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Introduction.

Non-linear dynamical systems are often used to model physical problems. One of the most famous examples
is the predator-prey model, more speci�cally the Lotka�Volterra equations. This system is used, as the name
implies, to study the relations between predators and prey in an isolated system, where the growth of the
predators and prey are dependent on each other.

While this is an interesting and physically relevant example, it is easier for us to start with one of the
simpler non-linear systems. Consider the system de�ned by the equation

d

dt
x = r + x2, x ∈ R, (1.1)

with a parameter r ∈ R. In this system, changing the r parameter results in profound changes in the solutions.
As for r < 0 the system has two �xed points and for a r > 0 none. The change in r can be very small, while
the di�erence between no �xed point and two �xed points is much more substantial.

These sudden qualitative or topological changes in the dynamics of a system are caused by small smooth
changes in the parameters of the system. These changes are known as bifurcations, and due to their importance
for the behavior of non-linear systems their study is more than worthwhile.

Fortunately these changes are not completely chaotic, bifurcations can be classi�ed by the changes they
induce. The change that the previous example system (1.1) experiences at r = 0 is known as the saddle-node
bifurcation.

More abstractly, the bifurcations themselves can be classi�ed by the amount of parameters required to
fully reveal all di�erent shifts in behavior near the equilibrium point they e�ect. This number is also known
as the co-dimension of the bifurcation and while this statement gives a rough idea of what the co-dimension
is, the formal de�nitions are of course much more rigorous.

Usually a higher co-dimension implies a higher complexity of behaviors. This is backed by the fact
that all local bifurcations of co-dimension 1 are completely understood, while this is not the case for some
co-dimension 2 bifurcations.

For a complete explanation regarding bifurcations and their co-dimension see the books by Gucken-
heimer and Holmes [6] or Kuznetsov [8].

The study of bifurcations is usually performed by applying normal form theory, where one tries to �nd
a simpli�ed system that is locally topologically equivalent to the local neighborhood around the equilibrium
which exhibits the bifurcation in question. This equivalence preserves the changes in the dynamics near the
equilibrium, including the bifurcation.

The advantage is obvious, as usually the simpli�ed system is much easier to analyze. More importantly most
instances of the bifurcations that occur in the wild can be proven to be locally topologically equivalent to the
same simpli�ed system. This more or less allows us to study the behavior of an identi�ed bifurcation in any
system by studying their respective normal form. This is a major advantage, and consequently the concept of
the normal form has become central in the study of bifurcations.

This thesis does not di�er from this standard, as it makes extensive use of the normal form. In fact
the �rst step in the study of the double Hopf bifurcation is the derivation of the normal form. Again for the
complete theory regarding normal forms and their derivation see the book by Guckenheimer and Holmes [6].
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Co-dimension 1 bifurcations.

We continue the introduction with a few examples of co-dimension 1 bifurcations.

� Saddle-node (fold) bifurcation, where a node and a saddle points collide and cancel each other out.

� Trans-critical bifurcation, where two �xed points collide and switch stability in the collision.

� Pitchfork bifurcation, where an equilibrium switches stability and forks o� two additional equilibria.

� Period-doubling (�ip) bifurcation, this is a cycle bifurcation that, as the name implies, doubles the period
of a cycle.

� Hopf bifurcation, where an equilibrium switches stability and splits o� a cycle.

Due to their relevance to later analysis we examine the trans-critical, pitchfork and the Hopf bifurcation in a
bit more detail.

Trans-critical bifurcation.

The normal form of the trans-critical bifurcation is given by

d

dt
x = rx− x2, x ∈ R. (1.2)

This bifurcation is characterized by the eigenvalue r of the equilibrium at the origin and this system, for r 6= 0,
has two �xed points given by x = 0 and x = r.

When the parameter r is negative, the �xed point at x = 0 is stable and the �xed point x = r is un-
stable.

At r = 0 both �xed points have collided and only one �xed point remains at x = 0. Solutions start-
ing at x > 0 diverge, while solutions starting at x < 0 converge to the �xed point. This point, while displaying
some degree of stability, is not stable and therefore unstable.

When the parameter r becomes positive, the equilibria switch stability. The �xed point at x = 0 be-
comes unstable and the �xed point at x = r becomes stable.

Lastly we should notice that during the bifurcation the second point moves across the x = 0-axis.

Pitchfork bifurcation.

The normal form of the pitchfork bifurcation is given by

d

dt
x = rx± x3, x ∈ R. (1.3)

The eigenvalue of the linearization of this system at the origin is identical to that of the trans-critical bifurcation.
Therefore to distinguish the pitchfork and trans-critical bifurcations the higher order terms also come into play.
The actual di�erence is that the x2 term in the trans-critical normal form system is replaced by an x3 term.
Furthermore the pitchfork bifurcation comes in 2 variations, the super- and sub-critical case.

� If x3 is subtracted, the pitchfork bifurcation is super-critical. In this case 2 stable equilibria split o� from
the original equilibrium, when r becomes postive. The original equilibrium is not destroyed, instead the
bifurcation switches the stability of the original equilibrium from stable to unstable.

� If x3 is added to rx, the bifurcation is sub-critical. Contrary to the super-critical case, when r becomes
negative, 2 unstable equilibria split o� the original equilibrium. The central equilibrium is still maintained
and displays the same stability behavior. Therefore, when r becomes negative, the stability of the central
equilibrium goes from unstable to stable.
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Hopf bifurcation.

The Hopf bifurcation has the normal form

d

dt
z = (λ+ iω)z + (α+ iβ)z̄z2 +O(|z|4), z ∈ C. (1.4)

Notice that, due to the complex normal form, this bifurcation requires two dimensions. The eigenvalue is given
by λ + iω. The parameter is λ and the other important quantity is α, which is known as the �rst Lyapunov
coe�cient.

Just as the pitchfork bifurcation the Hopf bifurcation has two distinct cases, the super- and sub-critical
case, depending on the sign of the Lyapunov coe�cient.

� Super-critical, when α < 0. In this case a stable limit cycle bifurcates o� a stable equilibrium point as the
parameter λ goes from negative to positive. At λ = 0 the equilibrium switches from stable to unstable.

� Sub-critical, when α > 0. In this case an unstable limit cycle bifurcates o� a unstable equilibrium point
as the parameter λ goes from positive to negative. At λ = 0 the equilibrium switches from unstable to
stable.

If α = 0, the bifurcation is degenerate and the equilibrium at λ = 0 is stable or unstable depending on the
higher order term of the normal form. This requires the generalized form of the bifurcation also known as the
Bautin bifurcation. As this bifurcation merits it own analysis it is omitted here, but more information about
this special case can be found in the book by Kuznetsov [8].

Double Hopf bifurcation.

An example of a co-dimension two bifurcation that brings us closer to the object of study is the regular double
Hopf bifurcation. The Poincaré normal form of this bifurcation is also well-known and given by

ż1 = (µ1 + ω1(µ)) z1 +G2100(µ)z1|z1|2 +G1011(µ)z1|z2|2 +O(4), (1.5a)

ż2 = (µ2 + ω2(µ)) z2 +H1110(µ)z2|z1|2 +H0021(µ)z2|z2|2 +O(4). (1.5b)

Just as in the single Hopf bifurcation the variables are complex. But in this case we have two variables instead
of one variable, it follows that the system requires 4 dimensions. The coe�cients in the system are usually
dependent on the value of the parameters µ1 and µ2. To simplify the notation of this dependence, the variable
µ is introduced as the vector µ := (µ1, µ2). The eigenvalues that characterize the equilibrium, which undergoes
the double Hopf bifurcation, are given by

λ1,2 = µ1 ± iω1 and λ3,4 = µ2 ± iω2. (1.6)

It is easy to see where the double Hopf bifurcation got its name, as the bifurcation essentially entails two Hopf
bifurcations that occur at the same equilibrium. Where each parameter µj induces a Hopf bifurcation on their
respective zj variable. The system can be further simpli�ed if the non-degeneracy conditions

ReG2100(0) 6= 0, ReG1011(0) 6= 0,
ReH1110(0) 6= 0, ReH0021(0) 6= 0,

(1.7)

apply, as then (1.5) is locally smoothly orbitally equivalent to the system

ż1 = (µ1 + ω1(µ)) z1 + P11(µ)z1|z1|2 + P12(µ)z1|z2|2 +O(4), (1.8a)

ż2 = (µ2 + ω2(µ)) z2 + P21(µ)z2|z1|2 + P22(µ)z2|z2|2 +O(4). (1.8b)

For a proof of this lemma and the de�nition of the new coe�cients, which is omitted from this introduction,
consult the book by Kuznetsov [8]. If the non-degeneracy conditions are not satis�ed the analysis requires the
higher order terms, this makes the analysis identical to that of the system (1.5). This analysis is much more
di�cult and as such only the non-degenerate double Hopf bifurcations are considered in this thesis.
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The system (1.8) can be analyzed by considering the system of only the amplitudes, which reads as

ṙ1 =
(
µ1 + Re(P11(µ))r2

1 + Re(P12(µ))r2
2

)
r1 +O (5) , (1.9a)

ṙ2 =
(
µ2 + Re(P21(µ))r2

1 + Re(P22(µ))r2
2

)
r2 +O (5) . (1.9b)

We notice the absence of any lower order phase variables in this system, which is also what makes this analysis
possible. This is as the terms in the equations for the time evolution of the amplitudes are typically of high
order. This means their e�ect on the time derivatives of the amplitudes, r, is negligible when the amplitudes
are close to zero. The amplitudes themselves are small when µ is small, as then the limit cycles bifurcating
from the equilibrium are still very close to the equilibrium. Therefore the phases can be omitted, when
studying the evolution of the amplitudes near the equilibrium. This independence of the amplitudes relative
to the phases is also referred to as the uncoupling of the amplitudes from the phases.

The equilibria of the amplitudes can come on the r1 or on the r2 axis, these are the so-called "pure"
modes. These modes result in invariant 1-tori in the full system (1.5) where the solution must have one
amplitude zero and the other amplitude �xed. Or the amplitudes can have a stable point with r1 6= 0 and
r2 6= 0, a "mixed" mode. This mode results in invariant 2-tori in the full system (1.5) as both amplitudes are
�xed, while the phases can still vary.

In the di�cult case of the double Hopf bifurcation, the mixed mode exhibits a Hopf bifurcation in the
amplitude system (1.5). This bifurcation results in a limit cycle around this mixed mode in the amplitude
system. This corresponds to invariant 3-tori in the full system (1.5).

The frequencies at which the cycles rotate are, in the non-resonant regular case, not in resonance. Fur-
thermore the phases are not required to be close to zero near the equilibrium and this implies that all higher
order terms must be included to correctly give the solution. As the higher order terms can be di�cult to work
with, the solutions for the phases are usually unknown. Therefore the phases can di�er widely and behave
unpredictably with respect to each other.

This a�ects on how the solutions evolve on the invariant tori, corresponding to the �xed amplitudes.
The pure modes correspond to regular cycles, as there is only one dimension on the 1-torus. The mixed modes
can �rstly correspond to quasi-periodic solutions on the 2-torus, as the amplitudes remain �xed and when the
phases vary in a conditionally periodic way. The mixed modes can also correspond to a family of periodic
cycles that foliate the 2 torus, when the phases are locked. The last option, the limit cycles, correspond to
quasi-periodic solutions on a familiy of 2-tori that foliate a 3-torus.

For the full derivation of the normal form, its analysis, its unfolding diagrams and their associated
phase plots, please refer to the book by Kuznetsov [8].
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Resonant double Hopf bifurcation.

That brings us to the �nal bifurcation we consider, the resonant double Hopf bifurcation. This bifurcation has
the same eigenvalues as the double Hopf bifurcation,

λ1,2 = ±iω1, and λ3,4 = ±iω2. (1.10)

But in this case, the frequencies of the oscillations are in resonance at the parameter value (µ1, µ2) = (0, 0).
The resonance corresponds to the condition that nω1+mω2 = 0 for some non-zero pair of integers (n,m) 6= (0, 0).

As the parameters µ change the phases might not be in perfect resonance anymore. How fast or slow
the phases lose resonance is based on the system that exhibits the resonant double Hopf bifurcation. This can
be quite varied and as such it is convenient to introduce a detuning parameter ν. This parameter determines
how much the phases are in resonance and replaces the e�ect of changing the µ parameters on the base
frequency of the phases. This does not mean that the µ parameters are completely replaced, as they still very
much e�ect the amplitudes. This greatly simpli�es the study of the resonant case.This addition of the detuning
parameter also implies that the resonant double Hopf bifurcation can be interpreted as a co-dimension 3
bifurcation.

Lastly we make a classi�cation among the resonances. If for all pairs of integers

nω1 +mω2 6= 0 (1.11)

then the system is non-resonant and is just a regular double Hopf bifurcation with the normal form given
by (1.8).

If the bifurcation is resonant, and a non-zero pair of integers exists such that |n|+ |m| ≤ 4 and n1ω1 +n2ω2 = 0,
then the system is strongly resonant. If the bifurcation is still resonant, but no pair of integers can be found
such that |n|+ |m| ≤ 4, then the system is weakly resonant.

Now suppose a double Hopf bifurcation is weakly resonant, then the above amplitude system (1.9) is
still satisfactory. The resonance still results in the addition of resonance terms in the normal form, but the
orders of these terms are high enough to be neglibile and thus can be safely truncated. The equilibria of the
amplitudes are the same as in the non-resonant case, but the phases may be resonant for certain parameters.
This case results, instead of the quasi-periodic solutions on the 2-torus, in a family of closed 1-tori orbits that
foliate the 2-torus. Outside these rational frequency ratio cases the phases are not resonant and the solutions
are the regular quasi-periodic solutions on the 2-torus.

However if the resonance is strong, then it leads to a rather interesting situation where the normal
form described above does not su�ce anymore. Notably the resonant terms have a low enough order in the
normal form that the amplitudes are no longer uncoupled from the phases. This gives rise to a bifurcation
that is lot richer in dynamics than the regular double Hopf bifurcation.

Besides this thesis, a large number of studies have already been done on the subject of resonant double
Hopf bifurcations. For example two studies using the relatively new technique, multiple timescale analysis, in
the �rst study [5] by A. Luongo, A. Paolone and A. Di Egidio have studied both the 1:2 and the 1:3 resonances
and in the second study [9] J. Xu and W. Wang have focused entirely on the 1:2 resonance.

Another pair of more relevant studies are those done by S.H. Davi and P.H. Steen [4] and by A.K. Ba-
jaj and P.R. Sethna [2]. Notably both these studies include the derivation of a normal form of the 1:1
resonance.

For a more complete analysis regarding the stability of the invariant tori for all resonances of the dou-
ble Hopf bifurcation and a discussion of their di�erences, consult the study done by H. Broer, H. Hanÿmann
and F. Wagener [3]. Lastly I mention a numerical study [1] by D.M. Alonso, G. Revel and J.L. Moiola that has
been performed on the 1:2 resonance, which sheds light on some of the global dynamics. The non-numerical
studies usually do not provide much information on the global situation, which makes the numerical studies a
very important part of the understanding of the total dynamics.
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The structure of the thesis.

This leads us to the object of study in this thesis, the 1:3 resonant double Hopf bifurcation.

As this is a strong resonance, we require a resonant normal form. We derive this form in the next sec-
tion 2.1. This form di�ers from the non-resonant case by the addition of a phase di�erence variable, this
variable is interpreted as how much the frequencies of the oscillations are out of phase. The time evolution of
the phase di�erence tells us if the phases for certain �xed amplitude are resonant. A constant phase di�erence
implies that both phases change in the precise 1:3 ratio and thus are in resonance. In the resonant normal
form, the equations for amplitudes also contain resonant terms in addition to the non-resonant ones. These
terms vary according to the amplitudes themselves as well as the new phase di�erence variable.

The derivation of the normal form gives us

Ẋ = µ1X + (a1rX
2 + b1rY

2)X + Y 3 cos(ϕ), (1.12a)

Ẏ = µ2Y + (a2rX
2 + b2rY

2)Y +XY 2 cos(ϕ+ Φ), (1.12b)

ϕ̇ = ν + aimX
2 + bimY

2 − Y 3

X sin(ϕ)− 3XY sin(ϕ+ Φ), (1.12c)

where X and Y correspond to the amplitudes, and ϕ corresponds to the phase di�erence. Lastly µ1, µ2 and ν
are the parameters.

After the derivation of (1.12), we discuss its equilibria. These come in two distinct types. The �rst
type are the pure modes, which occur on the X-axis, i.e. where Y = 0. The second type are the mixed modes,
which occur where both amplitudes are higher than 0. In this discussion we make some general statements on
the existence and stability of both modes.

Afterwards we start the study of a particularly interesting set of pure modes on the X-axis. These
points have the amplitudes (X,Y ) = (X0, 0), where the value X0 is determined by the parameter µ1. The
phase di�erences are yet to be determined, as when Y = 0 the evolution of the phase di�erence is equal to
ν + aimX

2
0 , which can be zero for certain ν values. So these pure modes may have a running phase or a locked

phase depending on this parameter.

The property of interest of these pure modes is that one of them, at a certain set of parameters, is
characterized by the eigenvalues in the amplitude directions (λX , λY ) = (−2µ1, 0). Furthermore the evolution
of the phase di�erence is near constant around this point. This implies that this point experiences a double
zero bifurcation and makes this pure mode a degenerate point around which expansions can be made in the
parameter space.

Before encountering a fatal mistake, the goal of the thesis was determining the local dynamics of the
1:3 resonant normal form near this point. It was hoped for that this method gives some insight in the behavior
of the full resonant system.

Conclusions.

After concluding the study of the local dynamics we compare our 1:3 dynamics to the 1:2 resonant case. This
is considered to be the main goal of this thesis, as I was personally very interested in these di�erences when I
came across a similar study.

This was a study done on the 1:2 resonance by E. Knobloch and M.R.E. Procter in 1988 [7]. Wherein
they studied the dynamics of the 1:2 resonance, by locating degenerate point in parameter space. Just as in the
1:3 resonant case, this point was a pure mode, which also exhibited a double zero bifurcation. An important
di�erence already is that their pure mode had a speci�c phase di�erence by (X0, 0, ϕ0).

In addition to explaining the di�erences between the local dynamics around the degenerate point, we
discuss the usefulness of the method of locating a degenerate points in parameter space for the study of
resonant dynamics.
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Resonant normal form.

In the strongly resonant case of the double Hopf bifurcation, even at the lowest signi�cant order, the amplitude
remains coupled to the phase. Therefore instead of the usual non-resonant normal form of the double Hopf
bifurcation, we need a resonant normal form that takes this coupling into account.

In this section, we derive the general resonant normal form for the 1:3 resonance. Afterwards we con-
sider the �xed points of the resulting system.

2.1 Derivation.

In our particular case, the resonance is 1:3 at µ = (0, 0). Therefore we assume ω1 = 3ω2, where ω1 is the
frequency of the �rst Hopf bifurcation and ω2 the frequency of the second Hopf bifurcation, that make up the
double Hopf bifurcation. Then at (0, 0) the complex amplitudes (u, v) of the system are symmetric under the
operations

u→ ueiω1 , v → vei
1
3ω1 .

These operations have the four basic invariants

τ1 = uū ∈ R, τ2 = vv̄ ∈ R, τ3 = uv̄3 ∈ C and τ4 = τ̄3 ∈ C. (2.1)

The most general commuting vector �eld associated with these invariants and operations has the form

u̇ = f1(τ1, τ2, τ3, τ4)u+ f2(τ1, τ2, τ3, τ4)v3, (2.2a)

v̇ = f3(τ1, τ2, τ3, τ4)v + f4(τ1, τ2, τ3, τ4)uv̄2. (2.2b)

This general vector �eld must satisfy two additional conditions to be a 1:3 resonant normal form. When
(u, v) = (0, 0), at the point of the double Hopf bifurcation, the linear part must be resonant with the 1:3 ratio.
Therefore, for this vector �eld to display a 1:3 resonant double Hopf bifurcation, f1(0, 0, 0, 0) = iω1 and
f3(0, 0, 0, 0) = iω2 = 1

3 iω1. Furthermore f2(0, 0, 0, 0) and f4(0, 0, 0, 0) are assumed be non-zero, as these
correspond to the non-degeneracy conditions (1.7) seen in the introduction. In this thesis we only study the
non-degenerate case of the double Hopf bifurcation, satisfying the conditions (1.7).

Now we can take the Taylor expansion of all fj about (0, 0, 0, 0),

fj = ĉj + âjτ1 + b̂jτ2 + d̂jτ3 + êjτ4 +O(2). (2.3)

As all fj are complex-valued functions, their Taylor coe�cients are complex numbers. If we substitute the
invariants τj for their de�nitions, we see for j ∈ {1, 2, 3, 4}

fj = ĉj + âjuū+ b̂jvv̄ +O(4). (2.4)

Then if we replace the fj in the system (2.2) with their expansions and collect the higher order terms of u and
v in the big O, we obtain

u̇ = ĉ1u+ (â1uū+ b̂1vv̄)u+ ĉ2v
3 +O(5), (2.5a)

v̇ = ĉ3v + (â3uū+ b̂3vv̄)v + ĉ4uv̄
2 +O(5). (2.5b)

We know from the restrictions on f1,2(0, 0, 0, 0) that ĉ1 = iω1 and ĉ3 = iω2 = 1
3 iω1. This allows us to somewhat

simplify the equations by relabeling the coe�cients{
c̄1 = ĉ2, ā1 = â1, b̄1 = b̂1,

c̄2 = ĉ4, ā2 = â3, b̄2 = b̂3.
(2.6)

Substituting these relabeled coe�cients in (2.5) leads us to

u̇ = iω1u+ (ā1uū+ b̄1vv̄)u+ c̄1v
3 +O(5), (2.7a)

v̇ = 1
3 iω1v + (ā2uū+ b̄2vv̄)v + c̄2uv̄

2 +O(5). (2.7b)

Now let us take the bifurcation parameters µ1, µ2 into account. From the linear dynamics we know that both
are to be added to the linear coe�cients of u̇ and v̇ to obtain the correct eigenvalues. Also we notice that all
coe�cients of the fj Taylor expansions are dependent on µ, therefore for j ∈ {1, 2} let{

ω̃j = ωj +O(µ1, µ2), ãj = āj +O(µ1, µ2),

b̃j = b̄j +O(µ1, µ2), c̃j = c̄j +O(µ1, µ2).
(2.8)
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If we add the bifurcation parameters to the linear part and if we substitute the parameter dependent coe�cients
(2.8) in system (2.7), we obtain

u̇ = (µ1 + iω̃1)u+ (ã1uū+ b̃1vv̄)u+ c̃1v
3 +O(5), (2.9a)

v̇ = (µ2 + iω̃2)v + (ã2uū+ b̃2vv̄)v + c̃2uv̄
2 +O(5). (2.9b)

The resulting system is the complex resonant normal form of the double Hopf bifurcation corresponding to the
1:3 resonance. To make the study of this system easier, let us perform a switch of variables to transform the
complex amplitude system into a system of real amplitudes and phases. Suppose{

u = X̃eiϕ1 , v = Ỹ eiϕ2 ,
c̃1 = |c̃1|eiΦ1 , c̃2 = |c̃2|eiΦ2 ,

(2.10)

then if substitute these new variables in (2.9a) we obtain

˙̃Xeiϕ1 + iX̃ϕ̇1e
iϕ1 = (µ1 + iω̃1)X̃eiϕ1 + (ã1X̃

2 + b̃1Ỹ
2)X̃eiϕ1 + |c̃1|eiΦ1 Ỹ 3ei3ϕ2 . (2.11)

Here we notice that the real amplitude can be derived using the equality

Re
(
e−iϕ1( ˙̃Xeiϕ1 + iX̃ϕ̇1e

iϕ1)
)

= ˙̃X. (2.12)

Thus

˙̃X = Re
(
e−iϕ1

(
(µ1 + iω̃1)X̃eiϕ1 + (ã1X̃

2 + b̃1Ỹ
2)X̃eiϕ1 + |c̃1|eiΦ1 Ỹ 3ei3ϕ2

))
(2.13)

= Re
(
µ1X̃ + (ã1X̃

2 + b̃1Ỹ
2)X̃ + |c̃1|Ỹ 3ei(Φ1−ϕ1+3ϕ2)

)
. (2.14)

Here we introduce a shorthand for the real values of the coe�cients, ã1r = Re ã1 and b̃1r = Re b̃1. This gives us

˙̃X = µ1X̃ + (ã1rX̃
2 + b̃1rỸ

2)X̃ + |c̃1|Ỹ 3 cos(Φ1 − ϕ1 + 3ϕ2). (2.15)

After �nalizing the amplitude equation we continue with the equation for the corresponding phase, which is
given by

ϕ̇1 =
1

X̃
Im
(
e−iϕ1( ˙̃Xeiϕ1 + iX̃ϕ̇1e

iϕ1)
)
. (2.16)

This leads us to

ϕ̇1 =
1

X̃
Im
(
µ1X̃ + iω̃1X̃ + (ã1X̃

2 + b̃1Ỹ
2)X̃ + |c̃1|Ỹ 3ei(Φ1−ϕ1+3ϕ2)

)
(2.17)

=
1

X̃

(
ω̃1X̃ + Im(ã1X̃

2 + b̃1Ỹ
2)X̃ + |c̃1|Ỹ 3 sin(Φ1 − ϕ1 + 3ϕ2)

)
. (2.18)

We introduce the shorthand for the imaginary parts of ã1, b̃1, ã1i = Im ã1 and b̃1i = Im b̃1, and substituting
these leads to

ϕ̇1 = ω̃1 + ã1iX̃
2 + b̃1iỸ

2 + |c̃1|Ỹ 3 1

X̃
sin(Φ1 − ϕ1 + 3ϕ2). (2.19)

We need to apply the same process to (2.9b) to obtain the other amplitude and phase. To this end let us
substitute the variables (2.10) in (2.9b), which leads us to

˙̃Y eiϕ2 + iỸ ϕ̇2e
iϕ2 = (µ2 + iω̃2)Ỹ eiϕ2 + (ã2X̃

2 + b̃2Ỹ
2)Ỹ eiϕ2 + |c̃2|eiΦ2X̃eiϕ1 Ỹ 2e−i2ϕ2 . (2.20)

We again notice that the amplitude is given by

Re
(
e−iϕ2( ˙̃Y eiϕ2 + iỸ ϕ̇2e

iϕ2)
)

= ˙̃Y, (2.21)

therefore

˙̃Y = Re
(
e−iϕ2

(
(µ2 + iω̃2)Ỹ eiϕ2 + (ã2X̃

2 + b̃2Ỹ
2)Ỹ eiϕ2 + |c̃2|eiΦ2X̃eiϕ1 Ỹ 2e−i2ϕ2

))
(2.22)

= Re
(
µ2Ỹ + (ã2X̃

2 + b̃2Ỹ
2)Ỹ + |c̃2|X̃Ỹ 2ei(Φ2+ϕ1−3ϕ2)

)
. (2.23)

Again we introduce the shorthand for the real values, ã2r = Re ã2 and b̃2r = Re b̃2, which gives us the �nal
amplitude equation

˙̃Y = µ2Ỹ + (ã2rX̃
2 + b̃2rỸ

2)Ỹ + |c̃2|X̃Ỹ 2 cos(Φ2 + ϕ1 − 3ϕ2). (2.24)
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Then we continue with the equation of the second phase, given by

ϕ̇2 =
1

Ỹ
Im
(
e−iϕ1( ˙̃Y eiϕ2 + iỸ ϕ̇2e

iϕ2)
)
. (2.25)

We continue as we have done before,

ϕ̇2 =
1

Ỹ
Im
(

(µ2 + iω̃2)Ỹ + (ã2X̃
2 + b̃2Ỹ

2)Ỹ + |c̃2|X̃Ỹ 2ei(Φ2+ϕ1−3ϕ2)
)

(2.26)

=
1

Ỹ

(
ω̃2Ỹ + Im(ã2iX̃

2 + b̃2iỸ
2)Ỹ + |c̃2|X̃Ỹ 2 sin(Φ2 + ϕ1 − 3ϕ2)

)
, (2.27)

until we reach
ϕ̇2 = ω̃2 + ã2iX̃

2 + b̃2iỸ
2 + |c̃2|X̃Ỹ sin(Φ2 + ϕ1 − 3ϕ2), (2.28)

where we used the shorthand ã2i = Im ã2 and b̃2i = Im b̃2.

With the extracted real amplitudes, (2.15) and (2.24), and the real phases, (2.19) and (2.28), we have
obtained the real form

˙̃X = µ1X̃ + (ã1rX̃
2 + b̃1rỸ

2)X̃ + |c̃1|Ỹ 3 cos(Φ1 − ϕ1 + 3ϕ2), (2.29a)

˙̃Y = µ2Ỹ + (ã2rX̃
2 + b̃2rỸ

2)Ỹ + |c̃2|X̃Ỹ 2 cos(Φ2 + ϕ1 − 3ϕ2), (2.29b)

ϕ̇1 = ω̃1 + ã1iX̃
2 + b̃1iỸ

2 + |c̃1|Ỹ 3 1

X̃
sin(Φ1 − ϕ1 + 3ϕ2), (2.29c)

ϕ̇2 = ω̃2 + ã2iX̃
2 + b̃2iỸ

2 + |c̃2|X̃Ỹ sin(Φ2 + ϕ1 − 3ϕ2), (2.29d)

of the system (2.9). As we are more interested in the phase locking and unlocking of the system than
its absolute phases, it is more useful to calculate the evolution of the relative phase di�erence, than to let
the phases remain as they are. This also has the added bene�t that it reduces the variables we need to track by 1.

Notice that it is not the case that the 4-dimensional system has truly been reduced in dimension, as
the phases do still very much exist. However, because the resonant terms in the amplitudes and the phases
depend only on the phase di�erence and not the absolute value of each phase, we are not required to know
their precise values beyond their di�erence. Also very important is that the phase di�erence allows for a
separate time evolution, uncoupled from the phases individually. Therefore we may treat it as a separate
variable and get a system whose right hand side depends on the phase di�erences and the amplitudes, but not
on the absolute phases.

The result is a 3 dimensional system, that is separate from the original system, but still correctly gives
the time evolution of the amplitudes and phase di�erence of said system. This is a trade o� however as by
deriving only the phase di�erence, we do not obtain much information about the time evolution of the phases
of the oscillations, excluding the di�erence between them. However, once the reduced system (see (2.32) or
(2.36) below) is solved, we can substitute these solutions in (2.29) and compute ϕj(t), j ∈ {1, 2}.

Let ϕ̃ = ϕ1 − 3ϕ2, then ˙̃ϕ = ϕ̇1 − 3ϕ̇2 and let us de�ne

ν = ω̃1 − 3ω̃2, ãim = ã1i − 3ã2i and b̃im = b̃1i − 3b̃2i. (2.30)

This simpli�es the phase di�erence equation to

˙̃ϕ = ν + ãimX̃
2 + b̃imỸ

2 + |c̃1|Ỹ 3 1

X̃
sin(Φ1 − ϕ̃)− 3|c̃2|X̃Ỹ sin(Φ2 + ϕ̃). (2.31)

This is the time evolution of the phase di�erence, which, as discussed above, 'replaces' the phases in (2.29) to
give us the 3-dimensional system

˙̃X = µ1X̃ + (ã1rX̃
2 + b̃1rỸ

2)X̃ + |c̃1|Ỹ 3 cos(ϕ̃− Φ1), (2.32a)

˙̃Y = µ2Ỹ + (ã2rX̃
2 + b̃2rỸ

2)Ỹ + |c̃2|X̃Ỹ 2 cos(ϕ̃+ Φ2), (2.32b)

˙̃ϕ = ν + ãimX̃
2 + b̃imỸ

2 − |c̃1|Ỹ 3 1

X̃
sin(ϕ̃− Φ1)− 3|c̃2|X̃Ỹ sin(ϕ̃+ Φ2). (2.32c)
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We can simplify this system one more time by eliminating the |ci| coe�cients via a scaling of the amplitudes
and o�setting the phase di�erence. Let

Φ = Φ1 + Φ2, ϕ = ϕ̃− Φ1,

X =
|c̃2|
|c̃1c̃2|

1
4

X̃, Y = |c̃1c̃2|
1
4 Ỹ .

(2.33)

This results in

Ỹ 3

X̃
=
|c̃2|
|c̃1c̃2|

1
4

1

|c̃1c̃2|
3
4

Y 3

X
=
|c̃2|
|c̃1c̃2|

Y 3

X
=

1

|c̃1|
Y 3

X
, (2.34)

X̃Ỹ =
|c̃1c̃2|

1
4

|c̃2|
1

|c̃1c̃2|
1
4

XY =
1

|c̃2|
XY. (2.35)

If we substitute these in the system (2.32), we obtain the simplest form of the system (2.32).

Ẋ = µ1X + (a1rX
2 + b1rY

2)X + Y 3 cos(ϕ), (2.36a)

Ẏ = µ2Y + (a2rX
2 + b2rY

2)Y +XY 2 cos(ϕ+ Φ), (2.36b)

ϕ̇ = ν + aimX
2 + bimY

2 − Y 3

X sin(ϕ)− 3XY sin(ϕ+ Φ), (2.36c)

where 
a1r =

|c̃1c̃2|
1
2

|c̃2|2
ã1r, a2r =

|c̃1c̃2|
1
2

|c̃2|2
ã2r, aim =

|c̃1c̃2|
1
2

|c̃2|2
ãim,

b1r =
1

|c̃1c̃2|
1
2

b̃1r, b2r =
1

|c̃1c̃2|
1
2

b̃2r, bim =
1

|c̃1c̃2|
1
2

b̃im.

(2.37)

2.2 Equilibria of the normal form.

To start, because X and Y both represent amplitudes, the only solutions of interest are those with X,Y ≥ 0, as
negative amplitudes do not exist.The second thing we should deduce from the system (2.36) is that at Y = 0,
Ẏ = 0 as every term of (2.36b) contains the Y amplitude. The evolution of the X amplitude (2.36a) when on
the X-axis is also much simpler, resulting in

Ẋ = µ1X + a1rX
3. (2.38)

We see that when Y = 0, the remaining amplitude uncouples from the phase di�erence and it is possible to
have �xed amplitude points, where, regardless of the value of ϕ, the amplitudes remain �xed. The distinction
between true equilibrium points and these �xed amplitude points is that, in the �xed amplitude points the
phase di�erence might still be able to change, while in the true �xed points the phase di�erence is �xed as
well.

As the evolution of the phase di�erence is an important part of the discussion, we introduce two types
of �xed amplitude points.

The �rst being those which satisfy Y = 0 and X 6= 0, which we refer to as the pure modes. These
pure modes usually have a running phase ϕ1 associated with the X amplitude. However, to study the solutions
near this pure mode that are nearly in resonance we should consider the phase di�erence ϕ of the pure mode.
This is slightly di�cult as the second phase ϕ2 is not de�ned on the pure mode, because a zero amplitude
oscillation has little meaning. Consequently the phase di�erence ϕ is also not de�ned, as it uses the ϕ2 phase
in its de�nition.

Therefore we use the limit of the derivative of the phase di�erence ϕ̇, to study how the phase di�er-
ence evolves in the neighborhood of the pure mode. Depending on the limit of the time derivative phase
di�erence ϕ, we classify these pure modes in two sub-categories.

� Pure modes, where the limit implies a �xed phase di�erence ϕ, we call phase locked pure modes.

� Pure modes, where the limit implies a monotonically increasing or decreasing phase di�erence ϕ, we call
running phase di�erence pure modes.

The second �xed amplitude points are those that satisfy Y 6= 0 and X 6= 0, which we call the mixed modes.
The mixed modes, due to the coupled amplitude and phase di�erence, only occur when the phase di�erence ϕ
remains constant. Otherwise the cosine term in the derivatives of the amplitudes, (2.36a) and (2.36b), would
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still vary and make a �xed point impossible. Therefore all mixed modes must have a constant phase di�erence,
which we refer to as phase locked.

In addition to the pure mode and the mixed mode, the system also has a trivial �xed amplitude point
at the origin of the normal form system (2.36), (X,Y ) = (0, 0).

We start the study of the normal form by discussing the stability and eigenvalues of these points.

Trivial point.

The �rst �xed amplitude point is at (X,Y ) = (0, 0), which are the values around which the double Hopf
bifurcation takes place. The linearization of (2.36a) and (2.36b) to this point has the eigenvalues

λ1 = µ1 and λ2 = µ2 (2.39)

The third eigenvalue for the phase di�erence is not de�ned, as, when both amplitudes are zero, no phases are
de�ned and in extension no phase di�erence.

We can however, just as with the pure modes, study the phase di�erence evolution of the surrounding
neighborhood by calculating the limit

lim
(X,Y )→(0,0)

ϕ̇ = ν. (2.40)

When ν is zero, we see that solutions passing very close to the origin are almost phase locked. And when ν 6= 0,
we see that those solutions have a running phase di�erence.

Pure modes.

The pure modes are situated at the amplitudes (X0, 0), with X0 de�ned by µ1 = −a1rX
2
0 and µ1 chosen freely

within certain bounds. The property that Y = 0 simpli�es the equations (2.36a) and (2.36b) to

Ẋ = (µ1 + a1rX
2
0 )X0, (2.41a)

Ẏ = 0. (2.41b)

Firstly we see that the amplitudes are �xed as Ẏ = 0 and via the de�nition of X0, Ẋ = 0 at (X,Y ) = (X0, 0),
regardless of the value of the phase di�erence ϕ. The phase di�erence in the neighborhood of the pure mode is
given by the limit

lim
(X,Y )→(X0,0)

ϕ̇ = ν + aimX
2
0 . (2.42)

This limit is, just as at the trivial point, decoupled from variable ϕ and only dependent on the constant
ν + aimX

2
0 .

When this constant is not zero, the phase di�erence ϕ monotonically increases or decreases near the pure mode,
while the amplitudes in this neighborhood remain largely �xed. This results in a running phase di�erence region
around the pure mode, and as such these pure modes will be referred to as running phase di�erence pure modes.

In the special case where ν equals νc =
µ1aim
a1r

= −aimX2
0 , the phase di�erence limit, (2.42), is zero.

This results in a arbitrarily small phase di�erence evolution in the neighborhood of the pure mode, regardless
of the starting phase di�erence. In addition, the amplitudes in this neighborhood have an arbitrarily small
evolution as well. Therefore, for this particular parameter value, the pure mode is phase locked pure mode for
every starting phase di�erence ϕ ∈ S1.

As the phase di�erence is not de�ned at the pure mode, we only derive the eigenvalues of the ampli-
tudes X and Y . We linearize the amplitudes of the original system (2.36a) and (2.36b) at (X,Y ) = (X0, 0) to
obtain

Ẋ = µ1X0 + µ1X + a1rX
3
0 + 3a1rX

2
0X, (2.43a)

Ẏ = µ2Y + a2rX
2
0Y. (2.43b)

If we substitute the values of X0 and the parameter value µ1 = −a1rX
2
0 then (2.43) simpli�es to

Ẋ = −2µ1X, (2.44a)

Ẏ = (µ2 + a2rX
2
0 )Y. (2.44b)
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Conveniently this linearization is diagonal, which allows us to easily read the eigenvalues

λ1 = −2µ1 and λ2 = µ2 + a2rX
2
0 . (2.45)

All eigenvalues are real and if we set µ2 = µ2c = −a2rX
2
0 then we see that the eigenvalue corresponding to the

Y amplitude, λ2, equals 0. This implies a bifurcation that splits a solution o� from the pure mode.

If, in addition to this particular µ2 parameter, we also set ν equal to νc then this bifurcation occurs
when the neighborhood of the pure mode is arbitrarily close to phase locked. This implies the bifurcation on
the phase locked mixed mode.

Therefore at these special parameter values, (ν, µ1, µ2) = (νc,−a1rX
2
0 , µ2c), the eigenvalues of the pure

mode and the limit of the phase di�erence imply a rather interesting situation. In the rest of the thesis
we study this degenerate point at amplitudes (X,Y ) = (X0, 0) and the parameters (ν, µ) = (νc, µc). The
bifurcation occurs regardless of the phase di�erence, so we do not specify a particular value and study the
entire space ϕ ∈ S1.

Mixed modes.

The mixed modes are given by the equations

(X0, Y0, ϕ0) :


µ1X0 + (a1rX

2
0 + b1rY

2
0 )X0 + Y 3

0 cos(ϕ0) = 0,
µ2 + a2rX

2
0 + b2rY

2
0 +X0Y0 cos(ϕ0 + Φ) = 0,

ν + aimX
2
0 + bimY

2
0 −

Y 3
0

X0
sin(ϕ0)− 3X0Y0 sin(ϕ0 + Φ) = 0.

(2.46)

The eigenvalues of these points can be calculated by the linearization of the system about the point (X0, Y0, ϕ0).
This however leads to a complicated 3rd order characteristic equation

λ3 +Aλ2 +Bλ+ C = 0. (2.47)

The coe�cients A, B and C are given by complicated expressions, which are not further discussed in this
thesis. It is possible, despite being di�cult, to show that these mixed modes undergo bifurcations via the
calculation of the eigenvalues.

However, while this indeed determines the local dynamics around these points, which is worthwhile by
itself, it is more advantageous to consider certain points in the parameter space, where multiple bifurcations
occur at the same parameter values. At these points the bifurcations combine to form one bifurcation of a
higher co-dimension. The study of such a bifurcation gives much more insight how the constituent bifurcation
interact with each other.

The small changes of ν around νc result in a signi�cant change in the �xed points of the phase di�er-
ence and can therefore be interpreted as bifurcation. Althrough this does not imply that the changes around
this point in the phase di�erence correspond to actual di�erences in the dynamics of the normal form, for now
we treat this small change as a bifurcation.

Therefore in the following sections we study the simplest of such higher co-dimension bifurcations. The
double bifurcation of the pure mode at the degenerate point discussed above, where a cycle or mixed mode
splits o� from the X-axis.
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Preliminaries.

The dynamics of the system near the degenerate bifurcation on the pure mode can be studied in detail. This
bifurcation occurs on (X0, 0, ϕ) when the parameters are given by

νc = −aimX2
0 and µ2c = −a2rX

2
0 . (3.1)

The ϕ can take any value, but since it is a periodic variable, it is convenient to normalize to a value within
[0, 2π]. Also important to realize is that both of the critical values depend via X0 on µ1. As X0 must be
non-zero to de�ne a pure mode, µ1 should be non-zero and chosen with a sign opposite to a1r. Also we require
X0 to be relatively small, as otherwise all higher order terms of X must have been included in the normal form
due to their non-negligible impact on the dynamics. Therefore µ1 must be small as well and lastly µ1 remains
�xed in the rest of the analysis.

3.1 Localized system.

To study the bifurcation, we focus only on X and Y values near (X0, 0) and the parameters near (νc, µ2c).
The localization near (X0, 0) allows us to truncate the higher order terms of the normal form. Near (X0, 0)
the truncated localized system displays the same dynamics as the normal form, outside this neighborhood the
dynamics of the normal form can signi�cantly di�er to those of the truncated system. This is bene�cial as the
truncated system is much simpler than the original normal form.

The focus on (νc, µ2c) prevents the mixed mode, which we discover near the degenerate point, to leave
the neighborhood of (X0, 0). If the parameters di�er too much, the truncated localized system would have
to include the higher order terms to fully capture the dynamics around the mixed mode. This is beyond the
scope of this thesis, as we only study the truncated localized form.

You might have noticed that we do not focus on a particular value ϕ0 of ϕ, this is because the bifur-
cation may occur at any phase di�erence ϕ.

We start the localization with the introduction of a small δ > 0 and de�ne the localized coordinates
and parameters  X = X0 + δ2ξ, µ2 = µ2c + δ2µ̄,

Y = δη, ν = νc + δν̄,
ϕ = ψ, t = 1

δ τ,
(3.2)

for the system (2.36). Recall the resonant normal form (2.36) derived in section 2.1,

Ẋ = µ1X + (a1rX
2 + b1rY

2)X + Y 3 cos(ϕ), (3.3a)

Ẏ = µ2Y + (a2rX
2 + b2rY

2)Y +XY 2 cos(ϕ+ Φ), (3.3b)

ϕ̇ = ν + aimX
2 + bimY

2 − Y 3

X sin(ϕ)− 3XY sin(ϕ+ Φ). (3.3c)

Firstly we apply the localization to the left hand side of (3.3a) and get

Ẋ =
d(X0 + δ2ξ)

dt
= δ2 dξ

dt
. (3.4)

This gives us the derivative of ξ in the normal time t, however we require the slow time τ derivative, which is

from now on denoted by the prime,
d

dτ
ξ = ξ′. To this end we apply the chain rule

ξ′ =
d

dτ
ξ =

dξ

dt

dt

dτ
=

1

δ

dξ

dt
. (3.5)

Together with (3.4) this leads to Ẋ = δ3ξ′, and this can be substituted with the rest of the new coordinates in
(3.3a) to yield

δ3ξ′ = µ1(X0 + δ2ξ) + (a1r(X0 + δ2ξ)2 + b1rδ
2η2)(X0 + δ2ξ) + δ3η3 cos(ψ) (3.6)

=
(
µ1 + a1rX

2
0 + 2a1rX0δ

2ξ + a1rδ
4ξ2 + b1rδ

2η2
)

(X0 + δ2ξ) + δ3η3 cos(ψ), (3.7)

δξ′ =
1

δ2

(
2a1rX0δ

2ξ + a1rδ
4ξ2 + b1rδ

2η2
)

(X0 + δ2ξ) + δη3 cos(ψ) (3.8)

=
(
2a1rX0ξ + a1rδ

2ξ2 + b1rη
2
)

(X0 + δ2ξ) + δη3 cos(ψ) (3.9)

= 2a1rX
2
0ξ + b1rX0η

2 + δη3 cos(ψ) +O(δ2). (3.10)

14



Similarly for (3.3b), we �rst calculate the slow time derivative using the same methods. This gives us Ẏ = δ2η′

and once again substituting this in (3.3b) we obtain

δ2η′ = (µ2c + δ2µ̄)δη + (a2r(X0 + δ2ξ)2 + b2rδ
2η2)δη + (X0 + δ2ξ)δ2η2 cos(ψ + Φ) (3.11)

= (µ2c + δ2µ̄+ a2rX
2
0 + 2a2rX0δ

2ξ + a2rδ
4ξ2)δη + b2rδ

3η3 + (X0 + δ2ξ)δ2η2 cos(ψ + Φ), (3.12)

η′ =
1

δ2

(
δ2µ̄+ 2a2rX0δ

2ξ + a2rδ
4ξ2
)
δη + b2rδη

3 + (X0 + δ2ξ)η2 cos(ψ + Φ) (3.13)

=
(
µ̄+ 2a2rX0ξ + a2rδ

2ξ2
)
δη + b2rδη

3 + (X0 + δ2ξ)η2 cos(ψ + Φ) (3.14)

= (µ̄+ 2a2rX0ξ) δη + b2rδη
3 +X0η

2 cos(ψ + Φ) +O(δ2). (3.15)

We apply the same process to the last equation (3.3c)

δψ′ = νc + δν̄ + aim(X0 + δ2ξ)2 + bimδ
2η2 − δ3η3

X0 + δ2ξ
sin(ψ)− 3(X0 + δ2ξ)δη sin(ψ + Φ), (3.16)

= δν̄ + 2aimX0δ
2ξ + aimδ

4ξ2 + bimδ
2η2 − δ3η3

X0 + δ2ξ
sin(ψ)− 3(X0 + δ2ξ)δη sin(ψ + Φ) (3.17)

ψ′ = ν̄ + 2aimX0δξ + aimδ
3ξ2 + bimδη

2 − δ2η3

X0 + δ2ξ
sin(ψ)− 3(X0 + δ2ξ)η sin(ψ + Φ) (3.18)

= ν̄ + 2aimX0δξ + bimδη
2 − 3X0η sin(ψ + Φ) +O(δ2). (3.19)

After the transformation we have the new system

δξ′ = 2a1rX
2
0ξ + b1rX0η

2 + δη3 cos(ψ) +O(δ2), (3.20a)

η′ = (µ̄+ 2a2rX0ξ)δη +X0η
2 cos(ψ + Φ) + b2rδη

3 +O(δ2), (3.20b)

ψ′ = ν̄ + 2aimX0δξ + bimδη
2 − 3X0η sin(ψ + Φ) +O(δ2). (3.20c)

It is possible to reduce this system more, by eliminating the ξ variable from (3.20b) and (3.20c). We achieve
this by introducing a yet to determine function f , such that δf is equal to the leading part of δξ′. This allows
us to give ξ as an expression of f and by some clever derivation the system (3.20) allows us to �nd the leading
order terms of f . Lastly we are able to use the leading term of f to eliminate f from the equation for ξ and
this gives us a value for ξ in terms of η and ψ.

We equate δf to the leading part of (3.20a) and obtain

2a1rX
2
0ξ + b1rX0η

2 = δf(δ, ξ, η, ψ), (3.21)

where f is O(1), therefore we can isolate the ξ, using µ1 = −a1rX
2
0 , which gives us

ξ =
1

2µ1
(b1rX0η

2 − δf(δ, ξ, η, ψ)). (3.22)

If we multiply this equation for ξ by δ and take the derivative, we can equate it to (3.20a), where we have
substituted (3.21), resulting in

δ

µ1
b1rX0ηη

′ = δf(δ, ξ, η, ψ) + δη3 cos(ψ) +O(δ2), (3.23)

and after canceling the common factor δ, we have found an equation

f(δ, ξ, η, ψ) =
1

µ1
b1rX0ηη

′ − η3 cos(ψ) +O(δ) (3.24)

for f . With the equation for f , we can eliminate the function from our formula (3.22) for ξ, after which we
obtain

ξ =
1

2µ1

(
b1rX0η

2 − δ

µ1
b1rX0ηη

′ + δη3 cos(ψ)

)
+O(δ2). (3.25)

This result allows us to cancel the ξ terms in both η′ and ψ′.

We see that the equation (3.25) still contains an η′ in one of its terms. We could substitute this for
(3.20b) and further continue the derivation, but all resulting terms of such a substitution would be O(δ) in the
equation (3.25) for ξ. This is due to the δ in the term containing the derivative η′. At the same time all terms

15



containing ξ in (3.20b) and (3.20c) are already O(δ). Therefore all of those terms would have fallen under
O(δ2) and no explicit calculation is required.

We start with the elimination of ξ in η′ (3.20b)

η′ = (µ̄+ 2a2rX0ξ) δη +X0η
2 cos(ψ + Φ) + b2rδη

3 +O(δ2) (3.26)

= δµ̄η +X0η
2 cos(ψ + Φ) +

(
b2r +

a2r

µ1
X2

0b1r

)
δη3 +O(δ2). (3.27)

We continue and perform the cancellation of ξ in the ψ′ equation (3.20c)

ψ′ = ν̄ + 2aimX0δξ + bimδη
2 − 3X0η sin(ψ + Φ) +O(δ2) (3.28)

= ν̄ + 2aimX0δ

(
1

2µ1
(b1rX0η

2 − δf(τ, δ))

)
+ bimδη

2 − 3X0η sin(ψ + Φ) +O(δ2) (3.29)

= ν̄ +
aimb1r
µ1

X2
0δη

2 + bimδη
2 − 3X0η sin(ψ + Φ) +O(δ2) (3.30)

= ν̄ − 3X0η sin(ψ + Φ) +

(
bim +

aimb1r
µ1

X2
0

)
δη2 +O(δ2). (3.31)

After the cancellation of the ξ in all terms we have the following two dimensional system, which are the desired
equations describing the dynamics near the double zero bifurcation.

η′ = δµ̄η +X0η
2 cos(ψ + Φ) +

(
b2r +

a2rb1r
µ1

X2
0

)
δη3 +O(δ2), (3.32a)

ψ′ = ν̄ − 3X0η sin(ψ + Φ) +

(
bim +

aimb1r
µ1

X2
0

)
δη2 +O(δ2). (3.32b)

We can still further simplify the system, �rstly by eliminating the X0 parameter via a transformation of the
variable η and secondly by introducing the constants K1 and K2. Let

y = X0η, K1 =
b2r
X2

0

+
a1rb1r
µ1

=
(
bim + aimb1r

µ1
X2

0

)
1
X2

0
,

x = ψ, K2 =
bim
X2

0

+
aimb1r
µ1

=
(
b2r + a1rb1r

µ1
X2

0

)
1
X2

0
.

(3.33)

With these new variables we obtain (3.32) in the form

y′ = δµ̄y + y2 cos(Φ + x) + δK2y
3 +O(δ2), (3.34a)

x′ = ν̄ − 3y sin(Φ + x) + δK1y
2 +O(δ2). (3.34b)

Lastly we truncate the O(δ2) term, as within the non-degenerate cases, its e�ects are negligible for the dynamics
near the x-axis. In addition we introduce four new coe�cients to help with notation. We obtain

x′ = α− 3y sin(Φ + x) +Kxy
2, (3.35a)

y′ = βy + y2 cos(Φ + x) +Kyy
3, (3.35b)

where {
α = ν̄, Kx = δK1,
β = δµ̄, Ky = δK2.

(3.36)

This is the form we use to study the solutions of the localized system.
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3.2 Equilibria of the localized system.

Within the localized system around (X0, 0), we maintain the classi�cation of the pure modes and mixed modes
for the equilibria on the x-axis and the equilibria with y0 > 0, respectively.

The pure modes correspond with the equilibria on the x-axis, as the Y = 0 condition in the original
normal form (2.36) corresponds to y = 0 in (3.35). This is because y is the localization of the Y amplitude in
(3.35). Consequently it is no surprise that y′ = 0 for all point on the x-axis.

As discussed in section 2.2, pure modes may or may not have a neighborhood with a arbitrarily small
phase di�erence. This means that near the x-axis in the localized system, the localized phase di�erence x may
or may not be constant. Therefore we make the same distinction between the phase locked and running phase
di�erence cases as in section 2.2.

� If x is monotonically increasing or decreasing near the x-axis, we refer to the entire axis as a single running
phase di�erence pure mode.

� If some point (x, 0) on the x-axis has small neighborhood with a �xed x, we refer to these points as a
phase locked pure mode. Notice that when α = 0, the entirety of the x-axis consists of an in�nite amount
of phase locked pure modes.

This gives us the localization of the pure modes of the normal form (2.36) in the localized system (3.35).

The mixed modes are represented by the regular equilibrium points above the x-axis in (3.35). The
Y 6= 0 and Ẏ = 0 conditions in the normal from system, are equivalent to y 6= 0 and ẏ = 0 in the local system
due to the correspondence between y and Y . Furthermore in section 2.2 it was determined that the mixed
modes are necessarily phase locked, i.e. ϕ̇ = 0. This corresponds to x′ = 0 in (3.35), which together with the
condition y′ = 0 implies that the mixed mode is an equilibrium in (3.35). The last condition y 6= 0 �nishes the
correspondence, the mixed modes correspond to equilibria above the x-axis in (3.35).

3.3 Mixed mode near (X0, 0).

Important for the analysis of (3.35) is the existence of a mixed mode that occurs near the pure mode in (3.35).
We prove the existence of this point in the following derivations.

We start by calculating the �xed phase di�erence when given a certain y-value. The equilibrium im-
plies that the derivative of the phase di�erence, (3.35a), must be equal to 0, therefore we can set

α− 3y sin(Φ + x) +Kxy
2 = 0, (3.37)

3y sin(Φ + x) = α+Kxy
2, (3.38)

sin(Φ + x) =
α+Kxy

2

3y
. (3.39)

This results in

Φ + x = arcsin

(
α+Kxy

2

3y

)
. (3.40)

For convenience we maintain the phase shift Φ, as we need the value of Φ + x for the next equation. The
arcsin is bounded to [− 1

2π,
1
2π], therefore π might need to be added to obtain the correct Φ + x. However this

di�erence does not matter for the calculation of y. Now from the de�nition of a �xed point we know that the
slow time derivative of y, (3.35b), also must be equal to 0. And after substituting (3.40), our equation for Φ+x,
in y′, we obtain the equation

β + y cos

(
arcsin

(
α+Kxy

2

3y

))
+Kyy

2 = 0, (3.41)

that gives us the correct y0 6= 0. We can apply the trigonometric identity cos(arcsin(x)) =
√

1− x2 here, to
obtain

β + y

√
1−

(
α+Kxy

2

3y

)2

+Kyy
2 = 0. (3.42)

And bringing the variable y into the square root yields

β +

√
y2 − 1

9
(α+Kxy2)

2
+Kyy

2 = 0, (3.43)

β +Kyy
2 = −

√
y2 − 1

9
(α+Kxy2)

2
. (3.44)
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We square to eliminate the root (
β +Kyy

2
)2

= y2 − 1

9

(
α+Kxy

2
)2
. (3.45)

After expanding and restructuring the equation, we obtain the quadratic formula(
K2
y +

1

9
K2
x

)
y4 +

(
2βKy +

2

9
αKx − 1

)
y2 +

(
β2 +

1

9
α2

)
= 0 (3.46)

for y2. To solve this equation we can simply apply the abc-formula, which gives us the discriminant

D1 =

(
2βKy +

2

9
αKx − 1

)2

− 4 ·
(
K2
y +

1

9
K2
x

)
·
(
β2 +

1

9
α2

)
(3.47)

and the formula

y2
0 =

1− 2βKy − 2
9αKx ±

√
D1

2
(
K2
y + 1

9K
2
x

) (3.48)

for y2
0 . The fact that we obtain the square of y0 does not matter, as the interpretation of y as an amplitude in

our analysis, means we are only interested in positive real y amplitudes. Therefore the y0 can be assumed to
be positive in (3.49). The real positivity of y0 also has the additional e�ect that complex solutions of y0 that
are the result of D1 < 0, do not matter.

We can obtain the corresponding x0 from y2
0 , via the earlier formula (3.40), which results in

x0 = arcsin

(
α+Kxy

2
0

3y0

)
− Φ. (3.49)

We might need to add π to this x0, due to the bounded range of the arcsin.

These restrictions result in that (3.48) gives us two, one or zero possibilities for y0, depending on the
value of D1.

Existence of this mixed mode near y = 0.

What we �rst notice is the condition that D1 must be real positive or zero for the system (3.35) to have any
mixed modes.

The second important condition to consider, is if these mixed modes are within the bounds of the lo-
calized system. Mixed points that fall far outside the neighborhood of the degenerate point may exhibit
secondary bifurcation not captured in our analysis. If the y0 position of the mixed mode is in the magnitude
of 1

δ or higher, the analysis requires the higher order terms of the normal form to be included for a full picture.

We consider the discriminant condition �rst(
2βKy +

2

9
αKx − 1

)2

− 4 ·
(
K2
y +

1

9
K2
x

)
·
(
β2 +

1

9
α2

)
≥ 0, (3.50)

and this only occurs when

4β2K2
y +

8

9
αβKxKy +

4

81
α2K2

x − 4βKy −
4

9
αKx + 1 ≥ 4 ·

(
β2K2

y +
1

9
β2K2

x +
1

9
α2K2

y +
1

81
α2K2

x

)
, (3.51)

8

9
αβKxKy − 4βKy −

4

9
αKx + 1 ≥ 4

9
β2K2

x +
4

9
α2K2

y , (3.52)

1 ≥ 4βKy +
4

9
αKx +

4

9
β2K2

x+
4

9
α2K2

y −
8

9
αβKxKy. (3.53)

Notice that the right hand side is O(δ). Therefore, as long as the parameters are su�ciently small as to not
counteract the O(δ), which is true for the parameter space used in the analysis, this condition is always satis�ed.
Consequently two mixed modes exist in the system (3.35) for all considered parameters.
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Position of the mixed mode

Now for the second condition, whether the mixed modes are near y = 0. We �rst calculate the discriminant
with all terms expanded and sorted according to the implicit order of δ

D1 =

(
2βKy +

2

9
αKx − 1

)2

− 4 ·
(
K2
y +

1

9
K2
x

)
·
(
β2 +

1

9
α2

)
(3.54)

= 4β2K2
y +

4

81
α2K2

x + 1 +
8

9
αβKxKy −

4

9
αKx − 4βKy (3.55)

− 4β2K2
y −

4

9
β2K2

x −
4

9
α2K2

y −
4

81
α2K2

x

= 1 +
8

9
αβKxKy −

4

9
αKx − 4βKy −

4

9
β2K2

x −
4

9
α2K2

y . (3.56)

We collect the higher order terms of δ within a O(δ2) term to obtain

D1 = 1− 4

9
αKx +O(δ2). (3.57)

Now let us calculate the magnitude of y0 using this discriminant

y2
0 =

1− 2βKy − 2
9αKx ±

√
D1

2
(
K2
y + 1

9K
2
x

) , (3.58)

y0 =

√
1− 2βKy − 2

9αKx ±
√
D1√

2
(
K2
y + 1

9K
2
x

) . (3.59)

Notice that the denominator is O(δ). If y0 is to be of lower magnitude than 1
δ , the numerator in (3.59) should

be of order O(δ) and this in turn requires 1− 2
9αKx ±

√
D1 to be O(δ2).

We can prove that this is only the case when
√
D1 is subtracted. We use the Taylor expansion of the

square root of 1 + x, which is given by

√
1 + x = 1 +

1

2
x− 1

8
x2 +O(x3), (3.60)

to estimate the magnitude of
√
D1. This gives us

√
D1 =

√
1 +

(
−4

9
αKx +O(δ2)

)
= 1− 2

9
αKx +O(δ2). (3.61)

If we substitute this in the numerator of (3.59) we obtain

1− 2

9
αKx ±

√
D1 = 1− 2

9
αKx ±

(
1− 2

9
δαKx

)
+O(δ2). (3.62)

Here we see that the discriminant must be subtracted to counteract the constant and the δ term in the
numerator. We notice that this subtraction results in a value y0 of at most order 1 of δ for all parameters
within the considered parameter space and all constants, therefore the lower mixed mode is always near the
x-axis.

However the higher mixed mode, where the discriminant is added, has a constant, i.e. O(δ0), in the
numerator of (3.59). This results in an y0 value in the magnitude of 1

δ for all parameters and, as stated before,
requires the higher terms of the normal form to be included in the analysis and is therefore not considered any
further.
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3.4 Transition to the non-resonant case.

We brie�y discuss what happens in the truncated localized system (3.35) when α→∞.

Firstly we see that the discriminant D1 becomes zero and eventually negative when α reaches.

D1 = 1− 4

9
αKx +O(δ2). (3.63)

This corresponds to a saddle-node bifurcation between the two mixed modes. This is supported by the
eigenvalues at this point, whose calculation we omit.

However this bifurcation occurs so far from x-axis that there is no certainty that the same bifurcation
is present in the dynamics of the non-localized normal form (2.36). Therefore this bifurcation can only be
hypothesized to occur in the normal form system and consequently is not considered any further in this thesis.
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Analysis of localized system.

In this chapter we start the analysis of the dynamics near the pure mode by determining the stability and
bifurcations of the pure mode(s). Afterwards we consider the stability of the nearby mixed mode. We achieve
this by considering the localized system calculated in section 3.1, which is given by

x′ = α− 3y sin(Φ + x) +Kxy
2, (4.1a)

y′ = βy + y2 cos(Φ + x) +Kyy
3. (4.1b)

Recall from section 3.2 that the considered range of the phase space of this localized system is given by
(x, y) ∈ S1 × R+, where R+ := {y ∈ R|y ≥ 0}.

The x variable is periodic in nature, because it represents the phase di�erence between the phases of
the normal form (2.36). As both phases are in S1, their di�erence, given by x, is in S1 too. The y variable is
restricted to the positive or zero real number due to its correspondence with the amplitude Y in the normal form.

Also recall from section 3.2 that the pure mode(s) are located in the manifold S1 × {0} ⊂ S1 × R+.
This subspace is referred to as the x-axis in the rest of the analysis and the points (x, 0) ∈ S1×{0} are referred
to as points on the x-axis.

4.1 Stability of the pure modes.

The stability of the pure modes is easily calculated, as the localized system (4.1) at the points on the x-axis, is
given by

x′ = α− 3y sin(Φ + x+ x0) +Kxy
2, (4.2a)

y′ = βy + y2 cos(Φ + x+ x0) +Kyy
3. (4.2b)

We can instantly derive the linearization around (x, y) = (x0, 0) of these equations which gives us(
x′

y′

)
=

(
0 0
0 β

)
·
(
x
y

)
, (4.3)

which in turn gives us the eigenvalues
λ1 = 0 and λ2 = β. (4.4)

The eigenvalue λ2 has the eigenvector (0, 1), this implies that it determines the stability of all points on the
x-axis in the y direction.

� If β < 0 then solutions near the x-axis, which refers to solutions within S1 × (0, ε) with a non-zero real
and suitably small ε, converge to y = 0.

� If β > 0 then the x-axis is unstable, solutions near the x-axis may converge to a bifurcated running phase
di�erence solution. Or when this cycle does not exit, the nearby solutions increase in y until they leave
the neighborhood of the x-axis.

More care should be taken when discussing the (1, 0) directional stability of the pure modes; recall from section
3.3 that the phase di�erence x is not de�ned at the pure mode. However we can use the limit of the phase
di�erence when approaching y = 0 to de�ne the x variable at y = 0. Conveniently, due to the continuity of the
limit, this de�nition allows us to treat the x values at y = 0 as normal variables. This slight di�erence does
not impact the dynamics of the localized system much, but is does a�ect the interpretation of the bifurcations
of the localized system.

� If α = 0 all points on the x-axis are equilibria and no motion takes place along the x coordinate. This
con�rms the λ1 = 0 result.

� If α 6= 0 then the pure mode has a running phase di�erence, as every point on the x-axis satis�es x′ = α.
This implies that the pure mode is a single periodic orbit.

The pure modes do in fact experience a bifurcation at β = 0. Here we must distinguish the phase locked pure
modes from the running phase di�erence pure modes, as they behave quite di�erently when β approaches zero.
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Running phase di�erence pure modes.

We �rst cover the cases when the pure mode has a running phase di�erence. We consider the points near the
x-axis, these points are de�ned by (x, y) = (x0, ε) with x0 ∈ S1 and ε positive, real and in the neighborhood
of 0. This de�nition is used for the rest of the analysis. On these points the derivative x′ is given by

x′ = α− 3ε sin(Φ + x0) +Kxε
2 = α+O(ε). (4.5)

When α 6= 0, the value of O(ε) is negligible compared to the parameter term α, due to the smallness of ε.
Therefore on the points near the x-axis we can approximate the derivative x′ by α+O(ε) ≈ α. When starting
at some point (x0, ε) near the x-axis, this approximation leads to

x(τ) ≈ ατ + x0. (4.6)

Substituting this approximation in y′ gives us

y′ = βy + y2 cos(Φ + ατ + x0) +Kyy
3. (4.7)

Now when near the pure mode, and as such the x-axis, the derivative y′ itself is very small, due to the y in
each term. From this it follows that any solution starting near the pure mode will stay there for a long time
and by starting even closer to y = 0 we can arbitrarily extend the time spent near y = 0. Therefore the term
cos(Φ + ατ + x0) oscillates on a time scale much faster than y′ changes. This reduces the term to its median,
which equals zero. We conclude that the evolution of y′ near the pure mode is determined by

y′ = βy +Kyy
3. (4.8)

Recall from the introduction that this is in fact the normal form of a pitchfork bifurcation, where the case is
determined by the sign of Ky.

However, due to the correspondence of x and y to the phase di�erence and the amplitude in the nor-
mal form, this bifurcation in fact corresponds to a Hopf bifurcation in the normal form. The periodicity of
the x variable and the non-existence of the phase di�erence at y = 0, together with the coupled oscillation y
experiences, support this observation.

It is also apparent that the pitchfork normal form (4.8) breaks when Ky = 0. For now we exclude this
possibility, as this results in a degenerate localized system, we brie�y consider that system in section 5.8.

If Ky < 0, we know that the pitchfork bifurcation is super-critical. Therefore when β < 0 the running
phase di�erence pure mode is stable and no other running phase di�erence solutions exist. When β > 0 we
know that two stable solutions have bifurcated o� the original pure mode, while the stability of said pure mode
has switched from stable to unstable. One of the bifurcated stable solutions has negative y-values; as these do
not describe valid amplitudes, this solution is not considered any further. Within the total normal form (2.29),
this bifurcation corresponds to the splitting of a stable invariant 2-torus, which contains the quasi-periodic
solutions, o� the 1-torus corresponding to the pure mode as argued in section 2.2. Lastly this 1-torus switches
stability from stable to unstable.

If Ky > 0, we know that the pitchfork bifurcation is sub-critical. Therefore when β > 0 the running
phase di�erence pure mode is unstable and no other running phase di�erence solutions exist. When β < 0 we
know that two unstable solutions have bifurcated and the pure mode is stable. Again one of the bifurcated
solutions is negative and not considered any further. Within the total normal form (2.29), this bifurcation
corresponds to the splitting of a unstable invariant 2-torus, which contains the quasi-periodic solutions, o� the
1-torus corresponding to the pure mode as argued in section 2.2. Lastly this 1-torus switches stability from
unstable to stable.
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Phase locked pure modes.

When the pure modes are phase locked the situation is di�erent. Firstly we notice that, due to the eigenvalue λ2

with the (0, 1) eigenvector, the x-axis still switches stability from stable to unstable when β becomes positive.
Secondly the derivative x′ is zero at all points on the x-axis, but slightly above the x-axis the −3y sin(Φ + x)
term becomes important. The term causes the derivative x′ to be non-zero except at the x values where
−3y sin(Φ + x) is zero.

At the points on the x-axis, with a neighborhood wherein all points above the x-axis satisfy x′ 6= 0,
the change in stability of the x-axis does not lead to the bifurcation of �xed points. The switch in x-axis
stability does cause nearby solutions to reverse their y direction, but unlike the running phase di�erence case
no periodic running phase di�erence solution bifurcates o� the pure mode. This is due to the points near the
x-axis values where x′ is zero. These points form a curve, which starts perpendicular to the x-axis and which
no running phase di�erence solution near the x-axis can cross, instead these solution either bend toward or
bend away from the x-axis.

At the points on the x-axis, with a neighborhood that contains points above the x-axis which satisfy
x′ = 0, equilibria bifurcate from the x-axis.

At all points near the x-axis, see the start of the running phase di�erence paragraph for the de�nition
of these points, the derivative x′ is given by

x′ = −3ε sin(Φ + x0) +Kxε
2 = −3ε sin(Φ + x0) +O(ε2). (4.9)

As ε is very small, the O(ε2) term is negligible and can be truncated to obtain the approximation of the
derivative x′ near the x-axis

x′ = −3ε sin(Φ + x0). (4.10)

This right hand side of this equation is only zero at the values Φ + x0 = kπ, k ∈ Z. At all other values of x0,
all points in the neighborhood of (x0, 0) satisfy x′ 6= 0. As discussed before, the switch of the stability of the
x-axis does not lead to bifurcated equilibria in these points, therefore these points at these x0 values are not
considered any further.

We consider the derivative y′ at the considered x0 values

y′ = βy + y2 cos(Φ + x0) +Kyy
3. (4.11)

Close enough to the x-axis the y3-term is negligible, resulting in the evolution

y′ = βy + y2 cos(Φ + x0), (4.12)

and at the considered x0 values the cosine is either 1 or −1. Therefore the derivative y′ at the points (kπ, y),
with k ∈ Z, equals

y′ = βy ± y2. (4.13)

Recall from the introduction that this is the normal form of a trans-critical bifurcation, where the direction of
the bifurcation is determined by the sign of y2. This normal form implies a second equilibrium at y = ∓β in
addition to the one at y = 0, this second equilibrium has its stability in the (0, 1) direction characterized by the
eigenvalue λ = −β. Here we exclude the �xed points below the x-axis, that might occur due the trans-critical
bifurcation. This is again because the y variable still corresponds to an amplitude and therefore should not be
negative.

We can also calculate the eigenvalue of the x variable at the second equilibrium for both signs of the
cosine. If we linearize at Φ + x0 = 0 + 2kπ, y0 = −β > 0 we obtain

x′ = −3(y0 + y) sin(Φ + x0 + x) +O(y2) (4.14)

= −3(y0 + y) (sin(Φ + x0) cos(x) + cos(Φ + x0) sin(x)) +O(y2) (4.15)

= −3(y0 + y) sin(x) +O(y2) (4.16)

= 3βx+O(2). (4.17)

Therefore the eigenvalues of this mixed mode are λ1 = −β and λ2 = 3β, which implies that this mixed mode
is a saddle point.
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If we linearize at Φ + x0 = π + 2kπ, y0 = β > 0 we obtain

x′ = −3(y0 + y) sin(Φ + x0 + x) +O(y2) (4.18)

= 3(y0 + y) sin(x) +O(y2) (4.19)

= 3βx+O(2). (4.20)

Therefore the eigenvalues of this mixed mode are λ1 = −β and λ2 = 3β, which implies this mixed mode is
again a saddle point.

We can summarize these results in phase portraits of the dynamics of the system (4.2) near the points
(x, y) = (kπ − Φ, 0), k ∈ Z. The origin in the phase portraits has been set to these points. In all cases the
x-axis in these phase portraits consists of equilibria, as both derivatives x′ and y′ are zero when y = 0.

(a) β < 0 (b) β = 0 (c) β > 0

Figure 4.1: Φ + x0 = 0 + 2kπ

Near the phase locked pure modes at Φ + x0 = 0 + 2kπ, we see y′ = βy + y2 = y(β + y). We distinguish three
cases depending on the parameter β.

� When β < 0, the pure mode is stable and the derivative y′ is zero at y = −β, which implies a �xed point
near (x0,−β). The eigenvalue calculation determined that this equilibrium is a saddle point.

� When β = 0, for all points that satisfy x0 6= kπ, the derivative y′ is tiny compared to the x′ derivative.
This implies that running phase di�erence solutions near the x-axis approximately maintain their y-value
until they approach one of the considered x0 values, where x′ = 0. Only when nearing the line given
by Φ + x0 = kπ, the y′ derivative becomes dominant. In the case Φ + x0 = 0 + 2kπ the running phase
di�erence solutions tend toward the point (x0, 0) in the x direction and away from the point (x0, 0) in
the y direction, due to the sign of the y2 term and the linearization of x′ at (x0, ε).

� When β > 0, the pure mode is unstable and the derivative y′ is still zero at y = −β. However due to
the sign of β, this now implies a �xed point with a negative y value and therefore the �xed point is not
considered further.

(a) β < 0 (b) β = 0 (c) β > 0

Figure 4.2: Φ + x0 = π + 2kπ

Near the phase locked pure modes at Φ + x0 = 0 + 2kπ, we see y′ = βy − y2 = y(β − y). We distinguish three
cases depending on the parameter β.

� When β < 0, the pure mode is unstable and the derivative y′ is zero at y = β. Due to the sign of β, this
results in a �xed point with a negative y value, which is not considered further.

� When β = 0, the same argument as in the Φ + x0 = π + 2kπ case applies for all the points where x′ 6= 0.
Therefore the running phase di�erence solutions near the x-axis approximately maintain their y-value
until they approach one of the considered x0 values, where x′ = 0. When nearing the line given by
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Φ + x0 = π + kπ, the y′ derivative becomes dominant. In the case Φ + x0 = 0 + 2kπ the running phase
di�erence solutions tend away from the point (x0, 0) in the x direction and towards the point (x0, 0) in
the y direction, due to the sign of the y2 term and the linearization of x′ at (x0, ε).

� When β > 0, the pure mode is unstable and the derivative y′ is zero at y = β, which implies a �xed point
near (x0, β). The eigenvalue calculation determined that this equilibrium is a saddle point.

Let us summarize the situation when β moves from a negative value to a positive one while α = 0. We �rstly
see that the saddle mixed mode, which is unstable in the y direction, collides with the pure mode at the point
(−Φ, 0) at β = 0. When β > 0, the mixed mode reappears as a saddle point, which is stable in the y direction,
at the point (π − Φ, 0).

Results.

Thus we can con�dently state that when β switches sign, all pure modes switch y-stability. This causes, in
running phase di�erence pure modes, a stable or unstable running phase solution to bifurcate depending on the
sign of K2. In phase locked pure modes, the sign switch of β causes saddle node mixed modes to collide and
split o� the x-axis at the points (kπ − Φ, 0), k ∈ Z.

4.2 Eigenvalues of the mixed mode.

In section 3.3 we had derived the location of the localized phase locked mixed mode. We denote this location
as (x0, y0), where the x0 and y0 values are obtained by (3.49) and (3.48) respectively.

To obtain the eigenvalues that characterize this equilibrium, we linearize the localized system

x′ = α− 3y sin(Φ + x) +Kxy
2, (4.21a)

y′ = βy + y2 cos(Φ + x) +Kyy
3, (4.21b)

at this point and consider the resulting equations. We start with the linearization of (4.21a)

x′ = α− 3(y + y0) sin(Φ + x+ x0) +Kx(y + y0)2. (4.22)

Recall that the Φ + x0 value is given by (3.40), this can be substituted in (4.22) to obtain

x′ = α− 3(y + y0) sin

(
arcsin

(
α+Kxy

2
0

3y0

)
+ x

)
+Kx(y2 + 2yy0 + y2

0). (4.23)

We leave the y0 coordinate as it is, as using the derived equation (3.48) for it would only complicate this
linearization. We now use the sinus sum identity to separate the x value from the arcsin in the sinus, this leads
us to

x′ = α− 3(y + y0)

(
sin

(
arcsin

(
α+Kxy

2
0

3y0

))
cos(x) + cos

(
arcsin

(
α+Kxy

2
0

3y0

))
sin (x)

)
+Kx(y2 + 2yy0 + y2

0). (4.24)

And after further derivation we end with

x′ = α− 3(y + y0)

α+Kxy
2
0

3y0
cos(x) +

√
1−

(
α+Kxy

2
0

3y0

)2

sin (x)

+Kxy
2 + 2Kxyy0 +Kxy

2
0 . (4.25)

Fortunately it is possible to remove the square root from this equation. For this we need to extract the square
root found (3.42), in the derivation of the mixed mode. This gives us

β +Kyy
2
0

y0
= −

√
1−

(
α+Kxy

2
0

3y0

)2

, (4.26)

which can be used to simplify (4.25) to

x′ = α− 3(y + y0)

(
α+Kxy

2
0

3y0
cos(x)− 3β + 3Kyy

2
0

3y0
sin (x)

)
+Kxy

2 + 2Kxyy0 +Kxy
2
0 . (4.27)

We replace the cos(x) and sin(x) in the equation with their respective Taylor expansion and collect the higher
order terms of x and y in O(2). This leads to

x′ = α− yα+Kxy
2
0

y0
− y0

(
α+Kxy

2
0

y0
− 3β + 3Kyy

2
0

y0
x

)
+ 2Kxyy0 + Kxy

2
0 +O(2), (4.28)
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which after simpli�cation yields

x′ =

(
2Kxy0 −

α+Kxy
2
0

y0

)
y + (3β + 3Kyy

2
0)x+O(2). (4.29)

This is the equation for x′ linearized at (x0, y0). We continue with the linearization of (4.21b)

y′ = β(y + y0) + (y + y0)2 cos(Φ + x+ x0) +Ky(y + y0)3. (4.30)

We substitute again the Φ + x0 constant for its equation (3.40) to obtain

y′ = β(y + y0) + (y + y0)2 cos

(
arcsin

(
α+Kxy

2
0

3y0

)
+ x

)
+Ky(y + y0)3. (4.31)

This time we use the trigonometric sum identity of the cosine.

y′ = β(y + y0) + (y + y0)2 cos

(
arcsin

(
α+Kxy

2
0

3y0

))
cos(x) (4.32)

− (y + y0)2 sin

(
arcsin

(
α+Kxy

2
0

3y0

))
sin(x) +Ky(y + y0)3

= β(y + y0) + (y + y0)2

√1−
(
α+Kxy

2
0

3y0

)2

cos(x)− α+Kxy
2
0

3y0
sin(x)

+Ky(y + y0)3. (4.33)

Here the root has reappeared, but we can again use the equality (4.26) to continue to

y′ = β(y + y0)− (y + y0)2

(
β +Kyy

2
0

y0
cos(x) +

α+Kxy
2
0

3y0
sin(x)

)
+Ky(y + y0)3. (4.34)

And after expanding the cube and square of (y − y0), we obtain

y′ = βy+ βy0− (y2 + 2y0y+ y2
0)

(
β +Kyy

2
0

y0
cos(x) +

α+Kxy
2
0

3y0
sin(x)

)
+Ky(y3 + 3y0y

2 + 3y2
0y+ y3

0). (4.35)

We once again replace the cos(x) and sin(x) terms with their respective Taylor expansion and collect all of the
higher order terms in O(2)

y′ = βy + βy0 − 2y
(
β +Kyy

2
0

)
− y0

(
β +Kyy

2
0 +

α+Kxy
2
0

3
x

)
+ 3Kyy

2
0y +Kyy

3
0 +O(2), (4.36)

which after simpli�cation yields the equation

y′ = −1

3
(αy0 +Kxy

3
0)x+

(
Kyy

2
0 − β

)
y +O(2). (4.37)

for y′ linearized at (x0, y0). Together with (4.29), we can �nally obtain the linearized system in matrix formx′
y′

 =

 3β + 3Kyy
2
0 2Kxy0 −

α+Kxy
2
0

y0

−1

3
(αy0 +Kxy

3
0) Kyy

2
0 − β

 ·
x
y

 . (4.38)

The eigenvalues of this matrix characterize the dynamics in the local neighborhood of the mixed mode. As the
matrix is 2 by 2 we can easily give the characteristic polynomial

c(λ) =
(
3β + 3Kyy

2
0 − λ

) (
Kyy

2
0 − β − λ

)
+

(
2Kxy0 −

α+Kxy
2
0

y0

)(
1

3
(αy0 +Kxy

3
0)

)
. (4.39)

This polynomial can be simpli�ed to

c(λ) = λ2 −
(
2β + 4Kyy

2
0

)
λ−

(
3β2 − 3K2

yy
4
0

)
− 1

3

(
α2 −K2

xy
4
0

)
. (4.40)

We are left with another quadratic equation c(λ) = 0, which we can easily solve using the abc-formula. To
summarize, the mixed mode is given by (3.49) and (3.59) with its characterizing eigenvalues de�ned by

D2 =
(
2β + 4Kyy

2
0

)2 − 4

(
3K2

yy
4
0 +

1

3
K2
xy

4
0 − 3β2 − 1

3
α2

)
and λ1,2 =

2β + 4Kyy
2
0 ±
√
D2

2
. (4.41)
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4.3 Mixed mode stability

The mixed mode discovered near the degenerate point is a saddle point for all considered parameters, which is
demonstrated in this section.

Firstly a saddle point equilibrium is characterized by real eigenvalues, that have opposite sign. The
equation for the eigenvalues of the mixed point, (4.41), allows for this when two conditions are met,

C1 : D2 > 0 and C2 :
(
2β + 4Kyy

2
0

)2
< D2. (4.42)

The �rst condition is that the discriminant, D2 in the eigenvalue equation (4.41), is above zero. We set this
condition to assure the root,

√
D2 in (4.41), is real. An imaginary root is undesirable, as it would result in

conjugate complex eigenvalues instead of the desired real eigenvalues.

The second condition ensures the opposite sign of the eigenvalues. If C2 is true then the two possibili-
ties of 2β + 4Kyy

2
0 ±
√
D2 have the opposite sign.

We start the proof that any considered mixed mode satis�es both conditions by introducing the vari-
ables

A =

(
K2
y +

1

9
K2
x

)
, B =

(
2βKy +

2

9
αKx − 1

)
and C =

(
β2 +

1

9
α2

)
, (4.43)

to simplify further derivations. The formula for y2
0 , given by (3.48), is simpli�ed by substituting the new

variables, resulting in

y2
0 =
−B −

√
D1

2A
=
−B −

√
B2 − 4AC

2A
. (4.44)

The introduction of (4.43) also simpli�es the discriminant D2, used in the calculation of the eigenvalues, to

D2 =
(
2β + 4Kyy

2
0

)2 − 12
(
Ay4

0 − C
)
. (4.45)

We notice that the �rst term of the D2 discriminant is always positive due to the square. Now it is possible to
prove that, in addition to the �rst, the second term is always positive. We start by stating

− 12
(
Ay4

0 − C
)
> 0, (4.46)

which leads us to the equivalent statement
Ay4

0 − C < 0. (4.47)

We substitute the y0 term with (4.44) and obtain

B2 + 2B
√
D1 +D1

4A
< C, (4.48)

which, by using D1 = B2 − 4AC, can be further simpli�ed to

0 > 2D1 + 2B
√
D1. (4.49)

Now for any relevant mixed mode, we have assumed that its y-position is real positive, due to its interpretation
as amplitude and the de�nition of the mixed mode. In addition to this we notice that A is always positive due
to the squares. Therefore the upper part of (4.44), −B −

√
D1, is real positive and consequently

0 > B +
√
D1. (4.50)

If we multiply this by 2
√
D1 we see

0 > 2D1 + 2B
√
D1. (4.51)

Therefore (4.49) is true for every possible mixed mode and in extension the proposition that the second term
of the discriminant D2 is positive.

The guaranteed posititivy of both terms in the discriminant D2 imply that the discriminant is always
positive, and therefore the �rst condition C1 is satis�ed for all mixed modes.

Therefore we now only consider the second condition(
β + 4Kyy

2
0

)2
<
(
2β + 4Kyy

2
0

)2 − 12
(
Ay4

0 − C
)
. (4.52)
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This is equivalent to
0 < −12

(
Ay4

0 − C
)
, (4.53)

which just has been proven true for all considered mixed modes.

Therefore both saddle conditions in (4.42) are satis�ed by all considered mixed modes. We conclude
that the nearby mixed mode, as long as it exist near the x-axis, is a saddle for all considered parameters.

4.4 Degenerate case K2 = 0.

This special case was already mentioned in section 4.1, where it was noted for breaking the pitchfork normal
form that occurs near the x-axis in the running phase di�erence pure mode case. In this section we consider
the entire localized system (4.2) when K2 = 0. Firstly we notice that K2 = 0 reduces the localized system to

x′ = α− 3y sin(Φ + x) +Kxy
2, (4.54a)

y′ = βy + y2 cos(Φ + x). (4.54b)

This system is still non-degenerate, which implies the dynamics still have an accurate correspondence to the
dynamics of the total normal form (2.36). However at the parameter value β = 0, the system reduces even
more to

x′ = α− 3y sin(Φ + x) +Kxy
2, (4.55a)

y′ = y2 cos(Φ + x). (4.55b)

This system has a property that leads to dynamics that are almost certainly not shared by the total normal
form, the system is integrable. This is de�ned as the existence of a function E(x, y) such that

d

dt
E(x, y) = 0. (4.56)

This implies that for all solutions the function E remains constant along their path. This function E is called a
�rst integral and when found it implies the existence of closed orbits along its level curves. The reduced system
(4.55) has the �rst integral

E = y3 sin(x)− 1

2
y2α− 1

4
y4Kx. (4.57)

We can demonstrate this by taking the τ time derivative

d

dτ
E = y3 cos(Φ + x)x′ + 3y2y′ sin(Φ + x)− yy′α− y3y′Kx. (4.58)

We calculate each term separately,

y3 cos(Φ + x)x′ = αy3 cos(Φ + x)− 3y4 cos(Φ + x) sin(Φ + x) +Kxy
5 cos(Φ + x), (4.59)

3y2y′ sin(Φ− x) = 3y4 cos(Φ + x) sin(Φ + x), (4.60)

− yy′α− y3y′Kx = −αy3 cos(Φ + x)−Kxy
5 cos(Φ + x). (4.61)

Therefore, when these value are substituted in (4.58), we see

y3 cos(Φ− x)x′ + 3y2y′ sin(Φ + x)− yy′α− y3y′Kx = 0. (4.62)

And thus
d

dτ
E(x, y) = 0, and consequently E is a �rst integral of the system (4.55).
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We can plot the level curves of the �rst integral and calculate the direction of solutions on these curves. When
done for the parameter value α > 0, this results in �gure 4.3.

Figure 4.3: Closed cycles on the level curves of E, with the parameter value α > 0.

In �gure 4.3 the level curves are plotted, including the direction of the solutions on the level curves. When
α < 0, the dynamics are mirrored in the y-axis.

This �gure also gives a good approximation on how the perturbed system behaves, as when δ approaches zero,
we expect the solutions of the localized system to approach those of the system (4.55). This results in solutions
that are nearly on the level curves of the �rst integral E.

Changing β to a positive or negative value breaks the �rst integral invariance of the solutions and re-
sults in convergence to the stable pure mode, or divergence until the solution leave the considered space. As
this happens for all solutions simultaneously, no region of the parameter space allows the existence of running
phase solutions near y = 0.

However all of these deductions are made with the absence of higher order terms, which will invariably
disturb the closed cycles and other solutions on the level curves present in the dynamics of (4.55). This will
lead to a wide array of new bifurcation possibilities and as such these must be included in the study of the
degenerate case when β is nearly zero.

As the analysis of the higher order localized system has not been performed in this thesis, the degener-
ate case is unfortunately not considered any further.
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An analysis of a faulty localized system.

5.1 Mistake in the thesis.

From this point on I must admit that I have made a fatal mistake, which resulted in the use of an incorrect
normal form. This error then cascaded and worsened throughout all the following sections.

In my studies I forgot to change a minus to a plus sign in the derivation of the normal form, after I
used a di�erent de�nition of ϕ. This error eventually led to the incorrect resonant normal form

Ẋ = µ1X + (a1rX
2 + b1rY

2)X + Y 3 cos(ϕ), (5.1a)

Ẏ = µ2Y + (a2rX
2 + b2rY

2)Y +XY 2 cos(Φ− ϕ), (5.1b)

ϕ̇ = ν − aimX2 − bimY 2 − Y 3

X sin(ϕ)− 3XY sin(Φ− ϕ), (5.1c)

and the incorrect localized system

x′ = α− 3y sin(Φ− x)−Kxy
2, (5.2a)

y′ = βy + y2 cos(Φ− x) +Kyy
3, (5.2b)

which I used for the remainder of thesis.

The main di�erence that within this system (5.2) in the x derivative is that we have the sinus sin(Φ− x) with
Φ − x, while the correct term is sin(Φ + x). The same di�erence is present in the cosine, however due to the
symmetry of the cosine this has considerably less impact than in the sine case.

The second mistake in the normal form was the sign of the −aimX2 and −bimY 2 terms, due to the
same error during derivation when rede�ning ϕ. However this mistake was not as debilitating as the �rst and
could have been easily solved by rede�ning aim and bim to have the opposite sign.

These errors do not change the existence of the mixed mode near the degenerate point. They do how-
ever lead to the slightly di�erent y0 position of the nearby mixed mode

D1 =

(
2βKy −

2

9
αKx − 1

)2

− 4 ·
(
K2
y +

1

9
K2
x

)
·
(
β2 +

1

9
α2

)
and y2

0 =
1− 2βKy − 2

9αKx −
√
D1

2
(
K2
y + 1

9K
2
x

) . (5.3)

And a slightly di�erent x0 position

x0 = Φ− arcsin

(
α+Kxy

2
0

3y0

)
. (5.4)

However the errors do have far reaching consequences for the stability of the mixed mode and in extension the
dynamics of the system.

For example in the correct localized system the mixed point near the x-axis is a saddle point instead
of the source or sink seen in the old analysis. This correct mixed mode does not exhibit any bifurcations, so
the Hopf bifurcation found in the old system is not found in the correct system.

These errors have made the remainder of the original thesis completely unsalvageable. The di�erent
dynamics required a modi�ed analysis and a completely new result, comparison and conclusion sections. The
rewriting of all sections amounted to a sizable workload and would have taken too much time. This is the
reason that the second half of this thesis is missing.

However I was able to include a corrected analysis in this thesis in section 4. I have still included the
old analysis to exemplify the di�erences between the two systems. In the last section, section 6, I brie�y re�ect
the impact of the error.
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5.2 Original start of chapter.

In this chapter we start the analysis of the dynamics near the pure mode by determining the stability and
bifurcations of the pure mode(s). Afterwards we consider the stability of the nearby mixed mode. We achieve
this by considering the localized system given by (5.2),

Just as with the correct localized system the considered range of the phase space of this localized sys-
tem is given by (x, y) ∈ S1 × R+, where R+ := {y ∈ R|y ≥ 0}.

The x variable is periodic in nature, because it represents the phase di�erence between the phases of
the normal form (5.1). As both phases are in S1, their di�erence, given by x, is in S1 too. The y variable is
restricted to the positive or zero real number due to its correspondence with the amplitude Y in the normal form.

Lastly the pure mode(s) are also located in the manifold S1 × {0} ⊂ S1 × R+. This subspace is re-
ferred to as the x-axis in the rest of the analysis and the points (x, 0) ∈ S1 × {0} are referred to as points on
the x-axis.

5.3 The two regions of the phase space.

Before we start with the derivations regarding bifurcations in this system, we denote two regions that will be
present the phase space when δ is small, and the parameters, µ̄ and ν̄, are not zero and within the considered
parameter space. These regions, while not formally de�ned, are to help denote the location of solutions.

The �rst region is near the x-axis and is characterized by a running phase di�erence. Solutions that
stay in this region have a monotonically increasing or decreasing x value. We refer to this region as the running
phase region.

The second region is the region near the mixed mode, here the phase di�erence x and the amplitude y
oscillate around the mixed mode and depending on the parameter converge to the mixed mode or a limit cycle.
Solutions that stay in this region have a single period oscillating x and y and this region is referred to as the
oscillating phase region.

Outside the considered parameter space of the analysis, when β and α are of a similar or greater mag-
nitude than 1

δ , the regions become unclear. The stability of the mixed mode can be great enough that no
oscillation occurs near the �xed point or the mixed mode could not exist at all. The dynamics at this point
are beyond the scope of this thesis, so these cases are not considered further.

5.4 Stability of the pure modes.

The stability of the pure modes is easily calculated, as the localized system (4.1) at the points on the x-axis, is
given by

x′ = α− 3y sin(Φ− x− x0)−Kxy
2, (5.5a)

y′ = βy + y2 cos(Φ− x− x0) +Kyy
3. (5.5b)

We can instantly derive the linearization around (x, y) = (x0, 0) of these equations which gives us(
x′

y′

)
=

(
0 0
0 β

)
·
(
x
y

)
, (5.6)

which in turn gives us the eigenvalues
λ1 = 0 and λ2 = β. (5.7)

The eigenvalue λ2 has the eigenvector (0, 1), this implies that it determines the stability of all points on the
x-axis in the y direction.

� If β < 0 then solutions near the x-axis, which refers to solutions within S1 × (0, ε) with a non-zero real
and suitably small ε, converge to y = 0

� If β > 0 then the x-axis is unstable, solutions near the x-axis may converge to a bifurcated running phase
di�erence solution. Or when this cycle does not exit, the nearby solutions increase in y until they leave
the neighborhood of the x-axis.

More care should be taken when discussing the (1, 0) directional stability of the pure modes; recall from section
3.3 that the phase di�erence x is not de�ned at the pure mode. However we can use the limit of the phase
di�erence when approaching y = 0 to de�ne the x variable at y = 0. Conveniently, due to the continuity of the
limit, this de�nition allows us to treat the x values at y = 0 as normal variables. This slight di�erence does
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not impact the dynamics of the localized system much, but is does a�ect the interpretation of the bifurcations
of the localized system.

� If α = 0 all points on the x-axis are equilibriaequilibria and no motion takes place along the x coordinate.
This con�rms the λ1 = 0 result.

� If α 6= 0 then the pure mode has a running phase di�erence, as every point on the x-axis satis�es x′ = α.
This implies that the pure mode is a single periodic orbit.

The pure modes do in fact experience a bifurcation at β = 0. Here we must distinguish the phase locked pure
modes from the running phase di�erence pure modes, as they behave quite di�erently when β approaches zero.

Running phase pure modes.

We �rst cover the cases when the pure mode has a running phase di�erence. We consider the points near the
x-axis, these points are de�ned by (x, y) = (x0, ε) with x0 ∈ S1 and ε positive, real and in the neighborhood
of 0. This de�nition is used for the rest of the analysis. On these points the derivative x′ is given by

x′ = α− 3ε sin(Φ− x0)−Kxε
2 = α+O(ε). (5.8)

When α 6= 0, the value of O(ε) is negligible compared to the parameter term α, due to the smallness of ε.
Therefore on the points near the x-axis we can approximate the derivative x′ by α+O(ε) ≈ α. When starting
at some point (x0, ε) near the x-axis, this approximation leads to

x(τ) ≈ ατ + x0. (5.9)

Substituting this approximation in y′ gives us

y′ = βy + y2 cos(Φ− ατ − x0) +Kyy
3. (5.10)

Now when near the pure mode, and as such the x-axis, the derivative y′ itself is very small, due to the y in
each term. From this it follows that any solution starting near the pure mode will stay there for a long time
and by starting even closer to y = 0 we can arbitrarily extend the time spent near y = 0. Therefore the term
cos(Φ− ατ − x0) oscillates on a time scale much faster than y′ changes. This reduces the term to its median,
which equals zero. We argue that the evolution of y′ near the pure mode is determined by

y′ = βy +Kyy
3. (5.11)

Recall from the introduction that this is in fact the normal form of a pitchfork bifurcation, where the case is
determined by the sign of Ky.

However, due to the correspondence of x and y to the phase di�erence and the amplitude in the nor-
mal form, this bifurcation in fact corresponds to a Hopf bifurcation in the normal form. The periodicity of
the x variable and the non-existence of the phase di�erence at y = 0, together with the coupled oscillation y
experiences, support this observation.

It is also apparent that the pitchfork normal form (5.11) breaks when Ky = 0. For now we exclude
this possibility, as this results in a degenerate localized system; we brie�y consider that system in section 4.4.

If Ky < 0, we know that the pitchfork bifurcation is super-critical. Therefore when β < 0 the running
phase pure mode is stable and no other running phase solutions exist. When β > 0 we know that two stable
solutions have bifurcated o� the original pure mode, while the stability of said pure mode has switched from
stable to unstable. One of the bifurcated stable solutions has negative y-values, as these do not describe
valid amplitudes, this solution is not considered any further. Within the total normal form, this bifurcation
corresponds to the splitting of a stable invariant 2-torus, which contains the quasi-periodic solutions, o� the
1-torus corresponding to the pure mode. Lastly this 1-torus switches stability from stable to unstable.

If Ky > 0, we know that the pitchfork bifurcation is sub-critical. Therefore when β > 0 the running
phase pure mode is unstable and no other running phase solutions exist. When β < 0 we know that two
unstable solutions have bifurcated and the pure mode is stable. Again one of the bifurcated solutions is negative
and not considered any further. Within the total normal form, this bifurcation corresponds to the splitting of
a unstable invariant 2-torus, which contains the quasi-periodic solutions, o� the 1-torus corresponding to the
pure mode. Lastly this 1-torus switches stability from unstable to stable.

Phase locked pure modes.

When the pure modes are phase locked the situation is di�erent. Firstly we notice that, due to the eigenvalue λ2

with the (0, 1) eigenvector, the x-axis still switches stability from stable to unstable when β becomes positive.
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Secondly the derivative x′ is zero at all points on the x-axis, but slightly above the x-axis the −3y sin(Φ − x)
term becomes important. The term causes the derivative x′ to be non-zero except at the x values where
−3y sin(Φ− x) is zero.

At the points on the x-axis, with a neighborhood wherein all points above the x-axis satisfy x′ 6= 0,
the change in stability of the x-axis does not lead to the bifurcation of �xed points. The switch in x-axis
stability does cause nearby solutions to reverse their y direction, but unlike the running phase di�erence case no
periodic running phase di�erence solution bifurcates o� the pure mode. This is due to the points near the x-axis
values where x′ is zero. These points form a curve, which starts perpendicular to the x-axis and which no run-
ning phase di�erence solution can cross, instead these solution either bend toward or bend away from the x-axis.

At the points on the x-axis, with a neighborhood that contains points above the x-axis which satisfy
x′ = 0, equilibria bifurcate from the x-axis.

At all points near the x-axis, see the start of the running phase di�erence paragraph for the de�nition
of these points, the derivative x′ is given by

x′ = −3ε sin(Φ− x0)−Kxε
2 = −3ε sin(Φ + x0) +O(ε2). (5.12)

As ε is very small, the O(ε2) term is negligible and can be truncated to obtain the approximation of the
derivative x′ near the x-axis

x′ = −3ε sin(Φ− x0). (5.13)

This right hand side of this equation is only zero at the values Φ− x0 = kπ, k ∈ Z. At all other values of x0,
all points in the neighborhood of (x0, 0) satisfy x′ 6= 0. As discussed before, the switch of the stability of the
x-axis does not lead to bifurcated equilibria in these points, therefore these points at these x0 values are not
considered any further.

We consider the derivative y′ at the considered x0 values

y′ = βy + y2 cos(Φ− x0) +Kyy
3. (5.14)

Close enough to the x-axis the y3-term is negligible, resulting in the evolution

y′ = βy + y2 cos(Φ− x0), (5.15)

and at the considered x0 values the cosine is either 1 or −1. Therefore the derivative y′ at the points (Φ−kπ, y),
with k ∈ Z, equals

y′ = βy ± y2. (5.16)

Recall from the introduction that this is the normal form of a trans-critical bifurcation, where the direction of
the bifurcation is determined by the sign of y2. This normal form implies a second equilibrium at y = ∓β in
addition to the one at y = 0, this second equilibrium has its stability in the (0, 1) direction characterized by the
eigenvalue λ = −β. Here we exclude the �xed points below the x-axis, that might occur due the trans-critical
bifurcation. This is again because the y variable still corresponds to an amplitude and therefore should not be
negative.

We can also calculate the eigenvalue of the x variable at the second equilibrium for both signs of the
cosine. If we linearize at Φ− x0 = 0 + 2kπ, y0 = −β > 0 we obtain

x′ = −3(y0 + y) sin(Φ− x0 − x) +O(y2) (5.17)

= −3(y0 + y) (sin(Φ− x0) cos(x)− cos(Φ− x0) sin(x)) +O(y2) (5.18)

= 3(y0 + y) sin(x) +O(y2) (5.19)

= −3βx+O(2). (5.20)

Therefore the eigenvalues of this mixed mode are λ1 = −β and λ2 = −3β. If the �xed point is to exist above
the x-axis then we require β < 0 and we see that both eigenvalues are positive. Therefore the mixed mode is
an unstable �xed point.

If we linearize at Φ− x0 = π + 2kπ, y0 = β > 0 we obtain

x′ = −3(y0 + y) sin(Φ− x0 − x) +O(y2) (5.21)

= −3(y0 + y) sin(x) +O(y2) (5.22)

= −3βx+O(2). (5.23)
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Therefore the eigenvalues of this mixed mode are λ1 = −β and λ2 = −3β. If the �xed point is to exist above
the x-axis, β > 0 must be true and we see that both eigenvalues are negative. Therefore the mixed mode is a
stable �xed point.

We can summarize these results in phase portraits of the dynamics of the system (5.5) near the points
(x, y) = (Φ − kπ, 0), k ∈ Z. The origin in the phase portraits has been set to these points. In all cases the
x-axis in these phase portraits consists of equilibria, as both derivatives x′ and y′ are zero when y = 0.

(a) β < 0 (b) β = 0 (c) β > 0

Figure 5.1: Φ − x0 = 0 + 2kπ

Near the phase locked pure modes at Φ− x0 = 0 + 2kπ, we see y′ = βy + y2 = y(β + y). We distinguish three
cases depending on the parameter β.

� When β < 0, the pure mode is stable and the derivative y′ is zero at y = −β, which implies that a �xed
point near (x0,−β). The eigenvalue calculation determined that this point is a unstable equilibrium.

� When β = 0, for all points that satisfy x0 6= kπ, the derivative y′ is tiny compared to the x′ derivative.
This implies that running phase di�erence solutions near the x-axis approximately maintain their y-value
until they approach one of the considered x0 values, where x′ = 0. Only when nearing the line given by
Φ + x0 = kπ zero, the y′ derivative becomes dominant. In the case Φ + x0 = 0 + 2kπ the running phase
di�erence solutions tend away from the point (x0, 0) in both directions, due to the sign of the y2 term
and the linearization of x′ at (x0, ε).

� When β > 0, the pure mode is unstable and the derivative y′ is still zero at y = −β. However due to
the sign of β, this now implies a �xed point with a negative y value and therefore the �xed point is not
considered further.

(a) β < 0 (b) β = 0 (c) β > 0

Figure 5.2: Φ − x0 = π + 2kπ

Near the phase locked pure modes at Φ− x0 = π + 2kπ, we see y′ = βy − y2 = y(β − y). We distinguish three
cases depending on the parameter β.

� When β < 0, the pure mode is stable and the derivative y′ is zero at y = β. However due to the sign of
β, this now implies a �xed point with a negative y value and therefore the �xed point is not considered
further.

� When β = 0, the same argument as in the Φ− x0 = 0 + 2kπ case applies for all the points where x′ 6= 0.
Therefore the running phase di�erence solutions near the x-axis approximately maintain their y-value
until they approach one of the considered x0 values, where x′ = 0. When nearing the line given by
Φ + x0 = kπ zero, the y′ derivative becomes dominant. In the case Φ + x0 = 0 + 2kπ the running phase
di�erence solutions tend toward the point (x0, 0) in both directions, due to the sign of the y2 term and
the linearization of x′ at (x0, ε).

� When β > 0, the pure mode is unstable and the derivative y′ is still zero at y = β, which implies a �xed
point near (x0, β). The eigenvalue calculation has shown that this point is a stable equilibrium.
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Let us summarize the situation when β moves from a negative value to a positive one while α = 0. We �rstly
see that an unstable mixed mode collides with the pure mode at (Φ, 0) at β = 0. When β becomes positive,
the mixed mode split o� (Φ− π, 0) as a stable equilibrium.

Results.

Thus we can con�dently state that when β switches sign, all pure modes switch y-stability. This causes, in
running phase di�erence pure modes, a stable or unstable running phase solution to bifurcate o� the pure mode
depending on the sign of K2. These running phase di�erence solutions are studied in more detail in section 5.7.
In phase locked pure modes, the sign switch of β causes a mixed modes to bifurcate at the points (Φ− kπ, 0),
k ∈ Z.

5.5 Eigenvalues of the mixed mode.

In section 3.3 we had derived the location of the localized phase locked mixed mode. We denote this location
as (x0, y0), where the x0 and y0 values are obtained by (5.4) and (5.3), respectively.

To obtain the eigenvalues that characterize this equilibrium, we linearize the localized system

x′ = α− 3y sin(Φ− x)−Kxy
2, (5.24a)

y′ = βy + y2 cos(Φ− x) +Kyy
3, (5.24b)

at this point and consider the resulting equations. We start with the linearization of (5.24a)

x′ = α− 3(y + y0) sin(Φ− x− x0)−Kx(y + y0)2. (5.25)

Recall that the Φ− x0 value is given by (3.40), this can be substituted in (5.25) to obtain

x′ = α− 3(y + y0) sin

(
arcsin

(
α−Kxy

2
0

3y0

)
− x
)
−Kx(y2 + 2yy0 + y2

0). (5.26)

We leave the y0 coordinate as it is, as using the derived equation (3.48) for it would only complicate this
linearization. We now use the sinus sum identity to separate the x value from the arcsin in the sinus, this leads
us to

x′ = α− 3(y + y0)

(
sin

(
arcsin

(
α−Kxy

2
0

3y0

))
cos(x)− cos

(
arcsin

(
α−Kxy

2
0

3y0

))
sin (x)

)
−Kx(y2 + 2yy0 + y2

0). (5.27)

And after further derivation we end with

x′ = α− 3(y + y0)

α−Kxy
2
0

3y0
cos(x)−

√
1−

(
α−Kxy

2
0

3y0

)2

sin (x)

−Kxy
2 − 2Kxyy0 −Kxy

2
0 . (5.28)

Fortunately it is possible to remove the square root from this equation. For this we need to extract the square
root found in the old derivation of x0, which is omitted due to being incorrect. This gives us

β +Kyy
2
0

y0
= −

√
1−

(
α−Kxy

2
0

3y0

)2

, (5.29)

which can be used to simplify (5.28) to

x′ = α− 3(y + y0)

(
α−Kxy

2
0

3y0
cos(x) +

3β + 3Kyy
2
0

3y0
sin (x)

)
−Kxy

2 − 2Kxyy0 −Kxy
2
0 . (5.30)

We replace the cos(x) and sin(x) terms with their respective Taylor expansions and collect all the higher order
terms of x and y in O(2), to obtain

x′ = α− yα−Kxy
2
0

y0
− y0

(
α−Kxy

2
0

y0
+
β +Kyy

2
0

y0
x

)
− 2Kxyy0 −Kxy

2
0 +O(2). (5.31)

Which after simpli�cation yields

x′ =

(
−2Kxy0 −

α−Kxy
2
0

y0

)
y − (3β + 3Kyy

2
0)x+O(2). (5.32)
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This is the equation for x′ linearized at (x0, y0). We continue with the linearization of (5.24b)

y′ = β(y + y0) + (y + y0)2 cos(Φ− x− x0) +Ky(y + y0)3. (5.33)

We substitute again the Φ− x0 constant for its equation (3.40) to obtain

y′ = β(y + y0) + (y + y0)2 cos

(
arcsin

(
α−Kxy

2
0

3y0

)
− x
)

+Ky(y + y0)3. (5.34)

This time we use the trigonometric sum identity of the cosine.

y′ = β(y + y0) + (y + y0)2 cos

(
arcsin

(
α−Kxy

2
0

3y0

))
cos(x) (5.35)

+ (y + y0)2 sin

(
arcsin

(
α−Kxy

2
0

3y0

))
sin(x) +Ky(y + y0)3

= β(y + y0) + (y + y0)2

√1−
(
α−Kxy

2
0

3y0

)2

cos(x) +
α−Kxy

2
0

3y0
sin(x)

+Ky(y + y0)3. (5.36)

Here the root has reappeared, but we can again use the equality (5.29) to continue to

y′ = β(y + y0)− (y + y0)2

(
β +Kyy

2
0

y0
cos(x)− α−Kxy

2
0

3y0
sin(x)

)
+Ky(y + y0)3. (5.37)

And after expanding the cube and square of (y − y0), we obtain

y′ = βy+ βy0− (y2 + 2y0y+ y2
0)

(
β +Kyy

2
0

y0
cos(x)− α−Kxy

2
0

3y0
sin(x)

)
+Ky(y3 + 3y0y

2 + 3y2
0y+ y3

0). (5.38)

We once again replace the cos(x) and sin(x) terms with their respective Taylor expansion and collect all of the
higher order terms in O(2)

y′ = βy + βy0 − 2y
(
β +Kyy

2
0

)
− y0

(
β +Kyy

2
0 −

α−Kxy
2
0

3
x

)
+ 3Kyy

2
0y +Kyy

3
0 +O(2), (5.39)

which after simpli�cation yields the equation

y′ =
1

3
(αy0 −Kxy

3
0)x+

(
Kyy

2
0 − β

)
y +O(2) (5.40)

for y′ linearized at (x0, y0). Together with (5.32), we can �nally obtain the linearized system in matrix formx′
y′

 =

−(3β + 3Kyy
2
0) −2Kxy0 −

α−Kxy
2
0

y0
1

3
(αy0 −Kxy

3
0) Kyy

2
0 − β

 ·
x
y

 . (5.41)

The eigenvalues of this matrix characterize the dynamics in the local neighborhood of the mixed mode. As the
matrix is 2 by 2 we can easily give the characteristic polynomial

c(λ) =
(
−3β − 3Kyy

2
0 − λ

) (
Kyy

2
0 − β − λ

)
−
(
−2Kxy0 −

α−Kxy
2
0

y0

)(
1

3
(αy0 −Kxy

3
0)

)
. (5.42)

This polynomial can be simpli�ed to

c(λ) = λ2 +
(
4β + 2Kyy

2
0

)
λ+

(
3β2 − 3K2

yy
4
0

)
+

1

3

(
α2 −K2

xy
4
0

)
. (5.43)

We are left with another quadratic formula c(λ) = 0, which we can easily solve using the abc-formula. To
summarize, the mixed mode is given by (3.54) and (3.48) and (3.59) with its characterizing eigenvalues de�ned
by

D2 =
(
4β + 2Kyy

2
0

)2 − 4

(
3β2 − 3K2

yy
4
0 +

1

3
α2 − 1

3
K2
xy

4
0

)
and λ1,2 =

−4β − 2Kyy
2
0 ±
√
D2

2
. (5.44)
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5.6 Hopf bifurcation of the mixed mode.

An equilibrium point undergoes a Hopf bifurcation when two of its eigenvalues are purely imaginary conjugates,
as we have seen in the introduction (5.59).

The equation for the eigenvalues (5.44) allows for this when two conditions are met,

C1 : −4β − 2Kyy
2
0 = 0 and C2 : D2 < 0. (5.45)

The �rst condition to ensure the real part of the eigenvalue is zero. In the equation for the eigenvalues (5.44),
we see the term −4β−2Kyy

2
0 . This term is a real number, as β, Ky and y0 are real numbers. If −4β−2Kyy

2
0 is

non-zero, we would have a non-zero real term in the equation for eigenvalues and this would result in eigenvalue
with a non-zero real part. This is undesirable at the Hopf bifurcation the eigenvalues of the equilibrium must
be purely imaginary. Therefore C1 must be true if the mixed mode undergoes a Hopf bifurcation.

The second condition is that the discriminant, D2 in (5.44), is below zero, as otherwise the root,
√
D2

would be real and this would result in eigenvalues with a non-zero real part.

However if both conditions are met then
√
D2 is imaginary and the eigenvalues are given by

λ1,2 = ±1

2

√
D2. (5.46)

The �rst condition implies the second.

We now prove that the �rst condition implies the second. To this end let us introduce the variables

A =

(
K2
y +

1

9
K2
x

)
, B =

(
2βKy −

2

9
αKx − 1

)
and C =

(
β2 +

1

9
α2

)
. (5.47)

This simpli�es the discriminant D1, used in the calculation of y0, to B
2 − 4AC, while the second discriminant

D2 simpli�es to

D2 =
(
4β + 2Kyy

2
0

)2 − 12(C −Ay4
0). (5.48)

The �rst Hopf condition implies 4β + 2Kyy
2
0 = 0, this simpli�es the second determinant even more to D2 =

−12(C −Ay4
0). The second Hopf condition now only requires

C > Ay4
0 . (5.49)

The formula for y2
0 stated in (3.48) is also signi�cantly simpli�ed by the introduction of (5.47), resulting in

y2
0 =
−B −

√
D1

2A
. (5.50)

Thus the second condition is satis�ed when

C > A

(
−B −

√
D1

2A

)2

. (5.51)

which can be further simpli�ed to
4AC > B2 + 2B

√
D1 +D1, (5.52)

and �nally, using D1 = B2 − 4AC to
0 > 2D1 + 2B

√
D1. (5.53)

Now for any relevant mixed mode, we have assumed that its y-position is real positive, due to its interpretation
as amplitude and the de�nition of the mixed mode. In addition to this we notice that A is always positive due
to the squares. Therefore the upper part of (5.50), −B −

√
D1, is real positive and consequently

0 > B +
√
D1. (5.54)

If we multiply this by 2
√
D1 we see

0 > 2D1 + 2B
√
D1. (5.55)

Therefore (5.53) is true for every possible mixed mode. We conclude that the �rst Hopf condition implies the
second one.
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First condition in term of the parameters.

The �rst condition in (5.45) states
2β +Kyy

2
0 = 0, (5.56)

which simpli�es to
4Aβ = KyB +Ky

√
D1. (5.57)

For further derivations we replace A, B and C by their original values given in (5.47). This leads to

4β

(
K2
y +

1

9
K2
x

)
= Ky

(
2βKy −

2

9
αKx − 1

)
+Ky

√
D1, (5.58)

and

4βK2
y +

4

9
βK2

x = 2βK2
y −

2

9
αKxKy −Ky +Ky

√
D1. (5.59)

The expansion D1 is given by

D1 = 1− 8

9
αβKxKy +

4

9
αKx − 4βKy −

4

9
β2K2

x −
4

9
α2K2

y . (5.60)

The derivation of this expansion is omitted in this thesis. If we again using the Taylor expansion of the root
(3.60), we obtain √

D1 = 1 +
2

9
αKx − 2βKy −

2

9
α2K2

y −
2

81
α2K2

x +O(δ3). (5.61)

If this is in turn substituted in (5.59), we have

4βK2
y +

4

9
βK2

x = 2βK2
y −

2

9
αKxKy −Ky +Ky +

2

9
αKxKy − 2βK2

y −
2

9
α2K3

y −
2

81
α2K2

xKy +O(δ4). (5.62)

From which follows

4βK2
y +

4

9
βK2

x = −2

9
α2K3

y −
2

81
α2K2

xKy +O(δ4), (5.63)

and �nally (
K2
y +

1

9
K2
x

)(
4β +

2

9
α2Ky

)
+O(δ4) = 0. (5.64)

Ergo the �rst condition in (5.45) is satis�ed when

4µ̄+
2

9
ν̄2K2 = 0. (5.65)

The expression on the right hand side of this condition can also be used to determine the stability of the mixed
mode, as the value corresponds to the real value of the eigenvalues. Therefore

4µ̄+
2

9
ν̄2K2 < 0 implies Re(λ1,2) > 0, (5.66)

and

4µ̄+
2

9
ν̄2K2 > 0 implies Re(λ1,2) < 0. (5.67)

Recall that positive eigenvalues imply an unstable equilibrium point and negative ones imply a stable equilibrium
point.

38



5.7 The evolution of the running phase solutions.

In section 5.4, the eigenvalue of the pure mode indicates that it loses its stability at β = 0. This implies the
existence of stable and unstable bifurcated solutions with a running phase. To ascertain how these solutions
evolve over time we can interpret the localized system as a perturbation of the system

x′ = α− 3y sin(Φ− x), (5.68a)

y′ = y2 cos(Φ− x). (5.68b)

When δ approaches 0 we expect the solutions of the complete system (2.36) to approach the cycles of the
system (5.68)

The system (5.68) is luckily integrable, this is de�ned as the existence of a function E(x, y) such that

d

dt
E(x, y) = 0. (5.69)

This implies that for all solutions the function E remains constant along their path. This function E is called
a �rst integral and when found it implies the existence of closed orbits along its level curves. This property
allows us to �nd one explicit solution by considering the level curves of the �rst integral.

Conveniently, this discovered solution lies exactly on the border between the oscillating phase region
and the running phase region. Thus if we calculate the rate of change of a �rst integral along this solution
then we can deduce if the solutions around this cycle tends to the latter or the former region.

We are also able to calculate the time evolution of �rst integral E2, de�ned below in (5.79), for any
particular point in the phase space. As we will see this value is O(δ), this con�rms that the perturbed solutions
stay close to their original cycles when δ approaches zero.

First integral of leading order system

The leading order system (5.68) has the �rst integral

E1 =
sin(Φ− x)

y3
− α

4y4
. (5.70)

We can demonstrate this by taking the τ time derivative of (5.70),

d

dτ
E1 =

−y3 cos(Φ− x)x′ − 3y2y′ sin(Φ− x)

y6
+
y′α

y5
. (5.71)

Here we can substitute (5.68) for x′ and y′ in (5.71), to obtain

d

dτ
E1 =

−αy3 cos(Φ− x) + 3y4 cos(Φ− x) sin(Φ− x)− 3y4 cos(Φ− x) sin(Φ− x)

y6
+
αy3 cos(Φ− x)

y6
= 0.

(5.72)
As such E1 is constant over for all solutions of the leading order system (5.68), thus proving it is a �rst integral.

We can plot the level curves of the �rst integral and calculate the direction of solutions on these curves. When
done for the parameter value α > 0, this results in �gure 5.3.
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Figure 5.3: Closed cycles on the level curves of E1, with the parameter value α > 0.

In �gure 5.3 the level curves are plotted, including the direction of the solutions on the level curves. When
α < 0, the dynamics are mirrored in the y-axis. The case α = 0 is excluded in this section as it concerns the
running phase di�erence solutions and in section 5.4 we determined those only occur when α 6= 0.

One parameter solution.

With the �rst integral, E1 given by (5.70), we are able to calculate one explicit solution to the unperturbed
system (5.68). This solution corresponds to the level curve

E1 =
sin(Φ− x)

y3
− α

4y4
= 0. (5.73)

This equation implies

y sin(Φ− x) =
1

4
α, (5.74)

and this can directly be used in (5.68a) to obtain

x′ = α− 3y sin(Φ− x) = α− 3

4
α =

1

4
α. (5.75)

And in turn this leads to us to a one parameter solution for x, given by x(τ) = 1
4ατ + x0. When starting at

x0 = Φ, which we assume to simplify further derivations, the solution for x is given by 1
4ατ + Φ. This x(τ) can

be substituted in (5.74) to obtain the solution for y(τ),

y(τ) =
α

4 sin(Φ− x(τ))
=

−α
4 sin(1

4ατ)
. (5.76)

The results for x(τ) and y(τ) give us the following curve

C(τ) = (x(τ), y(τ)) =

(
1

4
ατ + Φ,

−α
4 sin( 1

4ατ)

)
(5.77)

which is a one parameter solution for the system (5.68). This solution does have gaps, as it switches from
positive y-values to negative ones. We do not consider the parts of the curve below the x-axis, as these do not
correspond to valid solutions in the localized system, due to the y ≥ 0 requirement.

Instead we omit these parts in the following derivations, as later is it proven that solutions near C of
the localized system experience almost no change in the value of the �rst integral in the regions where the
curve C has a negative y value.
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Second integrable system.

The second system we consider is (3.35) with β and Ky equal to 0, while the Kx is not necessarily zero. This
system is de�ned by

x′ = α− 3y sin(Φ− x)−Kxy
2, (5.78a)

y′ = y2 cos(Φ− x). (5.78b)

This system has the �rst integral

E2 =
sin(Φ− x)

y3
− α

4y4
− Kx

2y2
. (5.79)

We again can demonstrate this by taking the τ time derivative

d

dτ
E2 =

−y3 cos(Φ− x)x′ − 3y2y′ sin(Φ− x)

y6
+
yy′α

y6
+
y3y′Kx

y6
. (5.80)

We calculate each term separately,

− y3 cos(Φ− x)x′ = −αy3 cos(Φ− x) + 3y4 cos(Φ− x) sin(Φ− x)−Kxy
5 cos(Φ− x), (5.81)

− 3y2y′ sin(Φ− x) = −3y4 cos(Φ− x) sin(Φ− x), (5.82)

yy′α+ y3y′Kx = αy3 cos(Φ− x) +Kxy
5 cos(Φ− x). (5.83)

Therefore, when these value are substituted in (5.80), we see

− y3 cos(Φ− x)x′ − 3y2y′ sin(Φ− x) + yy′α+ y3y′Kx = 0. (5.84)

And thus
d

dτ
E2(x, y) = 0, and consequently E2 is a �rst integral of the system (5.78).

We use this system and its �rst integral to estimate the behavior of solutions around C. Using the E2

integral is more convenient. Firstly the second system is closer to the original system (5.2). Secondly and more
importantly by using E2, we remove the lower order terms containingKx out of the rate of change of E2 along C.

We have not used this �rst integral to calculate an explicit solutions, as the required calculation are
many times more di�cult than the ones performed for C.

E2 time evolution of the localized system.

Now if we take the integral of the time derivative of the �rst integral along the curve C while it is positive
then we have an estimate of the change E2 a perturbed solutions near the curve C.

We can prove that, for certain values of K2 and m̄u, this value is zero and in extension that the solu-
tions near C are close to invariant. Let us �rst calculate the change of E2 over time for the localized system
(5.2). This gives us

d

dτ
E2 =

−y3 cos(Φ− x)x′ − 3y2y′ sin(Φ− x)

y6
+
yy′α

y6
+
y3y′Kx

y6
. (5.85)

This value can be much more simpli�ed, we calculate each term separately,

− y3 cos(Φ− x)x′ = −αy3 cos(Φ− x) + 3y4 cos(Φ− x) sin(Φ− x)−Kxy
5 cos(Φ− x), (5.86)

− 3y2y′ sin(Φ− x) = −3βy3 sin(Φ− x)− 3y4 cos(Φ− x) sin(Φ− x)− 3Kyy
5 sin(Φ− x), (5.87)

yy′α+ y3y′Kx = αβy2 + αy3 cos(Φ− x) + αKyy
4 + βKxy

4 +Kxy
5 cos(Φ− x) +KxKyy

6. (5.88)

Substituting these values into (5.85) results in

d

dτ
E2 =

β

y6

(
αy2 − 3y3 sin(Φ− x)

)
+
Ky

y6

(
αy4 − 3y5 sin(Φ− x)

)
+O(δ2). (5.89)

After one �nal simpli�cation step we can write (5.89) as

d

dτ
E2 =

(
β

y4
+
Ky

y2

)
(α− 3y sin(Φ− x)) +O(δ2). (5.90)
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We see that this derivative tends to zero when y →∞.

It is also important to notice that the derivative of E2 has no singularities near our known solutions.
Near such singularities, no matter how small δ would have been, the change of energy would have exploded
and invalidate the estimation.

Recall that the explicit solution C has regions where its y value is negative. Within these regions, the
solutions of the localized system near C leave the neighborhood of C. Instead of having a negative y-value,
these perturbed solutions cross these regions with an positive y-value around the magnitude 1

δ . The conclusion

that
d

dτ
E2 tends to zero when y → ∞ implies that the rate of change of E2 of the perturbed solution is very

small in these regions. This allows us to exclude these regions in the estimate of the change over the entire
period, as the change of E2 in these regions is negligible when compared to the remaining regions.

Energy evolution along C.

To �nally estimate the change of energy along solution C let us calculate equation (5.90) along its path. We
only consider the regions where C has a positive y value. Regardless of the value of α, this region is given by

the time interval τ ∈
[
− 4π
|α| , 0

]
.

We �rst consider the change for E2, (5.90), along the points of the explicit solution C.

d

dτ
E2(x(τ), y(τ)) =

(
β

y4(τ)
+

Ky

y2(τ)

)
(α− 3y(τ) sin(Φ− x(τ))) +O(δ2). (5.91)

We can simplify this equation by calculating the α− 3y sin(Φ− x) term �rst,

α− 3y(τ) sin(Φ− x(τ)) = α− 3α

4 sin( 1
4ατ)

sin(
1

4
ατ) =

1

4
α. (5.92)

When we substitute this in (5.91), we see

d

dτ
E2(τ) =

1

4
α

(
β

y4(τ)
+

Ky

y2(τ)

)
+O(δ2) (5.93)

=
1

4
α

(
44β sin4(− 1

4ατ)

α4
+

16Ky sin2(− 1
4ατ)

α2

)
+O(δ2) (5.94)

=
64β sin4(− 1

4ατ)

α3
+

4Ky sin2(− 1
4ατ)

α
+O(δ2). (5.95)

If we take the integral of this value (5.95) over the time interval
[
− 4π
|α| , 0

]
, we can calculate the total change

E2 experiences when we follow the solution C in the region where it has a positive y value. This result in

∆E2 =

0∫
− 4π

|α|

d

dτ
E2(τ)dτ =

0∫
− 4π

|α|

64β sin4(− 1
4ατ)

α3
+

4Ky sin2(− 1
4ατ)

α
dτ +O(δ2). (5.96)

Let us introduce a new time variable T = 1
4 |α|τ , substituting this new variable in (5.96) results in

∆E2 =

0∫
− |α|

|α|π

d

dτ
E2(T )dT =

0∫
−π

64β sin4(−sgn(α)T )

α3
+

4Ky sin2(−sgn(α)T )

α
dT +O(δ2). (5.97)

Due to the squares we have the symmetry sin2(−x) = sin2(x), and this allows us to simplify the integral to

∆E2 =

0∫
−π

64β sin4(T )

α3
+

4Ky sin2(T )

α
dT +O(δ2), (5.98)

which can be easily solved to obtain

∆E2 =
64β

α3

0∫
−π

sin4(T )dT +
4Ky

α

0∫
−π

sin2(T )dT +O(δ2) =
24β

α3
π +

2Ky

α
π +O(δ2). (5.99)
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We truncate the O(δ2) term, as this value is very small, and obtain the �nal estimate

∆E2 ≈
24β

α3
π +

2Ky

α
π. (5.100)

The estimation equals zero when
12β + α2Ky = δ

(
µ̄+ ν̄2K2

)
= 0. (5.101)

If the estimate for ∆E2 is zero, all the solutions near C have a near constant �rst integral E2 value. This
implies that these solutions near C stay near their original position and only slowly move from away.

When the estimate is not zero, we can use the result (5.100) calculate the direction of change of E2

for the solution near C. This value allows us to determine how the running phase di�erence solutions evolve
over time.

Before we begin with this argument, we �rst notice that we have two distinct cases relating to the
value of E2 depending on the parameter α.

� When α < 0, all points in the oscillating phase region have E2 < 0. The running phase region includes
all points where E2 > 0. Lastly the curve C lies on the border between the two regions with E2 = 0.

� When α > 0, all points in the oscillating phase region have E2 > 0. The running phase region includes
all points where E2 < 0. And again the curve C lies on the border between the two regions with E2 = 0.

Now we can start the argument with the statement 12µ̄+ ν̄2K2 < 0. This statement is equivalent to

24β

α2
π + 2Kyπ < 0. (5.102)

The left hand side of (5.102) is a factor of the estimate (5.100),

∆E2 ≈ α
(

24β

α2
π + 2Kyπ

)
. (5.103)

Therefore, depending on the value of α, we can deduce the sign of ∆E2.

� When α < 0 and 12µ̄+ ν̄2K2 < 0, we see ∆E2 > 0. This implies that all solution near C, over time, have
an increasing E2 value. And as E2 > 0 corresponds to the running phase region, we conclude that these
solutions converge towards the running phase region.

� When α > 0 and 12µ̄ + ν̄2K2 < 0, we see ∆E2 < 0. This implies that all solution near C, over time,
have a decreasing E2 value. And as in this case E2 < 0 also corresponds to the running phase region, we
conclude again that these solutions converge towards the running phase region.

This argument is mirrored by the case 12µ̄+ ν̄2K2 > 0. This case leads to the conclusion that, for all α values,
the solution near C tend to the oscillating region.

To summarize

� When 12µ̄+ ν̄2K2 > 0, the solution near C tend to the oscillating phase region.

� When 12µ̄+ ν̄2K2 = 0, the solution near C are almost closed and stay near C.

� When 12µ̄+ ν̄2K2 < 0, the solution near C tend to the running phase region.
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Let us consider the speci�c case, with β > 0, Ky < 0 and the value of α small enough that 12β + α2Ky > 0 is
true, as example.

Recall from section 5.4 that β > 0 implies that the pure mode is unstable and a stable running phase
solution has bifurcated. And from the cycle condition we know that any solution near C will move toward the
running phase region and in extension the x-axis.

With this information we can deduce at least one stable running phase di�erence solution must be
present between C and the pure mode.

We can argue that there is only one stable running phase di�erence solution, as in section 5.4 we have
discussed the pitchfork bifurcation of the running phase di�erence pure mode. This bifurcation splits only one
positive solution o� from the x-axis. This, in addition to a numerical model, supports that there is only one
bifurcated running phase solution.

This same argument applies when β < 0, Ky > 0 and the value of α small enough that 12β + α2Ky < 0. In
this case, β < 0 implies that an unstable running phase di�erence solution has bifurcated o� from the x-axis,
and the cycle condition implies that this solution keeps existing as long as 12β + α2Ky < 0 remains true.

5.8 Degenerate case K2 = 0.

Consider the special form of the system where K2 = 0, this statement reduces the system to

x′ = α− 3y sin(Φ− x)−Kxy
2, (5.104a)

y′ = βy + y2 cos(Φ− x). (5.104b)

Furthermore it reduces the condition for the Hopf bifurcation (5.45) and the value (5.101) used to argue how
the running phase di�erence solutions near C cycle evolve

H : 4µ̄+
2

9
ν̄2Ky = 0 and V : 12µ̄+ ν̄2Ky (5.105)

to
H : 4µ̄ = 0 and V : 12µ̄. (5.106)

This radically changes the dynamics as Hopf bifurcation and the �rst intgral near-invariance of one-parameter
solution C occur simultaneously.

When µ̄ = 0, the system reduces even more to

x′ = α− 3y sin(Φ− x)−Kxy
2, (5.107a)

y′ = y2 cos(Φ− x). (5.107b)

Which we have seen to be integrable in the previous section. The existence of the �rst integral and its
corresponding level curves imply that all solutions of (5.107) remain on the level curve. This implies existence
of closed cycles around the equilibrium and closed periodic running phase di�erence solutions above the pure
mode, while the mixed and pure mode neither attract nor repel.

Changing µ̄ from a zero to a positive value changes the stability of the mixed mode from a center to
stable equilibrium and the stability of the pure mode to unstable instantly. This act also breaks the �rst
integral invariance of the solutions and results in convergence to a stable pure mode, or to a stable mixed
mode. As for all solutions this happens simultaneous, no region of the parameter space allows the existence of
closed running phase di�erence solutions near y = 0 and closed bifurcated cycles around the mixed mode.

The same argument applies when changing µ̄ from a zero to a negative value, however in this case the
mixed mode becomes unstable and the pure mode stable.

However all of these deductions are made with the absence of higher order terms, which will invariably
disturb the closed cycles and other solution on the level curves present in the dynamics of (5.107). This will
lead to a wide array of new bifurcation possibilities and as such these must be included in the study of the
degenerate case when µ̄ is nearly zero.

As the analysis of the higher order localized system has not been performed in this thesis, the degener-
ate case is unfortunately not considered any further.
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Impact of the mistake.

As seen in both analyses, a simple sign error has had important implications for the dynamics of the systems.
The consequence of these di�erences was that nothing from the original interpretation and conclusion, which
both were made with the results obtained with the faulty system, could be saved.

Regrettably I was not able to write a new conclusion within the allowed time-frame, as such the rest
of the thesis is missing. I have decided not to include the incorrect conclusion and interpretation of the
analysis, as it is of no use for further discussion. None of their statements relate to the true dynamics of the
1:3 resonant Hopf bifurcation, and I have no desire to spread incorrect information.

The unfortunate consequences of a single plus-minus error illustrated in this thesis, should be taken as
a lesson to not be underestimate small errors. This was however not the only mistake I made regarding signs
(All others were manageable in severity.), and I must admit I very much overestimated my ability to spot
these errors and underestimated their importance to truly verify.

Extra care should be placed on the veri�cation of the results and the checking of derivations after
changing variables.
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