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I

Abstract

The unitary irreducible representations of the isometry group of d-dimensional de Sitter

space SO(1,d) can be distinguished by their conformal dimensions ∆, the eigenvalue

of the dilatation operator near the origin. Scalar fields with sufficiently large mass

compared to the de Sitter scale 1/L have complex conformal weights and physical

modes of these fields fall into the continuous principal series representation of SO(1, d).

In d = 2 and in global coordinates, we show that the generators of the isometry group

of dS2 acting on a massive scalar field reduces exactly to the quantum mechanical

model introduced by de Alfaro, Fubini and Furlan (DFF) in the early/late time limit.

In its original presentation, the DFF model describes a single degree of freedom on

the positive semi-axis subject to a repulsive potential that diverges at the origin. The

Hilbert space of this model furnishes the discrete highest weight representation of

SO(1, 2). To accommodate the principal series representation, the potential must be

made attractive, but this comes at the expense of the failure of self-adjointness of

the operators, leading to the speculation that DFF can not accommodate a unitary

principal series representation. Motivated by the ambient dS2 construction, we explain

in detail how this model must be completed in order to allow for the principal series

representation and verify that all operators remain Hermitian and self-adjoint. While

the conformal dimensions are complex, the representations are nevertheless completely

unitary. By studying this model in detail, we explore some features one must face in

the search of a dual quantum field theory that contains states in the principal series.
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1 Introduction

1.1 Motivation

There are many reasons to study de Sitter spacetime. In recent years it was discovered that

our universe is expanding [1,2] and hence, the cosmological constant is positive. De Sitter

space is the most simple spacetime with a positive cosmological constant and is therefore

an important theoretical playground for understanding our universe. Furthermore, the

inflationary epoch of our early universe was approximately de Sitter [3,4]. However, despite

obvious interest and necessity, quantum gravity in de Sitter remains an unsolved theoretical

problem [5–14].

De Sitter space and its features are interesting to study on their own. Bekenstein and

Hawking were the first to relate thermodynamic entropy to the area of an event horizon

and obtained their macroscopic entropy-area law [15,16]

S =
A

4G
, (1.1)

where A is the area of the event horizon and G Newton’s constant. This should be under-

stood just as any other thermodynamic relation from the 19th century. De Sitter spacetime

inherits a cosmological horizon and this entropy formula should also apply here [17]. In [18]

the black hole entropy was calculated microscopically for certain black holes using super

symmetry. The microscopical origin of the entropy of Schwarzschildt black holes or cos-

mological event horizons are certainly not understood yet. Conceptually one can imagine

that a black hole is some localized quantum object with some quantum microstates. If one

finds a correct description of these objects, one could go on and count the microstates and

compare these results to the Bekenstein-Hawking formula (1.1). The entropy for cosmo-

logical horizons is even more puzzling. The event horizon in de Sitter spacetime is observer

dependent, so one needs to identify the location of the possible microstates first. The

question what the possible microstates might be stays an open question.

Another reason to study de Sitter space is due to the great success of the anti de Sitter-

conformal field theory correspondence introduced by Maldacena [19]. The idea is to relate

a gauge theory living in d-dimensions to a d + 1-dimensional gravitational bulk theory in

anti de Sitter spactime. One might asks the question whether this holographic approach is

only applicable to anti de Sitter spacetime or holds true for a generic spacetime. Presum-

ably the simplest spacetime to consider is de Sitter space since it only differs by a sign in

front of the cosmological constant from anti de Sitter spacetime. There have been many

attempts to understand this correspondence [8, 9, 20–22], but a satisfactory map is still

missing and the correspondents is not established yet. In this we attempt to understand
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some of the necessary features any theory in de Sitter must exhibit.

Let us consider various coordinates systems of de Sitter, which all have their benefits and

conceptual difficulties as we will see.

1.2 De Sitter Spacetime

We will realise d-dimensional de Sitter spacetime (dSd) by embedding it into d + 1-

dimensional flat Minkowski spacetime (M1,d) via the condition

−X2
0 +X2

1 + ...+X2
d−1 = L2 , (1.2)

where L is the de Sitter radius in units of length. This hypersurface in flat Minkowski

space is simply a hyperboloid, as illustrated in figure 1.1. Each horizontal slice represents

the extremal volume of a Sd−1 sphere and the timelike coordinate X0 flows upwards.

Figure 1.1: Hyperboloid illustrating d-dimensional de Sitter spacetime embedded in a
higher dimensional Minkowski spacetime. Each point corresponds to a Sd−2 sphere.

Due to the embedding of dSd intoM1,d we can immediately read off the isometry group

of d-dimensional de Sitter spacetime to be SO(1, d) [23].

Furthermore, de Sitter is the maximally symmetric solution to the Einstein equations with
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positive cosmological constant [24] satisfying

Gab + Λgab = 0 , (1.3)

where Gab is the Einstein tensor and gab the metric. Further, the cosmological constant is

defined as

Λ =
(d− 2)(d− 1)

2L2
. (1.4)

Global coordinates

Since we will often use a parametrization on the Sd−1 sphere, we will define one here.

A convenient parametrization is given by setting [25]

ω1 = cos θ1

ω2 = sin θ1 cos θ2

...

ωd−1 = sin θ1 . . . sin θd−2 cos θd−1

ωd = sin θ1 . . . sin θd−2 sin θd−1 , (1.5)

where 0 ≤ θi < π for 1 ≤ i < d−1, but 0 ≤ θd−1 < 2π. These coordinates naturally satisfy

the condition to be on the sphere
∑d

i=1

(
ωi
)2

= 1 and the metric on the Sd−1 sphere is

given, as usual, by

dΩ2
d−1 =

d∑
i=1

(
dωi
)2

= dθ2
1 + sin2 θ1dθ

2
2 + · · ·+ sin2 θ1 . . . sin

2 θd−2dθ
2
d−1 . (1.6)

We obtain the global coordinates that cover the whole hyperboloid by setting

X0 = L sinh(τ/L) , Xi = L cosh(τ/L)ωi , (1.7)

where I = 1 . . . d, τ ∈ {−∞,∞} and the ωi as defined in (1.5). One immediately sees that

these coordinates fulfil the condition (1.2) for every point (τ, ωi). We can plug this choice

of coordinates (1.7) into the standard flat metric on M1,d

ds2 = −dX2
0 + dX2

1 + · · ·+ dX2
d (1.8)
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and obtain the induced metric on dSd as

ds2 = −dτ2 + L2 cosh2
( τ
L

)
dΩ2

d−1 . (1.9)

In global coordinates one can think of dSd as a Sd−1 sphere that changes its size in time.

More precisely, the d − 1 sphere starts out infinitely large at τ = −∞, then the sphere

shrinks to the minimal size at τ = 0 with radius L and afterwards starts to grow again to

a infinitely large size as τ →∞.

Penrose diagram

As the next step we would like to understand the causal structure of de Sitter space-

time, hence we want to draw a Penrose diagram. In order to do this we will use conformal

coordinates (T, θi). These are simply related to global coordinates by

cosh τ =
1

cosT
, (1.10)

which restricts −π/2 < T < π/2. Finally, one arrives at the following metric

ds2 =
1

cos2 T

(
−dT 2 + dΩ2

d−1

)
. (1.11)

We can use the fact that null rays with respect to the metric (1.11) stay null rays after

conformal transformations. Hence, the causal structure stays the same and we can investi-

gate the causal structure of de Sitter space by considering the more simple and conformally

related metric

ds̃2 =
(
cos2 T

)
ds2 = −dT 2 + dΩ2

d−1 . (1.12)

The Penrose diagram corresponding to the metric (1.11) and the metric (1.12) is given in

figure 1.2.
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So
ut

h 
Po

le N
orth Pole

Figure 1.2: Penrose diagram for d-dimensional de Sitter spacetime. Every point corre-
sponds to a Sd−2 sphere except the points on the left and right, which are the north/south
pole of the Sd−1 that are obtained by taking a complete spacelike slice as denoted with
the dashed line. Light rays travel at 45◦ as denoted with the continuous lines. I+ and I−
denote the future and past null infinity.

As usual in a Penrose diagram the light rays or null geodesics travel at 45◦ angles

and spacelike surfaces are more horizontal than vertical. Timelike surfaces are the other

way around, namely more vertical than horizontal. All points in the diagram are Sd−2

spheres except the ‘edges’ on the left and right, which are actually points. These are the

north/south pole of the Sd−1 spheres that are obtained by taking a complete spacelike slice

as denoted with the dashed line. The future and past null infinity are denoted as I+ and

I−. These are the surfaces, where all light rays terminate on or originate from. One should

note that a light ray which is emitted from the south pole at the past infinity will reach

the north pole by the time it arrives at I+ infinitely far in the future. This is one of the

rather special features of de Sitter and we should spend some time to briefly discuss what

this means for causality in de Sitter space.

Causality

In de Sitter space a local observer is never able to access the entire spacetime and one

should be aware what is accessible to an local observer and what is only accessible to some
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observer outside the spacetime.

So
ut

h 
Po

le N
orth Pole So

ut
h 

Po
le N

orth Pole

Figure 1.3: The two Penrose diagrams show the causal future and past. On the left in
green the causal future O+ and on the right in orange the causal past O−. Both regions
correspond to an observer sitting at the south pole.

Let us assume a local observer is sitting at past null infinity at the south pole. If she

sends out a light ray, it will reach the north pole at future null infinity. Hence, she can only

send messages to half of the spacetime. This region is denoted as O+ and is depicted as

the green area on the left of figure 1.3. This differs qualitatively from the causal structure

in Minkowski space. If she would send out a light ray at any time in Minkowski space, the

light ray will eventually reach any region in a finite time.

On the right of figure 1.3 the region O− is shown in orange. This is the region from

where one can receive messages from sitting at past null infinity at the south pole. The

intersection of these two regions O− ∩O+ is the fully accessible region for a local observer

sitting at the south pole and is called the southern diamond. One can send queries to any

point in this region and receive an answer before reaching future infinity I+. In contrast to

this the northern diamond is completely inaccessible to an observer sitting at the south pole.

Planar coordinates

Next, let us discuss a chart that covers only half of the de Sitter space, namely the causal

past for an observer sitting at the south pole. This chart is usually called planar coordi-
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nates, flat slicing or Poincare coordinates. To obtain this chart we choose our coordinates

to be

X0 = L sinh (t/L) +
xix

i

2
e−t/L

X1 = L cosh (t/L)− xix
i

2
e−t/L

Xi = e−t/Lyi , (1.13)

where i = 2 . . . d. The induced metric takes the form

ds2 = −dt2 + e−2t/Ld~y2 . (1.14)

The slices of constant t are depicted in figure 1.4.

So
ut

h 
Po

le N
orth Pole

Figure 1.4: The blue dashed lines are slices of constant t in planar coordinates. Each slice
is a infinite, flat d− 1-dimensional plane, hence the name flat slicing. Each plane extends
all the way down to I−.

In these coordinates the rotation and translation symmetries in the xi coordinates are

manifest and the time t is not a Killing vector. This patch is often used in Cosmology since

it allows to use Fourier transformation for fixed t, which is often a very useful tool.
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Static patch

Finally, we will discuss the static patch. The static patch covers the southern diamond and

is constructed to have an explicit timelike Killing vector. To obtain this chart we take

X0 =
√
L2 − r2 sinh (t/L)

X1 =
√
L2 − r2 cosh (t/L)

Xi = rωi , (1.15)

where i = 2 . . . d, ωi parameterize the d− 2-sphere as defined in (1.5) with
∑d

i=1

(
ωi
)2

= 1

and r ∈ (0, L). In figure 1.5 the area that is covered by the static patch is shown in green.

The induced metric reads

ds2 = −
(
1− r2/L2

)
dt2 +

dr2

1− r2/L2
+ r2dΩ2

d−2 . (1.16)

So
ut

h 
Po

le N
orth Pole

r=0

r=L

Figure 1.5: The static patch is shown in green on the Penrose diagram. This is the causal
connected patch for an observer sitting at the south pole, i.e. r = 0 in static coordinates.
The left ‘edge’ of the diagram is rstatic = 0 and the Killing horizon is at rstatic = L.

One can also describe the region called the future triangle by taking r ∈ (L,∞).

From the metric (1.16) one can immediately see that ∂t is a Killing vector and one can
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define a Hamiltonian in this patch. It is also obvious that the norm of the Killing vector

vanishes at r = L. Indeed, r = L is a null surface. This event horizon is known as the

cosmological horizon in de Sitter spacetime and is evident in the static patch coordinates.

One can see that the direction of the Killing vector changes sign as one passes through

the cosmological horizon from the southern diamond into the future triangle. Hence, the

Hamiltonian one can possible define changes sign, as illustrated in figure 1.6. We will

briefly comment on this observation later.

So
ut

h 
Po

le N
orth Pole

r=L r=L

r=0 r=0

Figure 1.6: The Penrose diagram of de Sitter spacetime includes the direction of the flow
generated by the Killing vector ∂t in static coordinates. The horizons at r2 = L2 are shown
as the continuous black lines. As before the static patch is the triangle on the left side with
r ∈ (0, L).

One can conclude that there is no globally defined timelike Killing vector in de Sitter

space. This has important features in the quantum theory of de Sitter, to which we will

move on now.

Holographic boundary

We want to briefly mention some confusions about the possible holographic principle for

de Sitter spacetime.

The idea of holography [26, 27] relates a d-dimensional quantum field theory living on the

boundary of a d + 1-dimensional gravitational theory. One of the first examples was es-
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tablished by Maldacena [19] and is now a well established general approach to quantum

gravity [28, 29]. For a review see [30, 31]. In the AdS/CFT correspondence the conformal

boundary is a spatial boundary and is fully accessible for a local observer. In contrast to

that, de Sitter spacetime has no spatial boundary as can be seen in global coordinates.

The only boundary in de Sitter spacetime are the future and past null infinity. The issue is

that this boundary is not spatial and hence, cannot be fully accessed by a local observer.

This means using global coordinates and defining the QFT on the boundary the observ-

able computed can never be tested by a local observer. Now, one could go on and say

one uses static coordinates instead, which comes at the cost that the boundary is hidden

by a horizon and one needs to use an appropriate statistical tool to incorporate this. The

interpretation of this approach is also far from obvious and the precise definition of the

observable, one should use in de Sitter space to make meaningful prediction, stays unknown.

Quantum field theory in (Anti) de Sitter spacetime

There are three maximally symmetric solutions to Einstein’s equations with constant cur-

vature, namely Minkowski spacetime, de Sitter spacetime and anti de Sitter spacetime,

where the curvature is non-vanishing in anti de Sitter and de Sitter spacetime. As with

de Sitter space, anti de Sitter spacetime can be embedded into a higher dimensional flat

space through the equation

−X2
0 +X2

1 + ...+X2
d−1 = −L2. (1.17)

Unlike to de Sitter space, which has positive constant curvature, it has constant negative

curvature.

For a generic d-dimensional spacetime we can write down the action for a non-interacting

scalar field with minimal coupling as

S = −1

2

ˆ
ddx
√
−g
[
gµν∂µφ∂νφ+m2φ2

]
, (1.18)

where g = det (gµν). One obtains the Klein-Gordon equation by varying the above action

with respect to φ (
1√
−g

∂µ
√
−ggµν∂νφ−m2

)
φ = 0 . (1.19)

As the next step one can go on and calculate the quadratic Casimir C2 of the isometries
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as done in [9, 30] or as calculated for the 2-dimensional case in section 4, to show that

∓ C2

L2
=

1√
−g

∂µ
√
−ggµν∂ν , (1.20)

where the minus corresponds to de Sitter spacetime and the plus to anti de Sitter spacetime.

Furthermore, unitary irreducible representations are labeled by real eigenvalues of the

quadratic Casimir

C2 = ∆(∆− d+ 1) . (1.21)

Thus, based on representation theory we expect to identify

∆(∆− d+ 1) = ∓m2L2 . (1.22)

It seems that the results for de Sitter space and anti de Sitter space are essentially the

same since they only differ by a sign, but as we will see this is not the case.

From (1.22) the weights ∆ in anti de Sitter spacetime follow as

∆± =
1

2

(
(d− 1)±

√
(d− 1)2 + 4m2L2

)
. (1.23)

In the language of the AdS/CFT correspondence these weights label the two possible spatial

falloffs, which correspond to the highest weight representation. It is important to note that

for all masses m the weights ∆ are real.

Let us discuss the de Sitter case next. As before we can compute the weights from (1.22)

as

∆± =
1

2

(
(d− 1)±

√
(d− 1)2 − 4m2L2

)
. (1.24)

Here, we need to distinguish qualitatively different cases. The first case corresponds to

m2L2 < (d−1)2

4 , where ∆± is a real number and the falloff (now in time) is the same as

in the AdS case and the highest weight representation can be used. Actually one can

show that in de Sitter the weights ∆ need to be an integer for the highest weight. These

corresponds to the complementary series.

The more interesting case is now where the weights ∆± become complex for m2L2 > (d−1)2

4

and we find

∆± =
1

2
((d− 1)± iν) (1.25)

with ν ∈ R. These correspond precisely to the unitary principal series representation,

which do not appear in the anti de Sitter space. Here, the two weights ∆± are complex

conjugates and actually represent the same state in the Hilbert space, as we will see later.
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In order to see how this representation can be unitary, even though the weights are com-

plex, we will discuss in section 2 the possible unitary irreducible representations (UIRs)

of SO(1, d), which is the isometry group of d-dimensional de Sitter space. Following this,

in section 3, we will investigate how the simple conformal quantum mechanical toy model,

namely the DFF model, furnishes both the highest weight and the principal series repre-

sentation. After that, in section 4, we will connect these results from the DFF model to

2-dimensional de Sitter space. In section 5 we will finish with a conclusion. We will further

try review some open questions one needs to raise to link our results to the dS3/CFT2

correspondence and the Virasoro algebra.
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2 Review of UIRs in de Sitter

Our goal is to investigate the possible UIRs of the isometry group SO(1, d) of de Sitter

space.

We start with the standard representation of the so(1, d) algebra with Lab = −Lba

[Lab, Lcd] = i (ηbcLad + ηdbLca + ηadLbc + ηcaLdb) , (2.1)

and η = diag(−1, 1, . . . , 1). We are free to choose a different set of generators, which is more

convenient if one thinks about a possible dS/CFT application [32]. We use the following

identification

Lij = Mij

L0,d = D

Ld,i =
1

2
(Pi +Ki)

L0,i =
1

2
(Pi −Ki) (2.2)

with Lab = −Lba, i, j ∈ {1, 2, . . . , d − 1} and a, b ∈ {0, 1, . . . , d}. This corresponds to

choosing a set of generators consisting of translations Pi, special conformal transformations

Ki, rotations Mij and a dilatation D. We end up with the algebra

[D,Pi] = iPi

[D,Ki] = −iKi

[Ki, Pj ] = 2i (δijD −Mij)

[Mij , Pk] = i (δjkPi − δikPj)
[Mij ,Kk] = i (δjkPi − δikKj)

[Mij ,Mkl] = i (δjkMil + δljMki + δilMjk + δkiMlj) . (2.3)

In order to obtain a unitary representations of so(1, d), we need our operators to be
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hermitian operators acting on the Hilbert space

D† = D

P †i = Pi

K†i = Ki

M †ij = Mji . (2.4)

For the so(1, d) algebra we can define a quadratic Casimir, which commutes with all

other generators as

C2 ≡ 1

2
LabL

ab = −L2
0,d − L2

0,i + L2
d,i +

1

2
L2
ij

= −D2 − 1

4
(Pi −Ki)

2 +
1

4
(Pi +Ki)

2 +
1

2
M2
ij

= −D2 +
1

2
(PiKi +KiPi) +

1

2
M2
ij

= D(d− 1−D) + PiKi +
1

2
M2
ij . (2.5)

After all of this layed out we can start with explicit examples for d = 2, 3. We will see

that there are two distinct cases, namely the principal series representation with complex

weights and the highest weight representation with real weights.

2.1 Unitary Irreducible Representations of SO(1, 2)

Let us start simple by considering the group SO(1, 2), which is the isometry group of 2-

dimensional de Sitter spacetime. We will investigate how unitarity will put constraints on

the possible irreducible representations. To do this we will first write down the action of

the generators in position space and for completeness in momentum space as well. The

so(1, 2) algebra, which consists of one translation P , one special conformal transformation

K and one dilatation D, simply reads

[D,P ] = iP

[K,D] = iK

[K,P ] = 2iD . (2.6)
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We need to assume that these operators are realized as hermitian operators on a Hilbert

space H with a positive definite inner product. For clarity this means the operators fulfil

D† = D

P † = P

K† = K . (2.7)

The quadratic Casimir can be computed via

C2 = D(1−D) + PK . (2.8)

2.1.1 Position Space Basis

Our story begins with a position state basis picture. Hence, we start with the state |∆, 0〉
obeying

K|∆, 0〉 = 0

D|∆, 0〉 = i∆|∆, 0〉 . (2.9)

This state is chosen such that D is diagonalized and preserves the subspace of states

annihilated by K. At this point ∆ can be any complex number and different values of

∆ will correspond to different representations. Of course, we will see later that due to

unitarity the possible values are constraint.

We can produce a family of states via acting on these states with translations

|∆, x〉 ≡ exP |∆, 0〉 . (2.10)

In the following we will drop the label ∆ and define |∆, x〉 ≡ |x〉. From the definition

above and the algebra we obtain

P |x〉 = i∂x|x〉
D|x〉 = i(x∂x + ∆)|x〉
K|x〉 = i(2xD − x2∂x)|x〉 = i(x2∂x + 2x∆)|x〉 . (2.11)

The first line follows from the definition and the following can be computed using the com-

mutation relation and the Baker–Campbell–Hausdorff formula. We can construct arbitrary
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states via linear combinations of wavefunctions using the position space basis

|Ψ〉 =

ˆ
dx ψ(x)|x〉 . (2.12)

Eventually we are interested in the action of the generators on those wavefunctions. So let

us derive those using integration by parts

P |ψ〉 =

ˆ
dxψ(x)i∂x|x〉

=

ˆ
dx (−i∂xψ(x)) |x〉 =⇒ Pψ(x) = −i∂xψ(x) . (2.13)

It follows

Pψ(x) = −i∂xψ(x)

Dψ(x) = −i(x∂x + ∆̄)ψ(x)

Kψ(x) = −i(x2∂x + 2x∆̄)ψ(x) , (2.14)

where we defined ∆̄ ≡ 1−∆ as the dual dimension. A quick check reveals that these indeed

fulfil the algebra (2.6).

By construction, all possible states |Ψ〉 are eigenstates of the quadratic Casimir as well

C2|Ψ〉 = (∆(1−∆)) |Ψ〉 . (2.15)

We can only obtain a unitary irreducible representation if the quadratic Casimir has only

real eigenvalues. This implies two possible cases

CASE 1 : ∆ =
1

2
+ iν , ν ∈ R (2.16)

CASE 2 : ∆ ∈ R . (2.17)

2.1.2 Momentum Space Basis

We can go to the momentum space basis |p〉 by taking the Fourier transform of the position

space basis |x〉 as usual

|p〉 =
1√
2π

ˆ
dxe−ipx|x〉 , (2.18)

which is simply (2.12) with ψ(x) = e−ipx plugged in. As in the position space case, we can

go on and use the algebra to obtain



2 REVIEW OF UIRS IN DE SITTER 17

P |p〉 = −p|p〉
D|p〉 = −i(p∂p + ∆̄)|p〉
K|p〉 = (p2∂p + 2∆̄∂p)|p〉 = (∂2

pp− 2∆∂p)|p〉 . (2.19)

Again, we can write an arbitrary state as a linear superposition, now with momentum

eigenstates

|Ψ〉 =

ˆ
dp ψ(p)|p〉 . (2.20)

The action of the generators on the wavefunctions ψ(p) in momentum space is again ob-

tained from (2.19) and integration by parts

Pψ(p) = −pψ(p)

Dψ(p) = i(p∂p + ∆)ψ(p)

Kψ(p) = (p∂2
p + 2∆∂p)ψ(p) . (2.21)

2.1.3 Constraints due to Unitarity

Next, we are finally ready to see what restrictions we can put on ∆ by demanding unitarity.

First, before diving into consequences from the hermiticity of D,K,P , we want to use the

already known fact that the quadratic Casimir must be real and hence, as mentioned in

(2.16) either ∆∗ = 1−∆ or ∆∗ = ∆. This leads to two distinct cases

CASE 1 : ∆ =
1

2
+ iν , ν ∈ R (2.22)

CASE 2 : ∆ ∈ R . (2.23)

We note that in case 1, ∆̄ = ∆∗. Finally, we want to use the unitarity constraints to obtain

the corresponding inner product in the momentum and position space basis for the two

qualitatively different cases.

We start by demanding that P is hermitian, P † = P , and our results from (2.19). This

leads to 〈p|P |q〉 = p〈p|q〉 = q〈p|q〉, which implies

(p− q)〈p|q〉 = 0 =⇒ 〈p|q〉 = f(p)δ(p− q) (2.24)
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with f(p) some function of the momentum p. Next we can use the hermiticity of the

dilatation operator D† = D. It follows that

(q∂q + p∂p)〈p|q〉 = −(∆̄ + ∆̄∗)〈p|q〉 , (2.25)

where we can now use our previous result 〈p|q〉 = f(p)δ(p− q) to obtain

f(p) = c|p|α, c > 0, α = 1− ∆̄− ∆̄∗ = ∆ + ∆∗ − 1 . (2.26)

Thus, we arrive at two different inner products

CASE 1 : ∆ =
1

2
+ iν, ν ∈ R : 〈p|q〉 = cδ(p− q) (2.27)

CASE 2 : ∆ ∈ R : 〈p|q〉 = c|p|αδ(p− q), α = 2∆− 1 , (2.28)

where again c is some positive number. The case 1 corresponds to the principal series

representation and case 2 to the discrete highest/lowest weight representation. The inner

product for the states from (2.55) is given by

CASE 1 : 〈Ψ|φ〉 = c

ˆ
dp ψ(p)∗φ(p) (2.29)

CASE 2 : 〈Ψ|φ〉 = c

ˆ
dp |p|2∆−1ψ(p)∗φ(p), ∆ ∈ R . (2.30)

By Fourier transformation of the momentum space result we find the position space inner

product as

CASE 1 : 〈Ψ|φ〉 = c

ˆ
dx ψ(x)∗φ(x) (2.31)

CASE 2 : 〈Ψ|φ〉 = c′
ˆ
dxdy

1

|x− y|2∆
ψ(x)∗φ(y) , ∆ ∈ R , (2.32)

with the latter expression up to contact terms can c′ some constant. Furthermore, we

deduce that

CASE 1 : 〈x|y〉 = cδ(x− y) (2.33)

CASE 2 : 〈x|y〉 = c′
1

|x− y|2∆
(2.34)
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with c′ as before and ∆ > 0 in the second case to obtain a converging Fourier transforma-

tion.

We have seen that there are two possible representations. One is the well known highest

weight representation and the second is the less well known principal series representa-

tion [33,34], which we will study in more detail in 3.2.

2.1.4 Inner Products of States belonging to different UIRs

Finally, one can go on and redo the above analysis for states not necessary belonging to

the same representation to see how this effects the discussion. The steps are completely

analogous to those before and we will omit those. We will label our states by |λ, p〉, |λ′, p〉
with λ and λ′ labelling different representations. The result we obtain is

〈λ, p|λ′, p′〉 = cλ,λ′ |p|∆
∗
λ+∆λ′−1δ(p− p′) (2.35)

and to ensure the the inner product to be non zero we find

cλ,λ′ 6= 0 =⇒ ∆λ′ = 1−∆∗λ or ∆λ′ = ∆∗λ . (2.36)

Taking these two constraints into account we find

〈λ, p|λ′, p′〉 =

{
cλ,λ′δ(p− p′) (∆λ′ = 1−∆∗λ)

cλ,λ′ |p|2∆λ′−1δ(p− p′) (∆λ′ = ∆∗λ) .
(2.37)

Next, we define ν ≡ ∆− 1
2 to simplify the results from above as

〈λ, p|λ′, p′〉 =

{
cλ,λ′δ(p− p′) (νλ′ = −ν∗λ)

cλ,λ′ |p|2νλ′ δ(p− p′) (νλ′ = ν∗λ)
(2.38)

This means, specialized to those irreducible representations satisfying the unitarity condi-

tions ν = −ν∗ (CASE 1) or ν = ν∗ (CASE 2), we find for the three different possible

combinations

〈1|1〉 :〈λ, p|λ′, p′〉 =

{
cλ,λ′δ(p− p′) (νλ′ = νλ, i.e. ∆λ′ = ∆λ)

cλ,λ′ |p|2νλ′ δ(p− p′) (νλ′ = −νλ, i.e. ∆λ′ = ∆̄λ)
(2.39)

〈2|2〉 :〈λ, p|λ′, p′〉 =

{
cλ,λ′δ(p− p′) (νλ′ = −νλ, i.e. ∆λ′ = ∆̄λ)

cλ,λ′ |p|2νλ′ δ(p− p′) (νλ′ = νλ, i.e. ∆λ′ = ∆λ)
(2.40)

〈1|2〉 :〈λ, p|λ′, p′〉 = 0 . (2.41)
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This corresponds to the fact that the inner product between inequivalent irreducible rep-

resentations is zero, but this is something one would generally expect.

2.1.5 Summary

We can label our representations by the eigenvalues ∆(1−∆) of the quadratic Casimir.

Representations labeled by ∆ and by ∆̄ = 1−∆ are identical. We saw that the generators

of SO(1, 2) act on states as |ψ〉 =
´
dxψ(x)|x〉 =

´
dpψ(p)|p〉 as follows

Position space

Pψ(x) = −i∂xψ(x)

Dψ(x) = −i(x∂x + ∆̄)ψ(x)

Kψ(x) = −i(x2∂x + 2x∆̄)ψ(x) , (2.42)

Momentum space

Pψ(p) = −pψ(p)

Dψ(p) = i(p∂p + ∆)ψ(p)

Kψ(p) = (p∂2
p + 2∆∂p)ψ(p) . (2.43)

We saw that there are two distinct representations for SO(1, 2). These are the following

• CASE 1 : ∆ = 1
2 + iν, ν ∈ R with an inner product given by

´
dp|ψ(p)|2. This

corresponds to the principal series representation.

• CASE 2 : ∆ ∈ R with an inner product given by
´
dp|p|2∆−1|ψ(p)|2. This corre-

sponds to the highest weight representation.

Interestingly, the principal series representation can be used to realize a unitary irreducible

representation with complex weights. This is interesting since we have seen before that

in de Sitter space complex weights are important, which are often assumed to signal non-

unitarity, but these correspond exactly to the shape of weights in the unitary principal

series representation.

2.2 Unitary Irreducible Representations of SO(1, 3)

Next, we consider the isometry group of 3-dimensional de Sitter spacetime, namely SO(1,3).

The steps are going to be the same as for the SO(1, 2) case.
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In total we have six generators for SO(1,3). The algebra consists of one dilatation D, two

translations Pi, two special conformal transformations Ki and one rotations (due to the

constraint Mij = −Mji), where i, j ∈ {1, 2}. We define Mij = −εijJ , where J can be

thought of as the usual J3. The algebra (2.3) simplifies to

[D,Pi] = iPi

[D,Ki] = −iKi

[Ki, Pj ] = 2i (δijD − εijJ)

[J, Pi] = −iεijPj
[J,Ki] = −iεijKj (2.44)

and the quadratic Casimir is given by

C2 = D(2−D) + ~P · ~K + J2. (2.45)

2.2.1 Position Space Basis

We start with a state |∆,m, 0〉 of dimension ∆ and spin m such that

K|∆,m, 0〉 = 0

J |∆,m, 0〉 = m|∆,m, 0〉
D|∆,m, 0〉 = ∆|∆,m, 0〉, (2.46)

where ∆ ∈ C and m ∈ Z. Again, we have chosen the states such that they diagonalize the

generators J and D in the subspace that is annihilated by K. The other basis elements in

the irreducible representation are obtained by translating the primary states:

|∆,m, x〉 ≡ exiPi |∆,m, 0〉 (2.47)

From this definition and the conformal algebra we find (dropping the label ∆,m, meaning

|∆,m, 0〉 ≡ |0〉)

Pi|x〉 = i∂i|x〉
D|x〉 = i (xi∂i + ∆) |x〉
J |x〉 = i (εijxi∂j +m) |x〉
Ki|x〉 = i

(
2xi (xk∂k + ∆)− x2∂i + 2εijxjm

)
|x〉 . (2.48)
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We can construct arbitrary states in the representation via superposition

|Ψ〉 =

ˆ
d2x

∑
m

ψm(x)|m,x〉 . (2.49)

The so(1, 3) algebra acts on the wavefunctions ψm(x) as follows

Pi ψm(x) = −i∂i ψm(x)

D ψm(x) = −i
(
xi∂i + ∆̄

)
ψm(x)

J ψm(x) = i (−εijxi∂j +m) ψm(x)

Ki ψm(x) = i
(
−2xi

(
xk∂k + ∆̄

)
+ x2∂i + 2εijxjm

)
ψm(x) , (2.50)

where we have defined ∆̄ = 2 − ∆. All states |Ψ〉 in the representation are constructed

that they also diagonalize the quadratic Casimir

C2|Ψ〉 =
(
∆(2−∆) +m2

)
|Ψ〉 . (2.51)

In order to obtain a unitary representation we must require that the Casimir must be real

from which follows that

CASE 1 : ∆ = 1 + iν, ν ∈ R (2.52)

CASE 2 : ∆ ∈ R . (2.53)

Again, we are left with two qualitatively cases for the weights, one with complex weights

that fall into the principal series representation and one with real weights associate to

the highest weight representation. We note that for the weights in the principal series

representation ∆̄ = ∆∗.

2.2.2 Momentum Space Basis

As usual, we can go to momentum space by Fourier transforming the position basis

|m, p〉 ≡ 1

2π

ˆ
d2x e−ip·xψ(x) , (2.54)

which is again taking ψ(x) = e−ip·x. We can construct arbitrary states via linear superpo-

sitions

|Ψ〉 =

ˆ
d2p

∑
m

ψm|m, p〉 (2.55)
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and can go from the wavefunction in the position space basis to the momentum space basis

via

ψ(p) =
1

2π

ˆ
d2xeip·xψ(x) . (2.56)

The action of the so(1,3) generators on the momentum basis states |p,m〉 is

Pi|p,m〉 = −p|p,m〉
D|p,m〉 = −i(pi∂pi + ∆̄)|p,m〉
J |p,m〉 = i(−εijpj∂pi +m)|p,m〉
Ki|p,m〉 = (2(pk∂pk + ∆̄)∂pi − pi∂2 + 2mεij∂pj )|p,m〉 . (2.57)

Now, using integration by parts, we obtain the action of the operators on the wavefunctions

as

Pi ψm(p) = −p ψm(p)

D ψm(p) = i(pi∂pi∆) ψm(p)

J ψm(p) = i(εijpj∂pi +m) ψm(p)

Ki ψm(p) = (2(pk∂pk + ∆)∂pi − pi∂2 + 2mεij∂pj ) ψm(p) . (2.58)

2.2.3 Constraints due to Unitarity

In this section we want to explore the consequences of unitary and especially the corre-

sponding constraints on ∆. We have already seen, due to the constraint that the Casimir

is real ∆(2−∆), that we have two distinct possibilities for ∆

CASE 1 : ∆ = 1 + iν, ν ∈ R (2.59)

CASE 2 : ∆ ∈ R . (2.60)

The steps we need to do here are essentially the same as in (2.1.3), but slightly more

involved. Finally we want to find the inner product for the position and momentum basis.

Using the fact that P †i = Pi and 〈p|Pi|q〉 = pi〈p|q〉 = qi〈p|q〉 leads to

(pi − qi)〈p|q〉 = 0 =⇒ 〈p|q〉 = f(p)δ(p− q) , (2.61)

where f(p) is some function. Next we are going to use the constraint that the dilatation is

giving us. We again note that D† = D from which follows that

(qi∂qi + pi∂pi)〈p|q〉 = −(∆̄ + ∆̄∗)〈p|q〉 . (2.62)
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Using the result from the translation constraint we find that this implies that

f(p) = c|p|α, c > 0, α = −∆̄− ∆̄∗ + 2 = ∆ + ∆∗ − 2 . (2.63)

Thus, we arrive that due two unitarity we have two different cases with the following

different inner products

CASE 1 : ∆ = 1 + iν, ν ∈ R : 〈p|q〉 = cδ(p− q) (2.64)

CASE 2 : ∆ ∈ R : 〈p|q〉 = c|p|αδ(p− q), α = 2(∆− 1) , (2.65)

where again c is some positive number. The inner product for the states from (2.55) is

given by

CASE 1 : 〈Ψ|φ〉 = c

ˆ
d2p ψ(p)∗φ(p) (2.66)

CASE 2 : 〈Ψ|φ〉 = c

ˆ
d2p |p|2∆−2ψ(p)∗φ(p), ∆ ∈ R . (2.67)

By Fourier transformation of the momentum space result we find the position space inner

product to be

CASE 1 : 〈Ψ|φ〉 = c

ˆ
d2x ψ(x)∗φ(x) (2.68)

CASE 2 : 〈Ψ|φ〉 = c′
ˆ

d2xd2y
1

|x− y|2∆
ψ(x)∗φ(y), ∆ ∈ R (2.69)

with the latter expression up to contact terms. From this we deduce

CASE 1 : 〈x|y〉 = cδ(x− y) (2.70)

CASE 2 : 〈x|y〉 = c′
1

|x− y|2∆
(2.71)

with c′ as before and ∆ > 0 in the second case to obtain a converging Fourier transforma-

tion.

We see that there is again the discrete highest/lowest weight representation. We further see

that there is as a second option to construct a unitary irreducible representation, the prin-

cipal series representation with complex weights. This representation is prominent for the

de Sitter spacetime isometry group in any dimension d and needs to be better understood

to get a better handling of quantum gravity in de Sitter.
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2.2.4 Inner Products of States belonging to different UIRs

For completeness we will redo our discussion on states not necessary belonging to the same

representation. Again, we are going to label the states as |λ, p〉, where λ denotes the

irreducible representations to which the state belongs. Again, we find

〈λ, p|λ′, p′〉 = cλ,λ′ |p|∆
∗
λ+∆λ′−2δ(p− p′) . (2.72)

To ensure the inner product to be non zero we find

cλ,λ′ 6= 0 =⇒ ∆λ′ = 2−∆∗λ or ∆λ′ = ∆∗λ . (2.73)

Taking these two constraints into account we find

〈λ, p|λ′, p′〉 =

{
cλ,λ′δ(p− p′) (∆λ′ = 2−∆∗λ)

cλ,λ′ |p|2∆λ′−2δ(p− p′) (∆λ′ = ∆∗λ) .
(2.74)

Next, we define ν ≡ ∆− 1 and we can write the result from above as

〈λ, p|λ′, p′〉 =

{
cλ,λ′δ(p− p′) (νλ′ = −ν∗λ)

cλ,λ′ |p|2νλ′ δ(p− p′) (νλ′ = ν∗λ) .
(2.75)

This means specialized to those irreducible representations satisfying the unitarity condi-

tions ν = −ν∗ (CASE 1) or ν = ν∗ (CASE 2) we find for the three different possible

combinations

〈1|1〉 :〈λ, p|λ′, p′〉 =

{
cλ,λ′δ(p− p′) (νλ′ = νλ, i.e. ∆λ′ = ∆λ)

cλ,λ′ |p|2νλ′ δ(p− p′) (νλ′ = −νλ, i.e. ∆λ′ = ∆̄λ)
(2.76)

〈2|2〉 :〈λ, p|λ′, p′〉 =

{
cλ,λ′δ(p− p′) (νλ′ = −νλ, i.e. ∆λ′ = ∆̄λ)

cλ,λ′ |p|2νλ′ δ(p− p′) (νλ′ = νλ, i.e. ∆λ′ = ∆λ)
(2.77)

〈1|2〉 :〈λ, p|λ′, p′〉 = 0 . (2.78)

This is as expected and completely analogous to our result for SO(1, 2).

2.2.5 Summary

We can label our representations by the eigenvalues ∆(2−∆) of the quadratic Casimir.

Representations labeled by ∆ and by ∆̄ = 2−∆ are identical. We saw that the generators

of SO(1, 3) act on states as |ψ〉 =
´
d2xψ(x)|x〉 =

´
d2pψ(p)|p〉 as follows
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Position space

Pi ψm(x) = −i∂i ψm(x)

D ψm(x) = −i
(
xi∂i + ∆̄

)
ψm(x)

J ψm(x) = i (−εijxi∂j +m) ψm(x)

Kiψm(x) = i
(
−2xi

(
xk∂k + ∆̄

)
+ x2∂i + 2εijxjm

)
ψm(x) , (2.79)

Momentum space

Pi ψm(p) = −p ψm(p)

D ψm(p) = i(pi∂pi∆) ψm(p)

J ψm(p) = i(εijpj∂pi +m) ψm(p)

Ki ψm(p) = (2(pk∂pk + ∆)∂pi − pi∂2 + 2mεij∂pj ) ψm(p) . (2.80)

We saw that there are two distinct representations for SO(1, 3). These are the following

• CASE 1 : ∆ = 1 + iν, ν ∈ R with an inner product given by
´
dp|ψ(p)|2. This

corresponds to the principal series representation.

• CASE 2 : ∆ ∈ R with an inner product given by
´
dp|p|2∆−2|ψ(p)|2. This corre-

sponds to the highest weight representation.

2.3 Summary

We have seen that there are two qualitatively distinct representations popping up in d-

dimensional de Sitter space [9]. We have explicitly shown this for the two and three

dimensional case. The principal series representation is always there, which differs from

the anti de Sitter case. However, the principal series is not well understood yet in the con-

text of physics and we will try to shed some light on it in the context of the DFF model.

To summarize we have seen the following two cases:

• CASE 1 : ∆ = d−1
2 + iν, ν ∈ R with an inner product given by

´
dp|ψ(p)|2. This

corresponds to the principal series representation.

• CASE 2 : ∆ ∈ R with an inner product given by
´
dp|p|2∆−d|ψ(p)|2. This corre-

sponds to the highest weight representation.
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In the following we will go on and study a simple toy model for conformal quantum me-

chanics, namely the DFF model. We will see what sort of features a principal series

representation will bring.
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3 DFF Model

In the paper [35] by D’Alfaro, Fubini and Furlan (DFF) introduced a SL(2,R) invariant

quantum mechanical model. The model consists of three operators, namely one Hamil-

tonian H, one special conformal transformation operator K and one dilatation operator

D

H =
1

2

{
−∂2

r +
(4∆− 1)(4∆− 3)

4r2

}
K =

r2

2

D = − i
2

{
r∂r +

1

2

}
. (3.1)

A quick calculation shows that these operators fulfil the SO(1, 2) algebra

[D,H] = iH

[K,D] = iK

[K,H] = 2iD . (3.2)

We can also choose a linear combination of those to obtain the usual raising/lowering

operators

L0 ≡
1

2

(
K

a
+ aH

)
L± ≡

1

2

(
K

a
− aH

)
∓ iD , (3.3)

where a is a dimensional parameter, which we will set for simplicity to one in the following.

These operators obey the SL(2,R) algebra

[L±, L0] = ±L±
[L+, L−] = 2L0 . (3.4)



3 DFF MODEL 29

We can use the definition of the operator H,K and D to explicitly write these as

L0 =
1

4

{
−∂2

r +
(4∆− 1)(4∆− 3)

4r2
+ r2

}
L± =

1

4

{
−∂2

r +
(4∆− 1)(4∆− 3)

4r2
− r2 ± 2ir∂r +

1

2

}
. (3.5)

The algebra admits a quadratic Casimir

C2 = L2
0 −

1

2
(L+L− + L−L+) . (3.6)

The model can be described by two different unitary representations relying on the value

of the quadratic Casimir

C2 = ∆(∆− 1) . (3.7)

The first representation is the highest weight representation for ∆(∆ − 1) ≥ −1/4 with

∆ ∈ R and describes the radial dynamics of a charged particle interacting with a magnetic

monopole at the origin [36]. In this case the operators are self-adjoint with the standard

norm on the positive semi-axis ˆ ∞
0

drf∗(r)g(r) . (3.8)

We will briefly review the most important aspects in 3.1. This representation is well known

and we will not focus on it.

The second case corresponds to the choice of ∆(∆ − 1) < −1/4 and ∆ = 1−iν
2 where

ν ∈ R. This correpsonds to an attractive potential at the origin. These states are usually

neglected since it is said that the particle will simply fall into the origin [37] or that the

states are not normalizable [38]. However, this is the case we need to understand to get a

better understanding of their role in de Sitter spacetime. As we will see, the issue is that

the operators in the principal series are not self-adjoint as defined on the positive half-line

and we need to include the negative half-line as well. This issue will be resolved in detail

in 3.2.

3.1 The Highest Weight Representation

It is well known that the DFF model allows a highest weight description for ∆(∆−1) ≥ −1
4 .

In the highest weight case we can construct the discrete spectrum for the group SO(1, 2)

in the following way [39]
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L0|n〉 = rn|n〉
rn = r0 + n, n = 0, 1, . . . , r0 > 0

〈n′|n〉 = δn′,n (3.9)

with Ladder operators L±

L±|n〉 =
√
rn(rn ± 1)− r0(r0 − 1)|n± 1〉 . (3.10)

We note that we can get non-integer eigenvalues of L0 since we are considering the universal

cover of SO(1,2) [40]. From (3.10) one can deduce that

|n〉 =

√
Γ(2r0)

n!Γ(2r0 + n)
(L+)n |0〉 . (3.11)

We see that the eigenvalue r0 is the lowest and we can call this state the vacuum. The

quadratic Casimir is connected to this state due to

C2|n〉 = r0(r0 − 1)|n〉 . (3.12)

This structure can be translated into the DFF model as defined in (3.1) with

C2 = ∆(∆− 1)

r0 =
1

2

(√
(2∆− 1)2 + 1

)
, (3.13)

where r has scale dimension −1/2 and is a conformal primary.

3.2 The Principal Series Representation

Next, we want to discuss the DFF model in the principal series representation, where we

will need the observations laid out in [41, 42]. We will start out by working on a circle

with a compact degree of freedom ψ ∈ [0, 2π) as it is the most convenient and appropriate

place for the principal series to start. Later we will use a coordinate transformation to

make touch to the usual DFF model on the positive semi-axis as discussed before. This

irreducible representation is labeled by ∆ = 1−iν
2 with ν ∈ R. ∆ is chosen such that we

obtain a real quadratic Casimir and hence, a unitary representation.

Let us start by deriving the Hamiltonian H, the special conformal transformation operator
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K and the dilatation operator D appropriate for the principal series, which obey the algebra

(2.6)

[D,H] = iH

[K,D] = iK

[K,H] = 2iD . (3.14)

We are going to use the action of an group element of SU(1,1) acting on an element of S1

as

(Dν(g)f)eiψ = |ᾱ+ eiψβ|iν−1f

(
αeiψ + β̄

ᾱ+ βeiψ

)
, (3.15)

where we define for an element of SU(1, 1)

SU(1,1) ∈

(
α β

β̄ ᾱ

)
→

(
Re(α+ β) −Im(α− β)

Im(α+ β) Re(α− β)

)
∈ SL(2,R) . (3.16)

This defines an isomorphism between SU(1,1) and SL(2,R). As an representation of the

algebra (3.14) we use

H = iσ+

K = −iσ−

D =
i

2
σ3 (3.17)

with σ± = σ1 ± iσ2 and σi the Pauli matrices.

First we will work out K. For this, we need to determine α and β. In order to do this we

will first need to find the group element of K as an element of SL(2,R) and then use the

isomorphism to determine α and β. We find

eiλK = ei(−iλ)σ− = 1 cos(iλ)− i sin(iλ)σ− ≈
λ�1

1 + λσ− =

(
1 0

λ 1

)
. (3.18)

Using the isomorphism we can work out that α = 1 + iλ
2 and β = + iλ

2 . From (3.15) we

know (
eiλKf

)(
eiψ
)

=

∣∣∣∣1− iλ

2
+
iλ

2
eiψ
∣∣∣∣iν−1

f

(
(1 + iλ

2 )eiψ − iλ
2

(1− iλ
2 ) + iλ

2 e
iψ

)
. (3.19)
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Expanding both sides in λ and only keeping terms up to first order we find

K = −ν + i

2
sin(ψ) + i(cos(ψ)− 1)

∂

∂ψ
= −2i sin

(
ψ

2

){
∆ cos

(
ψ

2

)
+ sin

(
ψ

2

)
∂

∂ψ

}
,

(3.20)

where we used ∆ = 1−iν
2 .

Next, let us consider H. Using the same steps as before for K, we find

eiλH =

(
1 −λ
0 1

)
. (3.21)

From which we deduce that α = 1 + iλ
2 and β = − iλ

2 . Again, we use (3.15) and expand

both sides in λ to find

H =
ν + i

2
sin(ψ)− i(1 + cos(ψ))

∂

∂ψ
= 2i cos

(
ψ

2

){
∆ sin

(
ψ

2

)
− cos

(
ψ

2

)
∂

∂ψ

}
. (3.22)

Finally, we do the same procedure for D. We find

eiλD =

(
1 + λ

2 0

0 1− λ
2

)
, (3.23)

corresponding to α = 1 and β = λ
2 . Using (3.15) and expand both sides in λ we find

D = −ν + i

2
cos(ψ)− i sin(ψ)

∂

∂ψ
= −i {∆ cos (ψ) + sin (ψ)} . (3.24)

In total the three operator of the algebra (3.14) are

H = 2i cos

(
ψ

2

){
∆ sin

(
ψ

2

)
− cos

(
ψ

2

)
∂

∂ψ

}
(3.25)

K = −2i sin

(
ψ

2

){
∆ cos

(
ψ

2

)
+ sin

(
ψ

2

)
∂

∂ψ

}
(3.26)

D = −i {∆ cos (ψ) + sin (ψ)} . (3.27)

We note that these states are all self-adjoint with respect to the norm on the circle

(ξ, χ) =

ˆ 2π

0
dψξ∗(ψ)χ(ψ) . (3.28)
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3.2.1 L0 Eigenstates

In this part we want to calculate the eigenstates for the operator L0. Our raising/lowering

operators can be computed via L0 = H+K
2 and L± = 1

2(K − H) ∓ iD or explicitly these

are given by

L0 = −i∂ψ (3.29)

L+ = e−iψ (−∆− i∂ψ) (3.30)

L− = eiψ (+∆− i∂ψ) (3.31)

obeying the algebra (3.4). The Hilbert space is now spanned by eigenstates of the operator

L0ln = −nln. These are easily found to be

ln(ψ) = ce−inψ . (3.32)

Since we demand that our eigenfunctions are single valued and ψ ∈ [0, 2π) we observe

that the eigenvalue n needs to be an integer. We further observe that these functions are

orthogonal with the inner product (3.28) and are normalized by setting c = 1√
2π

. Hence,

we obtain our normalized states as

ln(ψ) =
1√
2π
e−inψ . (3.33)

A quick check reveals that the operators L± act on these functions as

L±ln(ψ) = −(n±∆)ln±1(ψ) . (3.34)

This action is precisely what one would expect for the principal series.

3.2.2 H and K Eigenstates

Working with the discrete eigenstates of the compact operator L0 will be eventually most

convenient, but one could also work with the eigenstates of the energy operator H or the

special conformal transformations operator K. Both operators H and K are non-compact

so we will obtain a continuous spectrum and a modified orthogonality relation. We further

note that from the point of view of the SL(2,R) algebra H and K are interchangeable.

Let us start by finding the eigenstates of the energy operator H. We need to solve the

differential equation

HhE = EhE , (3.35)
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which is solved by

hE(ψ) =
1

2
√
π
eiE tan(ψ2 ) cos

(
ψ

2

)−2∆

. (3.36)

The solution we wrote is already normalized to the inner product (3.28). One can also

check that these functions obey the completeness relation

ˆ ∞
−∞

h∗E(ψ)hE(ψ′) = δ(ψ − ψ′) . (3.37)

In the same manner we can find eigenfunctions for the special conformal transformations

operator K. We begin with the differential equation

Kρκ(ψ) = κρκ(ψ) , (3.38)

which is solved by

ρκ(ψ) =
1

2
√
π
e−iκ cot(ψ2 ) sin

(
ψ

2

)−2∆

. (3.39)

These states are normalized with respect to (3.28) and obey the completeness relation

ˆ ∞
−∞

dκρκ(ψ)ρ∗κ(ψ′) = δ(ψ − ψ′) . (3.40)

Since these functions define a complete orthonormal set of functions we can define the

following transform and its inverse

θ(κ) =

ˆ 2π

0
dψρ∗κ(ψ)θ(ψ)

θ(ψ) =

ˆ ∞
−∞

dκρκ(ψ)θ(κ) . (3.41)

3.2.3 L0 States in the r-basis

As the next step we want to translate our results into the standard picture of the DFF

model using the coordinate r. We further use the fact that the eigenfunctions of K build

a orthonormal set to define a modified transform as

θ̃(κ) = |2κ|
3
4
−∆

ˆ 2π

0
dψρ∗κ(ψ)θ(ψ) , (3.42)
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which implies a modified norm to be

(χ, ξ)′ =

ˆ ∞
−∞

dk

|2κ|1/2
χ∗(κ)ξ(κ) . (3.43)

The prefactor is added to ensure the standard norm in the r-coordinate after the transfor-

mation. This norm preserves the overlap, meaning(
χ̃(κ), ξ̃(κ)

)′
= (χ(ψ), ξ(ψ)) . (3.44)

The operators act on the function space with parameter κ as

H =
1

2

{
−2κ∂2

κ − ∂κ +
(4∆− 1)(4∆− 3)

8κ

}
K = κ

D = −i
{
κ∂κ +

1

4

}
. (3.45)

Eventually, we want to make touch with the standard description of the DFF model in the

r-coordinate.

DFF with r DFF with κ

K r2

2 κ

Range r ∈ {0,∞} κ ∈ {−∞,∞}

In table 3.2.3 it is shown that we need to extend the r-coordinate to r ∈ {−∞,∞} and to

identify

κ =
r2

2
, r > 0 and κ = −r

2

2
, r < 0 (3.46)

or in short κ = sign(r) r
2

2 in order to allow negative values of K in the r-coordinate as well

and to arrive at the standard DFF model. We are now ready to compute our eigenfunctions

of L0 in the κ-basis via

l̃n(κ) = |2κ|
3
4
−∆

ˆ 2π

0

dψ sin−2∆
(
ψ
2

)
eiκ cot(ψ2 )−inψ

2π
. (3.47)
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We find

l̃n(κ) = |2κ|
3
4
−∆

ˆ 2π

0

dψ sin−2∆
(
ψ
2

)
eiκ cot(ψ2 )−inψ

2π
(3.48)

= −|2κ|
3
4
−∆

ˆ ∞
−∞

du e−iκu(1− iu)−n+ 1
2
i(ν+i)(1 + iu)n+ 1

2
i(ν+i)

π
, (3.49)

where we did the coordinate transformation ψ → −2 cot−1(u). Next, we can use the Fourier

transform relation from [43]

ˆ ∞
−∞

(1 + iu)−2µ(1− iu)−2νe−iyudu = −2π2−µ−νΓ(2ν)−1yν+µ−1Wν−µ,1/2−µ−ν(2y) , y > 0

(3.50)ˆ ∞
−∞

(1 + iu)−2µ(1− iu)−2νe−iyudu = 2π2−µ−νΓ(2µ)−1(−y)ν+µ−1W−ν+µ,1/2−µ−ν(−2y) , y < 0 ,

(3.51)

where W stands for the Whittaker function, to solve the integral. Hence, we find by making

use of our identification κ = sign(r) r
2

2 as explained before

l̃n(r) = ±
21−∆W±n, 1

2
−∆

(
|r|2
)

√
|r|Γ(n±∆)

(3.52)

for ±r > 0. These states fulfil the relations

L0 l̃n = nl̃n

L± l̃n = −(n±∆)l̃n±1 . (3.53)

Next we need to find the orthogonality relation for our states. The induced norm (3.43)

implies that all states must be normalized to the standard L2 norm

ˆ ∞
−∞

f∗(r)g(r)dr . (3.54)
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Normalization

We normalize our states according to (3.54), which reads for our states (3.52)

(l̃n(r), l̃m(r)) =

ˆ ∞
0

Wn, 1
2
−∆

(
|r|2
)
Wm, 1

2
−∆

(
|r|2
)

Γ(n+ ∆̄)Γ(m+ ∆)r
+
W−n, 1

2
−∆

(
|r|2
)
W−m, 1

2
−∆

(
|r|2
)

Γ(−n+ ∆̄)Γ(−m+ ∆)r

 .

(3.55)

Using the result for an integral over two Whittaker functions [44]

ˆ ∞
0

Wn,µ(x)Wm,µ(x)

x
dx =

1

(n−m) sin(2µπ)
×(

1

Γ(1/2− n+ µ)Γ(1/2−m− µ)
− 1

Γ(1/2− n− µ)Γ(1/2−m+ µ)

)
(3.56)

and a transformation x→ √y, we see that our states indeed fulfil(
l̃n(r), l̃m(r)

)
= δn,m (3.57)

and that our states are still normalized as expected.

After the identification with κ = sign(r) r
2

2 we find that our operators acting on func-

tions depending now on r as

H =
sign(r)

2

{
−∂2

r +
(4∆− 1)(4∆− 3)

4r2

}
K = sign(r)

r2

2

D = − i
2

{
r∂r +

1

2

}
. (3.58)

In conclusion, we see that in order to describe the Hilbert space of the principal series with

the standard DFF model approach using r as the degree of freedom, we have to extend r

to negative values. We further need to flip the sign of the Hamiltonian at r = 0. Despite

this unusual behaviour at r = 0 the description of the system is completely unitary. We

note that the behaviour at r = 0 reminds one of the behaviour of the Hamiltonian at the

cosmological horizon in de Sitter spacetime.
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Shape of the wavefunction

To get a bit of intuition, we will plot some wavefunctions for different values of n at

fixed value ν = 2. We first note the discrete spectrum of the operator L0 is unbounded

from above and below and there is no ground state. There is though one state that is

symmetric if one reflects at r = 0 namely the wavefunction with n = 0 as shown in figure

3.1

-2 0 2
r

0.1

0.2

l0(r)
2

Figure 3.1: Plot of the wavefunction with n = 0 and ν = 2. This state is symmetric if one
reflects at r = 0.

Next, let us look at the first excited state with n = ±1. This state is not symmetric

along r = 0, but the state n = 1 is reflected into the state n = −1 by reflecting at the

origin. This is shown in figure 3.2.
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-2 0 2
r

0.1

0.2

0.3

l1(r)
2

-2 0 2
r

0.1

0.2

0.3

l-1(r)
2

Figure 3.2: Plot of the wavefunction with n = ±1 and ν = 2. These states are reflected
into each other if one reflects at r = 0.

We also see that going from state n→ n+ 1 we add one hill, which can be thought of

adding one excitation with the raising operator L+. This can also be seen in figure 3.3 and

is shown in figure 3.4 to show that this holds true for larger values of n as well.

-4 -2 0 2 4
r

0.1

0.2

0.3

l2(r)
2

-4 -2 0 2 4
r

0.1

0.2

0.3

l-2(r)
2

Figure 3.3: Plot of the wavefunction with n = ±2 and ν = 2. These states are reflected
into each other if one reflects at r = 0.
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-6 -4 -2 0 2 4 6
r

0.1

0.2

l10(r)
2

-6 -4 -2 0 2 4 6
r

0.1

0.2

l-10(r)
2

Figure 3.4: Plot of the wavefunction with n = ±10 and ν = 2. These states are reflected
into each other if one reflects at r = 0.

3.2.4 Classical and Path Integral Descriptions

Let us step back and try to think, which classical dynamical system can lead to the DFF

model in the quantum case. One can consider the symplectic structures on the group

manifold of SO(1, 2) [41] to obtain the following functions on phase space

H = 2 cos

(
θ

2

){
−ν sin

(
θ

2

)
+ cos

(
θ

2

)
p

}
K = 2 sin

(
θ

2

){
ν cos

(
θ

2

)
+ sin

(
θ

2

)
p

}
D = ν cos (θ) + sin (θ) . (3.59)

We can define a Poisson bracket with the canonical pair p and θ obeying {θ, p} = 1 as

{f, g} = ∂θf∂pg − ∂pf∂θg . (3.60)

The functions fulfil the algebra

{D,H} = H

{K,D} = K

{K,H} = 2D . (3.61)

This system defines a classical dynamical system incorporating a SL(2,R) symmetry. We

note that the functions are linear in p and not as usual quadratic in p. In standard
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classical mechanics the Lagrange formalism and the Hamiltonian formalism are related by

a Legendre transformation. In this case a Legendre transformation is not possible since

∂H(θ, p)

∂p
= 2 cos

(
θ

2

)2

≡ θ̇ (3.62)

is not invertible. It is puzzling that our model does not seem to admit a local Lagrangian,

which can be calculated from the Hamiltonian. We further note that the combination

HK −D2 = −ν2 (3.63)

is a constant that commutes with H,K,D and therefore is conserved for any dynamics

generated by any linear combination of H,K and D. We can recover the quantum oper-

ators by replacing p → i∂θ and ν → −i∆, while ensuring normal ordering. We further

need to replace the Poisson brackets with commutators and multiplying the left side of the

commutation relation with i.

We note that all of our operators in (3.59) are unbounded from above and from below.

This means it is not quite clear, which to use as a time evolution operator. This differs

from the highest weight case, where the operators are bounded from below. Furthermore,

in the highest weight case one can use the operator L0 = 1
2(H + K), whose spectrum is

discrete and bounded. In [35, 36] it was shown that any dynamics is equally valid and

are related by time reparametrization. In the following we will first investigate the dy-

namics generated by L0 = 1
2(H + K). After that we will define and use the operator

K2 = 1
2 (H −K) = 1

2 (L+ + L−) and investigate the dynamics generated by this operator.

This operator is interesting since it corresponds to the generator of time translation in the

static patch. This is the boost operator K2 we obtain by embedding the static patch of

dS2 into 3-dimensional Minkowski space.

Dynamics generated by L0 = 1
2(H +K)

Let us first investigate the dynamics generated by L0. In order to do this we first change

our set of functions from H,K and D to L0 and L±, which are given by

L0 =
1

2
(H +K) = p

L± =
1

2
(H −K)∓ iD = e∓iθ (p∓ iν) . (3.64)
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These satisfy the Poisson bracket algebra

{L±, L0} = ∓iL±
{L+, L−} = −2iL0 (3.65)

and we can find the classical equations by

d•
dt

= {•, L0} . (3.66)

We find for our equations

dL0

dt
= 0

dθ

dt
= 1

dL±
dt

= ∓iL± . (3.67)

These are solved by

L0(t) = l0

θ(t) = θ0 + t

L±(t) = (l0 ∓ iν)e∓θ(t) . (3.68)

We can go on and use the path integral to investigate the dynamics of the system

〈θf |e−iL0T |θi〉 =

ˆ θ(T )=θf

θ(0)=θi

DpDθ exp

(
i

ˆ T

0
dt p

(
θ̇ − 1

))
=

ˆ θ(T )=θf

θ(0)=θi

Dθδ
(
θ̇ − 1

)
= δ (θf − θi − T ) , (3.69)

where in the first step p was integrated out.

It is quite remarkable, how simple the dynamics of this system are. We further see, that

due to the linearity in p, there is no simple, local Lagrangian that can give rise to these

dynamics.
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Dynamics generated by K2 = 1
2(H −K)

Another possible choice is to investigate the dynamics generated by K2 = 1
2(H − K).

This is hinted by the bulk since this operator coincides with the static patch time. We are

going to use the three operators K2, L0 and D. These are given by

K2 =
1

2
(H −K) = −ν sin (θ) + cos (θ) p

L0 =
1

2
(H +K) = p

D = ν cos (θ) + sin (θ) p . (3.70)

They satisfy

{L0,K
2} = D

{D,K2} = L0

{L0, D} = −K2 . (3.71)

Again, we find the equations that govern the dynamics generated by K2 by considering

d•
dτ

= {•,K2} . (3.72)

This leads to the equations

dL0

dτ
= D

dD

dτ
= L0 , (3.73)

which are solved by

L0(τ) = c1 cosh(τ) + c2 sinh(τ)

D(τ) = c1 sinh(τ) + c2 cosh(τ) . (3.74)
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We can use the quantum path integral to calculate the dynamics as

〈θf |e−iK
2T |θi〉 =

ˆ θ(T )=θf

θ(0)=θi

DpDθ exp

(
i

ˆ T

0
dτ
{
p
(
θ̇ − cos (θ)

)
+ ν sin (θ)

})
=

ˆ θ(T )=θf

θ(0)=θi

Dθ δ
(
θ̇ − cos (θ)

)
exp

(
i

ˆ T

0
dτ ν sin (θ)

)
. (3.75)

This expression is explicitly solved by

〈θf |e−iK
2T |θi〉 = (cosh (T ) + sin (θi) sinh (T ))

1
2

(1+iν) δ

θf − 2 tan−1

sinh
(
T
2

)
+ cosh

(
T
2

)
tan

(
θi
2

)
cosh

(
T
2

)
+ sinh

(
T
2

)
tan

(
θi
2

)
 .

(3.76)

We can take the late time limit T →∞ to obtain

〈θf |e−iK
2T |θi〉 ∝ e−(1−∆)T δ (θf − π/2) (3.77)

with ∆ = 1
2(1 − iν) as before. This result is suggesting that localized wavepackets tend

towards the ‘horizon’ at θ = π/2.
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4 DFF Model in dS2

In the following we want to match the Hilbert space of the DFF model with the 2-

dimensional de Sitter spacetime in global coordinates. We will see that the isometries

in the early and late time limit become exactly those of the DFF model and from a rep-

resentation theoretical point of view we can classify the states of the de Sitter bulk with

those lying in the Hilbert space of the DFF model.

4.1 Global Coordinates

We want to derive the isometries of 2-dimensional de Sitter space in global coordinates.

In order to do so we are going to use the method of embedding dS2 in 3-dimensional

Minkowski space. The line element in Minkowski space in the canonical basis is given by

ds2 = −dX2
0 + dX2

1 + dX2
2 . (4.1)

The de Sitter space is now the manifold fulfilling the constraint

−X2
0 +X2

1 +X2
2 = L2 . (4.2)

We can change to global coordinates (τ ,θ)

X0 = L sinh
( τ
L

)
X1 = L cos(θ) cosh

( τ
L

)
X2 = L sin(θ) cosh

( τ
L

)
(4.3)

with the inverse

τ = L sinh−1

(
X0

L

)
θ = tan−1

(
X2

X1

)
. (4.4)

The global time τ ranges from {−∞,∞} and the angle θ from [0, 2π). This coordinate

system induces the metric

ds2 = −dτ2 + L2 cosh2
( τ
L

)
dθ2 . (4.5)
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There are three isometries from the ambient of 3-dimensional Minkowski space that leave

the constraint invariant, namely two boosts

K1 = −i(X0∂X1 +X1∂X0)

K2 = −i(X0∂X2 +X2∂X0) (4.6)

and one rotation

J3 = −i(X1∂X2 −X2∂X1) . (4.7)

In global coordinates these read

J3 = −i∂θ

K1 = −i
(
L cos(θ)∂τ − sin(θ) tanh

( τ
L

)
∂θ

)
K2 = −i

(
L sin(θ)∂τ + cos(θ) tanh

( τ
L

)
∂θ

)
. (4.8)

These obey the following commutation relations

[J3,K1] = iK2

[K2, J3] = iK1

[K2,K1] = iJ3 . (4.9)

It is not difficult to see that the following linear combination of these operators is leading

to the lowering/raising operators of SL(2,R)

L0 = J3

L± = K2 ± iK1 (4.10)

fulfilling the SL(2,R) algebra

[L±, L0] = ±L±
[L+, L−] = 2L0 . (4.11)
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These read explicitly by using our results before

L0 = −i∂θ

L± = e∓iθ
(
−i tanh

( τ
L

)
∂θ ± L∂τ

)
. (4.12)

As we have discussed earlier the algebra admits a quadratic Casimir

C2 = L2
0 −

1

2
(L+L− + L−L+) = − 1

cosh( τL)2
∂2
θ + L

(
tanh

( τ
L

)
∂τ + L∂2

τ

)
. (4.13)

As a unitary irreducible representation these are labeled by

C2 = ∆(∆− 1) . (4.14)

To map these generators to those of the DFF model we need to take the limit τ → ±∞ to

the future/past boundary. In order to do this, we need to solve the wave equations first to

see how ∂τ acts on these solutions in the late/early time limit.

4.2 The Wave Equation

The action for a massive non-interacting scalar field in dS2 is given by

S0 = −1

2

ˆ
d2x
√
−g(gµν∂µφ∂νφ+m2φ2) . (4.15)

One can now go on and vary the action with respect to φ to obtain the equations of motion

1√
−g

∂µ(
√
−ggµν∂ν)φ = m2φ . (4.16)

Comparing this with the quadratic Casimir, one obtains

1√
−g

∂µ(
√
−ggµν∂ν)φ = − 1

L2
C2φ . (4.17)

Thus, we expect on the representation theory of SL(2,R) to label our states as ∆(∆− 1)

∆(∆− 1) = −m2L2 , (4.18)

which implies

∆± =
1

2

(
1±

√
1− 4m2L2

)
. (4.19)
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Assuming m2L2 > 1
4 our two possible falloffs in time become

∆± =
1

2
(1± iν) (4.20)

with ν ∈ R as expected for the principal series.

The differential equation is separable [45] and the solution can be written in the form

φ = yl(τ)Yn(θ) , (4.21)

where Yn are the spherical harmonics on S1 obeying

∇2
S1Yn = −n2Yn . (4.22)

The spherical harmonics on S1 are given by

Yn(θ) = e−inθ (4.23)

with n ∈ Z. In the following we set L = 1 and we will recover the factor for our solutions

by dimensional analysis later. From this, the differential for the τ dependence reads

∂2
τyn + tanh(τ)∂τyn +

(
m2 +

n2

cosh2(τ)

)
yl = 0 . (4.24)

We can write this equation in terms of the coordinate σ = −e2τ to obtain

σ(1− σ)y′′n − 2σy′n +

{
m2

4

1− σ
σ
− n2

1− σ

}
yn = 0 . (4.25)

Next, let us further substitute

yin
n = coshn(τ)e(n+ 1

2
(1−iµ))τx = coshn(τ)e(n+∆)τx , (4.26)

where we have defined µ =
√

4m2 − 1 and ∆ = 1
2(1−iµ) as usual. The differential equation

simplifies to

σ(1− σ)x′′ + [2∆− 2(1 + n∆)σ]x′ − (n+ 1)(n+ 2∆)x = 0 , (4.27)

which is simply the hypergeometric equation. This is solved by

yin
n =

2n
√
µ

coshn(τ)e(n+∆)τ/L
2F1

(
n+

1

2
, n+ ∆; 2∆,−e−2τ/L

)
, (4.28)
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where F is the hypergeometric function. We can translate our results from incoming states

into outgoing states via the map [45]

yout
n (τ) = yin∗

n (−τ) . (4.29)

The τ -dependence of the outgoing states read explicitly

yout
n =

2n
√
µ

coshn(τ)e(−n−∆̄)τ/LF

(
n+

1

2
, n+ ∆̄; 2∆̄,−e−2τ/L

)
. (4.30)

4.3 Late and Early Time Limit

Past boundary τ → −∞

At the past boundary τ → −∞ we observe F → 1. From this we can read off the state as

yin
n →

1
√
µ
e∆τ/L . (4.31)

We can deduce that in this limit

∂τ → ∆/L (4.32)

and our generator become

L0 = −i∂θ
L± = e∓iθ (i∂θ ±∆) . (4.33)

We see that our early time wave functions fulfil

L0φn = −nφn (4.34)

L±φn = (n±∆)φn±1 . (4.35)

Future boundary τ →∞

In the late time limit τ →∞ we again observe F → 1 and we find

yout
n → 1

√
µ
e−∆̄τ/L . (4.36)

From this we can read off

∂τ → −∆̄/L . (4.37)
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With this our generators read in the limit τ →∞

L0 = −i∂θ
L± = e∓iθ

(
∓∆̄− i∂θ

)
, (4.38)

which are the same as for the DFF model. This means one can understand the DFF model

with the principal series as the quantum mechanical system, which is defined by the late

time generators of 2-dimensional de Sitter space in global coordinates. We see that our

late time wave functions fulfil

L0φn = −nφn (4.39)

L±φn = −(n± ∆̄)φn±1 . (4.40)

We further note that the shape of the generators and their action on the wavefunction are

precisely those of the DFF model with the principal series representation.
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5 Conclusion and outlook

Conclusion

We have extensively reviewed the geometry of de Sitter space, where we have shown some

of the puzzling features of it. Further, we have seen the need of understanding the prin-

cipal series representation as it is one of the unitary irreducible representations that pops

up at the future and past boundary of de Sitter space. Following this, we systematically

investigated the unitary irreducible representations of SO(1, d) for the d = 2, 3 case, which

is the isometry group of de Sitter spacetime. It turns out that the principal series is one

of the two qualitatively possible UIRs of the group SO(1, d).

After a brief review of the conformal quantum mechanical model DFF, where we have pre-

sented the standard description using the highest weight representation, we have derived

the generators appropriate for the principal series representation with complex weights.

We considered both the classical case as well as the quantum case. The degree of freedom

natural for the principal series is the compact angle ψ ∈ [0, 2π). In the classical case, we

observed that the Hamiltonian is linear in the momentum p and that there is no local

simple Lagrangian giving rise to these dynamics. In the quantum case, we saw that all

states can be normalized and the description is unitary. We further use a complete set of

functions to translate our results into the r coordinate often used to define the DFF model.

This required to extend the coordinate, which is defined on the positive semi-axis, to the

negative semi-axis as well. Hence, the degree of freedom is r ∈ (−∞,∞). As expected,

after the transformation the states still behave well and are still normalized to the standard

R-Lebesque norm. We find that in these coordinates the wavefunctions are proportional

to the Whittaker functions. Interestingly, one observes that the sign of the Hamiltonian

switches as one crosses r = 0. This behaviour is reminiscent of the sign switch of the

Hamiltonian in static coordinates in de Sitter spacetime as one crosses the cosmological

horizon.

Finally, we have investigated the isometries of de Sitter space at the future and past

boundary. Therefore we used heavy massive scalars in global coordinates. By considering

the isometries at the future and past boundary, we were able to show that the algebra can

be exactly mapped to those of the principal series description of the DFF model. Thus,

we can deduce that we can match the Hilbert spaces of these two theories.
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Outlook

It is known that the DFF model in the highest weight representation can be used to

describe the radial motion of an electron interacting with a magnetic monopole. It is now

natural to ask the question, which physical model, that might be realized in a lab, can be

described with the DFF model using the principal series representation. This remains an

open question for now, but providing a physical realization would certainly help to under-

stand a few of those bizarre features.

Moreover, it would be interesting to have a closer look at the link between the DFF model

in the principal series representation and 2-dimensional de Sitter space. In both cases one

can observe that the sign of the Hamiltonian switches. In the DFF model at r = 0 and

in de Sitter space static patch coordinates at the cosmological horizon r = L. One can

imagine that there is still a lot to understand with possible applications to the dS/CFT

correspondence.

Furthermore, it is interesting to see how our results can be generalized to the higher dimen-

sional case, especially to the dS3/CFT2 case. As far as we know, there is no quantum field

theory in the literature naturally admitting or at all admitting a unitary description with

the principal series representation yet. Our results for the quantum mechanical case might

shed some light on the structure of such a field theory. In addition, the principal series

can be used to describe the Virasoro algebra with a vanishing central charge. Building

a theory containing these features would certainly be a great achievement and is left for

future work.



REFERENCES 53

References

[1] S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro,

S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, and et al., “Measurements of

omega and lambda from 42 high-redshift supernovae,” The Astrophysical Journal

517 no. 2, (Jun, 1999) 565–586. http://dx.doi.org/10.1086/307221.

[2] A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M.

Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, and et al.,

“Observational evidence from supernovae for an accelerating universe and a

cosmological constant,” The Astronomical Journal 116 no. 3, (Sep, 1998) 1009–1038.

http://dx.doi.org/10.1086/300499.

[3] A. H. Guth, “Inflationary universe: A possible solution to the horizon and flatness

problems,” Phys. Rev. D 23 (Jan, 1981) 347–356.

https://link.aps.org/doi/10.1103/PhysRevD.23.347.

[4] A. Linde, “A new inflationary universe scenario: A possible solution of the horizon,

flatness, homogeneity, isotropy and primordial monopole problems,” Physics Letters

B 108 no. 6, (1982) 389 – 393.

http://www.sciencedirect.com/science/article/pii/0370269382912199.

[5] S. Hawking, J. Maldacena, and A. Strominger, “Desitter entropy, quantum

entanglement and ads/cft,” Journal of High Energy Physics 2001 no. 05, (May,

2001) 001–001. http://dx.doi.org/10.1088/1126-6708/2001/05/001.
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