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Abstract

Superconductivity in high-Tc cuprates is one of the longer lasting mysteries in condensed-
matter physics. Cuprates have a complicated chemical structure and display a variety
of phenomena in their phase diagram. Because of this, it is not yet fully understood
what is the mechanism that is responsible for superconductivity. Recently, supercon-
ductivity has been found in twisted bilayer graphene (tBLG), which exhibits a similar
phase diagram as high-Tc cuprates, but is purely carbon based. In addition, the doping
concentration in tBLG can be varied by means of a gate voltage, which represents a
huge advantage in comparison with high-Tc cuprates, for which a new sample must be
prepared for each different doping concentration. Therefore, tBLG can possibly serve
as a platform to investigate the superconducting mechanism that takes place in high-Tc
cuprates. In this thesis, the electronic properties of graphene and bilayer graphene
are addressed. Then, a description of superconductivity in relation to its macroscopic
properties will be given via the Ginzburg-Landau formalism, and its microscopic prop-
erties will be derived using the BCS theory. In the latter approach, the gap equation
is derived for general dimensionality and dispersion. The geometry of tBLG will be
discussed in relation to its Moiré pattern, after which its dispersion will be examined.
Finally, a comparison between tBLG and high-Tc cuprates will be given.
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1 Introduction

Superconductivity is the physical phenomenon where the electrical resistivity of a material
suddenly drops to zero when it is cooled below a certain critical temperature Tc, and the
material expels magnetic fields [1–3]. It was first observed in 1911 by the Dutch Nobel
prize winner Heike Kamerlingh Onnes in a mercury sample, which had been cooled below
4.2 K [4, 5]. Since then, it has been the quest for physicists to engineer a material with a
critical temperature around room temperature.

Superconductivity has many, very useful applications, because it allows for large currents
to flow without energy loss or heat production. The dissipationless current opens the possi-
bility to generate increadibly strong magnetic fields, which are for example needed in MRI
scanners to increase the imaging resolution [6]. Currently, the strongest MRI scanner tested
on a human has a magnetic field of 10.5 T and is located in Minneapolis, USA [7]. How-
ever, scans of small animals have been made with a field strength of 21.1 T in Tallahassee,
USA [7]. Superconducting electromagnets may find applications in levitated transport too.
An operational high speed EDS Maglev train is located in Shanghai, China. This train has
clocked a maximal speed of 430 km/h [8], but the record speed of 603 km/h has been reached
by another Maglev train during a test run near Mount Fuji [9]. The magnetically levitated
trains travel faster, and are also quieter than regular trains because contact between the
vehicle and the tracks is eliminated [10]. Another use of superconductivity can be to make
energy generators more efficient, reducing their volume and thus their production cost [11].
An example of this is the EU funded EcoSwing project from 2019, where a wind turbine with
a superconducting generator was placed in Thyborøn, Denmark [12].

A use of superconductivity can also be found on a more fundamental level, as it is the under-
lying mechanism for SQUIDs (Superconducting QUantum Interference Devices). A SQUID
consists of a superconducting ring with a Josephson junction [13] (a small insulating layer
sandwiched between two superconducting elements), and it can measure miniscule magnetic
fields of order 10−17 T [14]. This can be used in MEG scans that measure brain activity,
which is for example done in research on epileptic seizures [15] and Alzheimer’s disease [16].
SQUIDs also appear in quantum computers, because a series of SQUIDs allows for an en-
tangled quantum state [17]. Quantum computers [18] are expected to be able to perform
complicated calculations that are not possible on regular computers, such as biomolecular
modeling [19] and effective database searching [20].

If a material would exist that displays superconductivity at room temperature, these ap-
plications would have much lower production costs than they have now, since the need for
extensive cooling mechanisms would be eliminated. Moreover, it would become thinkable
to incorporate superconducting materials in everyday electronics, making them faster and
less energy-consuming. As of today however, the highest critical temperature that has been
whitnessed in a superconductor at atmospheric pressure is about 133 K [21]. This is the
critical temperature for high-Tc cuprates in the Hg − Ba− Ca− Cu−O system. These ma-
terials have a complicated chemical structure, and despite the abundance of work done in
the field (over 10.000 results pop up when searching on the topic ”cuprate” in Ref. [22], and
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the original paper from 1986 about the discovery of high-Tc cuprates has been cited over
17500 times [23]), it is currently still unclear what mechanism is responsible for the super-
conductivity [24]. It is equally unclear how the different effects that take place in the system
are related to superconductivity [25]. Experimental research on high-Tc cuprates also faces
a difficulty, because investigating their phase diagrams requires doping, which changes their
chemical properties [26]. To gain more insight in high-Tc superconductivity, it is desirable
to investigate materials that have a phase diagram similar to that of high-Tc cuprates, but
that are less complicated and do not require chemical doping. It has recently been found
that the two-dimensional material twisted bilayer graphene meets these requirements [27,28].

Twisted bilayer graphene (tBLG) consists of two layers of graphene stacked upon each other
with a relative twist [27,28]. If a twist of 1.1 degrees is introduced between the layers, super-
conductivity can take place at relatively high temperatures compared to the charge carrier
density. This was first reported by Cao et al. in 2018 [27]. Because graphene can be easily
isolated from graphite, reasearch on graphene-based materials such as tBLG is very acces-
sible. This possibly provides a platform to understand the superconductivity mechanism in
high-Tc cuprates. Twisted bilayer graphene is a hot topic in physics (with over 600 hits when
searching for the topic ”twisted bilayer graphene” in Ref. [22] since the first paper about
the electronic properties of tBLG in 2007 [29]), and it is still an open problem in physics
to find out how the superconductivity in this material arises. Hopefully, new insights on
superconductivity in tBLG will bring us one step closer towards achieving room-temperature
superconductors.

In this thesis, the electronic properties of graphene and its bilayer variant will be presented in
Chapter 2. In Chapter 3, we will discuss some properties of superconductivity and investigate
how to treat interactions in a system using BCS theory. Then, we will discuss the electronic
properties of tBLG in Chapter 4 and make a comparison between its phase diagram and that
of high-Tc cuprates. The thesis will be concluded in Chapter 5.
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2 Electronic properties of graphene and bilayer graphene

Graphene is a 2D material made of carbon atoms that are arranged into a honeycomb lattice.
It has many interesting properties: It is extremely strong (breaking strength 42 Nm−2) and
stiff (Young’s modulus 1.0 TPa) [30], whilst maintaining its elasticity, making it impermeable
to gases [31]. It is also transparent (opacity 2.3 ± 0.1%) [32], and has both high electrical
conductivity at room temperature (charge carrier mobility ≈ 2∗105 cm2(Vs)−1) [33] and high
thermal conductivity (exceeding 2000 W(mK)−1) [34]. In addition to this, graphene is very
thin and light, and there exist methods for cheap, environment-friendly production [35,36].

Because of its useful properties, graphene is expected to have various applications in dif-
ferent fields. For example, in nanoelectronics, graphene can be used in the production of
nanoscale transistors [37]. It could also be used in the production of transparent, flexible
and relatively cheap solar cells [38], and it may find biomedical applications in drug delivery,
tumor therapy and personalized medicines [39]. Furthermore, it may be used in future touch
screens [40] and it could be added in various composites [41]. These examples are only a few
of the many applications of graphene.

Until 2004, two-dimensional materials were thought to exist only in theory due to the
Mermin-Wagner theorem [42]. However, in 2004, Novoselov and Geim had succesfully iso-
lated graphene from its stacked 3D variant graphite using mechanical exfoliation [43] (ripples
in graphene explain why it can maintain its crystal structure [44]). The discovery of stable
graphene was revolutionary because it opened the possibility to easily perform research on
2D materials. Since 2004, all kinds of 2D crystals have been prepared using mechanical cleav-
age [45], and nowadays, the synthesis of 2D materials includes both top-down (when they
are retrieved from the 3D bulk) and bottom-up (when they are constructed from smaller
components) methods [46,47].

Two-dimensional materials enable the use of scanning probing techniques, which can give
a complete characterization of the properties of the material (since it is only one atom thick)
and can also be used to investigate local properties [48, 49]. Typically, these properties are
very different from 3D materials [48]. Since graphene usually lies on a substrate, the prop-
erties of the latter (such as the dielectric constant) also influence the electron transport in
graphene [50]. Furthermore, the electronic properties of 2D materials can change drastically
when they are combined with a second sheet of material [51]. With this, heterostructures
can be created of which we can engineer the properties [52]. This gave rise to the idea of
combining two layers of graphene to form bilayer graphene, and it has been found that the
twist angle between the sheets vastly modifies its electronic properties.

In this chapter, we will focus on the electronic properties of graphene and its bilayer variant.
A mathematical description of the graphene lattice will be given in Section 2.1, followed by a
description of its First Brillouin zone in Section 2.2. Then, a tight-binding calculation will be
done using second quantization in Section 2.3, to obtain the dispersion relation of monolayer
graphene. In Section 2.4, the dispersion relations of two types of bilayer graphene will be
presented.
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2.1 Mathematical description of graphene

Graphene’s honeycomb lattice can be described as a triangular Bravais lattice with a two-
particle unit cell and spacing a. Thus, the honeycomb lattice is composed of two triangular
sublattices, denoted by A and B. Nearest neighbors in the honeycomb lattice are separated
by a distance d = a/

√
3 (see Fig. 1).

Figure 1: Direct lattice of graphene. The unit cell is indicated by the light-purple diamond on
the left of the figure, with primitive lattice vectors ~a1 and ~a2. The blue dots correspond to the
triangular sublattice A and the red ones to B. The lattice spacing of the triangular lattices
are given by a and the distance between nearest neighbors in the honeycomb lattice is given
by d. The ~δ represent nearest-neighbor vectors whereas the ~δ′ represent next-nearest-neighbor
vectors.

The primitive lattice vectors of the graphene lattice are then given by:

~a1 = a

(
1
0

)
,

~a2 =
a

2

(
1√
3

)
.

(1)

This leads to the nearest-neighbor vectors

~δA1 = −~δB1 =
1

3
~a2 −

2

3
~a1,

~δA2 = −~δB2 =
1

3
~a1 +

1

3
~a2,

~δA3 = −~δB3 =
1

3
~a1 −

2

3
~a2,

(2)
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and the next-nearest-neighbor vectors

~δ′A1
= −~δ′A4

= ~δ′B1
= −~δ′B4

= ~a2 − ~a1,

~δ′A2
= −~δ′A5

= ~δ′B2
= −~δ′B5

= ~a2,

~δ′A3
= −~δ′A6

= ~δ′B3
= −~δ′B6

= ~a1.

(3)

2.2 Reciprocal space

The reciprocal space (more explanations about this can be found in appendix A) of graphene
is again a honeycomb lattice, of which the primitive lattice vectors are given by

~b1 =
2π√
3a

(√
3
−1

)
,

~b2 =
4π√
3a

(
0
1

)
.

(4)

This leads to the six corners of the First Brillouin zone (see Fig. 2) having coordinates
(±4π

3a
, 0), (±2π

3a
,± 2π√

3a
). The corners (4π

3a
, 0), (−2π

3a
, 2π√

3a
), (−2π

3a
,− 2π√

3a
) are related by each other

via reciprocal lattice vectors and are therefore all given the label K. Similarly, the K ′ points
are given by (−4π

3a
, 0), (2π

3a
, 2π√

3a
), (2π

3a
,− 2π√

3a
).

Figure 2: First Brillouin zone of graphene, with the Γ point at (0, 0), the K point at (4π
3a
, 0)

and the M point at (π
a
, π√

3a
).

In the First Brillouin zone, three points are of special interest. These are the Γ point (located
in the middle of the First Brillouin zone), the K point (on one of the corners), and the M
point (on the middle of one of the edges). These points are of high symmetry, so it is expected
that any interesting behavior of the system should occur in the neighborhood of one of these
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points. Therefore, dispersion relations are plotted along the path connecting them. Let
s ∈ [0, 3], then a parametrization for the path Γ−K −M − Γ is given by

(
kx
ky

)
=



s

(
4π
3a

0

)
for s ∈ [0, 1),(

4π
3a

0

)
+ (s− 1)

(
− π

3a
π√
3a

)
for s ∈ [1, 2),( π

a
π√
3a

)
− (s− 2)

( π
a
π√
3a

)
for s ∈ [2, 3].

(5)

2.3 Tight-binding calculation for graphene

In second quantization, all operators can be written in terms of creation and annihilation
operators c† and c (see appendix B). For fermions, their eigenvalues are given by

c† |0〉 = |1〉,
c† |1〉 = 0,

c |0〉 = 0,

c |1〉 = |0〉.
(6)

For the graphene lattice, we will characterize the electrons using the sets of quantum numbers
L, ~Rl and Σ. The quantum number l ∈ L can be equal to either A or B, which indicates in
which sublattice the electron lives. The quantum number ~r ∈ ~Rl denotes the site at which
the electron is sitting in sublattice l, and σ ∈ Σ has either value 1/2 or −1/2, which denotes
the spin (which is a conserved quantity).

In the tight-binding approximation, we can write our Hamiltonian as

H =
∑

l,l′,⟪~r,~r ′⟫,σ
c†l,~r,σcl′,~r ′,σ 〈l, ~r, σ|H|l

′, ~r ′, σ〉, (7)

where ⟪~r, ~r ′⟫ indicates that the sum is restricted to ~r and ~r ′ being next-nearest neighbors at
the most. Now, assume that

〈l, ~r, σ|H|l′, ~r ′, σ〉 =


ε0 when ~r = ~r ′,
t when ~r and ~r ′ represent nearest neighbors,
t′ when ~r and ~r ′ represent next-nearest neighbors,
0 else.

(8)

Then, we can write our Hamiltonian as

H = ε0
∑
l,~r,σ

c†l,~r,σcl,~r,σ + t
∑
l 6=l′
~r,j,σ

c†l,~r,σcl′,~r+~δlj ,σ
+ t′

∑
l,~r,j,σ

c†l,~r,σcl,~r+~δ ′lj ,σ
=

= H0 +Hnn +Hnnn,

(9)

with ~δ, ~δ ′ defined in Section 2.1. It will be easier to diagonalise the Hamiltonian when it is
written as a function of ~k, so we will apply a Fourier transformation to find

H0 = ε0
∑
l,σ

∑
~k

c†
l,~k,σ

cl,~k,σ, (10)
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Hnn = t
∑
l 6=l′,σ

∑
~k

c†
l,~k,σ

cl′,~k,σ

∑
j

ei
~δlj ·~k, (11)

Hnnn = t′
∑
l,σ

∑
~k

c†
l,~k,σ

cl,~k,σ

∑
j

e
i~δ′lj
·~k
. (12)

Writing this in matrix form (such that 〈~rl, σ|H|~r ′l′ , σ〉 = Hll′) yields

H =

A B( )
A ε0 + t′

∑
j e

i~δ′Aj
·~k

t
∑

j e
i~δAj ·~k

B t
∑

j e
i~δBj ·~k ε0 + t′

∑
j e

i~δ′Bj
·~k

=

= d1(~k)1 + dx(~k)τx + dy(~k)τy,

(13)

where

d1(~k) = ε0 + t′
∑
j

e
i~δ′Aj
·~k
,

dx(~k) = t
∑
j

cos(δAj),

dy(~k) = −t
∑
j

sin(δAj),

(14)

and τx, τy are Pauli matrices. When we write

γ(~k) =

√∑
j

ei
~δAj ·~k

∑
j

ei
~δBj ·~k =

=

√
3 + 2 cos(~k · ~a1) + 2 cos(~k · ~a2) + 2 cos(~k · (~a1 − ~a2)),

γ′(~k) =
∑
j

e
i~δ′Aj
·~k

=
∑
j

e
i~δ′Bj
·~k

=

= 2
[
cos(~k · ~a1) + cos(~k · ~a2) + cos

(
~k · (~a1 − ~a2)

)]
,

(15)

and diagonalize the matrix from Eq. (13), we are led to the eigenvalues

E(~k) = ε0 + t′γ′(~k)± tγ(~k). (16)

The dispersion relation is plotted in Fig. 3. The function γ2(~k) can be expanded around the

K-point, which leads to γ2( ~K + ~δk) ≈ 3a2t2| ~δk|2/4. Then, γ is linear up to first order in ~k,
as well as γ′. Hence, the dispersion relation is linear in the vicinity of a K-point, as can be
recognized in Fig. 3 by the Dirac cones. This can also be seen by expanding the matrix from
Eq. (13) around ~K and putting it in standard Dirac form via a canonical transformation [3],
such that

HDirac = (ε0 − 3t′)1 +
1

2

√
3at [(δkx)τx + (δky)τy] . (17)

If we diagonalise HDirac, we retrieve the eigenvalues E = (ε0 − 3t′) ± ~vF | ~δk| with vF =√
3at/(2~) the Fermi velocity. This linearity implies that the electrons near the K-point

behave like massless particles with speed vF .
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(a)

(b)

Figure 3: (a) Dispersion relation of monolayer graphene with next-nearest-neighbor hopping.
The inset shows the linear dispersion around one of the K points. (b) Dispersion relation
as going through the First Brillouin zone by following the path Γ −K −M − Γ. For these
panels, the parameter values ε0 = 1, t = 0.1 and t′ = 0.02 were used.
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2.4 Tight-binding calculation for bilayer graphene

When stacking two layers of graphene on top of each other, two typical orderings can occur.
The layers can either be directly on top of each other without any translation in the x − y
plane, or there can be a shift between the layers, such that some atoms have no vertical
neighbor and instead lay above the center of a honeycomb cell from the other layer. The first
type of stacking is called an A−A stacking, and the second type an A−B stacking (see Fig.
4).

(a) (b)

Figure 4: Stacking of bilayer graphene. The blue sites are part of the sublattice A, and the
red sites of sublattice B. (a) A− A stacking. (b) A−B stacking.

To extend the tight-binding calculation to bilayer graphene, we introduce another set of
quantum numbers M such that m ∈ M has either value 1 or 2, which distinguishes the two
layers. The set ~Rm

l describing the sites now also depends on the layer. This changes our
assumptions about the Hamiltonian to

〈m, l, ~r, σ|H|m′, l′, ~r ′, σ〉 =


ε0 when m = m′ and ~r = ~r ′,
t when m = m′ and ~r, ~r ′ represent nearest neighbors,
t′ when m = m′ and ~r, ~r ′ represent next-nearest neighbors,
t⊥ when m 6= m′ and ~r = ~r ′,
0 else.

(18)

2.4.1 A−A Stacking

We assume an A−A stacking and introduce the partial Hamiltonian H⊥ that describes the
inter-layer hopping:

H⊥ = t⊥
∑
m6=m′
l,~r,σ

c†m,l,~r,σcm′,l,~r,σ = t⊥
∑
m 6=m′
l,σ

∑
~k

c†
m,l,~k,σ

cm′,l,~k,σ. (19)
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Adding this to the Hamiltonian yields

HAA =

A1 B1 A2 B2


A1 ε0 + t′γ′(~k) t
∑

i e
~δAi ·~k t⊥ 0

B1 t
∑

i e
~δBi ·~k ε0 + t′γ′(~k) 0 t⊥

A2 t⊥ 0 ε0 + t′γ′(~k) t
∑

i e
~δAi ·~k

B2 0 t⊥ t
∑

i e
~δBi ·~k ε0 + t′γ′(~k)

=

= t⊥
(
τx ⊗ 1

)
+ 1⊗

(
d1(~k)1 + dx(~k)τx + dy(~k)τy

)
.

Note that for t⊥ = 0, the matrix splits into two blocks, so if there is no hopping between
the layers, they decouple and lead to a twofold degenerate case of the monolayer dispersion
relation. The matrix leads to the eigenvalues

E(~k) = ε0 + t′γ′(~k)±

√
t2⊥ + t2γ2(~k)± 2

√
t2⊥t

2γ2(~k). (20)

The dispersion relation is plotted in Fig. 5.

2.4.2 A−B Stacking

We could also have assumed an A−B stacking. In this way, vertical hopping can only take
place between A type sites of the first layer and B type sites of the second layer. This leads
to

H⊥ = t⊥
∑
m 6=m′
l 6=l′,~r,σ

c†m,l,~r,σcm′,l′,~r ,σ = t⊥
∑
m6=m′
l 6=l′,σ

∑
~k

c†
l,m,~k,σ

cl′,m′,~k,σ.
(21)

In matrix representation, the complete Hamiltonian then reads

HAB =

A1 B1 A2 B2


A1 ε0 + t′γ′(~k) t
∑

i e
~δAi ·~k 0 0

B1 t
∑

i e
~δBi ·~k ε0 + t′γ′(~k) t⊥ 0

A2 0 t⊥ ε0 + t′γ′(~k) t
∑

i e
~δAi ·~k

B2 0 0 t
∑

i e
~δBi ·~k ε0 + t′γ′(~k)

=

=
t⊥
2

(
τx ⊗ τx + τy ⊗ τy

)
+ 1⊗

(
d1(~k)1 + dx(~k)τx + dy(~k)τy

)
,

and the eigenvalues (plotted in Fig. 6) are

E(~k) = ε0 + t′γ′(~k)±

√
1

2
t2⊥ + t2γ2(~k)±

√
t2⊥t

2γ2(~k) +
1

4
t2⊥. (22)
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(a)

(b)

Figure 5: (a) Dispersion relation of bilayer graphene with A− A stacking and next-nearest-
neighbor hopping. (b) Dispersion relation as going through the First Brillouin zone by
following the path Γ−K−M−Γ. For these panels, the parameter values ε0 = 1, t = 0.1, t′ =
0.02 and t⊥ = 0.02 were used.
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(a)

(b)

Figure 6: (a) Dispersion relation of bilayer graphene with A−B stacking and next-nearest-
neighbor hopping. (b) Dispersion relation as going through the First Brillouin zone by
following the path Γ−K−M−Γ. For these panels, the parameter values ε0 = 1, t = 0.1, t′ =
0.02 and t⊥ = 0.02 were used.
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Notice that the dispersion near a K-point in the A − B stacking is quadratic. We will
come back to this in Section 3.6 and 4.2. Another important characteristic is that for both
stackings, near the M -point, the bands become flat. The diverging density of states there
is called a van Hove singularity. As we will discuss in Section 4.2 and 4.3, this can lead to
strongly correlated states. However, in bilayer graphene, this flat band is too far above the
Fermi energy. A way to lower the flat band to the Fermi energy is by introducting a relative
twist between the layers, as we will see in Section 4.2. To discuss the importance of flat bands
in dispersion relations, we will first elaborate on the phenomenon of superconductivity. This
will be done in the following chapter.
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3 Superconductivity

Superconductivity was discovered in 1911 when the Dutch physicist Heike Kamerlingh Onnes
whitnessed the vanishing of electrical resistivity in a mercury sample cooled below 4.2K [4,5].
For regular metals, the resistivity gradually declines as the temperature is lowered. For super-
conductors however, the decline is gradual until a certain critical temperature Tc is reached,
at which the resistivity suddenly drops to zero (see Fig. 7a). This observation was substanti-
ated in 1914 when Onnes reported a persisting current in a superconducting ring [53]. During
an experiment by Meissner and Ochsenfeld in 1933, it was discovered that superconducting
materials expel external magnetic fields [54]. This so-called Meissner-Ochsenfeld effect (see
Fig. 7b) is the defining criterion for superconductivity. The first successful theoretical de-
scription of it was derived from Maxwell’s equations by brothers Heinz and Fritz London
in 1935 [55]. The first theory explaining the phenomenology of superconductivity, including
its phase transition, is from Ginzburg and Landau [56]. A microscopic description of super-
conductivity was first given by Bardeen, Cooper and Schrieffer in 1957 [57], for which they
recieved the Nobel prize in 1972 [58].

(a) (b)

Figure 7: Two typical behaviors of a superconducting material. (a) The electrical resistivity
for a superconductor suddenly drops to zero below a certain critical temperature Tc. Panel
from Ref. [59]. (b) The Meissner-Ochsenfeld effect. When T < Tc, the magnetic field is
expelled by the material, which is now in its superconducting state. Panel from Ref. [60].

In Section 3.1, we will discuss the phenomenological theory of superconductivity by reviewing
the Ginzburg-Landau theory, leading to the London equation, which explains the Meissner-
Ochsenfeld effect. Then, in Section 3.3, we will consider a microscopic approach starting
from Cooper pairs and the BCS Hamiltonian, which will be treated using mean-field theory
and a Bogoliubov tranformation in Section 3.4. This transformation also alters the form of
the wavefunction, as will be discussed in Section 3.5. Finally, we will present the gap equa-
tion in Section 3.6, which is the last step towards calculating dispersion relations involving
interactions and evaluating the critical temperature Tc.
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3.1 Phenomenology of superconductivity

This section is based on Chapter 4 of Ref. [1]. The London equation, describing the current
in a superconducting material, can be found using Ginzburg-Landau theory. For this, we let
ψ be the order parameter for the superconducting state, and we assume that

ψ = 0 when T ≥ Tc,

ψ 6= 0 when T < Tc,
(23)

where ψ = |ψ|eiθ is complex and θ is a constant that is adopted by the system when it
goes into its superconducting state (see Fig. 8). By assuming that the order parameter can
depend on the position ~r, and by including a magnetic field, we can write the free energy as

Fs(T ) = Fn(T ) +

∫
d~r

[
~2

2m∗
|(∇− q∗i

~
~A)ψ(~r)|2 + a(T )|ψ(~r)|2 + b(T )|ψ(~r)|4

]
+

1

2µ0

∫
d~r ~B2.

(24)

Here, F is the free energy and the subscripts s, n denote the superconducting and normal
state, respectively; m∗ and q∗ are the effective mass and charge of the charge carriers, a and
b are temperature-dependent functions, where b ≥ 0 to ensure a stable state, and ~B = ∇× ~A
is the magnetic field.

Figure 8: Free energy density difference fs − fn between the superconducting and normal
state, as a function of the order parameter ψ. A nonzero minimum can be found at ψ0 when
T < Tc. Figure from Ref. [1].

Using the Euler-Lagrange equations for ψ∗ in Eq. (24) leads to the equation of motion

− ~2

2m∗
(∇− q∗i

~
~A)2ψ(~r) + (a+ b|ψ(~r)|2)ψ(~r) = 0. (25)

By extemizing Eq. (24) with respect to ~A, we are led to the conserved current,

~j =
q∗i~
2m∗

[ψ∗(∇ψ)− ψ(∇ψ∗)] +
(q∗)2

m∗
|ψ|2 ~A. (26)



3 SUPERCONDUCTIVITY 16

If we assume that |ψ| is constant, then there must be some energy cost associated to changing
θ. Under the global phase tranformation ψ → ψeiθ, the total energy goes to

Fs = F 0
s + ρs

∫
d~r

(
∇θ − q∗ ~A

~

)2

, (27)

with ρs = ~2|ψ|2/(2m∗) and where F 0
s is the free energy of the ground state. If we take

the functional derivative of this free energy with respect to ~A and assume the ground state
(which means θ is constant), we are led to the London equation

~j = −(q∗)2

m∗
|ψ|2 ~A = −2ρs

(q∗)2

~2
~A. (28)

Using the Maxwell equation ∇× ~B = µ0
~j and the identity ~B = ∇× ~A, we can find that

∇× (∇× ~B) = − 1

λ2
~B, (29)

with λ =
√
m∗/(µ0(q∗)2|ψ|2), which has units of length and is called the penetration depth.

Figure 9: Exponential decay of the magnetic field in a superconducting material. Here,
the direction of the ~B-field is parallel to the surface of the material. Figure adapted from
Ref. [61].

To demonstrate the effect of this equation, consider a surface element of a superconducting
material in the y− z plane. The direction of the magnetic field has no perpendicular compo-
nent near the surface of a superconducting material, so the Bx component will be zero. The
strength of the magnetic field however depends only on x, which represents how far we are

into the material (see Fig. 9). Hence, we can write that ~B(x) =
(
0 By(x) Bz(x)

)T
. From

this we can solve the differential equation (29) to find that ~B(x) = ~B(0)e−x/λ. When x = 0,
we are just at the surface. As x increases however, the magnetic field decays exponentially,
so in the bulk of the superconducting material the magnetic field is zero. This is called the
Meissner-Ochsenfeld effect.
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3.2 Cooper pairs

This section is based on Section 6.3 of Ref. [1]. A microscopic approach of superconductivity
starts with the assumption that there exists an effective attractive interaction V = −V0

between electrons. It can then be shown that it is energetically more favorable for the
electrons to pair up and form a so-called Cooper pair.

Figure 10: Two electrons with opposite momentum and spin, sitting inside the region between
the Fermi surface and the shell with energy εF + Λ. Figure adapted from Ref. [1].

To show this, we will consider a k-space in which all states up to the Fermi surface are filled.
Suppose we add two more electrons, with momentum ~k such that εF < ε~k < εF + Λ. Here, Λ
is a cutoff energy. If the electrons would pair up, their two-particle wavefunction would be
given by

Ψ(~r1, σ1, ~r2, σ2) = ei
~k·~Rcmϕ(~r1 − ~r2)Φspin

σ1,σ2
, (30)

with ~Rcm the position of their center of mass. The energy is minimized when the total
momentum is zero, that is, when the center of mass does not move. We will assume this
ground state from now on. Assume that the spin part of the wavefunction corresponds to a
spin singlet

Φspin
σ1,σ2

=
1√
2

(|↑↓〉 − |↓↑〉). (31)

Note that this function is odd under spin exchange, and since the fermionic nature of electrons
implies that Ψ(~r1, σ1, ~r2, σ2) = −Ψ(~r2, σ2, ~r1, σ1), this means that ϕ(~r1 − ~r2) is a symmetric
function. Now, we will write this part of the wavefunction in terms of Bloch waves

ϕ(~r1 − ~r2) =
∑
~k

ϕ~ke
i~k·(~r1−~r2). (32)

Note that ϕ~k = −ϕ~k because ϕ(~r1 − ~r2) is an even function. We can write a two-particle
wavefunction as

Ψ(~r1, σ1, ~r2, σ2) =
∑
~k

ϕ~k

∣∣∣∣ψ~k,↑(~r1) ψ−~k,↓(~r1)

ψ~k,↑(~r2) ψ−~k,↓(~r2)

∣∣∣∣, (33)
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where ψ~k(~r) = ei
~k·~r is the single-particle Bloch wavefunction. Remember that the sum is

restricted to values of ~k for which εF < ε~k < εF + Λ. Putting the two-particle wavefunction
into the Schrödinger equation leads to

E~kϕ~k = 2ε~kϕ~k − V0

∑
~k′

ϕ~k′ , (34)

with −V0 the attrative interaction. Solving this equation in a self-consistent way, we can find
that

1 = −V0

∑
~k

1

E~k − 2ε~k
. (35)

Converting this sum to an integral∑
~k

1

E~k − 2ε~k
→
∫

dε
g(ε)

E − 2ε
, (36)

and integrating from εF to εF + Λ, leads to the energy

E = 2εF − 2Λ
e−

1
λ

1− e− 1
λ

, (37)

with λ = V0g(εF )/2 the coupling parameter. Here, we have approximated the density of
states g(ε) by the density of states at the Fermi level g(εF ). The energy of this two-particle
wavefunction is lower than 2εF no matter how small the value of λ, so it is indeed energetically
more favorable for electrons to form bound states with opposite momentum and spin, which
are called Cooper pairs.

3.3 Attractive effective electron-electron interaction

This section is based on Section 6.2 of Ref. [1] and Section 3.7 of Ref. [3]. One might wonder
if an effective attractive electron-electron interaction exists at all because of the repulsive
Coulomb interaction

V (~r − ~r ′) =
e2

4πε0|~r − ~r ′|
, (38)

with ε0 the vacuum permittivity. In a crystal, this interaction is reduced by screening effects.
This can be included in the Coulomb interaction by inserting the Thomas-Fermi approxima-
tion into Poisson’s equation, which leads to

V (~r − ~r ′) =
e2

4πε0|~r − ~r ′|
e
− |~r−~r

′|
rTF , (39)

where rTF is the Thomas Fermi screening length. The exponential decay of the repulsive
interaction gives room for a phonon-mediated (see Fig. 11) effective attractive electron-
electron interaction.
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Figure 11: Visualisation of a Cooper pair. The distortion of the ion lattice around an
electron causes a local excess of positive charge. This attracts another electron, leading to
the formation of a Cooper pair. The formation of Cooper pairs can thus be seen as an
exchange interaction between electrons and lattice excitations (phonons) [62]. Figure from
Ref. [62].

Consider the electron-phonon Hamiltonian

He−ph =
∑
~k,~q,s,σ

W~q,sc
†
~k+~q,σ

c~k,σ
[
as(~q) + a†s(−~q)

]
, (40)

where a† and a are the phonon creation and annihilation operators with mode s, ~q represents
the transferred momentum between an electron and a phonon upon interaction, and W~q,s

is a measure for the energy associated to this interaction. This Hamiltonian arises from
the electron-lattice Hamiltonian He−l =

∫
d~x 1

N

∑
~Ri
ρ(~x)V (~x − ~Xi), where ρ is the electron

density, ~Xi = ~Ri + ~ri is the location of atom i with equilibrium ~Ri and deviation ~ri, and V
is the potential that the electrons feel due to the atoms. The electron-phonon Hamiltonian
can be found by taking the first order of the Taylor expansion of He−l in ~ri (note that the
zero’th order leads to the tight-binding model). Using the definition of the ladder operators,
we can find the displacement of the atoms

δ ~Ri =
∑
~q,s

ê~qs

√
~

2Mω~qs
(a†~qs + a~qs)e

i~q·~Ri . (41)

This deplacement will cause a deformation of the potential V such that

δV (~r) =
∑
i

∂V (~r)

∂ ~Ri

δ ~Ri. (42)

Because of this deformation, an electron with wavevector ~k1 may scatter to a state with
wavevector ~k1 − ~q. In doing so, a phonon of momentum ~q is created. After some time, this
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phonon will be absorbed by another electron that was in a state with wavevector ~k2, such
that it now has wavevector ~k2 + ~q. Effectively, we can see this as an interaction between the
two electrons where one of them has transferred a momentum of ~q to the other one. When
performing a second-order perturbation theory calculation, it can be found that the effective
interaction can be described by

V (~q, ω) = |g~qs|2
ω~qs

ω2 − ω2
~qs

. (43)

This g~qs is of order
√
m/M , with m the effective mass of an electron at the Fermi surface

and M the mass of an ion [63]. Since m/M is typically of order 10−4, the electrons and
phonons are only weakly coupled. Therefore, it is justified to only take into account the
basic scattering principle as described above and we do not need to include scatterings of
higher order.

This effective potential is too complicated for analytical calculations. Therefore, we will
simplify it by neglecting the dependence on ~q. The frequency ω~qs is then replaced by the
Debye frequency ωD, and the interaction vertex g~qs is set to a constant geff . This yields

V (ω) = |geff |2
ωD

ω2 − ω2
D

. (44)

For ω < ωD, we can see that this interaction is attractive. We can simplify the potential even
further by limiting ourselves to the interesting region ±kBT away from the Fermi energy,
and assuming that ~ωD � kBT (this is the temperature of interest for superconductivity).
This leads to the simplest form of the potential

V = −|geff |2

ωD
= −V0, (45)

with the corresponding effective Hamiltonian for the effective electron-electron interaction
being

H = V
∑
~k1,~k2,~q
σ1,σ2

c†~k1−~q,σ1
c†~k2+~q,σ2

c~k2,σ2c~k1,σ1 , (46)

with the restriction |ε~ki − εF | < ~ωD. With this we have a description for the interactions
between electrons that occupy states near the Fermi surface.

3.4 Mean-field Hamiltonian

This section is based on Section 3.1 of Ref. [64]. We will consider a Hamiltonian that includes
the kinetic energy of the electrons and an interaction term that only involves Cooper pairs.
Here, we will assume an interaction that may depend on the transferred momentum, but in
Section 3.6 we will insert an effective value as we have seen in the previous two sections. This
leads to the Hamiltonian

H =
∑
~k,σ

ε~kc
†
~k,σ
c~k,σ +

1

2

∑
~k,~k′,σ

V~k~k′c
†
~k,σ
c†
−~k,−σ

c−~k′,−σc~k′,σ, (47)
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where the factor 1/2 is there to prevent overcounting the pairs. We will treat this Hamiltonian
using the mean-field approximation

c†~k,σc
†
−~k,−σ

c−~k′,−σc~k′,σ ≈〈c
†
~k,σ
c†
−~k,−σ

〉 c−~k′,−σc~k′,σ+

c†~k,σc
†
−~k,−σ

〈c−~k′,−σc~k′,σ〉−

〈c†~k,σc
†
−~k,−σ

〉 〈c−~k′,−σc~k′,σ〉.

(48)

Notice that using this approximation, the Hamiltonian has terms like c†c† and cc, which do
not conserve the amount of particles in the system. Therefore, we will make a Bogoliubov
transformation, which is a change of basis such that the vacuum is redefined to be the ground
state of the BCS wavefunction (see appendix D). This transformation is given by

γ~k,↑ = u~kc~k,↑ − v~kc
†
−~k,↓

,

γ†
−~k,↓

= u∗~kc
†
−~k,↑

+ v∗~kc~k,↑,
(49)

where the u~k, v~k are complex parameters that depend on ~k. The Bogoliubov creation and
annihalition operators γ† and γ, respectively, create and destroy quasiparticles called Bogoli-
ubons, which are a combination of an electron and a hole. By imposing |u~k|2 + |v~k|2 = 1, the
Bogoliubov operators satisfy the fermionic anticommutation relations,

{γ†~k,σ, γ~k′,σ′} = δ~k,~k′δσ,σ′ ,

{γ~k,σ, γ~k′,σ′} = 0,

{γ†~k,σ, γ
†
~k′,σ′
} = 0.

(50)

The electron creation and annihilation operators can be written in terms of the Bogoliubov
operators as

c~k,↑ = u∗~kγ~k,↑ + v~kγ
†
−~k,↓

,

c†
−~k,↓

= u~kγ
†
−~k,↓
− v∗~kγ~k,↑.

(51)

If we now write

∆~k =
1

N

∑
~k′

V~k~k′ 〈c−~k′,↓c~k′,↑〉, (52)

and impose one more constraint,

2ε~ku~kv~k + ∆~ku
2
~k
−∆∗~kv

2
~k

= 0, (53)

in order to prevent the existence of terms like γ†γ† and γγ in the Hamiltonian, it can be
found that

v~k
u~k

=
ε~k −

√
(ε~k)

2 + |∆~k|2
∆∗~k

,

|u~k|
2 =

1

2

(
1 +

ε~k√
(ε~k)

2 + |∆~k|2

)
,

|v~k|
2 =

1

2

(
1−

ε~k√
(ε~k)

2 + |∆~k|2

)
.

(54)
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The Hamiltonian can then be written as

H =
∑
~k

E~k(γ
†
~k,↑
γ~k,↑ + γ†

−~k,↓
γ−~k,↓) + EBCS, (55)

where E~k =
√

(ε~k)
2 + |∆~k|2 is the dispersion of the Bogoliubons, and the energy of the

vacuum is defined as EBCS =
∑

~k

[(
ε~k + E~k

)
−
∑

~k′ ∆
∗
~k
V −1
~k~k′

∆~k′

]
. The system can now be

treated as a free fermion gas of Bogoliubons.

3.5 Cooper pair wavefunction

This section is based on Section 6.4 of Ref. [1]. The vacuum of the Bogoliubons is given by
the ground state BCS wavefunction |ΨBCS〉, such that γ~k,σ |ΨBCS〉 = 0. We will now show
how this ground state can be written in terms of the original vacuum |0〉. By filling in the
definition of the Bogoliubon annihilation operator, we get

u~kc~k,↑ |ΨBCS〉 = v~kc
†
−~k,↓
|ΨBCS〉. (56)

The BCS wavefunction is made up of Cooper pairs and has the form

|ΨBCS〉 = Ce
∑
~q α~qP

†
~q |0〉, (57)

as proposed by Schrieffer [57], where P †~k = c†~k,↑c
†
−~k,↓

and P~k = c~k,↑c−~k,↓ are the Cooper pair

creation and annihilation operators, respectively, C is a normalization constant, and α~k is a
function still to be determined.

Using the commutation relation [P †~k , P
†
~k′

] = 0, we can take the sum out of the exponen-
tial and write it as a product

|ΨBCS〉 = C
∏
~q

eα~qP
†
~q |0〉. (58)

Now, using (P †~k )2 = 0, we can Taylor expand the exponential to find

|ΨBCS〉 = C
∏
~q

(1 + α~qP
†
~q ) |0〉. (59)

Assume for now that we only have one single Cooper pair, with ~q = ~k. Using Eq. (56), this
leads to

u~kc~k,↑ |ΨBCS〉 = u~kc~k,↑(1 + α~kP
†
~k
) |0〉 = v~kc

†
−~k,↓

(1 + α~kP
†
~k
) |0〉 = v~kc

†
−~k,↓
|ΨBCS〉. (60)

Notice that c~k,↑ |0〉 and c†
−~k,↓

P †~k |0〉 are equal to zero, reducing Eq. (60) to

u~kα~kc
†
−~k,↓
|0〉 = v~kc

†
−~k,↓
|0〉, (61)
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which implies that α~k = v~k/u~k. The normalization constant can be found by filling in
〈ΨBCS|ΨBCS〉 = 1, which leads to

C =
∏
~k

1√
1 + |α~k|2

. (62)

If we insert Eq. (62) in Eq. (59), we get the convenient form

|ΨBCS〉 =
∏
~k

(u~k + v~kP
†
~k
) |0〉. (63)

3.6 Gap equation

This section is based on Section 3.2 of Ref. [64]. Writing out the expression for ∆~k in terms
of the Bogoliubov operators, we find

∆~k = − 1

N

∑
~k′

V~k~k′ 〈c−~k′,↓c~k′,↑〉 =

= − 1

N

∑
~k′

V~k~k′v~k′u
∗
~k′

(
〈γ−~k,↓γ

†
−~k,↓
〉 − 〈γ†~k,↑γ~k,↑〉

) (64)

Because the Bogoliubov operators are fermionic, the expectation value of the Bogoliubon
particle number follows the Fermi-Dirac distribution, such that

〈γ†~k,↑γ~k,↑〉 = 〈γ†
−~k,↓

γ−~k,↓〉 =
1

eβE~k + 1
, (65)

where E~k =
√

(ε~k)
2 + |∆~k|2. Then

〈γ−~k,↓γ
†
−~k,↓
〉 − 〈γ†~k,↑γ~k,↑〉 = 1− 2

eβE~k + 1
=
eβE~k − 1

eβE~k + 1
= tanh

(
1

2
βE~k

)
, (66)

which leads to

∆~k = − 1

N

∑
~k′

V~k~k′∆~k′

2E~k′
tanh

(
1

2
βE~k′

)
. (67)

Now, assume that V~k~k′ = −V0 and ∆~k = ∆0 are independent of ~k. This corresponds to the
assumption that the interaction is a constant effective attractive interaction (as done in 3.2),
and that the spin part of the wavefunction corresponds to a spin singlet (as done in 3.3). At
this point, we will introduce the chemical potential µ such that ε~k → ε~k − µ. The previous
can then be written as

1 =
1

N

∑
~k

V0

2
√

(ε~k − µ)2 + |∆0|2
tanh

(1

2
β
√

(ε~k − µ)2 + |∆0|2
)
. (68)
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Converting this into an integral yields

2N

V0

=

∫
~k

d~k
g(~k)√

(ε~k − µ)2 + |∆0|2
tanh

(1

2
β
√

(ε~k − µ)2 + |∆0|2
)
, (69)

where g(~k) is the density of states in k-space. Notice that

g(k)dk =
N

VBZ

∫ k+dk

k

kd−1dk

∫ 2π

θ

dθ
d−2∏
n=1

∫ π

0

sind−1−n(φn)dφn =

≈ NI

VBZ
kd−1dk,

(70)

where I =
∫ 2π

θ
dθ
∏d−2

n=1

∫ π
0

sind−1−n(φn)dφn = 2πd/2/(Γ(d/2)). Now, we add a small original

contribution to this calculation. Suppose that the dispersion has the generic form ε(~k) =
µ+ Ckα. Then, dk/dε = (Cαkα−1)−1, such that

g(ε) = g(k)
dk

dε
=

NI

αVBZC
d
α

(ε− µ)
d
α
−1. (71)

The equality then becomes

αVBZC
d
α

IV0

=

∫ µ+~ωD

µ

dε
(ε− µ)

d
α
−1√

(ε− µ)2 + |∆0|2
tanh

(1

2
β
√

(ε− µ)2 + |∆0|2
)
. (72)

With this equation, we can find the critical potential for superconductivity by letting ∆0 →
0, T → 0. In this limit,

αVBZC
d
α

IVc
=

∫ µ+~ωD

µ

dε(ε− µ)
d
α
−2 =

{
1

d
α
−1

(~ωD)
d
α
−1 if d

α
6= 1,

ln(~ωD)− ln(0) if d
α

= 1.
(73)

This means that

Vc = (d− α) VBZC
d
α

I(~ωD)
d
α−1

for d
α
6= 1. (74)

Notice that there is a divergence in Eq. (73) for the case that d/α = 1, which implies that
Vc → 0. The critical temperature can be calculated by taking the limit ∆0 → 0 in Eq. (72)
provided that V0 > Vc (V0 = Vc will lead to Tc → 0). This leads to the numerically solvable
integral equation

αVBZC
d
α

IV0

=

∫ ~ωD

0

dεε
d
α
−2 tanh

( ε

2kBTc

)
. (75)

For d/α = 1 however, the integral diverges, so there will be no solution for the critical temper-
ature. This means that, using this approach, we cannot see superconductivity when d/α = 1.
This is the reason that we do not see superconductivity in A−B stacked graphene for T > 0.
In the case of graphene, we have d = 2, α = 1, C = ~vF , I = 2π and VBZ = 8π2/(

√
3a2). The

critical potential can be recognized in Fig. 12 by the nonzero solution for ∆0 of Eq. (67)
when V0 > Vc. If V0 is increased beyond Vc, the value of the critical temperature is affected,
as can be seen in Fig. 13. For graphene, Vc is too high to see superconductivity [65].



3 SUPERCONDUCTIVITY 25

When calculating the gap equation, one usually approximates the density of states g(ε) by
the density of states at the Fermi level g(εF ). In this section however, we have assumed
a general dispersion in arbitrary dimension, leading to a gap equation for generic d and α.
This means that this derivation also holds for fractional dimensions, and could thus be used
to describe superconductivity in fractals. This result has not been found in literature, so we
think that this may be an original contribution.

Figure 12: Plot of ∆0 against the potential V0 with critical potential Vc for graphene in the
limit that T → 0.
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Figure 13: Plot of ∆0 as a function of the temperature for multiple values of V0 for graphene.
The critical temperatures for the different V0 are indicated by Tc. The shape of the graphs
is universal up to the spacing between the contours.
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4 Twisted bilayer graphene

Twisted bilayer graphene is a bilayer of graphene with a relative twist between the layers.
When introducing this twist, a superstructure called a Moiré pattern [66, 67] emerges, as
can be seen in Fig. 14. A Moiré pattern is an interference pattern that emerges when two
(not necessarily periodic) structures are superposed [67]. The name for this type of pattern
originates from the French word moire, a type of textile with a rippled appearance that is
created by passing two dampened layers of fabric between two hot cilinders [68]. Originally,
the fabric used in this procedure was silk, and it’s wavy appearance gave moiré treated silk
the name watered silk [69]. Moire was formerly worn by the upper class and can nowadays
still be seen in some gowns [70–72].

Figure 14: Twisted bilayer graphene for a twist angle of 1.1◦. An A−B stacking was assumed
before twisting. The Moiré pattern1 consists of locally A−A stacked spots and locally A−B
stacked spots, as indicated in the picture. Enlarged views of the local stackings are shown in
the insets in the bottom right corner.

1If you are seeing this picture on a computer, you may notice some straight lines appearing depending on
your zoom level. This is actually another Moiré pattern that is formed by the pixels on your screen! This is
also the reason why you should not wear stripes if you appear on TV.
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In physics, Moiré patterns are often used to measure surface deformations of materials (for
example due to thermal expansion). This is done by engraving or projecting a grating on
the surface of the material to be studied, and introducing a reference grating [73]. The su-
perposition of the two will then produce a Moiré pattern. If the material is subject to some
strain, it will deform or displace, thus changing the surface. This gives rise to a change in the
Moiré pattern, which can then be studied [73, 74]. Microelectronic devices are an example
of the importance of such measurements: since these electronic devices are very small, the
temperature-induced stresses on components with different thermal expansion rates become
relevant and need to be taken into account to create a well-functioning device [75].

In this chapter, we review for which twist angles a periodic Moiré superlattice can be achieved,
and present the corresponding lattice vectors in Section 4.1. In Section 4.2, we exploit the
periodicity of the Moiré pattern and derive the dispersion relation for tBLG. In Section 4.3,
we discuss the similarities and differences between tBLG and high-Tc cuprates in relation to
their phase diagrams.

4.1 Lattice vectors of the Moiré pattern

This section is based on Ref. [76]. In order to find the primitive vectors for the Moiré
supercells, we lay the origin on the rotation center and characterize the vectors indicating
lattice positions from there. Recall from Section 2.1 that the lattice vectors of an unrotated
layer are given by ~a1 and ~a2. Assuming an A − B stacking prior to twisting, we have
that ~rhc1(m,n) = ~rB2(m,n) = m~a1 + n~a2, such that the rotation center (corresponding to
m = n = 0) coincides with a honeycomb cell center of the first (bottom) layer ~rhc1 and a
B-type site of the second (top) layer ~rB2 (see Fig. 15). If we twist the top layer with respect

(a) (b)

Figure 15: Twisted bilayer graphene. The top layer (in red) is twisted around the black dot.
(a) Before twisting. (b) After twisting with angle θ.
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to the bottom one, then the only way that a commensurate structure can be achieved is by
rotating a B-site of the second layer to a honeycomb cell center of the first layer. If we restrict
the twist angle to the domain [−π/6, π/3] and denote such a B-site by ~P = n~a1 +m~a2 where
n > m > 0 without loss of generality, then there are two rotations possible to end up in a
honeycomb cell center of the first layer. These points are denoted by

~Qθ = m~a1 + n~a2,

~Qθ̄ = (n+m)~a1 −m~a2,
(76)

where 0 < θ < π/3 and −π/6 < θ̄ < 0 are the two possible twist angles (see Fig. 16). The
full set of possible twist angles for commensurate structures is determined by

cos(θ) =
~P · ~Qθ

|~P || ~Qθ|
=

3m2 + 3mr + 1
2
r2

3m2 + 3mr + r2
,

cos(θ̄) =
~P · ~Qθ̄

|~P || ~Qθ̄|
=

3
2
m̄2 + 3m̄r̄ + r̄2

3m̄2 + 3m̄r̄ + r̄2
,

(77)

where we have defined r = n−m and the bar notation indicates the correspondence to the
twist angle. The ~Q points can then be rewritten as

~Qθ(m, r) = m~a1 + (m+ r)~a2,

~Qθ̄(m̄, r̄) = (r̄ + 2m̄)~a1 − m̄~a2.
(78)

The primitive translation vectors for twist angle θ are determined by the minimal m and r
that satisfy Eq. (77) (a similar argument can be given for θ̄). If gcd(m, r) 6= 1, then m and r
can be reduced by dividing out their common factors. If gcd(m, r) = 1, then we are left with
two cases. Suppose gcd(r, 3) = 1, then m and r are minimized, so one primitive translation

vector is given by ~A1 = ~Qθ(m, r) = m~a1 + (m+ r)~a2 (a second one can be found by rotation

of ~A1 by π/3). If gcd(r, 3) = 3, then we can write

3m2 + 3mr + 1
2
r2

3m2 + 3mr + r2
=
m2 + 3mr′ + 1

2
3(r′)2

m2 + 3mr′ + 3(r′)2
, (79)

with r = 3r′, and we recognize the second expression in Eq. (77) with m̄ 7→ r′ and r̄ 7→ m.

This leads to the primitive vector ~A1 = R( ~Qθ̄(r′,m)) = (m+r/3)~a1 +r/3~a2, where R( ~Q) rep-

resents a reflection of ~Q along the symmetry axis between ~P and ~Q (see Fig. 16). The other
primitive vector can again be found by rotating the result by π/3. Assuming gcd(m, r) = 1,
the primitive vectors for the Moiré superlattice are thus given by:

If gcd(r, 3) = 1, (
~A1

~A2

)
=

(
m m+ r

−(m+ r) 2m+ r

)(
~a1

~a2

)
. (80)

If gcd(r, 3) = 3, (
~A1

~A2

)
=

(
m+ 1

3
r 1

3
r

−1
3
r m+ 2

3
r

)(
~a1

~a2

)
. (81)
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Figure 16: ~P and ~Q points on a shell centered on the rotation center. In the middle of
the picture, a piece of an A − B stacked layer is shown with lattice vectors ~a1 and ~a2. The
symmetry of the lattice implies that the ~P and ~Q points come in pairs of six. Commensurate
structures can be obtained by rotating the ~P point indicated in the figure to the ~Qθ or ~Qθ̄

point.

The reciprocal lattice vectors of the Moiré pattern are then given by(
~G1

~G2

)
=

4π

3| ~A1|

(
2 −1
−1 2

)(
~A1

~A2

)
. (82)

The Dirac points of the unrotated and rotated layer are given by ~K = (4π/3)(~a1 − ~a2) and
~Kθ = (4π/3)(~a′1 − ~a′2) respectively. According to Ref. [76], ”after some tedious but trivial
algebra”, it can be found that

∆ ~K := ~Kθ − ~K =

{
r
3
(2~G1 + ~G2) if gcd(r, 3) = 1,
r
3
(~G1 + ~G2) if gcd(r, 3) = 3.

(83)
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4.2 Hamiltonian of twisted bilayer graphene

This section is based on Refs. [76] and [29]. Recall from Section 2.3 that for single-layer
graphene, the tight-binding Hamiltonian is given by

H =
∑

l,l′,⟪~r,~r ′⟫,σ
c†l,~r,σcl′,~r ′,σ 〈l, ~r, σ|H|l

′, ~r ′, σ〉. (84)

In the continuum limit, we can replace the particle operators c† and , c by field operators ψ†

and ψ that vary slowly on the scale of a graphene unit cell, because the Moiré superlattice
unit cells become very large for small twist angles. The corresponding transformation for the
first (unrotated) layer can be given by cα(~r)→ v

1/2
c ψ1,α(~r)ei

~K·~r. As mentioned in Section 2.3,
the dispersion can be described by the Dirac Hamiltonian in the vicinity of a K-point. This
leads to the single-layer Hamiltonians

H1 = vc
∑
l,σ,~k

ψ†
1,l,~k,σ

ψ1,l,~k,σ(ε0 − 3t′)1 + ~vc
∑
l 6=l′
σ,~k

ψ†
1,l,~k,σ

ψ1,l′,~k,σvF (τ · ~k),

H2 = vc
∑
l,σ,~k

ψ†
2,l,~k,σ

ψ2,l,~k,σ(ε0 − 3t′)1θ + ~vc
∑
l 6=l′
σ,~k

ψ†
1,l,~k,σ

ψ1,l′,~k,σvF (τ θ · ~k),
(85)

where the subscripts 1 and 2 denote the first (unrotated) and second (rotated) layer, re-
spectively, 1θ = eiθτz/21e−iθτz/2, and τ =

(
τx τy

)
, τ θ = eiθτz/2τe−iθτz/2 with τx, τy, τz Pauli

matrices. For the inter-layer Hamiltonian, we define the parameter ~δ(~r) that represents the
horizontal (in-plane) distance between a site ~r in layer m and sublattice l to its nearest
neighbor in layer m′ 6= m, residing in sublattice l′. This gives rise to

H⊥ =
∑
m 6=m′
l,l′,~r,σ

t⊥(~r)c†m,l,~r,σcm′,l′,~r+~δ(~r),σ, (86)

where t⊥(~r) ≡ t⊥(~δ(~r)) describes the inter-layer hopping. If we take the continuum limit of
this Hamiltonian and write ψ2,l′,~r+~δ(~r),σ ≈ ψ2,l′,~r,σ (because ψ is a slowly varying field), and
then take the Fourier transform, we will be led to

H⊥ = vc
∑

l,l′,~k,~k′, ~G,σ

(
t̃⊥(~G)ψ†

1,l,~k+ 1
2

∆ ~K+ ~G,σ
ψ2,l′,~k′− 1

2
∆ ~K,σδ(~k+ 1

2
∆ ~K)(~k′− 1

2
∆ ~K) + h.c.

)
, (87)

where ~G is a reciprocal lattice vector and

t̃⊥(~G) =

∫
d~rt⊥(~r)e−i

~G·~rei
~Kθ·~δ(~r). (88)

If we assume a commensurate structure with gcd(r, 3) = 3 (the meaning of r is defined in

Section 4.1), then ∆ ~K will be a reciprocal lattice vector, such that we can write

H⊥ = vc
∑

l,l′,~k, ~G,σ

(
t̃⊥(~G)ψ†

1,l,~k+ 1
2

∆ ~K+ ~G,σ
ψ2,l′,~k− 1

2
∆ ~K,σ + h.c.

)
. (89)
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Writing φm,l,~k,σ = ψm,l,~k± 1
2

∆ ~K,σ with the positive sign for m = 1 and the negative sign for

m = 2, we find the total Hamiltonian

HtBLG = H1 +H2 +H⊥ =

= vc
∑
l,σ,~k

φ†
1,l,~k,σ

φ1,l,~k,σ(ε0 − 3t′)1 + ~vc
∑
l 6=l′
σ,~k

φ†
1,l,~k,σ

φ1,l′,~k,σvF

[
τ ·
(
~k +

1

2
∆ ~K

)]
+

+ vc
∑
l,σ,~k

φ†
2,l,~k,σ

φ2,l,~k,σ(ε0 − 3t′)1θ + ~vc
∑
l 6=l′
σ,~k

φ†
2,l,~k,σ

φ2,l′,~k,σvF

[
τ θ ·

(
~k − 1

2
∆ ~K)

)]
+

+ vc
∑

l,l′,~k, ~G,σ

(
t̃⊥(~G)φ†

1,l,~k+ ~G,σ
φ2,l′,~k,σ + h.c.

)
.

(90)

The inter-layer hopping parameter t̃⊥(~G) has different values, depending on between which
sublattices the hopping takes place (see Ref. [28]). The Hamiltonian leads to the dispersion
relation that can be seen in Fig. 17. For very small twist angles, the Moiré bands show a
quadratic dispersion around the reciprocal lattice points that are denoted by A and B in Fig.
17. This behavior is expected because for a very small twist, the dispersion should be similar
to that of an A−B stacked bilayer, which we have seen in Fig. 5 of Section 2.4 to be quadratic
around a K-point. For larger twist angles, the sheets decouple, and we are left with a linear
dispersion, as we would expect from single-layer graphene. For intermediate angles, the
dispersion near the A- and B-points becomes flat. Flat bands typically indicate interesting
behavior because since the velocity of the electrons is related to the slope of the dispersion,
their kinetic energy becomes zero. This means that the interaction energies will become very
important, which may give rise to strongly correlated states, such as superconductivity.



4 TWISTED BILAYER GRAPHENE 33

Figure 17: (a) The dashed hexagon denotes the first Brillouin zone of graphene. The blue
disks represent the shifted Dirac points of the two layers in tBLG. (b) Reciprocal lattice of
the Moiré pattern. (c) Band stucture along the path A−B − C −D −A [see panel (b)] for
θ = 5◦, 1.05◦ and 0.5◦. (d) Density of states. For θ = 1.05◦, a van Hove singularity can be
seen at zero energy. Figure adapted from Ref. [28]. Here, (ε0 − 3t′) has been set to zero.
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4.3 Comparison to high-Tc cuprates

As mentioned in the general introduction, high-Tc cuprates are the superconductors with the
highest critical temperature that we currently know of. Unfortunately, it is not yet com-
pletely understood how superconductivity takes place in these materials. A picture of the
unit cells of some high-Tc cuprates can be seen in Fig. 18. It is known that the superconduc-
tivity originates from the Cu − O planes [77], yet it is still unclear from where the effective
attractive interaction that leads to the formation of Cooper pairs originates [78].

In Section 3.3, we have seen that an effective attractive electron-electron interaction can
be derived from the electron-phonon coupling. However, in high-Tc cuprates, the electron-
phonon coupling is not likely to be the driving mechanism for superconductivity, because
kBTc is much larger than the energy scale of the electron-phonon coupling. In addition,
small or no isotope effect was observed in Tc(x), where x is the doping concentration. Poten-
tially, the magnetic properties of the cuprates play a role. In the phase diagram of high-Tc
cuprates (see Fig. 19), we can see a Mott insulating phase at zero doping. This antiferro-
magnetic phase is attributed to the highly localized d-orbitals of the copper atoms. These
orbitals have a narrow energy band width. This means that these bands will be more flat,
implying that the kinetic energy becomes small and the interactions become important there.
The Mott insulating phase can be described by the Hubbard model when it is mapped into
the antiferromagnetic Heisenberg model [3]. If the material is doped, we will encounter a
superconducting phase.

A Mott insulating phase can also be seen in the phase diagram of tBLG (Fig. 19), and
when increasing or decreasing the charge carrier density, one will equally find superconduct-
ing states. However, in tBLG we only have carbon atoms, which are far less magnetic than
copper atoms. This opens the question whether the magnetic properties are related to the
superconducting phase of high-Tc cuprates, or whether there are some other contributions
that give rise to it. In fact, high-Tc cuprates display a whole zoo of phenomena, and it is not
known if and how they are related to superconductivity. Some examples of these phenom-
ena are charge density waves, pseudogap phases, spin glass phases, stripes and spin density
waves [79].

The complex structure of high-Tc cuprates (Fig. 18) explains why doping the material is
unfavorable when doing experimental research because to investigate the entire phase dia-
gram, one needs to prepare one sample for each doping value. A perk of twisted bilayer
graphene is that the charge carrier density can be tuned via a gate-voltage, eliminating the
need of chemical doping. TBLG is also much easier to understand theoretically because
it is a purely carbon-based material. The critical temperature for the tBLG in Fig. 19 is
about 0.3 K, which is very high compared to the charge carrier density. This indicates that
tBLG really is a strongly correlated material, making it closely related to high-Tc cuprates.
Finally, the properties of tBLG vary vastly depending on the twist angle. This possibly pro-
vides a platform to understand the superconductivity mechanism that takes place in high-Tc
cuprates, explaining the extensive research done on these systems.
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Figure 18: Unit cells of high-Tc cuprates. Figure adapted from Ref. [80].

(a) (b)

Figure 19: (a) Phase diagram of tBLG with a twist angle of 1.16◦. Panel from Ref. [27]. (b)
Typical phase diagram of high-Tc cuprates. Panel from Ref. [81].
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5 Conclusion

In this thesis, we have studied superconductivity in the context of twisted bilayer graphene,
and we have addressed the electronic properties of graphene and its (twisted) bilayer. We
have discussed the importance of room-temperature superconductors on the basis of multi-
ple useful applications. As of today, the materials with the highest critical temperature for
superconductivity are high-Tc cuprates. Unfortunately, it is not yet understood what is the
underlaying mechanism that is responsible for superconductivity because the complicated
chemical structure of high-Tc cuprates gives rise to a whole zoo of phenomena, of which it
is still unclear if and how they are related to superconductivity. Experimental research on
high-Tc cuprates also faces a difficulty, because exploring their phase diagram requires dop-
ing, which requires the preparation of a large number of samples. It has been discovered that
the phase diagram of twisted bilayer graphene shares similarities with the phase diagram of
high-Tc cuprates. Twisted bilayer graphene is purely carbon based, which makes it easier to
treat theoretically. Moreover, its phase diagram can be explored by tuning a gate voltage,
eliminating the need of chemical doping. This possibly provides a platform to understand
the superconductivity mechanism that takes place in high-Tc cuprates.

We have reviewed the electronic properties of graphene using second quantization and have
seen that its dispersion can be described by a Dirac Hamiltonian in the vicinity of a K-point.
The dispersion relations of bilayer graphene have also been presented, and a van Hove sin-
gularity was observed near the M -point. Such a singularity may lead to strongly correlated
states because the kinetic energy goes to zero, revealing the effect of interactions, which are
amplified due to the diverging density of states. However, the flat band region was too far
above the Fermi level. This problem can be solved for magic-angle tBLG. Using the commen-
surability of the Moiré superstructure that appears in tBLG for certain twist angles, we have
constructed a tight-binding Hamiltonian that describes its band structure in the continuum
limit. In doing so, a Dirac Hamiltonian was assumed for the intra-layer hopping. For twist
angles of approximately 1.1◦, we have seen a flat band at the Fermi level.

The phenomenon of superconductivity was revised, from the macro- and microscopic per-
spective. A macroscopic approach has been given using the Ginzburg-Landau model, and we
have reviewed the Meissner effect that followed from the London equation. A microscopic
approach of superconductivity has been discussed following BCS theory, where we assumed
an effective attractive electron-electron interaction that arose from the electron-phonon cou-
pling. We have performed a mean-field approximation and have studied the Bogoliubov
transformation, which gave rise to the gap equation. Assuming a generic dispersion E ∼ kα

and dimensionality d, this last expression allows us to describe superconductivity for systems
with non-integer α and d. To the best of our knowledge, it is the first time that such calcu-
lations have been performed.

Both in high-Tc cuprates and tBLG, the electron-phonon interaction is not enough to give
a complete picture of their phase diagrams. For example, both materials have a Mott insu-
lating ground phase that originates from a repulsive interaction, which is often described by
the Hubbard model. It is important to include these interactions in order to get a more clear
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view of the entire phase diagram. Next to including more interactions, we could also have
considered more complicated pairing symmetries, that are important in cuprates and could
be relevant in tBLG. Another element that could be addressed is how one can obtain the
Ginzburg-Landau formalism from the BCS theory, connecting the micro- and macroscopic
description for superconducting materials. By adding other competing phases, we could then
have a more clear view of the phase diagram.

Similarly to high-Tc cuprates, the superconductivity in tBLG is not yet completely under-
stood. However, research on tBLG is much more accessible than in high-Tc cuprates, so
hopefully, tBLG will teach us more about the superconductivity phenomenon, such that we
can understand the superconductivity in high-Tc cuprates better and eventually come one
step closer towards room-temperature superconductivity.
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A Reciprocal space

This section is partly based on Ref. [82]. Let ψ(~x) be a wavefunction and define the translation

operator T~R that translates ~x by a lattice vector ~R. Note that T~R commutes with the

(periodic) Hamiltionian H because T~RH(~x)ψ(~x) = H(~x + ~R)ψ(~x + ~R) = H(~x)ψ(~x + ~R) =

H(~x)T~Rψ(~x). This means that T~R and H have the same eigenstates, so T~Rψ(~x) = C(~R)ψ(~x).

Translating by ~R and then by ~R′ or translating by ~R + ~R′ should give the same result,
so T~R′T~Rψ(~x) = T~R+~R′ψ(~x), which leads to C(~R)C( ~R′)ψ(~x) = C(~R + ~R′)ψ(~x), such that

C(~R)C(~R′) = C(~R + ~R′). Then C(~R) is of the form ei
~k·~R for some ~k, which we will refer to

as the wavevector from now on. We can now write that

ψ~k(~x+ ~R) = ei
~k·~Rψ~k(~x), (91)

and we can see that the periodicity of the lattice is indeed respected, because |ψ~k(~x+ ~R)|2 =

|ei~k·~Rψ~k(~x)|2 = |ψ~k(~x)|2.

A more common description of the wavefunction can be found by multiplying Eq. (91) by

e−i
~k·(~x+~R), which leads to e−i

~k·(~x+~R)ψ~k(~x + ~R) = e−i
~k·~xψ~k(~x). Now, write u(~x) = e−i

~k·~xψ~k(~x).

Then u(~x+ ~R) = u(~x), and we can conclude that ψ~k(~x) = ei
~k·~xu(~x) with u a periodic function

with the lattice periodicity. This is also known as Bloch’s theorem. The wavevector is linked
to the momentum by the de Broglie relation ~p = ~~k.

Consider a wave ψ~k(~x) = ei
~k·~xu(~x) and let ~R be a lattice vector. There exist wavevec-

tors ~K that yield plane waves with the same periodicity as the lattice. For these ~K one
can write ψ ~K(~x) = ψ ~K(~x + ~R), so ei

~K·~xu(~x) = ei
~K·(~x+~R)u(~x + ~R) = ei

~K·(~x+~R)u(~x), such that

ei
~K·~R = 1. This condition is fulfilled when ~K · ~R = 2πn with n ∈ Z. The vectors ~K for which

this holds, are the reciprocal lattice vectors.

To show that the set of these ~K indeed forms a lattice, notice that it is closed under ad-
dition and substraction. This is true because if ~K, ~K ′ are reciprocal lattice vectors, then
e( ~K+ ~K′)·~R = e

~K·~Re
~K′·~R = 1 · 1 = 1 and e( ~K− ~K′)·~R = e

~K·~R/e
~K′·~R = 1/1 = 1, so then ~K + ~K ′

and ~K − ~K ′ are also reciprocal lattice vectors. To determine its primitive vectors, construct
vectors ~b1,~b2 as

b1 =
2π

∆
f(~a2),

b2 = −2π

∆
f(~a1),

(92)

where f(~ai) = f
((
ai.1 ai.2

)T)
=
(
ai.2 −ai.1

)T
and ∆ = ~a1 ·f(~a2). Notice that with this def-

inition we have ~ai·~bj = 2πδij. Denote any generic reciprocal lattice vector by ~K = m1
~b1+m2

~b2

with m1,m2 ∈ R. Assuming that ~K and ~R are reciprocal and direct lattice vectors respec-

tively, we can write that e
~K·~R = e(m1

~b1+m2
~b2)·(n1~a1+n2~a2) = e2π(m1n1+m2n2) = 1, which can only

be true if m1,m2 are integers, hence ~b1,~b2 are primitive vectors.
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Notice that if two wavevectors ~k′ and ~k are separated by a reciprocal lattice vector (such that
~k′ = ~k + ~K), then ψ~k′(

~R) = e
~k′·~Ru(~R) = e(~k+ ~K)·~Ru(~R) = e

~k·~Re
~K·~Ru(~R) = e

~k·~Ru(~R) = ψ~k(
~R),

so there is essentially no difference between plane waves that originate from wavevectors that
differ by a reciprocal lattice vector. In this way, one defines the first Brillouin zone (see Fig.
2), containing the wavevectors that are unique upon translation by reciprocal lattice vectors.

B Second quantization

This section is based on Chapter 21 of Ref. [83]. In first quantization, one represents a state
by stating the quantum numbers for every particle in the system. In second quantization,
states are represented by the amount of particles that have a certain combination of quantum
numbers. In bra-ket notation, we can write this as |n1, n2, · · ·〉, describing a state where ni
particles have quantum numbers Ki ∈ K where the set K of quantum numbers can describe
the entire system (so K is complete). This kind of state lives in Fock space, where any pair
of states is orthonormal.

One can transform a state to have an extra particle with quantum numbers Ki by applying
the creation operator c†i . A particle can be removed by applying the annihilation operator
ci. We can now write that

c†i |n1, n2, · · · , ni, · · ·〉 ∝ |n1, n2, · · · , ni + 1, · · ·〉 ,
ci |n1, n2, · · · , ni, · · ·〉 ∝ |n1, n2, · · · , ni − 1, · · ·〉 .

(93)

We must require that the annihilation operator can only work when there actually is a particle
to remove, so if ai would be applied to a state where ni = 0, then ci |n1, n2, · · · , ni, · · ·〉 = 0.
We will also require that

c†i |0〉 = Ψ1
i = |0, 0, · · · , ni = 1, · · ·〉 ,

ciΨ
1
j = ci |0, 0, · · · , nj = 1, · · ·〉 = δij |0〉 .

(94)

Now, let L be another complete set of quantum numbers. The transformation between
the two representations is then given by |Ki〉 =

∑
p |Lp〉 〈Lp|Ki〉. Then, with creation and

annihilation operators b†p and bp that correspond to L,

c†i =
∑
p

b†p 〈Lp|Ki〉 ,

ci =
∑
p

〈Ki|Lp〉 bp.
(95)
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These expressions are consistent with Eq. (94) because∑
p

b†p 〈Lp|Ki〉 |0〉 =
∑
p

|Lp〉 〈Lp|Ki〉 = |Ki〉 = c†i |0〉 ,∑
p

〈Ki|Lp〉 bpΨ1
j =

∑
p

〈Ki|Lp〉 bp
∑
q

〈Lq|Kj〉Φ1
q =

=
∑
p,q

〈Ki|Lp〉 〈Lq|Kj〉 bpΦ1
q =

=
∑
p,q

〈Ki|Lp〉 〈Lq|Kj〉 δpq |0〉 =

=
∑
p

〈Ki|Lp〉 〈Lp|Kj〉 |0〉 =

= δij |0〉 = ciΨ
1
j .

(96)

Note that applying c†ic
†
j on a state should give the same result as applying c†jc

†
i up to a

normalisation factor λ, so we can write c†ic
†
jΨ = λc†jc

†
iΨ where Ψ is a short hand notation for

a state. Then

(c†ic
†
j − λc

†
jc
†
i )Ψ =

∑
p,q

〈Lp|Ki〉 〈Lq|Kj〉
(
b†pb
†
q − λb†qb†p

)
Ψ = 0. (97)

The tranformation coefficients 〈Lp|Ki〉 , 〈Lq|Kj〉 are arbitrary complex numbers, so we must
have that b†pb

†
q − λb†qb†p = 0 ∀p, q; in particular also b†qb

†
p − λb†pb†q = 0. Hence we find λ = ±1

and c†ic
†
j ∓ c

†
jc
†
i = 0. Taking the Hermitian conjugate of this leads to cicj ∓ cjci = 0. From

the creation and annihilation operators, we can now deduce two kinds of particles. The ones
for which the creation (and annihilation) operators commute, are called bosons. Particles for
which these operators anticommute, are called fermions. We will now derive a commutation
relation for the combination of these operators. We can write that cic

†
jΨ = µc†jciΨ, such that

(cic
†
j − µc

†
jci)Ψ =

∑
p,q

〈Ki|Lp〉 〈Lq|Kj〉
(
bpb
†
q − µb†qbp

)
Ψ = 0. (98)

From the spin-statistics theorem, this will lead to the following commutation relations for
bosons and fermions:

For bosons:

[c†i , c
†
j] = 0,

[ci, cj] = 0,

[ci, c
†
j] = δij.

(99)

For fermions:

{c†i , c
†
j} = 0,

{ci, cj} = 0,

{ci, c†j} = δij.

(100)

A consequence of this equation is that, for fermions, c†ic
†
i = 0, meaning that no two fermions

can have the same quantum numbers. This is called Pauli’s exclusion principle.

We now define the occupation number operators Ni of which the eigenvalues ni represent the
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amount of particles that have quantum numbers Ki. The sum of these operators N =
∑

iNi

must be invariant because the total amount of particles should not change when switching
to another set of quantum numbers. Therefore we must write N as a linear combination of
other additive invariant operators, of which the only ones are the identity and

∑
i c
†
ici. One

could argue that
∑

i cic
†
i is also invariant, but it can be written as a linear combination of the

other two by the commutation relation shown in Eq. (99) and Eq. (100). Any other sum of
products of c†i and ci will not be invariant, so Ni will be of the form xc†ici + y1. Now, Ni |0〉
should be zero, hence y = 0. Additionally, NiΨ

1
i should return Ψ1

i , and using Eq. (94) we
find that x = 1. Hence

Ni = c†ici. (101)

We can now write that

〈n1, n2, · · · , ni, · · · |Ni|n1, n2, · · · , ni, · · ·〉 = ni =

= 〈n1, n2, · · · , ni, · · · |c†ici|n1, n2, · · · , ni, · · ·〉 ,
(102)

such that
ci |n1, n2, · · · , ni, · · ·〉 = eiα

√
ni |n1, n2, · · · , ni − 1, · · ·〉 , (103)

where α is a real number. For bosons, it follows that α = 0. This leads to the following
eigenvalues:

For bosons:

c |n〉 =
√
n |n− 1〉 ,

c† |n〉 =
√
n+ 1 |n+ 1〉 .

(104)

For fermions:

c |0〉 = 0,

c |1〉 = eiα |0〉 ,
c† |0〉 = e−iα |1〉 ,
c† |1〉 = 0.

(105)

Let H be an operator that measures the value of an additive one-particle quantity H, such
as the kinetic energy or the potential energy of a particle in a field. We can express H
as the sum of operators Hi that work on particles that have quantum numbers Ki such
that H =

∑
iHiNi =

∑
iHic

†
ici. If we transform the creation and annihilation operators

c†i , ci to an arbitrary set via Eq. (95), we get H =
∑

p,q b
†
pbq 〈Lp|H|Lq〉, where we have used∑

i 〈Lp|Ki〉Hi 〈Ki|Lq〉 = 〈Lp|H|Lq〉.

Let us now assume that H denotes the Hamiltionian operator, that for now is only com-
posed of additive one-particle quantities. Then H will be of the form

H =
∑
i,j

c†icj 〈Ki|H|Kj〉 . (106)
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We can also include additive two-particle quantities, like the Coulomb potential. The operator
V measures the value of an additive two-particle V , such that

V =
1

2

∑
i 6=j

VijNiNj +
1

2

∑
i

ViNi(Ni − 1) =
1

2

∑
i,j

Vij(NiNj −Niδij) =

=
1

2

∑
i,j

Vij(c
†
icic

†
jcj − c

†
iciδij) =

1

2

∑
i,j

Vijc
†
ic
†
jcjci =

=
1

2

∑
i,j

∑
p,q,r,s

Vijb
†
pb
†
qbrbs 〈Lp|Ki〉 〈Ki|Lq〉 〈Lr|Kj〉 〈Kj|Ls〉 =

=
1

2

∑
i,j

∑
p,q,r,s

b†pb
†
qbrbs 〈LpLr|V |LqLs〉 .

(107)

Including this in our Hamiltionian yields

H =
∑
i,j

c†icj 〈Ki|H|Kj〉+
∑
i,j,m,n

c†ic
†
jcmcn 〈KiKj|V |KmKn〉 . (108)

C Tight-binding calculation for graphene in first quan-

tization

This section is based on Section 3.3 of Ref. [84]. The wavefunction ψ over the entire lattice
can be written as a sum over all unit cells contributing two functions φ1 and φ2 describing
the two 2pz orbitals of the C atoms, multiplied by a plane wave (this follows from Bloch’s
theorem). This yields

ψ~k(~r) =
1√
N

N∑
~R

ei
~k·~R
[
c1φ1(~r − ~R) + c2φ2(~r − ~R)

]
. (109)

The dispersion relation is calculated by

E(~k) =

∫
ψ~k(~r)Hψ~k(~r)d~r∫
ψ~k(~r)ψ~k(~r)d~r

, (110)

whereH is the Hamiltonian. When performing this calculation, the hopping integral
∫
φ
~R
i Hφ

~R′
j d~r

will appear, representing the influence of the atomic potential on the electron orbitals. We
will simplify this expression by only accounting for the on-site and nearest-neighbor hopping
integrals. When i = j and ~R = ~R′, the integral represents the on-site energy, so we can

write
∫
φ
~R
i Hφ

~R′
j d~r = ε0. It equals t when the combination of i,j,~R and ~R′ represent nearest

neighbors (that is when i 6= j and ~R and ~R′ are either equal or separated by ~a1 or ~a2). It
is zero elsewhere. The overlap integral

∫
φ~k(~r)φ~k(~r)d~r is equal to δi,j so that the orbitals on
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different atoms are assumed to have no influence on each other’s shape. In matrix form, the
Hamiltonian for this system in momentum space reads

H =

A B( )
A ε0 t(1 + e−i

~k·~a1 + e−i
~k·~a2)

B t(1 + ei
~k·~a1 + ei

~k·~a2) ε0
=

= ε01 + dx(~k)σx + dy(~k)σy,

(111)

where

dx(~k) = t
[
1 + cos(~k · ~a1) + cos(~k · ~a2)

]
,

dy(~k) = t
[
sin(~k · ~a1) + sin(~k · ~a2)

]
.

(112)

Using the variational principle, one can now find that(
ε0 − E t(1 + e−i

~k·~a1 + e−i
~k·~a2)

t(1 + ei
~k·~a1 + ei

~k·~a2) ε0 − E

)(
c1

c2

)
=

(
0
0

)
. (113)

Solving this eigenvalue problem yields

Enn(~k) = ε0 ± tγ(~k) (114)

where

γ(~k) =

√
3 + 2 cos(~k · ~a1) + 2 cos(~k · ~a2) + 2 cos(~k · (~a1 − ~a2)). (115)

It is possible to extend this calculation to include next-nearest neighbors. Denote the value

of the hopping integral
∫
φ
~R
i Hφ

~R′
j d~r by t′ for next-nearest neighbors. These occur when i = j

and ~R is separated from ~R′ by either ~a1, ~a2 or ~a2 − ~a1 (note that there are now six nearest
neighbors). The Hamiltonian for this system is given by

H =

A B( )
A ε0 + t′γ′(~k) t(1 + e−i

~k·~a1 + e−i
~k·~a2)

B t(1 + ei
~k·~a1 + ei

~k·~a2) ε0 + t′γ′(~k)
=

= d1(~k)1 + dx(~k)σx + dy(~k)σy,

(116)

where

d1(~k) = ε0 + t′γ′(~k),

dx(~k) = t
[
1 + cos(~k · ~a1) + cos(~k · ~a2)

]
,

dy(~k) = t
[
sin(~k · ~a1) + sin(~k · ~a2)

]
,

(117)
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and

γ′(~k) = ei
~k·~a1 + ei

~k·~a2 + ei
~k·(~a1−~a2) + e−i

~k·~a1 + e−i
~k·~a2 + ei

~k·(~a2−~a1) =

= 2
[
cos(~k · ~a1) + cos(~k · ~a2) + cos(~k · (~a1 − ~a2))

]
.

(118)

This results in the following matrix equation:(
ε0 + t′γ′(~k)− E t(1 + e−i

~k·~a1 + e−i
~k·~a2)

t(1 + ei
~k·~a1 + ei

~k·~a2) ε0 + t′γ′(~k)− E

)(
c1

c2

)
=

(
0
0

)
. (119)

The dispersion relation (plotted in Fig. 3) is then given by

Ennn(~k) = ε0 + t′γ′(~k)± tγ(~k). (120)

D Bogoliubov transformation

A Bogoliubov tranformation is a linear transformation of creation and annihilation operators
that defines new creation and annihilation operators and, as such, redefines the vacuum of
the system. Generally, a Bogoliubov tranformation is given by

γ1
...
γn
γ†1
...
γ†n


=



u11 . . . u1n v11 . . . v1n
...

. . .
...

...
. . .

...
un1 . . . unn vn1 . . . vnn
v∗11 . . . v∗1n u∗11 . . . u∗1n
...

. . .
...

...
. . .

...
v∗n1 . . . v∗nn u∗n1 . . . u∗nn





c1
...
cn
c†1
...
c†n


, (121)

with c†j, cj particle creation and annihilation operators respectively and γ†i , γi the Bogoli-
ubon creation and annihilation operators. The indices i, j represent quantum numbers. In
summation notation, the transformation is given by

γi =
∑
j

(uijcj + vijc
†
j),

γ†i =
∑
j

(u∗ijc
†
j + v∗ijcj).

(122)

Now assume that the c†j, cj operators create and annihilate electrons, and thus obey the
fermionic anticommutation relations. We can make the Bogoliubov operators satisfy the
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fermionic anticommutation relations as well by imposing some constraints. Now,

γiγi′ + γi′γi =
∑
j

∑
j′

(uijui′j′{cjcj′}+ uijvi′j′{cjc†j′}+ vijui′j′{c†jcj′}+ vijvi′j′{c†jc
†
j′}) =

=
∑
j

∑
j′

(uijvi′j′δjj′ + vijui′j′δjj′) =

=
∑
j

(uijvi′j + vijui′j),

γ†i γi′ + γi′γ
†
i =

∑
j

∑
j′

(u∗ijui′j′{c
†
jcj′}+ u∗ijvi′j′{c

†
jc
†
j′}+ v∗ijui′j′{cjcj′}+ v∗ijvi′j′{cjc

†
j′}) =

=
∑
j

∑
j′

(u∗ijui′j′δjj′ + v∗ijvi′j′δjj′) =

=
∑
j

(u∗ijui′j + v∗ijvi′j),

(123)

so if we impose the constraints
∑

j(uijvi′j + vijui′j) = 0 and
∑

j(u
∗
ijui′j + v∗ijvi′j) = δii′ ∀i, i′,

the Bogoliubov operators satisfy

{γi, γi′} = 0,

{γ†i , γ
†
i′} = 0,

{γ†i , γi′} = δii′ .

(124)

Now, we will only consider the terms that occur in the BCS Hamiltonian, so
γ~k,↑
γ−~k,↓
γ†~k,↑
γ†
−~k,↓

 =


u11 u12 v11 v12

u21 u22 v21 v22

v∗11 v∗12 u∗11 u∗12

v∗21 v∗22 u∗21 u∗22



c~k,↑
c−~k,↓
c†~k,↑
c†
−~k,↓

 , (125)

where the complex parameters uij, vij depend on ~k. We can set some matrix elements to zero
if we associate the Bogobliubov annihilation operator γ~k,↑ with destroying an electron with

quantum numbers ~k, ↑ and creating a hole with quantum numbers−~k, ↓, and the Bogobliubov
creation operator γ†

−~k,↓
operator with creating an electron with quantum numbers −~k, ↓ and

destroying a hole with quantum numbers ~k, ↑. We can justify this choice by noting that
setting one of uij, v

∗
ij to zero does not change the fermionic anticommutation relations and

it avoids the emergence of terms like c~k,↑c~k,↑ which are equal to zero. With this, the matrix
equation reduces to 

γ~k,↑
γ−~k,↓
γ†~k,↑
γ†
−~k,↓

 =


u11 0 0 v12

0 u22 v21 0
0 v∗12 u∗11 0
v∗21 0 0 u∗22



c~k,↑
c−~k,↓
c†~k,↑
c†
−~k,↓

 , (126)
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together with the constraints

u11v21 + v12u22 = 0,

|u11|2 + |v12|2 = 1,

|v21|2 + |u22|2 = 1.

(127)

The Bogoliubov operators are then given by

γ~k,↑ = u11c~k,↑ + v12c
†
−~k,↓

,

γ†
−~k,↓

= v∗21c~k,↑ + u∗22c
†
−~k,↓

.
(128)

Now,

1

v12

γ~k,↑ −
1

u∗22

γ†
−~k,↓

=
(u11

v12

− v∗21

u∗22

)
c~k,↑ =

(u11u
∗
22 − v∗21v12

v12u∗22

)
c~k,↑,

1

u11

γ~k,σ −
1

v∗21

γ†
−~k,↓

=
(v12

u11

− u∗22

v∗21

)
c†
−~k,↓

=
(v12v

∗
21 − u∗22u11

u11v∗21

)
c†
−~k,↓

,

(129)

such that

c~k,↑ =
u∗22

u11u∗22 − v∗21v12

γ~k,↑ −
v12

u11u∗22 − v∗21v12

γ†
−~k,↓

= U∗22γ~k,↑ − V12γ
†
−~k,↓

,

c†
−~k,↓

=
u11

u11u∗22 − v∗21v12

γ†
−~k,↓
− v∗21

u11u∗22 − v∗21v12

γ~k,↑ = U11γ
†
−~k,↓
− V ∗21γ~k,↑.

(130)

From the earlier imposed constraints, it follows that U11V21 + V12U22 = 0 and

|U22|2 + |V21|2 = |U11|2 + |V12|2 = |U22|2 + |V12|2 = |U11|2 + |V21|2 = 1. (131)

This implies that |U22|2 = |U11|2 and |V12|2 = |V21|2. Because U11V21 + V12U22 = 0, we can
write V~k = V21 = −V12 and U~k = U11 = U22. This on its turn implies that u~k = u11 = u22

and v~k = v21 = −v12, such that eventually, U~k = u~k and V~k = v~k. Thus, we can write the
Bogoliubov operators as

γ~k,↑ = u~kc~k,↑ − v~kc
†
−~k,↓

,

γ†
−~k,↓

= u∗~kc
†
−~k,↑

+ v∗~kc~k,↑,
(132)

and the electron annihilation and creation operators as

c~k,↑ = u∗~kγ~k,↑ + v~kγ
†
−~k,↓

,

c†
−~k,↓

= u~kγ
†
−~k,↓
− v∗~kγ~k,↑.

(133)
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prediction of visible moiré effects,” Journal of Modern Optics, vol. 56, no. 9, pp.

http://www.jstor.org/stable/96265
http://www.jstor.org/stable/96265
https://link.springer.com/chapter/10.1007/978-3-540-68008-6_4
https://link.aps.org/doi/10.1103/PhysRev.108.1175
https://link.aps.org/doi/10.1103/PhysRev.108.1175
https://www.nobelprize.org/prizes/lists/all-nobel-prizes-in-physics
https://www.nobelprize.org/prizes/lists/all-nobel-prizes-in-physics
https://saylordotorg.github.io/text_general-chemistry-principles-patterns-and-applications-v1.0/s16-07-superconductors.html
https://saylordotorg.github.io/text_general-chemistry-principles-patterns-and-applications-v1.0/s16-07-superconductors.html
https://saylordotorg.github.io/text_general-chemistry-principles-patterns-and-applications-v1.0/s16-07-superconductors.html
https://en.wikipedia.org/wiki/Meissner_effect#/media/File:EfektMeisnera.svg
https://en.wikipedia.org/wiki/Meissner_effect#/media/File:EfektMeisnera.svg
https://www.researchgate.net/publication/273297345_Overview_of_Superconductivity_and_Challenges_in_Applications
https://www.researchgate.net/publication/273297345_Overview_of_Superconductivity_and_Challenges_in_Applications
https://www.researchgate.net/publication/51888877_Can_nothing_be_a_superconductor_and_a_superfluid
https://www.researchgate.net/publication/51888877_Can_nothing_be_a_superconductor_and_a_superfluid
http://www.w2agz.com/Library/Classic%20Papers%20in%20Superconductivity/Migdal,%20Strong%20e-p%20Interactions,%20Sov-Phys%20JETP%206,%20996%20(1958).pdf
http://www.w2agz.com/Library/Classic%20Papers%20in%20Superconductivity/Migdal,%20Strong%20e-p%20Interactions,%20Sov-Phys%20JETP%206,%20996%20(1958).pdf
http://www.w2agz.com/Library/Classic%20Papers%20in%20Superconductivity/Migdal,%20Strong%20e-p%20Interactions,%20Sov-Phys%20JETP%206,%20996%20(1958).pdf
https://portal.ifi.unicamp.br/images/files/graduacao/aulas-on-line/fen-emerg/lecture_notes_BCS.pdf
https://portal.ifi.unicamp.br/images/files/graduacao/aulas-on-line/fen-emerg/lecture_notes_BCS.pdf
https://academiccommons.columbia.edu/doi/10.7916/D8VX0F3T
https://academiccommons.columbia.edu/doi/10.7916/D8VX0F3T


REFERENCES XVI

1103–1118, 2009. [Online]. Available: https://www.tandfonline.com/doi/abs/10.1080/
09500340902994140
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