molecules to
be adsorbed on is the property of the ground-state electron system on the Cu(111) surface.
Copper has a face-centered cubic crystal structure. The lattice plane described by the Miller
indices (111) in such a cubic crystal is depicted in figure 2. The electron system on a
Cu(111) surface has the property that, above a certain energy, it is very localised to the
surface, rather than to the bulk of the material. Because of this, the electron system can
effectively be treated as a two-dimensional electron system. Moreover, since copper is a
good conductor, the electron system on the Cu(111) surface is almost free. Therefore, any
property of molecular graphene will be due, predominantly, to the arrangement of the carbon
monoxide molecules, rather than the copper background ([10], p. 306) ([33], pp. 663, 665).
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Figure 2: Plane with Miller indices (111) in a cubic crystal.

Arranging the negatively charged carbon monoxide molecules adsorbed on the Cu(111)
surface in a triangular lattice shape, which is the anti-lattice of the honeycomb lattice, forces
the electrons in the two-dimensional electron system to form a honeycomb pattern. Since the
setup of molecular graphene allows for exceptional control over the positions of the carbon
monoxide molecules through the use of an STM, a perfect electronic honeycomb lattice can
be constructed at the scale of several nanometres. An image of such an artificial honeycomb
lattice is given in figure 3, as found in Gomes et al. [10]. For this picture, 149 carbon
monoxide molecules were arranged so that their positions, as seen in figure 3, correspond
to the dark centers of the hexagons in the honeycomb lattice. Moreover, since the carbon
monoxide molecules are negatively charged, a repulsive barrier around the lattice is needed,
to constrain the electrons to the molecular graphene system. In order to minimize the thermal
fluctuations of the system, the sample is cooled to 4.2 K. The spacing between individual
carbon monoxide molecules can only take certain values, since the adsorption sites of the
Cu(111) surface dictate which arrangements of adsorbed carbon monoxide are possible. In
the case of figure 3, the spacing between the carbon monoxide molecules is the square root
of three, times the lattice constant of the Cu(111) surface, so that d =

√
3a = 1.92 nm.
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Figure 3: Artificial honeycomb lattice formed through triangular arrangement of negatively
charged carbon monoxide molecules, as found in Gomes et al. [10].

Using an STM, the differential tunneling conductance at a given position in the artificial
lattice can be measured. This differential tunneling conductance for molecular graphene can
then be divided by the spatially averaged value for the differential tunneling conductance of
the Cu(111) surface. Normalizing the results in this way removes the featureless slope that is
present in the conductance spectrum of Copper, and is meant to prevent any unwanted noise
that could arise from interactions between the Cu(111) surface and different STM tips. The
ratio of the measurements and the differential tunneling conductance of the copper surface is
the normalized differential conductance spectrum, g̃(Ẽ, ~r), which, in all cases treated here, is
directly proportional to the local density of states of the artificial lattice under consideration.
The tilde is used to indicate that the quantity under consideration is a continuum property
of the fermions ([2], pp. 5-6)([10], p. 307).

Plotting g̃(Ẽ, ~r) against the energy Ẽ of the fermionic particles in the molecular graphene
system, as in figure 4, reveals a linear dispersion that is the characteristic of a Dirac cone,
just as in real graphene. In particular, g̃(Ẽ, ~r) is measured over the sublattices defined by
positions A and B, as indicated in the inset. The spatially averaged measurements over
sublattice A are given by the filled circles, while those over sublattice B are given by the
open circles ([10], p. 307).
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Figure 4: Linearly dispersing fermionic particles in molecular graphene, as found in Gomes
et al. [10].

Notice that, near the Dirac point, no measurements are reported. In this region, the
energy obeys |Ẽ| < eVrms, where Vrms is the modulation voltage of the STM. At such low
energies, instrumental broadening becomes too large to allow for accurate measurements
([10], p. 307).

In general, the differential conductance spectrum of the molecular graphene system agrees
qualitatively with the conductance spectrum of real graphene. The conductance spectra are
compared in figure 5. Sub-figure 5a is adapted from Gomes et al. [10], and sub-figure 5b is
taken from Hobson and Nierenberg [11].

In the case of molecular graphene, the differential conductance spectrum is measured over
different positions in the artificial lattice using an STM, after which the spatial average of
these measurements is normalized by dividing it by the spatially averaged differential con-
ductance spectrum of a clean Cu(111) surface. The resulting normalized, spatially averaged
differential conductance spectrum of molecular graphene is plotted in green in figure 5a. The
accompanying dashed plot is a tight-binding calculation for the molecular graphene system
([10], p. 307).

The conductance spectrum of molecular graphene, measured in this way, can be com-
pared to the conductance spectrum of real graphene. The first analytical treatment of the
conductance spectrum of graphene, assuming only nearest neighbor hopping, can be found
in Hobson and Nierenberg [11]. The conductance spectrum in figure 5b is the numerically
determined conductance spectrum for graphene, as found in Laughlin [17].



2 OVERVIEW OF THE FIELD OF RESEARCH 6

Figure 5: a) Normalized, spatially averaged differential conductance spectrum of molecular
graphene (solid green line) and an accompanying tight-binding calculation for the same sys-
tem (dashed black line). Figure adapted from Gomes et al. [10].
b) Numerical solution for the conductance spectrum of graphene. Figure found in Laughlin
[17].

The key advantages of molecular graphene as a lattice-lookalike of real graphene are the
remarkable precision and control achieved when individual carbon monoxide molecules are
positioned on the Cu(111) surface using the tip of an STM. As can be seen from figures 3, 4,
and 5, molecular graphene, constructed in such a way, mimics the behaviour of real graphene
well ([10], pp. 306, 310).

A serious drawback of the setup, however, is the amount of scattering to the bulk, which
adds to the lifetime broadening of the electrons, and in turn to a broadening of g̃. This
broadening can clearly be seen when comparing figures 5a and 5b ([10], p. 308).

The two-dimensional electron system on a pure Cu(111) surface is usually decoupled from
the bulk electrons. However, when the binding energy of the surface electrons approaches
the Fermi level, the surface state approaches the bulk continuum. This causes an increasing
delocalization into the bulk and, consequently, an enhanced coupling to the bulk states. The
energy dispersion relation of the surface state of pure Cu(111), as well as that of the bulk
continuum of states, can be seen in figure 6, as found in Kevan [15]. The bulk continuum is
calculated assuming a parabolic fit to Fermi surface data. The figure shows that, just above
the Fermi level, the surface state enters the bulk continuum ([15], pp. 526, 527, 529).

By adsorbing negatively charged carbon monoxide molecules on the Cu(111) surface, the
potential on the surface is raised, which increases the binding energy of the surface state
electrons. In this way, the broadening of g̃, as reported by Gomes et al. [10], which is
larger than the broadening observed in pure copper, can be explained by the presence of the
adsorbed carbon monoxide molecules on the Cu(111) surface that make up the molecular
graphene ([10], p. 308).
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Figure 6: The energy dispersion relation of the surface state of pure Cu(111), as found
in Kevan [15], measured using photoemission spectrometry. Measurements using incident
photons of energy hν = 16.8 eV are shown using the empty circles, while measurements
using photons of energy hν = 11.8 eV are shown using the filled circles. A parabolic least
squares fit is supplied, and the shaded region is the projected bulk continuum of states.

2.2 Patterned Arsenic Compounds

An alternative approach to producing artificial hexagonal lattices is the creation of pat-
terned arsenic compounds, such as gallium or indium arsenide. Both gallium and indium
arsenide are type III-V semiconductor materials, which makes them very suitable for con-
ventional top-down nanofabrication approaches. Type III-V semiconductor materials are
composite semiconductors, consisting of two chemical elements, one of which donates three
electrons, while the other donates five. In the case of gallium or indium arsenide, it is the
gallium, respectively indium, that donates three electrons, while the arsenic donates five.
Using these nanofabrication techniques, gallium and indium arsenide materials can be cre-
ated that consist of orders of magnitude more particles than any of the other artificial lattice
approaches are capable of. It is this scalability that makes patterned arsenic compound arti-
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ficial lattices suitable for the studying of long-range interactions, many-body effects, as well
as spin-orbit interactions ([25], p. 625) ([32], p. 1).

Other advantages of arsenic compounds are connected to their material properties. When
comparing semiconductors, like gallium and indium arsenide, to metals, like copper, semi-
conductor materials show significantly less screening effects, which may reduce the scattering
to the bulk described in section 2.1. Moreover, the semiconductor arsenic compounds are
characterised by much less contamination than real graphene. It is possible that charged im-
purities that are trapped either between the graphene surface and the underlying substrate,
or on top of the graphene surface, play a role in reducing the mobility of graphene. Being
able to produce artificial lattices with very little contamination would offer a natural solution
to this problem ([9], p. 3)([24], p. 4).

However, a major drawback of arsenic compounds, patterned using top-down nanofabri-
cation approaches, is the amount of structural disorder in the system. The other artificial
lattice approaches either show no structural disorder at all (see section 2.3), or are charac-
terised by tunneling energy scales that are much larger than the structural disorder of the
system (see section 2.1) ([25], p. 625) ([32], p. 1).

2.3 Potassium Atoms Trapped by Lasers

A radically different approach to creating an artificial graphene lattice is offered by trap-
ping ultra-cold potassium atoms in a honeycomb optical lattice. Using a setup of interfering
laser beams, a highly tunable periodic potential can be created, which affects an ultra-cold
gas of fermionic 40K atoms. An image of the optical honeycomb lattice is given in figure 7,
as found in Tarruell et al. ([25], p. 625)([31], p. 302).

Figure 7: Contour plot of the real-space potential of the optical honeycomb lattice, as found
in Tarruell et al. [31]. White regions correspond to lower potential energy, while blue regions
indicate higher potential energy, and the sublattices are indicated by ’A’ and ’B’.

Just like electrons, 40K atoms are fermionic particles, which is why ultra cold potassium
atoms are suited for creating artificial graphene lattices. Optical lattices with bosonic 87Rb
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species have also been realized, as described in Lühmann et al. [19] and Di Liberto et al. [4].
In solids, it is the rigid structure of the material that determines the mass and velocity

of the electrons in the system. By using a periodic potential of interfering laser beams, the
structure of the system becomes very flexible and tunable, which in turn allows the cold
atoms in the optical lattice to be pushed into regimes that are nearly or fully unattainable
in real graphene. By offering control over the nature, strength, and range of inter-particle
interactions, ultra-cold potassium atoms in optical lattices can be used to study regimes such
as ultrastrong spin-orbit coupling and non-Abelian gauge fields ([25], p. 625, 629)([31], p.
302).

2.4 STM patterned Indium Arsenide

The artificial lattice considered in this work, is a system consisting of indium atoms,
each placed individually using an STM, on a indium arsenide surface. In particular, indium
atoms of charge +1e are individually placed and adsorbed on a InAs(111)A surface, where
the ’(111)’ designates the Miller indices (see figure 2), and the ’A’ indicates the surface is
indium-terminated. The indium atoms that are adsorbed on the InAs(111)A surface will be
referred to as adatoms. An experimental realization of a linear chain of indium adatoms on
the InAs(111)A surface is shown in figure 8.

Figure 8: An STM topography image of a linear chain of indium adatoms on the InAs(111)A
surface, including a schematic zoom, showing the structure of the InAs(111)A surface, and
the positions of the adsorbed indium adatoms. Figure from Fölsch et al [6].

The STM patterned indium arsenide artificial lattice is, in many ways, a hybrid between
the molecular graphene [10], discussed in section 2.1, and the patterned arsenic compounds,
discussed in section 2.2. In terms of material properties, STM patterned indium arsenide
falls in the category of arsenic compounds. Indium arsenide is a type III-V semiconductor,
with significantly less screening effects than the copper surface in molecular graphene, and
it can be made with much less contamination than real graphene ([9], p. 3)([24], p. 4).
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In terms of production method, however, STM patterned indium arsenide closely re-
sembles molecular graphene [10]. By making use of an STM to place each indium adatom
individually, the same level of precision and control can be achieved as for carbon monoxide
on copper. This deals with the current problem of structural disorder in patterned arsenic
compounds. A notable difference between the production methods of STM patterned indium
arsenide and molecular graphene is that, due to the indium adatoms being positively charged,
no repulsive barrier is needed around STM patterned indium arsenide structures. ([24], p.
4).

It should be noted that, though adopting the STM patterning technique solves the struc-
tural disorder problem and allows for superior precision and control, the STM patterned
indium arsenide no longer has the superior scalability of the top-down nanofabricated ar-
senic compounds. By using STM patterning, instead of top-down nanofabrication, the STM
patterned indium arsenide artificial lattice is a choice of quality over quantity.

Ideally, there will be techniques developed to create high quality artificial lattice in the
quantities needed, not only to use in research, but to be used in potential applications as
well. Top-down nanofabricated arsenic compounds show promise in this respect, and STM
patterned indium arsenide can be used to probe the properties of these materials right now
([9], p. 1)([24], p. 4)([25], pp. 625-627, 631).
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3 Numerical Methods

“The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and the dif-
ficulty is only that the exact application of these laws leads to equations much too
complicated to be soluble. It therefore becomes desirable that approximate practi-
cal methods of applying quantum mechanics should be developed, which can lead to
an explanation of the main features of complex atomic systems without too much
computation.”

– P.A.M. Dirac

In the spirit of Paul Dirac’s quote above, this section seeks to develop a number of
numerical methods that open up complex quantum mechanical problems to approximate
treatment using the computational power of modern computers.

All of quantum mechanics, in one way or another, is related to the Schrödinger equation,
which, in its most general form, is given by equation (1). However, if complex quantum me-
chanical problems are to be made accessible to numerical treatment, suitable approximations
to the general, time-dependent, Schrödinger equation are needed.

i~
d

dt
|Ψ(t)〉 = Ĥ |Ψ(t)〉 . (1)

The first simplification of the eigenfunction problem posed by equation (1), is that all
numerical methods will be restricted to finding stationary states, instead of general wave
functions. Stationary states are wave functions for which all observable properties, such
as energy and probability density, are time-independent. This simplification is reasonable,
as the systems that will be studied are assumed to be static, so that their properties can
be described by stationary states. In this way, the general, time-dependent, Schrödinger
equation reduces to the general, time-independent, Schrödinger equation

Ĥ |ψ〉 = E |ψ〉 . (2)

Moreover, assuming all particles move at non-relativistic speeds, the Hamiltonian can be
rewritten, giving the non-relativistic, time-independent, Schrödinger equation[

−~2

2m
∇2 + U(~r)

]
ψ(~r) = Eψ(~r). (3)

However, the non-relativistic, time-independent, Schrödinger equation remains an ana-
lytic equation that is not immediately open to numerical analysis. Therefore, equation (3)
has to be transformed into a problem that is open to numerical treatment, while staying as
close to the original as possible. This is the topic of sections 3.2 and 3.3.

3.1 Functions and Libraries

In this project we utilize a number of functions. Some of these were written by myself,
and others were imported from pre-designed python libraries. For completion sake, the exact
libraries are described below, but knowledge of these libraries is in no way required for a
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general understanding of the project. Someone looking for a general understanding of the
methods can skip the following paragraph.

The code for the numerical simulations of this thesis project makes use of three python
3.8.1 modules. For the creation of evenly spaced intervals and meshes, as well as element-
wise addition and multiplication of one-dimensional arrays, the numpy 1.6.1 library is used.
The numerical methods utilize the scipy.sparse module of scipy 1.5.0, which helps in keep-
ing the operations on large sparse two-dimensional arrays tractable. In particular, the
scipy.sparse.linalg.eigsh function, as based on the ARPACK library of Fortran 77, is help-
ful to the program. Finally, matplotlib 3.1.3 is used to visualize the obtained data. For the
three-dimensional plots, the mpl toolkits.mplot3d module from matplotlib 2.0.2 is used.

3.2 Modelling of one-dimensional systems

As a first enterprise, we numerically solve the Schrödinger equation (3) for a single, non-
relativistic, electron in a one-dimensional box, subject to an arbitrary potential U(x) over
the interval of the box.

As we seek to solve for such a system using numerical computation methods, we must
define our system in a way that is open to numerical analysis. The system we apply numerical
methods to must have a finite number of coordinate points, as opposed to a continuous system
with an infinite number of coordinate points. In other words, we must approximate the system
we wish to model by a discretisation with a finite resolution.

In our code, we therefore start off by defining the parameters that specify our system,
such as the length (L) of our box and the resolution (N) of the approximation, as well as the
mass (m) of our particle and Planck’s constant (h), all in SI units.

The wave function solutions ψ of our discretised system are finite sets containing ap-
proximations of ψ(x) over the finite number of coordinate points. We can therefore describe
the wave functions of the discretised system as vectors (ψ(0), ψ(l), ψ(2l), ..., ψ(Nl)), with
N the resolution of our system and Nl = L defining l. Discretising the wave function in
Schrödinger’s equation (3) allows us to approximate the non-relativistic Hamiltonian,

Ĥ =

[
−~2

2m
∇2 + U(~r)

]
,

as a matrix operating on the wave function vector. The eigenfunction problem of equation
(3) therefore becomes a matrix eigenvector problem when we discretise the system. In this
way, we create a model for our system that is open to numerical methods.

The next task is then to construct the matrices that will be used to approximate the
Hamiltonian of our system. The Hamiltonian has two terms, corresponding to the kinetic
and potential energies, respectively. We will here first discuss how to discretise the kinetic
term.

As kinetic energy necessarily has to do with motion, we have to construct a matrix
equivalent of a derivative. In particular, the Laplacian ∇2 in one dimension is the second
derivative along that dimension, so that our goal is to model a second derivative.

For a given wave function ψ(x) the x-derivative at a given point x′ is approximated by
(ψ(x′ + l) − ψ(x′ − l))/2l. The matrix that approximates the x-derivative operator is then

given by a square N · N matrix, so that when it is applied to the vector ~ψ containing N
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data points of the wave function ψ over the interval of the box, it returns a vector with N
elements containing the values of the x-derivative over the interval. This operator is a sparse
banded matrix with elements (2l)−1 on the first upper off-diagonal, and elements −(2l)−1 on
the first lower off-diagonal. A sparse matrix is a matrix in which most elements are zero.
Periodic boundary conditions can be imposed by taking the elements at (1, N) and (N, 1) to
be −(2l)−1 and (2l)−1 respectively. The whole situation is shown schematically by

1

2l


0 1 0 0 · · ·
−1 0 1 0 · · ·
0 −1 0 1 · · ·
0 0 −1 0 · · ·
...

...
...

...
. . .




ψ(0)
ψ(l)
ψ(2l)
ψ(3l)

...

 =
1

2l


ψ(l)− ψ(L)
ψ(2l)− ψ(0)
ψ(3l)− ψ(l)
ψ(4l)− ψ(2l)

...

 .

For the second x-derivative of ψ(x) at x′, we use (ψ(x′+2l)−2ψ(x′)+ψ(x′−2l))/4l2. The
second derivative matrix can therefore be constructed by simply taking the matrix product
of the first derivative matrix with itself. In this way, the one-dimensional Laplacian ∇2 is
approximated by the matrix

1

4l2


−2 0 1 0 · · ·
0 −2 0 1 · · ·
1 0 −2 0 · · ·
0 1 0 −2 · · ·
...

...
...

...
. . .

 .

By multiplying the resulting sparse N ·N matrix with −~2/2m, we obtain the kinetic term
of the Hamiltonian.

Any potential U(x) that could be added to the Hamiltonian would take the form of a
sparse diagonal N · N matrix with elements U(x) along the diagonal, so that the potential
operates on the wave function, as shown here,

U(0) 0 0 0 · · ·
0 U(l) 0 0 · · ·
0 0 U(2l) 0 · · ·
0 0 0 U(3l) · · ·
...

...
...

...
. . .




ψ(0)
ψ(l)
ψ(2l)
ψ(3l)

...

 =


U(0) ∗ ψ(0)
U(l) ∗ ψ(l)
U(2l) ∗ ψ(2l)
U(3l) ∗ ψ(3l)

...

 .

In this way, the zero boundary condition of ψ(0) = ψ(L) = 0 can be set by adding a sparse
potential matrix with large positive elements at (1, 1) and (N,N).

Once the Hamiltonian sparse matrix has been defined, the eighs function from scipy can
be applied to obtain the numerical eigenvalues and eigenvectors of the Hamiltonian, which
correspond to our wave functions and energies, respectively. As input, this function requires
a real symmetric square matrix or complex Hermitian matrix and an integer specifying the
number of requested eigenvalues and eigenvectors, as well as a method to determine which
solutions are constructed.

There are two possible parameters that can be used to specify the desired method of
solving the eigenvalue problem. The first of these is based on using the which parameter,
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which can for example take in the argument ’LM’ to make the eighs function return only
the largest magnitude eigenvalues and their corresponding eigenvectors. As we are primarily
interested in the first few smallest eigenvalues, the which parameter would have to take the
value ′SA′ or ′SM ′, corresponding to the smallest algebraic and the smallest magnitude
solution, respectively. Though this is the most straightforward method, it is inadvisable
due to the nature of the eighs function ([18], pp. 22-29, pp. 60-62)([30], pp. 121-125, pp.
141-144).

The eighs function is based on the implicitly restarted Lanczos method, which excels
at constructing the m << N maximum eigenvalues and their corresponding eigenvectors
for very large sparse matrices. It, however, quickly breaks down when directly used to find
the minimum eigenvalues of such a matrix. In order to work around this problem, another
parameter is available to the eighs function, which makes use of the following simple trick.
A reader with little interest as to the mathematics of the method may wish to skip the next
two paragraphs ([18], pp. 22-29, pp. 60-62)([30], pp. 121-125, pp. 141-144).

For the simplest case, let ~v be an eigenvector of the square matrix A, with corresponding
eigenvalue λ, so that

A~v = λ~v. (4)

Since equation (4) has non-zero solutions if and only if the determinant of A is non-zero, we
will assume A has an inverse. Multiplying (4) to the left with A−1 gives

A−1~v =
1

λ
~v. (5)

Therefore, the eigenvectors of A are also eigenvectors of A−1, but the eigenvectors that have
maximal eigenvalues as eigenvectors of A−1 have minimal eigenvalues as eigenvectors of A.
We can therefore optimize the implicitly restarted Lanczos method for finding the minimum
eigenvalues and their corresponding eigenvectors by constructing the maximal eigenvalues of
the inverse matrix and inverting the eigenvalues, while keeping the eigenvectors ([18], pp.
22-29, pp. 60-62)([30], pp. 121-125, pp. 141-144).

The implicitly restarted Lanczos method operates on the generalized eigenvalue problem.
Here, we will show that under the right circumstances, this generalized problem reduces to
the problem we want to investigate. In the generalized eigenvalue problem, we have

A~v = λM~v. (6)

Substracting σM~v from both sides of equation (6) gives

(A− σM)~v = (λ− σ)M~v, (7)

which can be written as
(A− σM)−1M~v = µ~v, (8)

where µ is defined as

µ =
1

λ− σ
. (9)

This spectral transformation transforms eigenvalues λ to eigenvalues µ = 1/(λ− σ), so that
the eigenvalues λ that are close to σ correspond to the maximum eigenvalues of the eigenvalue
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problem of equation (8). In other words, using the spectral transformation of equation (9),
the convergence of the implicitly restarted Lanczos algorithm is enhanced for eigenvalues λ
close to σ. Taking σ = 0 reduces the problem to the simple inverted eigenvalue problem that
we are interested in ([18], pp. 22-29, pp. 60-62)([30], pp. 121-125, pp. 141-144).

The eighs function has a parameter σ so that if we set it to σ = 0, the eighs function
solves the inverted eigenvalue problem and then inverts the solutions. This results in greatly
improved accuracy and computation time when compared to the which =′ SA′ method, and
is therefore greatly preferable ([18], pp. 22-29, pp. 60-62)([30], pp. 121-125, pp. 141-144).

Though very fast and accurate, the implicitly restarted Lanczos method of ARPACK has
some undesirable properties. In particular, the method gives rise to an unwanted two-fold
degeneracy of the eigenvalues. Moreover, the resulting eigenvectors themselves contain two
solutions with the same shape but with different amplitudes. In many respects, this dual
solution form of the eigenvectors leaves the results intact, and can often be ignored. In
particular, the numerical eigenvalues are calculated correctly, but the wave functions have
to be normalized afterwards. In the context of visualization, it may however be preferable
to strip the eigenvector solutions of the small amplitude wave solution. This is discussed in
section 3.5.

The topic of finding a better algorithm, which can compete with implicitly restarted
Lanczos algorithm and does not suffer from this unwanted degeneracy forming, will not be
investigated further here. Re-orthogonalization techniques seem promising, but may take a
toll on computation time. Research has been done on this topic [16] [23] [27] [30].

Now that we have the numerical solutions of our wave functions ψ and their correspond-
ing energies, we can find the probability densities |ψ|2 by multiplying ψ with its complex
conjugate ψ∗. We can then plot the probability densities against the position coordinates in
the box, connecting the finite number of data points by lines. For this we use matplotlib’s
plot function. In this way, if the resolution is chosen sufficiently large, the numerical solutions
quickly approach the analytical solutions, as we will show in section 4.1.

3.3 Modelling of two-dimensional systems

Now that we know how to solve the non-relativistic time-independent Schrödinger equa-
tion (3) in one dimension for several potentials, we can expand our horizons to two dimensions.
In particular, we will here describe a method to numerically solve the non-relativistic, time-
independent, Schrödinger equation in two dimensions for a single electron in a box under
the influence of an arbitrary potential U(x, y). For the most part this box is assumed to be
rectangular.

The method for constructing such a two-dimensional simulation follows the same essential
steps as the one-dimensional case. First, we define a set of parameters that specify our
system, in this case a two-dimensional box containing a single electron. The dimensions and
resolutions in the x- and the y-directions are denoted respectively by Lx and Ly, and Nx and
Ny.

The vector describing our two-dimensional wave function ψ is of a somewhat different
form than in the one-dimensional case. In the two-dimensional case, the first Nx elements of
our vector describe the wave function over the entire x-interval with y = 0. Subsequently the
second Nx elements describe the wave function, again over the entire x-interval, but now for
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y = ly with lyNy = Ly. Another way to understand this format is to see the wave function
vector for a two-dimensional system as the combination of Ny wave function vectors for one-
dimensional systems with resolution Nx, so that the union of these one-dimensional systems
equals our two-dimensional system.

Because we can understand our two-dimensional system as the union ofNy one-dimensional
systems, we can divide the problem at hand into two sub-problems. First, we need a method
to solve the one-dimensional problems. Such a method is described in the section on one-
dimensional modelling. The second sub-problem is then to combine these one-dimensional
solutions into a solution for the two-dimensional problem.

In order to solve both sub-problems elegantly in one move we define two one-dimensional
derivative matrices, one with dimensions Nx · Nx and the other with dimensions Ny · Ny.
These will be called Dx and Dy, respectively. They are defined using the exact same method
as for the one-dimensional simulations. With these two first-derivative matrices, we construct
the one-dimensional second-derivative matrices D2

x = Dx · Dx and D2
y = Dy · Dy. We call

these derivative matrices one-dimensional, in the sense that they define derivatives on one-
dimensional systems of resolution Nx and Ny, respectively.

As an aside, if the resolutions in the x- and y-directions are set equal, we can choose to
add a potential U(x, y) to −(~2/2m)D2

x now, in which case U(x, y) will be symmetrical under
rotation from positive x- to y-axis and vice versa, so that U(x = a, y = b) = U(x = b, y = a).
For simple, symmetric potentials such as a central square barrier, this method offers an easy
way of adding a potential. If, instead, we want a potential that does not exhibit such a
symmetry, or if our system has different resolutions in the x- and y-directions, we should
add a potential not to the one-dimensional kinetic energy operator, but rather to the two-
dimensional kinetic energy operator defined in the next paragraph.

We have defined second-derivative matrices in the x- and the y-directions, so now, to solve
the second sub-problem, we must combine these in such a way that our results apply to the
two-dimensional system. The most elegant method for this task is based on the Kronecker
product (⊗), which is supported by the scipy.sparse.kron function.

In order to take the partial second derivative in the x-direction, we take the Kronecker
product Iy ⊗D2

x of the identity matrix Iy, with dimensions Ny ·Ny, with the regular second
derivative D2

x in the x-direction. This is shown schematically by

[
Iy ⊗D2

x

]
~ψ(x, y) =


D2
x 0 0 0 · · ·

0 D2
x 0 0 · · ·

0 0 D2
x 0 · · ·

0 0 0 D2
x · · ·

...
...

...
...

. . .





ψ(0, 0)
ψ(lx, 0)

...
ψ(Lx, 0)
ψ(0, ly)
ψ(lx, ly)

...


=



∂2

∂x2
ψ(0, 0)

∂2

∂x2
ψ(lx, 0)

...
∂2

∂x2
ψ(Lx, 0)

∂2

∂x2
ψ(0, ly)

∂2

∂x2
ψ(lx, ly)

...


.

The zeros in the Iy ⊗D2
x matrix represent Nx ·Nx null-matrices.

Similarly, though perhaps less intuitively, the second partial derivative in the y-direction
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is given by D2
y ⊗ Ix, where Ix is the identity matrix with dimensions Nx ·Nx, as shown here

[
D2
y ⊗ Ix

]
~ψ(x, y) =

1

4l2y


−2Ix 0 Ix 0 · · ·

0 −2Ix 0 Ix · · ·
Ix 0 −2Ix 0 · · ·
0 Ix 0 −2Ix · · ·
...

...
...

...
. . .





ψ(0, 0)
ψ(lx, 0)

...
ψ(Lx, 0)
ψ(0, ly)
ψ(lx, ly)

...


=



∂2

∂y2
ψ(0, 0)

∂2

∂y2
ψ(lx, 0)

...
∂2

∂y2
ψ(Lx, 0)

∂2

∂y2
ψ(0, ly)

∂2

∂y2
ψ(lx, ly)

...


.

Now, we are able to construct ∇2 in two dimensions by using

∇2 = ∇2
x +∇2

y = Iy ⊗D2
x +D2

y ⊗ Ix. (10)

The two-dimensional second-derivative operator is therefore approximated by a sparse square
matrix with dimension NxNy ·NxNy.

We can now construct the two-dimensional Hamiltonian matrix by simply multiplying
∇2 by −~2/2m and, if no potential was added before, adding a potential now. A potential
matrix U(x, y) takes the form of an NxNy ·NxNy diagonal matrix with the design

U(0, 0) 0 · · · · · · · · · · · ·
0 U(lx, 0) · · · · · · · · · · · ·
...

...
. . . · · · · · · · · ·

...
...

... U(Lx, 0) 0 · · ·
...

...
... 0 U(0, ly) · · ·

...
...

...
...

...
. . .


.

To impose the boundary condition of a rectangular box of dimensions Lx ·Ly, all elements
U(0, y) = U(Lx, y) = U(x, 0) = U(x, Ly) are set to some large positive constant. A square
box can thus be imposed by taking Lx = Ly. In order to implement periodic boundary
conditions, at the beginning one simply constructs the one-dimensional derivative matrices
Dx and Dy and then includes periodicity by adding −(2lx)

−1 and (2lx)
−1 at (1, Nx) and

(Nx, 1) and −(2ly)
−1 and (2ly)

−1 at (1, Ny) and (Ny, 1) to Dx and Dy, respectively. This
periodicity is then automatically carried along to the two-dimensional Hamiltonian.

The eigenvectors of the resulting Hamiltonian matrix are one-dimensional arrays of length
NxNy, so that the first Nx elements represent ψ(x, y = 0), and the second Nx elements
ψ(x, y = ly), and so forth. Notice also that we cannot choose Nx and Ny very large, as
computation time increases quadratically.

We can now find the smallest eigenvalues (and their corresponding eigenvectors) of the
Hamiltonian matrix of the two-dimensional system. Notice that we can safely use the eighs
function for this once again, because the identity matrix is symmetrical, and the sum and
Kronecker product of two symmetrical matrices is itself symmetrical. By applying the eighs
function with parameter σ = 0 to the Hamiltonian matrix described above, we construct
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the smallest eigenvalues and the corresponding eigenvectors for the two-dimensional system.
These represent numerical approximations of the desired energy and wave function solutions
of our two-dimensional system, respectively.

Plotting the resulting probability density of the eigenfunctions in its current format unto
two dimensions using matplotlib results in a potentially complicated plot, where the prob-
ability densities over the entire x-interval for subsequent y-coordinates are plotted next to
each other. This is generally discouraged, as such plots often confuse rather than elucidate.
Instead, three-dimensional plots or two-dimensional density plots are preferred.

In order to plot the resulting probability density in three dimensions, we rework the
one-dimensional array containing the probability density corresponding to a given wave
function solution into a two-dimensional array, so that the first Nx elements of the one-
dimensional array form the first row of the two-dimensional array, the second Nx elements
the second row, until we have a two dimensional array with Ny rows and Nx columns. We
can now plot this two-dimensional array against the two-dimensional mesh of x- and y-
coordinates, constructed using numpy’s meshgrid function. For this, we use matplotlib’s
mpl toolkits.mplot3d.Axes3D function.

3.4 Lorentzian Broadening and the Local Density of States

The STM patterned indium arsenide artificial lattice, though less than molecular graphene,
shows a broadening of the local density of states, due to scattering to the bulk, as discussed in
section 2.1. This broadening can, phenomenologically, be modeled by a Lorentzian function.
The probability density of such a function is given by

f(x) =
γ

γ2 + (x− x0)2
. (11)

Here, γ is the scale parameter that determines the width of the function. A plot of a
Lorentzian function is given in figure 9, which indeed shows a peak with an amount of
broadening.

Figure 9: Plot of a Lorentzian function.

Using these Lorentzian functions, broadening due to scattering can be built into the numerical
model ([10], p. 307)([13], p. 132)([15], pp. 527-528)([20], p. 2)([28], p. 677).
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The local density of states, without any broadening, is given by

LDOS(E, ~x) =
∑
E′

|ψE′(~x)|2δ(E − E ′). (12)

The lack of broadening is evident from the presence of the delta function, which ensures that
the local density of states is only non-zero at the eigenenergies E ′ of the system. In order to
include a broadening, the delta function in equation (12) is replaced by a Lorentzian function,

LDOS(E, ~x) =
∑
E′

|ψE′(~x)|2 γ

γ2 + (E − E ′)2
. (13)

The code above constructs numerical solutions for the wave functions and the corresponding
eigenenergies, and equation (13) shows that, when a parameter γ is supplied, the local density
of states can be constructed from these by a simple summation.

3.5 Stripping functions

Because of the way the numerical eigenvectors are constructed using the implicitly restarted
Lanzcos algorithm, each eigenvector in fact contains two solutions, so that the elements of
one solution are all on the even indices of the vector, while the elements at the odd indices
form the second solution. The two solutions are of the same form, but have different ampli-
tude. We will call the solution with the smaller amplitude the small amplitude wave solution.
The repeated jumping between large and small amplitude wave solution makes the plots look
’filled in’, as shown in figure 10.

Figure 10: Unstripped plot of a numerical solution for a particle in a one-dimensional box.

As the two solutions are of the same form, we only need one of the two, because, when it
is properly normalized, either solution contains all the physical content. Therefore, mostly
for aesthetic reasons, it can be considered to either strip the constructed eigenvector of one
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of the two solutions, or to sum eigenvectors in such a way that one of the two solutions
effectively vanishes. If a solution is stripped away here, it is arbitrarily chosen to always be
the small amplitude wave solution.

For the three-dimensional plots, it can also be advantageous in terms of computation
time to strip the constructed eigenvectors of the small amplitude solution, as it halves the
number of data that is to be plotted, without losing any essential visual information. It
should, however, be noted that the majority of the computation time comes from modeling
systems, and not from plotting their solutions. It is therefore advisable to plot the solutions
of two-dimensional systems as density plots, as these require little computation time to begin
with. However, if three-dimensional plots are preferred, and a large number of plots has to
be made, the stripping functions are a good option.

For a one-dimensional simulation, it is straightforward to write a function that accepts
an array of a probability density that contains a small amplitude wave solution as input and
returns an array containing only the large amplitude wave solution probability density. Note
that the elements of the constructed eigenvectors iterate between the large and the small
wave solutions. Such a stripping function constructs an array containing each element of the
old array that satisfies the property that the element minus its successor is positive. If this
method runs well, we expect to construct an array with approximately half the elements of
the old array. This is indeed the case, and the method works well. A plot of a numerical
solution stripped in this way is shown in figure 11.

Figure 11: Stripped plot of a numerical solution for a particle in a one-dimensional box.

For two-dimensional simulations, it becomes a more complicated task to strip the small
amplitude wave solution. We first construct a one-dimensional array, itself containing one-
dimensional arrays encompassing the probability density of a given wave function solution
over the entire x-interval for a given y-coordinate. This is done in the same way as for
the regular three-dimensional plot. Then, we recursively apply the previous one-dimensional
stripping function to each of the elements of this array of arrays, so that we obtain a new
array of arrays, of which each element is approximately halved in length. In order to rework
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this array into an ordered two-dimensional array with a set amount of columns, each of its
elements is edited to have exactly half the number of elements as the resolution in the x-
direction. If an array is too short, zeros are appended to the left and the right until it has
the desired length. If an array is too long, elements are stripped off at the left and the right
until it reaches the desired length. In this way, we construct a two-dimensional array with
Ny rows and Nx/2 columns. We can now plot this two-dimensional array against the two-
dimensional mesh of the y-coordinates and half of the x-coordinates. For this, we again use
matplotlib’s mpl toolkits.mplot3d.Axes3D function. For sufficiently large resolutions, the
above function yields excellent plots of the probability densities in three dimensions, with
much less computation time than the full plot. A plot of a numerical solution, stripped in
this way, is given in figure 12.

Figure 12: Stripped plot of a numerical solution for a particle in a two-dimensional box.

Alternatively, the constructed eigenvectors that are degenerate due to the Lanczos algo-
rithm can be summed in order to effectively filter out the small amplitude wave solution.
Though not fully understood, it seems to be the case that, if the small amplitude wave solu-
tion resides on the even indices in one solution, it resides on the odd indices of its degenerate
solution. Since the small amplitude wave solution is generally much smaller than the large
amplitude one, adding the two degenerate solutions effectively eliminates the small ampli-
tude wave solution, except for a small vertical broadening, often observed at the peaks of the
solutions. A plot of a numerical solution, filtered in this way, is given in figure 13
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Figure 13: Filtered plot of a numerical solution for a particle in a one-dimensional box.
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4 Results

In order to test whether the code outlined in section 3 functions well in general, as
well as for the particular systems that are of interest in this work, we first supply and
discuss the obtained solutions for several more elementary systems with analytical solutions.
First, we will look at the solutions for one-dimensional systems, after which we will turn
to two-dimensional systems. After verifying that the code indeed works well for these more
elementary systems, and in particular that it works well for the non-central barrier/well
potential, which will be the building block for all subsequent systems, we will treat the linear
indium arsenide chain in one and two dimensions, and compare our theoretical results with
the empirical results from Pham et al. [24]. Finally, we will supply and discuss the results
obtained for a variation of the hexagonal quantum ring, and again compare these with the
empirical results for the same system from Pham et al. [24].

4.1 One-dimensional simulations

For the following plots we modelled an electron of mass 9.109 × 10−31 kg in a one-
dimensional box of length 1 × 10−7 m with resolution N = 1001. With all parameters
in SI units, we take the reduced Planck constant as ~ = 1.055× 10−34 Js.

Figure 14 is a plot of the probability distribution for the first solution of an electron in the
previously described one-dimensional box, with a zero potential U(x) = 0 over the interval
of the box. The blue line shows the analytical solution for this system, and the green dotted
line shows the numerical solution constructed using the code described in section 3.2. Notice
that we stripped the numerical low-amplitude wave solution using the stripping function as
described in section 3.5. The plotted numerical solution matches the analytical one very well.
This means that our code successfully models the wave functions and probability densities
for simple systems such as a particle in a box.

Figure 14: Stripped plot of the numerical solution of |ψ1(x)|2 for a particle in a 1D box,
shown by the orange dots, together with the analytical solution for the same wave function,
shown by the blue line.
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For further simulations it is, however, also necessary that we successfully describe the
behaviour of more complicated systems. Moreover, our models should return good approxi-
mations of the energies corresponding to each wave function. We will, therefore, first examine
the numerical solutions for a more complicated potential, after which we will take a closer
look at the computed numerical energy values.

Figure 15 is a plot of the analytic and numerical solutions of the probability distribution
for the thirteenth solution of an electron in the one-dimensional box, under the influence of
a harmonic potential Uhar(x) = 1

2
k(x−Lx/2). Here, the length of the box is Lx = 1× 10−7m

and the force constant is k = 1 × 10−5kg/s2. Notice that we stripped the numerical low-
amplitude wave solution. Again, the plot of our numerical simulation matches the expected
analytical solution very well.

Figure 15: Stripped plot of the numerical solution of |ψ12(x)|2 for a particle in a 1D box
with a harmonic potential, shown together with the analytical solution for the same wave
function.

Of particular interest are the numerical solutions for systems with non-central barrier
or well potentials. By summing a number of such potentials, we will be able to construct
the muffin-tin potentials which will be used to model the indium arsenide systems studied
here. The muffin-tin approximation method has been successfully used in the modeling of a
number of artificial lattice systems [7] [8] [13] [14] [28] [29].

An example of a numerical solution for a non-central barrier potential, constructed using
the code described in section 3.2, is given in figure 16. In particular, figure 16 is a stripped plot
of the numerical solution of the probability density for the first solution of an electron in the
one-dimensional box described above, under the additional influence of a non-central barrier
potential of width 5× 10−9m and magnitude 1× 10−19J, centered around x = 3.5× 10−8m.
The plot matches the expected result of a particle in a modified, shortened, box.
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Figure 16: Filtered plot of the numerical solution of |ψ1(x)|2 for a particle in a 1D box with a
non-central barrier potential of width 5× 10−9m and magnitude 1× 10−19J, centered around
x = 3.5× 10−8m.

Besides the numerically constructed wave functions, the numerical energies for one-
dimensional systems, too, are modelled well by the code. This can be seen by comparing the
numerically constructed energies to the well known analytic energy solutions for the parti-
cle in a one-dimensional box, as well as those for a particle in a one-dimensional harmonic
potential.

Two tables with energies are supplied in table 1. Table 1a contains numerical and ana-
lytical solutions for the lowest five energy states of an electron in the previously described
one-dimensional box. Table 1b contains such energies in the case of the same harmonic po-
tential as described before. Notice that the numerical and analytical energy solutions match
very well for both potentials.

Particle in a Box
Numerical En Analytical En
3.7635× 10−5eV 3.7635× 10−5eV
1.5054× 10−4eV 1.5054× 10−4eV
3.3871× 10−4eV 3.3872× 10−4eV
6.0213× 10−4eV 6.0216× 10−4eV
9.4080× 10−4eV 9.4088× 10−4eV

Harmonic Potential
Numerical En Analytical En
1.0919× 10−3eV 1.0908× 10−3eV
3.2755× 10−3eV 3.2727× 10−3eV
5.4588× 10−3eV 5.4545× 10−3eV
7.6415× 10−3eV 7.6362× 10−3eV
9.8241× 10−3eV 9.8180× 10−3eV

Table 1: Comparison between numerical and analytical energies for one-dimensional systems.

The computer program for one-dimensional simulations runs fast and constructs solutions
that match excellently with analytical predictions for a number of simple and more compli-
cated potentials. In particular, since it runs well for systems with non-central barrier and
well potentials, it can be expected to run well for one-dimensional muffin-tin simulations,
since the muffin-tin potential will be constructed using a sum of such non-central potentials.
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4.2 Two-dimensional Simulations

In order to test our code for simulations of two-dimensional systems, we again plot our
numerical solutions for a number of different potentials, and compare the numerically con-
structed energies of several systems with the well-known energy solution for those systems.
In this section, every plotted solution is unstripped.

For the following plots, we modelled an electron of mass 9.109 × 10−31kg in a two-
dimensional square box of dimensions (1 × 10−8) × (1 × 10−8)m2 with resolutions in the
x- and y-direction Nx = Ny = 301. Again we take ~ = 1.055 × 10−34Js. Figure 17 shows
both three-dimensional and density plots of the numerical solutions for a number of example
potentials, as well as density plots for the corresponding analytical solutions. The colour
scale for the three-dimensional plots, supplied in figure 17, applies to all three-dimensional
plots in this work, while the colour scale of the density plot, shown in the same figure, applies
both to all contour and density plots.
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Figure 17: a) The top figure shows a three-dimensional plot of the numerical ground state
solution for an electron in the previously described two-dimensional box, while the middle
figure shows a density plot of the same solution. The bottom figure is a density plot of the
analytical solution of the same system.
b) The top figure shows a three-dimensional plot of the numerical second overtone solution
for an electron in the previously described two-dimensional box, while the middle figure shows
a density plot of the same solution. The bottom figure is a density plot of the analytical
solution of the same system.
c) The top figure shows a three-dimensional plot of the numerical third overtone solution for
an electron in the previously described two-dimensional harmonic potential, while the middle
figure shows a density plot of the same solution. The bottom figure is a density plot of the
analytical solution of the same system.

In figure 17a we show a three-dimensional plot and a density plot of the numerically
constructed probability distribution for the first solution of an electron in the previously
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described two-dimensional box, together with a density plot of the analytical solution of the
same system. Notice we did not strip the solution of the low amplitude wave solution, since
time was not a constraint. The density plot of the numerical solution strongly matches the
plot of the analytical solution.

In figure 17b we plot both the numerical and analytical solutions of the second solution
of an electron in the previously described two-dimensional box. The figures show that the
numerical simulations accurately predict the behaviour of higher-order solutions for a particle
in a box.

In figure 17c the fourth solution of an electron in the square box under the influence of a

harmonic potential U(x, y) = 1
2
k(
∣∣x− Lx

2

∣∣+
∣∣∣y − Ly

2

∣∣∣)2 is depicted, where Lx and Ly are the

x- and y-dimensions of the two-dimensional box and k = 2× 10−2kg/s2 is the force constant.
We see the numerical simulations predict the behaviour of the well known harmonic oscillator
well.

Figure 18: a) The top figure shows a three-dimensional plot of the numerical solution of the
fourth overtone for an electron in the square box under the influence of a central square well
potential, and the bottom figure shows a density plot of the same solution.
b) The top figure shows a three-dimensional plot of the numerical third overtone solution for
an electron in the square box under the influence of a non-central square barrier potential,
and the bottom figure shows a density plot of the same solution.
c) The top figure shows a three-dimensional plot of the numerical third overtone solution for
an electron in the square box under the influence of a non-central round barrier potential,
and the middle figure shows a density plot of the same solution.

In figure 18a we present the probability distribution for the fourth solution of an electron
in the square box under the influence of a central square well potential of dimensions (5 ×
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10−9)× (5× 10−9)m2 and magnitude 1× 10−30J. The solution looks much like the solution of
a particle in a box of the dimensions of the well, with some additional leaking into the larger
box. These figures show that the program accurately models constant central potentials,
such as the central well and the central barrier potential.

In figure 18b we plot the third solution of an electron in the square box under the influence
of a non-central square barrier potential with dimensions (6 × 10−10) × (6 × 10−10)m2 and
magnitude 1× 10−18J, centered around (x, y) = (5× 10−9m, 2× 10−9m). These figures show
that non-central barrier potentials, too, are modeled well.

Square potential barriers and wells are easy to construct with the code as outlined in
section 3.3, since all of the code is based on a Cartesian coordinate system. Round potential
wells are, however, preferred as building blocks for muffin-tin potentials. To that end, it is
important to check if a round, non-central, barrier or well potential is modeled correctly by
the program. Figure 18c shows the third solution of an electron in the square box under the
influence of a non-central round barrier potential with radius (1.1×10−11)m2 and magnitude
1×10−18J, centered around (x, y) = (5×10−9m, 2×10−9m). Comparing figures 18b and 18c,
one observes that these systems have very similar solutions, as should be expected. Moreover,
closer inspection of these figures shows that the white void at the bottom has a shape that
is reminiscent of the shape of the potentials. As the code runs well for these systems, we can
confidently construct muffin-tin potentials by summing round, non-central, potentials.

It is important, too, that the code finds the correct eigenvalues corresponding to each
eigenfunction. In other words, we want the code to construct the correct energies belonging
to each solution of a system. The numerically constructed energies, in fact, correspond well
to analytical values. In table 2, two tables with energies are supplied. The left table contains
numerical and analytical solutions for the lowest five energy states of an electron in the square
two-dimensional box. The second table contains such energies in the case of the previously
described two-dimensional harmonic potential. The numerical and analytical values match
well for both potentials.

Particle in a Box
Numerical En Analytical En
7.5270× 10−5eV 7.5272× 10−5eV
1.8816× 10−4eV 1.8818× 10−4eV
3.0105× 10−4eV 3.0108× 10−4eV
3.7425× 10−4eV 3.7635× 10−4eV
4.8789× 10−4eV 4.8926× 10−4eV

Harmonic Potential
Numerical En Analytical En
9.7536× 10−4eV 9.7574× 10−4eV
1.9504× 10−3eV 1.9514× 10−3eV
2.9254× 10−3eV 2.9271× 10−3eV
3.8998× 10−3eV 3.9029× 10−3eV
4.8714× 10−3eV 4.8786× 10−3eV

Table 2: Comparison between numerical and analytical energies for two-dimensional systems.

The code as outlined in section 3.3 runs well for a number of different potentials, shown in
figures 17 and 18, correctly solving for the wave functions and the energies of these systems.
With the confidence that the code works well in general, and for round, non-central, barrier
and well potentials in particular, the next step is to model indium arsenide systems using
muffin-tin approximations.
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4.3 Modelling of the Indium Arsenide Chain

In order to examine how well the muffin-tin model approximates the indium arsenide
structures of interest in this work, as well as determine which parameters should be used to
obtain a good fit, we here model a linear chain of thirty, evenly spaced, indium adatoms, and
compare the theoretical results with the empirical results from Pham et al. [24]. Figure 19
shows an STM image of this linear chain.

Figure 19: An STM topography image of a linear chain of thirty, evenly spaced, indium
adatoms, as found in Pham et al. [24].

The linear chain of thirty, evenly spaced, indium adatoms, which will from now on be
referred to as the In30 chain, is a relatively simple system. The indium adatoms are spaced√

3a′ = 1.484 × 10−9 m apart, where a′ = 8.57 × 10−10 m is the lattice constant of the
2x2 indium vacancy reconstruction, as shown in figures 8 and 19. The simplicity of the
linear chain makes it suitable as a test to calibrate the parameters of the muffin-tin model.
Moreover, since the In30 chain is a linear chain, the free electrons are tightly confined in the
two spatial dimensions orthogonal to the chain, due to the attractive potential of the indium
adatoms. This makes all the interesting behaviour essentially one-dimensional. Therefore,
the code for one-dimensional simulations, as well as the code for two-dimensional simulations,
can be used to model the In30 chain.

One-dimensional modeling of the In30 chain

In order to model the In30 chain in one dimension, the potential of the system is ap-
proximated as a sum of simple square wells, each centered around one of the thirty indium
adatoms of the chain. At the boundaries, periodic boundary conditions are imposed. The
width and depth of the wells are the same for each adatom and, though these parameters
are partly determined through trial-and-error, the depth is assumed to be within orders of
magnitude of 1 eV, while the width is assumed to be within an order of magnitude of the
interatomic spacing of the chain. The ansatz for the depth of the well is based on the charge
of the indium adatoms being +1e, while the ansatz for the width derives from the idea that,
for the In30 chain to be viewed as a single system, the indium adatoms must be able to
communicate, and therefore they must not be separated too much.

The muffin-tin potential, as visualised in figure 20, is constructed by summing thirty wells
of width 3.2 × 10−9 m and depth 4.8066 × 10−20 J ≈ 0.3 eV at intervals of 1.484 × 10−9 m,
which corresponds to the spacing of the adatoms used in Pham et al. [24]. The constructed
potential is then shifted down, so that the lowest potential is zero.
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Figure 20: One-dimensional muffin-tin potential used to model the In30 chain.

The local density of states of the In30 chain as a function of the spatial variable x, including
a Lorentzian broadening, discussed in section 3.4, with parameter γ = 5× 10−23, shows clear
particle in a box behaviour, as can be seen in figure 21. This is in line with the empirical
findings of Pham et al. [24]. The width of the effective box correspond roughly to the length
of the In30 chain. Next to the system-spanning particle in a box behaviour, the structure of
the chain is still evident through the smaller peaks centered on the adatoms, as can be seen
in figure 21 ([24], pp. 1-2).

Figure 21: The local density of states of the In30 chain for the first three eigenenergies of the
system, each as a function of the spatial dimension x of the one-dimensional box. The local
density of states is calculated using equation (13), and includes a Lorentzian broadening term
with parameter γ = 5× 10−23.

In figure 22a the local density of states is plotted as a function of energy. The curves are
calculated using equation (13) with parameter γ = 5×10−23, for the three spatial coordinates
used in Pham et al. [24] (shown in figure 19 by the blue, red, and green crosses). A qualitative
agreement between the numerically calculated local density of states in figure 22a and the
empirical results in figure 22b can be seen, but a striking difference is observed in the intensity
of the numerical and empirical spectra measured at the position of the blue cross. Whereas
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the blue line in figure 22a is large for the third, fourth, and fifth peaks, in figure 22b it is
very small at those peaks.

Figure 22: a) Numerically constructed local density of states of the In30 chain, modeled
as a one-dimensional system, as a function of energy. Each colored line corresponds to the
position indicated by the crosses of the same color in figure 19.
b) Empirical conductance spectra of the In30 chain, measured using an STM. Adapted from
Pham et al. [24].

However, the numerical results can reasonably be maintained, as they correspond well
to the more detailed results form the supplementary material of Pham et al. [24], shown in
figure 23. This figure indicates that blue peaks should be observed for n=3, 4, and 5. On
the second page of the supplementary material, Pham et al. [24] also mention that distortion
of the measurements may have been caused by defects in the nearby surface region, which
could explain the apparent disparity between figures 22a and 22b. ([24], S1)
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Figure 23: STM images of the In30 chain around the first six eigenenergies of the system, as
found in figure S1 of the supplementary material of Pham et al. [24].

The energies constructed by the program also match the behaviour of a particle in a box,
as can be seen in table 3. In particular, the energies of the In30 chain correspond closely
to those of an electron in a box of length 4.3930 × 10−8 m, which could have been roughly
estimated from figure 20. The energies of the In30 chain, listed in table 3, are shifted down
by a constant, in order for the first energy levels of the In30 chain and the electron in a box
to align.
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In30 chain energies Particle in a box energies
1.9485× 10−4 eV 1.9485× 10−4 eV
7.7941× 10−4 eV 7.7940× 10−4 eV
1.7535× 10−3 eV 1.7537× 10−3 eV
3.1170× 10−3 eV 3.1176× 10−3 eV
4.8696× 10−3 eV 4.8713× 10−3 eV

Table 3: Comparison between the numerical energies of the In30 chain, modeled in one
dimension, and the analytical energies of an electron in a box of length 4.3930× 10−8 m

.

Two-dimensional modeling of the In30 chain

The approach for the modeling of the In30 chain in two dimensions is in many ways similar
to that of the one-dimensional modeling. A key difference, however, is that the muffin-tin
potential will now be defined over two spatial dimensions. This new muffin-tin potential
consists of thirty round, evenly spaced, potential wells, each centered on the position of an
indium adatom in the In30 chain. In particular, each well has a radius of 1.7× 10−9 m and a
depth of 5.7679×10−19 J ≈ 3.6 eV. These parameters differ from those of the one-dimensional
simulation in order to prevent higher energy solutions along the direction orthogonal to the
linear chain to appear within the six lowest energy eigenfunctions of the In30 chain, as this
would be out of line with the empirical results from Pham et al. [24].

A contour plot of the muffin-tin potential constructed in this way is shown in figure 24.
Notice that, much like in the one-dimensional case, the potential is at a minimum around the
centers of the circles (except the outer two). In other words, the potential is at a minimum
around the positions of the indium adatoms in the In30 chain.

Figure 24: A contour plot of a two-dimensional muffin-tin potential for the In30 chain.

This time, however, these areas of minimum potential have a shape that is not at all
expected in the physical system. They are elongated in the direction orthogonal to the chain,
while being narrow in the direction of the chain, rather than showing a circular symmetry.
Though this model is actually not that bad in the case of the In30 chain, it breaks down
for the more complicated indium arsenide structures discussed later. Another model, which
gives better results for the two-dimensional modeling of the In30 chain, and is essential for the
two-dimensional modeling of the different hexagonal quantum rings, is therefore preferred.

This model is in many ways the same as the one previously described, with the essential
difference that the areas of minimum potential, as shown in figure 24, have their potential
increased to match the potential of the surrounding, doubly overlapping, round well potential.
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A contour plot of the resulting potential is given in figure 25. The modified muffin-tin
potential gives results that are closer to the experimental data from Pham et al. [24].

Figure 25: A contour plot of a modified two-dimensional muffin-tin potential for the In30

chain.

The numerically constructed solutions for local density of states of the muffin-tin approx-
imation system match well with the empirical findings form Pham et al. [24]. Plotting the
local density of states as a function of its spatial coordinates for the first six eigenenergies
of the system, results in the right most plots of figure 26. For this two-dimensional model,
the Lorentzian broadening parameter in equation (13) is set to γ = 1.5 × 10−21. This value
is much larger than the one used in the one-dimensional model, which can be explained by
considering that, in the one-dimensional model, the free electrons are assumed to be perfectly
constrained along the chain, while the two-dimensional model allow for some freedom in one
spatial dimension orthogonal to the chain. A comparison of the numerical local density of
states to the empirical data from figure S1 of Pham et al. [24], presented on the left of figure
26, shows a qualitatively good agreement.

Figure 26: Side-by-side comparison between the measured local density of states of the In30

chain on the left, as adapted from the supplementary material of Pham et al. [24], and our
calculations of the local density of states of the same chain, using a muffin-tin approximation,
on the right.

Plotting the local density of states as a function of energy, for the three positions shown
by the blue, red, and green crosses in figure 19, gives a very similar plot as in the one-
dimensional model. The numerical local density of states for the In30 chain, modeled as a
two-dimensional system, again matches well with the empirical data from Pham et al., as
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can be seen in figure 27. Though the blue peaks again differ in intensity between figures 27a
and 27b, the numerical solutions can be maintained in the light of the excellent fit with the
more detailed data shown in figure 26.

Figure 27: a) Numerically constructed local density of states of the In30 chain, modeled as
a two-dimensional system, as a function of energy. Each colored line corresponds to the
position indicated by the crosses of the same color in figure 19.
b) Empirical conductance spectra of the In30 chain, measured using an STM. Adapted from
Pham et al. [24].

The numerically constructed energies again show particle in a box like behaviour, though
with a less perfect fit than in the one-dimensional model. This can potentially be explained by
the fact that the two-dimensional muffin-tin potential, shown in figure 25, deviates more from
the two-dimensional box in terms of shape, than the one-dimensional muffin-tin potential,
shown in figure 20, deviates from the one-dimensional box. In the case of the two-dimensional
model, the energies resemble those of an electron in a box of length 4.5 × 10−8 m with an
effective electron mass of 4.2385 × 1032 kg. These parameters give a good fit with the
empirical data. The energy difference between the first and the seventh peak is 0.187 eV in
the numerical simulation, which is close to the approximate 0.170 eV measured in Pham et
al. [24]. The numerical energies of the two-dimensional In30 chain model, as well as those of
an electron in a box of length 4.5× 10−8 m with an effective electron mass of 4.2385× 1032

kg, are listed in table 4, to show the clear particle in a box behaviour.

In30 chain energies Particle in a box energies
3.9912× 10−3 eV 3.9912× 10−3 eV
1.5965× 10−2 eV 1.5965× 10−2 eV
3.4938× 10−2 eV 3.5920× 10−2 eV
6.2610× 10−2 eV 6.3859× 10−2 eV
9.6319× 10−2 eV 9.9779× 10−2 eV

Table 4: Comparison between the numerical energies of the In30 chain, modeled in two
dimensions, and the analytical energies of an electron in a box of length 4.5 × 10−8 m with
an effective electron mass of 4.2385× 1032 kg.
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The data and models above suggest that systems with modified muffin-tin potentials, such
as the one shown in figure 25, when treated numerically with the code outlined in section
3.3, show many of the same properties as indium arsenide structures, such as the In30 chain.
By rearranging the In30 chain from a linear chain into a hexagonal ring, we get a system that
is interesting in the context of artificial, honeycomb, lattices and graphene.

4.4 Modelling of Hexagonal Quantum Rings

STM patterned indium arsenide hexagonal quantum rings are interesting structures in
the context of honeycomb lattices. An STM topography image of the hexagonal quantum
ring, consisting of thirty indium adatoms, is shown in figure 28, as found in Pham et al. [24].
A priori, we expect this hexagonal quantum ring to show behaviour much like a circular ring
potential. However, when the periodicity of the wave function of the system ’fits’ with the
hexagonal potential, where the term ’fits’ will be substantiated further later, the hexagonal
quantum ring shows behaviour that deviates from the circular ring.

Figure 28: STM topography image of the hexagonal quantum ring, consisting of thirty indium
adatoms, as found in Pham et al. [24].

A rough theoretical model for the potential of the hexagonal quantum ring is given by
superimposing a perturbation potential of six delta functions, with a hexagonal symmetry,
on a circular ring. An example of such a perturbation potential is given in figure 29, as found
in the supplementary material of Pham et al. ([24], S4).
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Figure 29: A perturbation potential of six delta functions, arranged with a hexagonal sym-
metry, on top of a circular ring, as found in the supplementary material of Pham et al.
[24].

The perturbation potential due to the six delta functions is given by

Vper(ϕ) =
5∑
j=0

δ

(
ϕ− jπ

3

)
, (14)

where ϕ is the angle shown in figure 29. We treat the hexagonal potential as a perturbation
on the circular ring, and take the circular ring eigenstates as an ansatz. In particular, we as-
sume that the probability density solutions of the system shown in figure 29 are proportional
to ρ(ϕ) ∝ cos2(lϕ), where l is the angular momentum quantum number. Combining equa-
tion (14) with this ansatz, the energy contribution of an electron with angular momentum
quantum number l, due to the hexagonal perturbation potential, is proportional to

Uper ∝
∫ 2π

0

ρ(ϕ− ϕ0)V (ϕ)dϕ =

∫ 2π

0

{
cos2 [l(ϕ− ϕ0)]

5∑
j=0

δ

(
ϕ− jπ

3

)}
dϕ,

which reduces to

Uper ∝
5∑
j=0

cos2
[
l

(
jπ

3
− ϕ0

)]
. (15)

The parameter ϕ0 in the above equations represents the phase relation between the prob-
ability density and the perturbation potential. Equation (15) has closed solutions of the
form

5∑
j=0

cos2
[
l

(
jπ

3
− ϕ0

)]
=

{
6 cos2(lϕ0), if l = 3n for n ∈ Z∗

3, otherwise.
(16)

This derivation follows the approach given in the supplementary material of Pham et al. [24].
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When calculating the local density of states, solutions with the same energy are summed.
Since the energies of the circular ring solutions with quantum numbers l /∈ {3n | n ∈ Z∗} are
independent of the phase relation ϕ0, they are summed over 0 ≤ ϕ0 < 2π. The effect is that
the density of states of the l /∈ {3n | n ∈ Z∗} solutions is uniform along the ring. These are
the ring confined states.

Solutions with quantum numbers l ∈ {3n | n ∈ Z∗}, on the other hand, have energies that
are dependent on the phase relation ϕ0. Because of this, a degeneracy lifting occurs, so that
solutions with a probability density that is localized on the delta potentials have a different
energy from those localized between the delta potentials. Any hexagonal model that has an
effective difference between the potential at the corners and the edges is expected to show
this degeneracy lifting for the l ∈ {3n | n ∈ Z∗} solutions.

The criterion of the wave function’s periodicity ’fitting’ that of the hexagonal potential
is now defined more precisely as the angular momentum quantum number l being an integer
multiple of three. This concept can be understood in a more practical way using figure 30,
where the black circle represents the location of the wave function, the red circles represent
the locations of the delta potentials, and the radial distance between the blue line and the
black circle represents the intensity of the probability density. The larger the radial distance
between the blue line and the black circle, the larger the probability density.
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Figure 30: a) Two potential configurations of the probability density of the l = ±1 solutions,
with respect to the perturbation potential of figure 29. The black circle represents the position
of the wave function, the red dots the positions of the delta potentials, and the radial distance
between the blue line and the black circle represents the intensity of the probability density.
A larger radial distance between the two corresponds to a larger probability density.
b) Two such configurations for the l ± 3 solutions.

If |l| = 1, the probability density will show two maxima and two minima. For different
values of ϕ0, the maxima will either overlap with two delta potentials at opposite sides of
the circle, or each lie in between two such delta potentials. In the first case, the two delta
potentials overlapping with the maxima will have a large energy contribution, but the other
four delta potentials will contribute little. In the second case, two delta potentials will
contribute little or nothing to the energy, but the four other delta potentials will contribute
a substantial amount. These effect cancel out exactly for the potential shown in figure 29, so
that the energy solutions are independent of the phase relation ϕ0. This situation is depicted
in figure 30a.

On the other hand, if |l| = 3, the probability density has six maxima and six minima.
Choosing ϕ0 in such a way that each of these maxima overlaps perfectly with a delta potential
maximizes the energy contribution of the perturbation potential, while choosing ϕ0 in such
a way that the delta potentials overlap with the minima of the probability density reduces
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the energy contribution to zero. This situation is depicted in figure 30b. Clearly, the choice
of the phase relation ϕ0 in this case matters for the energy solutions of the system, due to
the probability density showing the same kind of symmetry as the perturbation potential.

To test the theoretical model of the hexagonal quantum ring, laid out above, we first
model a circular ring with a finite width, in order to test how well the code described in
section 3.3 models the upcoming systems. The numerical solutions should show the ring-
confined states assumed at the beginning of the theoretical treatment. After that, we model
the hexagonal quantum ring as shown in figure 28, using a muffin-tin approximation, to
see if these ring-confined states, as well as the degeneracy lifted solutions for l = 3n, show
up in the numerical solutions. The numerical results are then compared to the empirical
results from Pham et al. [24]. Finally, we model two modified hexagonal quantum rings;
one with additional indium adatoms at its corners, the other with no corner indium adatoms
at all. These last two models are constructed in order to modify the energy gap between
the degeneracy lifted l = 3n solutions. The numerical solutions for these systems are again
compared to the results from Pham et al. [24].

Modelling of a Circular Potential System

The two-dimensional system with a circular ring potential of radius r and infinitesimal
width dr is in many ways the same as a one-dimensional periodic potential of length 2πr. The
circular ring model studied here differs from this case in that it has a finite width. Moreover,
due to the finite resolution of the numerical resolution, which is defined along Cartesian
coordinates, the circular symmetry of the ring studied here is not perfect. Finally, it should
be noted that, since only a finite system can be modeled, periodic boundary conditions are
imposed at the boundary of the square containing the circular ring model. A contour plot of
the circular ring potential is given in figure 31. If the modifications mentioned above do not
disrupt the properties of the circular ring too much, the numerical solutions should show the
ring-confined states, which are also expected to occur in the hexagonal models.
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Figure 31: Contour plot of a circular ring potential with inner radius 5.6 nm, outer radius
8.6 nm, and potential -0.12 eV between these two radii.

A plot of the local density of states, calculated including a Lorentzian broadening using
equation (13), as a function of its spatial variables for the first eigenenergy of the system is
presented in figure 32. The parameter for the Lorentzian broadening is γ = 4×10−23. Figure
32 shows a clear ring-confined state, confirming the model in figure 31 is a good model for
the circular ring.
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Figure 32: Density plot of the first ring confined state, with l = 0, for the circular ring
potential shown in figure 31.

For a more detailed analysis, the local density of states is plotted as a function of energy
for a given position on the circular ring shown in figure 31. In particular, this position is
decided to be x = y = 3.0×10−8 m, which lies on a circle of radius r = 7.1 nm. A plot of the
local density of states, over an energy range containing the first seven eigenenergies of the
system, is given in figure 33, which shows clear circular ring behaviour. The energies of the
ring have been shifted down by a constant, so that the first ring solution has zero energy, in
accordance with the convention of Pham et al. [24]. The first peak, with quantum number
l = 0, is half as high as the other peaks, because it is the only solution with one, instead of
two, allowed angular momentum quantum number values.
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Figure 33: Plot of the local density of states of the circular ring model shown in figure 31,
as a function of energy for x = y = 3.0× 10−8 m.

The numerically constructed energies of the circular ring system of figure 31 closely re-
semble the analytical energies of a circular ring of radius r = 6.8130 nm and infinitesimal
width. This radius lies more towards the inner than the outer radius of the circular ring
system of figure 31. This can be explained by noting that the energy eigenstates of a circular
ring increase quadratically when the radius decreases, so that the inner part of the circular
ring dominates the energy of the system. The same mechanism is likely responsible for the
noticeable energy differences between the numerical and analytical energies, listed in table
5. Nonetheless, the numerical energies show clear circular ring behaviour.

Numerical circular ring en-
ergies

Analytical circular ring en-
ergies

0.0 eV 0.0 eV
7.8551× 10−4 eV 7.8551× 10−4 eV
3.1346× 10−3 eV 3.0496× 10−3 eV
7.0256× 10−3 eV 6.8616× 10−3 eV
1.2424× 10−2 eV 1.2198× 10−2 eV

Table 5: Comparison between the numerical energies of the circular ring with finite width,
shown in figure 31, and the analytical energies of a circular ring of radius r = 6.8130 nm
with an infinitesimal width.

The program models the circular ring system from figure 31 well, as can be seen by the
resemblance between the numerical results for this model and the analytical expectations for
a circular ring system with infinitesimal width. With these results as foundation, a hexagonal
potential can now be modeled, which can be seen as a perturbation on the circular ring.

Modelling of a Hexagonal Potential System
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We now model the hexagonal ring potential with a finite width, as shown in figure 34. The
ring-confined solutions should again appear for the angular momentum quantum numbers
l ∈ {3n | n ∈ Z∗}. However, when l = 3n, the theoretical model, described previously,
predicts a degeneracy lifting of the solutions. These non-degenerate states should be observed
in the numerical solution of the hexagonal potential system shown in figure 34.

Figure 34: Contour plot of a hexagonal ring potential with the inner hexagon encapsulating
a circle of radius 4.9 nm, the outer hexagon encapsulating a circle of radius 7.9 nm, and
potential -0.12 eV in between these two hexagons.

Plotting the local density of states, with a Lorentzian broadening γ = 4 × 10−23, as a
function of its spatial variables, for the first eigenenergy of the system, results in figure 35,
which is the ring-confined solution for l = 0. The numerical solutions of the system depicted
in figure 34 show the desired ring-confined solutions for l = 0,±1,±2.
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Figure 35: Density plot of the first ring confined state, with l = 0, of the hexagonal ring
potential shown in figure 34.

To study the local density of states in more detail, we plot it as a function of energy for
the two positions indicated by the red and blue crosses in figure 28. The result is given in
figure 36. The energies have again been shifted down by a constant, so that the l = 0 solution
has zero energy. The first three peaks in figure 36 match excellently with the ring-confined
states with quantum numbers l = 0,±1,±2, indicating that, for these quantum numbers,
the hexagonal potential of figure 34 behaves in much the same way as the circular potential
of figure 31. However, the third and fourth peak show a behaviour that is very different
from the circular ring case. These peaks show the predicted degeneracy lifting for quantum
numbers l = 3n, which is caused by the matching periodicity of the probability density and
the hexagonal potential. More precisely, a probability density that is localized at a corner
has a lower energy than a probability density that is localized at an edge, because, due to the
finite width of the hexagonal ring in figure 34, there is relatively more attractive potential at
the corners than there is at the edges. Solutions with quantum numbers l = 3n are sensitive
to their phase relation with respect to the hexagonal ring, so that two distinct solutions
emerge; one with the probability density localized at the corners of the hexagon, the other
with a probability density predominately on the edges.
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Figure 36: Plot of the local density of states of the hexagonal ring model shown in figure 34,
as a function of energy for the positions indicated in figure 28.

Plotting the local density of states as a function of its spatial variables for the energies of
the l = ±3 peaks in figure 36 gives the results shown in figure 37. These figures show a clear
localization to either the corners or the edges. The left plot in figure 37 corresponds to the
blue l = ±3 peak in figure 36, while the right plot in figure 37 corresponds to the red l = ±3
peak. This is in line with the reasoning that there is relatively more attractive potential at
the corners of the hexagonal potential, due to the finite width, making the corners effective
wells, so that a probability density with peaks at the corners will have a lower energy than
one with peaks at the edges.

Figure 37: Density plots of the l = ±3 solutions of the hexagonal ring of figure 34, showing
a clear localization to either the corners or the edges.
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It is also important to note that the degeneracy lifting behaviour of the l = ±3 solution
is really due to the periodicity of the probability density. This can be seen from figure 38,
which is the same as figure 36, but now over a larger energy range. The l = ±4,±5 peaks
show no degeneracy lifting, while the l = ±6 peaks do. This is precisely in line the with the
theoretical predictions laid out above.

Figure 38: Plot of the local density of states of the hexagonal ring model shown in figure
34, as a function of energy for the positions indicated in figure 28, now over a larger energy
range than in figure 36.

The l = ±6 peaks do not look degeneracy lifted in quite the same way as the l = ±3 peaks
do, but this is due to the choice of the spatial coordinates used to measure the spectra in
figure 38. Plotting the local density of states as a function of its spatial variables for l = ±6,
as shown in figure 39, show clearly that the degeneracy lifting of the l = ±6 peaks is of the
same kind as that of the l = ±3 peaks.
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Figure 39: Density plots of the l = ±6 solutions of the hexagonal ring of figure 34, showing
a localization to either the corners or the edges.

The code, laid out in section 3.3, models the hexagonal ring well, and the numerical
results confirm the theoretical prediction of degeneracy lifting for angular momentum quan-
tum numbers l = 3n for n ∈ Z∗. This offers a solid foundation for modeling the hexagonal
quantum ring consisting of thirty indium adatoms, shown in figure 28.

Modelling of the In30 Hexagonal Quantum Ring

The model of the hexagonal quantum ring differs from the hexagonal potential from figure
34, in that it is a muffin-tin potential, consisting of thirty round potential wells, each centered
on the position of an indium adatom, as shown in figure 28. The resulting muffin-tin potential
is modified in much the same way as for the In30 chain, so that the areas of lowest potential
are eliminated. The difference is shown in figure 40. Each well of the muffin-tin potential has
a radius of 2.0× 10−9 m and a depth of 1.9226× 10−20J ≈ 0.12 eV. The overall shape of the
hexagon was chosen to approximate the quantum ring in figure 28, which results in the inner
boundary of the hexagon in figure 40b approximately encapsulating a circle of radius 4.6 nm,
while the outer boundary of the hexagon approximately encapsulates a circle of radius 8.2
nm
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Figure 40: a) Contour plot of the simple muffin-tin potential of the hexagonal quantum ring
system, shown in figure 28. Notice that the areas with the deepest potential, though centered
on the positions of the indium adatoms, should not be part of the modeled potential
b) Contour plot of the modified muffin-tin potential of the hexagonal quantum ring system.
The areas with the deepest potential have had their potential elevated to the value of the
surrounding potential.

The numerical solution of the system with the muffin-tin potential of figure 40b show
many of the same properties as the hexagonal ring system of figure 34.

Plotting the local density of states as a function of its spatial variables, for the eigenen-
ergies corresponding to a number of values of the quantum number l, results in the plots in
figure 41. In particular, the plot for l = 0 shows that the numerical solutions of the muffin-
tin potential shown in figure 40b contain discernible closed-ring solutions. The l = ±3 plots
are there to show that the muffin-tin potential does not simply behave as a circular ring,
but rather as a hexagonal ring, with degeneracy lifting for quantum numbers l = 3n. The
solution for l = ±4 shows that the degeneracy lifting is specific for the quantum numbers
l = 3n, so that the l = ±4 solution shows clear closed-ring behaviour again. Finally, the
l = ±6 solutions show that the behaviour of the l = ±3 non-degenerate solutions extends
to other l = 3n states as well in the numerical simulations, and that this behaviour remains
very discernible in the local density of states.
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Figure 41: Density plots of the l = 0,±3,±4,±6 solutions of the muffin-tin approximation
of the hexagonal quantum ring.
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The local density of states can also be plotted as a function of energy for the positions
indicated by the red and blue crosses in figure 28, see 42. A clear difference between the local
density of states of the hexagonal ring, shown in figure 36, and the local density of states
shown here, is the spacing between the non-degenerate l = ±3 peaks. This spacing is much
larger for the hexagonal ring. This can be explained by the differences between the potentials
shown in figure 40b and 34, specifically the differences at the corners. In the potential of
the hexagonal ring, the corners dominate due to the finite width of the ring. On the other
hand, for the muffin-tin potential of the hexagonal quantum ring, the corners, though still
dominant, are slightly depleted due to the area with the deepest potential not reaching all
the way into the corners. Because of this, there is less of an energy difference between the
non-degenerate l = ±3 states in the muffin-tin hexagonal quantum ring model.

Figure 42: Plot of the local density of states as a function of energy for the muffin-tin
potential, shown in figure 40b, which models the hexagonal quantum ring, shown in figure
28. The local density is calculated for the positions indicated in figure 28.

Figure 43 shows the different systems and their corresponding local density of states as a
function of energy. The rightmost two figures are empirical measurements from Pham et al.
[24]. From the figure, it is clear that the muffin-tin approximation of figure 40b is a better
model for the hexagonal quantum ring than the hexagonal ring of figure 34, since the energy
difference between the l = ±3 states is much closer to the empirical data.



4 RESULTS 53

Figure 43: The local density of states as a function of energy, together with the corresponding
structure, for, from left to right: A circular ring potential, a hexagonal ring potential, the
muffin-tin approximation potential for the hexagonal quantum ring, and the experimentally
built hexagonal quantum ring. Note that the two rightmost figures are empirical measure-
ments, both adapted from Pham et al. [24], while all the other figure come from numerical
simulations.

The hexagonal quantum ring, consisting of thirty indium adatoms, is modeled excellently
by applying the code, laid out in section 3.3, to the modified muffin-tin potential of figure
40b, and the numerical solutions show a behaviour that is much the same as the empirical
measurement from Pham et al. [24].

Modelling of the Corner Enhanced In36 Hexagonal Quantum Ring

By adding indium adatoms at the corners of the hexagonal quantum ring, the energy
splitting of the l = 3n states is enhanced, which should then be visible in the local density
of states. This has been experimentally shown by Pham et al. [24], and will be shown
numerically here.

The corner enhanced hexagonal quantum ring consisting of thirty six indium adatoms is
shown in figure 44, as adapted form Pham et al. [24].
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Figure 44: STM topography image of the corner enhanced hexagonal quantum ring consisting
of thirty six indium adatoms, adapted from Pham et al. [24].

Figure 45 shows the muffin-tin potential that is used to model this system. Notice that
the regions with the deepest potential are, again, eliminated. As intended, the muffin-tin
potential shows enhanced potential at the corners.

Figure 45: Contour plot of the muffin-tin potential used to approximate the corner enhanced
hexagonal quantum ring systems, shown in figure 44.
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The numerical solutions of the corner enhanced system, modeled by the muffin-tin poten-
tial of figure 45, show clear closed ring solutions for l = 0,±1,±2, and manifest degeneracy
lifting for l = ±3, as shown in figure 48. Notice that the localization of the l = ±3 solutions
is stronger than the one seen for the simple hexagonal quantum ring solution, which shows
the influence of the enhanced corners.

Figure 46: Density plots of the numerical solutions of the muffin-tin potential, shown in
figure 45, for l = 0 and l = ±3, respectively.

This enhanced localization of the l = 3n degeneracy lifted states is also clearly observed
in experiment. Figure 47 shows a comparison between the experimental spatial conductance
maps for the corner enhanced quantum ring, as found in Pham et al. [24], and the numerical
solutions of the same system. Both the numerical and the empirical results show that the
l = ±3 states are either strongly localized at the corners or at the edges of the hexagon.
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Figure 47: On the left, spatial conductance maps of the corner enhanced quantum ring, as
introduced in figure 44, are shown for the l = ±3 states. On the right, density plots of
the numerical solutions of the corner enhanced quantum ring, as modeled by the muffin-tin
potential introduced in figure 45, are shown for the same l = ±3 states.

A plot of the local density of states as a function of energy for the positions indicated by
the red and blue crosses in figure 44, is shown in figure 48, where an enhanced energy gap
between the l = ±3 states is visible.
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Figure 48: Plot of the local density of states as a function of energy for the muffin-tin potential
shown in figure 45, which is used to approximate the corner enhanced hexagonal quantum
ring, shown in figure 44. The local density of states is measured at the positions indicated
by the red and blue crosses in figure 44. Notice the larger energy gap between the l = ±3
states, when compared to the local density of states of the simple hexagonal quantum ring,
shown in figure 36.

The numerical solutions for the corner enhanced hexagonal quantum ring, modeled using
the muffin-tin potential shown in figure 45, shows the same behaviour as the empirical model
reported in Pham et al. [24]. This means that the approach to model hexagonal indium
arsenide structures, laid out here, is suited for modeling designed hexagonal structures, and
probing their properties and behaviour ([24], pp. 2-3).
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5 Conclusion

In the context of studying the properties of graphene and, more generally, those of hon-
eycomb lattices, a number of promising artificial lattices, each with its advantages and disad-
vantages, have been discussed. Molecular graphene, a system of carbon monoxide molecules
on copper, can be built at the scale of just a few nanometres with extreme precision and
control, due to the individual placement of the carbon monoxide molecules with an STM.
This superior control allows for precise variations on the perfect honeycomb lattice, so that
the properties of honeycomb lattices can be studied more rigorously. However, the pres-
ence of the carbon monoxide molecules on the copper surface also causes an increase in bulk
scattering, resulting in a broadening of the conductance spectrum.

Patterned arsenic compounds, such as gallium and indium arsenide, produced using top-
down nanofabrication approaches, have the important advantage of scalability. Due to their
production method, samples of these patterned arsenic compounds can be created with or-
ders of magnitude more particles than any other artificial lattice approach is capable of.
This allows for the study of long-range interactions, many-body effects, as well as spin-orbit
interactions. Moreover, type III-V semiconductors, like gallium and indium arsenide, show
significantly less screening effects than metals, like copper, and can be produced with much
less contamination than real graphene. Patterned arsenic compounds, produced using top-
down nanofabrication, are, however, characterised by a relatively large amount of structural
disorder, hindering the precise study of honeycomb lattices.

Ultra-cold potassium atoms, trapped in a honeycomb optical lattice, on the other hand,
are characterised by no structural disorder at all. Using a setup of interfering laser beams,
a highly tunable periodic potential can be created. Such systems are also free from the
influence of the rigid structure of solids, and allow for an exceptional control over the nature,
strength, and range of inter-particle interactions. In this way, potassium atoms in periodic
laser potentials can be used to study regimes, such as ultrastrong spin-orbit coupling and
non-Abelian gauge fields, which are currently unreachable in real graphene or any of the
artificial lattices. This system, however, lacks the scalability of the arsenic compounds.

STM patterned indium arsenide structures, which are studied more in-depth in this thesis,
offer yet another approach to building artificial honeycomb lattices. Combining properties of
molecular graphene and top-down nanofabricated arsenic compounds, STM patterned indium
arsenide shows great promise as an object of study in the area of artificial honeycomb lattices.
It is characterised by the same precision and control that is seen in molecular graphene, due to
the individual placement of the indium adatoms using an STM, while retaining the material
properties of the arsenic compounds, showing reduced screening effect and providing very pure
samples. What it lacks, however, is the scalability of the top-down nanofabricated arsenic
compounds. STM patterned indium arsenide structures are well suited as test subjects to
study the properties of artificial lattices of patterned arsenic compounds, until production
techniques are developed that allow for the creation of large samples of patterned arsenic
compounds with little structural disorder.

In section 3, a number of numerical methods are developed, which are capable of mod-
eling both one- and two-dimensional quantum systems. The foundation for these numerical
methods is the non-relativistic, time-independent, Schrödinger equation (3). In order to test
the numerical methods, in sections 4.1 and 4.2 a number of well known systems in one- and
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two-dimensions are modeled, showing that the code works as expected.
The numerical methods use the implicitly restarted Lanczos algorithm to construct the

wave functions and energies of quantum systems. This algorithm is very fast, and generally
well suited for the large numerical problems treated in this thesis. However, the Lanczos
algorithm is not completely stable when the calculations are performed with floating point
arithmetic. This causes an unwanted two-fold degeneracy of the eigenvalues. Fortunately, this
unwanted degeneracy does not break the model; the numerical methods work well. However,
in future work, it is worth considering to look for an algorithm that is not only fast and
accurate, but also numerically stable. There has already been done research on this topic
([16], [23], [27], [30]).

In sections 4.3 and 4.4, a number of STM patterned indium arsenide structures are mod-
eled using the numerical methods developed in this thesis, and the results are compared to
the empirical results from Pham et al. [24]. The potentials of these systems are approximated
using a muffin-tin approximation. The numerical results for the In30 chain, modeled both in
one- and two-dimensions, show an excellent fit with experimental results. For the potential
of the In30 chain, modeled in two dimensions, as well as all subsequent systems, a modified
muffin-tin potential is used, as shown in figures 25, 40b, and 45.

Subsequently, a theoretical model for the hexagonal quantum ring, as a perturbation on
the circular ring, is laid out. This theoretical model is then tested by numerically modeling a
circular ring potential, a hexagonal ring potential, and a modified muffin-tin approximation
of the hexagonal quantum ring. The results confirm the theoretical model, and match well
the experimental results for the hexagonal quantum ring.

Finally, a numerical model of a variation on the hexagonal quantum ring is provided.
The corner enhanced In36 hexagonal quantum ring, with additional indium adatoms at the
corners, is expected to show enhanced degeneracy lifting for l ∈ {3n | n ∈ Z∗}, and this effect
is clearly observed, both in numerical simulations and the empirical results from Pham et al.
[24].

The numerical methods developed in this thesis give excellent models for elementary
quantum systems, as well as muffin-tin approximated STM patterned indium arsenide struc-
tures, such as the In30 chain, and the hexagonal In30 quantum ring. Most importantly, it
models the corner enhanced hexagonal In36 quantum ring correctly, showing that the code is
suited for studying STM patterned indium arsenide structures with setups that vary slightly
from the perfect hexagonal structure. The numerical methods developed here can therefore
be used to probe the exciting properties and behaviours of artificial honeycomb materials.
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