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Abstract

Recently, various research within ultrasound is done on the applications of sub- and
ultraharmonics responses from microbubbles, for the use in therapeutic high-intensity
focused ultrasound (HIFU) and diagnostic ultrasound. Even tough some results are
promising, often these experiments are done in in vitro experiments that are not com-
parable to in vivo situations, or the in vivo data is compared to models that do not
account for damping due to the capillary wall surrounding the oscillating microbubble
(e.g the solution of the Rayleigh-Plesset equation in free water). In this thesis we in-
vestigated a model that includes the influence of a restricted oscillation in a capillary
tube, and compared qualitatively the sub- and ultraharmonic response from this model
to the solution of the Rayleigh-Plesset equation in free-water. In addition to this, we
investigated the impact of the viscosity on the free-water oscillation of the microbubbles
and the sub- and ultraharmonic responses. We found that that for high viscosities the
sub- and ultraharmonic responses get highly dampened and eventually disappear. The
treshold for full suppresion was thereby predicted by theory for a viscosity of 1.3 mPas
for ultraharmonics and above 2.2 mPas for the subharmonic. Also, we found that the
responses shift to smaller microbubble sizes when a tube is added around the oscillating
microbubble.
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1 INTRODUCTION 1

1 Introduction

Ultrasound is a non-invasive imaging technique that has many clinical uses in medicine. Ul-
trasound can visualize large arteries, organs and fetuses in the body with sound waves at
high frequencies (from 1 MHz to 10 MHz). The transmitted beam is reflected and scat-
tered by tissue and local impedance changes, which reveal anatomical as well as pathological
information. The power spectra of these reflected waves get analysed and a visualization
can be made of these tissues [1]. Although the differences between hard and soft tissue are
well distinguished, the transition between different types of soft tissues are less well defined.
The resolution of ultrasound images can be enhanced with microbubbles that are used as
an intravascular contrast agent. When a microbubble, filled with gas, is insonicated with an
ultrasound beam, it starts to oscillate: it becomes a frequency dependent scatterer of the
exciting sound wave. Depending on the parameters of the transmitted beam and the mi-
crobubble, this oscillation is non-linear. Due to this, the microbubble does not only scatter
sound with the principal frequency with which the system is insonicated, but also scatters
higher harmonics: integer multiples of the principal frequency[2]. Noteworthy is hereby, that
sound at higher pressures displays a non-linear propagation leading to harmonic spectral
components in soft tissue, but in a less prominent way.

In the past couple of decades, there have been several developments in making ultrasound
a therapeutic technique. These came together with the development of coated microbubbles
that have a type of shell around them that makes them last longer in the body and stabilizes
their oscillation. In diagnostic imaging, these contrast agents increase the resolution between
flowing blood and surrounding tissue once they are injected into the body [3].
One of those therapeutic usages of ultrasound is called High-intensity focused ultrasound
(HIFU). Although the frequencies are lower when using HIFU, the energy levels are much
higher. The intensity of the beam is increased by focusing it all onto one spot. The high
temperatures that occur due to the elevated local acoustic absorption can kill cells in that
area, even with a short exposure time [4]. Contrast agents can help increase the accuracy of
the location that needs to be insonicated with HIFU.
Another therapeutic application for HIFU and contrast agents is in the brain. The brain
is separated from the rest of the body by the blood-brain barrier (BBB). This BBB keeps
more than 98% of therapeutic drugs (large and small molecules) from entering the brain [5].
While this protective layer is essential for the functioning of the central nervous system, it
complicates therapy of pathologies originating in the brain. It was found that when HIFU
is focused on some part of the brain, and contrast agents are injected, the BBB can be-
come disrupted by the oscillating microbubbles and larger molecules can go through. The
parameters that are used are very important in this process, because surrounding tissue can
become damaged due to this BBB disruption [6]. At high pressures, depending on the initial
microbubble radius, the microbubble can transition to a violent oscillation stage known as
‘inertial cavitation’. Either the microbubble only survives the oscillations for a couple of
cycles, after which it breaks, or it has a strong collapse phase in its oscillation cycle that can
result in light emission and/or chemical reactions [7]. The transition from stable to inertial
cavitation happens at a certain pressure threshold that depends on the parameters of the
system and the microbubble. The violent oscillation of inertial cavitation, with the phenom-
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ena that follow, can cause damage to neighbouring tissue. Determining what the correct
parameters are is very difficult, and can differ per location in the brain and per person.

Sub- and ultraharmonics might be the answer to this problem. Subharmonic frequencies
are halve the principal frequency and are a phenomenon of the non-linear oscillation of a
microbubble. Ultraharmonics are higher harmonics of the subharmonic.
It has been shown that the difference between the subharmonic response of contrast agents
and tissue is larger than that of the first harmonic. This means that the resolution of images
can be improved if processed with subharmonics [8]. It also suggests that we can see in the
signal from the scattered wave whether microbubble are still present or have been fragmented
due to inertial cavitation. This could increase the safety of using HIFU in the brain. Already,
research has been done on the effects of specific acoustic parameters and bubble distribution
on the subharmonic response of the contrast agent Sonovue R© for abdonimal imaging [9]. In
this research they determined the ideal acoustic characteristics to maximalize the subhar-
monic response of Sonovue. Although this research gives a good insight on the ideal setup for
subharmonic detection, it does not take into account the change in bubble dynamics when a
contrast agent is insonicated in vivo1.

In recent experiments inside the brain of a mouse, no subharmonics or ultraharmonics
were found inside the scattered signal, despite evidence of BBB disruption when insonica-
tion with a pressure of 400 kPa. For higher pressures than 600 kPa some subharmonics and
ultraharmonics were found, but there was also tissue damage in the vicinity of the opening
site and over the entire spectrum the noise floor came up2 [10]. This might suggest that
sub- and ultraharmonics are phenomena that can be related to inertial cavitation. It is thus
important that we understand the difference between in vitro3 and in vivo set ups, and how
the scattering spectrum of the microbubbles is modified in the respective situations, in order
to distinguish reliably between inertial and stable cavitation.

The established theoretical model for the dynamics of the oscillation of a bubble is the
Rayleigh-Plesset equation. This equation considers the oscillation of a bubble in an infinite
fluid domain. However, for microbubbles oscillating inside capillaries this model has to be
extended to include the interaction with the vessel wall. This extension was done in the
paper by Qamar et al. [11]. In this thesis we will test this model and compute the sub- and
ultraharmonic response. Then, we will compare it to the sub- and ultraharmonic response
simulated by the Rayleigh-Plesset equation.
We will also look into the influence of the viscosity on the change in sub- and ultraharmonic
response of microbubbles simulated with the Rayleigh-Plesset equation. This is done because
blood has a higher viscosity than fluids such as water, which are often used in in vitro
experiments. To conclude, we will be looking at the influence of two independent parameters:
the influence of the viscosity and the additional hydrodynamic damping introduced by the
vicinity of a vascular wall.

1Taking place inside the body of a living organism
2The acoustic noise in the spectral density of the scattered wave can be related to certain inertial cavitation

phenomena [7].
3Taking place outside the body of a living organism
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In chapter 2 of this thesis we will go over the theory needed to understand the physics
of the models that will be used. First we briefly go over the non-Newtonian characteristics
of blood. Subsequently, we will go into the fundamental equations of fluid dynamics: the
Navier-Stokes equations and also some more detailed physics needed. Chapter 3 is dedicated
to the theoretical derivation of the extended model by Qamar et. al. [11], and key point for
the simulation of this model. Chapter 4 gives the results and discussion of our model, where
we will discuss the influence of the viscosity and wall boundary in separate sections. Lastly,
in chapter 5 we draw conclusions to the questions raised in the introduction.
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2 Theory

In this section we will go over the theory needed to understand the method described in
section 3. In section 2.1 we go over some non-Newtonian phenomena of blood and why it
is a difficult fluid to work with. In section 2.2 we derive the Navier-Stokes equation for a
better understanding of the theories in the sections that follow. In section 2.3 we look at the
Rayleigh-Plesset equation, which is the equation that is mostly used today to simulate the
oscillation of a microbubble. A goal for our model is that it is similar in form and usage, and
thus can be easily compared to the Rayleigh-Plesset equation.
In section 2.5 we go over the basics of fluid theory that are required to describe laminar
flows inside tubes. Our own model will try to incorporate this theory into the Rayleigh-
Plesset equation. At last, in section 2.4 the shell model is described that is used during our
simulation.

2.1 Blood as a Non-newtonian fluid

Fluids are classified as Newtonian or non-Newtonian. A fluid is called Newtonian when the
shear stress of the fluid is directly proportional to the strain rate. When this is not the case
a fluid is referred to as non-Newtonian. Newtonian fluids are further discussed in section 2.2.
The emphasis of this section lies on non-Newtonian fluids, in particular the non-Newtonian
fluid blood.

The shear stresses of a fluid develop due to viscous flow. Often, for non-Newtonian fluids
the term apparent viscosity η is used to describe the viscosity. The difference between the
Newtonian viscosity µ and apparent viscosity η is that µ is constant (ignoring temperature
effects) and η is dependent of the shear rate. For some non-Newtonian fluids this relation can
be experimentally determined, but unfortunately for blood as a complex fluid-solid mixture
this is much more complicated.
The most important parts of blood are the red blood cells ( ∼41%) and the blood plasma
(∼45%), whereby these percentages can change with conditions and location. The remaining
4% are other types of cells in the blood such as white blood cells an platelets. The viscosity
of blood depends on the viscosity of blood plasma, the proteins present in the blood plasma,
the ratio of blood plasma to cells (i.e. hematocrit), the temperature, the shear rate and the
diameter of the vessel [12]. The later means that the viscosity of blood in major arteries
is different from that in small capillaries. This effect is called the Fahraeus-Lindqvist effect.
For vessels between 15µm < D < 500µm in diameter the viscosity decreases with decreasing
vessel diameter. For vessels smaller than 15µm the viscosity increases again.

In summary, the resulting effects of the change in viscosity due to vessel size is an im-
portant phenomenon for this research. Depending on the vessel diameter the viscosity can
change, which can change the dynamics of the oscillating bubble. As a consequence, a real-
istic simulation of the in vivo situation becomes a lot more complicated this way. Since it is
important, as mentioned in the introduction, we will look at the dependence of a changing
viscosity on dynamics of an oscillating microbubble.
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2.2 Navier-Stokes equations

Depending on the specific research question, there are two fundamental approaches to de-
scribe motion of fluid [13]:

1. look at a larger region of space and see how the fluid behaves there.

2. study the motion of an individual fluid particle or a group of particles.

The approach we will be using is the individual fluid particle approach. In this approach
we can work directly with known physical interactions on the individual particle. And if
we solve the trajectory of a particle on a particular streamline4 we can find the growth and
collapse of the microbubble-fluid interface. A downside of this approach though, is that the
mathematics can become complicated and along the way some assumptions and approxima-
tions will have to be made to solve the problem. This individual particle approach will lead
us to a set of partial differential equations that describe the flow of incompressible fluids: the
Navier-Stokes equations. Because of the importance of the Navier-stokes equations in fluid
dynamics and to the understanding of the method used in this research, we will briefly intro-
duce the Navier-Stokes equations in this section. We will treat these equations in Cartesian
coordinates. Although Cartesian coordinates are often not ideal in the type of problems we
are interested in, they are however more convenient for explaining the derivation of these
equations.

For the derivation of the Navier-Stokes equation we largely follow the explanation of sec-
tion 6.2 from the book Introduction to Fluid Mechanics by Nakayama and Boucher [14] and
the derivation of section 2.4 from the book Viscous Fluid Flow by White [15].

Consider a small rectangular fluid element with dimension dx x dy x b and apply Newton’s
second law on it. The dimensions of the rectangular element are as seen in figure 2.1, where
we are only looking at a two dimensional problem in Cartesian coordinates. This choice is
motivated by the symmetry of the problem, which allows subsequently to reduce the problem
from three spatial dimensions to two or one dimensions. For now, the third dimension can
be taken into account by the thickness of this element as b, and the density of the fluid as ρ.
In this situation we get the following equations for the x and y direction:

ρ b dx dy
du

dt
= dFx

ρ b dx dy
dv

dt
= dFy ,

(2.1)

with u the velocity in the x-direction and v the velocity in the y-direction. The left-hand
side of the equations represents the inertia force of the fluid element and the right-hand side
of the equations represents the forces that are exerted on the fluid element. In Newton’s
second law (equation (2.1)) we know that the inertial force is the product of the mass of the
fluid element and the acceleration. The change in velocity here does not only depend on the

4A streamline is a curve formed by the velocity vectors of each fluid particle at a certain timestep [14].
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Figure 2.1: The spacial change in velocity over a fluid element of dx by dy. Figure inspired
by [14, pg. 84].

progress in time but also on the displacement in space (as can be seen in figure 2.1). Thus
du in the x-direction can be expressed as:

du =
∂u

∂t
dt+

∂u

∂x
dx+

∂u

∂y
dy. (2.2)

Then the time derivative of u becomes:

du

dt
=

∂u

∂t
+
∂u

∂x

dx

dt
+
∂u

∂y

dy

dt

=
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
.

(2.3)

This is equivalent for the velocity v in the y-direction. If we insert this into equation (2.1)
we obtain:

ρ b dx dy

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= dFx

ρ b dx dy

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= dFy .

(2.4)

The exerted forces on the fluid element can be categorized into two types:

1. Body forces, that act on the entire mass of the body.

2. Surface forces, that act on the surface of the body.

For the goal of this thesis body forces in the Navier-Stokes equations can be neglected
and will not be addressed further in this section.
Examples of surface forces are pressure forces and viscous forces. These are external stressors
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Figure 2.2: All different stress components for a 3-dimensional fluid element. Figure in-
spired by [15, pg. 63].

that act on the sides of our fluid element. Pressure and viscous forces can be separated in
different terms, which then changes our equation (2.4) into the following:

ρ b dx dy

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= Px + Vx

ρ b dx dy

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= Py + Vy ,

(2.5)

with Pi the pressure forces and Vi the viscous forces that are exerted on the fluid element
in the given i-direction. In the next section these surface forces will be derived.

Surface forces

The aforementioned external stressors, i.e. the surface forces that act on the fluid element,
can be written as a stress tensor τ 5. If we were to look at a 3-dimensional object the stress
tensor would be composed from all the components shown in figure 2.2.

The fluid element in figure 2.2 gives us the following 3x3-matrix:

τ =

τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 . (2.6)

This tensor is symmetric and thus τij = τji. Because we will be looking at problems where
we can reduce the dimensionality with symmetry, we will continue with a stress tensor τ in
2D:

5With τij the stress-component in the j-direction on a surface that is normal to the i-direction
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τ =

(
τxx τxy

τyx τyy

)
. (2.7)

The positions of the components in the stress tensor correspond to the applied force in
each coordinate direction [15]. If we look at the surfaces that are visible in figure 2.2 then
the total force in the x- and y-direction can be expressed as:

dFx = τxx dy b + τxy dx b

dFy = τxy dy b + τyy dx b .
(2.8)

If our fluid element were to be in equilibrium, the total force on the back of the block
element in figure 2.2 has to be equal and opposite in direction to the force on the front of
the block. Though, if the fluid element where to be moving, there is a net force because of
the differences between the front and back surfaces. The difference between these surfaces
can be expressed for every component as:

τxx, front = τxx, back +
∂τxx
∂x

dx . (2.9)

Then we can write the net force in each direction as:

dFx, net =

(
∂τxx
∂x

dx

)
dy b+

(
∂τyx
∂y

dy

)
dx b

dFy, net =

(
∂τxy
∂x

dx

)
dy b+

(
∂τyy
∂y

dy

)
dx b .

(2.10)

When the fluid element is at rest, all the shear stresses (the off-diagonal components) are
equal to zero, and the normal stresses become equal to the hydrostatic pressure p:

τii = −p and τij = 0 for i 6= j . (2.11)

In the next step we will relate the stress components to the velocity of the fluid. This can
be achieved with the help of the assumption that our fluid is a Newtonian fluid. Similar to
Hooke’s law, we are looking for a linear law for the viscous stress related to the strain rate as
a first order approximation. The fluids that satisfy this relation are referred to as Newtonian
fluids.
Blood as a solid-liquid mixture has to be considered a non-Newtonian fluid, which behaves
differently depending on e.g. the dimensions of the vessels and the amount of particles
present in the blood, making it a very difficult fluid to describe (see section 2.1 for a full
explanation). However, since on a microscopic scale the size of the microbubbles ( ∼3 µm)
is considerably smaller that the average distance of the red-blood cells, we can assume as a
first order approximation the immediate vicinity of the microbubbles as a Newtonian fluid.
Nevertheless, it is important to keep in mind, that for interactions exceeding 5− 10 µm this
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assumption is increasingly not valid.
A Newtonian fluid must satisfy the following:

1. The fluid must be continuous and τ ∼ ε, with ε the strain-rate tensor.

2. The fluid is isotropic.

3. The deformation law must reduce to equation (2.11) when there is no strain rate.

The strain-rate tensor ε is related to velocity as follows:

ε =

(
εxx εxy

εyx εyy

)
with εii =

∂Vi
∂i

, εij =
1

2

(
∂Vj
∂i

+
∂Vi
∂j

)
for i 6= j , (2.12)

where Vi are the velocity components of the velocity vector V.

With the above mentioned conditions we can derive the following expression for the stress
tensor components 6:

τij = −pδij + µ

(
∂Vi
∂j

+
∂Vj
∂i

)
+ δij λ divV , (2.13)

with µ the coefficient of viscosity of a Newtonian fluid, λ the bulk viscosity of the New-
tonian fluid and δij the Kronecker delta function.

In all following problems the fluid is assumed to be incompressible. For an incompressible
fluid the following is true:

divV = 0 .

This will reduce equation (2.13) to:

τij = −pδij + µ

(
∂Vi
∂j

+
∂Vj
∂i

)
. (2.14)

If we then assume that the viscosity µ is constant, and is thus independent of pressure
or temperature, we have found our expressions for the net force in the x- and y-direction of
equation (2.10):

dFx, net = −∂p
∂x

dx dy b+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
dx dy b

dFy, net = −∂p
∂y

dx dy b+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
dx dy b .

(2.15)

6For the full derivation see page 65-66 of [15].
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As last step we take these expressions for the net surface force and substitute them into
equation (2.4). If we devide everything by dy dx b we obtain our final result:

ρ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+
∂2u

∂y2

)
ρ

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+
∂2v

∂y2

)
.

(2.16)

These are the 2-dimensional Navier-Stokes equations of a incompressible fluid for a con-
stant viscosity in Cartesian coordinates. Most of the problems with microbubbles are better
described in spherical or cylindrical coordinates due to the symmetries in the system. De-
pending on that system it might be a 2-dimensional or a 1-dimensional problem. In Appendix
B, all 3-dimensional Navier-Stokes equations are given in Cartesian, Cylindrical and Spheri-
cal coordinates.

The Navier-Stokes equations represent a set of non-linear partial differential equations,
which are generally hard to solve. The following section introduces how this equation system
can be simplified for a single bubble with spherical symmetry.
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2.3 Rayleigh-Plesset equation

For small oscillation amplitudes, an oscillating bubble can be approximated as a linear os-
cillator. A lot can be learned from bubble dynamics with a linear theory, e.g. the resonance
frequency and damping constant. However, both in diagnostic as well as therapeutic appli-
cations employ higher pressure levels, which in turn requires an understanding in the physics
of the non-linear dynamics of microbubbles. Solving these types of problems is a lot more
difficult than the linear ones and ask for more complicated mathematics. One of the first
non-linear differential equations that described the non-linear motion of a bubble in a fluid
is now referred to as the Rayleigh-Plesset equation. It describes the dynamics of a bubble
undergoing a spherically symmetric oscillation in an infinite fluid domain. This equation
represents the first theoretical description on non-linear oscillations, which had been ex-
perimentally evidenced since the mid-nineteenth century as a problem for high-power ship
propellers. Because of the importance of this equation in bubble dynamics we will shortly
derive the Rayleigh-Plesset equation in this section. For a more complete derivation see [16].

Consider a spherically oscillating bubble with radius a(t). This bubble exist in a infinite
domain of a Newtonian inviscid fluid. Far away from the bubble the temperature T and
pressure p(t) are assumed to be T∞ and p∞(t). The temperature is assumed to be constant
since no thermal effects or heat exchange are taken into account in this calculation. The
pressure p∞(t) is assumed to be known and is the input parameter that will cause the bubble
to expand and collapse. It is furthermore assumed that the fluid is incompressible and that
the density ρL and the viscosity µL of the fluid are constant and uniform. Lastly, it is assumed
that there is zero mass transport across the bubble-fluid interface and that the content, the
temperature TB(t) and pressure pB(t) within the bubble are uniform [17]. Figure 2.3 shows
the above described situation.

Figure 2.3: An illustration of an oscillating bubble in an infinite domain of fluid. Here
a(t) is the changing bubble radius, TB and pB are the temperature and pressure inside the
bubble, pa is the pressure at the bubble-fluid interface and T∞ and p∞ are the temperature
and pressure far away from the bubble. The density ρ of the fluid is constant. Figure inspired
by [16, pg. 55].

Because of the symmetry of the oscillation of the bubble and the dimensions of the
fluid, the problem is reduced to one-dimension. The Navier-Stokes equations in spherical
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coordinates (see appendix B) then reduces to:

ρ

(
∂u

∂t
+ u

∂u

∂r

)
= −∂p

∂r
, (2.17)

with u the velocity in the r-direction. The viscous terms in the Navier-Stokes equation are
dropped since the fluid is assumed to be inviscid. Now we integrate our reduced Navier-Stokes
equation over the streamline from the bubble surface to infinity.∫ ∞

a(t)

(
∂u

∂t
+ u

∂u

∂r

)
dr =

pa − p∞
ρ

, (2.18)

with pa the pressure at the bubble-fluid interface. The first term has a time-derivative
inside the integral and a time-dependent integral boundary. To solve this we can use the
Leibniz integration rule [18]:∫ ∞

a(t)

(
∂u

∂t

)
dr =

∂

∂t

∫ ∞
a(t)

u dr + u(a, t)
∂a(t)

∂t
. (2.19)

The continuity equation is a statement for mass conservation in the system. Because we
have a incompressible fluid, i.e. the density ρ of the fluid is constant, the continuity equation
for this system is [12]7:

∂(ur2)

∂r
= 0 . (2.20)

With the continuity equation we can find an expression for the velocity u in terms of the
position r:

∂(u r2)

∂r
= 0 −→ u =

f(t)

r2
, (2.21)

with f(t) a function that still has to be determined. If we substitute this into the integral
on the right-hand side of equation (2.19) we see that:

∂

∂t

∫ ∞
a(t)

f(t)

r2
dr =

d

dt

(
f(t)

a(t)

)

=
ḟ (t)

a
− f(t) ȧ

a2
,

(2.22)

where we have used the dot notation to indicate time derivatives. In the evaluation of
this integral, as r → ∞ we see that f(t)/r → 0. We can rewrite f(t) with the expression
that was found for u in equation (2.21):

7For a full derivation of the continuity equation see page 111-114 of [12].
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f(t) = u r2

f(t)

dt
= u̇ r2 + 2u r ṙ .

(2.23)

The f(t) on the right-hand side in equation (2.22) is evaluated at r = a(t). Now that we
have found f(t) expressed in terms of u and r we can evaluate it at a(t) and plug it all back
into equation (2.19) (in the previously mentioned dot notation):∫ ∞

a(t)

(
∂u

∂t

)
dr =

äa2 + 2aȧ2

a
, (2.24)

Finally we can take this and insert it back into the integrated Navier-Stokes equation:

aä+
3

2
ȧ2 =

pa − p∞
ρ

. (2.25)

This gives us the Rayleigh-Plesset equation. The pressure at the bubble-fluid interface is
determined with the characteristic of the bubble shell and the bubble content. The Rayleigh-
Plesset equation in this form is very useful because it can be used for different types of
microbubbles with different types of bubble shell and bubble content without having to
change the equation drastically. One just computes pa for their bubble and can use this
equation instantly. With pa and p∞ known, the differential equation can be solved for ä.
This results in the changing radius a with time for an oscillating pressure field p∞. The
oscillating pressure field is often written as:

p∞ = p0 + pi(t) , (2.26)

with p0 the equilibrium pressure far away from the microbubble, and pi(t) a deviation
from this equilibrium pressure which signifies the oscillating field we apply to it.

Because the Rayleigh-Plesset equation is such a widely used equation in this field of
physics, and because it is fairly easy to compute numerically, the goal of our simulation is
to formulate a differential equation for an oscillating microbubble in a rigid tube that has a
similar form to the Rayleigh-Plesset equation and can be solved similarly.

2.4 Shell Model

In this thesis we will be looking at the oscillation of microbubbles with a specific type of
coating around it, referred to as microbubble contrast agents. Thus, a shell model needs to
be formulated to simulate the effects that the coating will have on the microbubbles’ reaction
to the ultrasound wave. The shell model gives the pressure pa at the bubble-fluid interface
that is needed in the Rayleigh-Plesset equation (2.25).
Most of the shell models that have been defined, have been formulated for a specific type of
contrast agent, because their mechanics differ considerably depending on the material they
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are made of. In recent years new shell models have been formulated that might improve
these models for some contrast agents, though we won’t go into the physics of all different
contrast agents in this section. The PHD thesis by M. Emmer [19] and a paper by Doinikov
et al. [20] both give a good overview of a selection of different shell models that have been
developed in the previous decades.

The one we will be using is the shell model by Hoff et al. [21]. This shell model has
often been used to simulate the shell of the contrast agent Sonovue R©. We will not validate
if this shell model is best to simulate Sonovue and will assume it to do so. Hoff’s model is
an approximation of the shell model by Church [22]. This linear shell model is made for a
visco-elastic shell material:

pa = −4µL
ȧ

a
− 12µs

ds a
2
0

a3

ȧ

a
− 12Gs

ds a
2
0

a3

(
1− a0

a

)
+ pe

(a0

a

)3κ

, (2.27)

where a0 is the bubble radius at equilibrium, dSe is the shell thickness, µL is the fluid
shear viscosity, µs is the shell shear viscosity and Gs is the shells shear modulus. The shear
modulus Gs and the shear viscosity µs are to be taken constant here. In the last term on
the right, pe is the pressure in the microbubble when no pressure field is added and κ is the
polytropic gas constant.
Within this model two assumptions were made about the shell. First, that it is thin compared
to the radius of the microbubble. Secondly, that the shell material is incompressible. The
surface tension is neglected because it is assumed the shell will reduce the surface tension
at both the inner- an outer-bubble interfaces. Considering that the surface tension of blood,
where the microbubbles will be diluted in once inserted into the body, is low compared to
water, this considered an acceptable estimate.

In his work Acoustic Characterization of Contrast Agents for Medical Ultrasound Imag-
ing [16] (published a year after publishing his model in equation (2.27)), Hoff postulated a
exponential relation between the pressure and the radial strain and viscosity. Though he
stated that deciding which model simulates the best response must be done by experiments,
he used this exponential shell model in his own MATLAB simulation. For his motivation of
this postulate see section 3.4 in [16].
Because we will be comparing our own model to the model written in this MATLAB simu-
lation, we will also use the exponential shell model:

pa = −4µL
ȧ

a
− 12

ds
a0

(
Gsx0

(
1− e−

(
a
a0
−1

)
/x0

)
+ µs e

−
(

a
a0
−1

)
/x1 ȧ

a0

)
+ pe

(a0

a

)3κ

, (2.28)

with x0 = 1
8

and x1 = 1
4
.8

8For an explanation of the estimates of these constants see section 3.4.2 and 3.4.3 of [16].
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2.5 Poiseuille flow theory

One of the downsides of the Rayleigh-Plesset equation is that it is defined for a infinite do-
main of fluid. Although, this is appropriate for a single bubble in a large volume of fluid,
for bubbles inside small(er) capillaries it is increasingly inaccurate, since the wall interac-
tion of the fluid is neglected. For this reason we want to find a new differential equation
that will describe the motion of a bubble inside a tube. As mentioned before in section 2.2,
the Navier-Stokes equations represent a complex mathematical problem with only a limited
number of solutions for specific, in general rather simple, cases. Fortunately, the historical
interest and relevance of hydraulic problems directed a considerable effort into solving the
problem of laminar flow in a tube. This theory, the Poiseuille flow theory, will be our starting
point for the theoretical description of oscillatory motion of a bubble inside a tube. We will
start by a brief introduction into this theory.

For the derivation of Poiseuille flow inside a tube we largely follow the explanation given
in section 8.2 from the book Incompressible Viscous Flows by Fang [23] and section 6.3 from
the book Introduction to Fluid Mechanics by Nakayama and Boucher [14].

Figure 2.4: Laminar flow through a pipe of radius R. The velocity u of the flow is in the
x-direction.

We are looking at a fully developed steady laminar flow inside a tube. Because of the
symmetry of the tube, a cylindrical coordinate system for the Navier-Stokes equation is
preferred. Figure 2.4 shows the orientation of the tube to the coordinate system. Because
we are dealing with laminar flow there is only a fluid flow u in the x-direction. Due to the
axial symmetric flow, the Navier-Stokes equation reduces to9:

1

r

d

d r

(
r
d u

d r

)
=

1

µ

(
d p

d x

)
. (2.29)

Note that the right-hand side of the equation is independent of r. Therefore, we can
integrate this twice over r and see that:

u(r) =
1

µ

(
d p

d x

)
r2

4
+ C1ln r + C2 , (2.30)

9For this reduced Navier-Stokes equation we have again used the Continuity equation for a compressible
fluid. For the derivation of this equation see page 111-114 of [12].
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with C1 and C2 the integration constants. To determine these constants we have to look
at the boundary conditions of our system. For r = 0 we expect the velocity u to have some
finite value, and thus the constant C1 has to be equal to zero, C1 = 0. For r = R we use the
no slip boundary condition that the velocity u at this boundary wall has to be zero, which
means that the solution for C2 yield then that C2 = −(dp/dx)R2/(4µ). Thus equation (2.30)
is expressed as:

u(r) = − 1

4µ

(
d p

d x

)[
R2 − r2

]
. (2.31)

This equation gives us the flow profile in the tube. The change in velocity in the r-
direction has a parabola shape as can be seen in figure 2.5. Thus depending on the distance
from the centerline of the tube the velocity changes. Because of this parabolic shape the
maximum velocity inside the tube is on the centerline, where r = 0:

umax = −R
2

4µ

(
d p

d x

)
. (2.32)

Another usefull parameter is the mean flow velocity in the tube. The mean flow velocity
v̄ can be determined by calculating the volumetric flow rate Q of the tube and dividing it
by the cross section (with the assumption that there is only flow in one direction inside the
tube).

Q =

∫ R

0

2π r u dr = −πR
4

8µ

d p

d x
. (2.33)

Here we have used the flow velocity u(r) that was determined in equation (2.31). Now
the mean flow velocity becomes:

v̄ =
Q

2πR
= −R

2

8µ

d p

d x
=

1

2
umax , (2.34)

where we have noted that the mean velocity is half the maximum velocity inside the tube.

Figure 2.5: A parabolic flow profile inside a tube with radius R.
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Due to the viscosity of the fluid it exercises shear stresses on the boundaries of the tube.
Due to these shear stresses there arises a pressure drop ∆p inside the tube, also called the
head loss Hl. This is an important phenomena of fluid flow inside tubes and is called the
Hagen-Poiseuille formula. Here we want to express the pressure drop ∆p in length ∆x of the
tube. We can do this by combining equations (2.32), (2.33) and (2.34):

∆p = Hl =
32µ v̄

D2
∆x , (2.35)

with D the diameter of the tube.

In the next section we will try to combine this theory and the Rayleigh-Plesset equation
to get a differential equation that will simulate the oscillation of an microbubble inside a
rigid tube.
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3 Method

In this section we will derive a differential equation that will combine the Rayleigh-Plesset
equation with Poisseuille flow theory. This equation is based upon two papers by Qamar et
al. [11][24]. Once the differential equation is derived, it is shortly explained how to simulate
it in a program called MATLAB. The form of this simulation is comparable and inspired by
the microbubble oscillation simulation, BubbleSim, written by Hoff (see [16]). Lastly, the
simulation is validated with two different tests.

3.1 Deriving differential equation

In this section we will derive the differential equation that will simulate the oscillation of a
microbubble inside a rigid tube. The derivation of this model is given step by step, which
largely follows the one given in the paper by Qamar et al. [24]. It should be noted that a
lot of assumptions will be made to simplify the model in such a way that it can be easily
simulated similar to Hoff’s simulation, Bubblesim [16].

The setup as seen in figure 3.1 will be used for this numerical simulation. A microbubble
of initial radius ao will oscillate in the middle of a rigid tube with diameter D and length L.
The pressure at the bubble-fluid interface is pa, and the pressure at the end of the tube is
pl/2. The dimensional parameters that we will choose, shall represent those of capillaries in
the brain and the bubble size distribution of Sonovue R©.
Simulating a microbubble within an tube is more complicated then simulating one in an
infinite fluid domain. The Rayleigh-Plesset equation is based upon a inviscid fluid where
the boundaries are placed at infinity (see section 2.3 for this full derivation). In order to
incorporate the physics of a tube, the change in symmetry of the system has to be taken into
account and the fluid can not be considered as inviscid because of the fluid’s interaction with
the inside of the tube. If the full flow field were to be calculated one would need to solve
equation (2.16) in its entirety.

Figure 3.1: A visual repesentation of the system that will be simulated with the derived
differential equation: A microbubble oscillating in the middel of a rigid tube. The tube has
length L and diameter D. The microbubble has an initial radius of a0. The pressure at the
bubble-fluid interface is Pa, the pressure at the end of the tube is PL/2. The acoustic source
is placed at the end of the tube. Model inspired by one in [11].
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Due to the complexity of these non-linear differential equation there are no general so-
lution available. This is why we will make some assumptions about our model. Because of
this, the differential equation that is obtained from this approach is in no means an exact
description of reality, but it will nevertheless suffice to theoretically analyze the fundamental
properties of the system, as the experimental validation by Qamar et al. [11] has shown.

For our model we will be considering an incompressible inviscid laminar flow, where some
viscous effects will be added later, inside a rigid tube with no body forces working on the
system. The microbubble is assumed to oscillate spherically symmetric in the centre of the
tube. This is a coarse assumption, since it has been shown in experiments that microbubbles
inside a tube deviate from spherically symmetric oscillation due to the orientation of the
tube [25]. The bubbles are more elongated in the x-direction during oscillation. There are
indications that this deviation from spherical symmetric oscillation depends on the ratio be-
tween the diameter of the tube and the microbubble, and on the wall velocity of the bubble.
Previous research has shown that for small vessel/bubble diameter ratios this anti-symmetric
bubble oscillation becomes significant, and even for larger ratios with high wall velocities it
becomes an important part of the oscillation [26]. Because we will be looking at oscillations
in capillaries, where the diameter of the tube and the bubble are of the same order of mag-
nitude, assuming only spherically symmetric oscillations becomes inaccurate. This has to be
kept into consideration when looking at the results of this research.

Another assumption is that the bubble is oscillating in the centre of the tube. This means
that we are neglecting translational propagation by radiation forces (or Bjerknes forces) and
the pulsating flow of blood in our model. Both of these phenomena interact on a larger
timescale then the oscillation of the microbubble, since the microbubble oscillates predomi-
nantly with the principal frequency, which is in the order of MHz. Thus, not including these
translational propagation is a good assumption for short pulses of the transmitted wave .
Though, the longer the transmitted wave, the more inaccurate this assumption becomes.

At last, no external interactions were taken into account. Even though the microbub-
bles have a low density once injected in the blood (thus making interaction between them
relatively small), there are a lot of other particles in the blood of the same order of magni-
tude with which they can interact, e.g. red blood cells. Depending on the concentration of
these particles in the blood and their exact size, they will interact differently with each other.

Instead of solving the entire flow field inside the tube, we will only be solving it along
the centerline streamline inside the tube. Because of the symmetry that was created in this
model, the flow field on the centerline will be symmetric. This means that the fluid particles
that are travelling along the centerline streamline will be irrotational (i.e. in absence of
vorticity).
If we integrate the Navier-Stokes equation over the centerline streamline, by taking the
assumptions made in this section into account, we get a differential equation that describes
the spherical oscillation of the microbubble. In the next part of this section we will be
deriving this differential equation.
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The Navier-Stokes equation derived in section 2.2 will reduce to the following form (in
cylinderical coordinates):

ρ

(
∂u

∂t
+ u

∂u

∂x

)
= −∂p

∂x

0 = −∂p
∂r

,

(3.1)

where u is the flow velocity in the x-direction, ρ is the density of the fluid and p is the
pressure inside the tube. From this we can already tell that the pressure p inside the tube
is only dependent of displacement x and time t: p = p(x, t). Now we integrate along the
centerline streamline: ∫ L/2

a(t)

(
∂u

∂t
+ u

∂u

∂x

)
dx+

HL

ρ
=
pa − pL/2

ρ
, (3.2)

where we have integrated from the surface of the microbubble a(t) to the end of the tube
L/2. The HL term added in this equation is a compensation for the assumption that we are
dealing with an inviscid fluid. Though this assumption might be a correct one to make for
the Rayleigh-Plesset equation, for fluid flow inside a tube it is not. As can be read in section
2.5, the viscosity of the fluid inside the tube gives a distinct flow profile inside the tube and
a pressure loss arises due to viscous forces at the boundaries. To include these effects we add
a total pressure loss (or head loss) HL to our equation. This is a very blunt way of doing this
but gives us an easier equation to deal with that still, in some approximation, accounts for
the viscosity of the fluid. The integration over the streamline is taken inside the head loss
term HL.

Some parts of the integration in equation (3.2) can immediately be solved, which turns
equation (3.2) into: ∫ L/2

a(t)

(
∂u

∂t

)
dx+

1

2

(
u2
L/2 − u2

a

)
+
HL

ρ
=
pa − pL/2

ρ
. (3.3)

Other parts of this equation will need to be solved individually. The first term on the right-
hand side has a time-derivative inside the integral and a time-dependent integral boundary.
To solve this we can use the Leibniz integration rule [18]:∫ L/2

a(t)

(
∂u

∂t

)
dx =

∂

∂t

∫ L/2

a(t)

u dx + u(a(t), t)
d a(t)

dt
. (3.4)

The first term on the left-hand side of the equation can be related to the average velocity
flow Ū inside the tube with Poiseuille flow theory. This is because we are integrating along
the centerline streamline, and thus the velocity along this line can be expressed by equation
(2.34). The second term on the right-hand side can be seen as the square of the velocity in
point a(t):
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∫ L/2

a(t)

(
∂u

∂t

)
dx = 2

[
L

2
− a
]
dŪ

dt
+ u(a(t), t)2 . (3.5)

Now with mass conservation we can find a relation between the average velocity flow Ū
and the bubble surface a(t):

d

dt

(
πD2

4
− 4πa3

3

)
= −βŪ πD

2

4
. (3.6)

This equation states that the change in volume of the fluid inside the tube (left-hand side)
must be equal to the flow rate through the cross section at the ends of the tube (right-hand
side). If the tube has one opening, β will be equal to 1, and if the tube has two openings, β
will be equal to 2.

From equation (3.6) we can get an expression for Ū and the time derivative of Ū :

Ū =
16a2

βD2

d a

dt
, (3.7)

dŪ

dt
=

16

βD2

[
a2d

2a

dt2
+ 2a

(
da

dt

)2
]
. (3.8)

The next term we will need to determine is the fluid velocity on the streamline at the end
of the tube (see the second term in equation 3.3). In reality the change of velocity in this
point depends om the change of the pressure in a(t) and the velocity at which this pressure
change travels from point a(t) to the end of the tube at L/2. To make our problem more
easily solvable we make an approximation here. Even though the whole system is unsteady,
we will determine the velocity at the end of the tube as if it was a steady problem. This means
that the pressure changes instantaneous from the bubble surface to the end of the tube. In
other words, we are looking at a lot of alternating steady flows where the change from one
to the other is instantaneous. This approximation is justified because we are working with
an incompressible fluid. Doing this, we can use Poiseuille flow theory to determine u(L/2, t)
(described in section 2.5):

u(r, t) = − 1

4µ

dp

dx

(
1

4
D2 − r2

)
, (3.9)

with dp/dx the change in pressure along the streamline, r the radial coordinate of the
streamline and µ the viscosity of the fluid inside the tube. We are integrating over the
centerline, thus r = 0 and the velocity becomes:

uL/2 = − 1

16µ

dp

dx
D2 . (3.10)
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The change in pressure along the length of the tube can be approximated by:

d p

d x
≈
pL/2 − pa
L/2− a

. (3.11)

The head loss term we added in equation (3.3) can now also be determined from Poiseuille
flow theory:

HL

ρ
=

32µ Ū

ρD2
∆x . (3.12)

Here, ∆x is the length of the tube over which was integrated. Using the expression for Ū
we found earlier and using the dimensions of our problem we get that:

HL

ρ
=

512µa2

βρD4

da

dt

[
L

2
− a
]
. (3.13)

Now we can insert all the expressions we found into equation (3.3) to get our final result.
Here is a dot notation used for all the time derivatives:

32

βD2

[
L

2
− a
] [
a2ä+ 2aȧ2

]
+ ȧ2 +

1

2

(
D4

256µ2

(
pL/2 − pa
L/2− a

)2

− ȧ2

)

+
512µLa

2

βρD4
ȧ

[
L

2
− a
]

=
pa − pL/2

ρ
. (3.14)

The pressure at the bubble surface can be expressed by the shell model by Hoff (as
describes in section 2.4):

pa = −4µL
ȧ

a
+ ps + pg

ps = −12
ds
a0

[
Gsx0

(
1− e−(a/a0−1)/x0

)
+ µs e

−(a/a0−1)/x1
ȧ

a0

]

pg = pe

(
a

a0

)−3κ

.

(3.15)

The different viscosities are distinguished in these equation by µL for the viscosity of the
fluid and µs for the viscosity of the shell. ps is the stress difference across the shell and pg
the pressure inside the bubble.

Equation (3.14) and (3.15) together make our non-linear differential equation that we
will use to simulate the microbubble oscillation. The next sections will describe how these
equations are to be used and how to write a script that will solve the oscillation and give the
sub- and ultraharmonic response out of this signal.
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3.2 Equation in dimensionless variables

To make the equation easier to compute for a solver, it is desired to write the differential
equation (3.14) in dimensionless parameters. This way there are less parameters in the sim-
ulation which allows there to be a better control over the precision. It might also give some
insight on the characteristic of our equation and problem.

The next dimensionless parameters are introduced into our equations:

r =
a

a0

Radial strain

L0 =
L

a0

Normalized tube length

D0 =
D

a0

Normalized tube diameter

tc =

√
ρ a0

p0

Characteristic time

τ =
t

tc
Dimensionless time

r′ =
dr

dτ
= tc

dr

dt
= tcṙ Time differentiation

q =
p

p0

Normalized Pressure

νL =
µL
tc p0

Normalized Shear viscosity of liquid

νs =
µs ds
tc p0 a0

Normalized viscosity of the shell

gs =
Gs ds
p0 a0

Normalized modulus of the shell.

(3.16)

With these we can rewrite our ODE and shell model into dimensionless parameters:

32

βD2
0

[
L0

2
− r
] [
r2r′′ + 2 r r′ 2

]
+ r′ 2 +

1

2

(
D4

0

256 ν2
L

(
qL/2 − qr
L0/2− r

)2

− r′ 2
)

+
512 νL r

2

βD4
0

r′
[
L0

2
− r
]

= qr − qL/2.
(3.17)
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qr = −4νL
r′

r
+ qs + qg

qs = −12
[
gs x0

(
1− e−(r−1)/x0

)
+ νse

−(r−1)/x1 r′
]

qg = qe r
−3κ

(3.18)

3.3 Determining driving pressure

Ultrasound is used to make the microbubbles oscillate. The change in pressure causes the
bubble to expand and collapse. To determine how this will effect our system it is important
to first determine where this driving pulse is coming from. Because we have translated our
problem to one that is only defined on the centerline streamline, it is sensible to place the
source of our driving pulse on this same line. This way, no changes have to be made in our
equations. It is important to note though, that this is not similar to actual experimental or
clinical setups. In most of those settings the source of the driving pulse is placed outside the
body, without knowing its orientation relative to the capillaries in the body.

When we place the source at the end of our tube, we can say that the pressure at that
point deviates from its equilibrium value with some small value pi. This deviation is the
driving pulse we put into our system:

pL/2 = p0 + pi(t), (3.19)

with p0 the equilibrium value of the pressure at the end of the tube. This change in
pressure can be defined with a sine function:

pi(t) = pd sin(2πf t), (3.20)

with pd the peak negative pressure (PNP) we drive the system with. Using the normal-
izations from 3.16 we can normalize the pressure as:

qL/2 = 1 + qd sin(f0 τ). (3.21)

With this expression for the oscillating driven field, we have everything to simulate the
oscillation of the microbubble.
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3.4 Numerical simulation

To get the results from our new model, we have to solve the derived differential equation. The
scientific programming language MATLAB will be used to simulate our model and visualize
our results. In the next sections, parts of the numerical code are explained and the parameters
needed for our model are given.

ODE solver

MATLAB has build-in differential equation solvers to be readily used. Depending on the
type of problem, there are different kind of solvers with different numerical strategies. The
solver that was chosen for this problem is the so called ode15s solver, that uses a variable
order method. This solver is preferable for stiff differential equation; an equation with large
differences in scaling. In the ode15s solver, the time steps are determined by the local error
that has to stay under a certain given tolerance level. Thus, not all time steps are of the
same length.

The non-linear oscillation of a coated microbubble has a distinct form with a so called
‘compression only’ behavior (see figure 3.2). This non-linear phenomenon, though not dis-
cussed, is of importance to our simulation.

Figure 3.2: An example of ‘Compression only’ behavior, where we see a sharp and quick
compression of the bubble radius and a slower expansion. This 10 cycle oscillation is for a
microbubble with initial radius of a0 = 2 micron, driving frequency of 1 MHz and PNP of
150 kPa. This was simulated with the Rayleigh-Plesset equation.

Depending on the parameters of the oscillation, this ‘compression only’ behavior can be-
come too sharp for MATLAB to calculate. This occurs frequently for bubbles that have a
resonance frequency close to the driving frequency, with pressures higher than 200 kPa. Be-
cause there is a fixed minimum time step, the error for some simulations becomes too great
to simulate the oscillation correctly. These types of simulations will not be further studied,
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and are excluded from the results.

Equation 3.17, rewritten to solve for r′′, is used in the ode15s solver in MATLAB:

r′′ =
β D2

0

32 r2

[
L0

2
− r
]−1

[
qr − 1− qi(t)−

r′ 2

2
− D4

0

512 ν2
L

(
1 + qi(t)− qr
L0/2− r

)2
]

−16 νL r
′

D2
0

− 2 r′ 2

r

(3.22)

Chosen parameters

As shown in equation 3.14 and 3.15, there are a lot of parameters needed to simulate our
differential equation. The contrast agent that we will be simulating is Sonovue, and thus
some parameters will be chosen to fit its characteristics. Other parameters are taken from
literature or from assumptions made in the derivation of our model. All the parameters that
stay constant in the simulations are listed in table 3.1.

Parameter description Parameter value

Density of fluid ρ 1000 kg/m3

Hydrostatic pressure p0 1.013 · 105 Pa

Pressure inside bubble pe p0

Shear modulus of shell Gs 23 · 106 Pa

Shear viscosity of shell µs 0.5 Pa · s

Shell thickness ds 4.0 · 10−9 m

Driving frequency f 1 MHz

Number of outlets tube B 2

Polytropic constant κ 1

Table 3.1: The values of constant parameters that are used to simulate the microbubble
oscillations.

Here we say that the equilibrium pressure inside the bubble is equal to the hydrostatic
pressure p0 of the liquid. We can say this because we assume that there is no tension on the
shell at equilibrium and the surface tension is neglected (see section 2.4)[16]. The ploytropic
constant κ depends on the frequency at which the system is driven. For low frequencies,
the temperature in the bubble can be considered constant. This will give an isothermal
oscillation, with κ = 1. For high frequencies the oscillation is adiabatic and κ = γ, with γ
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the adiabatic index. For intermediate frequencies the oscillation is somewhere in between
isothermal and adiabatic 10. We already assumed that the temperature inside the bubble
is constant and thus that our system is isothermal. All our simulations will be driven at a
frequency of 1 MHz. All the other Sonovue shell parameters listed in table 3.1, as well as the
bubble distribution shown in figure 3.3, were provided by the supervisor of this project [27].

Figure 3.3: The bubble distribution per mL of the contrast agent Sonovue.

For the tube dimensions, viscosity µL of the fluid, microbubble radius and driving PNP,
we choose a range of values to see what effect the change in these parameters will have on the
oscillation of the system. The dimensions of the tube and viscosity of the liquid are chosen
to reflect values that of blood and capillaries in the human brain.
Measuring the viscosity of blood in capillaries is experimentally very difficult and is often only
done in larger vessels. Because we want to compare the change in dynamics due to deviation
from the viscosity of water, we will look at a range of viscosities around that of water. We
will look at 0.7− 2.2 mPas, with 1.0 mPas the viscosity of water at room temperature. We
will be taking steps of 0.3 mPas. This range was also chosen to include the viscosity of
bloodplasma, that is typically found in the range between 1.3 and 1.7 mPas [28].
There are a lot of different reports on the diameter range of calliparies vessels. The diameters
differ for specific organs, and even within one organ they can vary between different regions.
Some report a range of 4 − 8µm [29], while others report capillaries up to a diameter of
20 µm[30]. Our model, however, appears to break down for large a0/D ratios (also mentioned
by Qamar et al. about this model [11]). This is why we will focus our analysis on a range of
10 − 20 micron for the tube diameter. In the paper by Løkkegaard et al. [31], they report
a mean capillary length between 97 − 115 micron for the hippocampal region in the brain.

10A more lengthy explanation can be read in section 2.3 of [16].
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The hippocampus is only a small region in the brain, and thus we extend this range and take
50− 250 micron.
The range in microbubble radii is chosen from the microbubble distribution of the contrast
agent Sonovue, seen in figure 3.3. The range in PNP is chosen to be from 100 to 300 kPa.
Table 3.2 shows a summary of the above chosen parameter ranges.

Description parameter Parameter Value range Step size

Initial bubble radius a0 0.6125− 3 micron 0.125 micron

Tube diameter D 10− 20 micron 2 micron

Tube length L 150− 250 micron 10 micron

Viscosity fluid µL 0.7− 2.2 mPa · s 0.3 mPa · s

Peak Negative Pressure (PNP) pd 100− 300 kPa 10 kPa

Table 3.2: Range of values of parameters that are used to simulate the microbubble oscil-
lations.

Calculating the harmonic responses

By calculating the discrete Fourier transfrom (DFT) of the radial oscillation, we can find in
what frequencies the microbubble oscillates in response to the driving frequency. It will give
us a frequency domain representation of the time domain oscillation. For non-linear oscilla-
tions we expect to see, besides the principal frequency with which the system is driven, higher
harmonics that are integer multiples of the principal frequency. Other non-linear oscillation
modes give rise to sub- and ultraharmonics seen in the frequency response of the bubble.
These are the responses we are most interested in. Subharmonics are halve the principal
frequency and ultraharmonics are higher harmonics of the subharmonic frequency. The DFT
is computed in MATLAB with a function that uses a fast Fourier transform (FFT) algorithm.

To visualize whether the response would experimentally be observable, we compute from
the DFT the ratio between the harmonic we want to study and the principal frequency. If the
harmonic response is less than one percent of the principal response (i.e. 40 dB in amplitude
ratio), the harmonic is deemed not observable11. For simulations with a subharmonic ratio
that is larger than 1, the oscillation is deemed non-physical. These ratios will be visualized
in contour plots in the results section.

Lastly, we have to look at the maximum radius of the bubble in each oscillation. Because
there are no limitations on the bubble radius in our model, the radius could theoretical ex-

11This tolerance level is due to the resolution of the measuring equipment used in experiments. The level
depends on the type of equipment used, but we assume here that level to be 1 percent of the principal
frequency[27].
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pand to very large diameters without bursting. This is, however, not physically possible in
experiments. For this reason we set a maximum radius for the microbubble, after which the
results are deemed non-physical because in reality the bubble would have already burst. The
maximum radius is set to 1.6 ·a0, with a0 the initial radius of the bubble, which is in practice
for hard-shell bubbles such as Sonovue beyond the point of structural failure.

3.5 Validation of chosen method

Before calculating with our modified model the bubble dynamics in the vicinity of the capil-
lary walls, we first try to validate our differential equation and the simulation code for cases
that have been experimentally validated. First, we test whether we get the expected results
of the Rayleigh-Plesset equation back, when we let the diameter D and length L of the tube
go to infinity. Secondly, we reproduce the results that were published for the same model in
the paper by Qamar et al. [11], and compare them.

Validation of the model for an infinitely large tube

One test to see if the model can be interpreted properly, is by showing it diverges back to
the Rayleigh-Plesset equation for oscillations in free-water, if one takes large D and L for
the dimensions of the tube. Although, this validation has been implied by Qamar et al. [11],
we will explicitely reproduce this. The validation can be done in two ways. One approach
is the algebraic solution, whereby the starting point is equation (3.14) and letting D and L
go to infinity. Then with the correct mass conservation and boundary conditions it is to be
expected that we get the Rayleigh-Plesset equation back.
Another approach is by simulating equation (3.14) for large D and L and comparing it to
the simulation program of Hoff. Sadly, because of the aforementioned MATLAB solver, the
simulation fails for large D and L. This is why we can only do the first approach.

To show that our differential equation will diverge to the Rayleigh-Plesset equation, we
will have to look at our equations:∫ L/2
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Now we will see what happens if we let D and L go to infinity.
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First we will look at term (3) in the equations. Both D and L go to infinity, but because
of the D4 in the denominator, that part will dominate and thus the head loss will go to zero.
Term (4) will stay the same, but instead of pL/2 it will change to the pressure at infinity p∞.
In term (2) we have to find a new expression for u∞ when integrating to infinity. A boundary
condition for this system with boundaries at infinity is that the velocity there has to go to
zero. Thus this part in term (2) will drop out. This is also confirmed because for large D
the term D4 in the denominator will let the velocity at the boundary of the system go to zero.

To correctly change term (1) to our new system we have to change the mass conservation
we used to one that is correct in an infinite fluid domain. Let start again with the integration
of term (1), and again apply the Leibniz integration rule [18]:∫ ∞

a(t)

(
∂u

∂t

)
dx =

∂

∂t

∫ ∞
a(t)

u dx+ ȧ2 (3.25)

Because D and L both go to infinity, our system has become spherically symmetric in its
oscillations. Now our integration along the centerline of the tube is equal to an integration
along a radial streamline. Then the integral on the right-hand side becomes:

∂

∂t

∫ ∞
a(t)

u dx =
∂

∂t

∫ ∞
a(t)

u dr. (3.26)

From this point on our problem becomes equivalent to the one in section 2.3 where we
have derived the Rayleigh-Plesset equation.

aä+
3

2
ȧ2 =

pa − p∞
ρ

(3.27)

In the end we see that we indeed get the Rayleigh-Plesset equation back when taking the
dimensions of the tube to infinity.

Comparison to the article

To make sure we are simulation our model correctly, we reproduce some results of this same
model tested in the paper by Qamar et. al. [11]. Here, we aren’t looking for exactly the same
data in the figures, but for similiar responses of the microbubbles. This, because Qamar et
al. used a different type of shell model12.

In figures 3.4 and 3.5 we see on the left the figures from the paper, and on the right our
own figures. For both figures we see a similar relation between the paper and our own data.
Our own microbubbles seem to be more damped because the maximum radii are everywhere
lower compared to the maximum radii of the paper’s microbubbles. This might be because
of the different shell models that are used in the calculation of these figures.

12The type of shell model is not clearly stated in the article, but the data is compared to experimental
data of microbubbles with a certain type of lipid monolayer as shell [32].
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(a) Own simulated data (b) Graph from paper by Qamar et al.13

Figure 3.4: a) The change in the maximum radius simulated for 3 different tube diameters,
compared to the Rayleigh-Plesset equation. Here, a0 = 1.5 micron, with a driving frequency of 2.25
MHz. This graph is meant to be compared with figure b) by Qamar et al., see [11] (with the same
parameters). In their graph are both experimental and numerical data plotted to be compared with
the Rayleigh-Plesset model in red. R0 and a0 are both the initial radius of the bubble. Rmax and
amax are both the maximum radius of of the entire oscillation.

(a) Own simulated data (b) Graph from paper by Qamar et al.14

Figure 3.5: a) The change in the maximum radius simulated for 2 different microbubble radii
for different ratios of L and D. In these ratios, D is fixed at 200 micron and L changes in size. The
driving frequency is 2.25 MHz, the PNP is 175 kPa. This graph is meant to be compared with figure
b) by Qamar et al., see [11] (with the same parameters). R0 and a0 are both the initial radius of
the bubble. Rmax and amax are both the maximum radius of of the entire oscillation.

13Reprinted from [ Qamar, Adnan et al. “Dynamics of micro-bubble sonication inside a phantom vessel.”
Applied physics letters vol. 102,1 (2013): 13702. doi:10.1063/1.4773909 ], with the permission of AIP
Publishing.

14ibid.
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4 Results and Discussions

The results in this section will be separated into three parts. First, we will look at the influ-
ence of viscosity on on the harmonic responses of the oscillating microbubble. This will be
simulated with the Rayleigh-Plesset equation, to see if we can validate some experimental
findings with an existing and widely used model. Secondly, we will look at the effects of a
rigid tube on the harmonic responses of an oscillating microbubble. In this section we will
keep the viscosity equal to the viscosity of water, µL = 1.0 mPas. In the last part, we will
take some of the results and compare them directly to experimental data. Each result section
is followed by a discussion of those results.

In the results, we will use contour plots to visualize the (sub/ultra)harmonic responses
of the microbubble. As explained in more detail in section 3.4, this is done by determining
the ratio between the principal frequency and the (sub/ultra)harmonic in question. All the
contour plots shown in the result sections will have the same color scale and thus can be
compared with each other. Figure 4.1 is an example of such a contour plot.

Figure 4.1: A contour plot of the subharmonic frequency response of a microbubble in
a fluid with viscosity µL = 0.7 mPas, simulated with the Rayleigh-Plesset equations. The
response is simulated for a range of initial bubble radii a0 and peak negative pressures. The
gray area is where the response is less than 1 percent of the response of the principal frequency
at 1MHz. The white area is where the simulation failed due to calculation restrictions by
MATLAB.
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In figure 4.1 we see the subharmonic response of a microbubble in a infinite domain of
fluid. This result was simulated with the Rayleigh-Plesset equation. In the figure we see a
range of microbubble radii a0, chosen according to the bubble distribution of Sonovue (see
figure 3.3 in section 3.4), against a range of pressures. The colored areas indicate the subhar-
monic response with a ratio larger than 0.01, with the scale of the colors given in the colorbar
on the bottom of the figure. The gray areas indicate a subharmonic response of less than
0.01 and is determined to be not detectable as explained in section 3.4. The white areas are
the simulations that failed due to calculation restrictions of MATLAB in which we simulated
all our results. The white areas also indicate where the model becomes non-physical, due to
a subharmonic response ratio that is larger than 1. The darker shaded area, outlined with a
black line, is the area where the microbubbles would have burst because of there large radius.

Considering all this, the only physical part in this figure, where we expect a subharmonic
response, is for bubbles of a radius around 2.5 micron with pressures between 110− 160 kPa.

4.1 Results for viscosity

4.1.1 Effects on harmonics responses

A first observation is that there are no grey areas in the first harmonic responses. This means
that for the entire region that can be interpret as physical, there is a first harmonic response
detectable. The largest harmonic response for all viscosities is around a bubble radius of
2.5 micron. Although, this response subdues for higher fluid viscosities, the location of this
larger harmonic response does not shift, and thus only changes in magnitude.

The dark shaded area, which represents microbubbles that have already burst, does not
change much for different viscosities and seems to have a slanting direction from the upper
left to the bottom right. There is a small indentation in this line around the maximum
harmonic response.

4.1.2 Effects on sub- and ultraharmonics responses

We observe immediately a difference between the harmonics in figure 4.2 and the subhar-
monics in figure 4.3. There is only a small region in the subharmonic contour plots where the
subharmonics are experimentally observable. For all viscosities, almost the whole plot is grey
except for a small oblique region that starts for bubble radii around 2.5 micron. This is around
the same spot where we saw the maximum magnitude of first harmonic responses in figure
4.2. As with the harmonic response, the subharmonics seem to diminish for higher viscosities.

In figure 4.4 we see the ultraharmonics response from the oscillating microbubbles. These
figures are in orientation similar to the subharmonic contour plots, but the magnitude of the
ultraharmonics are lower than the subharmonics. For fluid viscosities above µ = 1.3 mPas,
there are no detectable ultraharmonics left.
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4.2 Discussion of viscosity effects

Considering the change of all the (sub/ultra)harmonics with changing viscosity, we observe
the intuitively expected resonance behavior of the bubbles: The viscosity is a damping term
for the oscillation of the microbubble. The larger the viscosity is, the more it dampens the
oscillation. As a consequence, it will also have a damping effect on the frequency responses
of the microbubble. It does not change the profile of the contour plots we saw, and only
effect the magnitude of the responses.
It is however to be noted that in the Rayleigh-Plesset equation, the viscosity of the liquid is
only taken into account in close proximity of the bubble-fluid interface. In general, the fluid
is considered as inviscid. This might imply that the damping due to viscosity will be larger
in experimental set ups than this model shows. For in vivo experiments, with blood being
a more viscous fluid than water, these results might already explain why in some ranges
there are no subharmonic or ultraharmonic reponses, without simulation a tube around the
oscillating bubble.
Also, we have to keep in mind that not all microbubble radii are of the same importance to
the total signal. For Sonovue, there are more microbubbles radii in the range of 0.75−1.5 mi-
cron, then larger microbubbles. Thus, a sub- or ultraharmonic response in larger microbubble
sizes does not immediately mean that you will see this response in experiments.

The concentrated areas with large harmonic responses in figure 4.2 can be explained with
the resonance frequency of the microbubbles. Depending on the size and characteristics of
the microbubble, each bubble has its own natural frequency. When a microbubble is driven
near this frequency, resonance occurs and the harmonic response grows. It also seems that
the sub- and ultraharmonic responses occur in regions of the contour plot with the bubble
radii that are driven near their natural frequency. This, however, should be comfirmed by
also changing the frequency of the acoustic source and observe the change in the responses
of the microbubble.

4.3 Results for rigid tube effects

The simulations for this section were done for every possible combinations of parameter in
tube dimensions and microbubble sizes, describe in section 3.4. This, however, is to much
data to show in this section, and thus a selection was made. The data concerning the change
in harmonic response due to change in tube length will not be discussed, because there was
hardly any observable change in the response. Also, all these simulations were calculation
for the same viscosity, µ = 1.0 mPas, because of the computation time needed to get all this
data.

4.3.1 Effects on harmonics responses

In figure 4.5 we see the harmonic response for an oscillating microbubble inside a rigid tube.
It shows the response for different types of tube diameters. The tube length is fixed at 150
micron and the fluid viscosity is fixed at 1.0 mPas.
First of all, we see in these plots a large portion of the model that is considered non-physical,
indicated with white. These are the parts where the subharmonic response grows larger than
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the principal frequency. Only for the smaller microbubbles can we look at the harmonic
response of the microbubbles.

The shape of the harmonic response is very similar to the one we saw in figure 4.2, only
more flattened and directed towards the smaller bubble sizes. Again we see a specific area
with a larger harmonic response, now around a bubble radius of 1 micron. As the diameter of
the tube grows larger, the whole figure seems to shift slightly upwards. Where in figure 4.5.a
this area is around 1 micron, for figure 4.5.f it has shifted towards approximately a radius
of 1.5 micron. Similarly, as was observed in figure 4.2, the maximum radius line within the
figure makes a small indentation around the area where the response is largest. Though, for
radii larger than approximately 1.5 micron (dependent of the tube diameter), the shaded area
on the contour plot does not follow the same pattern as with the Rayleigh-Plesset equation,
and is more uneven across the whole figure.

4.3.2 Effects on sub- and ultraharmonics responses

In figure 4.6 we see the subharmonic response of an oscillating microbubble inside a tube.
It shows the response for different types of tube diameters, with a fixed tube length at 150
micron and the fluid viscosity is fixed at 1.0 mPas.

Here, we have the same white and shaded area as we observed in figure 4.5, but the sub-
harmonic response is very different from the harmonic response. It seems as though we can
recognize the shape from the Rayleigh-Plesset response in this figure (see figure 4.3). Again,
it looks like a flattened version of the Rayleigh-Plesset response, up untill a microbubble
radius around 1− 1.5 micron (dependent on the tube diameter). Above this it rapidly goes
to non-physical areas.
What is new here, and what we do not see in the Rayleigh-Plesset response, is a sudden quick
growing subharmonic response as an oblique line across our contour plot. There, the growth
in subharmonic response seems to have a steep slope and switches quickly from physical to
non-physical.

The ultraharmonic response of figure 4.7 is similar to the orientation of the subharmonic
response, but again the magnitude of the response is lower. For instance, we see a less steep
change in magnitude on the transition from physical to non-physical regions.

4.4 Discussion of rigid tube effects

When we look at the change in sub- and ultraharmonic responses for an oscillating microbub-
ble in a rigid tube, it is good to first compare it the Rayleigh-Plesset results. If we compare
the figures for a visocity of µ = 1.0 mPas, on a first glance the figures look very different. But
if you were to flatten the Rayleigh-Plesset figures and shift them to the right, it resembles
the parts of the figures we have for a rigid tube. Whithin this shift, we thus see that the
natural frequency changes for microbubbles that are oscillating in a rigid tube. This result
agrees with other papers that studied this phenomenon. The smaller the vessel, the more
it lowers the natural frequency of the microbubble [33][34]. Combining these results, we see
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that the sub- and ultraharmonics do not seem to dissappear in a tube but more likely shift
to different bubble sizes and pressures. This might be explained due to the fact that larger
microbubbles in a tube are more dampened than smaller ones.

The large non-physical area in the contour plots is a new phenomenon we do not see in
the Rayleigh-Plesset figure. In reality these microbubbles might not exist in these regions
because of the steep slope in the subharmonic response. In those transitions the microbubble
suddenly and very quickly starts to change its oscillation, and might burst because of this.
These area might thus indicate where inertial cavitation takes place. It would be interesting
to investigate whether sub- and ultraharmonics are a sign of the onset on inertial cavitation.
Also, for the smaller microbubbles we see that this region is under the dark shaded area,
where these microbubbles do not exist anymore. More experimental work should be done
in these regions to make sure there isn’t something else going on, and whether it is just the
model that is breaking down.

4.5 Comparison to experimental results

In figure 4.8, we compare some experimental data [10] with the frequency responses of a
microbubble inside a 12 micron diameter and 150 micron length tube. In the figures 4.8.a,
4.8.b and 4.8.c, the viscosity of the fluid is 1.6 mPas, representing the viscosity of blood
plasma. The range of microbubble sizes is in this figure smaller than the other figures in
the results section. This, because we only want to look at the bubble radii that are most
frequently present in the contrast agent Sonovue (see figure 3.3 in section 3.4). No color bar
was added to this figure due to lack of space, but the color scale is the same as all the other
contour plots. The sub figure 4.8.d is the in vivo experimental data for a bolus of Sonovue
sonicated with a pressure of 400 kPa PNP an frequency 1 MHz, with frequency on the x-axis
and on the y-axis the amplitude in dB.

We see in figure 4.8.d that there are no sub- or ultraharmonics detected. When we look at
400 kPa in the contour plots in this figure, there are also no sub- or ultraharmonics present.
However, these contour plots do indicate that no microbubbles can be present at 400 kPa,
because they have already burst. But in the experimental data, it was shown that there are
still microbubbles present that scatter the other harmonics seen in that figure.

4.6 Discussion of comparison with experimental results

In figure 4.8 we compare some experimental data with the numerical model we have created.
It is interesting to see that our model correctly predicts that there are no ultraharmonics or
subharmonics at an insonication of 400 kPa, as is confirmed with the experimental data in
figure 4.8. There are, however, some differences that we can observe. The most important
one is, that our numerical model predict that no microbubbles are left at a pressure of 400
kPa. This is an incorrect prediction, as can be seen in the experimental data. There, they
still see a rise in the harmonic response at 400 kPa. From this we might be able to conclude
that the maximum radius we set for the microbubbles is incorrect. It might be the case that
this maximum radius differs per initial microbubble radii, and that it also differs depending
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on the way the microbubble oscillates. Then, if the black shaded area is in reality smaller,
we might be able to detect sub- and ultraharmonics at a pressure of 300 kPa (where our
numerical model predict the sub- and utraharmonics exist).

Figure 4.2: The harmonic response of a microbubble simulated with the Rayleigh-Plesset
equation for different type of fluid viscosities. The response is given as the ratio between
the first harmonic frequency and the principal frequency. All viscosities are given in mPas.
The grey area is where the response is less than 1 percent of the response of the principal
frequency, at 1 MHz. The white area indicates where the simulation failed due to calculation
restrictions by MATLAB. The parts that are shaded transparent black, are the oscillations
where the bubble radius becomes to large to be physically possible; (1.6 · a0). In these regions
the bubble wouldn’t exist anymore.
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Figure 4.3: Subharmonic response of a microbubble simulated with the Rayleigh-Plesset
equation for different type of fluid viscosities. The response is given as the ratio between
the subharmonic frequency and the principal frequency. All viscosities are given in mPas.
The grey area is where the response is less than 1 percent of the response of the principal
frequency, at 1 MHz. The white area indicates where the simulation failed due to calculation
restrictions by MATLAB. The parts that are shaded transparent black, are the oscillations
where the bubble radius becomes to large to be physically possible; (1.6 · a0). In these regions
the bubble wouldn’t exist anymore.
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Figure 4.4: First ultraharmonic response of a microbubble simulated with the Rayleigh-
Plesset equation for different type of fluid viscosities. The response is given as the ratio
between the first ultraharmonic frequency and the principal frequency. All viscosities are
given in mPas. The grey area is where the response is less than 1 percent of the response of
the principal frequency, at 1 MHz. The white area indicates where the simulation failed due
to calculation restrictions by MATLAB. The parts that are shaded transparent black, are
the oscillations where the bubble radius becomes to large to be physically possible; (1.6 · a0).
In these regions the bubble wouldn’t exist anymore.
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Figure 4.5: The first harmonic response of a microbubble simulated with the new model for
different type of tube diameters. The response is given as the ratio between the first harmonic
frequency and the principal frequency. All diameters are given in micron. The grey area is
where the response is less than 1 percent of the response of the principal frequency, at 1
MHz. The white area indicates where the simulation failed due to calculation restrictions by
MATLAB, or due to non-physical results. The parts that are shaded transparent black, are
the oscillations where the bubble radius becomes to large to be physically possible; (1.6 · a0).
In these regions the bubble wouldn’t exist anymore. The length of the tube is fixed at 150
micron.
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Figure 4.6: The subharmonic response of a microbubble simulated with the new model for
different type of tube diameters. The response is given as the ratio between the subharmonic
frequency and the principal frequency. All diameters are given in micron. The grey area
is where the response is less than 1 percent of the response of the principal frequency, at 1
MHz. The white area indicates where the simulation failed due to calculation restrictions by
MATLAB, or due to non-physical results. The parts that are shaded transparent black, are
the oscillations where the bubble radius becomes to large to be physically possible; (1.6 · a0).
In these regions the bubble wouldn’t exist anymore. The length of the tube is fixed at 150
micron.
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Figure 4.7: The first ultraharmonic response of a microbubble simulated with the new
model for different type of tube diameters. The response is given as the ratio between
the first ultraharmonic frequency and the principal frequency. All diameters are given in
micron. The grey area is where the response is less than 1 percent of the response of the
principal frequency, at 1 MHz. The white area indicates where the simulation failed due
to calculation restrictions by MATLAB, or due to non-physical results. The parts that are
shaded transparent black, are the oscillations where the bubble radius becomes to large to
be physically possible; (1.6 · a0). In these regions the bubble wouldn’t exist anymore. The
length of the tube is fixed at 150 micron.
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Figure 4.8: A comparison between the numerical model and in vivo results. Sub figures a), b) and c) are the simulation
of a range of microbubble sizes a0 inside a rigid tube of length L = 150 micron and diameter D = 12 micron. The fluid viscosity
is that of bloodplasma, 1.6 mPas. Figure a) shows the first harmonic, figure b) shows the subharmonic and figure c) shows
the first ultraharmonic. All these sub figures were driven at a frequency of 1 MHz. Sub figure d) shows the insonication of a
bolus of Sonovue contrast agent inside a mouse brain, sonicated with a frequency of 1 MHz and a pressure of 400 kPa PNP
(from [10]). On the x-axis we see the frequency, with the harmonics indicated with green, the subharmonic with yellow and the
ultraharmonic with purple. The y-axis gives the amplitude in dB.
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4.7 General discussion of used model

In this section we will give some general remarks on the model and the assumptions and
approximations that were made to get to our end results.

There were numerous of assumptions made to establish our model, which oversimplify
the considerably more complex real situation. Potentially one of the most important ones,
is that we assume a spherically symmetric oscillation of the bubble. In section 3 we already
underlined that this assumption is actually not a good one for small capillary vessels. The
consequences of this assumption is that the we over estimate the maximum radius in the
direction of the vessel walls. This might also be an explanation for the differences we saw
between experimental data and our model in the region where the microbubbles still exist
or not (see section 4.6). Also, a non-symmetric microbubble oscillation might also effect the
sub- and ultraharmonic response.

Another assumption is that the insonication on the microbubble is at the end of the tube.
This is not realistic in experimental and clinical set ups, where the microbubbles are soni-
cated outside the body. Because of this, the orientation between the vessel and the acoustic
source can be different for every capillary. And if the microbubble is sonicated from different
directions, the fluid flow inside the vessels near the microbubble might be effected differently.
The assumption of laminar flow might become unjust because of this.

In this model, we only determine the frequency domain of the oscillation of the microbub-
ble. This is, however, not what is measured in experiments. The scattered pressure that the
microbubble radiates is measured and converted into a frequency domain. The scattered
pressure decreases in magnitude by the tissues it as to pass through before it arrives at the
detection equipment. This means, that even if our models predicts small sub- and ultrahar-
monic responses, they might not be detectable once arrived at the detector.

A last important approximation that we made, is the model itself. The way we added
Poisseuille flow to the Rayleigh-Plesset equation was, given the complexity of the system,
somewhat oversimplified. It would have been better to solve the entire Navier-Stokes equa-
tions of course, though these would have been more difficult to solve numerically. In the
second paper by Qamar et al. [24], they improved the model by not adding a constant head
loss, but making the head loss term a function of the induced wall shear stresses by the fluid.
This model followed the experimental data with which they compared their model to, a bit
better than their first model.

Even though, there are a lot of parts in this model that are not exactly accurate compared
to experimental data, it does give us an impression of the fundamental impact of the wall
interaction of a capillary on the oscillation of a microbubble, and thus its frequency responses.
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5 Conclusions and outlook

In this thesis we theoretically investigated the sub- and ultraharmonic response of a microbub-
ble oscillating inside a rigid tube. We also analyzed the effects that change in viscosity can
have on the sub- and ultraharmonic responses for a microbubble by means of numerical sim-
ulation of the Rayleigh-Plesset equation.

We observed that the magnitude of the sub- and ultraharmonic responses depends on
the damping of the viscosity of the fluid, even when the viscosity is only taken into account
near the bubble surface. Our results show that for viscosities higher than 1.3 mPas no
ultraharmonics are predicted for a acoustic source with frequency 1 MHz and pressure range
of 100−300 kPa PNP. This prediction can potentially explain the disappearance of sub- and
ultraharmonics in measurements obtained in vivo, but this should be more investigated by,
for instance, changing the viscosity in the tube model we also investigated in this thesis.

In the tube model, we observed a shift in all the frequency responses, and did not see
them disappear due to change in magnitude. This shift might also be the reason between
the differences seen in in vitro and in vivo experiments.
An important observation in the results is that in both models, the sub- and ultraharmonic
responses only appear in small regions of the investigated ranges. The first harmonic response
however, is observable for almost the entire physical range of the contour plots. Imaging with
sub- and ultraharmonics is thus not ideal because they are very specific to bubble size and
pressure, and might be a sign of the onset of inertial cavitation in the tube model. This sug-
gests to a conclusion that sub- and ultraharmonics shouldn’t be used for diagnostic purposes,
and only for therapeutic purposes when inertial cavitation is wanted.

However, this model that is proposed to predict the sub- and ultraharmonic microbubble
responses, needs to be validated with dedicated experiments before far fetched conclusions
can be drawn from the theoretical results. Of particular importance is hereby also an in-
depth analysis of the so called ‘non-physical’ regions, which have not been accessible in the
scope of the conducted numerical simulations.

Another step would be, of course, to include more into the model, to make it a more
realistic simulation. Some first leads for such extended simulations could for example be non-
symmetric simulation, or calculating the scattered pressure that the microbubble radiates.
Further research could also look into the frequency dependency of the sub- and ultraharmonics
in the system and make an average signal over all the microbubbles with the microbubble
distribution of the contrast agent that is used.
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A Fundamentals for fluid flows

Before reading the theory needed to understand the method used in this research, there is
some terminology that needs to be addressed if one is not familiar with fluid dynamics. There
are common used terms in physics with which a fluid can be described. These terms signify
certain characteristic of the fluid. It is important to understand what those terms imply
about the physics of the fluid. For this reason we will briefly go over a few of the definitions
of these terms. Multiple physics books were consulted for this section [12][14][13].

Steady and unsteady flows

Depending on how a state changes in time, it can be described as either steady or unsteady.
If fluid parameters (e.g. velocity, pressure, density etc.) are constant in time the fluid is said
to be steady. If these parameters change with time the fluid is unsteady. Depending on the
situation a fluid might be unsteady at first but develop into a steady fluid. One example of
this is running water out of a tab. When the handle on the tab is turned to let the water
out, the flow is unsteady. But after a while, when the tab is fully open, the flow becomes
steady because no new changes are made within the system. The second part of this flow is
also called a fully developed steady flow because all transient effects of opening the tab have
vanished and it has settled into its final state.

Compressible and incompressible fluids

The terms compressible and incompressible are used to describe the density of a fluid. A
fluid is considered incompressible if the density is constant. For a compressible fluid the
fluctuations in the density are to large to be negligible and must be taken into account. Most
liquids can be considered incompressible at moderate pressures because the density does not
fluctuate much with change in temperature. For high pressures the compressible effects in
the liquid become important and can’t be neglected anymore. In the upcoming sections we
will assume that the fluids are incompressible.

Viscous and inviscid fluids

In an inviscid fluid no viscous effects are taken into account because they can be neglected.
Consequently, a viscous fluid is a fluid where these viscous effects can not be neglected. Thus,
depending on the dynamics of your system, your fluid might be considered viscous of inviscid.
Whether or not these effects can be neglected can be determined by computing the Reynolds
number:

Re = ρ
V L

µ
(A.1)

with ρ the density, µ the viscosity of the fluid, V the characteristic velocity of your system
and L the characteristic size scale of your system. For a large Reynolds number the viscous
effect are negligible, and for small numbers they are not and dominate your system. For an
intermediate Reynolds number it is unclear whether or not the viscous effect are negligible.
This turning point is dependent on the geometry of the system.
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Laminar and turbulent flows

The terms laminar and turbulent can be assigned to a viscous fluid to describe the behavior
of the flow field. Laminar flow is when the fluid moves in smooth layers on top of each other.
Take for example a laminar fluid flow in a circular pipe. Because we are dealing with a
laminar flow, the fluid moves in layers in the direction of the fluid displacement, and thus
has only a velocity component in this same direction. In turbulent flow the fluid particles
in these layers can mix and thus there are velocity fluctuations in directions other than the
displacement direction of the flow. This behavior creates more resistance to the flow which
might be an unwanted phenomenon in some cases.
Turbulent flows are also more difficult to mathematically describe due to these rapid velocity
fluctuations. Depending on the flow rate an flow is laminar or turbulent. Because of the
complex nature of turbulent flows, we will assume that all flows in upcoming sections are
laminar flows.

B 3-dimensional Navier-Stokes equations

The 3-dimensional Navier stokes equations in cartesian coordinates:

ρ

[
Dux
Dt

]
= −∂p

∂x
+ µ∇2ux + fx , (B.1)

ρ

[
Duy
Dt

]
= −∂p

∂y
+ µ∇2uy + fy , (B.2)

ρ

[
Duz
Dt

]
= −∂p

∂z
+ µ∇2uz + fz . (B.3)

Here, ρ is the density of the fluid, µ the viscosity of the fluid and ur, uθ, uz are the
velocity components in the r, θ and z. In the equation above we have used the following
operators:

D

Dt
=

∂

∂t
+ ux

∂

∂x
+ uy

∂

∂y
+ uz

∂

∂z
, (B.4)

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (B.5)

The 3-dimensional Navier stokes equations in cylindrical coordinates:

ρ

[
Dur
Dt
− u2

θ

r

]
= −∂p

∂r
+ µ

[
∇2ur −

ur
r2
− 2

r2

∂uθ
∂θ

]
+ fr , (B.6)
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ρ

[
Duθ
Dt
− uθur

r

]
= −1

r

∂p

∂r
+ µ

[
∇2uθ −

uθ
r2
− 2

r2

∂ur
∂θ

]
+ fθ , (B.7)

ρ

[
Duz
Dt

]
= −∂p

∂z
+ µ∇2uz + fz . (B.8)

Here, ρ is the density of the fluid, µ the viscosity of the fluid and ur, uθ, uz are the
velocity components in the r, θ and z. In the equation above we have used the following
operators:

D

Dt
=

∂

∂t
+ ur

∂

∂r
+
uθ
r

∂

∂θ
+ uz

∂

∂z
, (B.9)

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+

∂2

∂z2
. (B.10)

The 3-dimensional Navier stokes equations in spherical coordinates:

ρ

[
Dur
Dt
−
u2
θ + u2

φ

r

]
=

−∂p
∂r

+ µ

[
∇2ur −

2ur
r2
− 2

r2

∂uθ
∂θ
− 2uθ cot θ

r2
− 2

r2 sin θ

∂uφ
∂φ

]
+ fr ,

(B.11)

ρ

[
Duθ
Dt

+
uruθ
r
− uθuφ cot θ

r

]
=

−1

r

∂p

∂θ
+ µ

[
∇2uθ +

2

r2

∂ur
∂θ
− uθ
r2 sin2 θ

− 2 cot θ

r2 sin θ

∂uφ
∂φ

]
+ fθ ,

(B.12)

ρ

[
Duφ
Dt

+
uφur
r

+
uθuφ cot θ

r

]
=

− 1

r sin θ

∂p

∂θ
+

[
∇2uφ +

2

r2sinθ

∂ur
∂φ
− uφ
r2 sin2 θ

+
2 cot θ

r2 sin θ

∂uθ
∂φ

]
+ fφ .

(B.13)
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Here, ρ is the density of the fluid, µ the viscosity of the fluid and ur, uθ, uz are the
velocity components in the r, θ and z. In the equation above we have used the following
operators:

D

Dt
=

∂

∂t
+ ur

∂

∂r
+
uθ
r

∂

∂θ
+

uφ
r sin θ

∂

∂φ
, (B.14)
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1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂φ2
. (B.15)
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