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Chapter 1

Introduction

The main goal of this thesis is the construction and analysis of the classifying space of
the (1+1)-cobordism category following a paper by Ulrike Tillmann [1].

We will begin by giving a short introduction of the concept of categories in chapter
2. In chapter 3 the classifying space of a category will be defined, this is a topological
space corresponding to the category that can be studied to determine properties of
the category. We will see that it is often not clear what the topological properties of
a classifying space are from its construction. Thus we will take a better look at the
homotopy type of certain classifying spaces in chapter 4.

In chapter 5 the framework of classifying spaces will be used to analyze the (1+1)-
dimensional cobordism category, the homotopy type of the classifying space of two of
its subcategories will be determined as well as the fundamental group of its classify-
ing space. The last chapter makes a connection between the (1+1)-dimensional cobor-
dism category and topological quantum field theories, ending with a classification of
morphism inverting (1+1)-dimensional topological quantum field theories using the
results from chapter 5.
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Chapter 2

Categories

One of the main, and perhaps the most versatile, mathematical tools used in this thesis
is category theory. It allows one to study many properties of mathematical systems in
more general terms and transfer ideas between different areas of mathematical study.
Within category theory mathematical systems are abstracted to objects with some sort
of underlying structure and structure preserving maps between those objects.

In the following chapter some concepts and results from category theory that are
of interest to us will be discussed. This chapter is based on [2], [3] and [4].

2.1 Categories

Definition 2.1.1. A category C consists of a collection of objects and a collection of
morphisms, also called arrows, such that:

• Every morphism has specified domain and codomain objects, the notation f : X → Y
means that f is a morphism with domain X and codomain Y.

• For every object X there is a designated identity morphism idX : X → X.

• For any pair of morphism f : X → Y, g : Y → Z there is a specified composition
g f : X → Z.

Also the following two axioms must hold:

• For any morphism f : X → Y we have idY f = f = f idX.

• The composition of morphisms is associative, meaning that for every triple

f : X → Y g : Y → Z h : Z →W

we have that h(g f ) = (hg) f .
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Example 2.1.2. Many classes of mathematical objects form a category, some examples
are:

• Set, the category with sets as its objects and functions with specified domain and
codomain as its morphisms.

• Top∗, the category with topological spaces with a selected basepoint as objects
and continuous basepoint preserving functions as its morphisms.

• VectK, the category with vector spaces over field K as objects and K-linear maps
as morphisms.

• Group, the category with groups as objects and group homomorphisms as mor-
phisms.

A subcategory C ′ of a category C is a category with the property that all its objects
are objects in C and all its morphisms are morphisms in C with the same identity
and composition rules. A subcategory C ′ is called full if for any two objects it has all
morphisms between those objects in C .

Remark 2.1.3. When discussing certain categories there can be set-theoretical prob-
lems that arise, it is for instance not possible to define the set of all sets. For this
reason the term collection is used in the definition of categories. In category theory
a distinction is made between small and large categories, the first having objects and
morphisms that form a set and the second being to “large” to do this. Some large cat-
egories are locally small, meaning that the morphisms between any two objects form
a set.

The distinction between small and large categories is of little importance to the
goals of this thesis and will not be discussed in any more details, interested readers
are refered to [3] and [4]. From this point onward all categories used will either be
“sufficiently small ” such that no set-theoretical problems arise or only a small subcat-
egory of a large category will be considered.

Definition 2.1.4. An invertible morphism, or isomorphism, in a category C is a mor-
phism f : X → Y for which there is a morphism g : Y → X such that g f = idX and
f g = idY.

A category is called a groupoid if all its morphisms are isomorphisms.

Groupoids with one element play a central role in this thesis. These categories corre-
spond to groups; any given group G defines an one-object groupoid. The morphisms
are given by the elements of the group, the composition of morphisms is given by the
composition laws of the group and the identity morphism is given by the neutral ele-
ment of the group. The one-object groupoid corresponding to a group G will also be
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denoted G.

For a given category it is possible to define a category with the same objects but all
the arrows going in the opposite direction, this resulting category is called the oppo-
site category. A more formal definition is:

Definition 2.1.5. Let C be a category, the opposite category C op has the same objects
as C and a morphism f op in C op for each morphism f in C such that the domain of
f op is the codomain of f and the codomain of f op is the domain of f .

For each object X in C the identity arrow 1X induces an identity arrow 1op
X for the

object X in C op. The composition of two morphisms f op and gop in C op is defined
using composition in C ; we define gop f op to be ( f g)op.

Note that the opposite category C op is indeed a category if C is. An important prop-
erty of the opposite category is that it contains precisely the same information as the
original category, as a result every proof in category theory could be called a double
proof. Not only the original statement is proven but also a dual statement for the op-
posite category, however, this dual statement is not always different from the original
in any meaningful way.

2.2 Functors

In category theory we consider mathematical objects and the structure preserving
maps between them. As categories are also mathematical objects this raises a ques-
tion about what the structure preserving maps between categories are.

Definition 2.2.1. A functor F : C → D between two categories assigns an object FX
in D to every object X in C and a morphism F f : FX → FY ∈ D to every morphism
f : X → Y in C .

The assignments have to follow two functorial axioms, being that for every com-
posable pair of morphisms f and g in C we have Fg ◦ F f = F(g ◦ f ) and for every
object X in C we have F(idX) = idFX.

Thus a functor is a mapping between categories that preserves structure. When taking
all categories as objects and the functors between them as morphisms one can easily
check that the result is a category. Every functor indeed has specified domain and
codomain objects, for any category C there is the identity functor idC : C → C that
maps all objects and morphisms to them self and functors can be composed. The ax-
ioms of categories also clearly hold.

Functors arise naturally in many branches of mathematics, for instance in algebraic
topology.
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Example 2.2.2. The fundamental group defines a functor π1 : Top∗ → Group. Every
object in Top∗ gets mapped to its fundamental group and the morphisms, continuous
basepoint preserving maps, f : (X, x) → (Y, y) get mapped to their induced group
homomorphism f∗ : π1(X, x) → π1(Y, y). Two basic and well known properties of
these induced group homomorphisms are that the identity map induces the identity
homomorphism and that for a pair of basepoint preserving maps f : (X, x) → (Y, y)
and g : (Y, y) → (Z, z) we have (g f )∗ = g∗ f∗, meaning that this functor does indeed
follow the two functorial axioms.

2.3 Natural transformations

In the same vein as the reasoning above one might wonder what structure preserv-
ing maps between functors are, since functors can also be regarded as mathematical
objects with some structure.

Definition 2.3.1. Given two categories C and D and two functors F, G : C → D . A
natural transformation α : F =⇒ G consists of a morphism αX : FX → GX in D for
each object X in C such that for any morphism f : X → Y in C the following diagram
commutes:

FX GX

FY GY

αX

F f G f

αY

The collection of these αX define the components of the natural transformation.

Per lemma 1.5.1 of [3], a natural transformation α : F =⇒ G can be seen as a functor

H : (0→ 1)× C → D .

Here (0 → 1) is the discrete category with two elements and one non identity mor-
phism between them. This alternate point of view will prove to be valuable later.

Similar to how a category can be formed with categories as objects and functors as
morphisms, for two fixed categories C and D we can form a category with as objects
all functors C → D and as morphisms natural transformations between these func-
tors.

The identity natural transformation between a functor and itself has identity ar-
rows for every component. Natural transformations can be composed through com-
posing their components, leading to a composition law that is associative and has the
identity natural transformations as neutral morphisms. Thus this indeed forms a cat-
egory.
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Chapter 3

Simplicial sets and the classifying space

In this chapter we discuss a method of relating a topological space to a category. The
resulting topological space is called the classifying space and contains much of the
information of the category. The classifying space is constructed using the theory of
simplicial sets and much of this chapter will be devoted to giving an introduction to
this theory.

The benefit of considering the classifying space of a category as opposed to the cat-
egory itself is that it allows the usage of the vast toolbox that algebraic topology has to
offer.

The following chapter is mostly based on [5], the section on the classifying space of
a category is also based on [6].

3.1 The simplex category

Definition 3.1.1. Define the simplex category ∆ with as objects the natural numbers,
that are denoted as [n] and seen as linear orders [n] = {0 ≤ 1 ≤ 2 ≤ ... ≤ n}. The
morphisms in ∆ are the non-decreasing maps α : [n]→ [m].

Note that this definition is equivalent to defining ∆ as the category with as objects free
categories

[n] = (0→ 1→ 2→ ...→ n)

and as morphisms functors [n]→ [m].
Both definitions of the simplex category will be used as the difference between

them is purely their notation, depending on the context one notation is more conve-
nient than the other.
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There are two types of morphisms in ∆ that are of particular interest. The first type are
called the elementary faces, which for each 0 ≤ i ≤ n are monotone functions

δi : [n− 1]→ [n]

that skip the value i.

The second type are called the elementary degeneracies, which for each 0 ≤ j ≤ n− 1
are surjective functions

σj : [n]→ [n− 1]

that map to j twice and every other value once.

Note that every non identity injective function [n] → [m] can be written as a com-
position of elementary faces and every non identity surjective function can be written
as a composition of elementary degeneracies. Furthermore note that every morphism
[n] → [m] can be written as a surjection followed by an injection. Meaning that every
identity morphism can be written as the composition of elementary faces and degen-
eracies.

This composition, however, is not unique since the elementary faces and degenera-
cies satisfy the following relations:

δjδi = δiδj−1 for i < j

σiσj = σj−1σi for i < j

σiδj =


δj−1σi if i < j− 1
id if i = j− 1 or i = j
δjσi−1 if i > j

These identities can easily be checked and are called the cosimplicial identities.

Because every morphism in ∆ can be written as a composition of elementary faces
and degeneracies, it is possible to specify a functor F from ∆ into another category by
giving the values F([n]) for all n ≥ 0 and the maps F(δi) and F(σj).

This is sufficient since for every morphism α : [n]→ [m] we can write α = δik ...δi1σjl ...σj1
with suitable indices i1, .., ik, j1, ..jl. Using the functorial axioms we get

F(α) = F(δik)...F(δi1)F(σjl)...F(σj1)

However, for this F(α) to be well defined, the maps F(δi) and F(σj) must satisfy the
cosimplicial identities.
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3.2 Simplicial sets

Definition 3.2.1. A simplicial set is a functor

X : ∆op → Sets.

As seen before, a category can be formed with as objects functors between fixed cat-
egories and natural transformations between these functors as morphisms. The cate-
gory of simplicial sets formed in this way will be denoted by sSets.

Simplicial sets are an example of the more general notion of simplicial objects in an
arbitrary category C , being functors ∆op → C . However, in this thesis only simplicial
sets are of interest to us so we will not look into general simplicial objects.

More explicitly a simplicial set X is given by a sequence of objects Xn := X([n]) in Sets
with n ≥ 0 together with induced maps α∗ : Xn → Xm for morphisms α : [m]→ [n] in
∆. These induced maps are functorial, with which we mean

id∗ = id : Xn → Xn

(αβ)∗ = β∗α∗ : Xn → Xk for [k]
β−→ [m]

α−→ [n]

We will refer to the elements of the set Xn as the n-simplices of X.

As discussed above, a functor ∆→ Sets can be specified by giving all sets Xn together
with the maps that all (δi) and (σj) are send to. Similarly, one can describe a simpli-
cal set by giving all n-simplices together with the maps (δi)

∗ and (σj)
∗, as every α∗ is

a composition of these maps. These maps are called the face maps and degeneracy
maps respectively and we will write

di = (δi)
∗ : Xn → Xn−1 i = 0, 1, ..., n

sj = (σj)
∗ : Xn−1 → Xn i = 0, 1, ..., n− 1.

The requirement that the maps α∗ are functorial is equivalent to requiring the follow-
ing identities that are dual to the cosimplicial identities and are called the simplical
identities.

didj = dj−1di for i < j

sjsi = sisj−1 for i < j

djsi =


sidj−1 if i < j− 1
id if i = j− 1 or i = j
si−1dj if i > j.
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We can use the discussion above to associate a simplical set to a given category C
which we will call the nerve of C .

Definition 3.2.2. Given a category C , its nerve NC is a simplicial set where every n-
simplex Xn is the set of functors from the free category [n] to C . The face maps di are
given by composition (or omission in the case of d0 and dn) and the degeneracy maps
sj are given by inserting identity arrows.

This definition of the nerve of a category is equivalent to defining NC as a simplicial
set with the objects of C as its 0-simplices, morphisms as 1-simplices and strings of n
composable morphisms as its n-simplices.

To see this consider an element of Xn, being a functor Fn : [n] → C . We can now
identity Fn to a string of n composable morphisms

c0 c1 ... cn.
f1 f2 fn

Here ci is the object in C that i as object in [n] is mapped to by Fn and f j is the mor-
phism in C that the morphism from j− 1 to j gets mapped to.

The face and degeneracy maps can be written down explicitly. For every 0 < i < n,
0 < j < n− 1 we have:

d0(c0 c1 ... cn) = c1 c2 ... cn

dn(c0 c1 ... cn) = c0 c1 ... cn−1

di(c0 c1 ... cn) = c0 ... ci−1 ci+1 ... cn

sj(c0 c1 ... cn−1) = c0 ...cj cj ... cn−1.

f1 f2 fn f2 f3 fn

f1 f2 fn f1 f2 fn−1

f1 f2 fn f0 fi+1◦ fi fn

f1 f2 fn−1 f0
idcj fn−1

Since these face and degeneracy maps obey the simplical identities, the induced maps
are factorial and thus we see that the nerve of a category as defined above is indeed a
simplicial set.

As discussed above the morphisms in sSets are natural transformations between func-
tors ∆op → Sets. Recall that a natural transformation between two functors X, Y : ∆op → Sets
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consists of a sequence of morphisms fn : Xn → Yn in Sets with the property that fmα∗ = α∗ fn
for α : [m]→ [n].

Now, using the simplical identities, we can deduce that a collection of maps fn : Xn → Yn
determines a morphism of simplicial sets if and only if it is compatible with the face
and degeneracy maps, meaning

fn−1di = di fn for n ≥ 0, i = 0, ..., n
fnsj = sj fn+1 for n ≥ 0, j = 0, ..., n− 1.

3.3 The standard simplex

We now make a connection between simplical sets and topological spaces.

Definition 3.3.1. For each n ≥ 0 the standard topological n-simplex is defined as

∆n :=
{
(t0, ..., tn) ∈ Rn+1|t0 + ... + tn = 1, ti ≥ 0 for all i

}
This standard simplex has n + 1 vertices v0, ..., vn where

vi = (0, ..., 0, 1, 0, ..., 0)

with the 1 at the ith position.

It is clear that any function of sets f : {0, ..., m} → {0, ..., n} defines an affine map

f∗ : ∆m → ∆n

that is uniquely determined by the requirement f (vi) = v f (i).

As a result the family of standard simplices gives us a functor

∆• : ∆→ Top.

This functor takes the object [n] to the standard n-simplex and a morphism α in ∆ to a
map ∆α between topological spaces. Recall that the morphisms in ∆ are non decreas-
ing maps α : [m]→ [n], which are in particular functions of sets {0, ..., m} → {0, ..., n}.
Meaning that every morphism α defines a map between standard topological n-simplices
in the same way as for f above, we write ∆α as α∗.

For a morphism α : [m]→ [n], an explicit expression for α∗ can be given:

α∗(t0, ..., tm) = (s0, ..., sn) with si = ∑
α(j)=i

tj
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Using this explicit expression on the elementary face map δi : [n− 1]→ [n] we get

(δi)∗ : ∆n−1 → ∆n, (δi)∗(t0, ..., tn−1) = (t0, ..., ti−1, 0, ti, ..., tn−1).

Meaning that (δi)∗ embeds ∆n−1 as the face opposite the vertex vi.
This can be generalized, for any injective map α : [m]→ [n] the corresponding map

α∗ embeds the m-simplex ∆m as a face of ∆n of some (possibly high) codimension.

For the elementary degeneracy map σj : [n]→ [n− 1] we see

(σj)∗ : ∆n → ∆n−1, (σj)∗(t0, ..., tn) = (t0, ..., tj−1, tj+1, ..., tn).

Meaning that (σj)∗ projects ∆n onto ∆n−1 by a projection parallel to the line connecting
vertices vj and vj+1

3.4 The geometric realization

We will now use these standard topological n-simplices to identify a topological space
to each simplicial set X, which we call its geometric realization.

Definition 3.4.1. Given a simplicial set X its geometric realization |X| is a topological
space defined as a quotient of the large disjoint sum of simplices

ä
n≥0

Xn × ∆n = ä
n≥0

ä
x∈Xn

∆n

the points of which we denote by (x, t) for x ∈ Xn and t ∈ ∆n. The quotient is formed
by making the identification

(x, α∗) ∼ (a∗x, t)

for each morphism α : [m]→ [n] of ∆ and each x ∈ Xm, t ∈ ∆n.

We will write x⊗ t for the equivalence class of a pair (x, t) ∈ Xn × ∆n. The reason for
this notation is that there is a sense in which |X| can be interpreted as a tensor product,
but we will not elaborate on it as it is not important for the contents of this thesis.

Recall that a map f : X → Y between simplicial sets consists of a sequence of mor-
phisms fn : Xn → Yn, such a map induces a continuous map

| f | : |X| → |Y|, x⊗ t 7→ f (x)⊗ t.
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Here we have not included the subscript n on f in the expression f (x) for x ∈ Xn.

Thus the geometric realization can be regarded as a functor

|.| : sSets→ Top.

3.5 The cellular structure of the geometric realization

In this section we will examine the cellular structure of the geometric realization |X|.

Note that in a simplical set, every n-simplex x ∈ Xn defines a map

x̂ : ∆n → |X|, t 7→ x⊗ t

with the property that the images of all these maps cover he geometric realization
|X|. Furthermore these maps respect the simplical structure of X, meaning that for any
α : [m]→ [n] and y ∈ Xm such that α∗x = y the diagram

∆m |X|

∆n

ŷ

α∗ x̂

commutes.

Definition 3.5.1. An n-simplex x ∈ Xn is called degenerate if it lies in the image of one
of the degeneracy operators si : Xn−1 → Xn for 0 ≤ i ≤ n− 1.

Note that this definition is equivalent to saying x is degenerate if there exists a surjec-
tion α : [n]→ [m] and y ∈ Xm such that x = α∗y.

As a result every point in |X| can be represented in the form y ⊗ s with y a non-
degenerate simplex of X. Let x ⊗ t ∈ |X|. If x is degenerate there is a surjection
α : [n] → [m] and ∈ Xm such that x = α∗z, if in turn that z is degenerate it is possi-
ble to chose a further surjection. Clearly there is a surjection β : [n] → [k] such that
x = β∗y with y a non degenerate k-simplex of X. Then also β∗ : ∆n → ∆k is a surjection
and thus there is an s ∈ ∆k such that β∗s = t. Thus x⊗ t = y⊗ s with y non degenerate.

Now we conclude this section by stating theorem 2.3 from [5] without elaborating
on the proof.

Theorem 3.5.2. Let X be a simplical set. Its geometric realization |X| naturally has the struc-
ture of a CW-complex with precisely one closed n-cell x̂ : ∆n → |X| for every non-degenerate
n-simplex Xn.
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3.6 The classifying space

Definition 3.6.1. The geometric realization |NC | of the nerve of a category C is called
the classifying space BC .

Recall that the 0-simplices of the nerve NC are the objects of C and the n-simplices for
n ≥ 1 are strings of n composable morphisms. Using Theorem 3.5.2 we see that the
classifying space of a category C is a CW-complex with the objects of C as 0-cells and
strings of n composable non degenerate morphisms as n-cells.

A functor F : C → D induces a continuous map of classifying spaces BF : BC → BD .
Thus a structure preserving map between categories induces a structure preserving
map between their classifying spaces. As seen in the previous chapter the structure
preserving maps between functors are natural transformations. Natural transforma-
tions induce structure preserving maps between the continuous functions induced by
functors.

Theorem 3.6.2. Consider two functors F, G : C → D between categories and a natural
transformation α : F =⇒ G between them. This natural transformation induces a homotopy
∆1 × BC → BD between BF and BG.

Proof. Recall that the natural transformation between F and G can be seen as a functor

(0→ 1)× C → D .

Thus the natural transformation induces a continuous map between classifying spaces

B((0→ 1)× C )→ BD .

As shown with theorem 2 in [7] the canonical map B(C ×C ′)→ BC × BC ′ is a home-
omorphism if every vertex of either BC or BC ′ belongs to finitely many simplices.
Clearly every vertex of B(0 → 1) belongs to finitely many simplices, as it is the unit
interval. Thus we can conclude that the natural transformation induces a continuous
map B(0→ 1)× BC → BD that is a homotopy between BF and BG.

The classifying space BC can often be more “complicated” than one might expect.
For instance, the classifying space of a category with just one object and one non-
identity morphism has a n-cell for every dimension n, as every string of n non identify
morphisms

X X ... Xτ τ τ

is non degenerate.

Note that the category described above is the one-object groupoid corresponding to
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the group Z/2, meaning that the classifying space of the smallest non-trivial group
regarded as category is infinite dimensional. More generally, any category with a non-
identity morphism from an object to itself has at least one n-cell for every n ≥ 0.

Nonetheless, since the homotopy theory of CW-complexes is well understood there
is much to gain from considering the classifying space. In the next chapter the homo-
topy type of certain categories will be discussed.
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Chapter 4

The homotopy type of classifying
spaces

In this chapter the homotopy type of classifying spaces of certain categories with one
object will be explored. First we will introduced the concept of Eilenberg-MacLane
spaces of type K(G, 1), being path-connected spaces with a contractible universal cover
with fundamental group G. We will state a homotopy uniqueness property for Eilenberg-
MacLane spaces of type K(G, 1) and give a construction of such spaces as a group quo-
tient of a space EG called the total space. The space obtained from this group quotient
is not only an Eilenberg-MacLane spaces of type K(G, 1) but also the classifying space
BG of the one-object groupoid G.

Finally the group completion theorem will be stated. This theorem gives that a
category with one object and whose composition of morphisms is commutative has a
classifying space homotopic to the classifying space of an one-object groupoid induced
by that category.

The following material concerning Eilenberg-MacLane spaces and the construction of
BG as a group quotient is adapted from [8].

4.1 Eilenberg-MacLane spaces of type K(G, 1)

Recall the definition and some properties of covering spaces.

Definition 4.1.1. A covering space of a space X is a space Y together with a map

p : Y → X

with the property that for every point x ∈ X there is an open neighborhood U in X
such that p−1(U) is the union of disjoint open sets in Y that are all mapped homeo-
morphically to U by p.
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If a covering space of X is path-connected and has a trivial fundamental group it is
called a universal cover. Recall that universal covers of a space X are unique up to
isomorphisms, thus a universal cover is often called the universal cover.

Example 4.1.2. A covering space of the circle S1 is given by the disjoint union of n ≥ 1
circles together with a map p that essentially the identity when restricted to a single
circle.

Another covering space of the circle S1 is R together with the map

p : R→ S1, t 7→ e2πit.

Here S1 is seen as the unit circle in C. Since R is path-connected and its fundamental
group is trivial, this is the universal cover of S1.

Definition 4.1.3. For a group G, an Eilenberg-MacLane space of type K(G, 1) is a path-
connected space with a fundamental group isomorphic to G and a contractible uni-
versal covering space. For convenience such a space will simply be called a K(G, 1)
space.

Note that every path-connected space X with a contractible universal covering space
is an Eilenberg-MacLane space of type K(π1(X), 1).

A K(G, 1) space is not uniquely determined by the group G. For instance, S1 is path-
connected and R is a contractible universal covering space of S1. As the fundamental
group of S1 is Z, it is an Eilenberg-MacLane space of type K(Z, 1). The Möbius strip
is also path-connected, has R× [0, 1] as contractible universal covering space and also
has fundamental group Z. Thus the Möbius strip is also an Eilenberg-MacLane space
of type K(Z, 1).

There is, however, a homotopical uniqueness property for K(G, 1) spaces that are
CW-complexes. The following theorem is theorem 1B.8 in [8] and will be used without
elaborating on the proof.

Proposition 4.1.4. The homotopy type of a CW-complex K(G, 1) space is uniquely determined
by G.

4.2 The classifying space of a group

Recall the definitions of an action of a group and the quotient space.

Definition 4.2.1. Given a group G and a space X, an action of G on X is a group
homomorphism from G to the group of homeomorphisms from X to itself. Thus there
is a homeomorphism X → X associated to every g ∈ G, which will be denoted simply
as g : X → X.
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Definition 4.2.2. Given a group action of G on X, the quotient space X/G is obtained
by identifying each point x ∈ X with its images g(x) for all g ∈ G. The points in x/G
are thus given by the orbits Gx := {g(x)|x ∈ X}.

Proposition 1.40 from [8] concerning group actions and covering spaces will be used
without proof.

Proposition 4.2.3. Consider an action of a group G on a space X satisfying the condition that
for each x ∈ X there is a neighborhood U such that all the images g(U) for varying g ∈ G are
disjoint. Then the quotient map p : X → X/G, x 7→ Gx is a covering space.

If furthermore X is path-connected, locally path-connected and has a trivial fundamental
group, then π1(X/G) is isomorphic to G.

In example 1B.7 of [8] it is noted that if a group acts on a the geometric realization of
a simplicial set by taking the realization of every simplex linearly into the realization of
another simplex, the condition of every point having a neighborhood whose images
under different elements in G are disjoint is met when only the identity takes any
simplex to itself.

Definition 4.2.4. For a group G define the total space, EG, to be the classifying space
of the category G , with as objects the elements of G and the morphisms from object
g ∈ G to h ∈ G given by hg−1.

Thus EG is the geometry realization of the simplicial set NG , the nerve of G . The n-
simplices of NG are ordered (n + 1)-tuples [g0, .., gn] with g0, .., gn ∈ G, the face maps
are given by composition and the degeneracy maps are given by inserting the identity
e ∈ G.

Note that for any group G the total space EG is contractible. Any point x ∈ EG lies
in the geometric realization of some non-degenerate n-simplex [g0, ..., gn]. Either one
of g0, .., gn ∈ G is the identity e or the (n + 1)-simplex [e, g0, ..., gn] is non-degenerate
and thus its geometric realization is a subset of EG. In either case a homotopy ht can
be defined, it moves x along the line segment in the geometric realization of [g0, ..., gn]
or [e, g0, ..., gn] respectively.

This homotopy is well defined; if we restrict to a face [g0, ..., ĝi, ..., gn] there is a lin-
ear deformation to [e] in [e, g0, ..., ĝi, ..., gn]. Here ĝi indicates that this vertex is deleted.

We will now show that EG/G is the classifying space of the one-object groupoid given
by G.

Proposition 4.2.5. For any group G acting on EG by g ∈ G taking a simplex [g0, .., gn]
linearly onto [gg0, ..., ggn], the quotient space EG/G is the classifying space of the one-object
groupoid defined by G.
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Proof. First note that the group action identifies all the vertices of EG to each other,
meaning that EG/G indeed only has one 0-simplex. Every n-simplex of EG can be
written uniquely as

[g0, g0g1, g0g1g2, ..., g0g1...gn] = g0[e, g1, g1g2, ..., g1g2...gn].

Thus the image of such a n-simplex under the quotient map can unambiguously be de-
noted by the ordered n-tuple [g1|g2|...|gn]. Meaning that the n-simplices in EG/G cor-
respond to the composition of n morphisms in the one-object groupoid defined by G.
This correspondence is one-to-one, the composition of n morphisms in the groupoid
gives an unique n-simplex of EG. As the n-simplices in the nerve of the groupoid are
the compositions of n morphisms, we can conclude that EG/G and and the nerve of
the groupoid are the same simplicial set. Thus they have the same geometric realiza-
tion and are the same space.

This classifying space is called the classifying space of G and denoted BG.

Now we show that the classifying space BG is an Eilenberg-MacLane space of type
K(G, 1).

Proposition 4.2.6. The quotient EG/G is a K(G, 1) space.

Proof. It is clear that only the identity takes a simplex to itself. Thus, using Proposi-
tion 4.2.3 together with example 1B.7 from [8] we see that the quotient is a covering
map. Recall that EG has a CW structure and thus is locally path-connected. Since
EG is also contractible, Proposition 4.2.3 gives that EG/G has a fundamental group
isomorphic to G and thus we can conclude that EG/G is a K(G, 1) space.

As the classifying space of a category is the geometric realization of a simplicial set,
it naturally has the structure of a CW-complex. Using Proposition 4.1.4 this gives the
following important result.

Corollary 4.2.7. The homotopy type of the classifying space BG of a group G is uniquely
determined by G and BG is homotopic to every Eilenberg-MacLane space of type K(G, 1).

4.3 Group completion theorem

Now we relate the classifying space of any category with one object and whose com-
position of morphisms is commutative to the classifying space of a group.

Categories with one object correspond to the algebraic structure of monoids, the
following definition of monoids and their group completion is based on [9].
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Definition 4.3.1. A monoid is a set M with an operation + which is associative and
has a identity element e in M. A monoid is said to be commutative if its operation is
commutative.

A map µ : M→ N between monoids is said to be a monoid map if for all m, n ∈ M
µ(m + n) = µ(m) + µ(n) and it maps the identity in M to the identity in N.

Monoids are a generalization of groups. Every group is a monoid but a monoid is in
general not a group, the difference being that every element in a group has an inverse
and this is not a requirement for a monoid.

In the same way that every group corresponds to the category that is an one-object
groupoid, every monoid corresponds to a category with one object and a morphism
for every element in the monoid with composition of morphisms given by the op-
eration on the monoid. Note that if a monoid is commutative, the composition of
the morphisms in its corresponding category is commutative. For monoids that are
groups the corresponding category is exactly the one-object groupoid as seen earlier.
The classifying space of the category corresponding to a monoid M will be called the
classifying space of M and denoted BM.

It is possible turn a monoid M into a group by adding an inverse for every non-
invertible element. This process is called the group completion and can be made pre-
cise for commutative monoids in the following way.

Definition 4.3.2. A group completion of a commutative monoid M is an commutative
group MM−1 together with a monoid map µ : M → MM−1 such that for every com-
mutative group A and every monoid map α : M→ A there is an unique abelian group
homomorphism α̃ : MM−1 → A such that α̃(µ(m)) = α(m) for all m ∈ M.

Example 4.3.3. The natural numbers N form a commutative monoid with addition as
operation and zero as identity element. As there are no two strictly positive numbers
that together add up to zero N is not a group, many elements miss an inverse.

The group completion of N is Z, the monoid map µ : N → Z is given by the
canonical inclusion. For every commutative group A and monoid map α : N → A
the map α̃ : Z → A defined as α̃(m) = α(m) is an uniquely defined group homomor-
phism.

The classifying spaces of a commutative monoid and its group completion can be re-
lated, in fact Theorem 4.4.1 in [10] states that the two classifying spaces are homotopic:

Theorem 4.3.4. If M is a commutative monoid and MM−1 is its group completion, then the
classifying space of M and MM−1 are homotopic.
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Chapter 5

The classifying space of the
(1+1)-dimensional cobordism category

In this chapter we introduce the concept of (n+1)-cobordisms and the (n+1)-dimensional
cobordism category. We will focus on the (1+1)-dimensional cobordism category and
determine the homotopy type of two of its subcategories. Lastly we will determine
the fundamental group of the classifying space of the (1+1)-dimensional cobordism
category.

Both the structure of and the proofs in this chapter are based on Tillmann’s paper
[1].

5.1 The (n+1)-dimensional cobordism category

Definition 5.1.1. A (n+1)-cobordism M from a compact oriented n-manifold Σ0 to an-
other compact oriented n-manifold Σ1, is a compact oriented (n+1)-manifold M with
boundary such that its boundary is the disjoint union of Σ0 and Σ1. The induced ori-
entation of the boundary δM must agree with the orientation on Σ0 and be opposite to
the orientation on Σ1.

For convenience simply the term cobordism between Σ0 and Σ1 will be used to mean
an oriented cobordism with the properties of the definition above. The (n+1)-dimensional
cobordisms give rise to a category.

Definition 5.1.2. The (n+1)-dimensional cobordism category (n+1)-Cob is the category
with an object for ever homeomorphism class of compact oriented n-manifolds and the
morphisms given by homeomorphism classes of cobordisms between these manifolds.
The empty set is also regarded as a n-manifold and the identity morphism on an object
Σ is given by Σ× [0, 1]. The composition of morphisms is given by the composition of
representations from their homeomorphism classes.
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Remark 5.1.3. The composition of two cobordisms M : Σ0 → Σ1 and M′ : Σ1 → Σ2 is
obtained by gluing the two manifolds along Σ1 and the resulting space is a cobordism
from Σ0 to Σ1. The homeomorphism class of the resulting cobordism is determined
only by the homeomorphism classes of M and M′, meaning that the composition of
morphisms is well-defined. A detailed proof of this is given in [2].

The main focus of this thesis from this point onward will be the (1+1)-dimensional
cobordism category which we will denote by S . The (1+1)-cobordisms can be build
from the composition of six “building blocks” as shown in the Figure 5.1, details of
this can be found in [2].

Figure 5.1: The building blocks of (1+1)-cobordism, found in [2].

Note that every compact, connected and oriented manifold of dimension 1 is homeo-
morphic to the circle and every compact, oriented manifold of dimension 1 is homeo-
morphic to the disjoint union of circles. Thus there is a bijection between the objects in
S and the natural numbers where n ∈N corresponds to the homeomorphism class of
the disjoint union of n circles. Note that the disjoint union of zero circles corresponds
to the empty 1-manifold.

Recall that every connected, compact oriented surface is determined up to homeo-
morphisms by its genus and the number of boundary components via the Euler char-
acteristic. For a connected, compact oriented surface M with genus g and n discs
removed the Euler characteristic is given by χ(M) = 2− 2g− n. The composition of
(1+1)-cobordisms corresponds to the addition of their Euler characteristics.

Since the Euler characteristic of the circle S1 or the disjoint union of any number of
circles is zero, the Euler characteristic of every object in S is zero. Thus we see that the
Euler characteristic induces a functor χ : S → Z from S to the one-object monoid Z.

5.2 Analysis of subcategories

In this section we determine the homotopy type of two subcategories of S . We begin
by defining S0 to be the full subcategory of S with the empty 1-manifold as its only
object. Note that all morphisms in S0 are compact surfaces without boundary.

Theorem 5.2.1. The classifying space BS0 is homotopic to R∞/Z∞.
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Proof. As the morphisms of S0 are compact surfaces without boundary every mor-
phism corresponds to a sequence (n0, n1, n2, ...) of finitely many non-zero natural num-
bers, standing for the disjoint union of n0 spheres, n1 tori, n2 surfaces of genus 2, etc.
The composition of morphisms corresponds to addition in the components of the se-
quences.

Sequences (n0, n1, n2, ...) of finitely many integers together with componentwise
addition form a monoid we will denote N∞. As S0 is a category with one object, its
morphisms correspond to the elements of monoid N∞ and composition of morphisms
S0 corresponds to addition in N∞ we see that BS0 = BN∞.

Since addition of natural numbers is commutative, we can use the group comple-
tion Theorem 4.3.4. Thus we know that BN∞ is homotopic to the classifying space
of the group completion of N∞. We will denote the group completion of N∞ by Z∞,
being the group with sequences (n0, n1, n2, ...) of finitely many non-zero (possibly neg-
ative) integers as elements and componentwise addition as operation.

Now we construct an Eilenberg-MacLane space of type K(Z∞, 1). Define R∞ to be
the space consisting of all sequences (x0, x1, x2, ...) of finitely many non-zero real num-
bers with the direct limit topology induced from the finite dimensional subspaces Rn.
Note that R∞ is locally path-connected and contractible

Consider the group action of Z∞ acting on R∞ by (n0, n1, n2, ...) ∈ Z∞ taking
(x0, x1, x2, ...) ∈ R∞ to (x0 + n0, x1 + n1, x2 + n2, ...). We can now use Proposition 4.2.3
regarding group actions, as R∞ is contractible we see that R∞/Z∞ is an Eilenberg-
MacLane space of type K(Z∞, 1).

Thus, using Corollary 4.2.7 we can conclude that BS0 is homotopic to R∞/Z∞.

Remark 5.2.2. To conclude that the classifying space of BZ∞ is isomorphic to R∞/Z∞

using Proposition 4.1.4 it is necessary for R∞/Z∞ to be a CW-complex. To see that
R∞/Z∞ is indeed a CW-complex consider the embedding of Rn into R∞ that maps
a point (x1, ..., xn) to (x1, ..., xn, 0, ...). Every point in R∞ lies in the image of such an
embedding for a n, in this way R∞ inherits a CW-structure. As R∞/Z∞ is the quotient
of a free action on a CW-complex it is again a CW-complex and thus we can conclude
that BS0 is isomorphic to R∞/Z∞.

Now consider the subcategory of S that does not contain the empty 1-manifold as
object nor any morphisms that have a component that is a morphism to or from the
empty 1-manifold. We denote this subcategory by S>0.

Theorem 5.2.3. The classifying space of S>0 is homotopic to the circle S1.

Proof. We first consider the full subcategory S1 of S>0 with as only object the cir-
cle. As the morphisms in S>0 do not have any components that are morphisms to or
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from the empty 1-manifold, all the morphisms in S1 are connected cobordisms with
one incoming and one outgoing boundary circle. These morphisms are in one-to-one
correspondence with the natural numbers, as they are determined by their genus and
composition of morphisms corresponds to the addition of their genera. Thus we see
that BS1 = BN.

Recall from Example 4.3.3 that N is a commutative monoid and its group comple-
tion is Z. Using the group completion Theorem 4.3.4 we can conclude that BS1 is
homotopic to BZ. From Example 4.1.2 we know that BZ is homotopic to the circle, as
S1 is a K(Z, 1) space. Thus the classifying space BS1 is homotopic to the circle S1.

Now we will construct a functor Φ : S>0 → S1 such that there is a natural transfor-
mation between Φi and the identify functor on S1 as well as a natural transformation
between iΦ and the identify functor on S>0, with i the inclusion S1 → S>0. Using
Theorem 3.6.2, stating that a natural transformation between functors induces a ho-
motopy between induced functions of classifying spaces, we can then conclude that
the classifying spaces of S0 and S>0 are homotopic.

Define the functor Φ : S>0 → S1 to be the constant map on objects, as S1 only has
the circle as object. Define the image of a morphism M in S>0 with n source circles, c
connected components, total genus g and m target circles to be the unique morphism
in S1 with genus 1

2(m− n− χ(M)) = g + m− c. As no morphism in S>0 has a com-
ponent that is a morphism to or from the empty 1-manifold, the number of connected
components of a morphism in S>0 can not be greater than the number of target circles.
Thus m ≥ c, meaning that g + m− c ≥ 0 and therefore Φ is well-defined.

We now show that Φ is a functor. Let Mn,m be a morphism from n to m circles
and Mm,k be a morphism from m to k circles. Then, using that composition of (1+1)-
cobordisms corresponds to addition of the Euler characteristics,

Φ(Mn,m ◦Mm,k) =
1
2
(k− n− χ(Mn,m ◦Mm,k))

=
1
2
(m− n− χ(Mn,m) + k−m− χ(Mm,k))

= Φ(Mn,m) + Φ(Mm,k).

Thus we see that Φ is a functor.

Note that Φi : S1 → S1 is the identify functor on S1. The only object in S1 gets
mapped to itself and since every morphism M in S1 with genus g has one target circle
and one connected component we see Φ(M) = g + 1− 1 = g, thus every morphism
also gets mapped to itself. In particular we can conclude that there is a natural trans-
formation between Φi and the identity on S1.
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Now we show that the function of classifying spaces induced by iΦ : S>0 → S>0
is homotopic to the function induced by the identity IdS>0 : S>0 → S>0. We define
a natural transformation α : IdS>0 =⇒ Φ. For the object n being n copies of the
circle, define the morphism αn : n→ 1 to be the connected morphism joining n circles
to 1 with genus 1− n. We need to check that for arbitrary morphisms M in S>0 with
genus g and c connected components the following diagram commutes.

n 1

m 1

αn

M Φ(M)

αm

First note that both Φ(M) ◦ αn and αm ◦M are connected surfaces with n source and
one target circle. Furthermore the genus of Φ(M) ◦ αn is g + m− c and the genus of
M increases with m − c when composed with αm, thus both Φ(M) ◦ αn and αm ◦ M
have the same genus. Therefore we can conclude that the diagram commutes and α is
a natural transformation. Meaning the function of classifying spaces induced by iΦ is
homotopic to the identity map.

Thus we see that the induced maps BiΦ = Bi ◦ BΦ and BΦi = BΦ ◦ Bi are homo-
topic to the the identity on BS>0 and BS1 respectively, meaning that BS>0 and BS1
are homotopic.

We conclude that BS>0 is homotopic to the circle S1.

5.3 The fundamental group of BS

The goal of this section is to prove the following proposition.

Proposition 5.3.1. The fundamental group of BS is isomorphic to Z.

To show this we define a category G as the groupoid obtained from S by adding an
inverse for every morphism and taking the quotient of certain equivalence relations,
to assure that every morphism has an unique inverse.

Note that that the morphisms in this category G do not correspond to cobordisms
anymore. There is for instance no surface that can be composed with a sphere to get
the an empty 2-manifold, which is the identity morphism on the empty 1-manifold.

We will use the following result of Proposition 1 from [6] without giving a formal
proof.

Lemma 5.3.2. The fundamental group of BG is also the fundamental group of BS .
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It is not true that BS and BG are homotopic, only their fundamental groups are nec-
essarily equal. Intuitively this is a result of the fact that the fundamental group of
a CW-complex is only determined by its 0-,1- and 2-cells and not by its higher di-
mensional cells. Adding an inverse gives an extra 1-cell for every morphism, but the
composition of a morphism with its inverse gives a 2-cell through which these two
1-cells are homotopic.

Denote by Gn the full subcategory of G with as only object n. This category is an
one-object groupoid and as such corresponds to a group which we will also denote by
Gn. We now prove a lemma regarding Gn as a group and the fundamental group of G .

Lemma 5.3.3. All Gn are isomorphic as groups and π1(BG ) = Gn.

Proof. We begin by proving that all Gn are isomorphic by constructing a group iso-
morphism between G1 and an arbitrary Gn. As every morphism in G is invertible, any
morphism α : n → 1 gives a conjugation cα : G1 → Gn, β 7→ α−1βα that is a group
isomorphism. Since there is a morphism between every two objects in S , there is an
isomorphism between G1 and Gn for every n ∈N. Thus all Gn are isomorphic.

Now consider the inclusion functor i : Gn → G . As Gn is the full subcategory of G
with only n as object and there is an invertible morphism between n and any object
in G , Theorem 1.5.9 of [3] gives that there is a functor F : G → Gn such that there are
natural transformations iF =⇒ idG and Fi =⇒ idG , assuming the axiom of choice.
Thus, using Theorem 3.6.2 regarding homotopic maps induced by natural transfor-
mations between functors, we see that BG and BGn are homotopic. In particular this
means that the fundamental group of BG is isomorphic to the fundamental group of
BGn. As BGn is a K(Gn, 1), we see π1(BGn) = BGn. We conclude that π1(BG ) = Gn.

In particular this gives that π1(G ) = G1. We now prove that G1 = Z, in combination
with Lemma 5.3.3 and Lemma 5.3.2 this concludes the proof of Proposition 5.3.1.

Proof of Proposition 5.3.1. We first take a closer look at morphisms from 1 to 1 in S and
give a monoid with which these morphisms are in one-to-one correspondence. Using
this monoid and group isomorphisms G0 → G1 and G1 → G2 we will deduce certain
relations on G1 that give that G1 = Z.

Consider all morphisms from 1 to 1 in S . Apart from components that are a dis-
joint union of closed surfaces and thus morphisms from the empty 1-manifold to the
empty 1-manifold, every morphism from 1 to 1 in S is either a connected surface with
two boundary circles and genus g or two surfaces with both one boundary circle and
genus a and b. These two types of morphisms are shown in Figure 5.2.
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Figure 5.2: Two types of morphisms from 1 to 1, obtained from [1].

Morphisms from 1 to 1 in S are in one-to-one correspondence with the non-commutative
monoid (N ∪ (N×N))×N∞ with addition given by the geometry. With this nota-
tion we mean that elements of this monoid are either of the form (g, (n0, n1, ...)) or of
the form ((a, b), (n0, n1, ...)). The first corresponds to the morphism that is a connected
surface with two boundary circles and genus g together with ni closed surfaces with
genus i. The second corresponds to the morphisms consisting of a connected mor-
phisms from 1 to 0 with genus a, a connected morphism from 0 to 1 with genus b and
ni closed surfaces with genus i. The addition given by the geometry can be explicitly
expressed:

(g, (n0, n1, ...)) ◦ (g′, (n′0, n′1, ...)) = (g + g′, (n0 + n′0, n1 + n′1, ...)),

(g, (n0, n1, ...)) ◦ ((a, b), (n′0, n′1, ...)) = ((g + a, b), (n0 + n′0, n1 + n′1, ...)),

((a, b), (n0, n1, ...)) ◦ (g, (n′0, n′1, ...)) = ((a, b + g), (n0 + n′0, n1 + n′1, ...)),

((a, b), (n0, n1, ...)) ◦ ((a′, b′), (n′0, n′1, ...)) = ((a, b′), (n0 + n′0, n1 + n′1, ..., nb+a′ + 1, ...)).

Now define a group isomorphism cα : G0 → G1, β 7→ α−1βα with α : 0 → 1 a sphere
with one boundary circle. To construct the inverse of α, note that the result of com-
posing α with the morphism 1 → 0 that is a sphere with one boundary circle is the
sphere as a morphism 0 → 0. By identifying the morphisms from 0 → 0 in S with
N∞ as before, the inverse of the sphere can be denoted (−1, 0, ...). Thus the inverse of
this α : 0→ 1 is the union of a sphere with one boundary circle and the inverse of the
sphere (−1, 0, ...). Now we see that cα maps

(g, (n0, n1, ...)) 7→ (n0 − 1, n1, ..., ng + 1, ....),
((a, b), (n0, n1, ...)) 7→ (n0 − 1, n1, ..., na + 1, ..., nb + 1, ...).

However, as cα is a group isomorphism it must obey the group structure and be injec-
tive. For any two elements β, γ ∈ G1 we must have that cα(β ◦ γ) = cα(β) ◦ cα(γ). This
forces the following identifications on G1:

(g, (n0, n1, ...)) ∼ (g + Σi ni, (Σni, 0, 0, ...)),
((a, b), (n0, n1, ...)) ∼ (a + b + Σi ni, (1Σni, 0, 0, ...)).
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Note that this means that an equivalence class of a morphism in G1 is uniquely deter-
mined by its genera and the number of connected components.

Now we consider a group isomorphisms Cβ : G2 → G1, γ 7→ β−1γβ with β : 1 → 2
being the union of a cylinder and a disk. There are multiple representations of the
inverse of β, we consider two of them. Let β1 : 2 → 1 be the connected morphism
with genus 0 from two circles to one and β1 : 2 → 1 be the union of a disk, a cylinder
and the inverse of a sphere. Now let γ ∈ G2 be the union of the connected morphism
with genus 0 from one circle to two with a disk. We compare the two images of Cβ(γ)
using the two different representations of the inverse of β, this is shown in Figure 5.3.

Figure 5.3: β1γβ and β2γβ, obtained from [1].

These two morphisms must be equivalent in G1, meaning that

(g, (n0, 0, 0, ...)) ∼ (g− n0, (0, 0, ...)).

Thus we have

(g, (n0, n1, ...)) ∼ (g + Σ(i− 1)ni, (0, 0, ...)),
((a, b), (n0, n1, ...)) ∼ (a + b− 1 + Σ(i− 1)ni, (0, 0, ...)).

This means that the equivalence classes of morphisms in G1 depend only on the differ-
ence of the sum of the genera and the number of connected components. This is half
of their Euler characteristic and as noted at the beginning of this chapter, the Euler
characteristic induces a functor χ : S → Z. For this functor to be well-defined, differ-
ent Euler characteristics must correspond to different equivalence classes. So there is
a one-to-one correspondence of G1 with Z.

We conclude that π1(BS ) = G1 = Z.
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Chapter 6

Topological quantum field theories

Now that we have studied the (1+1)-dimensional cobordism category and its classify-
ing space, we will give an application regarding (1+1)-dimensional topological quan-
tum field theories.

In this chapter we will first formally introduce the concept of topological quan-
tum field theories in a manner based on [2]. Then we will use our knowledge of the
classifying space of the (1+1)-dimensional cobordism category to classify morphism
inverting (1+1)-dimensional topological quantum field theories, this will be shown
using a proof based on [1].

6.1 Topological quantum field theories

There are many different variations on the definition of topological quantum field the-
ories. The definition we use in this thesis is very similar to the definition as originally
put forward by Atiyah in [11] and [12]. It is however slightly rewritten following [2],
giving an intuitive idea of the interpretation of topological quantum field theories.

Definition 6.1.1. A (n+1)-dimensional topological quantum field theory (TQFT) is a
rule A which to each compact oriented n-manifold Σ associates a vector space A Σ
over C, and to each oriented cobordism M : Σ0 → Σ1 associates a linear map A M
from A Σ0 to A Σ1. This rule must satisfy the following five axioms:

1. Two equivalent homeomorphic cobordisms must have the same image:

M ∼= M′ =⇒ A M = A M′

2. The cylinder Σ × I, thought of as a cobordism form Σ to itself, must be sent to
the identity map of A Σ.
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3. Given a decomposition M = M′M′′ then

A M = (A M′)(A M′′)

4. Disjoint unions are associated with tensor products: if Σ = Σ′qΣ′′ then A Σ = A Σ′ ⊗A Σ′′.

This must also hold for cobordisms: if a cobordism M is the disjoint union of two
cobordisms M′ and M′′ then A M = A M′ ⊗A M′′.

5. The empty manifold Σ = ∅ must be sent to the ground field C and the empty
cobordism, being the cylinder over Σ = ∅, must be sent to the identity map of
C.

The n-manifolds are meant to represent n-dimensional physical space and the cobor-
disms between these manifolds represent a time evolution of this space. The first two
axioms give TQFT their topological nature, it depends purely on the topology of the
manifolds and the cobordisms and not on properties such as metric.

The vector space A Σ is the Hilbert space of the quantum theory while the linear
map A M given by a cobordism M gives the time evolution between Hilbert spaces.
This is the quantum field theory nature of TQFT. This is also reflected in the last two
axioms; in quantum mechanics the state space of two independent systems is the ten-
sor product of the two state spaces.

This definition of TQFT makes both the topological and the quantum field theory as-
pects clear, but is rather unwieldy. As we will see this definition can be restated as A
being a functor between the category of n-cobordisms and a category of vector spaces.
The first three axioms give that A is a functor while the fourth and fifth axiom give
that this functor has certain properties, namely that it is a non-trivial monoidal functor.

6.2 Monoidal categories

To be able to define monoidal functors we first have to define monoidal categories, to
do that we have to define the Cartesian product of categories.

Definition 6.2.1. For a pair of categories C and C ′, define their Cartesian product
C × C ′ to be the category with as objects pairs (X, Y), where X is an object in C and Y
is an object in C ′. The set of morphisms from (X, Y) to (X′, Y′) is the Cartesian product
of morphisms from X to X′ and morphisms from Y to Y′.

The Cartesian product of two functors F : C → D and F′ : C ′ → D ′ is the canonical
functor F× F′ : C × C ′ → D ×D ′.

Now we can define monoidal categories.
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Definition 6.2.2. A strict monoidal category is a category M together with two func-
tors

µ : M ×M →M η : I →M

with the property that the following three diagrams commute:

M ×M ×M

M ×M M ×M

M

µ×idM idM×µ

µ µ

M M ×M

M

η×idM

µ

M ×M M

M

µ

idM×η

Here I is the category with one object and only the identity arrow and the diagonal
functors in the commuting triangles are the canonical projections.

To ease the notation for general monoidal categories we will write

µ(X, Y) = X�Y and µ( f , g) = f�g

for the image of objects X and Y and morphisms f and g in M . Here � acts more or
less as a placeholder for some bifunctor such as a tensorproduct ⊗.

We will denote the object that is the image of η : I → M by I. The statement of
the two commuting triangular diagrams can also be written as

I�X = X = X�I, idI� f = f = f�idI .

We will refer to a monoidal category by giving the triple (M ,�, I).

Remark 6.2.3. Strict monoidal categories are a special case of the more general no-
tion of monoidal categories. Where for strict monoidal categories it is needed for
µ(µ× idM ) and µ(idM × µ) to be equal, for general monoidal categories the require-
ment is that there is an invertible natural transformation between these two composi-
tions.

As explained in chapter 3 of [2] every monoidal category is equivalent to a strict
monoidal category and all monoidal categories can be assumed to be strict for the
purposes of this thesis.
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Example 6.2.4. The category of 2-cobordisms (S ,q, ∅) is a monoidal category. For
any three objects n, n′, n′′ and morphisms M, M′, M′′ in S we see that

(nq n′)q n′′ = nq (n′ q n′′), (MqM′)qM′′ = Mq (M′ qM′′).

And clearly for every object n in S it holds that ∅ q n = n = n q ∅ and for any
cobordism M it holds that id∅ qM = M = M q id∅, since the identity morphism of
the empty 1-manifold is the empty cobordism ∅× [0, 1].

Example 6.2.5. The category (VectC,⊗, C), having vector spaces over field C as ob-
jects, C-linear maps as morphisms and the tensor product⊗ as bifunctor, is a monoidal
category. For any three vector spaces V, V′, V′′ over C and any three C-linear maps
L, L′, L′′ we have

(V ⊗V′)⊗V′′ ∼= V ⊗ (V′ ⊗V′′), (L⊗ L′)⊗ L′′ ∼= L⊗ (L′ ⊗ L′′),

and also

C⊗V ∼= V ∼= V ⊗C, idC ⊗ L ∼= L ∼= L⊗ idC.

A functor between monoidal categories that preserves the monoidal structure is called
a monoidal functor.

Definition 6.2.6. A monoidal functor is a functor F : M →M ′ between two monoidal
categories (M ,�, I) and (M ′,�′, I′) such that the following diagrams commute:

M ×M M ′ ×M ′

M M

F×F

µ µ

F

M M ′

I

F

η
η′

Meaning that for every pair of objects X and Y in M we have F(X)�′F(Y) = F(X�Y)
and for every pair of morphisms f and g in M we have F( f )�′F(g) = F( f�g). The
commuting triangle gives that F(I) = I′.

Now we can use the notion of monoidal functors to give a definition of a TQFT as
a functor.

Definition 6.2.7. An n + 1-dimensional topological quantum field theory (TQFT) is a
non-trivial monoidal functor A from the category ((n+1)-Cob,q,∅) to category (VectC,⊗, C),
here non-trivial means that the image of the empty n-manifold A (∅) = C and the im-
age of the empty cobordism is the identiy map of C. Recall that (n+1)-Cob is the
category as objects homeomorphism classes of compact oriented n-manifolds and as
morphisms homeomorphism classes of cobordisms between them.
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If we compare this definition of a TQFT in terms of categories with the definition at
the beginning of the chapter, we see that these two definitions do indeed agree. The
first axiom of Definition 6.1.1 amounts to assuring that the functor is well defined and
the second and third axiom are equivalent to the functorial axioms. The fourth axiom
is the same as A being monoidal. Lastly the fifth axiom gives that the functor must be
non-trivial.

6.3 Classification of morphism inverting (1+1)-dimensional
TQFT’s

We will now use the functorial definition to give a classification of morphism invert-
ing (1+1)-dimensional topological quantum field theories with morphism inverting
meaning that every morphism gets mapped to an invertible morphism.

Theorem 6.3.1. The (1+1)-dimensional morphism inverting topological quantum field theo-
ries are in one-to-one correspondence with pairs µ, λ ∈ C∗.

Proof. Consider a (1+1)-dimensional morphism inverting topological quantum field
theory A : S → VectC. In [6] it is shown that if A is morphism inverting, it must
factor through G . Meaning that A is a composition of a functor from S to G and a
functor from G to VectC. Recall that G is the category obtained from S by adding
inverses for every morphism and that Gn is its full subcategory with only the object n.

Recall from the proof of Proposition 5.3.1 that G1 is isomorphic to Z via half the
Euler characteristic of its morphisms. As the Euler characteristic of the sphere S2 is 2,
half of which is 1, it is a generator for the morphisms in G1. All morphisms in G1 are
the union of either n ∈ N spheres or the union of n ∈ N anti-spheres, the inverse of
the union of n spheres. Thus giving the image of of the sphere A (S2), determines all
morphisms G1 → VectC.

Since every morphism n → m in G is an isomorphism between Gn and Gm, the
functor A can now be determined by giving the images of morphisms pn : 0 → n
for n ≥ 1. Define pn to be the union of n disks as morphisms 0 → 1. Because A is
non-trivial, we know that A (0) = C. Using that every pn : 0 → n is an isomorphism
we see that every A (n) is isomorphic to C as a vector space. As A is monoidal and
pn = q

1≤i≤n
p1, the image of every pn is determined by giving the image of p1 by taking

the n-fold tensor product.
Thus A is determined by giving the image of S2 and p1.

Because all A (n) are isomorphic to C we see that A can be seen as a functor from
S to GL1(C), mapping all objects to one object and all morphisms to elements of the
group GL1(C). Recall that GL1(C) = C∗, the complex numbers without 0.
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If we define µ = A (S2) and λ = A (p1) we see that A is completely determined
by the pair µ, λ ∈ C∗.
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